National Library of Energy BETA

Sample records for advanced liquid fuels

  1. Achievement of Low Emissions by Engine Modification to Utilize Gas-to-Liquid Fuel and Advanced Emission Controls on a Class 8 Truck

    SciTech Connect (OSTI)

    Alleman, T. L.; Tennant, C. J.; Hayes, R. R.; Miyasato, M.; Oshinuga, A.; Barton, G.; Rumminger, M.; Duggal, V.; Nelson, C.; Ray, M.; Cherrillo, R. A.

    2005-11-01

    A 2002 Cummins ISM engine was modified to be optimized for operation on gas-to-liquid (GTL) fuel and advanced emission control devices. The engine modifications included increased exhaust gas recirculation (EGR), decreased compression ratio, and reshaped piston and bowl configuration.

  2. Liquid Fuels Market Module

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProved ReservesCubic Feet) Kenai, AK Liquefied Natural2009343Decade Year-0DecadeLiquid

  3. Nonconventional Liquid Fuels (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    Higher prices for crude oil and refined petroleum products are opening the door for nonconventional liquids to displace petroleum in the traditional fuel supply mix. Growing world demand for diesel fuel is helping to jump-start the trend toward increasing production of nonconventional liquids, and technological advances are making the nonconventional alternatives more viable commercially. Those trends are reflected in the Annual Energy Outlook 2006 projections.

  4. Advanced nuclear fuel

    ScienceCinema (OSTI)

    Terrani, Kurt

    2014-07-15

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  5. Advanced nuclear fuel

    SciTech Connect (OSTI)

    Terrani, Kurt

    2014-07-14

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  6. Stationary Liquid Fuel Fast Reactor

    SciTech Connect (OSTI)

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel container is penetrated by twelve hexagonal control assembly (CA) guide tubes, each of which has 3.0 mm thickness and 69.4 mm flat-to-flat outer distance. The distance between two neighboring CA guide tube is selected to be 26 cm to provide an adequate space for CA driving systems. The fuel container has 18181 penetrating coolant tubes of 6.0 mm inner diameter and 2.0 mm thickness. The coolant tubes are arranged in a triangular lattice with a lattice pitch of 1.21 cm. The fuel, structure, and coolant volume fractions inside the fuel container are 0.386, 0.383, and 0.231, respectively. Separate steel reflectors and B4C shields are used outside of the fuel container. Six gas expansion modules (GEMs) of 5.0 cm thickness are introduced in the radial reflector region. Between the radial reflector and the fuel container is a 2.5 cm sodium gap. The TRU inventory at the beginning of equilibrium cycle (BOEC) is 5081 kg, whereas the TRU inventory at the beginning of life (BOL) was 3541 kg. This is because the equilibrium cycle fuel contains a significantly smaller fissile fraction than the LWR TRU feed. The fuel inventory at BOEC is composed of 34.0 a/o TRU, 41.4 a/o Ce, 23.6 a/o Co, and 1.03 a/o solid fission products. Since uranium-free fuel is used, a theoretical maximum TRU consumption rate of 1.011 kg/day is achieved. The semi-continuous fuel cycle based on the 300-batch, 1- day cycle approximation yields a burnup reactivity loss of 26 pcm/day, and requires a daily reprocessing of 32.5 kg of SLFFR fuel. This yields a daily TRU charge rate of 17.45 kg, including a makeup TRU feed of 1.011 kg recovered from the LWR used fuel. The charged TRU-Ce-Co fuel is composed of 34.4 a/o TRU, 40.6 a/o Ce, and 25.0 a/o Co.

  7. Advanced Fuels Campaign 2012 Accomplishments

    SciTech Connect (OSTI)

    Not Listed

    2012-11-01

    The Advanced Fuels Campaign (AFC) under the Fuel Cycle Research and Development (FCRD) program is responsible for developing fuels technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year 2012 (FY 2012) accomplishments are highlighted below. Kemal Pasamehmetoglu is the National Technical Director for AFC.

  8. Advanced Combustion and Fuels

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Advanced fuel chemistry for advanced engines.

    SciTech Connect (OSTI)

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  10. Advanced Nuclear Fuel Cycle Options

    SciTech Connect (OSTI)

    Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

    2010-06-01

    A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

  11. ADVANCED FUELS CAMPAIGN 2013 ACCOMPLISHMENTS

    SciTech Connect (OSTI)

    Not Listed

    2013-10-01

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.

  12. Advanced thermally stable jet fuels

    SciTech Connect (OSTI)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume (Sections 1 through 5).

  13. Advanced Fuels Campaign Execution Plan

    SciTech Connect (OSTI)

    Kemal Pasamehmetoglu

    2011-09-01

    The purpose of the Advanced Fuels Campaign (AFC) Execution Plan is to communicate the structure and management of research, development, and demonstration (RD&D) activities within the Fuel Cycle Research and Development (FCRD) program. Included in this document is an overview of the FCRD program, a description of the difference between revolutionary and evolutionary approaches to nuclear fuel development, the meaning of science-based development of nuclear fuels, and the 'Grand Challenge' for the AFC that would, if achieved, provide a transformational technology to the nuclear industry in the form of a high performance, high reliability nuclear fuel system. The activities that will be conducted by the AFC to achieve success towards this grand challenge are described and the goals and milestones over the next 20 to 40 year period of research and development are established.

  14. Advanced Fuels Campaign Execution Plan

    SciTech Connect (OSTI)

    Kemal Pasamehmetoglu

    2010-10-01

    The purpose of the Advanced Fuels Campaign (AFC) Execution Plan is to communicate the structure and management of research, development, and demonstration (RD&D) activities within the Fuel Cycle Research and Development (FCRD) program. Included in this document is an overview of the FCRD program, a description of the difference between revolutionary and evolutionary approaches to nuclear fuel development, the meaning of science-based development of nuclear fuels, and the “Grand Challenge” for the AFC that would, if achieved, provide a transformational technology to the nuclear industry in the form of a high performance, high reliability nuclear fuel system. The activities that will be conducted by the AFC to achieve success towards this grand challenge are described and the goals and milestones over the next 20 to 40 year period of research and development are established.

  15. Advanced Thermally Stable Jet Fuels

    SciTech Connect (OSTI)

    A. Boehman; C. Song; H. H. Schobert; M. M. Coleman; P. G. Hatcher; S. Eser

    1998-01-01

    The Penn State program in advanced thermally stable jet fuels has five components: 1) development of mechanisms of degradation and solids formation; 2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles during thermal stressing; 3) characterization of carbonaceous deposits by various instrumental and microscopic methods; 4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and 5) assessment of the potential of producing high yields of cycloalkanes and hydroaromatics from coal.

  16. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  17. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  18. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  19. NREL Dedicates Advanced Hydrogen Fueling Station | Community...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Dedicates Advanced Hydrogen Fueling Station Ceremony Coincides With National Hydrogen and Fuel Cell Day October 8, 2015 The Energy Department's National Renewable Energy...

  20. Air Liquide - Biogas & Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    and the environment PT Loma WWTP, Biogas to Fuel Cell Power BioFuels Energy Biogas to BioMethane to 4.5 MW Fuel Cell Power 3 FCE Fuel Cells 2 via directed...

  1. Advanced Liquid Natural Gas Onboard Storage System

    SciTech Connect (OSTI)

    Greg Harper; Charles Powars

    2003-10-31

    Cummins Westport Incorporated (CWI) has designed and developed a liquefied natural gas (LNG) vehicle fuel system that includes a reciprocating pump with the cold end submerged in LNG contained in a vacuum-jacketed tank. This system was tested and analyzed under the U.S. Department of Energy (DOE) Advanced LNG Onboard Storage System (ALOSS) program. The pumped LNG fuel system developed by CWI and tested under the ALOSS program is a high-pressure system designed for application on Class 8 trucks powered by CWI's ISX G engine, which employs high-pressure direct injection (HPDI) technology. A general ALOSS program objective was to demonstrate the feasibility and advantages of a pumped LNG fuel system relative to on-vehicle fuel systems that require the LNG to be ''conditioned'' to saturation pressures that exceeds the engine fuel pressure requirements. These advantages include the capability to store more fuel mass in given-size vehicle and station tanks, and simpler lower-cost LNG refueling stations that do not require conditioning equipment. Pumped LNG vehicle fuel systems are an alternative to conditioned LNG systems for spark-ignition natural gas and port-injection dual-fuel engines (which typically require about 100 psi), and they are required for HPDI engines (which require over 3,000 psi). The ALOSS program demonstrated the feasibility of a pumped LNG vehicle fuel system and the advantages of this design relative to systems that require conditioning the LNG to a saturation pressure exceeding the engine fuel pressure requirement. LNG tanks mounted on test carts and the CWI engineering truck were repeatedly filled with LNG saturated at 20 to 30 psig. More fuel mass was stored in the vehicle tanks as well as the station tank, and no conditioning equipment was required at the fueling station. The ALOSS program also demonstrated the general viability and specific performance of the CWI pumped LNG fuel system design. The system tested as part of this program is designed to be used on Class 8 trucks with CWI ISX G HPDI engines. Extensive test cart and engineering truck tests of the pump demonstrated good durability and the high-pressure performance needed for HPDI application. The LNG tanks manufactured by Taylor-Wharton passed SAE J2343 Recommended Practice drop tests and accelerated road-load vibration tests. NER and hold-time tests produced highly consistent results. Additional tests confirmed the design adequacy of the liquid level sensor, vaporizer, ullage volume, and other fuel system components. While the testing work performed under this program focused on a high-pressure pumped LNG fuel system design, the results also validate the feasibility of a low-pressure pumped fuel system. A low-pressure pumped fuel system could incorporate various design refinements including a simpler and lighter-weight pump, which would decrease costs somewhat relative to a high-pressure system.

  2. Advancements and Opportunities for Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced PetroleumDepartment|DepartmentAdvancements

  3. Advanced LWR Nuclear Fuel Development

    Broader source: Energy.gov (indexed) [DOE]

    - Advanced Instrumentation, Information and Control Systems Technologies - Reactor Safety Technical Support 2 Mission & Motivation for II&C Pathway * Current...

  4. Liquid Fuels Market Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Defines the objectives of the Liquid Fuels Market Model (LFMM), describes its basic approach, and provides detail on how it works. This report is intended as a reference document for model analysts, users, and the public.

  5. Process for preparing a liquid fuel composition

    DOE Patents [OSTI]

    Singerman, Gary M. (Monroeville, PA)

    1982-03-16

    A process for preparing a liquid fuel composition which comprises liquefying coal, separating a mixture of phenols from said liquefied coal, converting said phenols to the corresponding mixture of anisoles, subjecting at least a portion of the remainder of said liquefied coal to hydrotreatment, subjecting at least a portion of said hydrotreated liquefied coal to reforming to obtain reformate and then combining at least a portion of said anisoles and at least a portion of said reformate to obtain said liquid fuel composition.

  6. Fuel Cycle Research and Development Advanced Fuels Campaign

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MIS-15-37102 FCRD Advanced Fuels Campaign n Develop near-term accident tolerant LWR fuel technology n Perform research and development of long-term transmutation options 2...

  7. Liquid hydrogen - An alternative aviation fuel

    SciTech Connect (OSTI)

    Price, R.O.

    1991-02-01

    This paper examines the past and current activities concerning the development of liquid hydrogen as an alternative turbine engine aviation fuel, and also provides a look at the technical and market requirements that determine the viability of substitutes for conventional jet fuel. Alternative aviation fuels must address the following issues: availability, distribution, energy density, compatibility, economics, safety, handling, and quality control. Preliminary hardware demonstrations and analyses have shown that liquid hydrogen seems to be technically feasible, and may be eventually superior to petroleum-based jet fuel. Disadvantages include low ignition energy and a high flame velocity. From the environmental standpoint, hydrogen combustion in aircraft turbine engines can be expected to eliminate smoke emissions, hydrocarbon, and carbon monoxide. As to the marketing perspective, liquid hydrogen has broad applicability as a fuel in other transportation sectors that could allow multiindustry involvement in its development and commercialization.

  8. Enabling Small-Scale Biomass Gasification for Liquid Fuel Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Breakout Session 2A-Conversion...

  9. Uncertainty Analyses of Advanced Fuel Cycles

    SciTech Connect (OSTI)

    Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

    2008-12-12

    The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

  10. Low contaminant formic acid fuel for direct liquid fuel cell

    DOE Patents [OSTI]

    Masel, Richard I. (Champaign, IL); Zhu, Yimin (Urbana, IL); Kahn, Zakia (Palatine, IL); Man, Malcolm (Vancouver, CA)

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  11. Chemical Kinetic Modeling of Advanced Transportation Fuels

    SciTech Connect (OSTI)

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  12. Advanced LWR Nuclear Fuel Development

    Energy Savers [EERE]

    308L Steam separator and dryer: * components, 304 * welds 308L Closure studs: * alloy steel Fuel: * Cladding, Zr-2 * Fuel, UO 2 Source: R. Staehle There are many materials in a...

  13. Alternative Liquid Fuels (ALF) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation, search Name: Alliance StarAlteBenefitLiquid

  14. Advanced LWR Nuclear Fuel Development

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONY PROJECTRecord For Irradiation --Department

  15. Advanced LWR Nuclear Fuel Development

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONY PROJECTRecord For Irradiation

  16. Advanced LWR Nuclear Fuel Development

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONY PROJECTRecord For IrradiationLWRS Overview

  17. Advanced LWR Nuclear Fuel Development

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONY PROJECTRecord For IrradiationLWRS

  18. Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Presented at the Department of Energy Fuel Cell...

  19. Liquid Fuels from Lignins: Annual Report

    SciTech Connect (OSTI)

    Chum, H. L.; Johnson, D. K.

    1986-01-01

    This task was initiated to assess the conversion of lignins into liquid fuels, primarily of lignins relevant to biomass-to-ethanol conversion processes. The task was composed of a literature review of this area and an experimental part to obtain pertinent data on the conversion of lignins germane to biomass-to-ethanol conversion processes.

  20. Conversion of cellulosic wastes to liquid fuels

    SciTech Connect (OSTI)

    Kuester, J.L.

    1980-09-01

    The current status and future plans for a project to convert waste cellulosic (biomass) materials to quality liquid hydrocarbon fuels is described. The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, diesel fuel and/or high octane gasoline. A fluidized bed pyrolysis system is used for gasification. The pyrolyzer can be fluidized with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. The following tasks were specified in the statement of work for the contract period: (1) feedstock studies; (2) gasification system optimization; (3) waste stream characterization; and (4) liquid fuels synthesis. In addition, several equipment improvements were implemented.

  1. Advanced Fuels Campaign FY 2011 Accomplishments Report

    SciTech Connect (OSTI)

    Not Listed

    2011-11-01

    One of the major research and development (R&D) areas under the Fuel Cycle Research and Development (FCRD) program is advanced fuels development. The Advanced Fuels Campaign (AFC) has the responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. Accomplishments made during fiscal year (FY 20) 2011 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section. The order of the accomplishments in this report is consistent with the AFC work breakdown structure (WBS).

  2. Physics challenges for advanced fuel cycle assessment

    SciTech Connect (OSTI)

    Giuseppe Palmiotti; Massimo Salvatores; Gerardo Aliberti

    2014-06-01

    Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

  3. Advanced Fuels Campaign Cladding & Coatings Meeting Summary

    SciTech Connect (OSTI)

    Not Listed

    2013-03-01

    The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) organized a Cladding and Coatings operational meeting February 12-13, 2013, at Oak Ridge National Laboratory (ORNL). Representatives from the U.S. Department of Energy (DOE), national laboratories, industry, and universities attended the two-day meeting. The purpose of the meeting was to discuss advanced cladding and cladding coating research and development (R&D); review experimental testing capabilities for assessing accident tolerant fuels; and review industry/university plans and experience in light water reactor (LWR) cladding and coating R&D.

  4. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOfficeAcqguide18pt0Department ofHigh2 DOEFactory-Built

  5. Advanced Fuel Cycle Economic Sensitivity Analysis

    SciTech Connect (OSTI)

    David Shropshire; Kent Williams; J.D. Smith; Brent Boore

    2006-12-01

    A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

  6. Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation

    E-Print Network [OSTI]

    Heidet, Florent

    2010-01-01

    Fuel- Trac, Spent Fuel / Reprocessing, in Nuclear IndustryCycle without Fuel Reprocessing, in Advanced reactors safetyOn the other hand, fuel reprocessing has been successfully

  7. DOE Webinar on Alternative Fuel and Advanced Vehicle Procurement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Webinar on Alternative Fuel and Advanced Vehicle Procurement Aggregating Initiatives FOA DOE Webinar on Alternative Fuel and Advanced Vehicle Procurement Aggregating...

  8. Advancement in Fuel Spray and Combustion Modeling for Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine...

  9. Energy Department Invests More than $20 Million to Advance Fuel...

    Office of Environmental Management (EM)

    More than 20 Million to Advance Fuel Cell Technologies as New Report Shows Unprecedented Growth in Industry Energy Department Invests More than 20 Million to Advance Fuel Cell...

  10. Advanced Fuels Campaign FY 2010 Accomplishments Report

    SciTech Connect (OSTI)

    Lori Braase

    2010-12-01

    The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) Accomplishment Report documents the high-level research and development results achieved in fiscal year 2010. The AFC program has been given responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. The science-based approach combines theory, experiments, and multi-scale modeling and simulation aimed at a fundamental understanding of the fuel fabrication processes and fuel and clad performance under irradiation. The scope of the AFC includes evaluation and development of multiple fuel forms to support the three fuel cycle options described in the Sustainable Fuel Cycle Implementation Plan4: Once-Through Cycle, Modified-Open Cycle, and Continuous Recycle. The word “fuel” is used generically to include fuels, targets, and their associated cladding materials. This document includes a brief overview of the management and integration activities; but is primarily focused on the technical accomplishments for FY-10. Each technical section provides a high level overview of the activity, results, technical points of contact, and applicable references.

  11. Burning Rate of Liquid Fuel on Carpet (Porous Media) 

    E-Print Network [OSTI]

    Ma, Tingguang; Olenick, Stephen M; Klassen, Michael S; Roby, Richard J; Torero, Jose L

    2004-01-01

    The occurrence of a liquid fuel burning on carpet has been involved in many incendiary and accidental fires. While the research on a liquid fuel fire on carpet is still limited, much work on porous media has been ...

  12. Reimagining liquid transportation fuels : sunshine to petrol.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Hogan, Roy E., Jr.; McDaniel, Anthony H.; Siegel, Nathan Phillip; Dedrick, Daniel E.; Stechel, Ellen Beth; Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D.; Ambrosini, Andrea; Coker, Eric Nicholas; Staiger, Chad Lynn; Chen, Ken Shuang; Ermanoski, Ivan; Kellog, Gary L.

    2012-01-01

    Two of the most daunting problems facing humankind in the twenty-first century are energy security and climate change. This report summarizes work accomplished towards addressing these problems through the execution of a Grand Challenge LDRD project (FY09-11). The vision of Sunshine to Petrol is captured in one deceptively simple chemical equation: Solar Energy + xCO{sub 2} + (x+1)H{sub 2}O {yields} C{sub x}H{sub 2x+2}(liquid fuel) + (1.5x+.5)O{sub 2} Practical implementation of this equation may seem far-fetched, since it effectively describes the use of solar energy to reverse combustion. However, it is also representative of the photosynthetic processes responsible for much of life on earth and, as such, summarizes the biomass approach to fuels production. It is our contention that an alternative approach, one that is not limited by efficiency of photosynthesis and more directly leads to a liquid fuel, is desirable. The development of a process that efficiently, cost effectively, and sustainably reenergizes thermodynamically spent feedstocks to create reactive fuel intermediates would be an unparalleled achievement and is the key challenge that must be surmounted to solve the intertwined problems of accelerating energy demand and climate change. We proposed that the direct thermochemical conversion of CO{sub 2} and H{sub 2}O to CO and H{sub 2}, which are the universal building blocks for synthetic fuels, serve as the basis for this revolutionary process. To realize this concept, we addressed complex chemical, materials science, and engineering problems associated with thermochemical heat engines and the crucial metal-oxide working-materials deployed therein. By project's end, we had demonstrated solar-driven conversion of CO{sub 2} to CO, a key energetic synthetic fuel intermediate, at 1.7% efficiency.

  13. Future Transient Testing of Advanced Fuels

    SciTech Connect (OSTI)

    Jon Carmack

    2009-09-01

    The transient in-reactor fuels testing workshop was held on May 4–5, 2009 at Idaho National Laboratory. The purpose of this meeting was to provide a forum where technical experts in transient testing of nuclear fuels could meet directly with technical instrumentation experts and nuclear fuel modeling and simulation experts to discuss needed advancements in transient testing to support a basic understanding of nuclear fuel behavior under off-normal conditions. The workshop was attended by representatives from Commissariat ŕ l'Énergie Atomique CEA, Japanese Atomic Energy Agency (JAEA), Department of Energy (DOE), AREVA, General Electric – Global Nuclear Fuels (GE-GNF), Westinghouse, Electric Power Research Institute (EPRI), universities, and several DOE national laboratories. Transient testing of fuels and materials generates information required for advanced fuels in future nuclear power plants. Future nuclear power plants will rely heavily on advanced computer modeling and simulation that describes fuel behavior under off-normal conditions. TREAT is an ideal facility for this testing because of its flexibility, proven operation and material condition. The opportunity exists to develop advanced instrumentation and data collection that can support modeling and simulation needs much better than was possible in the past. In order to take advantage of these opportunities, test programs must be carefully designed to yield basic information to support modeling before conducting integral performance tests. An early start of TREAT and operation at low power would provide significant dividends in training, development of instrumentation, and checkout of reactor systems. Early start of TREAT (2015) is needed to support the requirements of potential users of TREAT and include the testing of full length fuel irradiated in the FFTF reactor. The capabilities provided by TREAT are needed for the development of nuclear power and the following benefits will be realized by the refurbishment and restart of TREAT. •TREAT is an absolute necessity in the suite of reactor fuel test capabilities •TREAT yields valuable information on reactivity effects, margins to failure, fuel dispersal, and failure propagation •Most importantly, interpretation of TREAT experiment results is a stringent test of the integrated understanding of fuel performance.

  14. Converting coal to liquid fuels. [US DOE

    SciTech Connect (OSTI)

    Not Available

    1983-07-01

    Liquid fuels play a vital role in the US economy. Oil represents about 40 percent of the energy consumed each year in this country. In many cases, it fills needs for which other energy forms cannot substitute efficiently or economically - in transportation, for example. Despite a current world-wide surplus of oil, conventional petroleum is a depletable resource. It inevitably will become harder and more expensive to extract. Already in the US, most of the cheap, easily reached oil has been found and extracted. Even under optimistic projections of new discoveries, domestic oil production, particularly in the lower 48 states, will most likely continue to drop. A future alternative to conventional petroleum could be liquid fuels made from coal. The technique is called coal liquefaction. From 1 to 3 barrels of oil can be made from each ton of coal. The basic technology is known; the major obstacles in the US have been the high costs of the synthetic oil and the risks of building large, multi-billion dollar first-of-a-kind plants. Yet, as natural petroleum becomes less plentiful and more expensive, oil made from abundant coal could someday become an increasingly important energy option. To prepare for that day, the US government is working with private industries and universities to establish a sound base of technical knowledge in coal liquefaction.

  15. advanced-fuels-synthesis-index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for producing liquid hydrocarbon fuels and valuable by-products from coalcoal-biomass mixtures. The current focus is on making significant improvements in fuels synthesis...

  16. Computational Design of Advanced Nuclear Fuels

    SciTech Connect (OSTI)

    Savrasov, Sergey; Kotliar, Gabriel; Haule, Kristjan

    2014-06-03

    The objective of the project was to develop a method for theoretical understanding of nuclear fuel materials whose physical and thermophysical properties can be predicted from first principles using a novel dynamical mean field method for electronic structure calculations. We concentrated our study on uranium, plutonium, their oxides, nitrides, carbides, as well as some rare earth materials whose 4f eletrons provide a simplified framework for understanding complex behavior of the f electrons. We addressed the issues connected to the electronic structure, lattice instabilities, phonon and magnon dynamics as well as thermal conductivity. This allowed us to evaluate characteristics of advanced nuclear fuel systems using computer based simulations and avoid costly experiments.

  17. Liquid fuels perspective on ultra low carbon vehicles | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fuels perspective on ultra low carbon vehicles Liquid fuels perspective on ultra low carbon vehicles Fuels challenges in the evolving global energy market deer11simnick.pdf More...

  18. Fuels and Lubricants to Support Advanced Diesel Engine Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricants to Support Advanced Diesel Engine Technology Fuels and Lubricants to Support Advanced Diesel Engine Technology 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  19. Application of advanced hydrocarbon characterization and its consequences on future fuel properties and advanced combustion research

    Office of Energy Efficiency and Renewable Energy (EERE)

    Research on future fuels chemistry and effects on combustion in advanced internal combustion engines

  20. Conversion of olefins to liquid motor fuels

    DOE Patents [OSTI]

    Rabo, Jule A. (Armonk, NY); Coughlin, Peter K. (Yorktown Heights, NY)

    1988-01-01

    Linear and/or branched claim C.sub.2 to C.sub.12 olefins are converted to hydrocarbon mixtures suitable for use as liquid motor fuels by contact with a catalyst capable of ensuring the production of desirable products with only a relatively minor amount of heavy products boiling beyond the diesel oil range. The catalyst having desirable stability during continuous production operations, comprises a steam stabilized zeolite Y catalyst of hydrophobic character, desirably in aluminum-extracted form. The olefins such as propylene, may be diluted with inerts, such as paraffins or with water, the latter serving to moderate the acidity of the catalyst, or to further moderate the activity of the aluminum-extracted catalyst, so as to increase the effective life of the catalyst.

  1. Biomass gasification for liquid fuel production

    SciTech Connect (OSTI)

    Najser, Jan E-mail: vaclav.peer@vsb.cz; Peer, Václav E-mail: vaclav.peer@vsb.cz

    2014-08-06

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they do?t compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  2. Energy Department Announces $35 Million to Advance Fuel Cell...

    Office of Environmental Management (EM)

    35 Million to Advance Fuel Cell and Hydrogen Technologies Energy Department Announces 35 Million to Advance Fuel Cell and Hydrogen Technologies March 3, 2015 - 11:30am Addthis...

  3. Energy Department Offers $50 Million to Advance Fuel Efficient...

    Office of Environmental Management (EM)

    Offers 50 Million to Advance Fuel Efficient Autos Energy Department Offers 50 Million to Advance Fuel Efficient Autos January 29, 2014 - 12:00am Addthis The Energy Department on...

  4. Biogas to Liquid Fuels and Chemicals Presentation for BETO 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Laboratory 2 Goal Statement Goals 1. Demonstrate proof of concept for a biogas-to-liquid fuels and chemicals process. 2. Enhance carbon conversion efficiency from...

  5. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar...

    Broader source: Energy.gov (indexed) [DOE]

    the presentation slides from the "Joint Fuel Cell Technologies Office and Advanced Manufacturing Office Webinar" held November 20, 2012. Joint Fuel Cell Technologies Office and...

  6. Water Transport in PEM Fuel Cells: Advanced Modeling, Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Design Optimization Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization Part of a 100 million fuel cell award...

  7. Vehicle Technologies Office Merit Review 2014: Advanced Combustion and Fuels

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion and fuels.

  8. NREL Dedicates Advanced Hydrogen Fueling Station - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dedicates Advanced Hydrogen Fueling Station Ceremony Coincides With National Hydrogen and Fuel Cell Day October 8, 2015 The Energy Department's National Renewable Energy Laboratory...

  9. Liquid Fuels and Natural Gas in the Americas

    Reports and Publications (EIA)

    2014-01-01

    The Energy Information Administration's (EIA) Liquid Fuels and Natural Gas in the Americas report, published today, is a Congressionally-requested study examining the energy trends and developments in the Americas over the past decade. The report focuses on liquid fuels and natural gas—particularly reserves and resources, production, consumption, trade, and investment—given their scale and significance to the region.

  10. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    SciTech Connect (OSTI)

    Mills, G. [Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H{sub 2} and CO, usually containing CO{sub 2}) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  11. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    SciTech Connect (OSTI)

    Mills, G. (Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology)

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  12. ADVANCED HETEROGENEOUS REBURN FUEL FROM COAL AND HOG MANURE

    SciTech Connect (OSTI)

    Melanie D. Jensen; Ronald C. Timpe; Jason D. Laumb

    2003-09-01

    This study was performed to investigate whether the nitrogen content inherent in hog manure and alkali used as a catalyst during processing could be combined with coal to produce a reburn fuel that would result in advanced reburning NO{sub x} control without the addition of either alkali or ammonia/urea. Fresh hog manure was processed in a cold-charge, 1-gal, batch autoclave system at 275 C under a reducing atmosphere in the presence of an alkali catalyst. Instead of the expected organic liquid, the resulting product was a waxy solid material. The waxy nature of the material made size reduction and feeding difficult as the material agglomerated and tended to melt, plugging the feeder. The material was eventually broken up and sized manually and a water-cooled feeder was designed and fabricated. Two reburn tests were performed in a pilot-scale combustor. The first test evaluated a reburn fuel mixture comprising lignite and air-dried, raw hog manure. The second test evaluated a reburn fuel mixture made of lignite and the processed hog manure. Neither reburn fuel reduced NO{sub x} levels in the combustor flue gas. Increased slagging and ash deposition were observed during both reburn tests. The material-handling and ash-fouling issues encountered during this study indicate that the use of waste-based reburn fuels could pose practical difficulties in implementation on a larger scale.

  13. Advanced membrane electrode assemblies for fuel cells

    DOE Patents [OSTI]

    Kim, Yu Seung; Pivovar, Bryan S

    2014-02-25

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  14. Advanced membrane electrode assemblies for fuel cells

    DOE Patents [OSTI]

    Kim, Yu Seung; Pivovar, Bryan S.

    2012-07-24

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  15. Advanced Liquid Cooling R&D

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Advanced coal-fueled gas turbine systems

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    Westinghouse's Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO[sub x] emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO[sub x] levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  17. Bioconversion of natural gas to liquid fuel: Opportunities and challenges

    SciTech Connect (OSTI)

    Fei, Q; Guarnieri, MT; Tao, L; Laurens, LML; Dowe, N; Pienkos, PT

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. (C) 2014 The Authors. Published by Elsevier Inc.

  18. Current Comparison of Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Steven J. Piet; B. W. Dixon; A. Goldmann; R. N. Hill; J. J. Jacobson; G. E. Matthern; J. D. Smith; A. M. Yacout

    2006-03-01

    The nuclear fuel cycle includes mining, enrichment, nuclear power plants, recycling (if done), and residual waste disposition. The U.S. Advanced Fuel Cycle Initiative (AFCI) has four program objectives to guide research on how best to glue these pieces together, as follows: waste management, proliferation resistance, energy recovery, and systematic management/economics/safety. We have developed a comprehensive set of metrics to evaluate fuel cycle options against the four program objectives. The current list of metrics is long-term heat, long-term dose, radiotoxicity and weapons usable material. This paper describes the current metrics and initial results from comparisons made using these metrics. The data presented were developed using a combination of “static” calculations and a system dynamic model, DYMOND. In many cases, we examine the same issue both dynamically and statically to determine the robustness of the observations. All analyses are for the U.S. reactor fleet. This work aims to clarify many of the issues being discussed within the AFCI program, including Inert Matrix Fuel (IMF) versus Mixed Oxide (MOX) fuel, single-pass versus multi-pass recycling, thermal versus fast reactors, and the value of separating cesium and strontium. The results from a series of dynamic simulations evaluating these options are included in this report. The model interface includes a few “control knobs” for flying or piloting the fuel cycle system into the future. The results from the simulations show that the future is dark (uncertain) and that the system is sluggish with slow time response times to changes (i.e., what types of reactors are built, what types of fuels are used, and the capacity of separation and fabrication plants). Piloting responsibilities are distributed among utilities, government, and regulators, compounding the challenge of making the entire system work and respond to changing circumstances. We identify four approaches that would increase our chances of a sustainable fuel cycle system: (1) have a recycle strategy that could be implemented before the 2030-2050 approximate period when current reactors retire so that replacement reactors fit into the strategy, (2) establish an option such as multi-pass blended-core IMF as a downward Pu control knob and accumulate waste management benefits early, (3) establish fast reactors with flexible conversion ratio as a future control knob that slowly becomes available if/when fast reactors are added to the fleet, and (4) expand exploration of heterogeneous assemblies and cores, which appear to have advantages such as increased agility. Initial results suggest multi-pass full-core MOX appears to be a less effective way than multi-pass blended core IMF to manage the fuel cycle system because it requires higher TRU throughput while accruing waste management benefits at a slower rate. Single-pass recycle approaches for LWRs do not meet AFCI program objectives and could be considered a “dead end.” We did not study the Very High Temperature Reactor (VHTR). Fast reactors appear to be effective options but a significant number of fast reactors must be deployed before the benefit of such strategies can be observed.

  19. The Role of Distribution Infrastructure and Equipment in the Life-cycle Air Emissions of Liquid Transportation Fuels

    E-Print Network [OSTI]

    Strogen, Bret

    2012-01-01

    Efficiency & Renewable Energy, Alternative Fuels & AdvancedEfficiency & Renewable Energy, Alternative Fuels & AdvancedEfficiency & Renewable Energy, Alternative Fuels & Advanced

  20. Advancements and Opportunities for Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDITLeslie Pezzullo OfficeDepartment ofAdvancedAdvancements

  1. Fuel Effects on Advanced Combustion Engines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    direct - - injection HECC injection HECC Establish fundamental understanding of fuel effects necessary Establish fundamental understanding of fuel effects necessary for...

  2. Vehicle Technologies Office Merit Review 2015: Advanced Combustion and Fuels

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about advanced...

  3. Development of Advanced High Temperature Fuel Cell Membranes

    Broader source: Energy.gov [DOE]

    Presentation on Development of Advanced High Temperature Fuel Cell Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  4. Advances in X-Ray Diagnostics of Diesel Fuel Sprays

    Broader source: Energy.gov [DOE]

    Recent advances in high-speed X-ray imaging has shown several distinct behaviors of commercial fuel injectors that cannot be seen with more conventional techniques.

  5. Water Transport in PEM Fuel Cells: Advanced Modeling, Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing, and Design Optimization Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization This presentation, which focuses on...

  6. Alternative Fuels and Advanced Vehicles Data Center - Codes and...

    Open Energy Info (EERE)

    Codes and Standards Resources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards Resources...

  7. Alternative Fuel and Advanced Technology Vehicles Pilot Program...

    Open Energy Info (EERE)

    Program Emissions Benefit Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool...

  8. Alternative Fuels and Advanced Vehicles Data Center - Federal...

    Open Energy Info (EERE)

    Incentives and Laws Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuels and Advanced Vehicles Data Center - Federal and State Incentives and...

  9. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...

    Office of Environmental Management (EM)

    Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols Biomass is a renewable energy resource that can be converted into liquid fuel suitable for...

  10. Nuclear tanker producing liquid fuels from air and water

    E-Print Network [OSTI]

    Galle-Bishop, John Michael

    2011-01-01

    Emerging technologies in CO? air capture, high temperature electrolysis, microchannel catalytic conversion, and Generation IV reactor plant systems have the potential to create a shipboard liquid fuel production system ...

  11. Advanced Petroleum Based Fuels Research at NREL | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced Petroleum Based Fuels Research at NREL

  12. Alternative Fuel and Advanced Vehicle Tools (AFAVT), AFDC (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    The Alternative Fuels and Advanced Vehicles Web site offers a collection of calculators, interactive maps, and informational tools to assist fleets, fuel providers, and others looking to reduce petroleum consumption in the transportation sector.

  13. Liquid Fuels Market Model (LFMM) Unveiling LFMM

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of33 2,297 809 245YearYear

  14. AEO 2013 Liquid Fuels Markets Working Group

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, August 27, 2012 Attendance (In

  15. Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on as ReliableAlternative FuelsStaplesLaws

  16. Liquid Transportation Fuels from Coal and Biomass

    E-Print Network [OSTI]

    fuels from coal and biomass have potential to supply 2-3 MBPD of oil equivalent fuels with significantly and a carbon price, and on accelerated federal investment in essential technologies #12;BIOMASS SUPPLY by Milbrandt (2005) and Perlack et al. (2005). · Hay and wheat straws--Yield increase over time = historic

  17. Liquid Transportation Fuels from Coal and Biomass | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on CleanUp GeorgiaLinacLiquefactionTransportation

  18. Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More places to share EERE:About19,332Vehicles

  19. Alternative Fuels Data Center: State Alternative Fuel and Advanced Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehicles andProductionRentalSchoolLaws and

  20. North Central Texas Alternative Fuel and Advanced Technology Investments |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce CarbonEnergy Fuel EffectsNorman

  1. North Central Texas Alternative Fuel and Advanced Technology Investments |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce CarbonEnergy Fuel EffectsNormanDepartment of

  2. Advancement in Fuel Spray and Combustion Modeling for Compression Ignition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced PetroleumDepartment|Department

  3. Advanced Fuel Cell Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLCAdema Technologies IncFuel Cell Systems Jump to:

  4. Progress Report for Advanced Automotive Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat LetterPresidentEnergy Office

  5. Cellulosic Liquid Fuels Commercial Production Today

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels RFS2 Approved Modular facilities producing 5-20 million gallons year of RFO Capex of 20-100 MM 20+ years of combustion experience - over 15 million gallons...

  6. Combustion characteristics of alternative liquid fuels

    E-Print Network [OSTI]

    Chong, Cheng Tung

    2011-11-08

    atomizer are investigated using a phase Doppler anemometry (PDA) under non-reacting conditions. The droplet size and velocity distribution of biodiesels are compared to conventional fuels. For spray combustion investigations, a generic gas turbine...

  7. Liquid Fuels from Biomass | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006deermccormick.pdf More Documents & Publications...

  8. Alternative Liquid Fuels Simulation Model (AltSim).

    SciTech Connect (OSTI)

    Baker, Arnold Barry; Williams, Ryan (Hobart and William Smith Colleges, Geneva, NY); Drennen, Thomas E.; Klotz, Richard (Hobart and William Smith Colleges, Geneva, NY)

    2007-10-01

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production costs, carbon dioxide emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol, biodiesel, and diesels derived from natural gas (gas to liquid, or GTL) and coal (coal to liquid, or CTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion efficiency, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the preliminary results from the model. For the base cases, CTL and cellulosic ethanol are the least cost fuel options, at $1.60 and $1.71 per gallon, respectively. Base case assumptions do not include tax or other credits. This compares to a $2.35/gallon production cost of gasoline at September, 2007 crude oil prices ($80.57/barrel). On an energy content basis, the CTL is the low cost alternative, at $12.90/MMBtu, compared to $22.47/MMBtu for cellulosic ethanol. In terms of carbon dioxide emissions, a typical vehicle fueled with cellulosic ethanol will release 0.48 tons CO{sub 2} per year, compared to 13.23 tons per year for coal to liquid.

  9. Metallic fuels: The EBR-II legacy and recent advances

    SciTech Connect (OSTI)

    Douglas L. Porter; Steven L. Hayes; J. Rory Kennedy

    2012-09-01

    Experimental Breeder Reactor – II (EBR-II) metallic fuel was qualified for high burnup to approximately 10 atomic per cent. Subsequently, the electrometallurgical treatment of this fuel was demonstrated. Advanced metallic fuels are now investigated for increased performance, including ultra-high burnup and actinide burning. Advances include additives to mitigate the fuel/cladding chemical interaction and uranium alloys that combine Mo, Ti and Zr to improve alloy performance. The impacts of the advances—on fabrication, waste streams, electrorefining, etc.—are found to be minimal and beneficial. Owing to extensive research literature and computational methods, only a modest effort is required to complete their development.

  10. Advanced Transmission Impact on Fuel Displacement

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Advanced Bio-based Jet Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOfficeAcqguide18pt0Department of Energy 2 DOETemperature1

  12. Advanced Electrocatalysts for PEM Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOfficeAcqguide18pt0Department ofHigh2 DOE Hydrogen andWebinar on

  13. DKRW Advanced Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc Jump to: navigation,(RECP) in JumpDemonetzDHL

  14. Recovery of Information from the Fast Flux Test Facility for the Advanced Fuel Cycle Initiative

    SciTech Connect (OSTI)

    Nielsen, Deborah L.; Makenas, Bruce J.; Wootan, David W.; Butner, R. Scott; Omberg, Ronald P.

    2009-09-30

    The Fast Flux Test Facility is the most recent Liquid Metal Reactor to operate in the United States. Information from the design, construction, and operation of this reactor was at risk as the facilities associated with the reactor are being shut down. The Advanced Fuel Cycle Initiative is a program managed by the Office of Nuclear Energy of the U.S. Department of Energy with a mission to develop new fuel cycle technologies to support both current and advanced reactors. Securing and preserving the knowledge gained from operation and testing in the Fast Flux Test Facility is an important part of the Knowledge Preservation activity in this program.

  15. Alternative Fuels Data Center: Alternative Fuel and Advanced Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I NLoans The Oregon Department ofPropaneVehicles Aid

  16. Fuel Cycle Research and Development Advanced Fuels Campaign

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to Tapping intoand DavidEnergy currently utilizes

  17. Enhanced catalyst for conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY); Rabo, Jule A. (Armonk, NY)

    1985-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  18. Enhanced catalyst for conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, P.K.; Rabo, J.A.

    1985-12-03

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C[sub 5][sup +] hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising a SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  19. Enhanced conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY); Rabo, Jule A. (Armonk, NY)

    1986-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  20. Advanced Fuels Campaign FY 2014 Accomplishments Report

    SciTech Connect (OSTI)

    Lori Braase; W. Edgar May

    2014-10-01

    The overall goal of ATF development is to identify alternative fuel system technologies to further enhance the safety, competitiveness, and economics of commercial nuclear power. The complex multiphysics behavior of LWR nuclear fuel in the integrated reactor system makes defining specific material or design improvements difficult; as such, establishing desirable performance attributes is critical in guiding the design and development of fuels and cladding with enhanced accident tolerance.

  1. Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700, 1. .&. ' , cMarchW W e e l l d d o o n

  2. NREL: Learning - Advanced Vehicles and Fuels Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12Working withPhoto of theSolar Sponsors

  3. Los Alamos scientists advance biomass fuel production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-EearnstakesLosMap of scienceLos Alamos

  4. Enzymantic Conversion of Coal to Liquid Fuels

    SciTech Connect (OSTI)

    Richard Troiano

    2011-01-31

    The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time, corresponding to the consumption of aromatic intermediates as they undergo ring cleavage. The results show that this process happens within 1 hour when using extracellular enzymes, but takes several days when using live organisms. In addition, live organisms require specific culture conditions, control of contaminants and fungicides in order to effectively produce extracellular enzymes that degrade coal. Therefore, when comparing the two enzymatic methods, results show that the process of using extracellular lignin degrading enzymes, such as laccase and manganese peroxidase, appears to be a more efficient method of decomposing bituminous coal.

  5. Property:RenewableFuelStandard/AdvancedBiofuel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to: navigation,PowerAdvancedBiofuel Jump to: navigation,

  6. Property:RenewableFuelStandard/UndifferentiatedAdvancedBiofuel | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to: navigation,PowerAdvancedBiofuelEnergy

  7. Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce CarbonEnergyDepartment13 FederalJuly 28, 199819,

  8. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S. DepartmentJean Seibert StuckySolar IndustryWashington

  9. Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on CleanUp Georgia ConvenienceMaterials

  10. Liquid Fuels and Natural Gas in the Americas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E CChina (MillionLiquid Fuels and Natural

  11. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  12. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation vss063bazzi2011o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project...

  13. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting vss063bazzi2012o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project...

  14. Fuel Effects on Ignition and Their Impact on Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Advanced Combustion Engines Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st...

  15. Hydrogen fuel closer to reality because of storage advances

    E-Print Network [OSTI]

    - 1 - Hydrogen fuel closer to reality because of storage advances March 21, 2012 Drive toward hydrogen vehicles just got shorter A significant advance in hydrogen storage could make hydrogen a more for recharging the hydrogen storage compound ammonia borane. The LANL technology focuses on using ammonia borane

  16. Advanced Nuclear Fuel | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden DocumentationAccommodationsRegisterLithium-based Technologies / Advanced

  17. A fresh look at coal-derived liquid fuels

    SciTech Connect (OSTI)

    Paul, A.D. [Benham Companies LLC (USA)

    2009-01-15

    35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

  18. Simulating Impacts of Disruptions to Liquid Fuels Infrastructure

    SciTech Connect (OSTI)

    Wilson, Michael; Corbet, Thomas F.; Baker, Arnold B.; O'Rourke, Julia M.

    2015-04-01

    This report presents a methodology for estimating the impacts of events that damage or disrupt liquid fuels infrastructure. The impact of a disruption depends on which components of the infrastructure are damaged, the time required for repairs, and the position of the disrupted components in the fuels supply network. Impacts are estimated for seven stressing events in regions of the United States, which were selected to represent a range of disruption types. For most of these events the analysis is carried out using the National Transportation Fuels Model (NTFM) to simulate the system-level liquid fuels sector response. Results are presented for each event, and a brief cross comparison of event simulation results is provided.

  19. Electrolyte creepage barrier for liquid electrolyte fuel cells

    DOE Patents [OSTI]

    Li, Jian (Alberta, CA); Farooque, Mohammad (Danbury, CT); Yuh, Chao-Yi (New Milford, CT)

    2008-01-22

    A dielectric assembly for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric assembly includes a substantially impermeable dielectric member over which electrolyte is able to flow and a barrier adjacent the dielectric member and having a porosity of less than 50% and greater than 10% so that the barrier is able to measurably absorb and chemically react with the liquid electrolyte flowing on the dielectric member to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage of electrolyte from the dielectric member to the manifold or component to be electrically insulated from the fuel cell stack by the dielectric assembly.

  20. North Central Texas Alternative Fuel and Advanced Technology Investments |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce CarbonEnergy Fuel EffectsNormanDepartment of Energy

  1. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with...

  2. Advanced Safeguards Approaches for New TRU Fuel Fabrication Facilities

    SciTech Connect (OSTI)

    Durst, Philip C.; Ehinger, Michael H.; Boyer, Brian; Therios, Ike; Bean, Robert; Dougan, A.; Tolk, K.

    2007-12-15

    This second report in a series of three reviews possible safeguards approaches for the new transuranic (TRU) fuel fabrication processes to be deployed at AFCF – specifically, the ceramic TRU (MOX) fuel fabrication line and the metallic (pyroprocessing) line. The most common TRU fuel has been fuel composed of mixed plutonium and uranium dioxide, referred to as “MOX”. However, under the Advanced Fuel Cycle projects custom-made fuels with higher contents of neptunium, americium, and curium may also be produced to evaluate if these “minor actinides” can be effectively burned and transmuted through irradiation in the ABR. A third and final report in this series will evaluate and review the advanced safeguards approach options for the ABR. In reviewing and developing the advanced safeguards approach for the new TRU fuel fabrication processes envisioned for AFCF, the existing international (IAEA) safeguards approach at the Plutonium Fuel Production Facility (PFPF) and the conceptual approach planned for the new J-MOX facility in Japan have been considered as a starting point of reference. The pyro-metallurgical reprocessing and fuel fabrication process at EBR-II near Idaho Falls also provided insight for safeguarding the additional metallic pyroprocessing fuel fabrication line planned for AFCF.

  3. Process of producing liquid hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Kuester, J.L.

    1987-07-07

    A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.

  4. Process of producing liquid hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Kuester, James L. (Scottsdale, AZ)

    1987-07-07

    A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.

  5. advanced-fuels-synthesis-index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largestnamedGroup!managementAdvanced Fuels

  6. Producing liquid fuels from coal: prospects and policy issues

    SciTech Connect (OSTI)

    James T. Bartis; Frank Camm; David S. Ortiz

    2008-07-01

    The increase in world oil prices since 2003 has prompted renewed interest in producing and using liquid fuels from unconventional resources, such as biomass, oil shale, and coal. This book focuses on issues and options associated with establishing a commercial coal-to-liquids (CTL) industry within the United States. It describes the technical status, costs, and performance of methods that are available for producing liquids from coal; the key energy and environmental policy issues associated with CTL development; the impediments to early commercial experience; and the efficacy of alternative federal incentives in promoting early commercial experience. Because coal is not the only near-term option for meeting liquid-fuel needs, this book also briefly reviews the benefits and limitations of other approaches, including the development of oil shale resources, the further development of biomass resources, and increasing dependence on imported petroleum. A companion document provides a detailed description of incentive packages that the federal government could offer to encourage private-sector investors to pursue early CTL production experience while reducing the probability of bad outcomes and limiting the costs that might be required to motivate those investors. (See Rand Technical Report TR586, Camm, Bartis, and Bushman, 2008.) 114 refs., 2 figs., 16 tabs., 3 apps.

  7. Catalyst for converting synthesis gas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY)

    1986-01-01

    The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  8. Enhanced catalyst for converting synthesis gas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY)

    1986-01-01

    The conversion of synthesis gas to liquid molar fuels by means of a cobalt Fischer-Tropsch catalyst composition is enhanced by the addition of molybdenum, tungsten or a combination thereof as an additional component of said composition. The presence of the additive component increases the olefinic content of the hydrocarbon products produced. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  9. The DOE Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect (OSTI)

    David Petti

    2010-09-01

    The high outlet temperatures and high thermal-energy conversion efficiency of modular High Temperature Gas-cooled Reactors (HTGRs) enable an efficient and cost effective integration of the reactor system with non-electricity generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes that require temperatures between 300°C and 900°C. The Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristructural isotropic (TRISO)-coated particle fuel for use in HTGRs. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission-product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete, fundamental understanding of the relationship between the fuel fabrication process and key fuel properties, the irradiation and accident safety performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. An overview of the program and recent progress is presented.

  10. Fuel Properties Database from the Alternative Fuels and Advanced Vehicles Data Center (AFDC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This database contains information on advanced petroleum and non-petroleum based fuels, as well as key data on advanced compression ignition fuels. Included are data on physical, chemical, operational, environmental, safety, and health properties. These data result from tests conducted according to standard methods (mostly American Society for Testing and Materials (ASTM). The source and test methods for each fuel data set are provided with the information. The database can be searched in various ways and can output numbers or explanatory text. Heavy vehicle chassis emission data are also available for some fuels.

  11. Fueling the Navy's Great Green Fleet with Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    From transporting the oil necessary to fuel jets and vehicles to supplying battery packs to infantry, energy plays a central role in almost everything the U.S. military does. Because of this reliance, it’s imperative that the military cultivate energy sources that are not subject to the whims of outside nations. While renewables like solar are playing a large role in this effort, advanced biofuels produced domestically are rapidly becoming another choice for transportation fuel.

  12. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  13. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    SciTech Connect (OSTI)

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  14. EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY Documents Available for...

  15. Assessment for advanced fuel cycle options in CANDU

    SciTech Connect (OSTI)

    Morreale, A.C.; Luxat, J.C. [McMaster University, 1280 Main St. W. Hamilton, Ontario, L8S 4L7 (Canada); Friedlander, Y. [AMEC-NSS Ltd., 700 University Ave. 4th Floor, Toronto, Ontario, M5G 1X6 (Canada)

    2013-07-01

    The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a driver fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.

  16. NREL Research on Converting Biomass to Liquid Fuels

    ScienceCinema (OSTI)

    None

    2013-05-29

    Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels are ethanol and biodiesel. Today, ethanol is made from starches and sugars, but at the National Renewable Energy Laboratory (NREL) scientists are developing technology to allow it to be made from cellulose and hemicellulose, the fibrous material that makes up the bulk of most plant matter. Biodiesel is made by combining alcohol (usually methanol) with vegetable oil, animal fat, or recycled cooking grease. It can be used as an additive (typically 20%) to reduce vehicle emissions or in its pure form as a renewable alternative fuel for diesel engines. For a text version of this video visit http://www.nrel.gov/learning/re_biofuels.html

  17. Advanced Research in Diesel Fuel Sprays Using X-rays from the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source Advanced Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source 2003 DEER...

  18. Superheated fuel injection for combustion of liquid-solid slurries

    DOE Patents [OSTI]

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  19. Superheated fuel injection for combustion of liquid-solid slurries

    DOE Patents [OSTI]

    Robben, Franklin A. (Berkeley, CA)

    1985-01-01

    A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

  20. ULTRACLEAN FUELS PRODUCTION AND UTILIZATION FOR THE TWENTY-FIRST CENTURY: ADVANCES TOWARDS SUSTAINABLE TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    Fox, E.

    2013-06-17

    Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

  1. Catalysts for conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Rabo, Jule A. (Armonk, NY); Coughlin, Peter K. (Yorktown Heights, NY)

    1987-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst composition capable of ensuring the production of only relatively minor amounts of heavy products boiling beyond the diesel oil range. The catalyst composition, having desirable stability during continuous production operation, employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component. The latter component is a steam-stabilized zeolite Y catalyst of hydrophobic character, desirably in acid-extracted form.

  2. No loss fueling station for liquid natural gas vehicles

    SciTech Connect (OSTI)

    Cieslukowski, R.E.

    1992-06-16

    This patent describes a no loss fueling station for delivery of liquid natural gas (LNG) to a use device such as a motor vehicle. It comprises: a pressure building tank holding a quantity of LNG and gas head; means for delivering LNG to the pressure building tank; means for selectively building the pressure in the pressure building tank; means for selectively reducing the pressure in the pressure building tank; means for controlling the pressure building and pressure reducing means to maintain a desired pressure in the pressure building tank without venting natural gas to the atmosphere; and means for delivering the LNG from the pressure building tank to the use device.

  3. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect (OSTI)

    Gallant, Tom; Franz, Jim; Alnajjar, Mikhail; Storey, John Morse; Lewis Sr, Samuel Arthur; Sluder, Scott; Cannella, William C; Fairbridge, Craig; Hager, Darcy; Dettman, Heather; Luecke, Jon; Ratcliff, Matthew A.; Zigler, Brad

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  4. An Assessment of Energy and Environmental Issues Related to the Use of Gas-to-Liquid Fuels in Transportation

    SciTech Connect (OSTI)

    Greene, D.L.

    1999-11-01

    Recent technological advances in processes for converting natural gas into liquid fuels, combined with a growing need for cleaner, low-sulfur distillate fuel to mitigate the environmental impacts of diesel engines have raised the possibility of a substantial global gas-to-liquids (G-T-L) industry. This report examines the implications of G-T-L supply for U.S. energy security and the environment. It appears that a G-T-L industry would increase competitiveness in world liquid fuels markets, even if OPEC states are major producers of G-T-L's. Cleaner G-T-L distillates would help reduce air pollution from diesel engines. Implications for greenhouse gas (GHG) emissions could be positive or negative, depending on the sources of natural gas, their alternative uses, and the degree of sequestration that can be achieved for CO2 emissions produced during the conversion process.

  5. An assessment of energy and environmental issues related to the use of gas-to-liquid fuels in transportation

    SciTech Connect (OSTI)

    Greene, D.L.

    1999-11-01

    Recent technological advances in processes for converting natural gas into liquid fuels, combined with a growing need for cleaner, low-sulfur distillate fuel to mitigate the environmental impacts of diesel engines have raised the possibility of a substantial global gas-to-liquids (G-T-L) industry. This report examines the implications of G-T-L supply for U.S. energy security and the environment. It appears that a G-T-L industry would increase competitiveness in world liquid fuels markets, even if OPEC states are major producers of G-T-L's. Cleaner G-T-L distillates would help reduce air pollution from diesel engines. Implications for greenhouse gas (GHG) emissions could be positive or negative, depending on the sources of natural gas, their alternative uses, and the degree of sequestration that can be achieved for CO{sub 2} emissions produced during the conversion process.

  6. Advanced Fuel Performance: Modeling and Simulation Light Water Reactor Fuel Performance:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge KiosksAboutHelp & Reference UsersAdvanced 63 No. 8

  7. Liquid water transport in fuel cell gas diffusion layers Aimy Ming Jii Bazylak

    E-Print Network [OSTI]

    Victoria, University of

    Liquid water transport in fuel cell gas diffusion layers by Aimy Ming Jii Bazylak Bachelor means, without the permission of the author. #12;ii Liquid water transport in fuel cell gas diffusion State University) Abstract Liquid water management has a major impact on the performance and durability

  8. Alternative Liquid Fuels Simulation Model (AltSim).

    SciTech Connect (OSTI)

    Williams, Ryan; Baker, Arnold Barry; Drennen, Thomas E.

    2009-12-01

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production and end use costs, greenhouse gas emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol from various feedstocks (switchgrass, corn stover, forest residue, and farmed trees), biodiesel, and diesels derived from natural gas (gas to liquid, or GTL), coal (coal to liquid, or CTL), and coal with biomass (CBTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion ratio, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the structure and methodology of AltSim, presents results, and provides a detailed sensitivity analysis. The Energy Independence and Security Act (EISA) of 2007 sets a goal for the increased use of biofuels in the U.S., ultimately reaching 36 billion gallons by 2022. AltSim's base case assumes EPA projected feedstock costs in 2022 (EPA, 2009). For the base case assumptions, AltSim estimates per gallon production costs for the five ethanol feedstocks (corn, switchgrass, corn stover, forest residue, and farmed trees) of $1.86, $2.32, $2.45, $1.52, and $1.91, respectively. The projected production cost of biodiesel is $1.81/gallon. The estimates for CTL without biomass range from $1.36 to $2.22. With biomass, the estimated costs increase, ranging from $2.19 per gallon for the CTL option with 8% biomass to $2.79 per gallon for the CTL option with 30% biomass and carbon capture and sequestration. AltSim compares the greenhouse gas emissions (GHG) associated with both the production and consumption of the various fuels. EISA allows fuels emitting 20% less greenhouse gases (GHG) than conventional gasoline and diesels to qualify as renewable fuels. This allows several of the CBTL options to be included under the EISA mandate. The estimated GHG emissions associated with the production of gasoline and diesel are 19.80 and 18.40 kg of CO{sub 2} equivalent per MMBtu (kgCO{sub 2}e/MMBtu), respectively (NETL, 2008). The estimated emissions are significantly higher for several alternatives: ethanol from corn (70.6), GTL (51.9), and CTL without biomass or sequestration (123-161). Projected emissions for several other alternatives are lower; integrating biomass and sequestration in the CTL processes can even result in negative net emissions. For example, CTL with 30% biomass and 91.5% sequestration has estimated production emissions of -38 kgCO{sub 2}e/MMBtu. AltSim also estimates the projected well-to-wheel, or lifecycle, emissions from consuming each of the various fuels. Vehicles fueled with conventional diesel or gasoline and driven 12,500 miles per year emit 5.72-5.93 tons of CO{sub 2} equivalents per year (tCO{sub 2}e/yr). Those emissions are significantly higher for vehicles fueled with 100% ethanol from corn (8.03 tCO{sub 2}e/yr) or diesel from CTL without sequestration (10.86 to 12.85 tCO{sub 2}/yr). Emissions could be significantly lower for vehicles fueled with diesel from CBTL with various shares of biomass. For example, for CTL with 30% biomass and carbon sequestration, emissions would be 2.21 tCO{sub 2}e per year, or just 39% of the emissions for a vehicle fueled with conventional diesel. While the results presented above provide very specific estimates for each option, AltSim's true potential is as a tool for educating policy makers and for exploring 'what if?' type questions. For example, AltSim allows one to consider the affect of various levels of carbon taxes on the production cost estimates, as well as increased costs to the end user on an annual basis. Other sections of AltSim allow the user to understand the implications of various polices in terms of costs to the government or land use requirements. AltSim's structure allows the end user to explore each of these alternatives and understand the sensitivities implications a

  9. On-Going Comparison of Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Steven J. Piet; Ralph G. Bennett; Brent W. Dixon; J. Stephen Herring; David E. Shropshire; Mark Roth; J. D. Smith; Robert Hill; James Laidler; Kemal Pasamehmetoglu

    2004-10-01

    The Advanced Fuel Cycle Initiative (AFCI) program is addressing key issues associated with critical national needs. This paper compares the major options with these major “outcome” objectives - waste geological repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety as well as “process” objectives associated with readiness to proceed and adaptability and robustness in the face of uncertainties. Working together, separation, transmutation, and fuel technologies provide complete energy systems that can improve waste management compared to the current “once-through/no separation” approach. Future work will further increase confidence in potential solutions, optimize solutions for the mixtures of objectives, and develop attractive development and deployment paths for selected options. This will allow the nation to address nearer-term issues such as avoiding the need for additional geological repositories while making nuclear energy a more sustainable energy option for the long-term. While the Generation IV Initiative is exploring multiple reactor options for future nuclear energy for both electricity generation and additional applications, the AFCI is assessing fuel cycles options for either a continuation or expansion of nuclear energy in the United States. This report compares strategies and technology options for managing the associated spent fuel. There are four major potential strategies, as follows: · The current U.S. strategy is once through: standard nuclear power plants, standard fuel burnup, direct geological disposal of spent fuel. Variants include higher burnup fuels in water-cooled power plants, once-through gas-cooled power plants, and separation (without recycling) of spent fuel to reduce the number and cost of geological waste packages. · The second strategy is thermal recycle, recycling some fuel components in thermal reactors. This strategy extends the useful life of the geologic repository, producing energy from the fissile transuranics in spent fuel while reducing plutonium. · The third strategy is thermal+fast recycle. The difference from the second strategy is that more components of spent fuel can be recycled to reduce both fissile and non-fissile transuranics, but at the cost of developing and deploying at least one fast reactor or accelerator driven system. A mix of thermal and fast reactors would implement this strategy. · The fourth strategy is pure fast recycle; fuel would not be recycled in thermal reactors, which would be phased out in favor of deploying fast spectrum power reactors.

  10. Development of high-power electrodes for a liquid-feed direct methanol fuel cell

    E-Print Network [OSTI]

    Development of high-power electrodes for a liquid-feed direct methanol fuel cell C. Lim, C.Y. Wang for a liquid-feed direct methanol fuel cell (DMFC) were fabricated by using a novel method of modi®ed Na.V. All rights reserved. Keywords: Direct methanol fuel cells; Membrane-electrode assembly (MEA); Polymer

  11. Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing

    SciTech Connect (OSTI)

    Fletcher, James H.; Cox, Philip; Harrington, William J; Campbell, Joseph L

    2013-09-03

    ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focused on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel containment. PROJECT OVERVIEW The University of North Florida (UNF), with project partner the University of Florida, recently completed the Department of Energy (DOE) project entitled “Advanced Direct Methanol Fuel Cell for Mobile Computing”. The primary objective of the project was to advance portable fuel cell system technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a 20-watt, direct methanol fuel cell (DMFC), portable power supply based on the UNF innovative “passive water recovery” MEA. Extensive component, sub-system, and system development and testing was undertaken to meet the rigorous demands of the consumer electronic application. Numerous brassboard (nonpackaged) systems were developed to optimize the integration process and facilitating control algorithm development. The culmination of the development effort was a fully-integrated, DMFC, power supply (referred to as DP4). The project goals were 40 W/kg for specific power, 55 W/l for power density, and 575 Whr/l for energy density. It should be noted that the specific power and power density were for the power section only, and did not include the hybrid battery. The energy density is based on three, 200 ml, fuel cartridges, and also did not include the hybrid battery. The results show that the DP4 system configured without the methanol concentration sensor exceeded all performance goals, achieving 41.5 W/kg for specific power, 55.3 W/l for power density, and 623 Whr/l for energy density. During the project, the DOE revised its technical targets, and the definition of many of these targets, for the portable power application. With this revision, specific power, power density, specific energy (Whr/kg), and energy density are based on the total system, including fuel tank, fuel, and hybridization battery. Fuel capacity is not defined, but the same value is required for all calculations. Test data showed that the DP4 exceeded all 2011 Technical Status values; for example, the DP4 energy density was 373 Whr/l versus the DOE 2011 status of 200 Whr/l. For the

  12. Low Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation - A Progress Report Low Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation - A Progress Report 2003...

  13. Advanced Combustion Engine R&D and Fuels Technology Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine R&D and Fuels Technology Merit Review Advanced Combustion Engine R&D and Fuels Technology Merit Review Merit review of DOE FCVT combustion, emission...

  14. Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect (OSTI)

    A. Joseph Palmer; David A. Petti; S. Blaine Grover

    2014-04-01

    The United States Department of Energy’s Very High Temperature Reactor (VHTR) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which each consist of at least five separate capsules, are being irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gases also have on-line fission product monitoring the effluent from each capsule to track performance of the fuel during irradiation. The first two experiments (designated AGR-1 and AGR-2), have been completed. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. The design of the fuel qualification experiment, designated AGR-5/6/7, is well underway and incorporates lessons learned from the three previous experiments. Various design issues will be discussed with particular details related to selection of thermometry.

  15. Gas–Liquid Flow and Mass Transfer in an Advanced-Flow Reactor

    E-Print Network [OSTI]

    Kulkarni, Amol A.

    Hydrodynamics and mass transfer of gas–liquid flow are explored under ambient conditions in an Advanced-Flow Reactor (AFR), an emerging commercial system designed for continuous manufacture. Carbon dioxide/water is the ...

  16. Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode Operation with Low

    E-Print Network [OSTI]

    Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode Operation with Low, Director Product Development & Federal Programs #12;Project Background f Reversible Solid Oxide Fuel Cells

  17. What Is the Alternative Fuels and Advance Vehicles Data Center? (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    Document gives an overview of the material and tools on the Alternative Fuels and Advanced Vehicles Data Center Web site.

  18. Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts (Presentation)

    SciTech Connect (OSTI)

    Dinh, H.; Gennett, T.

    2010-06-11

    This presentation is a summary of a Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts.

  19. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Brent W. Dixon; Steven J. Piet

    2004-10-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository (63,000 MTiHM commercial, 7,000 MT non-commercial). There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected. The first step in understanding the need for different spent fuel management approaches is to understand the size of potential spent fuel inventories. A full range of potential futures for domestic commercial nuclear energy is considered. These energy futures are as follows: 1. Existing License Completion - Based on existing spent fuel inventories plus extrapolation of future plant-by-plant discharges until the end of each operating license, including known license extensions. 2. Extended License Completion - Based on existing spent fuel inventories plus a plant-by-plant extrapolation of future discharges assuming on all operating plants having one 20-year extension. 3. Continuing Level Energy Generation - Based on extension of the current ~100 GWe installed commercial base and average spent fuel discharge of 2100 MT/yr through the year 2100. 4. Continuing Market Share Generation – Based on a 1.8% compounded growth of the electricity market through the year 2100, matched by growing nuclear capacity and associated spent fuel discharge. 5. Growing Market Share Generation - Extension of current nuclear capacity and associated spent fuel discharge through 2100 with 3.2% growth representing 1.5% market growth (all energy, not just electricity) and 1.7% share growth. Share growth results in tripling market share by 2100 from the current 8.4% to 25%, equivalent to continuing the average market growth of last 50 years for an additional 100 years. Five primary spent fuel management strategies are assessed against each of the energy futures to determine the number of geological repositories needed and how the first repository would be used. The geological repository site at Yucca Mountain, Nevada, has the physical potential to accommodate all the spent fuel that will be generated by the current fleet of domestic commercial nuclear reactors, even with license extensions. If new nuclear plants are built in the future as replacements or additions, the United States will need to adopt spent fuel treatment to extend the life of the repository. Should a significant number of new nuclear plants be built, advanced fuel recycling will be needed to fully manage the spent fuel within a single repository. The analysis also considers the timeframe for most efficient implementation of new spent fuel management strategies. The mix of unprocessed spent fuel and processed high level waste in Yucca Mountain varies with each future and strategy. Either recycling must start before there is too much unprocessed waste emplaced or unprocessed waste will have to be retrieved later with corresponding costs. For each case, the latest date to implement reprocessing without subsequent retrieval is determined.

  20. Gas-to-liquids synthetic fuels for use in fuel cells : reformability, energy density, and infrastructure compatibility.

    SciTech Connect (OSTI)

    Ahmed, S.; Kopasz, J. P.; Russell, B. J.; Tomlinson, H. L.

    1999-09-08

    The fuel cell has many potential applications, from power sources for electric hybrid vehicles to small power plants for commercial buildings. The choice of fuel will be critical to the pace of its commercialization. This paper reviews the various liquid fuels being considered as an alternative to direct hydrogen gas for the fuel cell application, presents calculations of the hydrogen and carbon dioxide yields from autothermal reforming of candidate liquid fuels, and reports the product gas composition measured from the autothermal reforming of a synthetic fuel in a micro-reactor. The hydrogen yield for a synthetic paraffin fuel produced by a cobalt-based Fischer-Tropsch process was found to be similar to that of retail gasoline. The advantages of the synthetic fuel are that it contains no contaminants that would poison the fuel cell catalyst, is relatively benign to the environment, and could be transported in the existing fuel distribution system.

  1. Corrosion-resistant fuel cladding allow for liquid metal fast breeder reactors

    DOE Patents [OSTI]

    Brehm, Jr., William F. (Richland, WA); Colburn, Richard P. (Pasco, WA)

    1982-01-01

    An aluminide coating for a fuel cladding tube for LMFBRs (liquid metal fast breeder reactors) such as those using liquid sodium as a heat transfer agent. The coating comprises a mixture of nickel-aluminum intermetallic phases and presents good corrosion resistance to liquid sodium at temperatures up to 700.degree. C. while additionally presenting a barrier to outward diffusion of .sup.54 Mn.

  2. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    SciTech Connect (OSTI)

    Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear fuels are critical to understand the burnup, and thus the fuel efficiency.

  3. Effect of directed port air flow on liquid fuel transport in a port fuel injected spark ignition engine

    E-Print Network [OSTI]

    Scaringe, Robert J. (Robert Joseph)

    2007-01-01

    With highly efficient modem catalysts, startup HC emissions have become a significant portion of the trip total. Liquid fuel is a major source of HC emissions during the cold start and fast idle period. Thus the control ...

  4. Advanced fuel cells for transportation applications. Final report

    SciTech Connect (OSTI)

    1998-02-10

    This Research and Development (R and D) contract was directed at developing an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The objective of this project was to develop a low-cost high-efficiency long-life lubrication-free integrated compressor/expander utilizing scroll technology. The goal of this compressor/expander was to be capable of providing compressed air over the flow and pressure ranges required for the operation of 50 kW PEM fuel cells in transportation applications. The desired ranges of flow, pressure, and other performance parameters were outlined in a set of guidelines provided by DOE. The project consisted of the design, fabrication, and test of a prototype compressor/expander module. The scroll CEM development program summarized in this report has been very successful, demonstrating that scroll technology is a leading candidate for automotive fuel cell compressor/expanders. The objectives of the program are: develop an integrated scroll CEM; demonstrate efficiency and capacity goals; demonstrate manufacturability and cost goals; and evaluate operating envelope. In summary, while the scroll CEM program did not demonstrate a level of performance as high as the DOE guidelines in all cases, it did meet the overriding objectives of the program. A fully-integrated, low-cost CEM was developed that demonstrated high efficiency and reliable operation throughout the test program. 26 figs., 13 tabs.

  5. Advanced Chemical Heat Pumps Using Liquid-Vapor Reactions 

    E-Print Network [OSTI]

    Kirol, L.

    1987-01-01

    HEAT PUMPS USING LIQUID-VAPOR REACTIONS LANCE KIROL Senior Program Specialist Idaho National Engineering Laboratory Idaho Falls, Idaho . ABSTRACT Chemical heat pumps utilizing liquid-vapor reactions can be configured in forms analogous... to electric drive vapor-compression heat pumps and heat activated absorption heat pumps. Basic thermodynamic considerations eliminate some heat pumps and place restrictive working fluid requirements on others, but two thermodynam ically feasible systems...

  6. Objectives, Strategies, and Challenges for the Advanced Fuel Cycle Initiative

    SciTech Connect (OSTI)

    Steven Piet; Brent Dixon; David Shropshire; Robert Hill; Roald Wigeland; Erich Schneider; J. D. Smith

    2005-04-01

    This paper will summarize the objectives, strategies, and key chemical separation challenges for the Advanced Fuel Cycle Initiative (AFCI). The major objectives are as follows: Waste management - defer the need for a second geologic repository for a century or more, Proliferation resistance - be more resistant than the existing PUREX separation technology or uranium enrichment, Energy sustainability - turn waste management liabilities into energy source assets to ensure that uranium ore resources do not become a constraint on nuclear power, and Systematic, safe, and economic management of the entire fuel cycle. There are four major strategies for the disposal of civilian spent fuel: Once-through - direct disposal of all discharged nuclear fuel, Limited recycle - recycle transuranic elements once and then direct disposal, Continuous recycle - recycle transuranic elements repeatedly, and Sustained recycle - same as continuous except previously discarded depleted uranium is also recycled. The key chemical separation challenges stem from the fact that the components of spent nuclear fuel vary greatly in their influence on achieving program objectives. Most options separate uranium to reduce the weight and volume of waste and the number and cost of waste packages that require geologic disposal. Separated uranium can also be used as reactor fuel. Most options provide means to recycle transuranic (TRU) elements - plutonium (Pu), neptunium (Np), americium (Am), curium (Cm). Plutonium must be recycled to obtain repository, proliferation, and energy recovery benefits. U.S. non-proliferation policy forbids separation of plutonium by itself; therefore, one or more of the other transuranic elements must be kept with the plutonium; neptunium is considered the easiest option. Recycling neptunium also provides repository benefits. Americium recycling is also required to obtain repository benefits. At the present time, curium recycle provides relatively little benefit; indeed, recycling curium in thermal reactors would significantly increase the hazard (hence cost) of the resulting fuel. Most options separate short-lived fission products cesium and strontium to allow them to decay in separate storage facilities tailored to that need, rather than complicate long-term geologic disposal. This can also reduce the number and cost of waste packages requiring geologic disposal. These savings are balanced by costs for separation and recycle systems. Several long-lived fission products, such as technetium-99 and iodine-129 go to geologic disposal in improved waste forms, recognizing that transmutation of these isotopes would be a slow process; however, the program has not precluded their transmutation as a future alternative.

  7. Advanced Fuel Cycle Economic Tools, Algorithms, and Methodologies

    SciTech Connect (OSTI)

    David E. Shropshire

    2009-05-01

    The Advanced Fuel Cycle Initiative (AFCI) Systems Analysis supports engineering economic analyses and trade-studies, and requires a requisite reference cost basis to support adequate analysis rigor. In this regard, the AFCI program has created a reference set of economic documentation. The documentation consists of the “Advanced Fuel Cycle (AFC) Cost Basis” report (Shropshire, et al. 2007), “AFCI Economic Analysis” report, and the “AFCI Economic Tools, Algorithms, and Methodologies Report.” Together, these documents provide the reference cost basis, cost modeling basis, and methodologies needed to support AFCI economic analysis. The application of the reference cost data in the cost and econometric systems analysis models will be supported by this report. These methodologies include: the energy/environment/economic evaluation of nuclear technology penetration in the energy market—domestic and internationally—and impacts on AFCI facility deployment, uranium resource modeling to inform the front-end fuel cycle costs, facility first-of-a-kind to nth-of-a-kind learning with application to deployment of AFCI facilities, cost tradeoffs to meet nuclear non-proliferation requirements, and international nuclear facility supply/demand analysis. The economic analysis will be performed using two cost models. VISION.ECON will be used to evaluate and compare costs under dynamic conditions, consistent with the cases and analysis performed by the AFCI Systems Analysis team. Generation IV Excel Calculations of Nuclear Systems (G4-ECONS) will provide static (snapshot-in-time) cost analysis and will provide a check on the dynamic results. In future analysis, additional AFCI measures may be developed to show the value of AFCI in closing the fuel cycle. Comparisons can show AFCI in terms of reduced global proliferation (e.g., reduction in enrichment), greater sustainability through preservation of a natural resource (e.g., reduction in uranium ore depletion), value from weaning the U.S. from energy imports (e.g., measures of energy self-sufficiency), and minimization of future high level waste (HLW) repositories world-wide.

  8. Biomass and Natural Gas to Liquid Transportation Fuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Josephine Elia, Graduate Student, Princeton University

  9. Advanced proton-exchange materials for energy efficient fuel cells.

    SciTech Connect (OSTI)

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  10. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics

    SciTech Connect (OSTI)

    Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

    2014-02-01

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, “metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly insertion into a commercial reactor within the desired timeframe (by 2022).

  11. Irradiation Test of Advanced PWR Fuel in Fuel Test Loop at HANARO

    SciTech Connect (OSTI)

    Yang, Yong Sik; Bang, Je Geon; Kim, Sun Ki; Song, Kun Woo; Park, Su Ki; Seo, Chul Gyo

    2007-07-01

    A new fuel test loop has been constructed in the research reactor HANARO at KAERI. The main objective of the FTL (Fuel Test Loop) is an irradiation test of a newly developed LWR fuel under PWR or Candu simulated conditions. The first test rod will be loaded within 2007 and its irradiation test will be continued until a rod average their of 62 MWd/kgU. A total of five test rods can be loaded into the IPS (In-Pile Section) and fuel centerline temperature, rod internal pressure and fuel stack elongation can be measured by an on-line real time system. A newly developed advanced PWR fuel which consists of a HANA{sup TM} alloy cladding and a large grain UO{sub 2} pellet was selected as the first test fuel in the FTL. The fuel cladding, the HANA{sup TM} alloy, is an Nb containing Zirconium alloy that has shown better corrosion and creep resistance properties than the current Zircaloy-4 cladding. A total of six types of HANA{sup TM} alloy were developed and two or three of these candidate alloys will be used as test rod cladding, which have shown a superior performance to the others. A large-grain UO{sub 2} pellet has a 14{approx}16 micron 2D diameter grain size for a reduction of a fission gas release at a high burnup. In this paper, characteristics of the FTL and IPS are introduced and the expected operation and irradiation conditions are summarized for the test periods. Also the preliminary fuel performance analysis results, such as the cladding oxide thickness, fission gas release and rod internal pressure, are evaluated from the test rod safety analysis aspects. (authors)

  12. Non-Petroleum-Based Fuel Effects on Advanced Combustion | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce CarbonEnergy Fuel Effects on Advanced Combustion

  13. Cadmium Depletion Impacts on Hardening Neutron6 Spectrum for Advanced Fuel Testing in ATR

    SciTech Connect (OSTI)

    Gray S. Chang

    2011-05-01

    For transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products effectively is in a fast neutron spectrum reactor. In the absence of a fast spectrum test reactor in the United States of America (USA), initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. A test region is achieved with a Cadmium (Cd) filter which can harden the neutron spectrum to a spectrum similar (although still somewhat softer) to that of the liquid metal fast breeder reactor (LMFBR). A fuel test loop with a Cd-filter has been installed within the East Flux Trap (EFT) of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). A detailed comparison analyses between the cadmium (Cd) filter hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum have been performed using MCWO. MCWO is a set of scripting tools that are used to couple the Monte Carlo transport code MCNP with the isotope depletion and buildup code ORIGEN-2.2. The MCWO-calculated results indicate that the Cd-filter can effectively flatten the Rim-Effect and reduce the linear heat rate (LHGR) to meet the advanced fuel testing project requirements at the beginning of irradiation (BOI). However, the filtering characteristics of Cd as a strong absorber quickly depletes over time, and the Cd-filter must be replaced for every two typical operating cycles within the EFT of the ATR. The designed Cd-filter can effectively depress the LHGR in experimental fuels and harden the neutron spectrum enough to adequately flatten the Rim Effect in the test region.

  14. Optimal Simultaneous Production of Hydrogen and Liquid Fuels from Glycerol: Integrating the

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    . Keywords: Energy, Biofuels, Hydrogen, Alternative fuels, Diesel, Fisher ­ Tropsch 1 Corresponding author alternative fuel, the availability and low cost of fossil fuels has slowed down their development (Cole, 20071 Optimal Simultaneous Production of Hydrogen and Liquid Fuels from Glycerol: Integrating the Use

  15. Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels

    DOE Patents [OSTI]

    Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

    2014-12-02

    A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

  16. Assessment of SFR fuel pin performance codes under advanced fuel for minor actinide transmutation

    SciTech Connect (OSTI)

    Bouineau, V.; Lainet, M.; Chauvin, N.; Pelletier, M.

    2013-07-01

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like {sup 241}Am is, therefore, an option for the reduction of radiotoxicity and residual power packages as well as the repository area. In the SUPERFACT Experiment four different oxide fuels containing high and low concentrations of {sup 237}Np and {sup 241}Am, representing the homogeneous and heterogeneous in-pile recycling concepts, were irradiated in the PHENIX reactor. The behavior of advanced fuel materials with minor actinide needs to be fully characterized, understood and modeled in order to optimize the design of this kind of fuel elements and to evaluate its performances. This paper assesses the current predictability of fuel performance codes TRANSURANUS and GERMINAL V2 on the basis of post irradiation examinations of the SUPERFACT experiment for pins with low minor actinide content. Their predictions have been compared to measured data in terms of geometrical changes of fuel and cladding, fission gases behavior and actinide and fission product distributions. The results are in good agreement with the experimental results, although improvements are also pointed out for further studies, especially if larger content of minor actinide will be taken into account in the codes. (authors)

  17. Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles

    SciTech Connect (OSTI)

    Hardin, Ernest [Sandia National Laboratories (SNL)] [Sandia National Laboratories (SNL); Blink, James [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL); Carter, Joe [Savannah River National Laboratory (SRNL)] [Savannah River National Laboratory (SRNL); Massimiliano, Fratoni [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL); Greenberg, Harris [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL); Howard, Rob L [ORNL] [ORNL

    2011-01-01

    The current posture of the used nuclear fuel management program in the U.S. following termination of the Yucca Mountain Project, is to pursue research and development (R&D) of generic (i.e., non-site specific) technologies for storage, transportation and disposal. Disposal R&D is directed toward understanding and demonstrating the performance of reference geologic disposal concepts selected to represent the current state-of-the-art in geologic disposal. One of the principal constraints on waste packaging and emplacement in a geologic repository is management of the waste-generated heat. This paper describes the selection of reference disposal concepts, and thermal management strategies for waste from advanced fuel cycles. A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE) Used Fuel Disposition Campaign, for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. We performed thermal analysis of these concepts using waste inventory cases representing a range of advanced fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress and previous experience in the U.S. repository program. All of the disposal concepts selected for this study use enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. The encapsulating materials (typically clay-based or rock salt) have low intrinsic permeability and plastic rheology that closes voids so that low permeability is maintained. Uniformly low permeability also contributes to chemically reducing conditions common in soft clay, shale, and salt formations. Enclosed modes are associated with temperature constraints that limit changes to the encapsulating materials, and they generally have less capacity to dissipate heat from the waste package and its immediate surroundings than open modes such as that proposed for a repository at Yucca Mountain, Nevada. Open emplacement modes can be ventilated for many years prior to permanent closure of the repository, limiting peak temperatures both before and after closure, and combining storage and disposal functions in the same facility. Open emplacement modes may be practically limited to unsaturated host formations, unless emplacement tunnels are effectively sealed everywhere prior to repository closure. Thermal analysis of disposal concepts and waste inventory cases has identified important relationships between waste package size and capacity, and the duration of surface decay storage needed to meet temperature constraints. For example, the choice of salt as the host medium expedites the schedule for geologic disposal by approximately 50 yr (other factors held constant) thereby reducing future reliance on surface decay storage. Rock salt has greater thermal conductivity and stability at higher temperatures than other media considered. Alternatively, the choice of salt permits the use of significantly larger waste packages for SNF. The following sections describe the selection of reference waste inventories, geologic settings, and concepts of operation, and summarize the results from the thermal analysis.

  18. Air Liquide - Biogas & Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NRELDepartment ofEnergy 1 DOE Hydrogendrought in

  19. Masters Study in Advanced Energy and Fuels Management

    SciTech Connect (OSTI)

    Mondal, Kanchan

    2014-12-08

    There are currently three key drivers for the US energy sector a) increasing energy demand and b) environmental stewardship in energy production for sustainability and c) general public and governmental desire for domestic resources. These drivers are also true for energy nation globally. As a result, this sector is rapidly diversifying to alternate sources that would supplement or replace fossil fuels. These changes have created a need for a highly trained workforce with a the understanding of both conventional and emerging energy resources and technology to lead and facilitate the reinvention of the US energy production, rational deployment of alternate energy technologies based on scientific and business criteria while invigorating the overall economy. In addition, the current trends focus on the the need of Science, Technology, Engineering and Math (STEM) graduate education to move beyond academia and be more responsive to the workforce needs of businesses and the industry. The SIUC PSM in Advanced Energy and Fuels Management (AEFM) program was developed in response to the industries stated need for employees who combine technical competencies and workforce skills similar to all PSM degree programs. The SIUC AEFM program was designed to provide the STEM graduates with advanced technical training in energy resources and technology while simultaneously equipping them with the business management skills required by professional employers in the energy sector. Technical training include core skills in energy resources, technology and management for both conventional and emerging energy technologies. Business skills training include financial, personnel and project management. A capstone internship is also built into the program to train students such that they are acclimatized to the real world scenarios in research laboratories, in energy companies and in government agencies. The current curriculum in the SIUC AEFM will help fill the need for training both recent graduates seeking specialized training prior to entering the energy industry workforce as well as working professionals in the energy industry who require additional training and qualifications for further career advancement. It is expected that the students graduating from the program will be stewards of effective, sustainable and environmentally sound use of these resources to ensure energy independence and meet the growing demands.The application of this Professional Science Masters’ (PSM) program is in the fast evolving Fuels Arena. The PSM AEFM is intended to be a terminal degree which will prepare the graduates for interdisciplinary careers in team-oriented environment. The curriculum for this program was developed in concert with industry to dovetail with current and future demands based on analysis and needs. The primary objective of the project was to exploit the in house resources such as existing curriculum and faculty strengths and develop a curriculum with consultations with industry to meet current and future demands. Additional objectives was to develop courses specific to the degree and to provide the students with a set of business skills in finance accounting and sustainable project management.

  20. Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation

    E-Print Network [OSTI]

    Heidet, Florent

    2010-01-01

    Oxford ; New York ; Oxford University Press. Fuel- Trac,Spent Fuel / Reprocessing, in Nuclear Industry Statusto Burn Non-Fissile Fuels. 2008. GA. Energy Multiplier

  1. Dehydrogenation of liquid fuel in microchannel catalytic reactor

    DOE Patents [OSTI]

    Toseland, Bernard Allen (Allentown, PA); Pez, Guido Peter (Allentown, PA); Puri, Pushpinder Singh (Emmaus, PA)

    2009-02-03

    The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.

  2. Dehydrogenation of liquid fuel in microchannel catalytic reactor

    DOE Patents [OSTI]

    Toseland, Bernard Allen (Coopersburg, PA); Pez, Guido Peter (Allentown, PA); Puri, Pushpinder Singh (Emmaus, PA)

    2010-08-03

    The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.

  3. Advanced Automotive Fuels Research, Development, and Commercialization Cluster (OH)

    SciTech Connect (OSTI)

    Linkous, Clovis; Hripko, Michael; Abraham, Martin; Balendiran, Ganesaratnam; Hunter, Allen; Lovelace-Cameron, Sherri; Mette, Howard; Price, Douglas; Walker, Gary; Wang, Ruigang

    2013-08-31

    Technical aspects of producing alternative fuels that may eventually supplement or replace conventional the petroleum-derived fuels that are presently used in vehicular transportation have been investigated. The work was centered around three projects: 1) deriving butanol as a fuel additive from bacterial action on sugars produced from decomposition of aqueous suspensions of wood cellulose under elevated temperature and pressure; 2) using highly ordered, openly structured molecules known as metal-organic framework (MOF) compounds as adsorbents for gas separations in fuel processing operations; and 3) developing a photocatalytic membrane for solar-driven water decomposition to generate pure hydrogen fuel. Several departments within the STEM College at YSU contributed to the effort: Chemistry, Biology, and Chemical Engineering. In the butanol project, sawdust was blended with water at variable pH and temperature (150 – 250{degrees}C), and heated inside a pressure vessel for specified periods of time. Analysis of the extracts showed a wide variety of compounds, including simple sugars that bacteria are known to thrive upon. Samples of the cellulose hydrolysate were fed to colonies of Clostridium beijerinckii, which are known to convert sugars to a mixture of compounds, principally butanol. While the bacteria were active toward additions of pure sugar solutions, the cellulose extract appeared to inhibit butanol production, and furthermore encouraged the Clostridium to become dormant. Proteomic analysis showed that the bacteria had changed their genetic code to where it was becoming sporulated, i.e., the bacteria were trying to go dormant. This finding may be an opportunity, as it may be possible to genetically engineer bacteria that resist the butanol-driven triggering mechanism to stop further fuel production. Another way of handling the cellulosic hydrolysates was to simply add the enzymes responsible for butanol synthesis to the hydrolytic extract ex-vivo. These enzymes are generally not available commercially, however, and those that are can be quite expensive. Accordingly, the genes responsible for enzyme synthesis were inserted into other microorganisms in order to accelerate enzyme production. This was demonstrated for two of the required enzymes in the overall series. In the MOF project, a number of new MOF compounds were synthesized and characterized, as well as some common MOFs well-known for their adsorption properties. Selectivity for specific gases such as CO{sub 2} and H{sub 2} was demonstrated, although it was seen that water vapor would frequently act as an interferent. This work underscored the need to test MOF compounds under real world conditions, i.e., room temperature and above instead of liquid N{sub 2} temperature, and testing adsorption using blends of gases instead of pure components. In the solar membrane project, thin films of CdTe and WO{sub 3} were applied to steel substrates and used as p-type and n-type semiconductors, respectively, in the production of H{sub 2} and O{sub 2}. Testing with {sup 2}H and {sup 18}O isotopically labeled water enabled substantiation of net water-splitting.

  4. Accepted Manuscript Title: Advanced computational tools for pem fuel cell design

    E-Print Network [OSTI]

    Djilali, Ned

    and water management problems in a fuel cell, in design and optimization, in guiding experimentalAccepted Manuscript Title: Advanced computational tools for pem fuel cell design ­ Part 1.C. Sui, S. Kumar, N. Djilali, Advanced computational tools for pem fuel cell design ­ Part 1: Development

  5. ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells

    E-Print Network [OSTI]

    Rubloff, Gary W.

    ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells Spring 2014 Syllabus Course: ENCH 473 Electrochemical Energy Engineering ENCH: 648K Advanced Batteries and Fuel Cells, with emphasis on the principle and performance of batteries, supercapacitors and fuel cells. The objective

  6. High temperature fuel/emitter system for advanced thermionic fuel elements

    SciTech Connect (OSTI)

    Moeller, Helen H.; Bremser, Albert H.; Gontar, Alexander; Fiviesky, Evgeny

    1997-01-10

    Specialists in space applications are currently focusing on bimodal power systems designed to provide both electric power and thermal propulsion (Kennedy, 1994 and Houts, 1995). Our work showed that thermionics is a viable technology for nuclear bimodal power systems. We demonstrated that materials for a thermionic fuel-emitter combination capable of performing at operating temperatures of 2473 K are not only possible but available. The objective of this work, funded by the US Department of Energy, Office of Space and Defense Power Systems, was to evaluate the compatibility of fuel material consisting of an uranium carbide/tantalum carbide solid solution with an emitter material consisting of a monocrystalline tungsten-niobium alloy. The uranium loading of the fuel material was 70 mole% uranium carbide. The program was successfully accomplished by a B and W/SIA LUTCH team. Its workscope was integrated with tasks being performed at both Babcock and Wilcox, Lynchburg Research Center, Lynchburg, Virginia, and SIA LUTCH, Podolsk, Russia. Samples were fabricated by LUTCH and seven thermal tests were performed in a hydrogen atmosphere. The first preliminary test was performed at 2273 K by LUTCH, and the remaining six tests were performed At B and W. Three tests were performed at 2273 K, two at 2373 K, and the final test at 2473 K. The results showed that the fuel and emitter materials were compatible in the presence of hydrogen. No evidence of liquid formation, dissolution of the uranium carbide from the uranium carbide/tantalum carbide solid solution, or diffusion of the uranium into the monocrystalline tungsten alloy was observed. Among the highlights of the program was the successful export of the fuel samples from Russia and their import into the US by commercial transport. This paper will discuss the technical aspects of this work.

  7. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    SciTech Connect (OSTI)

    2010-01-01

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  8. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    ScienceCinema (OSTI)

    None

    2013-05-29

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  9. Introduction to DMFCs - Advanced Materials and Concepts for Portable Power Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S. Department of EnergyPresentation Advances

  10. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics Executive Summary

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton

    2014-02-01

    Research and development (R&D) activities on advanced, higher performance Light Water Reactor (LWR) fuels have been ongoing for the last few years. Following the unfortunate March 2011 events at the Fukushima Nuclear Power Plant in Japan, the R&D shifted toward enhancing the accident tolerance of LWRs. Qualitative attributes for fuels with enhanced accident tolerance, such as improved reaction kinetics with steam resulting in slower hydrogen generation rate, provide guidance for the design and development of fuels and cladding with enhanced accident tolerance. A common set of technical metrics should be established to aid in the optimization and down selection of candidate designs on a more quantitative basis. “Metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. This report describes a proposed technical evaluation methodology that can be applied to evaluate the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed toward qualification.

  11. An Advanced Liquid Centrifuge Using Differentially Rotating Cylinders and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneand LosAmesAmped Up! Volumeand a

  12. Enabling Small-Scale Biomass Gasification for Liquid Fuel Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilofEnergyEnSys Energy

  13. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 |DepartmentMultimedia and Photos MultimediaAvailability

  14. Economizer Based Data Center Liquid Cooling with Advanced Metal Interfaces

    SciTech Connect (OSTI)

    Timothy Chainer

    2012-11-30

    A new chiller-less data center liquid cooling system utilizing the outside air environment has been shown to achieve up to 90% reduction in cooling energy compared to traditional chiller based data center cooling systems. The system removes heat from Volume servers inside a Sealed Rack and transports the heat using a liquid loop to an Outdoor Heat Exchanger which rejects the heat to the outdoor ambient environment. The servers in the rack are cooled using a hybrid cooling system by removing the majority of the heat generated by the processors and memory by direct thermal conduction using coldplates and the heat generated by the remaining components using forced air convection to an air- to- liquid heat exchanger inside the Sealed Rack. The anticipated benefits of such energy-centric configurations are significant energy savings at the data center level. When compared to a traditional 10 MW data center, which typically uses 25% of its total data center energy consumption for cooling this technology could potentially enable a cost savings of up to $800,000-$2,200,000/year (assuming electricity costs of 4 to 11 cents per kilowatt-hour) through the reduction in electrical energy usage.

  15. Vehicle Technologies Office Merit Review 2014: Advanced Lean-Burn DI Spark Ignition Fuels Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced lean...

  16. DOE Webinar on Alternative Fuel and Advanced Vehicle Procurement Aggregating Initiatives FOA

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hosted by the U.S. Department of Energy, this informational webinar will cover details of the Alternative Fuel and Advanced Vehicle Procurement Aggregating Initiatives funding opportunity.

  17. Clean Cities' Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    Guide describes the alternative fuel and advanced medium- and heavy-duty vehicles available on the market, including buses, vans, refuse haulers, and more.

  18. DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion

    Office of Scientific and Technical Information (OSTI)

    Combustion Engines Bunting, Bruce G ORNL; Bunce, Michael ORNL 02 PETROLEUM; 04 OIL SHALES AND TAR SANDS; 10 SYNTHETIC FUELS; 33 ADVANCED PROPULSION SYSTEMS; BIOFUELS;...

  19. Vehicle Technologies Office Merit Review 2014: Advancing Alternative Fuel Markets in Florida

    Broader source: Energy.gov [DOE]

    Presentation given by University of Central Florida at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancing...

  20. Method for removing solid particulate material from within liquid fuel injector assemblies

    DOE Patents [OSTI]

    Simandl, Ronald F. (Knoxville, TN); Brown, John D. (Harriman, TN); Andriulli, John B. (Kingston, TN); Strain, Paul D. (Eads, TN)

    1998-01-01

    A method for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector.

  1. Method for removing solid particulate material from within liquid fuel injector assemblies

    DOE Patents [OSTI]

    Simandl, R.F.; Brown, J.D.; Andriulli, J.B.; Strain, P.D.

    1998-09-08

    A method is described for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector. 1 fig.

  2. Engineering Development of Advanced Physical Fine Coal Cleaing for Premium Fuel Applications

    SciTech Connect (OSTI)

    Frank J. Smit; Gene L. Schields; Mehesh C. Jha; Nick Moro

    1997-09-26

    The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel? column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications -- Less than 2 pounds of ash per million Btu (860 grams per gigajoule) and

  3. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    SciTech Connect (OSTI)

    2010-07-01

    The University of Alabama will develop fuel-flexible, low-emissions burner technology for the metal processing industry that is capable of using biomass-derived liquid fuels, such as glycerin or fatty acids, as a substitute for natural gas. By replacing a fossil fuel with biomass fuels, this new burner will enable a reduction in energy consumption and greenhouse gas emissions and an increase in fuel flexibility.

  4. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect (OSTI)

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  5. Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel

    E-Print Network [OSTI]

    Victoria, University of

    Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller Bachelors of Engineering, University in a polymer electrolyte fuel cell is a critical issue in ensuring high cell performance. The water production

  6. Development of a liquid-fueled micro-combustor

    E-Print Network [OSTI]

    Peck, Jhongwoo, 1976-

    2008-01-01

    Advances in Micro-Electro-Mechanical Systems (MEMS) have made possible the development of shirtbutton-sized gas turbine engines for use as portable power sources. As part of an effort to develop a microscale gas turbine ...

  7. Liquid Fuels Taxes and Credits (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Provides a review of the treatment of federal fuels taxes and tax credits in Annual Energy Outlook 2010.

  8. Nano Sensor Networks for Tailored Operation of Highly Efficient Gas-To-Liquid Fuels Catalysts

    E-Print Network [OSTI]

    New South Wales, University of

    for converting natural gas to the liquid hydrocarbons [1]. However, the reaction is a complex network of manyNano Sensor Networks for Tailored Operation of Highly Efficient Gas-To-Liquid Fuels Catalysts Eisa 2052, Australia #12;Abstract Fischer-Tropsch synthesis, a major process for converting natural gas

  9. Advanced Petroleum-Based Fuels Research at NREL | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced Petroleum Based Fuels Research at

  10. Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation

    E-Print Network [OSTI]

    Heidet, Florent

    2010-01-01

    heavy metal density of carbide fuel is 6% smaller than thatthe minimum required burnup is larger for carbide fuel. Thefluence are larger in carbide fuel because of the longer

  11. Process for converting coal into liquid fuel and metallurgical coke

    DOE Patents [OSTI]

    Wolfe, Richard A. (Abingdon, VA); Im, Chang J. (Abingdon, VA); Wright, Robert E. (Bristol, TN)

    1994-01-01

    A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

  12. n hydraulic turbomachines, such as sub-marine propulsors and liquid fuel pumps,

    E-Print Network [OSTI]

    Mittal, Rajat

    I n hydraulic turbomachines, such as sub- marine propulsors and liquid fuel pumps, a small radial-dependent motion of all flow scales. To gain insight into the mechanisms of tip-leak- age cavitation, we need

  13. The design of a microfabricated air electrode for liquid electrolyte fuel cells

    E-Print Network [OSTI]

    Pierre, Fritz, 1977-

    2007-01-01

    In this dissertation, the microfabricated electrode (MFE) concept was applied to the design of an air electrode for liquid electrolyte fuel cells. The catalyst layer of the electrode is envisioned to be fabricated by using ...

  14. Liquid Fuel From Renewable Electricity and Bacteria: Electro-Autotrophic Synthesis of Higher Alcohols

    SciTech Connect (OSTI)

    None

    2010-07-01

    Electrofuels Project: UCLA is utilizing renewable electricity to power direct liquid fuel production in genetically engineered Ralstonia eutropha bacteria. UCLA is using renewable electricity to convert carbon dioxide into formic acid, a liquid soluble compound that delivers both carbon and energy to the bacteria. The bacteria are genetically engineered to convert the formic acid into liquid fuel—in this case alcohols such as butanol. The electricity required for the process can be generated from sunlight, wind, or other renewable energy sources. In fact, UCLA’s electricity-to-fuel system could be a more efficient way to utilize these renewable energy sources considering the energy density of liquid fuel is much higher than the energy density of other renewable energy storage options, such as batteries.

  15. Enabling Small-Scale Biomass Gasification for Liquid Fuel Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-E Wholesale PowerExtensionEhron9,Department ofDepartment of Energy

  16. Simulating Impacts of Disruptions to Liquid Fuels Infrastructure |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES Pursuant toPower Wind Awards |

  17. Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. ft004mueller2010o.pdf More Documents & Publications Fuels and Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuel Effects on Advanced...

  18. Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|ProgramsLake Paiute ReservationResourcesMarch2 DOE Hydrogen

  19. Department of Energy Awards Nearly $7 Million to Advance Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    components that will help identify ways to drive down production costs of transportation fuel cell systems, stationary fuel cell systems, and hydrogen storage systems. These...

  20. Engineering metabolic systems for production of advanced fuels

    E-Print Network [OSTI]

    Yan, Yajun; Liao, James C.

    2009-01-01

    Liao JC (2008) Metabolic engineering for advanced biofuelsorganisms using metabolic engineering techniques. Recently,Connor MR, Liao JC (2008) Engineering of an Escherichia coli

  1. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology

    SciTech Connect (OSTI)

    Valkenburt, Corinne; Walton, Christie W.; Thompson, Becky L.; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

    2008-12-01

    This report investigated the potential of using municipal solid waste (MSW) to make synthesis gas (syngas) suitable for production of liquid fuels. Issues examined include: • MSW physical and chemical properties affecting its suitability as a gasifier feedstock and for liquid fuels synthesis • expected process scale required for favorable economics • the availability of MSW in quantities sufficient to meet process scale requirements • the state-of-the-art of MSW gasification technology.

  2. Advancing Fuel Cell Technology at Los Alamos | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I Due Date Adv. FossilMethods forNuclearFuel Cell

  3. Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I Due Date Adv. FossilMethods forNuclearFuel

  4. First AEO2015 Liquid Fuels Markets Working Group Meeting

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (Million CubicBased1002TheStocks

  5. AEO 2013 Liquid Fuels Markets Working Group 2

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, August 27, 2012 Attendance (In2

  6. AEO2014 Liquid Fuels Markets Working Group Meeting 1

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, August 27, 20123 Oil and GasJuly

  7. AEO2015 Liquid Fuels Markets Working Group Presentation

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, August 27, 20123 OilPURPOSES.

  8. Second AEO2014 Liquids Fuels Markets Working Group Meeting Summary

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand

  9. Energy Department Offers $50 Million to Advance Fuel Efficient Autos |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesy ofDepartment ofDepartmentTechnologies |Department

  10. Users Perspective on Advanced Fuel Cell Bus Technology | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs Search TheChlamydomonasMaterialDepartment of

  11. Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.Projects at ArmyusingPeerTesting and Design

  12. Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.Projects at ArmyusingPeerTesting and

  13. Advanced Electrocatalysts for PEM Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDITLeslie Pezzullo Office of the Biomass

  14. PNNL Advances Hydrogen-Fueled Vehicle Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateau TrainingeTrack, Bechtel JacobsPNNL

  15. Modeling Constituent Redistribution in U-Pu-Zr Metallic Fuel Using the Advanced Fuel Performance Code BISON

    SciTech Connect (OSTI)

    Douglas Porter; Steve Hayes; Various

    2014-06-01

    The Advanced Fuels Campaign (AFC) metallic fuels currently being tested have higher zirconium and plutonium concentrations than those tested in the past in EBR reactors. Current metal fuel performance codes have limitations and deficiencies in predicting AFC fuel performance, particularly in the modeling of constituent distribution. No fully validated code exists due to sparse data and unknown modeling parameters. Our primary objective is to develop an initial analysis tool by incorporating state-of-the-art knowledge, constitutive models and properties of AFC metal fuels into the MOOSE/BISON (1) framework in order to analyze AFC metallic fuel tests.

  16. BioEnergy Landscape: From Photosynthesis to Fossil Fuels to Advanced Biofuels

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    BioEnergy Landscape: From Photosynthesis to Fossil Fuels to Advanced Biofuels - Fundamentals for substitution of fossil fuels since they are natural extensions of fossil fuels, and the existing energy in transportation to replace fossil fuels. Energy is the cause for all processes across all space and time scales

  17. Recent advances in single-chamber fuel-cells: Experiment and modeling , Zongping Shao b

    E-Print Network [OSTI]

    Haile, Sossina M.

    Recent advances in single-chamber fuel-cells: Experiment and modeling Yong Hao a , Zongping Shao b; accepted 6 May 2006 Abstract Single-chamber fuel cells (SCFC) are ones in which the fuel and oxidizer is discussed. © 2006 Elsevier B.V. All rights reserved. Keywords: Solid oxide fuel cell; Single chamber

  18. Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL AdvancedEnergy Climate Science

  19. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment ofEnergyJoe Olencz About Us JoeFuel Cell Bus

  20. Fuels For Advanced Combustion Engines (FACE) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy gdr.openei.org Geothermal DataFuels &For

  1. Fuels for Advanced Combustion Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy gdr.openei.org Geothermal DataFuels|2 DOE

  2. Fuels for Advanced Combustion Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy gdr.openei.org Geothermal DataFuels|2 DOE1

  3. Fuels for Advanced Combustion Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy gdr.openei.org Geothermal DataFuels|2 DOE10

  4. Model Year 2006: Alternative Fuel and Advanced Technology Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Letter to Science of 2Model

  5. Advanced Technology and Alternative Fuel Vehicle Basics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle ReplacementStates andMeasures |1UsHeat &Energy

  6. Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation

    E-Print Network [OSTI]

    Heidet, Florent

    2010-01-01

    1996. 12 p. Toshinsky, G.I. , LMFBR Operation in the Nuclearand characterization of LMFBR carbide and nitride fuels andcores with oxide fuel, “LMFBR recycle Pu/U”, are used.

  7. Gasoline-Like Fuel Effects on Advanced Combustion Regimes

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Advanced Lean-Burn DI Spark Ignition Fuels Research

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. No loss fueling station for liquid natural gas vehicles

    SciTech Connect (OSTI)

    Gustafson, K.

    1993-07-20

    A no loss liquid natural gas (LNG) delivery system is described comprising: (a) means for storing LNG and natural gas at low pressure; (b) means for delivering LNG from the means for storing to a use device including means for sub-cooling the LNG; (c) means for pre-cooling the means for sub-cooling before the LNG is delivered to the use device to substantially reduce vaporization of the initial LNG delivered to the use device; and (d) means for delivering a selectable quantity of the natural gas in said storing means to said use device with the LNG.

  10. A liquid water management strategy for PEM fuel cell stacks

    E-Print Network [OSTI]

    Van Nguyen, Trung; Knobbe, M. W.

    2003-02-25

    Gas and water management are key to achieving good performance from a PEM fuel cell stack. Previous experimentation had found, and this experimentation confirms, that one very effective method of achieving proper gas and water management is the use...

  11. On-Going Comparison of Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Piet, S.J.; Bennett, R.G.; Dixon, B.W.; Herring, J.S.; Shropshire, D.E.; Roth, M.; Smith, J.D.; Finck, P.; Hill, R.; Laidler, J.; Pasamehmetoglu, K.

    2004-10-03

    This paper summarizes the current comprehensive comparison of four major fuel cycle strategies: once-through, thermal recycle, thermal+fast recycle, fast recycle. It then proceeds to summarize comparison of the major technology options for the key elements of the fuel cycle that can implement each of the four strategies - separation processing, transmutation reactors, and fuels.

  12. Brazil-NETL Advanced Fossil Fuels Partnerships | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossence JumpJersey Logo:BraxenergyInformation

  13. Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation, search Name: Alliance StarAlteBenefit Tool |

  14. Advanced Materials and Concepts for Portable Power Fuel Cells | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOfficeAcqguide18pt0DepartmentDepartmentJuly 2014of Energy and

  15. Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All HomeAlphakatResources | Open Energy

  16. Alternative Fuels and Advanced Vehicles Data Center - Federal and State

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All HomeAlphakatResources | Open EnergyIncentives and

  17. Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump to: navigation,Open Energy Information

  18. Brazil-NETL Advanced Fossil Fuels Partnerships | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac BiomassInformationSystemsBradfieldBravo

  19. Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryin theNuclearEnergyVBA-0082 -Remote Sens. 2012,Vehicle

  20. Advanced Bio-based Jet Fuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDIT REPORT:FederalEconomicAdmirals ADRApplicationBio-based

  1. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    SciTech Connect (OSTI)

    Jon Carmack; Kemal O. Pasamehmetoglu; David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  2. Advanced LWR Nuclear Fuel Cladding System Development Trade-Off Study

    SciTech Connect (OSTI)

    Kristine Barrett; Shannon Bragg-Sitton

    2012-09-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system that would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.

  3. Binary inorganic salt mixtures as high conductivity liquid electrolytes for .100 uC fuel cells{

    E-Print Network [OSTI]

    Angell, C. Austen

    Binary inorganic salt mixtures as high conductivity liquid electrolytes for .100 uC fuel cells cations (e.g. ammonium) as electrolytes in fuel cells operating in the temperature range 100­200 uC, where cell operating with optimized electrodes in the same temperature range, while open circuit voltages

  4. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    SciTech Connect (OSTI)

    Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  5. Ignition Capsules with Aerogel-Supported Liquid DT Fuel For The National Ignition Facility

    SciTech Connect (OSTI)

    Ho, D D; Salmonson, J D; Clark, D S; Lindl, J D; Haan, S W; Amendt, P; Wu, K J

    2011-10-25

    For high repetition-rate fusion power plant applications, capsules with aerogel-supported liquid DT fuel can have much reduced fill time compared to {beta}-layering a solid DT fuel layer. The melting point of liquid DT can be lowered once liquid DT is embedded in an aerogel matrix, and the DT vapor density is consequently closer to the desired density for optimal capsule design requirement. We present design for NIF-scale aerogel-filled capsules based on 1-D and 2-D simulations. An optimal configuration is obtained when the outer radius is increased until the clean fuel fraction is within 65-75% at peak velocity. A scan (in ablator and fuel thickness parameter space) is used to optimize the capsule configurations. The optimized aerogel-filled capsule has good low-mode robustness and acceptable high-mode mix.

  6. Connecticut Company to Advance Hydrogen Infrastructure and Fueling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    oil, the Department today announced a 1.4 million investment to Wallingford- based Proton Energy Systems to collect and analyze performance data for hydrogen fueling stations...

  7. Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation

    E-Print Network [OSTI]

    Heidet, Florent

    2010-01-01

    Albright, D. , Plutonium and highly enriched uranium, 1996 :and swelling in uranium-plutonium mixed nitride fuels.products and to extract plutonium or any other actinide from

  8. North Central Texas Alternative Fuel and Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt057ticlark2012o...

  9. North Central Texas Alternative Fuel and Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt057tireese2011...

  10. Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    and government partners will focus on identifying actions to encourage early adopters of fuel cell electric vehicles (FCEVs) by conducting coordinated technical and market...

  11. Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Reversible Fuel Cells Workshop Summary Report Progress on the Development of Reversible SOFC Stack Technology Lessons Learned from SOFCSOEC Development...

  12. Energy Department Offers $50 Million to Advance Fuel Efficient Autos |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural Gas | DepartmentHydrogen RefuelingCooperativesDepartment

  13. Advanced Cathode Catalysts and Supports for PEM Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONY PROJECT under agreement SUBC-B555909,Cathode

  14. Hydrogen fuel closer to reality because of storage advances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein Khalil HusseinH2FASTCELL TECHNOLOGIESCoal to

  15. Vehicle Technologies Office: Fuel Effects on Advanced Combustion |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedofDepartmentVOICESEnergyAboutDepartment of

  16. Energy Department Awards Nearly $55 Million to Advance Fuel Efficient

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWind Projects | DepartmentRoofs,Natural GasVehicle

  17. Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann39.1_Acquisition_of_Information_Resources_0.pdfEnablingManufacturing | Department of

  18. Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann39.1_Acquisition_of_Information_Resources_0.pdfEnablingManufacturing | DepartmentActions

  19. Non-Petroleum Based Fuel Effects on Advanced Combustion | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce Carbon

  20. Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4 » Searchwith FirstatOpportunitiesDOE for Further

  1. INTERNATIONAL SUMMER SCHOOL ON ADVANCED STUDIES OF POLYMER ELECTROLYTE FUEL CELLS

    E-Print Network [OSTI]

    4TH INTERNATIONAL SUMMER SCHOOL ON ADVANCED STUDIES OF POLYMER ELECTROLYTE FUEL CELLS YOKOHAMA and with internationally recognized experts in the field of fuel cell research. The lectures include fundamental studies fuel cells is scheduled from 5 th - 9 th September, 2011 in Yokohama. The participation

  2. Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing,

    E-Print Network [OSTI]

    Optimization J. Vernon Cole and Ashok Gidwani CFDRC Prepared for: DOE Hydrogen Fuel Cell Kickoff MeetingWater Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design fuel cell design and operation; Demonstrate improvements in water management resulting in improved

  3. Alternative Fuels and Advanced Vehicles: Resources for Fleet Managers (Clean Cities) (Presentation)

    SciTech Connect (OSTI)

    Brennan, A.

    2011-04-01

    A discussion of the tools and resources on the Clean Cities, Alternative Fuels and Advanced Vehicles Data Center, and the FuelEconomy.gov Web sites that can help vehicle fleet managers make informed decisions about implementing strategies to reduce gasoline and diesel fuel use.

  4. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Dixon, B.W.; Piet, S.J.

    2004-10-03

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected.

  5. Investigation of the characteristics of liquid fuel burning, Rijke type, pulsating combustors, Annual report

    SciTech Connect (OSTI)

    Zinn, B.T.; Daniel, B.R.; Katz, U.; Xu, T.S.; Su, A.

    1986-11-01

    This report describes the results obtained during the first year of a DOE sponsored research program entitled ''Investigation of the Characteristics of Liquid Fuel Burning, Rijke Type, Pulse Combustors''. This research has been concerned with the development of an efficient, nonpolluting, pulse combustor which burns liquid fuels. The design of the developed combustor is based upon principles of the acoustic Rijke tube which had been previously used, by the principal investigators of this study, to guide the development of a highly efficient, coal burning pulse combustor. The present study was initiated with the objective of determining whether the high performance achieved with the coal burning pulse combustor can be duplicated with the liquid fuel burning, Rijke type, pulse combustors. This document also describes the development of the experimental set-up and its subsequent modifications which resulted in improved performance. These studies revealed that pulse combustion operation can be maintained by more than one mechanism.

  6. Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation

    E-Print Network [OSTI]

    Heidet, Florent

    2010-01-01

    Fuels for sodium-cooled fast reactors: US perspective.Pitch to Diameter Sodium-cooled Fast Reactor Simple Movingreactor (GFR), sodium-cooled fast reactor (SFR) and lead-

  7. University of Wisconsin-Madison Improves Fuel Efficiency in Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    environment. Addthis Related Articles Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines Private Company Uses EERE-Supported Chemistry Model...

  8. Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation

    E-Print Network [OSTI]

    Heidet, Florent

    2010-01-01

    C.C. and M. Jursich, Fission gas release from oxide fuels atTanaka, K. , et al. , Fission gas release and swelling inKim, and Y.H. Jung, Fission gas release and swelling model

  9. Advanced Fuels in HDV Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006deerclark.pdf More Documents & Publications...

  10. Catalytic conversion of solar thermal produced pyrolysis gases to liquid fuels

    SciTech Connect (OSTI)

    Hanley, T.R.; Benham, C.B.

    1981-01-01

    The conversion of a simulated pyrolysis gas and synthesis gas using a Fischer-Tropsch catalyst system in a fluidized-bed reactor is investigated. Liquid fuels were produced between 550 and 660/sup 0/F (288 and 349/sup 0/C) for the simulated pyrolysis gas feed. An analysis of both liquid and gaseous product streams is performed. This investigation indicates a need for more extensive research with respect to hydrogen-to-carbon-monoxide usage ratios and with respect to the role of alkenes in fuel production.

  11. Liquid fuel vaporizer and combustion chamber having an adjustable thermal conductor

    DOE Patents [OSTI]

    Powell, Michael R; Whyatt, Greg A; Howe, Daniel T; Fountain, Matthew S

    2014-03-04

    The efficiency and effectiveness of apparatuses for vaporizing and combusting liquid fuel can be improved using thermal conductors. For example, an apparatus having a liquid fuel vaporizer and a combustion chamber can be characterized by a thermal conductor that conducts heat from the combustion chamber to the vaporizer. The thermal conductor can be a movable member positioned at an insertion depth within the combustion chamber that corresponds to a rate of heat conduction from the combustion chamber to the vaporizer. The rate of heat conduction can, therefore, be adjusted by positioning the movable member at a different insertion depth.

  12. Vehicle Technologies Office Merit Review 2015: Advanced Lean-Burn DI Spark Ignition Fuels Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about advanced lean-burn...

  13. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60tifrancis2012o.pdf More Documents & Publications DeKalb CountyMetropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb CountyMetropolitan...

  14. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vt060francis2010p.pdf More Documents & Publications DeKalb CountyMetropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb CountyMetropolitan...

  15. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60tifrancis2011p.pdf More Documents & Publications DeKalb CountyMetropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb CountyMetropolitan...

  16. Vehicle Technologies Office Merit Review 2015: Advanced Bus and Truck Radial Materials for Fuel Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by PPG at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced bus and truck radial materials...

  17. Liquid Tin Anode Direct Coal Fuel Cell Final Program Report

    SciTech Connect (OSTI)

    Tao, Thomas

    2012-01-26

    This SBIR program will result in improved LTA cell technology which is the fundamental building block of the Direct Coal ECL concept. As described below, ECL can make enormous efficiency and cost contributions to utility scale coal power. This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

  18. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    SciTech Connect (OSTI)

    Confer, Keith

    2014-09-30

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  19. Microwave Processing of Simulated Advanced Nuclear Fuel Pellets

    SciTech Connect (OSTI)

    D.E. Clark; D.C. Folz

    2010-08-29

    Throughout the three-year project funded by the Department of Energy (DOE) and lead by Virginia Tech (VT), project tasks were modified by consensus to fit the changing needs of the DOE with respect to developing new inert matrix fuel processing techniques. The focus throughout the project was on the use of microwave energy to sinter fully stabilized zirconia pellets using microwave energy and to evaluate the effectiveness of techniques that were developed. Additionally, the research team was to propose fundamental concepts as to processing radioactive fuels based on the effectiveness of the microwave process in sintering the simulated matrix material.

  20. Development of Hydrothermal Liquefaction and Upgrading Technologies for Lipid-Extracted Algae Conversion to Liquid Fuels

    SciTech Connect (OSTI)

    Zhu, Yunhua; Albrecht, Karl O.; Elliott, Douglas C.; Hallen, Richard T.; Jones, Susanne B.

    2013-10-01

    Bench-scale tests were performed for lipid-extracted microalgae (LEA) conversion to liquid fuels via hydrotreating liquefaction (HTL) and upgrading processes. Process simulation and economic analysis for a large-scale LEA HTL and upgrading system were developed based on the best available test results. The system assumes an LEA feed rate of 608 dry metric ton/day and that the feedstock is converted to a crude HTL bio-oil and further upgraded via hydrotreating and hydrocracking to produce liquid hydrocarbon fuels, mainly alkanes. Performance and cost results demonstrate that HTL would be an effective option to convert LEA to liquid fuel. The liquid fuels annual yield was estimated to be 26.9 million gallon gasoline-equivalent and the overall energy efficiency at higher heating value basis was estimated to be 69.5%. The minimum fuel selling price (MFSP) was estimated to be $0.75/L with LEA feedstock price at $33.1 metric ton at dry basis and 10% internal rate of return. A sensitivity analysis indicated that the largest effects to production cost would come from the final products yields and the upgrading equipments cost. The impact of plant scale on MFSP was also investigated.

  1. Liquid Fuels via Upgrading of Syngas Intermediates Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on CleanUp GeorgiaLinacLiquefaction andMay

  2. Liquid Fuels via Uprading of Syngas Intermediates Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on CleanUp GeorgiaLinacLiquefaction andMay2015

  3. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership onProtonConcentrators FY13 Q2 Low-Cost,Department

  4. Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy gdr.openei.org Geothermal DataFuels|

  5. MODELING ASSUMPTIONS FOR THE ADVANCED TEST REACTOR FRESH FUEL SHIPPING CONTAINER

    SciTech Connect (OSTI)

    Rick J. Migliore

    2009-09-01

    The Advanced Test Reactor Fresh Fuel Shipping Container (ATR FFSC) is currently licensed per 10 CFR 71 to transport a fresh fuel element for either the Advanced Test Reactor, the University of Missouri Research Reactor (MURR), or the Massachusetts Institute of Technology Research Reactor (MITR-II). During the licensing process, the Nuclear Regulatory Commission (NRC) raised a number of issues relating to the criticality analysis, namely (1) lack of a tolerance study on the fuel and packaging, (2) moderation conditions during normal conditions of transport (NCT), (3) treatment of minor hydrogenous packaging materials, and (4) treatment of potential fuel damage under hypothetical accident conditions (HAC). These concerns were adequately addressed by modifying the criticality analysis. A tolerance study was added for both the packaging and fuel elements, full-moderation was included in the NCT models, minor hydrogenous packaging materials were included, and fuel element damage was considered for the MURR and MITR-II fuel types.

  6. Pilot scale production and combustion of liquid fuels from refuse derived fuel (RDF): Part 2

    SciTech Connect (OSTI)

    Klosky, M.K.

    1996-09-01

    EnerTech is developing a process for producing pumpable slurry fuels, comparable to Coal-Water-Fuels (CWF), from solid Refuse Derived Fuels (RDF). Previous reports have described the characteristics of the enhanced carbonized RDF slurry fuels. This paper summarizes those fuel characteristics and reports on the latest combustion tests performed with the final product fuel. The objective of this research was to determine the boiler and emission performance from the carbonized RDF slurry fuel using statistical screening experiments. Eight combustion tests were performed with a pilot scale pulverized coal/oil boiler simulator, with CO, SO{sub 2}, and NO{sub x} emissions determined on-line. The combustion tests produced simultaneous CO and NO{sub x} emissions well below and SO{sub 2} emissions comparable to the promulgated New Source Performance Standards (NSPS). This research will form the basis for later combustion experiments to be performed with the carbonized RDF slurry fuel, in which dioxin/furan and trace metal emissions will be determined.

  7. High-Level Functional and Operational Requirements for the Advanced Fuel Cycle Facilty

    SciTech Connect (OSTI)

    Charles Park

    2006-12-01

    High-Level Functional & Operational Requirements for the AFCF -This document describes the principal functional and operational requirements for the proposed Advanced Fuel Cycle Facility (AFCF). The AFCF is intended to be the world's foremost facility for nuclear fuel cycle research, technology development, and demonstration. The facility will also support the near-term mission to develop and demonstrate technology in support of fuel cycle needs identified by industry, and the long-term mission to retain and retain U.S. leadership in fuel cycle operations. The AFCF is essential to demonstrate a more proliferation-resistant fuel cycle and make long-term improvements in fuel cycle effectiveness, performance and economy.

  8. Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL AdvancedEnergy Climate Science withMini-Van

  9. Liquid Fuel From Microbial Communities: Electroalcoholgenesis: Bioelectrochemical Reduction of CO2 to Butanol

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: MUSC is developing an engineered system to create liquid fuels from communities of interdependent microorganisms. MUSC is first pumping carbon dioxide (CO2) and renewable sources of electricity into a battery-like cell. A community of microorganisms uses the electricity to convert the CO2 into hydrogen. That hydrogen is then consumed by another community of microorganisms living in the same system. These new microorganisms convert the hydrogen into acetate, which in turn feed yet another community of microorganisms. This last community of microorganisms uses the acetate to produce a liquid biofuel called butanol. Similar interdependent microbial communities can be found in some natural environments, but they’ve never been coupled together in an engineered cell to produce liquid fuels. MUSC is working to triple the amount of butanol that can be produced in its system and to reduce the overall cost of the process.

  10. Design optimization and analysis of coated particle fuel using advanced fuel performance modeling techniques

    E-Print Network [OSTI]

    Soontrapa, Chaiyod

    2005-01-01

    Modifying material properties provides another approach to optimize coated particle fuel used in pebble bed reactors. In this study, the MIT fuel performance model (TIMCOAT) was applied after benchmarking against the ...

  11. Investigation of the combustion of liquid fuels in Rijke type pulse combustors

    SciTech Connect (OSTI)

    Zinn, B.T.; Daniel, B.R.; Bai, T.

    1990-01-01

    The synopsis summarizes the accomplishments of DOE Contract NO. AS04-85AL31881, which investigated the combustion of different liquid fuels in Rijke type pulse combustors. Interest in the development of a Rijke pulse combustor capable of burning liquid fuels was stimulated by earlier studies by the investigators of this program which had demonstrated that various coals can be burned efficiently and with low pollutant emissions in Rijke type pulse combustors. This research program consisted of three tasks. Task A was concerned with the development of a Rijke pulse combustor design capable of burning different liquid fuels, and determination of the performances of uninsulated and insulated versions of the developed Rijke pulse combustor when burning different liquid fuels under different operating conditions. Task B was concerned with the elucidation of the mechanisms responsible for driving the pulsations in the developed combustors, and Task C was concerned with the determination of the dependence of the combustor performance upon the amplitude of pulsations. The results of these studies are briefly discussed in the remainder of this document. 2 figs.

  12. Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982

    SciTech Connect (OSTI)

    Linville, B.

    1982-10-01

    This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

  13. Sampling and analysis plan for canister liquid and gas sampling at 105 KW fuel storage basin

    SciTech Connect (OSTI)

    Trimble, D.J.

    1996-08-09

    This Sampling and Analysis Plan describes the equipment,procedures and techniques for obtaining gas and liquid samples from sealed K West fuel canisters. The analytical procedures and quality assurance requirements for the subsequent laboratory analysis of the samples are also discussed.

  14. Plasma Fueling ProgramPWF/LJET 5/10/2000 Review Page 1 Liquid Jets for Disruption Control

    E-Print Network [OSTI]

    Plasma Fueling ProgramPWF/LJET 5/10/2000 Review Page 1 Liquid Jets for Disruption Control P. W Page 2 Liquid Jets for Fast Plasma Termination · P. B. Parks, M. N. Rosenbluth, S. V. Putvinski, and T. E. Evans, "High-Velocity Liquid Jet Injection into Tokamak Plasmas for Disruption Mitigation

  15. Advanced Fuel Cycle Treatment, Recycling, and Disposal of Nuclear Waste

    SciTech Connect (OSTI)

    Collins, Emory D [ORNL; Jubin, Robert Thomas [ORNL; DelCul, Guillermo D [ORNL; Spencer, Barry B [ORNL; Renier, John-Paul [ORNL

    2009-01-01

    Nuclear waste, in the form of used and spent nuclear fuel, is currently being stored in the U.S., mostly at reactor sites to await future direct disposal or treatment to permit recycle of re-usable components and minimization of wastes requiring geologic disposal. The used fuel is currently accumulating at a rate of over 2,000 tons per year and a total of over 60,000 tons is in storage. New dry storage capacity is estimated to cost {approx} $0.6 B per year. Technologies have been developed and deployed worldwide to treat only a portion of the nuclear waste that is generated. Recent research, development, and systems analysis studies have shown that nuclear waste treatment could be done at the rate of generation in a safe, environmentally friendly, and cost-effective manner. These studies continue to show that major benefits can be obtained by allowing the used fuel assemblies to remain in safe storage for 30 years or longer before treatment. During this time, the radioactivity and decay heat generation decrease substantially, such that the separations process can be simplified and made less costly, waste gases containing {sup 85}Kr can be released below regulatory limits, and the solid fission product wastes containing {sup 137}Cs and {sup 90}Sr require decay storage for a much shorter time-period before geologic disposal. In addition, the need for separating curium from americium and for extra purification cycles for the uranium and uranium-plutonium-neptunium products is greatly diminished. Moreover, during the 30+ years of storage prior to treatment, the quality of the recyclable fuel is only degraded by less than 5 percent. The 30+ year storage period also enables recycle of long-lived transuranic actinides to be accomplished in existing light water reactors without waiting on and incurring the cost of the development, licensing, and deployment of future Gen IV reactors. Overall, the safety, environmental, and cost benefits of treating the longer aged used nuclear wastes are substantial.

  16. Statistical Methods Handbook for Advanced Gas Reactor Fuel Materials

    SciTech Connect (OSTI)

    J. J. Einerson

    2005-05-01

    Fuel materials such as kernels, coated particles, and compacts are being manufactured for experiments simulating service in the next generation of high temperature gas reactors. These must meet predefined acceptance specifications. Many tests are performed for quality assurance, and many of these correspond to criteria that must be met with specified confidence, based on random samples. This report describes the statistical methods to be used. The properties of the tests are discussed, including the risk of false acceptance, the risk of false rejection, and the assumption of normality. Methods for calculating sample sizes are also described.

  17. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC)

    SciTech Connect (OSTI)

    Not Available

    2003-03-01

    Annual progress report of the Advanced Petroleum-based fuels-Diesel Emissions Control Project. Contains information on 5 test projects to determine the best combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emissions standards.

  18. Role of Advanced-Fuel and Innovative Concept Fusion in the

    E-Print Network [OSTI]

    Fusion Technology Institute Main Thesis of This Talk: D-3He Fuel Could Lower R&D Costs · Engineering RRole of Advanced-Fuel and Innovative Concept Fusion in the Nuclear Renaissance John F. Santarius and Innovative Fusion Concepts? · Fusion development requires physics, engineering, safety, and environmental

  19. Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

    SciTech Connect (OSTI)

    2010-07-15

    Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

  20. Compact Toroid and Advanced Fuel - Together to the Moon?{exclamation_point}

    SciTech Connect (OSTI)

    Ryzhkov, S.V. [Bauman Moscow State Technical (Russian Federation)

    2005-01-15

    Magnetic geometries like the field reversed configuration and spheromak are compact toroids, where plasma is enclosed in a linear external magnetic field geometry. To burn advanced fuels requires a high fusion power density compact system and a D-{sup 3}He field reversed configuration will be considered here. Such innovative confinement concept together with remarkable advantages of compact system and advanced fuels, including direct energy conversion, full lifetime fusion core, fusion space propulsion, nonelectrical application of D-{sup 3}He fusion energy and space resources including helium-3 fusion fuel is very attractive.

  1. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Adam Calihman; Andy Girard; Pamela M. Van Calcar; Richard Mackay; Tom Barton; Sara Rolfe

    2001-01-30

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. Membranes testing during this reporting period were greater than 1 mm thick and had the general perovskite composition AB{sub 1-x}B'{sub x}O{sub 3-{delta}}, where 0.05 {<=} x {<=} 0.3. These materials demonstrated hydrogen separation rates between 1 and 2 mL/min/cm{sup 2}, which represents roughly 20% of the target goal for membranes of this thickness. The sintered membranes were greater than 95% dense, but the phase purity decreased with increasing dopant concentration. The quantity of dopant incorporated into the perovskite phase was roughly constant, with excess dopant forming an additional phase. Composite materials with distinct ceramic and metallic phases, and thin film perovskites (100 {micro}m) also were successfully prepared, but have not yet been tested for hydrogen transport. Finally, porous platinum was identified as a excellent catalyst for evaluation of membrane materials, however, lower cost nickel catalyst systems are being developed.

  2. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; R.D. Carneim; P.F. Becher; C-H. Hsueh; Aaron L. Wagner; Jon P. Wagner

    2002-04-30

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur.

  3. Advanced Materials for PEM-Based Fuel Cell Systems

    SciTech Connect (OSTI)

    James E. McGrath; Donald G. Baird; Michael von Spakovsky

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 degrees C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic fillers, such as phosphotungstic acid and zirconium hydrogen phosphate. Block copolymers were also studied due to the possibility to achieve a desired combination of homopolymer properties as well as the unique morphologies that are possible with block copolymers. Bezoyl substituted poly(p-phenylene) blocks were combined with poly(arylene ether) blocks to merge the structural rigidity of the poly(p-phenylene) with the ductility and high protonic conductivity of the poly(arylene ether)s. As evidenced by our many refereed publications and preprints, the research that we have conducted over the past several years has made a valuable and significant contribution to the literature and to the state of understanding of proton exchange membranes. Our early efforts at scale-up have suggested that the directly polymerized disulfonated poly(arylene ether sulfone) copolymers are commercially viable alternatives for proton exchange membranes. A new process for bipolar plates was developed and is described. An important single domain PEMFC model was developed and is documented in herein.

  4. Advanced Materials for PEM-Based Fuel Cell Systems

    SciTech Connect (OSTI)

    James E. McGrath

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 �������������������������������°C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic fillers, such as phosphotungstic acid and zirconium hydrogen phosphate. Block copolymers were also studied due to the possibility to achieve a desired combination of homopolymer properties as well as the unique morphologies that are possible with block copolymers. Bezoyl substituted poly(p-phenylene) blocks were combined with poly(arylene ether) blocks to merge the structural rigidity of the poly(p-phenylene) with the ductility and high protonic conductivity of the poly(arylene ether)s. As evidenced by our many refereed publications and preprints, the research that we have conducted over the past several years has made a valuable and significant contribution to the literature and to the state of understanding of proton exchange membranes. Our early efforts at scale-up have suggested that the directly polymerized disulfonated poly(arylene ether sulfone) copolymers are commercially viable alternatives for proton exchange membranes. A new process for bipolar plates was developed and is described. An important single domain PEMFC model was developed and is documented in this final report.

  5. Ambient Laboratory Coater for Advanced Gas Reactor Fuel Development

    SciTech Connect (OSTI)

    Duane D. Bruns; Robert M. Counce; Irma D. Lima Rojas

    2010-06-09

    this research is targeted at developing improved experimentally-based scaling relationships for the hydrodynamics of shallow, gas-spouted beds of dense particles. The work is motivated by the need to more effctively scale up shallow spouted beds used in processes such as in the coating of nuclear fuel particles where precise control of solids and gas circulation is critically important. Experimental results reported here are for a 50 mm diameter spouted bed containing two different types of bed solids (alumina and zirconia) at different static bed depths and fluidized by air and helium. Measurements of multiple local average pressures, inlet gas pressure fluctuations, and spout height were used to characterize the bed hydrodynamics for each operating condition. Follow-on studies are planned that include additional variations in bed size, particle properties, and fluidizing gas. The ultimate objective is to identify the most important non-dimensional hydrodynamic scaling groups and possible spouted-bed design correlations based on these groups.

  6. Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods

    SciTech Connect (OSTI)

    Donald Olander

    2005-08-24

    A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots.

  7. Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    achieved during FY 2000. 13.pdf More Documents & Publications Cleaner Vehicles, Cleaner Fuel & Cleaner Air Durability of NOx Absorbers Review of Diesel Emission Control Technology...

  8. Advanced Gas Reactor Fuel Program's TRISO Particle Fuel Sets A New World

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONY PROJECTRecord For Irradiation Performance |

  9. Advanced Combustion, Emission Control, Health Impacts, and Fuels Merit Review and Peer Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDIT REPORT:FederalEconomicAdmiralsMeeting,AdvancedAdvAnced

  10. Annual Report: Advanced Energy Systems Fuel Cells (30 September 2013)

    SciTech Connect (OSTI)

    Gerdes, Kirk; Richards, George

    2014-04-16

    The comprehensive research plan for Fuel Cells focused on Solid State Energy Conversion Alliance (SECA) programmatic targets and included objectives in two primary and focused areas: (1) investigation of degradation modes exhibited by the anode/electrolyte/cathode (AEC), development of computational models describing the associated degradation rates, and generation of a modeling tool predicting long term AEC degradation response; and (2) generation of novel electrode materials and microstructures and implementation of the improved electrode technology to enhance performance. In these areas, the National Energy Technology Laboratory (NETL) Regional University Alliance (RUA) team has completed and reported research that is significant to the SECA program, and SECA continued to engage all SECA core and SECA industry teams. Examination of degradation in an operational solid oxide fuel cell (SOFC) requires a logical organization of research effort into activities such as fundamental data gathering, tool development, theoretical framework construction, computational modeling, and experimental data collection and validation. Discrete research activity in each of these categories was completed throughout the year and documented in quarterly reports, and researchers established a framework to assemble component research activities into a single operational modeling tool. The modeling framework describes a scheme for categorizing the component processes affecting the temporal evolution of cell performance, and provides a taxonomical structure of known degradation processes. The framework is an organizational tool that can be populated by existing studies, new research completed in conjunction with SECA, or independently obtained. The Fuel Cell Team also leveraged multiple tools to create cell performance and degradation predictions that illustrate the combined utility of the discrete modeling activity. Researchers first generated 800 continuous hours of SOFC experimental data capturing operational degradation. The data were matched by a 3D multi-physics simulation of SOFC operational performance assuming that the entire performance loss related to coarsening of the cathode triple phase boundary (3PB). The predicted 3PB coarsening was then used to tune the mobility parameters of a phase field model describing microstructural evolution of the lanthanum strontium manganate (LSM)/ yttria stabilized zirconia (YSZ) system. Once calibrated, the phase field model predicted continuous microstructural coarsening processes occurring over the operating period, which could be extrapolated to performance periods of longer duration and also used to produce 3D graphical representations. NETL researchers also completed significant electrode engineering research complimented by 3D multi-physics simulations. In one key activity researchers generated an illustration demonstrating that control of infiltrate deposition can provide cell manufacturers with significant additional operational and engineering control over the SOFC stack. Specifically, researchers demonstrated that by engineering the deposition of electrocatalyst inside the cathode, the distribution of overpotential across the cell could be controlled to either decrease the average cell overpotential value or minimize cross-cell overpotential gradient. Results imply that manufacturers can establish improved engineering control over stack operation by implementing infiltration technology in SOFC cathodes.

  11. Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Z. H. Wang* and C. Y. Wang*,z

    E-Print Network [OSTI]

    Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cells Z. H. Wang* and C. Y. Wang for liquid-feed direct methanol fuel cells DMFC . In addition to the anode and cathode electrochemical-osmosis. This comprehensive model is solved numerically using computational fluid dynamics. The transport phenomena

  12. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Adam E. Calihman; Lyrik Y. Pitzman; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

    2001-07-30

    Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, ceramic, cermet (ceramic/metal), and thin film membranes were prepared, characterized, and evaluated for H{sub 2} transport. For selected ceramic membrane compositions an optimum range for transition metal doping was identified, and it was determined that highest proton conductivity occurred for two-phase ceramic materials. Furthermore, a relationship between transition metal dopant atomic number and conductivity was observed. Ambipolar conductivities of {approx}6 x 10{sup -3} S/cm were achieved for these materials, and {approx} 1-mm thick membranes generated H{sub 2} transport rates as high as 0.3 mL/min/cm{sup 2}. Cermet membranes during this quarter were found to have a maximum conductivity of 3 x 10{sup -3} S/cm, which occurred at a metal phase contact of 36 vol.%. Homogeneous dense thin films were successfully prepared by tape casting and spin coating; however, there remains an unacceptably high difference in shrinkage rates between the film and support, which led to membrane instability. Further improvements in high pressure membrane seals also were achieved during this quarter, and a maximum pressure of 100 psig was attained. CoorsTek optimized many of the processing variables relevant to manufacturing scale production of ceramic H{sub 2} transport membranes, and SCI used their expertise to deposit a range of catalysts compositions onto ceramic membrane surfaces. Finally, MTI compiled relevant information regarding Vision 21 fossil fuel plant operation parameters, which will be used as a starting point for assessing the economics of incorporating a H{sub 2} separation unit.

  13. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect (OSTI)

    Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

    2006-04-30

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this final quarter of the no cost extension several planar membranes of a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase were prepared and permeability testing was performed.

  14. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUELS PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart Schesnack; Scott Morrison; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-07-31

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report presents hydrogen permeation data during long term tests and tests at high pressure in addition to progress with cermet, ceramic/ceramic, and thin film membranes.

  15. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-04-30

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (i) mixed conducting ceramic/ceramic composites, (ii) mixed conducting ceramic/metal (cermet) composites, (iii) cermets with hydrogen permeable metals, and (iv) hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report describes resent results for long-term hydrogen permeation and chemical stability measurements, new mixed conducting cermets, progress in cermet, thin film, and thin-walled tube fabrication, hydrogen absorption measurements for selected compositions, and membrane facilitated alkane to olefin conversion.

  16. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    SciTech Connect (OSTI)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 ?m, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

  17. Development of Advanced Accident Tolerant Fuels for Commercial Light Water Reactors

    SciTech Connect (OSTI)

    Bragg-Sitton, Shannon M.

    2014-03-01

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. Thanks to efforts by both the U.S. government and private companies, nuclear technologies have advanced over time to optimize economic operations in nuclear utilities while ensuring safety. One of the missions of the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) is to develop nuclear fuels and claddings with enhanced accident tolerance. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, DOE-NE initiated Accident Tolerant Fuel (ATF) development as a primary component of the Fuel Cycle Research & Development (FCRD) Advanced Fuels Campaign (AFC). Prior to the unfortunate events at Fukushima, the emphasis for advanced LWR fuel development was on improving nuclear fuel performance in terms of increased burnup for waste minimization, increased power density for power upgrades, and increased fuel reliability. Fukushima highlighted some undesirable performance characteristics of the standard fuel system during severe accidents, including accelerated hydrogen production under certain circumstances. Thus, fuel system behavior under design basis accident and severe accident conditions became the primary focus for advanced fuels while still striving for improved performance under normal operating conditions to ensure that proposed new fuels will be economically viable. The goal of the ATF development effort is to demonstrate performance with a lead test assembly or lead test rod (LTR) or lead test assembly (LTA) irradiation in a commercial power reactor by 2022. Research and development activities are being conducted at multiple DOE national laboratories, universities and within industry with support from the DOE program. A brief program overview and status are provided.

  18. Development of Advanced Accident Tolerant Fuels for Commercial Light Water Reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bragg-Sitton, Shannon M.

    2014-03-01

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. Thanks to efforts by both the U.S. government and private companies, nuclear technologies have advanced over time to optimize economic operations in nuclear utilitiesmore »while ensuring safety. One of the missions of the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) is to develop nuclear fuels and claddings with enhanced accident tolerance. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, DOE-NE initiated Accident Tolerant Fuel (ATF) development as a primary component of the Fuel Cycle Research & Development (FCRD) Advanced Fuels Campaign (AFC). Prior to the unfortunate events at Fukushima, the emphasis for advanced LWR fuel development was on improving nuclear fuel performance in terms of increased burnup for waste minimization, increased power density for power upgrades, and increased fuel reliability. Fukushima highlighted some undesirable performance characteristics of the standard fuel system during severe accidents, including accelerated hydrogen production under certain circumstances. Thus, fuel system behavior under design basis accident and severe accident conditions became the primary focus for advanced fuels while still striving for improved performance under normal operating conditions to ensure that proposed new fuels will be economically viable. The goal of the ATF development effort is to demonstrate performance with a lead test assembly or lead test rod (LTR) or lead test assembly (LTA) irradiation in a commercial power reactor by 2022. Research and development activities are being conducted at multiple DOE national laboratories, universities and within industry with support from the DOE program. A brief program overview and status are provided.« less

  19. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart R. Schesnack; Scott R. Morrison; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-10-30

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Over the past 12 months, this project has focused on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. The ceramic/ceramic composites demonstrate the lowest hydrogen permeation rates, with a maximum of approximately 0.1 mL/min/cm{sup 2} for 0.5-mm thick membranes at 800 to 950 C. Under equivalent conditions, cermets achieve a hydrogen permeation rate near 1 mL/min/cm{sup 2}, and the metal phase also improves structural stability and surface catalysis for hydrogen dissociation. Furthermore, if metals with high hydrogen permeability are used in cermets, permeation rates near 4 mL/min/cm{sup 2} are achievable with relatively thick membranes. Layered composite membranes have by far the highest permeation rates with a maximum flux in excess of 200 mL {center_dot} min{sup -1} {center_dot} cm{sup -2}. Moreover, these permeation rates were achieved at a total pressure differential across the membrane of 450 psi. Based on these results, effort during the next year will focus on this category of membranes. This report contains long-term hydrogen permeation data over eight-months of continuous operation, and permeation results as a function of operating conditions at high pressure for layered composite membranes. Additional progress with cermet and thin film membranes also is presented.

  20. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Adam E. Calihman; Lyrik Y. Pitzman; Pamela M. Van Calcar; Richard A. Mackay; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Tim R. Armstrong; Mike J. Holmes; Aaron L. Wagner

    2001-04-30

    Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, it was demonstrated that increasing the transition metal loading in a model perovskite composition resulted in an increase in hydrogen flux. Improved flux corresponded to the emergence of additional phases in the ceramic membrane, and highest flux was achieved for a composite consisting of pseudo-cubic and rhombohedral perovskite phases. A 0.9-mm thick membrane of this material generated a hydrogen flux in excess of 0.1 mL/min/cm{sup 2}, which was approximately 35 times greater than analogs with lower transition metal levels. The dopant level and crystal structure also correlated with membrane density and coefficient of thermal expansion, but did not appear to affect grain size or shape. Additionally, preliminary ceramic-metal (cermet) composite membranes demonstrated a 10-fold increase in flux relative to analogous membranes composed of only the ceramic component. The hydrogen flux for these cermet samples corresponded to a conductivity of {approx} 10{sup -3} S/cm, which was consistent with the predicted proton conductivity of the ceramic phase. Increasing the sweep gas flow rate in test reactors was found to significantly increase hydrogen flux, as well as apparent material conductivity for all samples tested. Adding humidity to the feed gas stream produced a small increase in hydrogen flux. However, the catalyst on ceramic membrane surfaces did not affect flux, which suggested that the process was membrane-diffusion limited. Representative samples and fabrication processes were evaluated on the basis of manufacturing practicality. it was determined that optimum membrane densification occurs over a very narrow temperature range for the subject ceramics. Additionally, calcination temperatures currently employed result in powders that are difficult mill and screen. These issues must be addressed to improve large-scale fabricability.

  1. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

    2001-10-30

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

  2. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart R. Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-01-30

    Eltron Research Inc., and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying composite membrane composition and microstructure to maximize hydrogen permeation without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, a composite metal membrane based on an inexpensive hydrogen permeable metal achieved permeation rates in excess of 25 mL/min/cm{sup 2}. Preliminary attempts to incorporate this metal into a cermet were successful, and a thick cermet membrane (0.83 mm) with 40 vol.% metal phase achieved a permeation rate of nearly 0.4 mL/min/cm{sup 2}. Increasing the metal phase content and decreasing membrane thickness should significantly increase permeation, while maintaining the benefits derived from cermets. Two-phase ceramic/ceramic composite membranes had low hydrogen permeability, likely due to interdiffusion of constituents between the phases. However, these materials did demonstrate high resistance to corrosion, and might be good candidates for other composite membranes. Temperature-programmed reduction measurements indicated that model cermet materials absorbed 2.5 times as much hydrogen than the pure ceramic analogs. This characteristic, in addition to higher electron conductivity, likely explains the relatively high permeation for these cermets. Incorporation of catalysts with ceramics and cermets increased hydrogen uptake by 800 to more than 900%. Finally, new high-pressure seals were developed for cermet membranes that maintained a pressure differential of 250 psi. This result indicated that the approach for high-pressure seal development could be adapted for a range of compositions. Other items discussed in this report include mechanical testing, new proton conducting ceramics, supported thin films, and alkane to olefin conversion.

  3. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; M.K. Ferber; Aaron L. Wagner; Jon P. Wagner

    2002-07-30

    Eltron Research Inc. and their team members are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, new cermet compositions were tested that demonstrated similar performance to previous materials. A 0.5-mm thick membrane achieved at H{sub 2} transport rate of 0.2 mL/min/cm{sup 2} at 950 C, which corresponded to an ambipolar conductivity of 3 x 10{sup -3} S/cm. Although these results were equivalent to those for other cermet compositions, this new composition might be useful if it demonstrates improved chemical or mechanical stability. Ceramic/ceramic composite membranes also were fabricated and tested; however, some reaction did occur between the proton- and electron-conducting phases, which likely compromised conductivity. This sample only achieved a H{sub 2} transport rate of {approx} 0.006 mL/min/cm{sup 2} and an ambipolar conductivity of {approx}4 x 10{sup -4} S/cm. Chemical stability tests were continued, and candidate ceramic membranes were found to react slightly with carbon monoxide under extreme testing conditions. A cermet compositions did not show any reaction with carbon monoxide, but a thick layer of carbon formed on the membrane surface. The most significant technical accomplishment this quarter was a new high-pressure seal composition. This material maintained a pressure differential across the membrane of {approx} 280 psi at 800 C, and is still in operation.

  4. Intergovernmental Advanced Stationary PEM Fuel Cell System Demonstration Final Report

    SciTech Connect (OSTI)

    Rich Chartrand

    2011-08-31

    A program to complete the design, construction and demonstration of a PEMFC system fuelled by Ethanol, LPG or NG for telecom applications was initiated in October 2007. Early in the program the economics for Ethanol were shown to be unfeasible and permission was given by DOE to focus on LPG only. The design and construction of a prototype unit was completed in Jun 2009 using commercially available PEM FC stack from Ballard Power Systems. During the course of testing, the high pressure drop of the stack was shown to be problematic in terms of control and stability of the reformer. Also, due to the power requirements for air compression the overall efficiency of the system was shown to be lower than a similar system using internally developed low pressure drop FC stack. In Q3 2009, the decision was made to change to the Plug power stack and a second prototype was built and tested. Overall net efficiency was shown to be 31.5% at 3 kW output. Total output of the system is 6 kW. Using the new stack hardware, material cost reduction of 63% was achieved over the previous Alpha design. During a November 2009 review meeting Plug Power proposed and was granted permission, to demonstrate the new, commercial version of Plug Power's telecom system at CERL. As this product was also being tested as part of a DOE Topic 7A program, this part of the program was transferred to the Topic 7A program. In Q32008, the scope of work of this program was expanded to include a National Grid demonstration project of a micro-CHP system using hightemperature PEM technology. The Gensys Blue system was cleared for unattended operation, grid connection, and power generation in Aug 2009 at Union College in NY state. The system continues to operate providing power and heat to Beuth House. The system is being continually evaluated and improvements to hardware and controls will be implemented as more is learned about the system's operation. The program is instrumental in improving the efficiency and reducing costs of PEMFC based power systems using LPG fuel and continues to makes steps towards meeting DOE's targets. Plug Power would like to thank DOE for their support of this program.

  5. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2004-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

  6. Fuel Cells for Portable Power: 1. Introduction to DMFCs; 2. Advanced Materials and Concepts for Portable Power Fuel Cells

    SciTech Connect (OSTI)

    Zelenay, Piotr [Los Alamos National Laboratory

    2012-07-16

    Thanks to generally less stringent cost constraints, portable power fuel cells, the direct methanol fuel cell (DMFC) in particular, promise earlier market penetration than higher power polymer electrolyte fuel cells (PEFCs) for the automotive and stationary applications. However, a large-scale commercialization of DMFC-based power systems beyond niche applications already targeted by developers will depend on improvements to fuel cell performance and performance durability as well as on the reduction in cost, especially of the portable systems on the higher end of the power spectrum (100-250 W). In this part of the webinar, we will focus on the development of advanced materials (catalysts, membranes, electrode structures, and membrane electrode assemblies) and fuel cell operating concepts capable of fulfilling two key targets for portable power systems: the system cost of $5/W and overall fuel conversion efficiency of 2.0-2.5 kWh/L. Presented research will concentrate on the development of new methanol oxidation catalysts, hydrocarbon membranes with reduced methanol crossover, and improvements to component durability. Time permitted, we will also present a few highlights from the development of electrocatalysts for the oxidation of two alternative fuels for the direct-feed fuel cells: ethanol and dimethyl ether.

  7. Mesoscopic modeling of liquid water transport in polymer electrolyte fuel cells

    SciTech Connect (OSTI)

    Mukherjee, Partha P [Los Alamos National Laboratory; Wang, Chao Yang [PENNSTATE UNIV.

    2008-01-01

    A key performance limitation in polymer electrolyte fuel cells (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. Liquid water leads to the coverage of the electrochemically active sites in the catalyst layer (CL) rendering reduced catalytic activity and blockage of the available pore space in the porous CL and fibrous gas diffusion layer (GDL) resulting in hindered oxygen transport to the active reaction sites. The cathode CL and the GDL therefore playa major role in the mass transport loss and hence in the water management of a PEFC. In this article, we present the development of a mesoscopic modeling formalism coupled with realistic microstructural delineation to study the profound influence of the pore structure and surface wettability on liquid water transport and interfacial dynamics in the PEFC catalyst layer and gas diffusion layer.

  8. Important Propane Safety Information Propane is a fuel that is stored as a liquid and used as a gas. Propane is often used to fuel

    E-Print Network [OSTI]

    Kienzle, Stefan W.

    Important Propane Safety Information Propane is a fuel that is stored as a liquid and used as a gas. Propane is often used to fuel barbeques, appliances in recreational vehicles (RVs), and other portable equipment. Used properly, propane is a safe and convenient fuel. Follow these tips to stay safe. Basics

  9. 'Radiotoxicity Index': An Inappropriate Discriminator for Advanced Fuel Cycle Technology Selection - 12276

    SciTech Connect (OSTI)

    Kessler, John; Sowder, Andrew [Electric Power Research Institute, Charlotte, North Carolina 28262 (United States); Apted, Michael; Kozak, Matthew [Intera, Inc., Denver, Colorado 80235 (United States); Nutt, Mark [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Swift, Peter [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2012-07-01

    A radiotoxicity index (RI) is often used as a figure of merit for evaluating for evaluating the attractiveness of employing an advanced fuel cycle (i.e., a fuel cycle that uses some combination of separations and other reactor technologies, such as fast reactors), rather than continued use of the current 'once-through' fuel cycle. The RI is calculated by multiplying the amount of every radionuclide found in a waste form for some unit amount of waste times the drinking water dose conversion factor, DCF, for each radionuclide, then summing these together. Some argue that if the RI for an advanced fuel cycle is lower than the RI for a once-through fuel cycle, then implementation of the particular advanced fuel cycle has merit because it reduces the radiotoxicity of the waste. Use of an RI for justifying separations technologies and other components of advanced fuel cycles is not only inappropriate, but can be misleading with respect to judging benefits of advance fuel cycle options. The disposal system, through its use of multiple engineered and natural barriers to migration, eliminates most of the radionuclides contributing to the RI such that additional separations technologies will make little difference to peak dose rates. What must also be considered is the health/dose risk caused to workers and the public by the construction and operation of the separations facility itself. Thus, use of RI may lead to selection of separations technologies that may have a negligible effect on lowering the potential health risks associated with disposal, but will increase real worker and public health risks in the near term. The use of the radiotoxicity index (RI) as a figure of merit for justifying advanced fuel cycles involving separations technologies is not only inappropriate, but can be misleading with respect to judging benefits of advance fuel cycle options. The disposal system, through its use of multiple engineered and natural barriers to migration, eliminates most of the radionuclides contributing to the RI such that additional separations technologies will make little difference to peak dose rates. What must also be considered is the health/dose risk caused to workers and the public by the construction and operation of the separations facility itself. Thus, use of RI may lead to selection of separations technologies that may have a negligible effect on lowering the potential health risks associated with disposal, but will increase real worker and public health risks in the near term. (authors)

  10. The thermodynamics of pyrochemical processes for liquid metal reactor fuel cycles

    SciTech Connect (OSTI)

    Johnson, I.

    1987-01-01

    The thermodynamic basis for pyrochemical processes for the recovery and purification of fuel for the liquid metal reactor fuel cycle is described. These processes involve the transport of the uranium and plutonium from one liquid alloy to another through a molten salt. The processes discussed use liquid alloys of cadmium, zinc, and magnesium and molten chloride salts. The oxidation-reduction steps are done either chemically by the use of an auxiliary redox couple or electrochemically by the use of an external electrical supply. The same basic thermodynamics apply to both the salt transport and the electrotransport processes. Large deviations from ideal solution behavior of the actinides and lanthanides in the liquid alloys have a major influence on the solubilities and the performance of both the salt transport and electrotransport processes. Separation of plutonium and uranium from each other and decontamination from the more noble fission product elements can be achieved using both transport processes. The thermodynamic analysis is used to make process design computations for different process conditions.

  11. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: First Results Report

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2011-03-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This report provides the early data results and implementation experience of the AT fuel cell bus since it was placed in service.

  12. Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs

    SciTech Connect (OSTI)

    Ragusa, Jean; Vierow, Karen

    2011-09-01

    The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzed advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.

  13. Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

  14. Miscibility, solubility and retrograde prediction of methane in liquids. Liquid storage of natural gas (LSNG) for vehicle fuel. Annual report, July 15, 1992-July 15, 1993

    SciTech Connect (OSTI)

    Mansoori, G.A.

    1994-07-01

    The primary focus of this project is to investigate the concept of liquid storage of natural gas (LSNG) for potential natural gas vehicle (NGV) application. The research work consists of developing accurate techniques for modeling of interfacial properties, miscibility and solubility of methane in liquids. By implementing this project it will be possible: To use natural gas as the fuel for internal combustion engines; To increase the gas tank capacity about 200% more over the compressed natural gas (CNG) scheme; To increase the octane-number of low quality liquid fuels through blending them with natural gas.

  15. Enhanced catalyst and process for converting synthesis gas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY)

    1986-01-01

    The conversion of synthesis gas to liquid molar fuels by means of a cobalt Fischer-Tropsch catalyst composition is enhanced by the addition of molybdenum, tungsten or a combination thereof as an additional component of said composition. The presence of the additive component increases the olefinic content of the hydrocarbon products produced. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  16. Catalyst and process for converting synthesis gas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY)

    1987-01-01

    The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  17. Development of a test facility for the experimental evaluation of liquid and gaseous automotive engine fuels 

    E-Print Network [OSTI]

    McCanlies, John Michael

    1983-01-01

    Checkout 126 Uncertainty Analysis 131 APPENDIX F: DETAILED PROCEDURES AND ADDITIONAL BASELINE RESULTS 141 F. I F. 2 Test Procedures Additional Baseline Results 141 144 161 LIST OF TAGLES PAGE Table I: Variables to be Investigated in Original...quid methanol as a fuel for multi-cylinder automotive eng1nes. This investigation was conducted in two phases. During the first phase, the experimental test system was designed and constructed, and baseline engine performance with liquid methanol...

  18. Plant for producing an oxygen-containing additive as an ecologically beneficial component for liquid motor fuels

    DOE Patents [OSTI]

    Siryk, Yury Paul; Balytski, Ivan Peter; Korolyov, Volodymyr George; Klishyn, Olexiy Nick; Lnianiy, Vitaly Nick; Lyakh, Yury Alex; Rogulin, Victor Valery

    2013-04-30

    A plant for producing an oxygen-containing additive for liquid motor fuels comprises an anaerobic fermentation vessel, a gasholder, a system for removal of sulphuretted hydrogen, and a hotwell. The plant further comprises an aerobic fermentation vessel, a device for liquid substance pumping, a device for liquid aeration with an oxygen-containing gas, a removal system of solid mass residue after fermentation, a gas distribution device; a device for heavy gases utilization; a device for ammonia adsorption by water; a liquid-gas mixer; a cavity mixer, a system that serves superficial active and dispersant matters and a cooler; all of these being connected to each other by pipelines. The technical result being the implementation of a process for producing an oxygen containing additive, which after being added to liquid motor fuels, provides an ecologically beneficial component for motor fuels by ensuring the stability of composition fuel properties during long-term storage.

  19. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    SciTech Connect (OSTI)

    Adam, Patrick; Leachman, Jacob

    2014-01-29

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

  20. Sampling and Analysis Plan for canister liquid and gas sampling at 105-KW fuel storage basin

    SciTech Connect (OSTI)

    Harris, R.A.; Green, M.A.; Makenas, B.J.; Trimble, D.J.

    1995-03-01

    This Sampling and Analysis Plan (SAP) details the sampling and analyses to be performed on fuel canisters transferred to the Weasel Pit of the 105-KW fuel storage basin. The radionuclide content of the liquid and gas in the canisters must be evaluated to support the shipment of fuel elements to the 300 Area in support of the fuel characterization studies (Abrefah, et al. 1994, Trimble 1995). The following sections provide background information and a description of the facility under investigation, discuss the existing site conditions, present the constituents of concern, outline the purpose and scope of the investigation, outline the data quality objectives (DQO), provide analytical detection limit, precision, and accuracy requirements, and address other quality assurance (QA) issues.

  1. Techno-economic Analysis for the Thermochemical Conversion of Biomass to Liquid Fuels

    SciTech Connect (OSTI)

    Zhu, Yunhua; Tjokro Rahardjo, Sandra A.; Valkenburt, Corinne; Snowden-Swan, Lesley J.; Jones, Susanne B.; Machinal, Michelle A.

    2011-06-01

    ). This study is part of an ongoing effort within the Department of Energy to meet the renewable energy goals for liquid transportation fuels. The objective of this report is to present a techno-economic evaluation of the performance and cost of various biomass based thermochemical fuel production. This report also documents the economics that were originally developed for the report entitled “Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges” (Stiles et al. 2008). Although the resource assessments were specific to the Pacific Northwest, the production economics presented in this report are not regionally limited. This study uses a consistent technical and economic analysis approach and assumptions to gasification and liquefaction based fuel production technologies. The end fuels studied are methanol, ethanol, DME, SNG, gasoline and diesel.

  2. Analysis of Pebble-Bed VHTR Spectrum Shifting Capabilities for Advanced Fuel Cycles 

    E-Print Network [OSTI]

    Pritchard, Megan

    2006-07-11

    iii ABSTRACT Analysis of the Pebble-Bed VHTR Spectrum Shifting Capabilities For Advanced Fuel Cycles. (April 2006) Megan L. Pritchard Department of Nuclear Engineering Texas A&M University Research Advisor: Dr. Pavel V. Tsvetkov Department... configuration are their capabilities for spectrum shifting, inherent safety features, autonomous operation, incredibly high burn-up, and higher efficiency. If successful in utilizing minor actinides from spent LWR fuel, there will be a reduced...

  3. Interactions between liquid-water and gas-diffusion layers in polymer-electrolyte fuel cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Das, Prodip K.; Santamaria, Anthony D.; Weber, Adam Z.

    2015-06-11

    Over the past few decades, a significant amount of research on polymer-electrolyte fuel cells (PEFCs) has been conducted to improve performance and durability while reducing the cost of fuel cell systems. However, the cost associated with the platinum (Pt) catalyst remains a barrier to their commercialization and PEFC durability standards have yet to be established. An effective path toward reducing PEFC cost is making the catalyst layers (CLs) thinner thus reducing expensive Pt content. The limit of thin CLs is high gas-transport resistance and the performance of these CLs is sensitive to the operating temperature due to their inherent lowmore »water uptake capacity, which results in higher sensitivity to liquid-water flooding and reduced durability. Therefore, reducing PEFC's cost by decreasing Pt content and improving PEFC's performance and durability by managing liquid-water are still challenging and open topics of research. An overlooked aspect nowadays of PEFC water management is the gas-diffusion layer (GDL). While it is known that GDL's properties can impact performance, typically it is not seen as a critical component. In this work, we present data showing the importance of GDLs in terms of water removal and management while also exploring the interactions between liquid-water and GDL surfaces. The critical interface of GDL and gas-flow-channel in the presence of liquid-water was examined through systematic studies of adhesion forces as a function of water-injection rate for various GDLs of varying thickness. GDL properties (breakthrough pressure and adhesion force) were measured experimentally under a host of test conditions. Specifically, the effects of GDL hydrophobic (PTFE) content, thickness, and water-injection rate were examined to identify trends that may be beneficial to the design of liquid-water management strategies and next-generation GDL materials for PEFCs.« less

  4. Analysis of liquid natural gas as a truck fuel: a system dynamics approach

    SciTech Connect (OSTI)

    Bray, M.A.; Sebo, D.E.; Mason, T.L.; Mills, J.I.; Rice, R.E.

    1996-10-01

    The purpose of this analysis is to evaluate the potential for growth in use of liquid natural gas (LNG) fueled trucks. . A system dynamics model was constructed for the analysis and a variety of scenarios were investigated. The analysis considers the economics of LNG fuel in the context of the trucking industry to identify barriers to the increased use of LNG trucks and potential interventions or leverage points which may overcome these barriers. The study showed that today, LNG use in trucks is not yet economically viable. A large change in the savings from fuel cost or capital cost is needed for the technology to take off. Fleet owners have no way now to benefit from the environmental benefits of LNG fuel nor do they benefit from the clean burning nature of the fuel. Changes in the fuel cost differential between diesel and LNG are not a research issue. However, quantifying the improvements in reliability and wear from the use of clean fuel could support increased maintenance and warranty periods. Many people involved in the use of LNG for trucks believe that LNG has the potential to occupy a niche within the larger diesel truck business. But if LNG in trucks can become economic, the spread of fuel stations and technology improvements could lead to LNG trucks becoming the dominant technology. An assumption in our simulation work is that LNG trucks will be purchased when economically attractive. None of the simulation results show LNG becoming economic but then only to the level of a niche market.

  5. Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation

    SciTech Connect (OSTI)

    Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning'Vidvuds; de Walle, Axel van; Wolverton, Christopher

    2011-12-29

    The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

  6. AdvAncing StAtionAry Fuel cellS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AdvAncing StAtionAry Fuel cellS through StAte PolicieS charles Kubert Clean Energy States Alliance May 2010 2 Clean energy states allianCe A B O U T T H I S S E R I E S This...

  7. Vehicle Technologies Office Merit Review 2015: Advancements in Fuel Spray and Combustion Modeling with High Performance Computing Resources

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancements in...

  8. Vehicle Technologies Office Merit Review 2014: Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancement in...

  9. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure- hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  10. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  11. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    SciTech Connect (OSTI)

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    Tri-isotropic (TRISO) fuel particle coating is critical for the future use of nuclear energy produced byadvanced gas reactors (AGRs). The fuel kernels are coated using chemical vapor deposition in a spouted fluidized bed. The challenges encountered in operating TRISO fuel coaters are due to the fact that in modern AGRs, such as High Temperature Gas Reactors (HTGRs), the acceptable level of defective/failed coated particles is essentially zero. This specification requires processes that produce coated spherical particles with even coatings having extremely low defect fractions. Unfortunately, the scale-up and design of the current processes and coaters have been based on empirical approaches and are operated as?black boxesť. Hence, a voluminous amount of experimental development and trial and error work has been conducted. It has been clearly demonstrated that the quality of the coating applied to the fuel kernels is impacted by the hydrodynamics, solids flow field, and flow regime characteristics of the spouted bed coaters, which themselves are influenced by design parameters and operating variables. Further complicating the outlook for future fuel-coating technology and nuclear energy production is the fact that a variety of new concepts will involve fuel kernels of different sizes and with compositions of different densities. Therefore, without a fundamental understanding the underlying phenomena of the spouted bed TRISO coater, a significant amount of effort is required for production of each type of particle with a significant risk of not meeting the specifications. This difficulty will significantly and negatively impact the applications of AGRs for power generation and cause further challenges to them as an alternative source of commercial energy production. Accordingly, the proposed work seeks to overcome such hurdles and advance the scale-up, design, and performance of TRISO fuel particle spouted bed coaters. The overall objectives of the proposed work are to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains nuclear energy as a feasible option to meet the nationĂ?Â?Ă?Â?Ă

  12. Quantification of Liquid Water Saturation in a PEM Fuel Cell Diffusion Medium Using X-ray Microtomography

    E-Print Network [OSTI]

    , at shutdown, may freeze under subzero tem- peratures and makes cold start of a PEM fuel cell difficultQuantification of Liquid Water Saturation in a PEM Fuel Cell Diffusion Medium Using X understanding of the two-phase flow and flooding occurrence in proton exchange membrane PEM fuel cells. We have

  13. Microfluidic Hydrogen Fuel Cell with a Liquid Electrolyte Ranga S. Jayashree, Michael Mitchell, Dilip Natarajan, Larry J. Markoski, and

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Letters Microfluidic Hydrogen Fuel Cell with a Liquid Electrolyte Ranga S. Jayashree, Michael and characterization of a microfluidic hydrogen fuel cell with a flowing sulfuric acid solution instead of a Nafion, and electrolyte flow rate on fuel cell performance to obtain a maximum power density of 191 mW/cm2. This flowing

  14. Task 3.3: Warm Syngas Cleanup and Catalytic Processes for Syngas Conversion to Fuels Subtask 3: Advanced Syngas Conversion to Fuels

    SciTech Connect (OSTI)

    Lebarbier Dagel, Vanessa M.; Li, J.; Taylor, Charles E.; Wang, Yong; Dagle, Robert A.; Deshmane, Chinmay A.; Bao, Xinhe

    2014-03-31

    This collaborative joint research project is in the area of advanced gasification and conversion, within the Chinese Academy of Sciences (CAS)-National Energy Technology Laboratory (NETL)-Pacific Northwest National Laboratory (PNNL) Memorandum of Understanding. The goal for this subtask is the development of advanced syngas conversion technologies. Two areas of investigation were evaluated: Sorption-Enhanced Synthetic Natural Gas Production from Syngas The conversion of synthetic gas (syngas) to synthetic natural gas (SNG) is typically catalyzed by nickel catalysts performed at moderate temperatures (275 to 325°C). The reaction is highly exothermic and substantial heat is liberated, which can lead to process thermal imbalance and destruction of the catalyst. As a result, conversion per pass is typically limited, and substantial syngas recycle is employed. Commercial methanation catalysts and processes have been developed by Haldor Topsoe, and in some reports, they have indicated that there is a need and opportunity for thermally more robust methanation catalysts to allow for higher per-pass conversion in methanation units. SNG process requires the syngas feed with a higher H2/CO ratio than typically produced from gasification processes. Therefore, the water-gas shift reaction (WGS) will be required to tailor the H2/CO ratio. Integration with CO2 separation could potentially eliminate the need for a separate WGS unit, thereby integrating WGS, methanation, and CO2 capture into one single unit operation and, consequently, leading to improved process efficiency. The SNG process also has the benefit of producing a product stream with high CO2 concentrations, which makes CO2 separation more readily achievable. The use of either adsorbents or membranes that selectively separate the CO2 from the H2 and CO would shift the methanation reaction (by driving WGS for hydrogen production) and greatly improve the overall efficiency and economics of the process. The scope of this activity was to develop methods and enabling materials for syngas conversion to SNG with readily CO2 separation. Suitable methanation catalyst and CO2 sorbent materials were developed. Successful proof-of-concept for the combined reaction-sorption process was demonstrated, which culminated in a research publication. With successful demonstration, a decision was made to switch focus to an area of fuels research of more interest to all three research institutions (CAS-NETL-PNNL). Syngas-to-Hydrocarbon Fuels through Higher Alcohol Intermediates There are two types of processes in syngas conversion to fuels that are attracting R&D interest: 1) syngas conversion to mixed alcohols; and 2) syngas conversion to gasoline via the methanol-to-gasoline process developed by Exxon-Mobil in the 1970s. The focus of this task was to develop a one-step conversion technology by effectively incorporating both processes, which is expected to reduce the capital and operational cost associated with the conversion of coal-derived syngas to liquid fuels. It should be noted that this work did not further study the classic Fischer-Tropsch reaction pathway. Rather, we focused on the studies for unique catalyst pathways that involve the direct liquid fuel synthesis enabled by oxygenated intermediates. Recent advances made in the area of higher alcohol synthesis including the novel catalytic composite materials recently developed by CAS using base metal catalysts were used.

  15. Advanced fueling system for steady-state operation of a fusion reactor

    SciTech Connect (OSTI)

    Raman, R. [Univ. of Washington, AERB 352250, Seattle, WA 98195 (United States)

    2008-07-15

    Steady-state Advanced Tokamak scenarios rely on optimized density and pressure profiles to maximize the bootstrap current fraction. Under this mode of operation, the fuelling system must deposit small amounts of fuel where it is needed, and as often as needed, so as to compensate for fuel losses, but not to adversely alter the established density and pressure profiles. A precision fuelling system has the capability for controlling the fusion burn by maintaining the required pressure profile to maximize the bootstrap current fraction. An advanced fuelling system based on Compact Toroid (CT) injection has the potential to meet these needs while simultaneously simplifying the requirements of the tritium handling systems. Simpler engineering systems would reduce reactor construction and maintenance cost through increased reliability. A CT fueling system is described together with the associated tritium handling requirements. (authors)

  16. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect (OSTI)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  17. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2003-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research.

  18. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    SciTech Connect (OSTI)

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  19. Advanced Pellet Cladding Interaction Modeling Using the US DOE CASL Fuel Performance Code: Peregrine

    SciTech Connect (OSTI)

    Jason Hales; Various

    2014-06-01

    The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermomechanical- chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale code that is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.

  20. Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells

    E-Print Network [OSTI]

    Wood, D. L.; Yi, Y. S.; Van Nguyen, Trung

    1998-01-01

    Proper water management is vital to ensuring successful performance of proton exchange membrane fuel cells. The effectiveness of the direct liquid water injection scheme and the interdigitated flow field design towards providing adequate gas...

  1. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2013-01-01

    SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and help determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.

  2. Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report

    SciTech Connect (OSTI)

    Sutton, W.H.

    1997-06-30

    This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

  3. DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS

    SciTech Connect (OSTI)

    Fox, E.

    2012-05-01

    Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure H{sub 2}/O{sub 2} due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO{sub 2} from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80?C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO{sub 2}, and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

  4. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect (OSTI)

    Smit, F.J.; Jha, M.C.; Phillips, D.I.; Yoon, R.H.

    1997-04-25

    The goal of this project is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Its scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design and construction of a 2 t/h process development unit (PDU). Large lots of clean coal are to be produced in the PDU from three project coals. Investigation of the near-term applicability of the two advanced fine coal cleaning processes in an existing coal preparation plant is another goal of the project and is the subject of this report.

  5. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2005-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  6. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2004-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  7. Opportunities for mixed oxide fuel testing in the advanced test reactor to support plutonium disposition

    SciTech Connect (OSTI)

    Terry, W.K.; Ryskamp, J.M.; Sterbentz, J.W.

    1995-08-01

    Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification; (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania; (3) The effects of WGPu isotopic composition; (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight; (5) The effects of americium and gallium in WGPu; (6) Fission gas release from MOX fuel pellets made from WGPu; (7) Fuel/cladding gap closure; (8) The effects of power cycling and off-normal events on fuel integrity; (9) Development of radial distributions of burnup and fission products; (10) Power spiking near the interfaces of MOX and urania fuel assemblies; and (11) Fuel performance code validation. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory possesses many advantages for performing tests to resolve most of the issues identified above. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified. The facilities at Argonne National Laboratory-West can meet all potential needs for pre- and post-irradiation examination that might arise in a MOX fuel qualification program.

  8. Status of the NGNP fuel experiment AGR-2 irradiated in the advanced test reactor

    SciTech Connect (OSTI)

    S. Blaine Grover; David A. Petti

    2014-05-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also undergo on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and sup

  9. Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2012-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and support systems will be briefly discussed, followed by the progress and status of the experiment to date.

  10. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    SciTech Connect (OSTI)

    Dawn M. Scates; John K. Hartwell; John b. Walter

    2010-10-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  11. Thermal Behavior of Advanced UO{sub 2} Fuel at High Burnup

    SciTech Connect (OSTI)

    Muller, E.; Lambert, T.; Silberstein, K.; Therache, B.

    2007-07-01

    To improve the fuel performance, advanced UO{sub 2} products are developed to reduce significantly Pellet-Cladding Interaction and Fission Gas Release to increase high burnup safety margins on Light Water Reactors. To achieve the expected improvements, doping elements are currently used, to produce large grain viscoplastic UO{sub 2} fuel microstructures. In that scope, AREVA NP is conducting the qualification of a new UO{sub 2} fuel pellet obtained by optimum chromium oxide doping. To assess the fuel thermal performance, especially the fuel conductivity degradation with increasing burnup and also the kinetics of fission gas release under transient operating conditions, an instrumented in-pile experiment, called REMORA, has been developed by the CEA. One segment base irradiated for five cycles in a French EDF commercial PWR ({approx} 62 GWd/tM) was consequently re-instrumented with a fuel centerline thermocouple and an advanced pressure sensor. The design of this specific sensor is based on the counter-pressure principle and avoids any drift phenomenon due to nuclear irradiation. This rodlet was then irradiated in the GRIFFONOS rig of the Osiris experimental reactor at CEA Saclay. This device, located in the periphery of the core, is designed to perform test under conditions close to those prevailing in French PWR reactor. Power variations are carried out by translating the device relatively to the core. Self - powered neutron detectors are positioned in the loop in order to monitor the power the whole time of the irradiation. The re-irradiation of the REMORA experiment consisted of a stepped ramp to power in order to point out a potential degradation of the fuel thermal conductivity with increasing burnup. During the first part of the irradiation, most of the measurements were performed at low power in order to take into account the irradiation effects on UO{sub 2} thermal conductivity at high burnup in low range of temperature. The second part of the irradiation consisted in power cycling with one steady-state at several powers (290 W/cm and 360 W/cm) to assess both the thermal conductivity at higher temperature (until 1600 deg. C) and the fission gas release kinetic. This paper summarizes and discusses the main results assessed for this advanced UO{sub 2} fuel: on the one hand, the thermal performances indicate that the fuel thermal conductivity is similar to the one of the standard UO{sub 2} fuel type (the thermal conductivity damage under irradiation can be modelling alike) and, on the other hand, the test results show low fission gas release in comparison with UO{sub 2} standard fuel. (authors)

  12. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Second Results Report and Appendices

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2011-10-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This is the second results report for the AT fuel cell bus since it was placed in service, and it focuses on the newest data analysis and lessons learned since the previous report. The appendices, referenced in the main report, provide the full background for the evaluation. They will be updated as new information is collected but will contain the original background material from the first report.

  13. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Third Results Reports

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2012-05-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. NREL has previously published two reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from July 2011 through January 2012.

  14. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  15. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  16. Application of advanced composites for efficient on-board storage of fuel in natural gas vehicles

    SciTech Connect (OSTI)

    Sirosh, S.N. [EDO Canada Ltd., Calgary, Alberta (Canada)

    1995-11-01

    The following outlines the performance requirements for high pressure containers for on-board storage of fuel in Natural Gas Vehicles. The construction of state-of-the-art carbon-fiber reinforced all-composite cylinders is described and the validation testing and key advantages are discussed. Carbon-fiber reinforced advanced composite technology offers a number of key advantages to the NGV industry, by providing: improved range, including up to 30% more fuel storage for a given storage envelope and up to 300% more fuel storage for a given weight allowance; life-cycle cost advantages, including savings in non-recurring costs (installation), savings in recurring costs (fuel and maintenance), and increased revenues from more passengers/payload; and uncompromising safety, namely, superior resistance to degradation from fatigue or stress rupture and inherent resistance to corrosion; proven toughness/impact resistance.

  17. Advanced coal-fueled gas turbine systems, Volume 1: Annual technical progress report

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    This is the first annual technical progress report for The Advanced Coal-Fueled Gas Turbine Systems Program. Two semi-annual technical progress reports were previously issued. This program was initially by the Department of Energy as an R D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular three-stage slagging combustor concept. Fuel-rich conditions inhibit NO/sub x/ formation from fuel nitrogen in the first stage; coal ash and sulfur is subsequently removed from the combustion gases by an impact separator in the second stage. Final oxidation of the fuel-rich gases and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage. 27 figs., 15 tabs.

  18. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    DOE Patents [OSTI]

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  19. The Path to Sustainable Nuclear Energy. Basic and Applied Research Opportunities for Advanced Fuel Cycles

    SciTech Connect (OSTI)

    Finck, P.; Edelstein, N.; Allen, T.; Burns, C.; Chadwick, M.; Corradini, M.; Dixon, D.; Goff, M.; Laidler, J.; McCarthy, K.; Moyer, B.; Nash, K.; Navrotsky, A.; Oblozinsky, P.; Pasamehmetoglu, K.; Peterson, P.; Sackett, J.; Sickafus, K. E.; Tulenko, J.; Weber, W.; Morss, L.; Henry, G.

    2005-09-01

    The objective of this report is to identify new basic science that will be the foundation for advances in nuclear fuel-cycle technology in the near term, and for changing the nature of fuel cycles and of the nuclear energy industry in the long term. The goals are to enhance the development of nuclear energy, to maximize energy production in nuclear reactor parks, and to minimize radioactive wastes, other environmental impacts, and proliferation risks. The limitations of the once-through fuel cycle can be overcome by adopting a closed fuel cycle, in which the irradiated fuel is reprocessed and its components are separated into streams that are recycled into a reactor or disposed of in appropriate waste forms. The recycled fuel is irradiated in a reactor, where certain constituents are partially transmuted into heavier isotopes via neutron capture or into lighter isotopes via fission. Fast reactors are required to complete the transmutation of long-lived isotopes. Closed fuel cycles are encompassed by the Department of Energy?s Advanced Fuel Cycle Initiative (AFCI), to which basic scientific research can contribute. Two nuclear reactor system architectures can meet the AFCI objectives: a ?single-tier? system or a ?dual-tier? system. Both begin with light water reactors and incorporate fast reactors. The ?dual-tier? systems transmute some plutonium and neptunium in light water reactors and all remaining transuranic elements (TRUs) in a closed-cycle fast reactor. Basic science initiatives are needed in two broad areas: ? Near-term impacts that can enhance the development of either ?single-tier? or ?dual-tier? AFCI systems, primarily within the next 20 years, through basic research. Examples: Dissolution of spent fuel, separations of elements for TRU recycling and transmutation Design, synthesis, and testing of inert matrix nuclear fuels and non-oxide fuels Invention and development of accurate on-line monitoring systems for chemical and nuclear species in the nuclear fuel cycle Development of advanced tools for designing reactors with reduced margins and lower costs ? Long-term nuclear reactor development requires basic science breakthroughs: Understanding of materials behavior under extreme environmental conditions Creation of new, efficient, environmentally benign chemical separations methods Modeling and simulation to improve nuclear reaction cross-section data, design new materials and separation system, and propagate uncertainties within the fuel cycle Improvement of proliferation resistance by strengthening safeguards technologies and decreasing the attractiveness of nuclear materials A series of translational tools is proposed to advance the AFCI objectives and to bring the basic science concepts and processes promptly into the technological sphere. These tools have the potential to revolutionize the approach to nuclear engineering R&D by replacing lengthy experimental campaigns with a rigorous approach based on modeling, key fundamental experiments, and advanced simulations.

  20. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2006-03-30

    Professors and graduate students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and hydrocarbon gases and liquids produced from coal. An Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center, and Tier Associates provides guidance on the practicality of the research. The current report summarizes the results obtained in this program during the period October 1, 2002 through March 31, 2006. The results are presented in detailed reports on 16 research projects headed by professors at each of the five CFFS Universities and an Executive Summary. Some of the highlights from these results are: (1) Small ({approx}1%) additions of acetylene or other alkynes to the Fischer-Tropsch (F-T) reaction increases its yield, causes chain initiation, and promotes oxygenate formation. (2) The addition of Mo to Fe-Cu-K/AC F-T catalysts improves catalyst lifetime and activity. (3) The use of gas phase deposition to place highly dispersed metal catalysts on silica or ceria aerogels offers promise for both the F-T and the water-gas shift WGS reactions. (4) Improved activity and selectivity are exhibited by Co F-T catalysts in supercritical hexane. (5) Binary Fe-M (M=Ni, Mo, Pd) catalysts exhibit excellent activity for dehydrogenation of gaseous alkanes, yielding pure hydrogen and carbon nanotubes in one reaction. A fluidized-bed/fixed-bed methane reactor was developed for continuous hydrogen and nanotube production. (6) A process for co-production of hydrogen and methyl formate from methanol has been developed. (7) Pt nanoparticles on stacked-cone carbon nanotubes easily strip hydrogen from liquids such as cyclohexane, methylcyclohexane, tetralin and decalin, leaving rechargeable aromatic phases. (8) Hydrogen volume percentages produced during reforming of methanol in supercritical water in the output stream are {approx}98%, while CO and CO2 percentages are <2 %.

  1. Use of freeze-casting in advanced burner reactor fuel design

    SciTech Connect (OSTI)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53711 (United States); Burger, J.; Hunger, P. M.; Wegst, U. G. K. [Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755 (United States)

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models. Preliminary results show that criticality is achievable with freeze-cast fuel pins despite the significant amount of inert fuel matrix. Freeze casting is a promising method to achieve very precise fuel placement within fuel pins. (authors)

  2. Analyzing the proliferation resistance of advanced nuclear fuel cycles : in search of an assessment methodology for use in fuel cycle simulations

    E-Print Network [OSTI]

    Pierpoint, Lara Marie

    2008-01-01

    A methodology to assess proliferation resistance of advanced nuclear energy systems is investigated. The framework, based on Multi-Attribute Utility Theory (MAUT), is envisioned for use within early-stage fuel cycle ...

  3. Journal of Power Sources 164 (2007) 189195 Modeling water transport in liquid feed direct methanol fuel cells

    E-Print Network [OSTI]

    2007-01-01

    Journal of Power Sources 164 (2007) 189­195 Modeling water transport in liquid feed direct methanol management in direct methanol fuel cells (DMFCs) is very critical and complicated because of many interacting rights reserved. Keywords: Direct methanol fuel cell; Water transport; Mathematical modeling; Three

  4. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2003-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. These feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. Some highlights of the results obtained during the first year of the current research contract are summarized as: (1) Terminal alkynes are an effective chain initiator for Fischer-Tropsch (FT) reactions, producing normal paraffins with C numbers {ge} to that of the added alkyne. (2) Significant improvement in the product distribution towards heavier hydrocarbons (C{sub 5} to C{sub 19}) was achieved in supercritical fluid (SCF) FT reactions compared to that of gas-phase reactions. (3) Xerogel and aerogel silica supported cobalt catalysts were successfully employed for FT synthesis. Selectivity for diesel range products increased with increasing Co content. (4) Silicoaluminophosphate (SAPO) molecular sieve catalysts have been developed for methanol to olefin conversion, producing value-added products such as ethylene and propylene. (5) Hybrid Pt-promoted tungstated and sulfated zirconia catalysts are very effective in cracking n-C{sub 36} to jet and diesel fuel; these catalysts will be tested for cracking of FT wax. (6) Methane, ethane, and propane are readily decomposed to pure hydrogen and carbon nanotubes using binary Fe-based catalysts containing Mo, Ni, or Pd in a single step non-oxidative reaction. (7) Partial dehydrogenation of liquid hydrocarbons (cyclohexane and methyl cyclohexane) has been performed using catalysts consisting of Pt and other metals on stacked-cone carbon nanotubes. (8) An understanding of the catalytic reaction mechanisms of the catalysts developed in the CFFS C1 program is being achieved by structural characterization using multiple techniques, including XAFS and Moessbauer spectroscopy, XRD, TEM, NMR, ESR, and magnetometry.

  5. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect (OSTI)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  6. 10 CFR 830 Major Modification Determination for Advanced Test Reactor LEU Fuel Conversion

    SciTech Connect (OSTI)

    Boyd D. Christensen; Michael A. Lehto; Noel R. Duckwitz

    2012-05-01

    The Advanced Test Reactor (ATR), located in the ATR Complex of the Idaho National Laboratory (INL), was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. The ATR is fueled with high-enriched uranium (HEU) matrix (UAlx) in an aluminum sandwich plate cladding. The National Nuclear Security Administration Global Threat Reduction Initiative (GTRI) strategic mission includes efforts to reduce and protect vulnerable nuclear and radiological material at civilian sites around the world. Converting research reactors from using HEU to low-enriched uranium (LEU) was originally started in 1978 as the Reduced Enrichment for Research and Test Reactors (RERTR) Program under the U.S. Department of Energy (DOE) Office of Science. Within this strategic mission, GTRI has three goals that provide a comprehensive approach to achieving this mission: The first goal, the driver for the modification that is the subject of this determination, is to convert research reactors from using HEU to LEU. Thus the mission of the ATR LEU Fuel Conversion Project is to convert the ATR and Advanced Test Reactor Critical facility (ATRC) (two of the six U.S. High-Performance Research Reactors [HPRR]) to LEU fuel by 2017. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification.

  7. Microalgae as a source of liquid fuels. Final technical report. [200 references

    SciTech Connect (OSTI)

    Benemann, J.R.; Goebel, R.P.; Weissman, J.C.; Augenstein, D.C.

    1982-05-15

    The economics of liquid-fuels production from microalgae was evaluated. A detailed review of published economic analyses of microalgae biomass production revealed wide variations in the published costs, which ranged from several dollars per pound for existing commercial health-food production in the Far East, to less than .05/lb costs projected for microalgae biomass for fuel conversion. As little design information or specific cost data has been published, a credible cost estimate required the conceptual engineering design and cost estimating of microalgae to liquid-fuels processes. Two systems were analyzed, shallow (2 to 3'') covered ponds and deeper (1 ft) open ponds. Only the latter was selected for an in-depth analysis due to the many technical shortcomings of the former approach. Based on the cost analysis of a very simple and low cost process, the most optimistic costs extrapolated were about $60/barrel. These were based on many optimistic assumptions. Additional, more detailed, engieering and cost analyses would be useful. However, the major emphasis in future work in this area should be on demonstrating the basic premises on which this design was based: high productivity and oil content of microalgae strains that can dominate in open ponds and which can be harvested by a simple bioflocculation process. Several specific basic research needs were identified: (1) Fundamentals of species selection and control in open pond systems. Effects of environmental variables on species dominance is of particular interest. (2) Mechanisms of algae bioflocculation. (3) Photosynthetic pathways and efficiency under conditions of high lipid production. (4) Effects of non-steady state operating conditions, particularly pH (CO/sub 2/ availability), on productivity. 18 figures, 47 tables.

  8. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    SciTech Connect (OSTI)

    E. R. Johnson; R. E. Best

    2009-12-28

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the “UREX+3c fuel cycle” and the “Alternative Fuel Cycle” (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount of the resulting MOX. The study considered two sub-cases within each of the two fuel cycles in which the uranium and plutonium from the first generation of MOX spent fuel (i) would not be recycled to produce a second generation of MOX for use in LWRs or (ii) would be recycled to produce a second generation of MOX fuel for use in LWRs. The study also investigated the effects of recycling MOX spent fuel multiple times in LWRs. The study assumed that both fuel cycles would store and then reprocess spent MOX fuel that is not recycled to produce a next generation of LWR MOX fuel and would use the recovered products to produce FR fuel. The study further assumed that FRs would begin to be brought on-line in 2043, eleven years after recycle begins in LWRs, when products from 5-year cooled spent MOX fuel would be available. Fuel for the FRs would be made using the uranium, plutonium, and minor actinides recovered from MOX. For the cases where LWR fuel was assumed to be recycled one time, the 1st generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. For the cases where the LWR fuel was assumed to be recycled two times, the 2nd generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. The number of FRs in operation was assumed to increase in successive years until the rate that actinides were recovered from permanently discharged spent MOX fuel equaled the rate the actinides were consumed by the operating fleet of FRs. To compare the two fuel cycles, the study analyzed recycle of nuclear fuel in LWRs and FRs and determined the radiological characteristics of irradiated nuclear fuel, nuclear waste products, and recycle nuclear fuels. It also developed a model to simulate the flows of nuclear materials that could occur in the two advanced nuclear fuel cycles over 81 years beginning in 2020 and ending in 2100. Simulations projected the flows of uranium, plutonium, and minor actinides as these nuclear fuel materials were produced and consumed in a fleet of 100 1,000 MWe LWRs and in FRs. The model als

  9. Advances in synthetic fuels technology: progress in USA/DOE programs

    SciTech Connect (OSTI)

    Fumich, G.; Perry, H.

    1980-01-01

    This discussion will be confined to those research and development programs of the US Department of Energy (DOE) for increasing the use of coal by conversion to clean liquid and gaseous fuels. It will not include the DOE research and development on increasing the direct use of coal, underground gasification or oil shale - all of which could also provide clean fuels from domestic resources and thus permit oil imports to be reduced. The Annexes appended describe the liquefaction and surface gasification programs supported in whole or in part by DOE funding. For each of the processes the technology is described along with its unique features, present status, major technical problems that must be solved to more to the next phase of development, and the anticipated project schedule.

  10. Reactor Physics Scoping and Characterization Study on Implementation of TRIGA Fuel in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Jennifer Lyons; Wade R. Marcum; Mark D. DeHart; Sean R. Morrell

    2014-01-01

    The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by the Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.

  11. Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

  12. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2003-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the first six months of the subject contract (DE-FC26-02NT-4159), from October 1, 2002 through March 31, 2003.

  13. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    SciTech Connect (OSTI)

    J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

    2012-10-02

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.

  14. Status of the Combined Third and Fourth NGNP Fuel Irradiations In the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover; David A. Petti; Michael E. Davenport

    2013-07-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in September 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. Since the purpose of this combined experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is significantly different from the first two experiments, though the control and monitoring systems are extremely similar. The design of the experiment will be discussed followed by its progress and status to date.

  15. Hydrocracking of polymers to liquid fuels over strong solid acid catalysts

    SciTech Connect (OSTI)

    Venkatesh, K.R.; Hu, J.; Tierney, J.W.; Wender, I. [Univ. of Pittsburgh, PA (United States)

    1995-12-31

    Post-consumer plastic wastes make a significant portion of the total solid wastes generated annually in the U.S. and are not significantly recycled. We have found that certain polymeric wastes can be hydrocracked to provide high quality, environmentally acceptable transportation fuels. In this paper, we disclose results obtained from the depolymerization-liquefaction of polyethylene, polypropylene and polystyrene, thermoplastics which make up the bulk of plastic wastes. The polymers can be converted over solid acid catalysts to C{sub 4}-C{sub 20} liquids with yields of gasoline (C{sub 4}-C{sub 12}) range products exceeding 75 wt%. The product distribution could be varied by manipulating reaction parameters (reaction conditions, feed to catalyst ratios, addition of hydride donor/transfer agents) and catalyst composition. The effect of catalyst modifications on the activity and selectivity in hydrocracking of polymers will be discussed. Changes in physicochemical characteristics of the catalysts after reaction will also be discussed.

  16. Injectable Spontaneous Generation of Tremendous Self-Fueled Liquid Metal Droplet Motors in a Moment

    E-Print Network [OSTI]

    Yao, You-You; Liu, Jing

    2015-01-01

    Micro motors that could run in liquid environment is very important for a variety of practices such as serving as pipeline robot, soft machine, drug delivery, or microfluidics system etc. However, fabrication of such tiny motors is generally rather time and cost consumptive and has been a tough issue due to involve too many complicated procedures and tools. Here, we show a straightforward injectable way for spontaneously generating autonomously running soft motors in large quantity. A basic fabrication strategy thus enabled is established and illustrated. It was found that, injecting the GaIn alloy pre-fueled with aluminum into electrolyte would automatically split in seconds into tremendous droplet motors swiftly running here and there. The driving force originated from the galvanic cell reaction among alloy, aluminum and surrounding electrolyte which offers interior electricity and hydrogen gas as motion power. This finding opens the possibility to develop injectable tiny-robots, droplet machines or microfl...

  17. Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect (OSTI)

    David Petti

    2014-06-01

    Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germany produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980’s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250°C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO2 particle fuel up to about 10% FIMA and 1150°C, UO2 fuel is known to have limitations because of CO formation and kernel migration at the high burnups, power densities, temperatures, and temperature gradients that may be encountered in the prismatic modular HTGRs. With uranium oxycarbide (UCO) fuel, the kernel composition is engineered to prevent CO formation and kernel migration, which are key threats to fuel integrity at higher burnups, temperatures, and temperature gradients. Furthermore, the recent poor fuel performance of UO2 TRISO fuel pebbles measured in Chinese irradiation testing in Russia and in German pebbles irradiated at 1250°C, and historic data on poorer fuel performance in safety testing of German pebbles that experienced burnups in excess of 10% FIMA [1] have each raised concern about the use of UO2 TRISO above 10% FIMA and 1150°C and the degree of margin available in the fuel system. This continues to be an active area of study internationally.

  18. Synthesis of dimethyl ether and alternative fuels in the liquid phase from coal-derived synthesis gas. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    Through the mid-1980s, Air Products has brought the liquid phase approach to a number of other synthesis gas reactions where effective heat management is a key issue. In 1989, in response to DOE`s PRDA No. DE-RA22-88PC88805, Air Products proposed a research and development program entitled ``Synthesis of Dimethyl Ether and Alternative Fuels in the Liquid Phase from Coal Derived Syngas.`` The proposal aimed at extending the LPMEOH experience to convert coal-derived synthesis gas to other useful fuels and chemicals. The work proposed included development of a novel one-step synthesis of dimethyl ether (DME) from syngas, and exploration of other liquid phase synthesis of alternative fuel directly from syngas. The one-step DME process, conceived in 1986 at Air Products as a means of increasing syngas conversion to liquid products, envisioned the concept of converting product methanol in situ to DME in a single reactor. The slurry reactor based liquid phase technology is ideally suited for such an application, since the second reaction (methanol to DME) can be accomplished by adding a second catalyst with dehydration activity to the methanol producing reactor. An area of exploration for other alternative fuels directly from syngas was single-step slurry phase synthesis of hydrocarbons via methanol and DME as intermediates. Other possibilities included the direct synthesis of mixed alcohols and mixed ethers in a slurry reactor.

  19. Development and use of an advanced coal-fueled diesel cycle simulation with group effects 

    E-Print Network [OSTI]

    Branyon, David Pratt

    1989-01-01

    for the degree of MASTER OF SCIENCE August 1989 Major Subject: Mechanical Engineering DEVELOPMENT AND USE OF AN ADVANCED COAL-FUELED DIESEL CYCLE SIMULATION WITH GROUP EFFECTS A Thesis by DAVID PRATT BRANYON Approved ss to style and content by: Jerald A... lower than the price of diesel on an energy basis, coal in its rsw form is not suitable for use in a reciprocating engine. The price of coal is enough lower than the price of diesel, however, to provide for the refinement oi' the coal into a form...

  20. DEVELOPMENT OF METHODOLOGY AND FIELD DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    SciTech Connect (OSTI)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-06-04

    This project developed methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of the fuel storage medium and determine the oxide thickness on the spent fuel basin materials. The overall objective of this project was to determine the amount of time fuel has spent in a storage basin to determine if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations. This project developed and validated forensic tools that can be used to predict the age and condition of spent nuclear fuels stored in liquid basins based on key physical, chemical and microbiological basin characteristics. Key parameters were identified based on a literature review, the parameters were used to design test cells for corrosion analyses, tools were purchased to analyze the key parameters, and these were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The key parameters identified in the literature review included chloride concentration, conductivity, and total organic carbon level. Focus was also placed on aluminum based cladding because of their application to weapons production. The literature review was helpful in identifying important parameters, but relationships between these parameters and corrosion rates were not available. Bench scale test systems were designed, operated, harvested, and analyzed to determine corrosion relationships between water parameters and water conditions, chemistry and microbiological conditions. The data from the bench scale system indicated that corrosion rates were dependent on total organic carbon levels and chloride concentrations. The highest corrosion rates were observed in test cells amended with sediment, a large microbial inoculum and an organic carbon source. A complete characterization test kit was field tested to characterize the SRS L-Area spent fuel basin. The sampling kit consisted of a TOC analyzer, a YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization was done over a two day period in June 2011, and confirmed that the L Area basin is a well operated facility with low corrosion potential.

  1. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect (OSTI)

    Digby D. Macdonald; Brian M. Marx; Sejin Ahn; Julio de Ruiz; Balaji Soundararaja; Morgan Smith; and Wendy Coulson

    2008-01-15

    Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO{sub 3}, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair. The different tasks that are being carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA) which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The Point Defect Model (PDM) is directly applied as the theoretical assessment method for describing the passive film formed on iron/steels. The PDM is used to describe general corrosion in the passive region of iron. In addition, previous work suggests that pit formation is due to the coalescence of cation vacancies at the metal/film interface which would make it possible to use the PDM parameters to predict the onset of pitting. This previous work suggests that once the critical vacancy density is reached, the film ruptures to form a pit. Based upon the kinetic parameters derived for the general corrosion case, two parameters relating to the cation vacancy formation and annihilation can be calculated. These two parameters can then be applied to predict the transition from general to pitting corrosion for iron/mild steels. If cation vacancy coalescence is shown to lead to pitting, it can have a profound effect on the direction of future studies involving the onset of pitting corrosion. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture events in stress corrosion cracking, and the determination of kinetic parameters for the generation and annihilation of point defects in the passive film on iron. The existence of coupling between the internal crack environment and the external cathodic environment, as predicted by the coupled environment fracture model (CEFM), has also been indisputably established for the AISI 4340/NaOH system. It is evident from the studies that analysis of coupling current noise is a very sensitive tool f

  2. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect (OSTI)

    Digby Macdonald; Brian Marx; Balaji Soundararajan; Morgan Smith

    2005-07-28

    The different tasks that have been carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA), which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals, and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture events in stress corrosion cracking, and the determination of kinetic parameters for the generation and annihilation of point defects in the passive film on iron. The existence of coupling between the internal crack environment and the external cathodic environment, as predicted by the coupled environment fracture model (CEFM), has also been indisputably established for the AISI 4340/NaOH system. It is evident from the studies that analysis of coupling current noise is a very sensitive tool for studying the crack tip processes in relation to the chemical, mechanical, electrochemical, and microstructural properties of the system. Experiments are currently being carried out to explore these crack tip processes by simultaneous measurement of the acoustic activity at the crack tip in an effort to validate the coupling current data. These latter data are now being used to deterministically predict the accumulation of general and localized corrosion damage on carbon in prototypical DOE liquid waste storage tanks. Computer simulation of the cathodic and anodic activity on the steel surfaces is also being carried out in an effort to simulate the actual corrosion process. Wavelet analysis of the coupling current data promises to be a useful tool to differentiate between the different corrosion mechanisms. Hence, wavelet analysis of the coupling current data from the DOE waste containers is also being carried out to extract data pertaining to general, pitting and stress corrosion processes, from the overall data which is bound to contain noise fluctuations due to any or all of the above mentioned processes.

  3. Analysis of advanced european nuclear fuel cycle scenarios including transmutation and economical estimates

    SciTech Connect (OSTI)

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F. [CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain)

    2013-07-01

    In this work the transition from the existing Light Water Reactors (LWR) to the advanced reactors is analyzed, including Generation III+ reactors in a European framework. Four European fuel cycle scenarios involving transmutation options have been addressed. The first scenario (i.e., reference) is the current fleet using LWR technology and open fuel cycle. The second scenario assumes a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel. The third scenario is a modification of the second one introducing Minor Actinide (MA) transmutation in a fraction of the FR fleet. Finally, in the fourth scenario, the LWR fleet is replaced using FR with MOX fuel as well as Accelerator Driven Systems (ADS) for MA transmutation. All scenarios consider an intermediate period of GEN-III+ LWR deployment and they extend for a period of 200 years looking for equilibrium mass flows. The simulations were made using the TR-EVOL code, a tool for fuel cycle studies developed by CIEMAT. The results reveal that all scenarios are feasible according to nuclear resources demand (U and Pu). Concerning to no transmutation cases, the second scenario reduces considerably the Pu inventory in repositories compared to the reference scenario, although the MA inventory increases. The transmutation scenarios show that elimination of the LWR MA legacy requires on one hand a maximum of 33% fraction (i.e., a peak value of 26 FR units) of the FR fleet dedicated to transmutation (MA in MOX fuel, homogeneous transmutation). On the other hand a maximum number of ADS plants accounting for 5% of electricity generation are predicted in the fourth scenario (i.e., 35 ADS units). Regarding the economic analysis, the estimations show an increase of LCOE (Levelized cost of electricity) - averaged over the whole period - with respect to the reference scenario of 21% and 29% for FR and FR with transmutation scenarios respectively, and 34% for the fourth scenario. (authors)

  4. Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development

    SciTech Connect (OSTI)

    Stephenson, M.

    1994-03-01

    Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

  5. Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications, method of making and cell employing same

    DOE Patents [OSTI]

    Angell, C. Austen (Mesa, AZ); Xu, Wu (Broadview Heights, OH); Belieres, Jean-Philippe (Chandler, AZ); Yoshizawa, Masahiro (Tokyo, JP)

    2011-01-11

    Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H.sub.2(g) electrolyte/O.sub.2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200.degree. C. are achieved. Both neutral proton transfer salts and the acid salts with HSO.sup.-.sub.4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pK.sub.a value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.

  6. Parameterization of GDL Liquid Water Front Propagation and Channel Accumulation for Anode Purge Scheduling in Fuel Cells

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    that was observed via neutron imaging of an operational 53 cm2 PEMFC. Simulation results for the GDL and Membrane]. In the anode channel of a Proton Exchange Membrane Fuel Cell (PEMFC) operating with a Dead-Ended Anode (DEA with coupled PDEs describing liquid and gas transport through the Gas Diffusion Layer (GDL) of a PEMFC, which

  7. NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average

    E-Print Network [OSTI]

    Hall, Julian

    NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4.5 for heating oil. To produce these products, Margaret can purchase two types of crude oil: crude 1 (at Ł12 per

  8. Advanced thermally stable jet fuels. Technical progress report, July 1993--September 1993

    SciTech Connect (OSTI)

    Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Walsh, P.M.; Coleman, M.M.

    1993-12-01

    The Penn State program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. An exploratory study was conducted to investigate the pyrolysis of n-butylbenzene in a flow reactor at atmospheric pressure. A number of similarities to trends previously observed in high-pressure static reactions were identified. The product distribution from pyrolysis of n-tetradecane at 400{degrees}C and 425{degrees}C was investigated. The critical temperatures of a suite of petroleum- and coal-derived jet fuels were measured by a rapidly heating sealed tube method. Work has continued on refining the measurements of deposit growth for stressing mixtures of coal-derived JP-8C with tetradecane. Current work has given emphasis to the initial stages of fuel decomposition and the onset of deposition. Pretreatment of JPTS fuel with PX-21 activated carbon (50 mg of PX-21 in 15 mL JPTS) delayed degradation and prevented carbon deposition during thermal stressing at 425{degrees}C for 5 h in nitrogen and air atmospheres. Clear indications of initial and subsequent deposit formation on different metal surfaces have been identified for thermal stressing of dodecane. Seven additives were tested for their ability to retard decomposition of dodecane at 450{degrees}C under nitrogen. Nuclear magnetic resonance data for Dammar resin indicates that structures proposed in the literature are not entirely correct.

  9. Testing of Gas Reactor Fuel and Materials in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover

    2006-10-01

    The recent growth in interest for high temperature gas reactors has resulted in an increased need for materials and fuel testing for this type of reactor. The Advanced Test Reactor (ATR), located at the US Department of Energy’s Idaho National Laboratory, has long been involved in testing gas reactor fuel and materials, and has facilities and capabilities to provide the right environment for gas reactor irradiation experiments. These capabilities include both passive sealed capsule experiments, and instrumented/actively controlled experiments. The instrumented/actively controlled experiments typically contain thermocouples and control the irradiation temperature, but on-line measurements and controls for pressure and gas environment have also been performed in past irradiations. The ATR has an existing automated gas temperature control system that can maintain temperature in an irradiation experiment within very tight bounds, and has developed an on-line fission product monitoring system that is especially well suited for testing gas reactor particle fuel. The ATR’s control system, which consists primarily of vertical cylinders used to rotate neutron poisons/reflectors toward or away from the reactor core, provides a constant vertical flux profile over the duration of each operating cycle. This constant chopped cosine shaped axial flux profile, with a relatively flat peak at the vertical centre of the core, is more desirable for experiments than a constantly moving axial flux peak resulting from a control system of axially positioned control components which are vertically withdrawn from the core.

  10. Liquid phase fluid dynamic (methanol) run in the LaPorte alternative fuels development unit

    SciTech Connect (OSTI)

    Bharat L. Bhatt

    1997-05-01

    A fluid dynamic study was successfully completed in a bubble column at DOE's Alternative Fuels Development Unit (AFDU) in LaPorte, Texas. Significant fluid dynamic information was gathered at pilot scale during three weeks of Liquid Phase Methanol (LPMEOJP) operations in June 1995. In addition to the usual nuclear density and temperature measurements, unique differential pressure data were collected using Sandia's high-speed data acquisition system to gain insight on flow regime characteristics and bubble size distribution. Statistical analysis of the fluctuations in the pressure data suggests that the column was being operated in the churn turbulent regime at most of the velocities considered. Dynamic gas disengagement experiments showed a different behavior than seen in low-pressure, cold-flow work. Operation with a superficial gas velocity of 1.2 ft/sec was achieved during this run, with stable fluid dynamics and catalyst performance. Improvements included for catalyst activation in the design of the Clean Coal III LPMEOH{trademark} plant at Kingsport, Tennessee, were also confirmed. In addition, an alternate catalyst was demonstrated for LPMEOH{trademark}.

  11. Enterprise SRS: leveraging ongoing operations to advance nuclear fuel cycles research and development programs

    SciTech Connect (OSTI)

    Murray, A.M.; Marra, J.E.; Wilmarth, W.R.; McGuire, P.W.; Wheeler, V.B.

    2013-07-01

    The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.

  12. Weapons-Grade MOX Fuel Burnup Characteristics in Advanced Test Reactor Irradiation

    SciTech Connect (OSTI)

    G. S. Chang

    2006-07-01

    Mixed oxide (MOX) test capsules prepared with weapons-derived plutonium have been irradiated to a burnup of 50 GWd/t. The MOX fuel was fabricated at Los Alamos National Laboratory (LANL) by a master-mix process and has been irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Previous withdrawals of the same fuel have occurred at 9, 21, 30, 40, and 50 GWd/t. Oak Ridge National Laboratory (ORNL) manages this test series for the Department of Energy’s Fissile Materials Disposition Program (FMDP). A UNIX BASH (Bourne Again SHell) script CMO has been written and validated at the Idaho National Laboratory (INL) to couple the Monte Carlo transport code MCNP with the depletion and buildup code ORIGEN-2 (CMO). The new Monte Carlo burnup analysis methodology in this paper consists of MCNP coupling through CMO with ORIGEN-2(MCWO). MCWO is a fully automated tool that links the Monte Carlo transport code MCNP with the radioactive decay and burnup code ORIGEN-2. The fuel burnup analyses presented in this study were performed using MCWO. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations for the ATR small I-irradiation test position. The purpose of this report is to validate both the Weapons-Grade Mixed Oxide (WG-MOX) test assembly model and the new fuel burnup analysis methodology by comparing the computed results against the neutron monitor measurements and the irradiated WG-MOX post irradiation examination (PIE) data.

  13. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1998-08-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through July 1999.

  14. Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels

    SciTech Connect (OSTI)

    NONE

    1998-07-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through June 1998.

  15. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1999-12-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through November 1999.

  16. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1999-03-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through February 1999.

  17. Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels

    SciTech Connect (OSTI)

    NONE

    1998-05-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through April 1998.

  18. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1999-10-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through September 1999.

  19. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    2000-02-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through January 2000.

  20. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    2000-01-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through December 1999.

  1. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    NONE

    1999-11-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through October 1999.

  2. Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell

    E-Print Network [OSTI]

    Natarajan, Dilip; Van Nguyen, Trung

    2003-03-27

    to the slower oxygen reduction kinetics and mass transport limitations imposed by the liquid water generated by the electrochemical reaction and electro-osmotic drag. The liquid water can hinder transport of the reactant species by blocking the pores... generated by the electrochemical reaction is removed from the catalyst layer by two mechanisms namely, evaporation and diffusion of water vapor and liquid water transport. The water vapor transport process is similar to the oxygen species, i.e. diffusion...

  3. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993

    SciTech Connect (OSTI)

    Smith, V.E.

    1994-09-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  4. THERMODYNAMIC AND KINETIC MODELING OF ADVANCED NUCLEAR FUELS - FINAL LDRD-ER REPORT

    SciTech Connect (OSTI)

    Turchi, P

    2011-11-28

    This project enhanced our theoretical capabilities geared towards establishing the basic science of a high-throughput protocol for the development of advanced nuclear fuel that should couple modern computational materials modeling and simulation tools, fabrication and characterization capabilities, and targeted high throughput performance testing experiments. The successful conclusion of this ER project allowed us to upgrade state-of-the-art modeling codes, and apply these modeling tools to ab initio energetics and thermodynamic assessments of phase diagrams of various mixtures of actinide alloys, propose a tool for optimizing composition of complex alloys for specific properties, predict diffusion behavior in diffusion couples made of actinide and transition metals, include one new equation in the LLNL phase-field AMPE code, and predict microstructure evolution during alloy coring. In FY11, despite limited funding, the team also initiated an experimental activity, with collaboration from Texas A&M University by preparing samples of nuclear fuels in bulk forms and for diffusion couple studies and metallic matrices, and performing preliminary characterization.

  5. Advanced coal-fueled gas turbine systems. Annual report, July 1991--June 1992

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    Westinghouse`s Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO{sub x} emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO{sub x} levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  6. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-02-21

    The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.

  7. TransAtlas: A U.S. Map of Fuels and Vehicles Data from the Alternative Fuels and Advanced Vehicles (AFDC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Data stored in the Alternative Fuels and Advanced Vehicles Data Center (AFDC) can provide insight to policymakers, entrepreneurs, fuel users, and other parties interested in reducing petroleum consumption. The National Renewable Energy Laboratory analyzes transportation-related data and identifies trends related to alternative fuels and vehicles. These analyses are posted in the AFDC as technical reports and Excel spreadsheets that can be manipulated by outside users. To provide the most robust collection of information possible, this section also includes links to data analyses from outside the AFDC. These sources are noted in each file. There are also interactive map applications and some PDF documents.

  8. Modifying woody plants for efficient conversion to liquid and gaseous fuels

    SciTech Connect (OSTI)

    Dinus, R.J.; Dimmel, D.R.; Feirer, R.P.; Johnson, M.A.; Malcolm, E.W. )

    1990-07-01

    The Short Rotation Woody Crop Program (SRWCP), Department of Energy, is developing woody plant species as sources of renewable energy. Much progress has been made in identifying useful species, and testing site adaptability, stand densities, coppicing abilities, rotation lengths, and harvesting systems. Conventional plant breeding and intensive cultural practices have been used to increase above-ground biomass yields. Given these and foreseeable accomplishments, program leaders are now shifting attention to prospects for altering biomass physical and chemical characteristics, and to ways for improving the efficiency with which biomass can be converted to gaseous and liquid fuels. This report provides a review and synthesis of literature concerning the quantity and quality of such characteristics and constituents, and opportunities for manipulating them via conventional selection and breeding and/or molecular biology. Species now used by SRWCP are emphasized, with supporting information drawn from others as needed. Little information was found on silver maple (Acer saccharinum), but general comparisons (Isenberg 1981) suggest composition and behavior similar to those of the other species. Where possible, conclusions concerning means for and feasibility of manipulation are given, along with expected impacts on conversion efficiency. Information is also provided on relationships to other traits, genotype X environment interactions, and potential trade-offs or limitations. Biomass productivity per se is not addressed, except in terms of effects that may by caused by changes in constituent quality and/or quantity. Such effects are noted to the extent they are known or can be estimated. Likely impacts of changes, however effected, on suitability or other uses, e.g., pulp and paper manufacture, are notes. 311 refs., 4 figs., 9 tabs.

  9. Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles - 12477

    SciTech Connect (OSTI)

    Hardin, Ernest [Sandia National Laboratories, P.O. Box 5800 MS 0736, Albuquerque, NM 87185 (United States); Blink, James [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808 (United States); Carter, Joe [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States); Fratoni, Massimiliano; Greenberg, Harris; Sutton, Mark [Lawrence Livermore National Laboratory (United States); Howard, Robert [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

    2012-07-01

    A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE), Used Fuel Disposition campaign. Reference concepts are identified for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. These were analyzed for waste inventory cases representing a range of waste types that could be produced by advanced nuclear fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress. All of these disposal concepts are enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. Enclosed modes have less capacity to dissipate heat than open modes such as that proposed for a repository at Yucca Mountain. Thermal analysis has identified important relationships between waste package size and capacity, and the duration of surface decay storage needed to meet temperature limits for different disposal concepts. For the crystalline rock and clay/shale repository concepts, a waste package surface temperature limit of 100 deg. C was assumed to prevent changes in clay-based buffer material or clay-rich host rock. Surface decay storage of 50 to 100 years is needed for disposal of high-burnup LWR SNF in 4-PWR packages, or disposal of HLW glass from reprocessing LWR uranium oxide (UOX) fuel. High-level waste (HLW) from reprocessing of metal fuel used in a fast reactor could be disposed after decay storage of 50 years or less. For disposal in salt the rock thermal conductivity is significantly greater, and higher temperatures (200 deg. C) can be tolerated at the waste package surface. Decay storage of 10 years or less is needed for high-burnup LWR SNF in 4-PWR packages, while 12-PWR packages could be emplaced after 40 years or less. HLW from reprocessing LWR UOX fuel or metal fuel from fast reactors, could be disposed of in salt after 10 to 50 years of decay storage depending on the specific composition and other factors. For the deep borehole disposal concept no near-field temperature limits are recognized because no performance credit is taken for waste form or waste package integrity, or containment by the near-field host rock. These results show the key differences in thermal management strategies available to the U.S. repository program, given the range of disposal concepts. A host medium such as salt with greater thermal conductivity and peak temperature tolerance could shorten decay storage by 50 years, or facilitate the use of larger waste packages. The LWR UOX SNF evaluated in this study represents that which could be produced in the coming decades. The existing, lower burnup used fuel that is presently in storage at many LWR locations across the U.S. is significantly cooler, and analyses of this type could be used to show that disposal is possible with less decay storage or larger waste packages. We note that while the temperature limits and waste package capacities used in this study are similar to those used internationally and in past U.S. studies, they might be increased as the result of ongoing research and development activities. This study selected enclosed emplacement modes to conform with disposal concepts developed internationally and previously in the U.S. Open modes (such as that proposed for a repository at Yucca Mountain) afford additional flexibility in waste management and the necessary investment, because the same facility serves both storage and disposal functions. Use of open modes, and combined analysis of storage, transportation, and disposal functions, are appropriate to consider in future studies of this type. (authors)

  10. AGR-2: The first irradiation of French HTR fuel in Advanced Test Reactor

    SciTech Connect (OSTI)

    T. Lambert; B. Grover; P. Guillermier; D. Moulinier; F. Imbault Huart

    2012-10-01

    AGR-2, the second irradiation of the US program for qualification of the NGNP fuel, is open to international participation within the scope of the Generation IV International Forum. In this frame, it includes in its multi-capsule irradiation rig an irradiation of French HTR fuel manufactured in the CAPRI line (GAIA facility at CEA/Cadarache and AREVA/CERCA compacting line at Romans). The AGR-2 irradiation is designed to place our first fabrications of HTR particles under operating conditions that are representative of ANTARES project while keeping close to the test range of the German fuel as much as possible, which is the reference in terms of irradiation behavior. A few batches of particles and 12 fuel compacts were produced and characterized in 2009 by CEA and CERCA. The fuel main characteristics are in conformity with our specifications and in compliance with INL requirements. The AGR-2 experiment is based on the design and devices used in the first experiment of the AGR program. The design makes it possible to monitor the irradiation conditions and in particular, the temperature, the power and the fission products released from fuel particles. The in pile equipment consists of a multi-capsule device designed to simultaneously irradiate six independent capsules with temperature control. The out-of-core part consists of the equipment for actively controlling temperature and measuring the fission products release on-line. The target conditions for the irradiation experiment were defined with the aim of comparing the results obtained under irradiation with German particles along with the objectives of reaching burn-up and fluence targets to validate the behavior of our fuel in a significant range (15% FIMA – 5 × 1025 n/m2 at 600 EFPD with centerline fuel temperature about 1100 degrees C). These conditions have to be representative of ANTARES project characteristics. These target conditions were compared with final results from neutron and thermal design studies performed by INL team, and preliminary thermal mechanical ATLAS calculations were carried out by CEA from this pre-design. Despite the mean burn-up achieved in approximately 600 EFPD being a little high (16.3% FIMA max. associated with a low fluence up to 2.85 × 1025 n/m2), this irradiation will nevertheless encompass the range of irradiation effects covered in our experimental objectives (maximum stress peak at start of irradiation then sign inversion of the stress in the SiC layer). In addition, the fluence and burn-up acceleration factors are very similar to those of the German reference experiments. This experimental irradiation began in July 2010 in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) and first results have been acquired.

  11. Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs

    SciTech Connect (OSTI)

    Murray, Alice M.; Marra, John E.; Wilmarth, William R.; Mcguire, Patrick W.; Wheeler, Vickie B.

    2013-07-03

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). Thus, the demonstration can be accomplished by leveraging the incremental cost of performing demonstrations without needing to cover the full operational cost of the facility. Current Center activities have been focused on integrating advanced safeguards monitoring technologies demonstrations into the SRS H-Canyon and advanced location technologies demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and customers as well as providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (as well as to offsite venues) so that future demonstrations can be done more efficiently and provide an opportunity to utilize these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs DOE-Nuclear Energy (DOE-NE) to advance the research for next generation fuel cycle technologies. The concept is to install processing equipment on frames. The frames are then positioned into an H-Canyon cell and testing in a relevant radiological environment involving prototypic radioactive materials can be performed.

  12. System dynamics of the competition of municipal solid waste to landfill, electricity, and liquid fuel in California

    SciTech Connect (OSTI)

    Westbrook, Jessica; Malczynski, Leonard A.; Manley, Dawn Kataoka

    2014-03-01

    A quantitative system dynamics model was created to evaluate the economic and environmental tradeoffs between biomass to electricity and to liquid fuel using MSW biomass in the state of California as a case study. From an environmental perspective, landfilling represents the worst use of MSW over time, generating more greenhouse gas (GHG) emissions compared to converting MSW to liquid fuel or to electricity. MSW to ethanol results in the greatest displacement of GHG emissions per dollar spent compared to MSW to electricity. MSW to ethanol could save the state of California approximately $60 billion in energy costs by 2050 compared to landfilling, while also reducing GHG emissions state-wide by approximately 140 million metric tons during that timeframe. MSW conversion to electricity creates a significant cost within the state's electricity sector, although some conversion technologies are cost competitive with existing renewable generation.

  13. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    E-Print Network [OSTI]

    Djokic, Denia

    2013-01-01

    bonded  zeolite,  unprocessed   used  fuel  waste  streams  for  metal  fuel  fast  reactor  case  (case  1).  zeolite,  unprocessed   used  fuel  waste  streams  for  

  14. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    E-Print Network [OSTI]

    Djokic, Denia

    2013-01-01

    and  electricity  generation  (MWe)  of  the  fuel  cycle  electricity  generation  corresponding  to  each  fuel  the  total  electricity  generation  of  the  entire  fuel  

  15. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    E-Print Network [OSTI]

    Djokic, Denia

    2013-01-01

    from  the  reprocessing  of  spent  fuel.   Not   only  spent  fuel  fraction  from  aqueous  reprocessing  in  from   the   reprocessing   of   spent   nuclear   fuel,  

  16. Liquid-Water Uptake and Removal in PEM Fuel-Cell Components

    E-Print Network [OSTI]

    Das, Prodip K.

    2013-01-01

    the DOE EERE Funding, Office of Fuel Cell Technologies underUptake and Removal in PEM Fuel-Cell Components Prodip K. DasWater management in PEM fuel cells is critical for optimum

  17. Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 1

    SciTech Connect (OSTI)

    Giles, H.N.

    1998-12-01

    Volume 1 of these proceedings contain 29 papers related to aviation fuels and long term and strategic storage. Studies investigated fuel contamination, separation processes, measurement techniques, thermal stability, compatibility with fuel system materials, oxidation reactions, and degradation during storage.

  18. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli

    E-Print Network [OSTI]

    Bokinsky, Gregory

    One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical ...

  19. Advanced Petroleum-Based Fuels--Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 1 Summary, July 2004

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    The Advanced Petroleum Based Fuels-Diesel Emission Control project is a government/industry collaborative project to identify the optimal combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emission standards for the 2004-2010 time period. This summary describes the results of the first phase of the lubricants study investigating the impact on lubricant formulation on engine-out emissions.

  20. Liquid-Water Uptake and Removal in PEM Fuel-Cell Components

    E-Print Network [OSTI]

    Das, Prodip K.

    2013-01-01

    droplets produced by forcing water through the gas-diffusioncontact to the subsurface water. REFERENCES A. Z. Weber andUniversity of California. Liquid-Water Uptake and Removal in

  1. Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced Distillation Curve Method

    Broader source: Energy.gov [DOE]

    Supercritical transesterification processing permits efficient fuel system and combustion chamber designs to optimize fuel utilization in diesel engines.,

  2. EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin

    Broader source: Energy.gov [DOE]

    NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide federal funding to Flambeau River Biofuels (FRB) to construct and operate a biomass-to-liquid biorefinery in Park Falls, Wisconsin, on property currently used by Flambeau Rivers Paper, LLC (FRP) for a pulp and paper mill and Johnson Timber Corporation's (JTC) Summit Lake Yard for timber storage. This project would design a biorefinery which would produce up to 1,150 barrels per day (bpd) of clean syncrude. The biorefinery would also supply steam to the FRP mill, meeting the majority of the mill's steam demand and reducing or eliminating the need for the existing biomass/coal-fired boiler. The biorefinery would also include a steam turbine generator that will produce "green" electrical power for use by the biorefinery or for sale to the electric utility.

  3. Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications.

    SciTech Connect (OSTI)

    Swain; Greg M.

    2009-04-13

    The original funding under this project number was awarded for a period 12/1999 until 12/2002 under the project title Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications. The project was extended until 06/2003 at which time a renewal proposal was awarded for a period 06/2003 until 06/2008 under the project title Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes. The work under DE-FG02-01ER15120 was initiated about the time the PI moved his research group from the Department of Chemistry at Utah State University to the Department of Chemistry at Michigan State University. This DOE-funded research was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder.

  4. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 |DepartmentMultimedia and Photos

  5. Report on Development of Concepts for the Advanced Casting System in Support of the Deployment of a Remotely Operable Research Scale Fuel Fabrication Facility for Metal Fuel

    SciTech Connect (OSTI)

    Ken Marsden

    2007-03-01

    Demonstration of recycle processes with low transuranic losses is key to the successful implementation of the Global Nuclear Energy Partnership strategy to manage spent fuel. It is probable that these recycle processes will include remote fuel fabrication. This report outlines the strategy to develop and implement a remote metal fuel casting process with minimal transuranic losses. The approach includes a bench-scale casting system to develop materials, methods, and perform tests with transuranics, and an engineering-scale casting system to demonstrate scalability and remote operability. These systems will be built as flexible test beds allowing exploration of multiple fuel casting approaches. The final component of the remote fuel fabrication demonstration culminates in the installation of an advanced casting system in a hot cell to provide integrated remote operation experience with low transuranic loss. Design efforts and technology planning have begun for the bench-scale casting system, and this will become operational in fiscal year 2008, assuming appropriate funding. Installation of the engineering-scale system will follow in late fiscal year 2008, and utilize materials and process knowledge gained in the bench-scale system. Assuming appropriate funding, the advanced casting system will be installed in a remote hot cell at the end of fiscal year 2009.

  6. Liquid water quantification in the cathode side gas channels of a proton exchange membrane fuel cell through two-phase flow

    E-Print Network [OSTI]

    Kandlikar, Satish

    t s Liquid water in the cathode side channels of PEM fuel cell is quantified. Algorithm developed in MATLABŇ electrolyte membrane fuel cell Two-phase flow visualization Gas channels Area coverage ratio Water quantification a b s t r a c t Water management is crucial to the performance of PEM fuel cells. Water

  7. Catalytic Conversion of Biomass to Fuels and Chemicals Using Ionic Liquids

    SciTech Connect (OSTI)

    Liu, Wei; Zheng, Richard; Brown, Heather; Li, Joanne; Holladay, John; Cooper, Alan; Rao, Tony; ,

    2012-04-13

    This project provides critical innovations and fundamental understandings that enable development of an economically-viable process for catalytic conversion of biomass (sugar) to 5-hydroxymethylfurfural (HMF). A low-cost ionic liquid (Cyphos 106) is discovered for fast conversion of fructose into HMF under moderate reaction conditions without any catalyst. HMF yield from fructose is almost 100% on the carbon molar basis. Adsorbent materials and adsorption process are invented and demonstrated for separation of 99% pure HMF product and recovery of the ionic liquid from the reaction mixtures. The adsorbent material appears very stable in repeated adsorption/regeneration cycles. Novel membrane-coated adsorbent particles are made and demonstrated to achieve excellent adsorption separation performances at low pressure drops. This is very important for a practical adsorption process because ionic liquids are known of high viscosity. Nearly 100% conversion (or dissolution) of cellulose in the catalytic ionic liquid into small molecules was observed. It is promising to produce HMF, sugars and other fermentable species directly from cellulose feedstock. However, several gaps were identified and could not be resolved in this project. Reaction and separation tests at larger scales are needed to minimize impacts of incidental errors on the mass balance and to show 99.9% ionic liquid recovery. The cellulose reaction tests were troubled with poor reproducibility. Further studies on cellulose conversion in ionic liquids under better controlled conditions are necessary to delineate reaction products, dissolution kinetics, effects of mass and heat transfer in the reactor on conversion, and separation of final reaction mixtures.

  8. Structured catalyst bed and method for conversion of feed materials to chemical products and liquid fuels

    DOE Patents [OSTI]

    Wang, Yong (Richland, WA), Liu; Wei (Richland, WA)

    2012-01-24

    The present invention is a structured monolith reactor and method that provides for controlled Fischer-Tropsch (FT) synthesis. The invention controls mass transport limitations leading to higher CO conversion and lower methane selectivity. Over 95 wt % of the total product liquid hydrocarbons obtained from the monolithic catalyst are in the carbon range of C.sub.5-C.sub.18. The reactor controls readsorption of olefins leading to desired products with a preselected chain length distribution and enhanced overall reaction rate. And, liquid product analysis shows readsorption of olefins is reduced, achieving a narrower FT product distribution.

  9. The Advanced Petroleum-Based Fuels Program DECSE and APBF Overview

    SciTech Connect (OSTI)

    2000-04-11

    The following topics are summarized: Role of fuel blends in controlling engine-out emissions; Effect of fuels and lubricants on emission control devices; and Effect of fuels and lubricants on vehicle emissions and operations.

  10. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies | Fuel Cell Electric Vehicles Technology Assessment

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy Headquarters Categorical| Department of Energy5: Lighting,Actions |8:Fuel Cell

  11. Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel

  12. Energy Department Announces $35 Million to Advance Hydrogen and Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S.Job Vacancies EEREat EEREServices

  13. Energy Department Announces $35 Million to Advance Fuel Cell and Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicleDepartment ofGraphicsPower ElectricEnergy Blog

  14. Energy Department Invests More than $20 Million to Advance Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicleDepartment ofGraphicsPowerDepartment ofTechnologies as

  15. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    E-Print Network [OSTI]

    Djokic, Denia

    2013-01-01

    in   better   nuclear   waste   management  and  disposal  fuel   cycles  on  nuclear  waste  management  and  waste  Nuclear   Fuel,”   Integrated   Radioactive   Waste   Management  

  16. Vehicle Technologies Office Merit Review 2015: Fuel Displacement Potential of Advanced Technologies under Different Thermal Conditions

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel displacement...

  17. Investigation of Alternative Fuels and Advanced Engine Technology: Improving Engine Efficiency and Reducing Emissions

    E-Print Network [OSTI]

    Rapp, Vi Hai

    2011-01-01

    Souder. HCCI operation of a dual-fuel natural gas engine fordual spark ignition improved efficiency by 1%, the unburned air-fuel

  18. Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 2

    SciTech Connect (OSTI)

    Giles, H.N.

    1998-12-01

    Volume 2 of these proceedings contain 42 papers arranged under the following topical sections: Fuel blending and compatibility; Middle distillates; Microbiology; Alternative fuels; General topics (analytical methods, tank remediation, fuel additives, storage stability); and Poster presentations (analysis methods, oxidation kinetics, health problems).

  19. Vehicle Technologies Office Merit Review 2014: Ionic Liquids as Anti-Wear Additives for Next-Generation Low-Viscosity Fuel-Efficient Engine Lubricants

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ionic liquids...

  20. One-step catalytic conversion of biomass-derived carbohydrates to liquid fuels

    DOE Patents [OSTI]

    Sen, Ayusman; Yang, Weiran

    2014-03-18

    The invention relates to a method for manufacture of hydrocarbon fuels and oxygenated hydrocarbon fuels such as alkyl substituted tetrahydrofurans such as 2,5-dimethyltetrahydrofuran, 2-methyltetrahydrofuran, 5-methylfurfural and mixtures thereof. The method generally entails forming a mixture of reactants that includes carbonaceous material, water, a metal catalyst and an acid reacting that mixture in the presence of hydrogen. The reaction is performed at a temperature and for a time sufficient to produce a furan type hydrocarbon fuel. The process may be adapted to provide continuous manufacture of hydrocarbon fuels such as a furan type fuel.