Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advanced Light Source Activity Report 2002  

SciTech Connect (OSTI)

This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori (Editors)

2003-06-12T23:59:59.000Z

2

Advanced Light Source Activity Report 2000  

SciTech Connect (OSTI)

This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

2001-04-01T23:59:59.000Z

3

Light Source Notes | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs spaceLaser TheLessonsLienertLife ScienceLight

4

Sandia National Laboratories: Advanced Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguardsEngineersSandia/NewAdvanced Light Source

5

Building the World's Most Advanced Light Source  

SciTech Connect (OSTI)

View this time-lapse video showing construction of the National Synchrotron Light Source II at Brookhaven National Laboratory. Construction is shown from 2009-2012.

None

2012-08-03T23:59:59.000Z

6

New results in atomic physics at the Advanced Light Source  

SciTech Connect (OSTI)

The Advanced Light Source is the world's first low-energy third-generation synchrotron radiation source. It has been running reliably and exceeding design specifications since it began operation in October 1993. It is available to a wide community of researchers in many scientific fields, including atomic and molecular science and chemistry. Here, new results in atomic physics at the Advanced Light Source demonstrate the opportunities available in atomic and molecular physics at this synchrotron light source. The unprecedented brightness allows experiments with high flux, high spectral resolution, and nearly 100% linear polarization.

Schlachter, A.S.

1995-01-01T23:59:59.000Z

7

Advanced Light Source Activity Report 1997/1998  

SciTech Connect (OSTI)

This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year.

Greiner, Annette (ed.)

1999-03-01T23:59:59.000Z

8

ADVANCED LIGHT SOURCE DIVISION FY2008 SELF-ASSESSMENT REPORT  

E-Print Network [OSTI]

....................................................................3 E4. Division participates in pollution prevention, energy conservation, recycling, and wasteADVANCED LIGHT SOURCE DIVISION FY2008 SELF-ASSESSMENT REPORT November 7, 2008 Prepared by to confined space, energized electrical work); waste management criteria (SAAs, waste sampling, NCARs

Knowles, David William

9

Inverse free electron laser accelerator for advanced light sources  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We discuss the inverse free electron laser (IFEL) scheme as a compact high gradient accelerator solution for driving advanced light sources such as a soft x-ray free electron laser amplifier or an inverse Compton scattering based gamma-ray source. In particular, we present a series of new developments aimed at improving the design of future IFEL accelerators. These include a new procedure to optimize the choice of the undulator tapering, a new concept for prebunching which greatly improves the fraction of trapped particles and the final energy spread, and a self-consistent study of beam loading effects which leads to an energy-efficient high laser-to-beam power conversion.

Duris, J. P.; Musumeci, P.; Li, R. K.

2012-06-01T23:59:59.000Z

10

advanced light source: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

detectors. A 2.5 m diameter light source illuminated by an ultra--violet light emitting diode is calibrated with an overall uncertainty of 2.1 % at a wavelength of 365 nm....

11

Science at the Speed of Light: Advanced Photon Source  

ScienceCinema (OSTI)

An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest x-ray beams in the Western Hemisphere, and the research carried out by scientists using those x-rays.

Murray Gibson

2010-01-08T23:59:59.000Z

12

Efficiency and stray light measurements and calculations of diffraction gratings for the Advanced Light Source  

SciTech Connect (OSTI)

Water-cooled gratings manufactured for spherical grating monochromators of the Advanced Light Source beamlines 7.0, 8.0, and 9.0 were measured with the laser plasma source and reflectometer in the Center for X-ray Optics at Lawrence Berkeley Laboratory. The square-wave gratings are ion milled into the polished electroless nickel surface after patterning by holographic photolithography. Absolute efficiency data are compared with exact electromagnetic theory calculation. Interorder stray light and groove depths can be estimated from the measurements.

McKinney, W.R.; Mossessian, D. (Accelerator and Fusion Research Division, Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States)); Gullikson, E. (Materials Sciences Division, Center for X-ray Optics, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States)); Heimann, P. (Accelerator and Fusion Research Division, Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States))

1995-02-01T23:59:59.000Z

13

The advanced light source: America`s brightest light for science and industry  

SciTech Connect (OSTI)

America`s brightest light comes from the Advanced Light Source (ALS), a national facility for scientific research, product development, and manufacturing. Completed in 1993, the ALS produces light in the ultraviolet and x-ray regions of the spectrum. Its extreme brightness provides opportunities for scientific and technical progress not possible anywhere else. Technology is poised on the brink of a major revolution - one in which vital machine components and industrial processes will be drastically miniaturized. Industrialized nations are vying for leadership in this revolution - and the huge economic rewards the leaders will reap.

Cross, J.; Lawler, G.

1994-03-01T23:59:59.000Z

14

Water cooled metal optics for the Advanced Light Source  

SciTech Connect (OSTI)

The program for providing water cooled metal optics for the Advanced Light Source at Berkeley is reviewed with respect to fabrication and metrology of the surfaces. Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from prototype mirrors and grating blanks will be presented, which show exceptionally low microroughness and mid-period error. We will briefly describe out improved version of the Long Trace Profiler, and its importance to out metrology program. We have completely redesigned the mechanical, optical and computational parts of the profiler system with the cooperation of Peter Takacs of Brookhaven, Continental Optical, and Baker Manufacturing. Most important is that one of our profilers is in use at the vendor to allow testing during fabrication. Metrology from the first water cooled mirror for an ALS beamline is presented as an example. The preplating processing and grinding and polishing were done by Tucson Optical. We will show significantly better surface microroughness on electroless nickel, over large areas, than has been reported previously.

McKinney, W.R.; Irick, S.C. [Lawrence Berkeley Lab., CA (United States); Lunt, D.L.J. [Tucson Optical Research Corp., AZ (United States)

1991-10-28T23:59:59.000Z

15

Imaging spectroscopic analysis at the Advanced Light Source  

SciTech Connect (OSTI)

One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications.

MacDowell, A. A.; Warwick, T.; Anders, S.; Lamble, G.M.; Martin, M.C.; McKinney, W.R.; Padmore, H.A.

1999-05-12T23:59:59.000Z

16

Annual meeting of the Advanced Light Source Users` Association  

SciTech Connect (OSTI)

This report contains papers on the following topics: ALS Director`s Report; ALS Operations Update; Recent Results in Machine Physics; Progress in Beamline Commissioning and Overview of New Projects; The ALS Scientific Program; First Results from the SpectroMicroscopy Beamline; Soft X-ray Fluorescence Spectroscopy of Solids; Soft X-Ray Fluorescence Spectroscopy of Molecules; Microstructures and Micromachining at the ALS; High-Resolution Photoemission from Simple Atoms and Molecules; X-Ray Diffraction at the ALS; Utilizing Synchrotron Radiation in Advanced Materials Industries; Polymer Microscopy: About Balls, Rocks and Other ``Stuff``; Infrared Research and Applications; and ALS User Program.

NONE

1995-02-01T23:59:59.000Z

17

Thermophysical properties of saturated light and heavy water for advanced neutron source applications  

SciTech Connect (OSTI)

The Advanced Neutron Source is an experimental facility being developed by Oak Ridge National Laboratory. As a new nuclear fission research reactor of unprecedented flux, the Advanced Neutron Source Reactor will provide the most intense steady-state beams of neutrons in the world. The high heat fluxes generated in the reactor [303 MW(t) with an average power density of 4.5 MW/L] will be accommodated by a flow of heavy water through the core at high velocities. In support of this experimental and analytical effort, a reliable, highly accurate, and uniform source of thermodynamic and transport property correlations for saturated light and heavy water were developed. In order to attain high accuracy in the correlations, the range of these correlations was limited to the proposed Advanced Neutron Source Reactor's nominal operating conditions. The temperature and corresponding saturation pressure ranges used for light water were 20--300[degrees]C and 0.0025--8.5 MPa, respectively, while those for heavy water were 50--250[degrees]C and 0.012--3.9 MPa. Deviations between the correlation predictions and data from the various sources did not exceed 1.0%. Light water vapor density was the only exception, with an error of 1.76%. The physical property package consists of analytical correlations, SAS codes, and FORTRAN subroutines incorporating these correlations, as well as an interactive, easy-to-use program entitled QuikProp.

Crabtree, A.; Siman-Tov, M.

1993-05-01T23:59:59.000Z

18

Thermophysical properties of saturated light and heavy water for Advanced Neutron Source applications  

SciTech Connect (OSTI)

The Advanced Neutron Source is an experimental facility being developed by Oak Ridge National Laboratory. As a new nuclear fission research reactor of unprecedented flux, the Advanced Neutron Source Reactor will provide the most intense steady-state beams of neutrons in the world. The high heat fluxes generated in the reactor [303 MW(t) with an average power density of 4.5 MW/L] will be accommodated by a flow of heavy water through the core at high velocities. In support of this experimental and analytical effort, a reliable, highly accurate, and uniform source of thermodynamic and transport property correlations for saturated light and heavy water were developed. In order to attain high accuracy in the correlations, the range of these correlations was limited to the proposed Advanced Neutron Source Reactor`s nominal operating conditions. The temperature and corresponding saturation pressure ranges used for light water were 20--300{degrees}C and 0.0025--8.5 MPa, respectively, while those for heavy water were 50--250{degrees}C and 0.012--3.9 MPa. Deviations between the correlation predictions and data from the various sources did not exceed 1.0%. Light water vapor density was the only exception, with an error of 1.76%. The physical property package consists of analytical correlations, SAS codes, and FORTRAN subroutines incorporating these correlations, as well as an interactive, easy-to-use program entitled QuikProp.

Crabtree, A.; Siman-Tov, M.

1993-05-01T23:59:59.000Z

19

Advanced Light Source (ALS) | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

Syncrotron Light Source (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects...

20

Advanced Light Source Compendium of User Abstracts andTechnical Reports 1997  

SciTech Connect (OSTI)

The Advanced Light Source (ALS), a national user facility located at Ernest Orlando Lawrence Berkeley National Laboratory of the University of California is available to researchers from academia, industry, and government laboratories. Operation of the ALS is funded by the Department of Energy's Office of Basic Energy Sciences. This Compendium contains abstracts written by users summarizing research completed or in progress during 1997, ALS technical reports describing ongoing efforts related to improvement in machine operations and research and development projects, and information on ALS beamlines planned through 1998.

Cross, J.; Devereaux, M.K.; Dixon, D.J.; Greiner, A.; editors

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

New chicane magnet design for insertion device straights at the Advanced Light Source  

SciTech Connect (OSTI)

A chicane magnet incorporating counter-rotating permanent magnet pairs together with trim coils has been designed for use in the Advanced Light Source (ALS) straights in conjunction with two insertion devices. In particular, this design is being developed for use in the existing beam line (BL) 4 elliptically polarizing undulator (EPU) straight and in the BL11 EPU straight, currently under design and construction. The purpose of the chicane is to provide a fixed angular separation between two successive EPU photon fans, and to correct steering perturbations resulting from EPU polarization state changes. Polarization changes occur on the time scale of one second; associated steering corrections must be accomplished in less than a second. Hysteresis associated with conventional iron core electromagnets prevents fast steering correction to the required precision. This consideration motivated the iron-free design presented here.

Marks, Steve; Schlueter, Ross; Anderson, David; Gath, William; Jung, Jin-Young; Robin, David; Steier, Christoph; Stevens, Troy

2001-12-10T23:59:59.000Z

22

Advanced Photon Source, Canadian Light Source Strengthen Ties, Expand X-ray  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home

23

The U5. 0 undulator design for the advanced light source at LBL  

SciTech Connect (OSTI)

The U5.0 undulator, currently under design, is the first in a series of insertion devices planned for the Advanced Light Source at LBL. U5.0 parameters include a 5 cm period, 5 m length with a 0.837 T maximum field at a 14 mm gap. A hybrid configuration utilizing Nd-Fe-B permanent magnet material and Vanadium Permendur poles is used for the magnetic structure. Construction is modular with many pole assemblies attached to a pole mount, which in turn is fastened onto one of the backing beams. Vertical field integral correction at the ends is with permanent magnet rotators. The supports structure features a 4-post configuration, a rigid base with 3 kinematic floor supports and 2 rigid 5 m long backing beams that fit within the 2.4 m high accelerator enclosure. The drive system is computer controlled utilizing a stepper motor and shaft encode coupled to a roller-screw/nut and chain drive train. Vacuum chamber design is a rigid configuration with a 10 mm vertical by 218 mm horizontal aperture of 5.5 m length. Chamber fabrication features a two-piece welded chamber of 5083 H321 aluminum. Pumping is with ion and titanium sublimation pumps. 5 figs., 1 tab.

Hoyer, E.; Chin, J.; Halbach, K.; Hassenzahl, W.; Humphries, D.; Kincaid, B.; Lancaster, H.; Plate, D.; Savoy, R.

1989-08-01T23:59:59.000Z

24

Advanced Demand Responsive Lighting  

E-Print Network [OSTI]

Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

25

Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceEfeedstocks and the climateLife a Light

26

Advanced Light Source (ALS) | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHuman ResourcesScienceHomeAboutLight Source (ALS)

27

Photon Statistics of Semiconductor Light Sources.  

E-Print Network [OSTI]

??In recent years, semiconductor light sources have become more and more interesting in terms of applications due to their high efficiency and low cost. Advanced (more)

Amann, Marc

2010-01-01T23:59:59.000Z

28

Photonic crystal light source  

DOE Patents [OSTI]

A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Bur, James A. (Corrales, NM)

2004-07-27T23:59:59.000Z

29

Efficient Light Sources Today  

E-Print Network [OSTI]

This paper reviews new lamp and lighting technology in terms of application and economic impact. Included are the latest advances in High Intensity Discharge systems, energy saving fluorescent lamps and ballasts, and the new state of the art high...

Hart, A. L.

1982-01-01T23:59:59.000Z

30

National Synchrotron Light Source  

ScienceCinema (OSTI)

A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

BNL

2009-09-01T23:59:59.000Z

31

National Synchrotron Light Source  

ScienceCinema (OSTI)

A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

None

2010-01-08T23:59:59.000Z

32

Advanced Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home| Visitors| Education| REU|Archaeal ProvidingNext

33

Light Duty Combustion Research: Advanced Light-Duty Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and Vehicle...

34

EUV reflectance characterization of the 94/304 ? flight secondary AIA mirror at beamline 6.3.2 of the Advanced Light Source  

SciTech Connect (OSTI)

The AIA secondary flight mirror, previously coated at Columbia University with Mg/SiC for the 303.8 {angstrom} channel and Mo/Y for the 93.9 {angstrom} channel was characterized by means of EUV reflectance measurements at beamline 6.3.2 of the Advanced Light Source (ALS) synchrotron at LBNL on January 10, 2006. Paul Boerner (LMSAL) also participated in these measurements.

Soufli, R; Spiller, E; Aquila, A L; Gullikson, E M; Windt, D L

2006-02-22T23:59:59.000Z

35

Advanced Photon Source Upgrade Project  

ScienceCinema (OSTI)

Upgrade to Advanced Photon Source announced by Department Of Energy. Read more: http://go.usa.gov/ivZ

Mitchell, John; Gibson, Murray; Young, Linda; Joachimiak, Andrzej

2013-04-19T23:59:59.000Z

36

Advances in Lighting  

E-Print Network [OSTI]

colour rendition. The quartz-halogen incandescent lam s operate at higher temperatures, and have a somewhat higher efficacy, but they are rarely used except for special applicati ns. 3-2 High Intensity Discharge Lamps. Mercury is the grandfather... of the H.I.D. lamps. Its blue-green light, has been used almost exclusively for streetlighti and, often with colour-improving phospho it is still being used in industrial and commercial applications. Reactor-type ballasted mercury lamps can now...

Tumber, A. J.

1981-01-01T23:59:59.000Z

37

Linac Coherent Light Source Overview  

ScienceCinema (OSTI)

Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

None

2013-05-29T23:59:59.000Z

38

Linac Coherent Light Source Overview  

Broader source: Energy.gov [DOE]

Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

39

The Advanced Photon Source main control room  

SciTech Connect (OSTI)

The Advanced Photon Source at Argonne National Laboratory is a third-generation light source built in the 1990s. Like the machine itself, the Main Control Room (MCR) employs design concepts based on today`s requirements. The discussion will center on ideas used in the design of the MCR, the comfort of personnel using the design, and safety concerns integrated into the control room layout.

Pasky, S.

1998-07-01T23:59:59.000Z

40

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home Group Members

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home Group

42

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home GroupISM Day -

43

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home GroupISM Day

44

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home GroupISM Day0

45

Fusion pumped light source  

DOE Patents [OSTI]

Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

Pappas, Daniel S. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

46

Next Generation Light Source Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Light Source Workshops A series of workshops will be held in late August with the goal of refining the scientific drivers for the facility and translating the...

47

National Synchrotron Light Source II  

ScienceCinema (OSTI)

The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

Steve Dierker

2010-01-08T23:59:59.000Z

48

National Synchrotron Light Source Activity Report 1998  

SciTech Connect (OSTI)

National Synchrotron Light Source Activity Report for period October 1, 1997 through September 30, 1998

Rothman, Eva

1999-05-01T23:59:59.000Z

49

National Synchrotron Light Source annual report 1991  

SciTech Connect (OSTI)

This report contains abstracts from research conducted at the national synchrotron light source. (LSP)

Hulbert, S.L.; Lazarz, N.N. (eds.)

1992-04-01T23:59:59.000Z

50

Lighting affects appearance LightSource emits photons  

E-Print Network [OSTI]

1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Reflectance Model how objects reflect light. Model light sources Algorithms for computing Shading: computing intensities within polygons Determine what light strikes what

Jacobs, David

51

Lighting affects appearance LightSource emits photons  

E-Print Network [OSTI]

1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Basic fact: Light is linear Double intensity of sources, double photons reaching eye. Turn on two lights, and photons reaching eye are same as sum of number when each

Jacobs, David

52

Ten Years of Development Experience with Advanced Light Truck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ten Years of Development Experience with Advanced Light Truck Diesel Engines Ten Years of Development Experience with Advanced Light Truck Diesel Engines 2004 Diesel Engine...

53

E-Print Network 3.0 - advanced photon source Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Calculus Fundamentals of Light Sources... 4 Applications of Quantum Physics Optoelectronic Devices Applied Advanced Optics Photonics... . At Algonquin College, courses are...

54

New Directions in X-Ray Light Sources  

ScienceCinema (OSTI)

July 15, 2008 Berkeley Lab lecture: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

Roger Falcone

2010-01-08T23:59:59.000Z

55

Advanced Lighting Program Development (BG9702800) Final Report  

SciTech Connect (OSTI)

The report presents a long-range plan for a broad-based, coordinated research, development and market transformation program for reducing the lighting energy intensities in commercial and residential buildings in California without compromising lighting quality. An effective program to advance lighting energy efficiency in California must be based on an understanding that lighting is a mature field and the lighting industry has developed many specialized products that meet a wide variety of light needs for different building types. Above all else, the lighting field is diverse and there are applications for a wide range of lighting products, systems, and strategies. Given the range of existing lighting solutions, an effective energy efficient lighting research portfolio must be broad-based and diverse to match the diversity of the lighting market itself. The belief that there is one solution--a magic bullet, such as a better lamp, for example--that will propel lighting efficiency across all uses to new heights is, in the authors' opinion, an illusion. A multi-path program is the only effective means to raising lighting efficiency across all lighting applications in all building types. This report presents a list of 27 lighting technologies and concepts (key activities) that could form the basis of a coordinated research and market transformation plan for significantly reducing lighting energy intensities in California buildings. The total 27 key activities into seven broad classes as follows: Light sources; Ballasts; Luminaires; Lighting Controls; Lighting Systems in Buildings; Human Factors and Education. Each of the above technology classes is discussed in terms of background, key activities, and the energy savings potential for the state. The report concludes that there are many possibilities for targeted research, development, and market transformation activities across all sectors of the building lighting industry. A concerted investment by the state to foster efficiency improvements in lighting systems in commercial and residential buildings would have a major positive impact on energy use and environmental quality in California.

Rubinstein, Francis; Johnson, Steve

1998-02-01T23:59:59.000Z

56

New Light Sources for Tomorrow's Lighting Designs  

E-Print Network [OSTI]

, pioneered for headlam~for the automotive industry, has led to the development of halo en capsule lamps for general lighting. The original90-watt family PAR 38 lamps using tungsten halogen capsules produces the sa amount of useful light in the beam as a I... quartz PAR lamps with similar benefi . Each of these tungsten halogen capsule PAR wattages are av ilable in narrow spot, spot, and flood beam patterns. The most recent developments in the PAR halogen psule family include two entirely new lamp designs...

Krailo, D. A.

57

Energy Recovery Linacs for Light Source Applications  

SciTech Connect (OSTI)

Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

George Neil

2011-04-01T23:59:59.000Z

58

Compact X-ray Light Source Workshop Report  

SciTech Connect (OSTI)

This report, produced jointly by EMSL and FCSD, is the result of a workshop held in September 2011 that examined the utility of a compact x-ray light source (CXLS) in addressing many scientific challenges critical to advancing energy science and technology.

Thevuthasan, Suntharampillai; Evans, James E.; Terminello, Louis J.; Koppenaal, David W.; Manke, Kristin L.; Plata, Charity

2012-12-01T23:59:59.000Z

59

Advanced Photon Source Upgrade Project - Materials  

ScienceCinema (OSTI)

An upgrade to Advanced Photon Source announced by DOE - http://go.usa.gov/ivZ -- will help scientists break through bottlenecks in materials design in order to develop materials with desirable functions.

Gibbson, Murray;

2013-04-19T23:59:59.000Z

60

Advanced Photon Source Upgrade Project - Energy  

ScienceCinema (OSTI)

An upgrade to the Advanced Photon Source (announced by DOE - http://go.usa.gov/ivZ) will help scientists better understand complex environments such as in catalytic reactions.

Gibson, Murray; Chamberlain, Jeff; Young, Linda

2013-04-19T23:59:59.000Z

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Shaping the Next - Buildings and Energy: Advanced Lighting  

SciTech Connect (OSTI)

short bit on advanced lighting for the future relating specifically to controls and new tech such as LEDs

Richman, Eric E.

2014-01-01T23:59:59.000Z

62

Transportation Resources | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II:LIGHT-DUTY

63

Advanced Variable Speed Air-Source Integrated Heat Pump 2013...  

Energy Savers [EERE]

Advanced Variable Speed Air-Source Integrated Heat Pump 2013 Peer Review Advanced Variable Speed Air-Source Integrated Heat Pump 2013 Peer Review Emerging Technologies Project for...

64

National Synchrotron Light Source annual report 1988  

SciTech Connect (OSTI)

This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

Hulbert, S.; Lazarz, N.; Williams, G. (eds.)

1988-01-01T23:59:59.000Z

65

Modelling of Radiative Transfer in Light Sources  

E-Print Network [OSTI]

of equations . . . . . . . . . . . . . . . . . 19 2.4 Transport equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 The equation for radiative transfer . . . . . . . . . . . . . . . . . . . . . . . . 44 3Modelling of Radiative Transfer in Light Sources PROEFSCHRIFT ter verkrijging van de graad van

Eindhoven, Technische Universiteit

66

Microwave generated plasma light source apparatus  

SciTech Connect (OSTI)

A microwave generated plasma light source including a microwave generator, a microwave cavity having a light reflecting member forming at least a portion of the cavity, and a member transparent to light and opaque to microwaves disposed across an opening of the cavity opposite the feeding opening through which the microwave generator is coupled. An electrodeless discharge bulb is disposed at a position in the cavity such that the cavity operates as a resonant cavity at least when the bulb is emitting light. In the bulb is encapsulated at least one discharge light emissive substance. The bulb has a shape and is sufficiently small that the bulb acts substantially as a point light source.

Yoshizawa, K.; Ito, H.; Kodama, H.; Komura, H.; Minowa, Y.

1985-02-05T23:59:59.000Z

67

Electrodeless lighting RF power source development. Final report  

SciTech Connect (OSTI)

An efficient, solid state RF power source has been developed on this NICE project for exciting low power electrodeless lamp bulbs. This project takes full advantage of concurrent advances in electrodeless lamp technology. Electrodeless lamp lighting systems utilizing the sulfur based bulb type developed by Fusion Lighting, Inc., is an emerging technology which is based on generating light in a confined plasma created and sustained by RF excitation. The bulb for such a lamp is filled with a particular element and inert gas at low pressure when cold. RF power from the RF source creates a plasma within the bulb which reaches temperatures approaching those of high pressure discharge lamp plasmas. At these temperatures the plasma radiates substantial visible light with a spectrum similar to sunlight.

NONE

1996-08-30T23:59:59.000Z

68

Light sources based on semiconductor current filaments  

DOE Patents [OSTI]

The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

Zutavern, Fred J. (Albuquerque, NM); Loubriel, Guillermo M. (Albuquerque, NM); Buttram, Malcolm T. (Sandia Park, NM); Mar, Alan (Albuquerque, NM); Helgeson, Wesley D. (Albuquerque, NM); O'Malley, Martin W. (Edgewood, NM); Hjalmarson, Harold P. (Albuquerque, NM); Baca, Albert G. (Albuquerque, NM); Chow, Weng W. (Cedar Crest, NM); Vawter, G. Allen (Albuquerque, NM)

2003-01-01T23:59:59.000Z

69

Stanford Synchrotron Radiation Light Source (SSRL) | U.S. DOE...  

Office of Science (SC) Website

Syncrotron Light Source (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects...

70

Infrared light sources with semimetal electron injection  

DOE Patents [OSTI]

An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GalnSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2-6 .mu.m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

71

National Synchrotron Light Source 2010 Activity Report  

SciTech Connect (OSTI)

This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of electricity or hydrogen; (3) high-temperature superconducting materials that carry electricity with no loss for efficient power transmission lines; and (4) materials for solid-state lighting with half of the present power consumption. Excitement about NSLS-II is evident in many ways, most notably the extraordinary response we had to the 2010 call for beamline development proposals for the anticipated 60 or more beamlines that NSLS-II will ultimately host. A total of 54 proposals were submitted and, after extensive review, 34 were approved. Funding from both the Department of Energy and the National Institutes of Health has already been secured to support the design and construction of a number of these beamlines. FY11 is a challenging and exciting year for the NSLS-II Project as we reach the peak of our construction activity. We remain on track to complete the project by March 2014, a full 15 months ahead of schedule and with even more capabilities than originally planned. The Photon Sciences Directorate is well on its way to fulfilling our vision of being a provider of choice for world-class photon sciences and facilities.

Rowe, M.; Snyder, K. J.

2010-12-29T23:59:59.000Z

72

Tunable pulsed narrow bandwidth light source  

DOE Patents [OSTI]

A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.

Powers, Peter E. (Dayton, OH); Kulp, Thomas J. (Livermore, CA)

2002-01-01T23:59:59.000Z

73

Light Sources on the Nylon Vessels' Surfaces  

E-Print Network [OSTI]

the buffer thickness between the vessels could enhance -ray background in the corresponding region inside;Chapter 7: Light Sources on the Nylon Vessels' Surfaces 185 or laser). The illuminated spots can be seen the fiber's end to penetrate through the vessel membrane into the scintillator volume. A laser of a specific

74

Brookhaven National Laboratory National Synchrotron Light Source  

E-Print Network [OSTI]

Brookhaven National Laboratory National Synchrotron Light Source Number: Revision: LS-ESH-0027 06 copy of this file is the one on-line in the NSLS ESH website. Before using a printed copy, verify that it is the most current version by checking the document issue date on the NSLS ESH website. BROOKHAVEN NATIONAL

Ohta, Shigemi

75

Science and Technology of Future Light Sources  

E-Print Network [OSTI]

Science and Technology of Future Light Sources A White Paper Report prepared by scientists from ANL Berkeley, CA 94720 SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park, CA 94025 Editors. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U

Knowles, David William

76

NRC Construction Light Source Flicker: What We  

E-Print Network [OSTI]

NRC Construction Light Source Flicker: What We Need to Know, and Why You Should Care NRC Construction Jennifer A. Veitch, Ph.D. (c) 2013, National Research Council Canada #12;NRC Construction Handbook: Reference & Application (9th Ed.), 2000, p. 3-20 #12;NRC Construction Flicker Effects 1

California at Davis, University of

77

Brookhaven National Laboratory National Synchrotron Light Source  

E-Print Network [OSTI]

Brookhaven National Laboratory National Synchrotron Light Source Number: Revision: LS-ESH-0026 4 (ANSI) Hazard Class 3B and 4 laser systems must be documented, reviewed, and approved through use) CrystaLaser Compact Solid State Laser (Class 3B) Location: All four lasers are located in the U2A

Ohta, Shigemi

78

Computing the Antipenumbra of an Area Light Source  

E-Print Network [OSTI]

to be in umbra. If the point sees some, but not all, of the light source, it is said to be in penumbra. Otherwise, the point may see all of the light source. light source occluder umbra penumbra Figure 1: Umbra and penumbra, of the light source can be seen (Figure 2). For a given light source and set of holes or occluders, the umbra

Teller, Seth

79

Backscatter absorption gas imaging systems and light sources therefore  

DOE Patents [OSTI]

The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

Kulp, Thomas Jan (Livermore, CA); Kliner, Dahv A. V. (San Ramon, CA); Sommers, Ricky (Oakley, CA); Goers, Uta-Barbara (Campbell, NY); Armstrong, Karla M. (Livermore, CA)

2006-12-19T23:59:59.000Z

80

Advanced Light Source Activity Report 2005  

E-Print Network [OSTI]

reliable evidence of high hydrogen storage capacity at roommechanism could provide hydrogen storage capacity thatthe feasi bility of hydrogen storage through chemisorption

Tamura Ed., Lori S.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Advanced Light Source Activity Report 2005  

E-Print Network [OSTI]

chemical states, and small metal-silicide precipi- F I G U Rmetal defects in commercial solar cell material. Left: Iron silicide

Tamura Ed., Lori S.

2010-01-01T23:59:59.000Z

82

Brain protein deciphered at Advanced Light Source  

SciTech Connect (OSTI)

This computer-generated model of a rat glutamate receptor is the first complete portrait of this important link in the nervous system. At the top of the Y-shaped protein, a pair of molecules splay outward like diverging prongs. The bottom section, which is embedded in a neuronal membrane, houses the ion channel. The resolution of this image is 3.6 angstroms per pixel, or just under four ten-billionths of a meter per image unit. http://newscenter.lbl.gov/feature-stories/2010/01/21/glutamate-receptor/

None

2010-01-01T23:59:59.000Z

83

Advanced Light Source Activity Report 2000  

E-Print Network [OSTI]

Goldstein, E. Blakely, K. Bjornstad, M. Martin, and W.R.M.L. Russell, and K. Bjornstad (Berkeley Lab) and M.C.Martin, E.A. Blakely, K. Bjornstad, and W.R. McKinney,

Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

2001-01-01T23:59:59.000Z

84

Advanced Light Source Beam Position Monitor  

E-Print Network [OSTI]

2 Diagram of storage ring BPM button test set. The 290 ohmmodules. Fig. 6 Drawing of BPM modules and bin. The chassis7 Basic signal flow between BPM plug-in modules. Throughout

Hinkson, J.

2011-01-01T23:59:59.000Z

85

Sandia National Laboratories: LBNL Advanced Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowa State University

86

Advanced Neutron Source (ANS) Project progress report FY 1992  

SciTech Connect (OSTI)

This report discusses project management, research and development, design, and safety at the Advanced Neutron Source facility.

Campbell, J.H. (ed.); Selby, D.L.; Harrington.

1993-01-01T23:59:59.000Z

87

Cathode R&D for Future Light Sources  

SciTech Connect (OSTI)

This paper reviews the requirements and current status of cathodes for accelerator applications, and proposes a research and development plan for advancing cathode technology. Accelerator cathodes need to have long operational lifetimes and produce electron beams with a very low emittance. The two principal emission processes to be considered are thermionic and photoemission with the photocathodes being further subdivided into metal and semi-conductors. Field emission cathodes are not included in this analysis. The thermal emittance is derived and the formulas used to compare the various cathode materials. To date, there is no cathode which provides all the requirements needed for the proposed future light sources. Therefore a three part research plan is described to develop cathodes for these future light source applications.

Dowell, D.H.; /SLAC; Bazarov, I.; Dunham, B.; /Cornell U., CLASSE; Harkay, K.; /Argonne; Hernandez-Garcia; /Jefferson Lab; Legg, R.; /Wisconsin U., SRC; Padmore, H.; /LBL, Berkeley; Rao, T.; Smedley, J.; /Brookhaven; Wan, W.; /LBL, Berkeley

2010-05-26T23:59:59.000Z

88

Science and Technology of Future Light Sources  

SciTech Connect (OSTI)

Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects. The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

Dierker,S.; Bergmann, U.; Corlett, J.; Dierker, S.; Falcone, R.; Galayda, J.; Gibson, M.; Hastings, J.; Hettel, B.; Hill, J.; Hussain, Z.; Kao, C.-C.; Kirx, J.; Long, G.; McCurdy, B.; Raubenheimer, T.; Sannibale, F.; Seeman, J.; Shen, Z.-X.; Shenoy, g.; Schoenlein, B.; Shen, Q.; Stephenson, B.; Stohr, J.; Zholents, A.

2008-12-01T23:59:59.000Z

89

Science and Technology of Future Light Sources  

SciTech Connect (OSTI)

Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, Janos; Long, Danielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z.-X.; Schenoy, Gopal; Schoenlein, Bob; Shen, Qun; Stephenson, Brian; St& #246; hr, Joachim; Zholents, Alexander

2009-01-28T23:59:59.000Z

90

BNL ACTIVITIES IN ADVANCED NEUTRON SOURCE DEVELOPMENT: PAST AND PRESENT  

SciTech Connect (OSTI)

Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In the sections below the authors discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

HASTINGS,J.B.; LUDEWIG,H.; MONTANEZ,P.; TODOSOW,M.; SMITH,G.C.; LARESE,J.Z.

1998-06-14T23:59:59.000Z

91

BNL Activities in Advanced Neutron Source Development: Past and Present  

SciTech Connect (OSTI)

Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In this report we discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

Hastings, J.B.; Ludewig, H.; Montanez, P.; Todosow, M.; Smith, G.C.; Larese, J.Z.

1998-06-14T23:59:59.000Z

92

Plasma-based EUV light source  

DOE Patents [OSTI]

Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

Shumlak, Uri (Seattle, WA); Golingo, Raymond (Seattle, WA); Nelson, Brian A. (Mountlake Terrace, WA)

2010-11-02T23:59:59.000Z

93

LightSource Renewables | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy Co Ltd JumpLightSource Renewables Jump to:

94

ADVANCES IN MODELING OF GROUND-SOURCE HEAT  

E-Print Network [OSTI]

ADVANCES IN MODELING OF GROUND-SOURCE HEAT PUMP SYSTEMS By ANDREW D. CHIASSON Bachelor of Applied 1999 #12;ii ADVANCES IN MODELING OF GROUND-SOURCE HEAT PUMP SYSTEMS Thesis Approved: Thesis Adviser..............................................................................................................1 1.1. Overview of Ground-Source Heat Pump Systems ..............................................1 1

95

Advanced Technology Light Duty Diesel Aftertreatment System ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Approach to Low Temperature NOx Emission Abatement Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

96

advanced neutron source: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSR Microbunching Zhirong Huang and Kwang302 Advanced Photon Source Derivation: KJK Application: ZRH Based on ZRH & KJK Main References SSY (Saldin, Schneidmiller,...

97

advanced neutron sources: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSR Microbunching Zhirong Huang and Kwang302 Advanced Photon Source Derivation: KJK Application: ZRH Based on ZRH & KJK Main References SSY (Saldin, Schneidmiller,...

98

National Synchrotron Light Source 2008 Activity Report  

SciTech Connect (OSTI)

Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for work explaining how one class of proteins helps to generate nerve impulses.

Nasta,K.

2009-05-01T23:59:59.000Z

99

ADVANCED PHOTON SOURCE Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC  

E-Print Network [OSTI]

activation of cancer cell growth by naturally occurring estrogen in a woman's body. Research at the APS Synchrotron Radiation Lightsource, and the Advanced Light Source, researchers have achieved a significant

Kemner, Ken

100

ENVIRONMENTAL ASSESSMENT NATIONAL SYNCHROTRON LIGHT SOURCE-II  

E-Print Network [OSTI]

ENVIRONMENTAL ASSESSMENT FOR NATIONAL SYNCHROTRON LIGHT SOURCE-II (NSLS-II) BROOKHAVEN NATIONAL..............................................................................................11 4.1.1 Building Site Location ............................................................................20 5.9 Natural Hazards

Ohta, Shigemi

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Inorganic volumetric light source excited by ultraviolet light  

DOE Patents [OSTI]

The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.

Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.

1994-04-26T23:59:59.000Z

102

Inorganic volumetric light source excited by ultraviolet light  

DOE Patents [OSTI]

The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light.

Reed, Scott (Albuquerue, NM); Walko, Robert J. (Albuquerue, NM); Ashley, Carol S. (Albuquerue, NM); Brinker, C. Jeffrey (Albuquerue, NM)

1994-01-01T23:59:59.000Z

103

Metal Model Mimics Metalloenzymes | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergy StorageAdvanced Materials Advanced Materials

104

Phosphor-Free Solid State Light Sources  

SciTech Connect (OSTI)

The objective of this work was to demonstrate a light emitting diode that emitted white light without the aid of a phosphor. The device was based on the combination of a nitride LED and a fluorescing ZnO substrate. The early portion of the work focused on the growth of ZnO in undoped and doped form. The doped ZnO was successfully engineered to emit light at specific wavelengths by incorporating various dopants into the crystalline lattice. Thereafter, the focus of the work shifted to the epitaxial growth of nitride structures on ZnO. Initially, the epitaxy was accomplished with molecular beam epitaxy (MBE). Later in the program, metallorganic chemical vapor deposition (MOCVD) was successfully used to grow nitrides on ZnO. By combining the characteristics of the doped ZnO substrate with epitaxially grown nitride LED structures, a phosphor-free white light emitting diode was successfully demonstrated and characterized.

Jeff E. Nause; Ian Ferguson; Alan Doolittle

2007-02-28T23:59:59.000Z

105

APS Document Central | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2AP-XPS MeasuresIrradiationAdvancedAPS

106

Advanced Photon Source Storage Ring Weekly Status  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home GroupISM

107

NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 1998.  

SciTech Connect (OSTI)

In FY 1998, following the 50th Anniversary Year of Brookhaven National Laboratory, Brookhaven Science Associates became the new Managers of BNL. The new start is an appropriate time to take stock of past achievements and to renew or confirm future goals. During the 1998 NSLS Annual Users Meeting (described in Part 3 of this Activity Report), the DOE Laboratory Operations Board, Chaired by the Under Secretary for Energy, Ernest Moniz met at BNL. By chance all the NSLS Chairmen except Martin Blume (acting NSLS Chair 84-85) were present as recorded in the picture. Under their leadership the NSLS has improved dramatically: (1) The VUV Ring current has increased from 100 mA in October 1982 to nearly 1 A today. For the following few years 10 Ahrs of current were delivered most weeks - NSLS now exceeds that every day. (2) When the first experiments were performed on the X-ray ring during FY1985 the electron energy was 2 GeV and the current up to 100 mA - the X-Ray Ring now runs routinely at 2.5 GeV and at 2.8 GeV with up to 350 mA of current, with a very much longer beam half-life and improved reliability. (3) Starting in FY 1984 the proposal for the Phase II upgrade, mainly for a building extension and a suite of insertion devices and their associated beamlines, was pursued - the promises were delivered in full so that for some years now the NSLS has been running with two undulators in the VUV Ring and three wigglers and an undulator in the X-Ray Ring. In addition two novel insertion devices have been commissioned in the X13 straight. (4) At the start of FY 1998 the NSLS welcomed its 7000th user - attracted by the opportunity for pursuing research with high quality beams, guaranteed not to be interrupted by 'delivery failures', and welcomed by an efficient and caring user office and first class teams of PRT and NSLS staff. R & D have lead to the possibility of running the X-Ray Ring at the higher energy of 2.8 GeV. Figure 1 shows the first user beam, which was provided thereafter for half of the running time in FY 1998. In combination with the development of narrow gap undulators this mode opens the possibility of new undulators which could produce hard X-rays in the fundamental, perhaps up to 10 keV. On 27 September 1998, a low horizontal emittance lattice became operational at 2.584 GeV. This results in approximately a 50% decrease in the horizontal beam-size on dipole bending magnet beamlines, and somewhat less of a decrease on the insertion device lines. The beam lifetime is not degraded by the low emittance lattice. This represents an important achievement, enhancing for all users the x-ray ring brightness. The reduced horizontal emittance electron beam will produce brighter x-ray beams for all the beamlines, both bending magnets and insertion devices, adding to other recent increases in the X-Ray ring brightness. During FY 1999 users will gain experience of the new running mode and plans are in place to do the same at 2.8GeV during further studies sessions. Independent evidence of the reduced emittance is shown in Figure 2. This is a pinhole camera scan showing the X-ray beam profile, obtained on the diagnostic beamline X28. Finally, work has begun to update and refine the proposal of the Phase III upgrade endorsed by the Birgeneau panel and BESAC last year. With the whole NSLS facility in teenage years and with many demonstrated enhancements available, the time has come to herald in the next stage of life at the Light Source.

ROTHMAN,E.

1999-05-01T23:59:59.000Z

108

Advanced RF power sources for linacs  

SciTech Connect (OSTI)

In order to maintain a reasonable over-all length at high center-of-mass energy, the main linac of an electron-positron linear collider must operate at a high accelerating gradient. For copper (non-superconducting) accelerator structures, this implies a high peak power per unit length and a high peak power per RF source, assuming a limited number of discrete sources are used. To provide this power, a number of devices are currently under active development or conceptual consideration: conventional klystrons with multi-cavity output structures, gyroklystrons, magnicons, sheet-beam klystrons, multiple-beam klystrons and amplifiers based on the FEL principle. To enhance the peak power produced by an rf source, the SLED rf pulse compression scheme is currently in use on existing linacs, and new compression methods that produce a flatter output pulse are being considered for future linear colliders. This paper covers the present status and future outlook for the more important rf power sources and pulse compression systems. It should be noted that high gradient electron linacs have applications in addition to high-energy linear colliders; they can, for example, serve as compact injectors for FEL`s and storage rings.

Wilson, P.B.

1996-10-01T23:59:59.000Z

109

Issues affecting advanced passive light-water reactor safety analysis  

SciTech Connect (OSTI)

Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented.

Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

1992-01-01T23:59:59.000Z

110

Issues affecting advanced passive light-water reactor safety analysis  

SciTech Connect (OSTI)

Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented.

Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

1992-08-01T23:59:59.000Z

111

Designing subwavelength-structured light sources  

E-Print Network [OSTI]

The laser has long been established as the best possible optical source for fundamental studies and applications requiring high field intensity, single mode operation, a high degree of coherence, a narrow linewidth and ...

Chua, Song Liang

2013-01-01T23:59:59.000Z

112

Advanced Neutron Source (ANS) Project Progress report, FY 1991  

SciTech Connect (OSTI)

This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

Campbell, J.H. [ed.] [Oak Ridge National Lab., TN (United States); Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., (United States). Engineering Division

1992-01-01T23:59:59.000Z

113

Advanced Neutron Source (ANS) Project Progress report, FY 1991  

SciTech Connect (OSTI)

This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

Campbell, J.H. (ed.) (Oak Ridge National Lab., TN (United States)); Selby, D.L.; Harrington, R.M. (Oak Ridge National Lab., TN (United States)); Thompson, P.B. (Martin Marietta Energy Systems, Inc., (United States). Engineering Division)

1992-01-01T23:59:59.000Z

114

Lighting system combining daylight concentrators and an artificial source  

DOE Patents [OSTI]

A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.

Bornstein, Jonathan G. (Miami, FL); Friedman, Peter S. (Toledo, OH)

1985-01-01T23:59:59.000Z

115

Large area, surface discharge pumped, vacuum ultraviolet light source  

DOE Patents [OSTI]

Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

Sze, R.C.; Quigley, G.P.

1996-12-17T23:59:59.000Z

116

Large area, surface discharge pumped, vacuum ultraviolet light source  

DOE Patents [OSTI]

Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.

Sze, Robert C. (Santa Fe, NM); Quigley, Gerard P. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

117

A Next Generation Light Source Facility at LBNL  

E-Print Network [OSTI]

LIGHT SOURCE FACILITY AT LBNL * J.N. Corlett # , B. Austin,R. Wilcox, J. Wurtele, LBNL, Berkeley, CA94720, U.S.A. A.concept, under development at LBNL, for a multi- beamline

Corlett, J.N.

2011-01-01T23:59:59.000Z

118

Experiments with radioactive samples at the Advanced Photon Source.  

SciTech Connect (OSTI)

The Advanced Photon Source (APS) at Argonne National Laboratory is a national synchrotron-radiation light source research facility. The 7 GeV electron Storage Ring is currently delivering intense high brilliance x-ray beams to a total of 34 beamlines with over 120 experiment stations to members of the international scientific community to carry out forefront basic and applied research in several scientific disciplines. Researchers come to the APS either as members of Collaborative Access Teams (CATs) or as Independent Investigators (IIs). Collaborative Access Teams comprise large number of investigators from universities, industry, and research laboratories with common research objectives. These teams are responsible for the design, construction, finding, and operation of beamlines. They are the owners of their experimental enclosures (''hutches'') designed and built to meet their specific research needs. Fig. 1 gives a plan view of the location of the Collaborative Access Teams by Sector and Discipline. In the past two years, over 2000 individual experiments were conducted at the APS facility. Of these, about 60 experiments involved the use of radioactive samples, which is less than 3% of the total. However, there is an increase in demand for experiment stations to accommodate the use of radioactive samples in different physical forms embedded in various matrices with activity levels ranging from trace amounts of naturally occurring radionuclides to MBq (mCi) quantities including transuranics. This paper discusses in some detail the steps in the safety review process for experiments involving radioactive samples and how ALARA philosophy is invoked at each step and implemented.

Veluri, V. R.; Justus, A.; Glagola, B.; Rauchas, A.; Vacca, J.

2000-11-01T23:59:59.000Z

119

Synchronization System for Next Generation Light Sources  

SciTech Connect (OSTI)

An alternative synchronization technique one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

Zavriyev, Anton

2014-03-27T23:59:59.000Z

120

Absolute Calibration of a Large-diameter Light Source  

E-Print Network [OSTI]

A method of absolute calibration for large aperture optical systems is presented, using the example of the Pierre Auger Observatory fluorescence detectors. A 2.5 m diameter light source illuminated by an ultra--violet light emitting diode is calibrated with an overall uncertainty of 2.1 % at a wavelength of 365 nm.

Brack, J T; Dorofeev, A; Gookin, B; Harton, J L; Petrov, Y; Rovero, A C

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

High Energy Density Science at the Linac Coherent Light Source  

SciTech Connect (OSTI)

High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded descriptions (Ch. V), and a more detailed plans for experiments (Ch. VI), highlighting the uniqueness the HEDS endstation will play in providing mission-relevant HED data and in the development of the field. One of the more exciting aspects of NNSA-relevant experiments on LCLS is that, given the extraordinary investment and consequent advances in accurate atomic-scale simulations of matter (to a large extent via the Accelerated Scientific Computing program sponsored by NNSA), the facility will provide a platform that, for the first time, will permit experiments in the regimes of interest at the time and spatial scales of the simulations. In Chapter III, the report places the potential of LCLS with an HED science endstation in the context of science required by NNSA, as well as explicating the relationship of NNSA and HED science in general. Chapter IV discusses 4th-generation light sources, like LCLS, in the context of other laboratory technologies presently utilized by NNSA. The report concludes, noting that an HED endstation on LCLS can provide access to data in regimes that are relevant to NNSA needs but no mechanism exists for providing such data. The endstation will also serve to build a broad-based community in the 'X-Games' of physics. The science generated by the facility will be a collaboration of NNSA-based laboratory scientists and university-based researchers. The LCLS endstation fulfills the need for an intermediate-scale facility capable of delivering fundamental advances and mission-relevant research in high energy density science.

Lee, R W

2007-10-19T23:59:59.000Z

122

Industry Group Learns About Light Source Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348ASSEMBLY [ICO]Industry Group Learns About Light

123

Sixth users meeting for the Advanced Photon Source: Proceedings  

SciTech Connect (OSTI)

Scientists and engineers from universities, industry, and national laboratories came to review the status of the facility and to look ahead to the types of forefront science that will be possible when the APS is completed. The presentations at the meeting included an overview of the project, advances in synchrotron radiation applications, and technical developments at the APS. The actions taken at the 1994 Business Meeting of the Advanced Photon Source Users Organization are also documented here.

NONE

1994-12-01T23:59:59.000Z

124

Advanced Photon Source (APS) | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

Syncrotron Light Source (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects...

125

National Synchrotron Light Source annual report 1991  

SciTech Connect (OSTI)

This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

Hulbert, S.L.; Lazarz, N.M. (eds.)

1992-04-01T23:59:59.000Z

126

Light source employing laser-produced plasma  

DOE Patents [OSTI]

A system and a method of generating radiation and/or particle emissions are disclosed. In at least some embodiments, the system includes at least one laser source that generates a first pulse and a second pulse in temporal succession, and a target, where the target (or at least a portion the target) becomes a plasma upon being exposed to the first pulse. The plasma expand after the exposure to the first pulse, the expanded plasma is then exposed to the second pulse, and at least one of a radiation emission and a particle emission occurs after the exposure to the second pulse. In at least some embodiments, the target is a solid piece of material, and/or a time period between the first and second pulses is less than 1 microsecond (e.g., 840 ns).

Tao, Yezheng; Tillack, Mark S

2013-09-17T23:59:59.000Z

127

Advanced radioisotope power source options for Pluto Express  

SciTech Connect (OSTI)

In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors.

Underwood, M.L. [California Inst. of Technology, Pasadena, CA (United States). Jet Propulsion Lab.

1995-12-31T23:59:59.000Z

128

Noise source identification techniques: simple to advanced applications  

E-Print Network [OSTI]

required. Practical application examples ranging from hearing aids to wind turbines are presented to optimise the noise emission from a wide range of products including vehicles, household goods and windNoise source identification techniques: simple to advanced applications K.B. Ginn and K. Haddad Br

Paris-Sud XI, Université de

129

Advanced Neutrino Sources (Neutrino Factories and Beta Beams)  

E-Print Network [OSTI]

Advanced Neutrino Sources (Neutrino Factories and Beta Beams) · Design · R&D Status · Remaining R Meeting February, 2008 page 1 #12;· The stored beam properties & decay kinematics are well known uncertainties on neutrino flux & spectra are small PRECISION · Initial beams are flavor "pure" (BB) or "tagged

130

National Syncrotron Light Source (NSLS-II) | U.S. DOE Office...  

Office of Science (SC) Website

Syncrotron Light Source (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects...

131

Linac Coherent Light Source (LCLS) | U.S. DOE Office of Science...  

Office of Science (SC) Website

Syncrotron Light Source (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects...

132

X-Ray Light Sources | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Syncrotron Light Source (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects...

133

The Consortium for Advanced Simulation of Light Water Reactors  

SciTech Connect (OSTI)

The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

Ronaldo Szilard; Hongbin Zhang; Doug Kothe; Paul Turinsky

2011-10-01T23:59:59.000Z

134

Localization of gravitational wave sources with networks of advanced detectors  

SciTech Connect (OSTI)

Coincident observations with gravitational wave (GW) detectors and other astronomical instruments are among the main objectives of the experiments with the network of LIGO, Virgo, and GEO detectors. They will become a necessary part of the future GW astronomy as the next generation of advanced detectors comes online. The success of such joint observations directly depends on the source localization capabilities of the GW detectors. In this paper we present studies of the sky localization of transient GW sources with the future advanced detector networks and describe their fundamental properties. By reconstructing sky coordinates of ad hoc signals injected into simulated detector noise, we study the accuracy of the source localization and its dependence on the strength of injected signals, waveforms, and network configurations.

Klimenko, S.; Mitselmakher, G.; Pankow, C. [University of Florida, P.O. Box 118440, Gainesville, Florida, 32611 (United States); Vedovato, G. [INFN, Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Drago, M.; Prodi, G. [University of Trento, Physics Department and INFN, Gruppo Collegato di Trento, via Sommarive 14, 38123 Povo, Trento (Italy); Mazzolo, G.; Salemi, F. [Max Planck Institut fuer Gravitationsphysik, Callinstrasse 38, 30167 Hannover and Leibniz Universitaet Hannover, Hannover (Germany); Re, V. [INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Yakushin, I. [LIGO Livingston Observatory, Louisiana (United States)

2011-05-15T23:59:59.000Z

135

Theoretical investigation of a tunable free-electron light source  

SciTech Connect (OSTI)

The concept and experimental results of a light source given in a recent paper by Adamo et al.[Phys. Rev. Lett. 103, 113901 (2009)] are very interesting and attractive. Our paper presents detailed theoretical investigations on such a light source, and our results confirm that the mechanism of the light radiation experimentally detected in the published paper is a special kind of diffraction radiation in a waveguide with nanoscale periodic structure excited by an electron beam. The numerical calculations based on our theory and digital simulations agree well with the experimental results. This mechanism of diffraction radiation is of significance in physics and optics, and may bring good opportunities for the generation of electromagnetic waves from terahertz to light frequency regimes.

Liu Shenggang; Hu Min; Zhang Yaxin; Liu Weihao; Zhang Ping; Zhou Jun [Terahertz Research Center, University of Electronic Science and Technology of China, Chengdu 610054 (China)

2011-06-15T23:59:59.000Z

136

High efficiency light source using solid-state emitter and down-conversion material  

DOE Patents [OSTI]

A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

Narendran, Nadarajah (Clifton Park, NY); Gu, Yimin (Troy, NY); Freyssinier, Jean Paul (Troy, NY)

2010-10-26T23:59:59.000Z

137

Invited Review Article: Advanced light microscopy for biological space research  

SciTech Connect (OSTI)

As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

De Vos, Winnok H., E-mail: winnok.devos@uantwerpen.be [Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp (Belgium); Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, Ghent (Belgium); Beghuin, Didier [Lambda-X, Nivelles (Belgium); Schwarz, Christian J. [European Space Agency (ESA), ESTEC, TEC-MMG, Noordwijk (Netherlands); Jones, David B. [Institute for Experimental Orthopaedics and Biomechanics, Philipps University, Marburg (Germany); Loon, Jack J. W. A. van [Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center and Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam (Netherlands); Bereiter-Hahn, Juergen; Stelzer, Ernst H. K. [Physical Biology, BMLS (FB15, IZN), Goethe University, Frankfurt am Main (Germany)

2014-10-15T23:59:59.000Z

138

The impact of passive safety systems on desirability of advanced light water reactors  

E-Print Network [OSTI]

This work investigates whether the advanced light water reactor designs with passive safety systems are more desirable than advanced reactor designs with active safety systems from the point of view of uncertainty in the ...

Eul, Ryan C

2006-01-01T23:59:59.000Z

139

E-Print Network 3.0 - advanced light-water nuclear Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by Explorit Topic List Advanced Search Sample search results for: advanced light-water nuclear Page: << < 1 2 3 4 5 > >> 1 1 Managed by UT-Battelle for the U.S. Department...

140

Superconducting RF Linac Technology for ERL Light Sources  

SciTech Connect (OSTI)

Energy Recovering Linacs (ERLs) offer an attractive alternative as drivers for light sources as they combine the desirable characteristics of both storage rings (high efficiency) and linear accelerators (superior beam quality). Using superconducting RF technology allows ERLs to operate more efficiently because of the inherent characteristics of SRF linacs, namely that they are high gradient-low impedance structures and their ability to operate in the long pulse or CW regime. We present an overview of the physics challenges encountered in the design and operation of ERL based light sources with particular emphasis on those issues related to SRF technology. These challenges include maximizing a cavity???????¢????????????????s Qo to increase cryogenic efficiency, maintaining control of the cavity field in the presence of the highest feasible loaded Q and providing adequate damping of the higher-order modes (HOMs). If not sufficiently damped, dipole HOMs can drive the multipass beam breakup (BBU) instability which ERLs are particularly susceptible to. Another challenge involves efficiently extracting the potentially large amounts of HOM power that are generated when a bunch traverses the SRF cavities and which may extend over a high range of frequencies. We present experimental data from the Jefferson Lab FEL Upgrade, a 10 mA ERL light source presently in operation, aimed at addressing some of these issues. We conclude with an outlook towards the future of ERL based light sources.

Chris Tennant

2005-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

National Synchrotron Light Source II Project Progress Report  

E-Print Network [OSTI]

Upton, New York 11973 #12;NSLS-II PROJECT DIRECTOR'S ASSESSMENT MAY 2010 OVERALL ASSESSMENT The National Synchrotron Light Source II project maintained excellent technical progress and satisfactory cost and schedule, power supplies, and electronics is making excellent progress. The preliminary designs of the six project

Ohta, Shigemi

142

National Synchrotron Light Source annual report 1991. Volume 2, October 1, 1990--September 30, 1991  

SciTech Connect (OSTI)

This report contains abstracts from research conducted at the national synchrotron light source. (LSP)

Hulbert, S.L.; Lazarz, N.N. [eds.

1992-04-01T23:59:59.000Z

143

E-Print Network 3.0 - advanced blue light Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Biology and Medicine 32 List of publications International Journals Summary: light-emitting diode. Advanced Functional Materials, Vol. 14, p. 677 (2004). B. de Boer, A....

144

Funding Opportunity for Solid-State Lighting Advanced Technology R&D 2014  

Broader source: Energy.gov [DOE]

On December 6, 2013, DOE announced solid-state lighting funding opportunity DE-FOA-0000973, "Solid-State Lighting Advanced Technology R&D - 2014." A total of up to $10 million in funding is...

145

Innovative Development of Next Generation and Energy Efficient Solid State Light Sources for General Illumination  

SciTech Connect (OSTI)

This two year program resulted in a novel broadband spectrally dynamic solid state illumination source (BSDLED) that uses a dual wavelength light emitting diode (LED) and combinations of phosphors to create a broadband emission that is real-time controllable. Four major focuses of this work were as follows: (1) creation of a two terminal dual wavelength LED with control of the relative intensities of the two emission peaks, (2) bandgap modeling of the two terminal dual LED to explain operation based on the doping profile, (3) novel use of phosphor combinations with dual LEDs to create a broadband spectral power distribution that can be varied to mimic a blackbody radiator over a certain range and (4) investigation of novel doping schemes to create tunnel junctions or equivalent buried current spreading layers in the III-nitrides. Advances were achieved in each of these four areas which could lead to more efficient solid state light sources with greater functionality over existing devices. The two-terminal BSDLED is an important innovation for the solid-state lighting industry as a variable spectrum source. A three-terminal dual emitter was also investigated and appears to be the most viable approach for future spectrally dynamic solid state lighting sources. However, at this time reabsorption of emission between the two active regions limits the usefulness of this device for illumination applications.

Ian Ferguson

2006-07-31T23:59:59.000Z

146

Environmental Remediation Science at Beamline X26A at the National Synchrotron Light Source- Final Report  

SciTech Connect (OSTI)

The goal of this project was to provide support for an advanced X-ray microspectroscopy facility at the National Synchrotron Light Source, Brookhaven National Laboratory. This facility is operated by the University of Chicago and the University of Kentucky. The facility is available to researchers at both institutions as well as researchers around the globe through the general user program. This facility was successfully supported during the project period. It provided access to advanced X-ray microanalysis techniques which lead to fundamental advances in understanding the behavior of contaminants and geochemistry that is applicable to environmental remediation of DOE legacy sites as well as contaminated sites around the United States and beyond.

Bertsch, Paul

2013-11-07T23:59:59.000Z

147

Kwang-Je Kim, 7/3/02 Advanced Photon Source Analysis of CSR  

E-Print Network [OSTI]

/3/02 Advanced Photon Source · Derivation: KJK · Application: ZRH Based on ZRH & KJK Main References SSY (Saldin

148

Science and Technology of Future Light Sources: A White Paper  

SciTech Connect (OSTI)

Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects (Figure 1.1). The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, a= Janos; Long, Gabrielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z.-X.; Shenoy, Gopal; Schoenlein, Bob; Shen, Qun; /Argonne /Brookhaven /LBL, Berkeley /SLAC, SSRL

2009-02-03T23:59:59.000Z

149

Phase II beam lines at the National Synchrotron Light Source  

SciTech Connect (OSTI)

The expansion of the National Synchrotron Light Source has been funded by the US Department of Energy. The Phase II program consists of both increased conventional facilities and six new beam lines. In this paper, an overview of the six beam lines which will be constructed during Phase II is presented. For five of the lines special radiation sources are necessary and the designs of four of the devices are complete. The relevant parameters of the insertion devices under construction and development are presented.

Thomlinson, W.

1984-06-01T23:59:59.000Z

150

The Development of the Linac Coherent Light Source RF Gun  

E-Print Network [OSTI]

The Linac Coherent Light Source (LCLS) is the first x-ray laser user facility based upon a free electron laser (FEL). In addition to many other stringent requirements, the LCLS XFEL requires extraordinary beam quality to saturate at 1.5 angstroms within a 100 meter undulator.[1] This new light source is using the last kilometer of the three kilometer linac at SLAC to accelerate the beam to an energy as high as 13.6 GeV and required a new electron gun and injector to produce a very bright beam for acceleration. At the outset of the project it was recognized that existing RF guns had the potential to produce the desired beam but none had demonstrated it. This paper describes the analysis and design improvements of the BNL/SLAC/UCLA s-band gun leading to achievement of the LCLS performance goals.

Dowell, David H; Lewandowski, James; Limborg-Deprey, Cecile; Li, Zenghai; Schmerge, John; Vlieks, Arnold; Wang, Juwen; Xiao, Liling

2015-01-01T23:59:59.000Z

151

Abstracts of papers presented at SRI '95 Status of the Advanced Photon Source at Argonne National  

E-Print Network [OSTI]

Abstracts of papers presented at SRI '95 Status of the Advanced Photon Source at Argonne National Laboratory David E. Moncton Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 Presented on 18 October 1995 The Advanced Photon Source at Argonne National Laboratory is a third

152

Electron Beam Collimation for the Next Generation Light Source  

SciTech Connect (OSTI)

The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

2013-05-20T23:59:59.000Z

153

Light source comprising a common substrate, a first led device and a second led device  

DOE Patents [OSTI]

At least one stacked organic or polymeric light emitting diode (PLEDs) devices to comprise a light source is disclosed. At least one of the PLEDs includes a patterned cathode which has regions which transmit light. The patterned cathodes enable light emission from the PLEDs to combine together. The light source may be top or bottom emitting or both.

Choong, Vi-En (Carlsbad, CA)

2010-02-23T23:59:59.000Z

154

Advancements in sensing and perception using structured lighting techniques :an LDRD final report.  

SciTech Connect (OSTI)

This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Advancements in Sensing and Perception using Structured Lighting Techniques''. There is an ever-increasing need for robust, autonomous ground vehicles for counterterrorism and defense missions. Although there has been nearly 30 years of government-sponsored research, it is undisputed that significant advancements in sensing and perception are necessary. We developed an innovative, advanced sensing technology for national security missions serving the Department of Energy, the Department of Defense, and other government agencies. The principal goal of this project was to develop an eye-safe, robust, low-cost, lightweight, 3D structured lighting sensor for use in broad daylight outdoor applications. The market for this technology is wide open due to the unavailability of such a sensor. Currently available laser scanners are slow, bulky and heavy, expensive, fragile, short-range, sensitive to vibration (highly problematic for moving platforms), and unreliable for outdoor use in bright sunlight conditions. Eye-safety issues are a primary concern for currently available laser-based sensors. Passive, stereo-imaging sensors are available for 3D sensing but suffer from several limitations : computationally intensive, require a lighted environment (natural or man-made light source), and don't work for many scenes or regions lacking texture or with ambiguous texture. Our approach leveraged from the advanced capabilities of modern CCD camera technology and Center 6600's expertise in 3D world modeling, mapping, and analysis, using structured lighting. We have a diverse customer base for indoor mapping applications and this research extends our current technology's lifecycle and opens a new market base for outdoor 3D mapping. Applications include precision mapping, autonomous navigation, dexterous manipulation, surveillance and reconnaissance, part inspection, geometric modeling, laser-based 3D volumetric imaging, simultaneous localization and mapping (SLAM), aiding first responders, and supporting soldiers with helmet-mounted LADAR for 3D mapping in urban-environment scenarios. The technology developed in this LDRD overcomes the limitations of current laser-based 3D sensors and contributes to the realization of intelligent machine systems reducing manpower need.

Novick, David Keith; Padilla, Denise D.; Davidson, Patrick A. Jr. (.; .); Carlson, Jeffrey J.

2005-09-01T23:59:59.000Z

155

Shielding design for the proposed Advanced Photon Source at Argonne  

SciTech Connect (OSTI)

Bulk shielding was designed for the proposed Argonne Advanced Photon Source. The shielding is for two linacs, the positron converter, booster synchrotron, and the storage ring. Shielding design limits exposure to 20 mrem/wk for occupational and 25 mrem/y for an individual member of the public from the radiation products, which include high energy neutrons (HEN), giant resonance neutrons (GRN), and Bremsstrahlung radiation (BR). The beam loss parameters at various components were estimated. Dose rates were computed for continuous loss during beam decay using an empirical method. Normal operational losses and certain accidental beam losses were also considered.

Moe, H.J.; Veluri, V.R.

1987-01-01T23:59:59.000Z

156

Boron-Containing Red Light-Emitting Phosphors And Light Sources Incorporating The Same  

DOE Patents [OSTI]

A boron-containing phosphor comprises a material having a formula of AD1-xEuxB9O16, wherein A is an element selected from the group consisting of Ba, Sr, Ca, Mg, and combinations thereof; D is at least an element selected from the group consisting of rare-earth metals other than europium; and x is in the range from about 0.005 to about 0.5. The phosphor is used in a blend with other phosphors in a light source for generating visible light with a high color rendering index.

Srivastava, Alok Mani (Niskayuna, NY); Comanzo, Holly Ann (Niskayuna, NY); Manivannan, Venkatesan (Clifton Park, NY)

2006-03-28T23:59:59.000Z

157

ADVANCED LIGHT SOURCE DIVISION PY-2006 SELF-ASSESSMENT REPORT  

E-Print Network [OSTI]

. Executive Summary The ALS' overall environment, safety and health (ES&H) goal is to conduct all operations

Knowles, David William

158

Refrigeration options for the Advanced Light Source Superbend Dipole Magnets  

E-Print Network [OSTI]

The photon energy in selected ports can be increased byenergy is 1.9 GeV. These photons can be delivered to users through forty-eight ports

Green, M.A.

2011-01-01T23:59:59.000Z

159

Modeling in Control of the Advanced Light Source  

E-Print Network [OSTI]

to beam position monitors (BPM's) and correctors. In set-uses ideal betas and phases at the BPM'. and correctorsmodel and readings from the BPM'. to compute new corrector

Bengtsson, J.

2011-01-01T23:59:59.000Z

160

Optical Beam Timing Monitor Experiments at the Advanced Light Source  

E-Print Network [OSTI]

compensated fiber TT>- -T BPM (Z~ Fig.2. Experimental setuplocked Laser E.O. Mod. BPM Scope PD Fig.4. Block diagram ofpossible bandwidth out of our BPM's. INITIAL E X P E R I M E

Byrd, John; De Santis, Stefano; Wilcox, Rusell; Yan, Yin

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

GE Uses DOE Advanced Light Sources to Develop Revolutionary Battery  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut Regions National Science2 FusionSCGF(SC)Technology

162

Installing a Light Source 'Racetrack' | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About32 InspectionSummaryInstalling a Light Source

163

Broadband visible light source based on AllnGaN light emitting diodes  

DOE Patents [OSTI]

A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.

Crawford, Mary H.; Nelson, Jeffrey S.

2003-12-16T23:59:59.000Z

164

Advanced Neutron Source Reactor thermal analysis of fuel plate defects  

SciTech Connect (OSTI)

The Advanced Neutron Source Reactor (ANSR) is a research reactor designed to provide the highest continuous neutron beam intensity of any reactor in the world. The present technology for determining safe operations were developed for the High Flux Isotope Reactor (HFIR). These techniques are conservative and provide confidence in the safe operation of HFIR. However, the more intense requirements of ANSR necessitate the development of more accurate, but still conservative, techniques. This report details the development of a Local Analysis Technique (LAT) that provides an appropriate approach. Application of the LAT to two ANSR core designs are presented. New theories of the thermal and nuclear behavior of the U{sub 3}Si{sub 2} fuel are utilized. The implications of lower fuel enrichment and of modifying the inspection procedures are also discussed. Development of the computer codes that enable the automate execution of the LAT is included.

Giles, G.E.

1995-08-01T23:59:59.000Z

165

Advanced Neutron Source (ANS) Project progress report, FY 1994  

SciTech Connect (OSTI)

The President`s budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met.

Campbell, J.H.; King-Jones, K.H. [eds.; Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Central Engineering Services

1995-01-01T23:59:59.000Z

166

COLLOQUIUM: CASL: Consortium for Advanced Simulation of Light...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

light water reactors (LWRs). This environment, designated the Virtual Environment for Reactor Applications (VERA), incorporates science-based models, state-of-the-art numerical...

167

Intramolecular excimer emission as a blue light source in fluorescent organic light emitting diodes: a promising molecular design  

E-Print Network [OSTI]

Intramolecular excimer emission as a blue light source in fluorescent organic light emitting diodes Light Emitting Diode (OLED), intermolecular p­p interactions should be usually suppressed to avoid any Emitting Diodes (SMOLEDs) is almost absent from the literature. In this work, three aryl-substituted Di

Boyer, Edmond

168

New Directions in X-Ray Light Sources or Fiat Lux: what's under the dome and watching atoms with x-rays (LBNL Summer Lecture Series)  

ScienceCinema (OSTI)

Summer Lecture Series 2008: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

Falcone, Roger

2011-04-28T23:59:59.000Z

169

advanced light water: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SM top properties such as the cross-section has been suggested to give a handle for this stealth stop' scenario. We present an estimate of the potential impact a light stop may...

170

Toward Control of Matter: Basic Energy Science Needs for a New Class of X-Ray Light Sources  

SciTech Connect (OSTI)

Over the past quarter century, light-source user facilities have transformed research in areas ranging from gas-phase chemical dynamics to materials characterization. The ever-improving capabilities of these facilities have revolutionized our ability to study the electronic structure and dynamics of atoms, molecules, and even the most complex new materials, to understand catalytic reactions, to visualize magnetic domains, and to solve protein structures. Yet these outstanding facilities still have limitations well understood by their thousands of users. Accordingly, over the past several years, many proposals and conceptual designs for"next-generation" x-ray light sources have been developed around the world. In order to survey the scientific problems that might be addressed specifically by those new light sources operating below a photon energy of about 3 keV and to identify the scientific requirements that should drive the design of such facilities, a workshop"Science for a New Class of Soft X-Ray Light Sources" was held in Berkeley in October 2007. From an analysisof the most compelling scientific questions that could be identified and the experimental requirements for answering them, we set out to define, without regard to the specific technologies upon which they might be based, the capabilities such light sources would have to deliver in order to dramatically advance the state of research in the areas represented in the programs of the Department of Energy's Office of Basic Energy Sciences (BES). This report is based on the workshop presentations and discussions.

Arenholz, Elke; Belkacem, Ali; Cocke, Lew; Corlett, John; Falcone, Roger; Fischer, Peter; Fleming, Graham; Gessner, Oliver; Hasan, M. Zahid; Hussain, Zahid; Kevan, Steve; Kirz, Janos; McCurdy, Bill; Nelson, Keith; Neumark, Dan; Nilsson, Anders; Siegmann, Hans; Stocks, Malcolm; Schafer, Ken; Schoenlein, Robert; Spence, John; Weber, Thorsten

2008-09-24T23:59:59.000Z

171

Linac Coherent Light Source Undulator RF BPM System  

SciTech Connect (OSTI)

The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, and prototype test results.

Lill, R.M.; Morrison, L.H.; Waldschmidt, G.J.; Walters, D.R.; /Argonne; Johnson, R.; Li, Z.; Smith, S.; Straumann, T.; /SLAC

2007-04-17T23:59:59.000Z

172

Compact light source performance in recessed type luminaires  

SciTech Connect (OSTI)

Photometric comparisons were made with an indoor, recessed, type luminaire using incandescent, high intensity discharge and compact fluorescent lamps. The test results show substantial performance advantages, as expected, for the discharge light sources where the efficacy gains can be in the order for 400% even when including the ballast losses associated with the discharge lamps. The candlepower distribution patterns emerging from these luminaries are also different from those associated with the baseline incandescent lamps, and which are in some ways, even more desirable from a uniformity of illuminance perspective. A section on fluorescent lamp starting is also included which describes a system having excellent starting characteristics in terms of electrode starting temperature (RH/RC technique), proper operating frequency to minimize unwanted IR interactions, and satisfactory current crest factor values to help insure life performance.

Hammer, E.E.

1998-11-01T23:59:59.000Z

173

Semiconductor light source with electrically tunable emission wavelength  

DOE Patents [OSTI]

A semiconductor light source comprises a substrate, lower and upper claddings, a waveguide region with imbedded active area, and electrical contacts to provide voltage necessary for the wavelength tuning. The active region includes single or several heterojunction periods sandwiched between charge accumulation layers. Each of the active region periods comprises higher and lower affinity semiconductor layers with type-II band alignment. The charge carrier accumulation in the charge accumulation layers results in electric field build-up and leads to the formation of generally triangular electron and hole potential wells in the higher and lower affinity layers. Nonequillibrium carriers can be created in the active region by means of electrical injection or optical pumping. The ground state energy in the triangular wells and the radiation wavelength can be tuned by changing the voltage drop across the active region.

Belenky, Gregory (Port Jefferson, NY); Bruno, John D. (Bowie, MD); Kisin, Mikhail V. (Centereach, NY); Luryi, Serge (Setauket, NY); Shterengas, Leon (Centereach, NY); Suchalkin, Sergey (Centereach, NY); Tober, Richard L. (Elkridge, MD)

2011-01-25T23:59:59.000Z

174

An integrated source of broadband quadrature squeezed light  

E-Print Network [OSTI]

An integrated silicon nitride resonator is proposed as an ultra-compact source of bright single-mode quadrature squeezed light at 850 nm. Optical properties of the device are investigated and tailored through numerical simulations, with particular attention paid to loss associated with interfacing the device. An asymmetric double layer stack waveguide geometry with inverse vertical tapers is proposed for efficient and robust fibre-chip coupling, yielding a simulated total loss of -0.75 dB/facet. We assess the feasibility of the device through a full quantum noise analysis and derive the output squeezing spectrum for intra-cavity pump self-phase modulation. Subject to standard material loss and detection efficiencies, we find that the device holds promises for generating substantial quantum noise squeezing over a bandwidth exceeding 1 GHz. In the low-propagation loss regime, approximately -7 dB squeezing is predicted for a pump power of only 50 mW.

Hoff, Ulrich B; Andersen, Ulrik L

2015-01-01T23:59:59.000Z

175

Study of an HHG-Seeded Free-Electron Laser for the LBNL Next Generation Light Source  

E-Print Network [OSTI]

Electron Laser for the LBNL Next Generation Light SourceElectron Laser for the LBNL Next Generation Light SourceBerkeley National Laboratory (LBNL). The proposed facil- ity

Thompson, Neil

2011-01-01T23:59:59.000Z

176

Advanced neutron source reactor probabilistic flow blockage assessment  

SciTech Connect (OSTI)

The Phase I Level I Probabilistic Risk Assessment (PRA) of the conceptual design of the Advanced Neutron Source (ANS) Reactor identified core flow blockage as the most likely internal event leading to fuel damage. The flow blockage event frequency used in the original ANS PRA was based primarily on the flow blockage work done for the High Flux Isotope Reactor (HFIR) PRA. This report examines potential flow blockage scenarios and calculates an estimate of the likelihood of debris-induced fuel damage. The bulk of the report is based specifically on the conceptual design of ANS with a 93%-enriched, two-element core; insights to the impact of the proposed three-element core are examined in Sect. 5. In addition to providing a probability (uncertainty) distribution for the likelihood of core flow blockage, this ongoing effort will serve to indicate potential areas of concern to be focused on in the preliminary design for elimination or mitigation. It will also serve as a loose-parts management tool.

Ramsey, C.T.

1995-08-01T23:59:59.000Z

177

Fuel qualification plan for the Advanced Neutron Source Reactor  

SciTech Connect (OSTI)

This report describes the development and qualification plan for the fuel for the Advanced Neutron Source. The reference fuel is U{sub 3}Si{sub 2}, dispersed in aluminum and clad in 6061 aluminum. This report was prepared in May 1994, at which time the reference design was for a two-element core containing highly enriched uranium (93% {sup 235}U) . The reactor was in the process of being redesigned to accommodate lowered uranium enrichment and became a three-element core containing a higher volume fraction of uranium enriched to 50% {sup 235}U. Consequently, this report was not issued at that time and would have been revised to reflect the possibly different requirements of the lower-enrichment, higher-volume fraction fuel. Because the reactor is now being canceled, this unrevised report is being issued for archival purposes. The report describes the fabrication and inspection development plan, the irradiation tests and performance modeling to qualify performance, the transient testing that is part of the safety program, and the interactions and interfaces of the fuel development with other tasks.

Copeland, G.L.

1995-07-01T23:59:59.000Z

178

Fabrication development for the Advanced Neutron Source Reactor  

SciTech Connect (OSTI)

This report presents the fuel fabrication development for the Advanced Neutron Source (ANS) reactor. The fuel element is similar to that successfully fabricated and used in the High Flux Isotope Reactor (HFIR) for many years, but there are two significant differences that require some development. The fuel compound is U{sub 3}Si{sub 2} rather than U{sub 3}O{sub 8}, and the fuel is graded in the axial as well as the radial direction. Both of these changes can be accomplished with a straightforward extension of the HFIR technology. The ANS also requires some improvements in inspection technology and somewhat more stringent acceptance criteria. Early indications were that the fuel fabrication and inspection technology would produce a reactor core meeting the requirements of the ANS for the low volume fraction loadings needed for the highly enriched uranium design (up to 1.7 Mg U/m{sup 3}). Near the end of the development work, higher volume fractions were fabricated that would be required for a lower- enrichment uranium core. Again, results look encouraging for loadings up to {approx}3.5 Mg U/m{sup 3}; however, much less evaluation was done for the higher loadings.

Pace, B.W. [Babcock and Wilcox, Lynchburg, VA (United States); Copeland, G.L. [Oak Ridge National Lab., TN (United States)

1995-08-01T23:59:59.000Z

179

EA-0389: Proposed 7-GeV Advanced Photon Source, Argonne, Illinois  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal for construction and operation of a 6- to 7-GeV synchrotron radiation source known as the 7-GeV Advanced Photon Source atDOE's Argonne...

180

National Synchrotron Light Source guidelines for the conduct of operations  

SciTech Connect (OSTI)

To improve the quality and uniformity of operations at the Department of Energy`s facilities, the DOE issued Order 5480.19 ``Conduct of Operations Requirements at DOE facilities.`` This order recognizes that the success of a facilities mission critically depends upon a high level of performance by its personnel and equipment. This performance can be severely impaired if the facility`s Conduct of Operations pays inadequate attention to issues of organization, safety, health, and the environment. These guidelines are Brookhaven National Laboratory`s and the National Synchrotron Light Source`s acknowledgement of the principles of Conduct of Operations and the response to DOE Order 5480.19. These guidelines cover the following areas: (1) operations organization and administration; (2) shift routines and operating practices; (3) control area activities; (4) communications; (5) control of on-shift training; (6) investigation of abnormal events; (7) notifications; (8) control of equipment and system studies; (9) lockouts and tagouts; (10) independent verification; (11) log-keeping; (12) operations turnover; (13) operations aspects of facility process control (14) required reading; (15) timely orders to operators; (16) operations procedures; (17) operator aid posting; and (18) equipment sizing and labeling.

Buckley, M. [Brookhaven National Lab., Upton, NY (United States). National Synchrotron Light Source

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

UNIVERSITY OF COLORADO BOULDER Light from the Sun is the largest source of energy  

E-Print Network [OSTI]

's atmosphere. The Solar Influences group at LASP studies the light from the Sun and how it interacts · How solar light affects Earth's climate and atmosphere · The ways solar light affects space weatherUNIVERSITY OF COLORADO BOULDER Light from the Sun is the largest source of energy for Earth

Mojzsis, Stephen J.

182

DYNAMIC STRESS FIELD OF ADVANCED KINEMATIC SOURCE J. Burjanek and J. Zahradnik  

E-Print Network [OSTI]

DYNAMIC STRESS FIELD OF ADVANCED KINEMATIC SOURCE MODELS J. Burj´anek and J. Zahradn´ik Department@karel.troja.mff.cuni.cz / fax: +420-2-21912555 Recently, advanced theoretical kinematic source models have been developed, since wave field which follows widely accepted omega-squared model. As these models are purely kine- matic

Cerveny, Vlastislav

183

Advanced Neutron Source reactor control and plant protection systems design  

SciTech Connect (OSTI)

This paper describes the reactor control and plant protection systems' conceptual design of the Advanced Neutron Source (ANS). The Plant Instrumentation, Control, and Data Systems and the Reactor Instrumentation and Control System of the ANS are planned as an integrated digital system with a hierarchical, distributed control structure of qualified redundant subsystems and a hybrid digital/analog protection system to achieve the necessary fast response for critical parameters. Data networks transfer information between systems for control, display, and recording. Protection is accomplished by the rapid insertion of negative reactivity with control rods or other reactivity mechanisms to shut down the fission process and reduce heat generation in the fuel. The shutdown system is designed for high functional reliability by use of conservative design features and a high degree of redundance and independence to guard against single failures. Two independent reactivity control systems of different design principles are provided, and each system has multiple independent rods or subsystems to provide appropriate margin for malfunctions such as stuck rods or other single failures. Each system is capable of maintaining the reactor in a cold shutdown condition independently of the functioning of the other system. A highly reliable, redundant channel control system is used not only to achieve high availability of the reactor, but also to reduce challenges to the protection system by maintaining important plant parameters within appropriate limits. The control system has a number of contingency features to maintain acceptable, off-normal conditions in spite of limited control or plant component failures thereby further reducing protection system challenges.

Anderson, J.L.; Battle, R.E.; March-Leuba, J. (Oak Ridge National Lab., TN (United States)); Khayat, M.I. (Tennessee Univ., Knoxville, TN (United States))

1992-01-01T23:59:59.000Z

184

Consortium for Advanced Simulation of Light Water Reactors (CASL)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositional AccountExperience |Reactors TheAdvanced

185

Consortium for Advanced Simulation of Light Water Reactors (CASL)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositional AccountExperience |Reactors TheAdvancedHow

186

Consortium for Advanced Simulation of Light Water Reactors (CASL)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony | NationalMAMBA (MPO Advanced Model for

187

Consortium for Advanced Simulation of Light Water Reactors (CASL)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony | NationalMAMBA (MPO Advanced Model

188

Consortium for Advanced Simulation of Light Water Reactors (CASL)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony | NationalMAMBA (MPO Advanced

189

Consortium for Advanced Simulation of Light Water Reactors (CASL)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony | NationalMAMBA (MPO AdvancedResearch

190

Beam-based Feedback for the Linac Coherent Light Source  

SciTech Connect (OSTI)

Beam-based feedback control loops are required by the Linac Coherent Light Source (LCLS) program in order to provide fast, single-pulse stabilization of beam parameters. Eight transverse feedback loops, a 6 x 6 longitudinal feedback loop, and a loop to maintain the electron bunch charge were successfully prototyped in MATLAB for the LCLS, and have been maintaining stability of the LCLS electron beam at beam rates up to 30Hz. In the final commissioning phase of LCLS the beam will be operating at up to 120Hz. In order to run the feedback loops at beam rate, the feedback loops will be implemented in EPICS IOCs with a dedicated ethernet multi-cast network. This paper will discuss the design of the beam-based Fast Feedback System for LCLS. Topics include MATLAB feedback prototyping, algorithm for 120Hz feedback, network design for fast data transport, actuator and sensor design for single-pulse control and sensor readback, and feedback configuration and runtime control.

Fairley, D.; Allison, S.; Chevtsov, S.; Chu, P.; Decker, F.J.; Emma, P.; Frisch, J.; Himel, T.; Kim, K.; Krejcik, P.; Loos, H.; Lahey, T.; Natampalli, P.; Peng, S.; Rogind, D.; Shoaee, H.; Straumann, T.; Williams, E.; White, G.; Wu, J.; Zelazney, M.; /SLAC

2010-02-11T23:59:59.000Z

191

Final Report, Photocathodes for High Repetition Rate Light Sources  

SciTech Connect (OSTI)

This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-antimonide cathodes b) Development and testing of a diamond amplifier for photocathodes c) Tests of both cathodes in superconducting RF photoguns and copper RF photoguns

Ben-Zvi, Ilan [Stony Brook University

2014-04-20T23:59:59.000Z

192

Advanced Technology Light Duty Diesel Aftertreatment System | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| Department ofDepartmentEnergy Light

193

Energy Recovered Light Source Technology at TJNAF | U.S. DOE...  

Office of Science (SC) Website

Energy Recovered Light Source Technology at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

194

Meeting Summary Advanced Light Water Reactor Fuels Industry Meeting Washington DC October 27 - 28, 2011  

SciTech Connect (OSTI)

The Advanced LWR Fuel Working Group first met in November of 2010 with the objective of looking 20 years ahead to the role that advanced fuels could play in improving light water reactor technology, such as waste reduction and economics. When the group met again in March 2011, the Fukushima incident was still unfolding. After the March meeting, the focus of the program changed to determining what we could do in the near term to improve fuel accident tolerance. Any discussion of fuels with enhanced accident tolerance will likely need to consider an advanced light water reactor with enhanced accident tolerance, along with the fuel. The Advanced LWR Fuel Working Group met in Washington D.C. on October 72-18, 2011 to continue discussions on this important topic.

Not Listed

2011-11-01T23:59:59.000Z

195

The light-emitting diode (LED) is an fairly new kind of light source found currently in  

E-Print Network [OSTI]

this technology an ideal replacement for less efficient incandescent light sources, particularly in applications elevator lighting has the potential to achieve 25 percent greater efficiency than current incandescent ILLUMINATION LEVELS SIMILAR TO THOSE OF INCANDESCENT FIXTURES WHILE CUTTING ENERGY USE 45 PERCENT. ELEVATOR

196

Evolutionary/advanced light water reactor data report  

SciTech Connect (OSTI)

The US DOE Office of Fissile Material Disposition is examining options for placing fissile materials that were produced for fabrication of weapons, and now are deemed to be surplus, into a condition that is substantially irreversible and makes its use in weapons inherently more difficult. The principal fissile materials subject to this disposition activity are plutonium and uranium containing substantial fractions of plutonium-239 uranium-235. The data in this report, prepared as technical input to the fissile material disposition Programmatic Environmental Impact Statement (PEIS) deal only with the disposition of plutonium that contains well over 80% plutonium-239. In fact, the data were developed on the basis of weapon-grade plutonium which contains, typically, 93.6% plutonium-239 and 5.9% plutonium-240 as the principal isotopes. One of the options for disposition of weapon-grade plutonium being considered is the power reactor alternative. Plutonium would be fabricated into mixed oxide (MOX) fuel and fissioned (``burned``) in a reactor to produce electric power. The MOX fuel will contain dioxides of uranium and plutonium with less than 7% weapon-grade plutonium and uranium that has about 0.2% uranium-235. The disposition mission could, for example, be carried out in existing power reactors, of which there are over 100 in the United States. Alternatively, new LWRs could be constructed especially for disposition of plutonium. These would be of the latest US design(s) incorporating numerous design simplifications and safety enhancements. These ``evolutionary`` or ``advanced`` designs would offer not only technological advances, but also flexibility in siting and the option of either government or private (e.g., utility) ownership. The new reactor designs can accommodate somewhat higher plutonium throughputs. This data report deals solely with the ``evolutionary`` LWR alternative.

NONE

1996-02-09T23:59:59.000Z

197

DAINTREE NETWORKS PARTNERS WITH CLTC TO ADVANCE LIGHTING CONTROLS UC Davis' California Lighting Technology Center (CLTC) and Daintree team up to increase adoption with  

E-Print Network [OSTI]

- more - DAINTREE NETWORKS PARTNERS WITH CLTC TO ADVANCE LIGHTING CONTROLS UC Davis' California affiliate partnership with UC Davis' California Lighting Technology Center (CLTC) with the goal of advancing wireless smart building solutions for enterprise control and energy management, today announced its

California at Davis, University of

198

Shedding Light on Chemistry with a Biological Twist | Advanced Photon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smart Grid Experiences throughand InfraredSource

199

High-Efficiency Nitride-Based Photonic Crystal Light Sources  

Broader source: Energy.gov [DOE]

The University of California Santa Barbara (UCSB) is maximizing the efficiency of a white LED by enhancing the external quantum efficiency using photonic crystals to extract light that would normally be confined in a conventional structure. Ultimate efficiency can only be achieved by looking at the internal structure of light. To do this, UCSB is focusing on maximizing the light extraction efficiency and total light output from light engines driven by Gallium Nitride (GaN)-based LEDs. The challenge is to engineer large overlap (interaction) between modes and photonic crystals. The project is focused on achieving high extraction efficiency in LEDs, controlled directionality of emitted light, integrated design of vertical device structure, and nanoscale patterning of lateral structure.

200

Polymer and small molecule based hybrid light source  

DOE Patents [OSTI]

An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

Choong, Vi-En (Carlsbad, CA); Choulis, Stelios (Nuremberg, DE); Krummacher, Benjamin Claus (Regensburg, DE); Mathai, Mathew (Monroeville, PA); So, Franky (Gainesville, FL)

2010-03-16T23:59:59.000Z

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Extractors for LowWeight A#ne Sources Institute for Advanced Study  

E-Print Network [OSTI]

to solve this problem. These are functions that are easy to invert given the en tire output, but very hardExtractors for LowWeight A#ne Sources Anup Rao # Institute for Advanced Study arao . An extractor for entropy k a#ne sources is a function A#Ext : F n # {0, 1} m such that for any such source X

Anderson, Richard

202

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.

Kopelman, Raoul (Ann Arbor, MI); Tan, Weihong (Ames, IA); Shi, Zhong-You (Ann Arbor, MI)

1997-01-01T23:59:59.000Z

203

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.

Kopelman, Raoul (Ann Arbor, MI); Tan, Weihong (Ann Arbor, MI); Shi, Zhong-You (Ann Arbor, MI)

1994-01-01T23:59:59.000Z

204

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.

Kopelman, R.; Tan, W.; Shi, Z.Y.

1994-11-01T23:59:59.000Z

205

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.

Kopelman, R.; Tan, W.; Shi, Z.Y.

1997-05-06T23:59:59.000Z

206

spectroscopic techniques A Multi-Source Portable Light Emitting Diode Spectrofluorometer  

E-Print Network [OSTI]

spectroscopic techniques A Multi-Source Portable Light Emitting Diode Spectrofluorometer SAFWAN only 1.5 kg that uses multiple light emitting diodes (LEDs) as excitation sources was developed emitting diodes; LEDs; Animal forage; Excitation-emission matrices; EEM. INTRODUCTION Movement of chemical

207

Take a quick trip around the experimental floor of the Lab's new light source  

SciTech Connect (OSTI)

Take a quick trip around the experimental floor of Brookhaven Lab's new light source -- the $912-million National Synchrotron Light Source II. Construction of the facility is now over 70 percent completed. With much of the conventional construction done, accelerator and experimental components are being installed.

None

2012-04-30T23:59:59.000Z

208

Arrays and Cascades of Fluorescent Liquid-Liquid Waveguides: Broadband Light Sources for  

E-Print Network [OSTI]

Arrays and Cascades of Fluorescent Liquid-Liquid Waveguides: Broadband Light Sources) microchannel waveguides with liquid cores containing fluorescent dyes, excited by incident light from an external halogen bulb. Simultaneous use of multiple fluorophores in a common solution, in a single L2 light

Prentiss, Mara

209

Solar Influences Light from the Sun is the largest source of energy for Earth's  

E-Print Network [OSTI]

Solar Influences Light from the Sun is the largest source of energy for Earth's atmosphere. The Solar Influences group at LASP studies the light from the Sun and how it interacts with the Earth) · How and why light from the Sun varies in time from seconds to months to years to centuries · How solar

Mojzsis, Stephen J.

210

Advanced Epi Tools for Gallium Nitride Light Emitting Diode Devices  

SciTech Connect (OSTI)

Over the course of this program, Applied Materials, Inc., with generous support from the United States Department of Energy, developed a world-class three chamber III-Nitride epi cluster tool for low-cost, high volume GaN growth for the solid state lighting industry. One of the major achievements of the program was to design, build, and demonstrate the worlds largest wafer capacity HVPE chamber suitable for repeatable high volume III-Nitride template and device manufacturing. Applied Materials experience in developing deposition chambers for the silicon chip industry over many decades resulted in many orders of magnitude reductions in the price of transistors. That experience and understanding was used in developing this GaN epi deposition tool. The multi-chamber approach, which continues to be unique in the ability of the each chamber to deposit a section of the full device structure, unlike other cluster tools, allows for extreme flexibility in the manufacturing process. This robust architecture is suitable for not just the LED industry, but GaN power devices as well, both horizontal and vertical designs. The new HVPE technology developed allows GaN to be grown at a rate unheard of with MOCVD, up to 20x the typical MOCVD rates of 3{micro}m per hour, with bulk crystal quality better than the highest-quality commercial GaN films grown by MOCVD at a much cheaper overall cost. This is a unique development as the HVPE process has been known for decades, but never successfully commercially developed for high volume manufacturing. This research shows the potential of the first commercial-grade HVPE chamber, an elusive goal for III-V researchers and those wanting to capitalize on the promise of HVPE. Additionally, in the course of this program, Applied Materials built two MOCVD chambers, in addition to the HVPE chamber, and a robot that moves wafers between them. The MOCVD chambers demonstrated industry-leading wavelength yield for GaN based LED wafers and industry-leading uptime enabled in part by a novel in-situ cleaning process developed in this program.

Patibandla, Nag; Agrawal, Vivek

2012-12-01T23:59:59.000Z

211

Proceedings of the 10th meeting of the international collaboration on advanced neutron sources  

SciTech Connect (OSTI)

This report contains papers from the 10th meeting of the International Collaboration on Advanced Neutron Sources. Two general types of workshops are discussed, instrument and target-station. Individual papers are indexed separately elsewhere. (LSP)

Hyer, D.K. (comp. and ed.)

1989-03-01T23:59:59.000Z

212

Underwater Lighting by Submerged Lasers and Incandescent Sources  

E-Print Network [OSTI]

and collimated underwater incandescent projector. The laser-collimated underwater incandescent projector used for beamBY SUBMERGED LASERS and Incandescent Sources DESCRIPTIVE

Duntley, Seibert Q

1971-01-01T23:59:59.000Z

213

Proceedings of the fourth users meeting for the advanced photon source  

SciTech Connect (OSTI)

The Fourth Users Meeting for the Advanced Photon Source (APS) was held on May 7--8, 1991 at Argonne National Laboratory. Scientists and engineers from universities, industry, and national laboratories came to review the status of the facility and to look ahead to the types of forefront science that will be possible when the APS is completed. The presentations at the meeting included an overview of the project; critical issues for APS operation; advances in synchrotron radiation applications; users perspectives, and funding perspectives. The actions taken at the 1991 Business Meeting of the Advanced Photon Source Users Organization are also documented.

Not Available

1992-02-01T23:59:59.000Z

214

APS ES&H Committees | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2AP-XPS MeasuresIrradiationAdvancedAPSAPS

215

PHOTOINJECTED ENERGY RECOVERY LINAC UPGRADE FOR THE NATIONAL SYNCHROTRON LIGHT SOURCE.  

SciTech Connect (OSTI)

We describe a major paradigm shift in the approach to the production of synchrotron radiation This change will considerably improve the scientific capabilities of synchrotron light sources. We introduce plans for an upgrade of the National Synchrotron Light Source (NSLS). This upgrade will be based on the Photoinjected Energy Recovering Linac (PERL). This machine emerges from the union of two technologies, the laser-photocathode RF gun (photoinjector) and superconducting linear accelerators with beam energy recovery (Energy Recovering Linac). The upgrade will bring the NSLS users many new insertion device beam lines, brightness greater than 3rd generation lightsource's and ultra-short pulse capabilities, not possible with storage ring light sources.

BEN-ZVI,I.; BABZIEN,M.; BLUM,E.; CASEY,W.; CHANG,X.; GRAVES,W.; HASTINGS,J.; HULBERT,S.; JOHNSON,E.; KAO,C.C.; KRAMER,S.; KRINSKY,S.; MORTAZAVI,P.; MURPHY,J.; OZAKI,S.; PJEROV,S.; PODOBEDOV,B.; RAKOWSKY,G.; ROSE,J.; SHAFTAN,T.; SHEEHY,B.; SIDDONS,D.; SMEDLEY,J.; SRINIVASAN-RAO,T.; TOWNE,N.; WANG,J.M.; WANG,X.; WU,J.; YAKIMENKO,V.; YU,L.H.

2001-06-18T23:59:59.000Z

216

Marketing Ground Source Heat Pump Advanced Applications that  

E-Print Network [OSTI]

Solar Thermal n Real World Examples Overview #12;n High First Cost n Incompetent Contractor n Operating Wallace President, Energy Environmental Corporation October 9, 2013 #12;Within the United States, what is the fastest growing market with the available capital and need for the benefits of ground source heat pumps

217

Power control architectures for cold cathode fluorescent lamp and light emitting diode based light sources.  

E-Print Network [OSTI]

?? In this dissertation, two different energy efficient power supply topologies are introduced for controlling cold cathode fluorescent lamp (CCFL) and high-brightness light emitting diode (more)

Doshi, Montu V.

2010-01-01T23:59:59.000Z

218

Watching a Protein as it Functions | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition Information Wastethe YearShedding Light

219

An experimental setup to evaluate the daylighting performance of an advanced optical light pipe for deep-plan office buildings  

E-Print Network [OSTI]

This research focuses on an advanced optical light pipe daylighting system as a means to deliver natural light at the back of deep-plan office buildings (15ft to 30ft), using optimized geometry and high reflective materials. The light pipe...

Martins Mogo de Nadal, Betina Gisela

2005-11-01T23:59:59.000Z

220

High-Efficiency Nitride-Base Photonic Crystal Light Sources  

SciTech Connect (OSTI)

The research activities performed in the framework of this project represent a major breakthrough in the demonstration of Photonic Crystals (PhC) as a competitive technology for LEDs with high light extraction efficiency. The goals of the project were to explore the viable approaches to manufacturability of PhC LEDS through proven standard industrial processes, establish the limits of light extraction by various concepts of PhC LEDs, and determine the possible advantages of PhC LEDs over current and forthcoming LED extraction concepts. We have developed three very different geometries for PhC light extraction in LEDs. In addition, we have demonstrated reliable methods for their in-depth analysis allowing the extraction of important parameters such as light extraction efficiency, modal extraction length, directionality, internal and external quantum efficiency. The information gained allows better understanding of the physical processes and the effect of the design parameters on the light directionality and extraction efficiency. As a result, we produced LEDs with controllable emission directionality and a state of the art extraction efficiency that goes up to 94%. Those devices are based on embedded air-gap PhC - a novel technology concept developed in the framework of this project. They rely on a simple and planar fabrication process that is very interesting for industrial implementation due to its robustness and scalability. In fact, besides the additional patterning and regrowth steps, the process is identical as that for standard industrially used p-side-up LEDs. The final devices exhibit the same good electrical characteristics and high process yield as a series of test standard LEDs obtained in comparable conditions. Finally, the technology of embedded air-gap patterns (PhC) has significant potential in other related fields such as: increasing the optical mode interaction with the active region in semiconductor lasers; increasing the coupling of the incident light into the active region of solar cells; increasing the efficiency of the phosphorous light conversion in white light LEDs etc. In addition to the technology of embedded PhC LEDs, we demonstrate a technique for improvement of the light extraction and emission directionality for existing flip-chip microcavity (thin) LEDs by introducing PhC grating into the top n-contact. Although, the performances of these devices in terms of increase of the extraction efficiency are not significantly superior compared to those obtained by other techniques like surface roughening, the use of PhC offers some significant advantages such as improved and controllable emission directionality and a process that is directly applicable to any material system. The PhC microcavity LEDs have also potential for industrial implementation as the fabrication process has only minor differences to that already used for flip-chip thin LEDs. Finally, we have demonstrated that achieving good electrical properties and high fabrication yield for these devices is straightforward.

James Speck; Evelyn Hu; Claude Weisbuch; Yong-Seok Choi; Kelly McGroddy; Gregor Koblmuller; Elison Matioli; Elizabeth Rangel; Fabian Rol; Dobri Simeonov

2010-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Inverter for interfacing advanced energy sources to a utility grid  

DOE Patents [OSTI]

A transistor is operated in the PWM mode such that a hlaf sine wave of current is delivered first to one-half of a distribution transformer and then the other as determined by steering thyristors operated at the fundamental sinusoidal frequency. Power to the transistor is supplied by a dc source such as a solar array and the power is converted such that a sinusoidal current is injected into a utility at near unity power factor.

Steigerwald, Robert L. (Scotia, NY)

1984-01-01T23:59:59.000Z

222

National synchrotron light source. [Annual report], October 1, 1992--September 30, 1993  

SciTech Connect (OSTI)

This report contains brief discussions on the research being conducted at the National Synchrotron Light source. Some of the topics covered are: X-ray spectroscopy; nuclear physics; atomic and molecular science; meetings and workshops; operations; and facility improvements.

Rothman, E.Z.; Hulbert, S.L.; Lazarz, N.M. [eds.

1994-04-01T23:59:59.000Z

223

Novel broadband light sources and pulse generation techniques at 1.5 [mu]m  

E-Print Network [OSTI]

A wide diversity of applications, in both fundamental science and practical technology, has come to rely on broadband optical light sources as key enabling tools. In this thesis, we investigate three devices that contribute ...

Shen, Hanfei M, 1979-

2009-01-01T23:59:59.000Z

224

A SYNCHRONIZED FIR/VUV LIGHT SOURCE AT JEFFERSON LAB  

SciTech Connect (OSTI)

We describe a dual free-electron laser (FEL) configuration on the UV Demo FEL at Jefferson Lab that allows simultaneous lasing at FIR/THz and UV wavelengths. The FIR/THz source would be an FEL oscillator with a short wiggler providing nearly diffraction-limited pulses with pulse energy exceeding 50 microJoules. The FIR source would use the exhaust beam from a UVFEL. The coherent harmonics in the VUV from the UVFEL are out-coupled through a hole. The FIR source uses a shorter resonator with either hole or edge coupling to provide very high power FIR pulses. Simulations indicate excel-lent spectral brightness in the FIR region with over 100 W/cm-1 output.

Stephen Benson, David Douglas, George Neil, Michelle D. Shinn, Gwyn Williams

2012-07-01T23:59:59.000Z

225

Advanced Power Sources Ltd APS | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:Iowa ASHRAEAddis, LA)AdobeFuelOffshoreSources Ltd

226

Volume-scalable high-brightness three-dimensional visible light source  

DOE Patents [OSTI]

A volume-scalable, high-brightness, electrically driven visible light source comprises a three-dimensional photonic crystal (3DPC) comprising one or more direct bandgap semiconductors. The improved light emission performance of the invention is achieved based on the enhancement of radiative emission of light emitters placed inside a 3DPC due to the strong modification of the photonic density-of-states engendered by the 3DPC.

Subramania, Ganapathi; Fischer, Arthur J; Wang, George T; Li, Qiming

2014-02-18T23:59:59.000Z

227

Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings  

DOE Patents [OSTI]

A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.

Frank, Alan M. (Livermore, CA); Edwards, William R. (Modesto, CA)

1983-01-01T23:59:59.000Z

228

Low Temperature Heat Source Utilization Current and Advanced Technology  

SciTech Connect (OSTI)

Once a geothermal heat source has been identified as having the potential for development, and its thermal, physical, and chemical characteristics have been determined, a method of utilization must be decided upon. This compendium will touch upon some of these concerns, and hopefully will provide the reader with a better understanding of technologies being developed that will be applicable to geothermal development in East Africa, as well as other parts of the world. The appendices contain detailed reports on Down-the-Well Turbo Pump, The Vapor-Turbine Cycle for Geothermal Power Generation, Heat Exchanger Design for Geothermal Power Plants, and a Feasibility Study of Combined Power and Water Desalting Plant Using Hot Geothermal Water. [DJE-2005

Anderson, James H. Jr.; Dambly, Benjamin W.

1992-06-01T23:59:59.000Z

229

Luminescent light source for laser pumping and laser system containing same  

DOE Patents [OSTI]

The invention relates to a pumping lamp for use with lasers comprising a porous substrate loaded with a component capable of emitting light upon interaction of the component with exciting radiation and a source of exciting radiation. Preferably, the pumping lamp comprises a source of exciting radiation, such as an electron beam, and an aerogel or xerogel substrate loaded with a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce light, e.g., visible light, of a suitable band width and of a sufficient intensity to generate a laser beam from a laser material.

Hamil, Roy A. (Tijeras, NM); Ashley, Carol S. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Reed, Scott (Albuquerque, NM); Walko, Robert J. (Albuquerque, NM)

1994-01-01T23:59:59.000Z

230

7-GeV Advanced Photon Source Conceptual Design Report  

SciTech Connect (OSTI)

During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV.

Not Available

1987-04-01T23:59:59.000Z

231

Development of Advanced LED Phosphors by Spray-based Processes for Solid State Lighting  

SciTech Connect (OSTI)

The overarching goal of the project was to develop luminescent materials using aerosol processes for making improved LED devices for solid state lighting. In essence this means improving white light emitting phosphor based LEDs by improvement of the phosphor and phosphor layer. The structure of these types of light sources, displayed in Figure 1, comprises of a blue or UV LED under a phosphor layer that converts the blue or UV light to a broad visible (white) light. Traditionally, this is done with a blue emitting diode combined with a blue absorbing, broadly yellow emitting phosphor such as Y{sub 3}Al{sub 5}O{sub 12}:Ce (YAG). A similar result may be achieved by combining a UV emitting diode and at least three different UV absorbing phosphors: red, green, and blue emitting. These emitted colors mix to make white light. The efficiency of these LEDs is based on the combined efficiency of the LED, phosphor, and the interaction between the two. The Cabot SSL project attempted to improve the over all efficiency of the LED light source be improving the efficiency of the phosphor and the interaction between the LED light and the phosphor. Cabot's spray based process for producing phosphor powders is able to improve the brightness of the powder itself by increasing the activator (the species that emits the light) concentration without adverse quenching effects compared to conventional synthesis. This will allow less phosphor powder to be used, and will decrease the cost of the light source; thus lowering the barrier of entry to the lighting market. Cabot's process also allows for chemical flexibility of the phosphor particles, which may result in tunable emission spectra and so light sources with improved color rendering. Another benefit of Cabot's process is the resulting spherical morphology of the particles. Less light scattering results when spherical particles are used in the phosphor layer (Figure 1) compared to when conventional, irregular shaped phosphor particles are used. This spherical morphology will result in better light extraction and so an improvement of efficiency in the overall device. Cabot is a 2.5 billion dollar company that makes specialized materials using propriety spray based technologies. It is a core competency of Cabot's to exploit the spray based technology and resulting material/morphology advantages. Once a business opportunity is clearly identified, Cabot is positioned to increase the scale of the production to meet opportunity's need. Cabot has demonstrated the capability to make spherical morphology micron-sized phosphor powders by spray based routes for PDP and CRT applications, but the value proposition is still unproven for LED applications. Cabot believes that the improvements in phosphor powders yielded by their process will result in a commercial advantage over existing technologies. Through the SSL project, Cabot has produced a number of different compositions in a spherical morphology that may be useful for solid state lights, as well as demonstrated processes that are able to produce particles from 10 nanometers to 3 micrometers. Towards the end of the project we demonstrated that our process produces YAG:Ce powder that has both higher internal quantum efficiency (0.6 compared to 0.45) and external quantum efficiency (0.85 compared to 0.6) than the commercial standard (see section 3.4.4.3). We, however, only produced these highly bright materials in research and development quantities, and were never able to produce high quantum efficiency materials in a reproducible manner at a commercial scale.

Cabot Corporation

2007-09-30T23:59:59.000Z

232

User Research Administration & Support | Linac Coherent Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsed FuelM07: The10Source

233

Synchrotron light source data book: Version 4, Revision 05/96  

SciTech Connect (OSTI)

This book is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-Ray Data Booklet address the use of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in practical units and a brief description of many of the existing and planned light source lattices.

Murphy, J.B.

1996-05-01T23:59:59.000Z

234

FEMTOSECOND TIMING DISTRIBUTION AND CONTROL FOR NEXT GENERATION ACCELERATORS AND LIGHT SOURCES  

SciTech Connect (OSTI)

Femtosecond Timing Distribution At LCLS Free-electron-lasers (FEL) have the capability of producing high photon flux from the IR to the hard x-ray wavelength range and to emit femtosecond and eventually even at-tosecond pulses. This makes them an ideal tool for fundamental as well as applied re-search. Timing precision at the Stanford Linear Coherent Light Source (LCLS) between the x-ray FEL (XFEL) and ultrafast optical lasers is currently no better than 100 fs RMS. Ideally this precision should be much better and could be limited only by the x-ray pulse duration, which can be as short as a few femtoseconds. An increasing variety of science problems involving electron and nuclear dynamics in chemical and material systems will become accessible as the timing improves to a few femtoseconds. Advanced methods of electron beam conditioning or pulse injection could allow the FEL to achieve pulse durations less than one femtosecond. The objec-tive of the work described in this proposal is to set up an optical timing distribution sys-tem based on modelocked Erbium doped fiber lasers at LCLS facility to improve the timing precision in the facility and allow time stamping with a 10 fs precision. The primary commercial applications for optical timing distributions systems are seen in the worldwide accelerator facilities and next generation light sources community. It is reasonable to expect that at least three major XFELs will be built in the next decade. In addition there will be up to 10 smaller machines, such as FERMI in Italy and Maxlab in Sweden, plus the market for upgrading already existing facilities like Jefferson Lab. The total market is estimated to be on the order of a 100 Million US Dollars. The company owns the exclusive rights to the IP covering the technology enabling sub-10 fs synchronization systems. Testing this technology, which has set records in a lab environment, at LCLS, hence in a real world scenario, is an important corner stone of bringing the technology to market.

Chen, Li-Jin [Idesta Quantum Electronics, LLC

2014-03-31T23:59:59.000Z

235

Extractors for Low-Weight Affine Sources Institute for Advanced Study  

E-Print Network [OSTI]

], are functions that can be used to solve this problem. These are functions that are easy to invert given the enExtractors for Low-Weight Affine Sources Anup Rao Institute for Advanced Study arao@ias.edu January is a function AffExt : Fn {0, 1}m such that for any such source X, the distribution of AffExt(X) is close

Anderson, Richard

236

Apparatus and method for compensating for electron beam emittance in synchronizing light sources  

DOE Patents [OSTI]

A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

Neil, George R. (Williamsburg, VA)

1996-01-01T23:59:59.000Z

237

Apparatus and method for compensating for electron beam emittance in synchronizing light sources  

DOE Patents [OSTI]

A focused optical beam is used to change the path length of the core electrons in electron light sources thereby boosting their efficiency of conversion of electron beam energy to light. Both coherent light in the free electron laser and incoherent light in the synchrotron is boosted by this technique. By changing the path length of the core electrons by the proper amount, the core electrons are caused to stay in phase with the electrons in the outer distribution of the electron beam. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

Neil, G.R.

1996-07-30T23:59:59.000Z

238

TECHNICAL ADVANCES Dye shift: a neglected source of genotyping error in molecular  

E-Print Network [OSTI]

TECHNICAL ADVANCES Dye shift: a neglected source of genotyping error in molecular ecology JOLENE T for genotyping error, yet potential errors stemming from dye-induced mobility shift (dye shift) may be frequently left uncorrected, dye shift can lead to mis-scoring alleles and even to fal- sely calling new alleles

Jamieson, Ian

239

Design, construction, and procurement methodology of magnets for the 7-GeV Advanced Photon Source  

SciTech Connect (OSTI)

All major magnets of the Advanced Photon Source (APS) have now been measured and installed in the facility. This paper describes the mechanical design, construction, and procurement philosophy and methodology, and lessons learned from the construction and procurement of more than 1500 magnets for the APS storage ring, injector synchrotron ring, and positron accumulator ring.

Gorski, A.; Argyrakis, J.; Biggs, J. [and others

1995-06-01T23:59:59.000Z

240

KJK /10/18-19/01 / MUTAC Review Advanced Photon Source Kwang-Je Kim  

E-Print Network [OSTI]

KJK /10/18-19/01 / MUTAC Review Advanced Photon Source Kwang-Je Kim University of Chicago and Argonne National Laboratory MUTAC Review Lawrence Berkeley National Laboratory October 18-19, 2001 #12;KJK · KJK & CXW · Papers: - Formulas for transverse ionization cooling in SFC PRL 85(4) 700, 2000 (KJK & CXW

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

THE CENTER FOR INTEGRATIVE BIOMEDICAL COMPUTING: ADVANCING BIOMEDICAL SCIENCE WITH OPEN SOURCE  

E-Print Network [OSTI]

THE CENTER FOR INTEGRATIVE BIOMEDICAL COMPUTING: ADVANCING BIOMEDICAL SCIENCE WITH OPEN SOURCE the new Center for Integrative Biomedical Com- puting (CIBC) whose mission is to produce high performance im- age analysis, simulation, and visualization software in support of biomedical research. Software

Utah, University of

242

ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 32, JANUARY 2015, 3263 On the Radiative Properties of Ice Clouds: Light Scattering, Remote Sensing,  

E-Print Network [OSTI]

of the radiative properties of ice clouds from three perspectives: light scattering simulations, remote sensingADVANCES IN ATMOSPHERIC SCIENCES, VOL. 32, JANUARY 2015, 32­63 On the Radiative Properties of Ice Clouds: Light Scattering, Remote Sensing, and Radiation Parameterization Ping YANG1, Kuo-Nan LIOU2, Lei

Baum, Bryan A.

243

Evaluation of White Light Sources For an Absolute Fiber Optic Sensor Readout System  

SciTech Connect (OSTI)

This report summarizes work done in pursuit of an absolute readout system for Fabry-Perot optics sensors such as those built both by FISO and LLNL. The use of white light results in a short coherence length reducing the ambiguity of the Fabry-Perot gap measurement which is required to readout the sensor. The light source coherence length is the critical parameter in determining the ability to build a relative or an absolute system. Optical sources such as lasers and LEDs are rather narrow in optical spectral bandwidth and have long coherence length. Thus, when used in interferometric sensor measurements, one fringe looks much like another and it is difficult to make an absolute measurement. In contrast, white light sources are much broader in spectral bandwidth and have very short coherence lengths making interferometry possible only over the coherence length, which can be 1 or 2 microns. The small number of fringes in the interferogram make it easier to calculate the centroid and to unambiguously determine the sensor gap. However, unlike LEDs and Lasers, white light sources have very low optical power when coupled into optical fibers. Although, the overall light output of a white light source can be hundreds of milliwatts to watts, it is difficult to couple more than microwatts into a 50-micron core optical fiber. In addition, white light sources have a large amount of optical power in spectrum that is not necessarily useful in terms of sensor measurements. The reflectivity of a quarter wave of Titanium Oxide is depicted in Figure 2. This coating of Titanium Oxide is used in the fabrication of the sensor. This figure shows that any light emitted at wavelengths shorter than 600 nm is not too useful for the readout system. A white light LED spectrum is depicted in Figure 3 and shows much of the spectrum below 600 nm. In addition Silicon photodiodes are usually used in the readout system limiting the longest wavelength to about 1100 nm. Tungsten filament sources may have much of their optical power at wavelengths longer than 1100 nm, which is outside the wavelength range of interest. An incandescent spectrum from a tungsten filament is depicted in Figure 4. None of this is to say that other types of readout systems couldn't be built with IR detectors and broadband coatings for the sensors. However, without reengineering the sensors, the wavelength restrictions must be tolerated.

McConaghy, C F

2003-10-10T23:59:59.000Z

244

Watching an uniformly moving source of light using a telescope and a frequency-meter  

E-Print Network [OSTI]

We propose a scenario that involves a stationary observer who detects a point like source of light moving with constant velocity at a constant altitude, using a telescope and a frequency-meter. We derive a formula for the angular velocity at which we should rotate the axis of the telescope and a formula that relates the proper period at which the source emits successive wave crests and the proper period at which the stationary observer receives them

Bernhard Rothenstein; Ioan Damian

2005-04-04T23:59:59.000Z

245

Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings  

DOE Patents [OSTI]

A long-lifetime light source with sufficiently low intensity to be used for reading a map or other writing at nighttime, while not obscuring the user's normal night vision is disclosed. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode. 1 fig.

Frank, A.M.; Edwards, W.R.

1983-10-11T23:59:59.000Z

246

Long lifetime, low intensity light source for use in nighttime viewing of equipment maps and other writings  

DOE Patents [OSTI]

A long-lifetime light source is discussed with sufficiently low intensity to be used for reading a map or other writing at nightime, while not obscuring the user's normal night vision. This light source includes a diode electrically connected in series with a small power source and a lens properly positioned to focus at least a portion of the light produced by the diode.

Frank, A.M.; Edwards, W.R.

1982-03-23T23:59:59.000Z

247

The measurement and analysis of the magnetic field of a synchrotron light source magnet  

E-Print Network [OSTI]

In this thesis a unique system is used to measure the magnetic field of a superconducting synchrotron light source magnet. The magnet measured is a superferric dipole C-magnet designed to produce a magnetic field up to 3 Tesla in magnitude. Its...

Graf, Udo Werner

2012-06-07T23:59:59.000Z

248

Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source  

SciTech Connect (OSTI)

Miniature (light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40?mm{sup 3} as that of the resonance cell, both filled with suitable buffer gases. A miniature (?2?cm{sup 3} volume) test setup based on the M{sub z} magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors.

Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G., E-mail: gaetano.mileti@unine.ch [Laboratoire Temps-Frquence, University of Neuchtel, Neuchtel 2000 (Switzerland); Shea, H. [Microsystems for Space Technologies Laboratory, Ecole Polytechnique Fdrale de Lausanne (EPFL), Neuchtel 2002 (Switzerland)

2014-02-03T23:59:59.000Z

249

1994 Activity Report, National Synchrotron Light Source. Annual report, October 1, 1993-September 30, 1994  

SciTech Connect (OSTI)

This report is a summary of activities carried out at the National Synchrotron Light Source during 1994. It consists of sections which summarize the work carried out in differing scientific disciplines, meetings and workshops, operations experience of the facility, projects undertaken for upgrades, administrative reports, and collections of abstracts and publications generated from work done at the facility.

Rothman, E.Z. [ed.

1995-05-01T23:59:59.000Z

250

To appear in the ACM SIGGRAPH conference proceedings Accurate Light Source Acquisition and Rendering  

E-Print Network [OSTI]

and Rendering Michael Goesele , Xavier Granier , Wolfgang Heidrich , Hans-Peter Seidel 1) MPI Informatik 2) The University of British Columbia Figure 1: Stages of light source measurement and rendering (from left to right and efficient rendering algorithms to deal with them. In this paper, we describe a processing pipeline

Paris-Sud XI, Universit de

251

To appear in the ACM SIGGRAPH conference proceedings Accurate Light Source Acquisition and Rendering  

E-Print Network [OSTI]

and Rendering Michael Goesele1) , Xavier Granier2) , Wolfgang Heidrich2) , Hans-Peter Seidel1) 1) MPI Informatik 2) The University of British Columbia Figure 1: Stages of light source measurement and rendering and efficient rendering algorithms to deal with them. In this paper, we describe a processing pipeline

Paris-Sud XI, Universit de

252

EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposed construction of the Linac Coherent Light Source at SLAC National Accelerator Laboratory, Menlo Park, California. None available at this time. For more information, contact: Mr. Dave Osugi DOE SLAC Site Office 2575 Sand Hill Road, MS8A Menlo Park, CA 94025 E-mail: dave.osugi@sso.science.doe.gov

253

The Advanced Neutron Source (ANS) project: A world-class research reactor facility  

SciTech Connect (OSTI)

This paper provides an overview of the Advanced Neutron Source (ANS), a new research facility being designed at Oak Ridge National Laboratory. The facility is based on a 330 MW, heavy-water cooled and reflected reactor as the neutron source, with a thermal neutron flux of about 7.5{times}10{sup 19}m{sup {minus}2}{center_dot}sec{sup {minus}1}. Within the reflector region will be one hot source which will serve 2 hot neutron beam tubes, two cryogenic cold sources serving fourteen cold neutron beam tubes, two very cold beam tubes, and seven thermal neutron beam tubes. In addition there will be ten positions for materials irradiation experiments, five of them instrumented. The paper touches on the project status, safety concerns, cost estimates and scheduling, a description of the site, the reactor, and the arrangements of the facilities.

Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (US); Meek, W.E. [Gilbert/Commonwealth, Inc., Pittsburgh, PA (US)

1993-07-01T23:59:59.000Z

254

An advanced hadron facility: A combined kaon factory and cold-neutron source  

SciTech Connect (OSTI)

A design concept is presented for an advanced hadron facility consisting of a combined kaon factory and second generation spallation source. Our proposed facility consists of a 1.2 GeV superconducting H/sup -/ linac to bring the LAMPF energy up to 2 GeV, a multi-ring 2 GeV compressor, a shared cold-neutron and stopped-pion neutrino source, a 60 GeV 25 ..mu..Amp 6 Hz proton synchrotron, and kaon and proton experimental areas. We discuss the considerations which led to this design concept. We summarize recent results of r and d work on components for rapid-cycling synchrotrons. Finally, we mention briefly a pion linac, which may be a good way to gain experience with superconducting cavities if advanced hadron facility funding is delayed.

Thiessen, H.A.

1987-03-16T23:59:59.000Z

255

Proceedings of the third users meeting for the Advanced Photon Source  

SciTech Connect (OSTI)

The Third Users Meetings for the Advanced Photon Source, held on October 12--13, 1989, at Argonne National Laboratory, brought together scientists and engineers from industry, universities, and national laboratories to review the status of the facility and make plans for its use. The presentations documented in these proceedings include overviews of the project status and the user access policy; updates on several fundamental research efforts that make use of synchrotron radiation; reports on insertion-device R D and beam line design activities; cost and manpower estimates for beam line construction; and a panel discussion on strategies for developing and managing Collaborative Access Teams. The actions taken at the 1989 Business Meeting of the Advanced Photon Source Users Organization are also documented.

Not Available

1990-06-01T23:59:59.000Z

256

NSLS 2007 Activity Report (National Synchrotron Light Source Activity Report 2007)  

SciTech Connect (OSTI)

The National Synchrotron Light Source is one of the world's most productive and cost-effective user facilities. With 2,219 individual users, about 100 more than last year, and a record-high 985 publications, 2007 was no exception. In addition to producing an impressive array of science highlights, which are included in this Activity Report, many NSLS users were honored this year for their scientific accomplishments. Throughout the year, there were major strides in the development of the scientific programs by strengthening strategic partnerships with major research resources and with the Center for Functional Nanomaterials (CFN). Of particular note, the Consortium for Materials Properties Research in Earth Sciences (COMPRES) received renewed funding for the next five years through the National Science Foundation. COMPRES operates four high-pressure NSLS beamlines--X17B2, X17B3, X17C, and U2A--and serves the earth science community as well as the rapidly expanding segment of researchers using high-pressure techniques in materials, chemical, and energy-related sciences. A joint appointment was made between the NSLS and Stony Brook University to further enhance interactions with COMPRES. There was major progress on two key beamline projects outlined in the Five-Year Strategic Plan: the X25 beamline upgrade and the construction of the X9 small angle scattering (SAXS) beamline. The X25 overhaul, which began with the installation of the in-vacuum mini-gap undulator (MGU) in January 2006, is now complete. X25 is once again the brightest beamline for macromolecular crystallography at the NSLS, and in tandem with the X29 undulator beamline, it will keep the NSLS at the cutting edge in this important area of research. Upgrade work associated with the new MGU and the front end for the X9 SAXS beamline--jointly developed by the NSLS and the CFN--also was completed. Beamline X9 will host the SAXS program that currently exists at beamline X21 and will provide new microbeam SAXS capabilities and much-needed beam time for the life sciences, soft condensed matter physics, and nanoscience communities. Looking toward the future, a significant step has been made in expanding the user base and diversifying the work force by holding the first Historically Black Colleges and Universities (HBCU) Professors' Workshop. The workshop, which brought 11 professors to the NSLS to learn how to become successful synchrotron users, concluded with the formation of an HBCU User Consortium. Finally, significant contributions were made in optics and detector development to enhance the utilization of the NSLS and address the challenges of NSLS-II. In particular, x-ray detectors developed by the NSLS Detector Section have been adopted by an increasing number of research programs both at the NSLS and at light sources around the world, speeding up measurement times by orders of magnitude and making completely new experiments feasible. Significant advances in focusing and high-energy resolution optics have also been made this year.

Miller ,L.; Nasta, K.

2008-05-01T23:59:59.000Z

257

Apply: Solid-State Lighting Advanced Technology R&D - 2014(DE...  

Energy Savers [EERE]

Through research and development of solid-state lighting (SSL),including both light-emitting diode (LED) and organic light emitting diode (OLED) technologies, the objectives of...

258

Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source  

DOE Patents [OSTI]

In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

Chandler, David W; Strecker, Kevin E

2014-04-01T23:59:59.000Z

259

National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines  

SciTech Connect (OSTI)

The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS.

Gmuer, N.F.; White-DePace, S.M. (eds.)

1987-08-01T23:59:59.000Z

260

Low-Level Radio Frequency System Development for the National Synchrotron Light Source II  

SciTech Connect (OSTI)

The National Synchrotron Light Source-II (NSLS-II) is a new ultra-bright 3GeV 3rd generation synchrotron radiation light source. The performance goals require operation with a beam current of 500mA and a bunch current of at least 0.5mA. The position and timing specifications of the ultra-bright photon beam imposes a set of stringent requirements on the performance of radio frequency (RF) control. In addition, commissioning and staged installation of damping wigglers and insertion devices requires the flexibility of handling varying beam conditions. To meet these requirements, a digital implementation of the LLRF is chosen, and digital serial links are planned for the system integration. The first prototype of the controller front-end hardware has been built, and is currently being tested.

Ma,H.; Rose, J.

2009-05-04T23:59:59.000Z

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Radioluminescent light sources, tritium containing polymers, and methods for producing the same  

DOE Patents [OSTI]

A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium. 2 figs.

Jensen, G.A.; Nelson, D.A.; Molton, P.M.

1989-12-26T23:59:59.000Z

262

Radioluminescent light sources, tritium containing polymers, and methods for producing the same  

DOE Patents [OSTI]

A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium.

Jensen, George A. (Richland, WA); Nelson, David A. (Richland, WA); Molton, Peter M. (Richland, WA)

1989-01-01T23:59:59.000Z

263

EA-1975: LINAC Coherent Light Source-Il, SLAC National Accelerator Laboratory, Menlo Park, California  

Broader source: Energy.gov [DOE]

DOE prepared an EA on the potential environmental impacts of a proposal to upgrade the existing LINAC Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. The proposed LCLS-II would extend the photon energy range, increase control over photon pulses, and enable two-color pump-probe experiments. The X-ray laser beams generated by LCLS-II would enable a new class of experiments: the simultaneous investigation of a materials electronic and structural properties.

264

Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their  

E-Print Network [OSTI]

Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their effects on human reliability is critical of complexity leveraging network theory. INTRODUCTION The nuclear power industry in United States has declined

Cummings, Mary "Missy"

265

EA-1455: Enhanced Operations of the Advanced Photon Source at Argonne National Laboratory-East, Argonne, Illinois  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to continue and enhance operation of the Advanced photon Source, including modifications, upgrades, and new facilities, at the U.S....

266

Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems  

SciTech Connect (OSTI)

The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Programs understanding of the cost drivers that will determine nuclear powers cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

D. E. Shropshire

2009-01-01T23:59:59.000Z

267

Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics  

SciTech Connect (OSTI)

The safe, reliable and economic operation of the nations nuclear power reactor fleet has always been a top priority for the United States nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industrys success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, metrics describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly insertion into a commercial reactor within the desired timeframe (by 2022).

Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

2014-02-01T23:59:59.000Z

268

Nuclear Systems Enhanced Performance Program, Maintenance Cycle Extension in Advanced Light Water Reactor Design  

SciTech Connect (OSTI)

A renewed interest in new nuclear power generation in the US has spurred interest in developing advanced reactors with features which will address the public's concerns regarding nuclear generation. However, it is economic performance which will dictate whether any new orders for these plants will materialize. Economic performance is, to a great extent, improved by maximizing the time that the plant is on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Indeed, the strategy for the advanced light water reactor plant IRIS (International Reactor, Innovative and Secure) is to utilize an eight year operating cycle. This report describes a formalized strategy to address, during the design phase, the maintenance-related barriers to an extended operating cycle. The top-level objective of this investigation was to develop a methodology for injecting component and system maintainability issues into the reactor plant design process to overcome these barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the IRIS design. The first step in meeting the top-level objective was to determine the types of operating cycle length barriers that the IRIS design team is likely to face. Evaluation of previously identified regulatory and investment protection surveillance program barriers preventing a candidate operating PWR from achieving an extended (48 month) cycle was conducted in the context of the IRIS design. From this analysis, 54 known IRIS operating cycle length barriers were identified. The resolution methodology was applied to each of these barriers to generate design solution alternatives for consideration in the IRIS design. The methodology developed has been demonstrated to narrow the design space to feasible design solutions which enable a desired operating cycle length, yet is general enough to have broad applicability. Feedback from the IRIS design team indicates that the proposed solutions to the investigated operating cycle length barriers are both feasible and consistent with sound design practice.

Professor Neill Todreas

2001-10-01T23:59:59.000Z

269

Optimization and modeling studies for obtaining high injection efficiency at the Advanced Photon Source.  

SciTech Connect (OSTI)

In recent years, the optics of the Advanced Photon Source storage ring has evolved to a lower equilibrium emittance (2.5 nm-rad) at the cost of stronger sextupoles and stronger nonlinearities, which have reduced the injection efficiency from the virtual 100% of the high emittance mode. Over the years we have developed a series of optimizations, measurements, and modeling studies of the injection process, which allows us to obtain or maintain low injection losses. The above will be described along with the injection configuration.

Emery, L.; APS Operations Division

2005-01-01T23:59:59.000Z

270

Advanced Photon Source experimental beamline Safety Assessment Document: Addendum to the Advanced Photon Source Accelerator Systems Safety Assessment Document (APS-3.2.2.1.0)  

SciTech Connect (OSTI)

This Safety Assessment Document (SAD) addresses commissioning and operation of the experimental beamlines at the Advanced Photon Source (APS). Purpose of this document is to identify and describe the hazards associated with commissioning and operation of these beamlines and to document the measures taken to minimize these hazards and mitigate the hazard consequences. The potential hazards associated with the commissioning and operation of the APS facility have been identified and analyzed. Physical and administrative controls mitigate identified hazards. No hazard exists in this facility that has not been previously encountered and successfully mitigated in other accelerator and synchrotron radiation research facilities. This document is an updated version of the APS Preliminary Safety Analysis Report (PSAR). During the review of the PSAR in February 1990, the APS was determined to be a Low Hazard Facility. On June 14, 1993, the Acting Director of the Office of Energy Research endorsed the designation of the APS as a Low Hazard Facility, and this Safety Assessment Document supports that designation.

NONE

1995-01-01T23:59:59.000Z

271

E-Print Network 3.0 - advanced pressurized light Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the use of light... Light Communication What is the problem? The white light-emitting diode (LED) stands at the threshold... the need to develop low-power, integrated...

272

Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics Executive Summary  

SciTech Connect (OSTI)

Research and development (R&D) activities on advanced, higher performance Light Water Reactor (LWR) fuels have been ongoing for the last few years. Following the unfortunate March 2011 events at the Fukushima Nuclear Power Plant in Japan, the R&D shifted toward enhancing the accident tolerance of LWRs. Qualitative attributes for fuels with enhanced accident tolerance, such as improved reaction kinetics with steam resulting in slower hydrogen generation rate, provide guidance for the design and development of fuels and cladding with enhanced accident tolerance. A common set of technical metrics should be established to aid in the optimization and down selection of candidate designs on a more quantitative basis. Metrics describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. This report describes a proposed technical evaluation methodology that can be applied to evaluate the ability of each concept to meet performance and safety goals relative to the current UO2 zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed toward qualification.

Shannon Bragg-Sitton

2014-02-01T23:59:59.000Z

273

Advanced Photon Source (APS) | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHuman ResourcesScienceHomeAboutLight Source (ALS)Photon

274

Steady State Microbunching for High Brilliance and High Repetition Rate Storage Ring-Based Light Sources  

SciTech Connect (OSTI)

Electron-based light sources have proven to be effective sources of high brilliance, high frequency radiation. Such sources are typically either linac-Free Electron Laser (FEL) or storage ring types. The linac-FEL type has high brilliance (because the beam is microbunched) but low repetition rate. The storage ring type has high repetition rate (rapid beam circulation) but comparatively low brilliance or coherence. We propose to explore the feasibility of a microbunched beam in a storage ring that promises high repetition rate and high brilliance. The steady-state-micro-bunch (SSMB) beam in storage ring could provide CW sources for THz, EUV, or soft X-rays. Several SSMB mechanisms have been suggested recently, and in this report, we review a number of these SSMB concepts as promising directions for high brilliance, high repetition rate light sources of the future. The trick of SSMB lies in the RF system, together with the associated synchrotron beam dynamics, of the storage ring. Considering various different RF arrangements, there could be considered a number of scenarios of the SSMB. In this report, we arrange these scenarios more or less in order of the envisioned degree of technical challenge to the RF system, and not in the chronological order of their original references. Once the stored beam is steady-state microbunched in a storage ring, it passes through a radiator repeatedly every turn (or few turns). The radiator extracts a small fraction of the beam energy as coherent radiation with a wavelength corresponding to the microbunched period of the beam. In contrast to an FEL, this radiator is not needed to generate the microbunching (as required e.g. by SASE FELs or seeded FELs), so the radiator can be comparatively simple and short.

Chao, Alex; Ratner, Daniel; /SLAC; Jiao, Yi; /Beijing, Inst. High Energy Phys.

2012-09-06T23:59:59.000Z

275

X-ray holographic microscopy experiments at the Brookhaven synchrotron light source  

SciTech Connect (OSTI)

Soft x-ray holographic microscopy is discussed from an experimental point of view. Three series of measurements have been carried out using the Brookhaven 750 MeV storage ring as an x-ray source. Young slits fringes, Gabor (in line) holograms and various data pertaining to the soft x-ray performance of photographic plates are reported. The measurements are discussed in terms of the technique for recording them and the experimental limitations in effect. Some discussion is also given of the issues involved in reconstruction using visible light.

Howells, M.R.; Iarocci, M.; Kenney, J.; Kirz, J.; Rarback, H.

1983-01-01T23:59:59.000Z

276

X-Ray Light Sources | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC)Supply andof SeeingX-Ray Light Sources

277

Philips Light Sources & Electronics is Developing an Efficient, Smaller, Cost-Effective Family of LED Drivers  

Broader source: Energy.gov [DOE]

With the help of DOE funding, Philips Light Sources & Electronics is developing a new family of LED drivers that are more efficient and cost-effective as well as smaller in size than currently available drivers. The new drivers are switch-mode power supplies that are similar to today's drivers, but with an improved design. In addition, they have a different topologyboost plus LLCfor wattages of 40W and above, but they retain the commonly used flyback topology at lower wattages.

278

National synchrotron light source annual report 1987: For the period of October 1, 1986--September 30, 1987  

SciTech Connect (OSTI)

This report contains the reports and operational information of the National Synchrotron Light source facility for 1987. The reports are grouped mainly under VUV research and x-ray research. (LSP)

White-DePace, S.; Gmur, N.F.; Thomlinson, W.

1987-10-01T23:59:59.000Z

279

Advances in the Ion Source Research and Development Program at ISIS  

SciTech Connect (OSTI)

This paper covers the advances in the ion source research and development Program at ISIS over the last 2 years. The work is a combination of theoretical finite element analysis calculations and experiments conducted on a purpose built development rig. The broad development goals are higher beam current with longer pulse length. A Finite Element Analysis (FEA) model is used here to understand the steady state and dynamic thermal behavior of the source, and to investigate the design changes necessary to offset the extra heating. Electromagnetic FEA modeling of the extraction region of the ISIS H- ion source has suggested that the present set up of extraction electrode and 90 deg. sector magnet is sub-optimal, with the result that the beam profile is asymmetric, the beam is strongly divergent in the horizontal plane and there is severe aberration in the focusing in the vertical plane. The FEA model of the beam optics has demonstrated that relatively simple changes to the system should produce a dramatic improvement in performance. The theoretical and experimental results are compared here.

Faircloth, D.C.; Thomason, J.W.G.; Sidlow, R.; Whitehead, M.O. [CCLRC, RAL, ISIS, Didcot, Oxon, OX11 0QX (United Kingdom)

2005-04-06T23:59:59.000Z

280

Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors  

SciTech Connect (OSTI)

According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 120 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ?0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator.

Lebedev, G. V., E-mail: lgv2004@mail.ru; Petrov, V. V. [National Research Center Kurchatov Institute (Russian Federation); Bobylyov, V. T.; Butov, R. I.; Zhukov, A. M.; Sladkov, A. A. [Dukhov VNIIA (Russian Federation)

2014-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

National synchrotron light source. Activity report, October 1, 1994--September 30, 1995  

SciTech Connect (OSTI)

This report discusses research conducted at the National Synchrotron Light Source in the following areas: atomic and molecular science; energy dispersive diffraction; lithography, microscopy, and tomography; nuclear physics; scattering and crystallography studies of biological materials; time resolved spectroscopy; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; the 1995 NSLS annual users` meeting; 17th international free electron laser conference; micro bunches workshop; VUV machine; VUV storage ring parameters; beamline technical improvements; x-ray beamlines; x-ray storage ring parameters; the NSLS source development laboratory; the accelerator test facility (ATF); NSLS facility improvements; NSLS advisory committees; NSLS staff; VUV beamline guide; and x-ray beamline guide.

Rothman, E.Z.; Hastings, J. [eds.

1996-05-01T23:59:59.000Z

282

Integrating advanced materials simulation techniques into an automated data analysis workflow at the Spallation Neutron Source  

SciTech Connect (OSTI)

This presentation will review developments on the integration of advanced modeling and simulation techniques into the analysis step of experimental data obtained at the Spallation Neutron Source. A workflow framework for the purpose of refining molecular mechanics force-fields against quasi-elastic neutron scattering data is presented. The workflow combines software components to submit model simulations to remote high performance computers, a message broker interface for communications between the optimizer engine and the simulation production step, and tools to convolve the simulated data with the experimental resolution. A test application shows the correction to a popular fixed-charge water model in order to account polarization effects due to the presence of solvated ions. Future enhancements to the refinement workflow are discussed. This work is funded through the DOE Center for Accelerating Materials Modeling.

Borreguero Calvo, Jose M [ORNL] [ORNL; Campbell, Stuart I [ORNL] [ORNL; Delaire, Olivier A [ORNL] [ORNL; Doucet, Mathieu [ORNL] [ORNL; Goswami, Monojoy [ORNL] [ORNL; Hagen, Mark E [ORNL] [ORNL; Lynch, Vickie E [ORNL] [ORNL; Proffen, Thomas E [ORNL] [ORNL; Ren, Shelly [ORNL] [ORNL; Savici, Andrei T [ORNL] [ORNL; Sumpter, Bobby G [ORNL] [ORNL

2014-01-01T23:59:59.000Z

283

Proceedings of the first users meeting for the Advanced Photon Source  

SciTech Connect (OSTI)

The first national users meeting for the Advanced Photon Source (APS) at Argonne National Laboratory - held November 13-14, 1986, at Argonne - brought together scientists and engineers from industry, universities, and national laboratories to exchange information on the design of the facility and expectations for its use. Presented papers and potential participating research team (PRT) plans are documented in these proceedings. Topics covered include the current status of the project, an overview of the APS conceptual design, scientific opportunities offered by the facility for synchrotron-radiation-related research, current proposals and funding mechanisms for beam lines, and user policies. A number of participants representing universities and private industry discussed plans for the possible formation of PRTs to build and use beam lines at the APS site. The meeting also provided an opportunity for potential users to organize their efforts to support and guide the facility's development.

Not Available

1988-02-01T23:59:59.000Z

284

Relative performance properties of the ORNL Advanced Neutron Source Reactor with reduced enrichment fuels  

SciTech Connect (OSTI)

Three cores for the Advanced Neutron Source reactor, differing in size, enrichment, and uranium density in the fuel meat, have been analyzed. Performance properties of the reduced enrichment cores are compared with those of the HEU reference configuration. Core lifetime estimates suggest that none of these configurations will operate for the design goal of 17 days at 330 MW. With modes increases in fuel density and/or enrichment, however, the operating lifetimes of the HEU and MEU designs can be extended to the desired length. Achieving this lifetime with LEU fuel in any of the three studies cores, however, will require the successful development of denser fuels and/or structural materials with thermal neutron absorption cross sections substantially less than that of Al-6061. Relative to the HEU reference case, the peak thermal neutron flux in cores with reduced enrichment will be diminished by about 25--30%.

Bretscher, M.M.; Deen, J.R.; Hanan, N.A.; Matos, J.E.; Mo, S.C.; Pond, R.B.; Travelli, A.; Woodruff, W.L.

1994-12-31T23:59:59.000Z

285

Development of GUS for control applications at the Advanced Photon Source  

SciTech Connect (OSTI)

A script-based interpretive shell GUS (General Purpose Data Acquisition for Unix Shell) has been developed for application to the Advanced Photon Source (APS) control. The primary design objective of GUS is to provide a mechanism for efficient data flow among modularized objects called Data Access Modules (DAMs). GUS consists of four major components: user interface, kernel, built-in command module, and DAMS. It also incorporates the Unix shell to make use of the existing utility programs for file manipulation and data analysis. At this time, DAMs have been written for device access through EPICS (Experimental Physics and Industrial Control System), data I/O for SDDS (Self-Describing Data Set) files, matrix manipulation, graphics display, digital signal processing, and beam position feedback system control. The modular and object-oriented construction of GUS will facilitate addition of more DAMs with other functions in the future.

Chung, Y.; Barr, D.; Borland, M.; Kirchman, J.; Decker, G.; Kim, K.

1994-08-01T23:59:59.000Z

286

Mirror mounts designed for the Advanced Photon Source SRI-CAT  

SciTech Connect (OSTI)

Use of a mirror for beamlines at third-generation synchrotron radiation facilities, such as the Advanced Photon Source (APS) at Argonne National laboratory, has many advantages. A mirror as a first optical component provides significant reduction in the beam peak heat flux and total power on the downstream monochromator and simplifies the bremsstrahlung shielding design for the beamline transport. It also allows one to have a system for multibeamline branching and switching. More generally, a mirror is used for beam focusing and/or low-pass filtering. Six different mirror mounts have been designed for the SRI-CAT beamlines. Four of them are designed as water-cooled mirrors for white or pink beam use, and the other two are for monochromatic beam use. Mirror mount designs, including vacuum vessel structure and precision supporting stages, are presented in this paper.

Shu, D.; Benson, C.; Chang, J. [and others

1997-09-01T23:59:59.000Z

287

Time-Resolved Imaging of the Microbunching Instability and Energy Spread at the Linac Coherent Light Source  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The microbunching instability (MBI) is a well known problem for high brightness electron beams and has been observed at accelerator facilities around the world. Free-electron lasers (FELs) are particularly susceptible to MBI, which can distort the longitudinal phase space and increase the beams slice energy spread (SES). Past studies of MBI at the Linac Coherent Light Source (LCLS) relied on optical transition radiation to infer the existence of microbunching. With the development of the x-band transverse deflecting cavity (XTCAV), we can for the first time directly image the longitudinal phase space at the end of the accelerator and complete a comprehensive study of MBI, revealing both detailed MBI behavior as well as insights into mitigation schemes. The fine time resolution of the XTCAV also provides the first LCLS measurements of the final SES, a critical parameter for many advanced FEL schemes. Detailed MBI and SES measurements can aid in understanding MBI mechanisms, benchmarking simulation codes, and designing future high- brightness accelerators.

Ratner, D.; Behrens, C.; Ding, Y.; Huang, Z.; Marinelli, A.; Maxwell, T.; Zhou, F.

2015-03-01T23:59:59.000Z

288

Development of large volume double ring penning plasma discharge source for efficient light emissions  

SciTech Connect (OSTI)

In this paper, the development of large volume double ring Penning plasma discharge source for efficient light emissions is reported. The developed Penning discharge source consists of two cylindrical end cathodes of stainless steel having radius 6 cm and a gap 5.5 cm between them, which are fitted in the top and bottom flanges of the vacuum chamber. Two stainless steel anode rings with thickness 0.4 cm and inner diameters 6.45 cm having separation 2 cm are kept at the discharge centre. Neodymium (Nd{sub 2}Fe{sub 14}B) permanent magnets are physically inserted behind the cathodes for producing nearly uniform magnetic field of {approx}0.1 T at the center. Experiments and simulations have been performed for single and double anode ring configurations using helium gas discharge, which infer that double ring configuration gives better light emissions in the large volume Penning plasma discharge arrangement. The optical emission spectroscopy measurements are used to complement the observations. The spectral line-ratio technique is utilized to determine the electron plasma density. The estimated electron plasma density in double ring plasma configuration is {approx}2 Multiplication-Sign 10{sup 11} cm{sup -3}, which is around one order of magnitude larger than that of single ring arrangement.

Prakash, Ram; Vyas, Gheesa Lal; Jain, Jalaj; Prajapati, Jitendra; Pal, Udit Narayan [Microwave Tubes Division, CSIR-Central Electronics and Engineering Research Institute, Pilani-333031 (India); Chowdhuri, Malay Bikas; Manchanda, Ranjana [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India)

2012-12-15T23:59:59.000Z

289

Study of Pu consumption in Advanced Light Water Reactors. Evaluation of GE Advanced Boiling Water Reactor plants  

SciTech Connect (OSTI)

Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE`s 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology.

Not Available

1993-05-13T23:59:59.000Z

290

E-Print Network 3.0 - advanced light alloys Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CreepResistantMg-Al-SrAlloys,JournalofAdvanced... alloys. Reducing the automobile weights by certain amount will result in similar percentage... a combination of...

291

Environmental assessment of the proposed 7-GeV Advanced Photon Source  

SciTech Connect (OSTI)

The potential environmental impacts of construction and operation of a 6- to 7-GeV synchrotron radiation source known as the 7-GeV Advanced Photon Source at Argonne National Laboratory were evaluated. Key elements considered include on- and off-site radiological effects; socioeconomic effects; and impacts to aquatic and terrestrial flora and fauna, wetlands, water and air quality, cultural resources, and threatened or endangered species. Also incorporated are the effects of decisions made as a result of the preliminary design (Title I) being prepared. Mitigation plans to further reduce impacts are being developed. These plans include coordination with the US Army Corps of Engineers (COE) and other responsible agencies to mitigate potential impacts to wetlands. This mitigation includes providing habitat of comparable ecological value to assure no net loss of wetlands. These mitigation actions would be permitted and monitored by COE. A data recovery plan to protect cultural resources has been developed and approved, pursuant to a Programmatic Agreement among the US Department of Energy, the Advisory Council on Historic Preservation, and the Illinois State Historic Preservation Office. Applications for National Emission Standard for Hazardous Air Pollutants (NESHAP) and air emissions permits have been submitted to the US Environmental Protection Agency (EPA) and the Illinois Environmental Protection Agency (IEPA), respectively. 71 refs., 10 figs., 11 tabs.

Not Available

1990-02-01T23:59:59.000Z

292

Accident source terms for Light-Water Nuclear Power Plants. Final report  

SciTech Connect (OSTI)

In 1962 tile US Atomic Energy Commission published TID-14844, ``Calculation of Distance Factors for Power and Test Reactors`` which specified a release of fission products from the core to the reactor containment for a postulated accident involving ``substantial meltdown of the core``. This ``source term``, tile basis for tile NRC`s Regulatory Guides 1.3 and 1.4, has been used to determine compliance with tile NRC`s reactor site criteria, 10 CFR Part 100, and to evaluate other important plant performance requirements. During the past 30 years substantial additional information on fission product releases has been developed based on significant severe accident research. This document utilizes this research by providing more realistic estimates of the ``source term`` release into containment, in terms of timing, nuclide types, quantities and chemical form, given a severe core-melt accident. This revised ``source term`` is to be applied to the design of future light water reactors (LWRs). Current LWR licensees may voluntarily propose applications based upon it.

Soffer, L.; Burson, S.B.; Ferrell, C.M.; Lee, R.Y.; Ridgely, J.N.

1995-02-01T23:59:59.000Z

293

Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.

Blasing, T.J.; Brown, R.A.; Cada, G.F.; Easterly, C.; Feldman, D.L.; Hagan, C.W.; Harrington, R.M.; Johnson, R.O.; Ketelle, R.H.; Kroodsma, R.L.; McCold, L.N.; Reich, W.J.; Scofield, P.A.; Socolof, M.L.; Taleyarkhan, R.P.; Van Dyke, J.W.

1992-02-01T23:59:59.000Z

294

E-Print Network 3.0 - als advanced light Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Maryland at College Park Collection: Computer Technologies and Information Sciences 6 Light trapping in plasmonic solar cells Albert Polman Summary: absorption Requirements to...

295

E-Print Network 3.0 - advanced uv light Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

vapour lamp. We propose and demonstrate charge management using a deep UV light emitting diode (LED... sufficient for LISA applications. We have directly observed the LED ......

296

E-Print Network 3.0 - advanced semiconductor light-emitting Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quantum Dot Sol-Gel Nanocomposites (patent pending) n Nanocrystal Quantum Dot Light Emitting Diode (patent... (CRADA) Business Opportunities LANL's quantum dot portfolio includes...

297

Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source  

SciTech Connect (OSTI)

A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High-Pressure High-Temperature grown type-IIa diamond crystal plates with the (111) orientation. The first crystal has a thickness of ?100 ?m to allow high reflectivity within the Bragg bandwidth and good transmission for the other wavelengths for downstream use. The second crystal is about 300 ?m thick and makes the exit beam of the monochromator parallel to the incoming beam with an offset of 600 mm. Here we present details on the monochromator design and its performance.

Zhu, Diling, E-mail: dlzhu@slac.stanford.edu; Feng, Yiping; Lemke, Henrik T.; Fritz, David M.; Chollet, Matthieu; Glownia, J. M.; Alonso-Mori, Roberto; Sikorski, Marcin; Song, Sanghoon; Williams, Garth J.; Messerschmidt, Marc; Boutet, Sbastien; Robert, Aymeric [Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Stoupin, Stanislav; Shvyd'ko, Yuri V. [Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Terentyev, Sergey A.; Blank, Vladimir D. [Technological Institute of Superhard and Novel Carbon Materials, Tsentralnaya str. 7a, Troitsk, Moscow 142190 (Russian Federation); Driel, Tim B. van [Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Center for Molecular Movies, Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark)

2014-06-15T23:59:59.000Z

298

Lawrence Berkeley National Laboratory Advanced Light Source Beamline 1.4  

E-Print Network [OSTI]

Levenson, UC student at beamline1.4. #12;3 Table of Contents ABOUT LBNL......................................................................................................................4 THE LBNL calculation Second calculation · Janis He-3 cryostat #12;4 About LBNL The LBNL The Lawrence Berkeley National

299

Prototype photon position monitors for undulator beams at the Advanced Light Source  

SciTech Connect (OSTI)

Design criteria are described, and test results are presented, for prototype ALS undulator beam position monitors. The design is based on monitors presently in use at NSLS, with modifications to account for the widely varying and large K values of the undulators to be installed at the ALS. In particular, we have modified the design to simplify the thermal engineering and we have explored techniques to suppress the response of the monitors to soft photons, so that the beam position can be determined by measuring the higher energy photons which are better collimated. 4 refs., 8 figs.

Warwick, T.; Shu, D. (Lawrence Berkeley Lab., CA (United States)); Rodricks, B. (Argonne National Lab., IL (United States)); Johnson, E.D. (Brookhaven National Lab., Upton, NY (United States))

1990-10-17T23:59:59.000Z

300

Development of procedures for refurbishing x-ray optics at the Advanced Light Source  

E-Print Network [OSTI]

Development of procedures for refurbishing x-ray optics atpractical and robust procedures for refurbishing x-ray

Yashchuk, Valeriy V.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Support for the Advanced Polymers Beamline at the National Synchrotron Light Source  

SciTech Connect (OSTI)

The primary focus of the X27C beamline is to investigate frontier polymer science and engineering problems with emphasis on real-time studies of structures, morphologies and dynamics from atomic, nanoscopic, microscopic to mesoscopic scales using simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) techniques. The scientific merit of this project is as follows. Currently, many unique sample chambers for in-situ synchrotron studies, developed by the PI (B. Hsiao) and Co-PI (B. Chu), are available for general users of X27C at NSLS. These instruments include a gel/melt spinning apparatus, a continuous fiber drawing apparatus, a tensile stretching apparatus, a high pressure X-ray cell using supercritical carbon dioxide, a parallel plate strain-controlled shear stage and a dynamic rheometer for small-strain oscillatory deformation study. Based on the use of these instruments in combination with synchrotron X-rays, many new insights into the relationships between processing and structure have been obtained in recent years. The broader impact of this project is as follows. The X27C beamline is the first synchrotron facility in the United States dedicated to chemistry/materials research (with emphasis on polymers). The major benefit of this facility to the materials community is that no extensive synchrotron experience and equipment preparation are required from general users to carry out cutting-edge experiments.

Hsiao, Benjamin S [Stony Brook Univeristy] [Stony Brook Univeristy

2008-10-01T23:59:59.000Z

302

A Superbend X-Ray Microdiffraction Beamline at the Advanced Light Source  

E-Print Network [OSTI]

The KB mirrors assembly is Peltier-cooled to compensate forassembly use a water-based Peltier cooling system. Beamline

Tamura, N.

2009-01-01T23:59:59.000Z

303

Development of procedures for refurbishing x-ray optics at the Advanced Light Source  

E-Print Network [OSTI]

and Setting of Bendable Optics for Diffraction- Limitedof Soft X-Rays, Abstract to SPIE Optics and Photonics 2012,Metrology for X-Ray and EUV Optics IV (San Diego, August 12-

Yashchuk, Valeriy V.

2013-01-01T23:59:59.000Z

304

A Software System for Modeling and Controlling Accelerator Physics Parameters at the Advanced Light Source  

E-Print Network [OSTI]

computed X and Y betas at every BPM and corrector). Programsof turn-by-turn data from the BPM's. These circumstances cryseparate program for First Turn BPM Readouts. In the latter

Schachinger, L.C.

2011-01-01T23:59:59.000Z

305

The 19th ICFA Advanced Beam Dynamics Workshop on Future Light Sources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .

306

High voltage ignition of high pressure microwave powered UV light sources  

SciTech Connect (OSTI)

Industrial microwave powered (electrodeless) light sources have been limited to quiescent pressures of {approximately}300 Torr of buffer gas and metal-halide fills. The predominant reason for such restrictions has been the inability to microwave ignite the plasma due to the collisionality of higher pressure fills and/or the electronegativity of halide bulb chemistries. Commercially interesting bulb fills require electric fields for ionization that are often large multiples of the breakdown voltage for air. Many auxiliary ignition methods are evaluated for efficiency and practicality before the choice of a high-voltage system with a retractable external electrode. The scheme utilizes a high voltage pulse power supply and a novel field emission source. Acting together they create localized condition of pressure reduction and high free electron density. This allows the normal microwave fields to drive this small region into avalanche, ignite the bulb, and heat the plasma to its operating point (T{sub e} {approx} 0.5 eV). This process is currently being used in a new generation of lamps, which are using multi-atmospheric excimer laser chemistries and pressure and constituent enhanced metal-halide systems. At the present time, production prototypes produce over 900 W of radiation in a 30 nm band, centered at 308 nm. Similarly, these prototypes when loaded with metal-halide bulb fills produce over 1 kW of radiation in 30 nm wide bands, centered about the wavelength of interest.

Frank, J.D.; Cekic, M.; Wood, C.H. [Fusion U.V. Curing Systems Corp., Gaithersburg, MD (United States)

1997-12-31T23:59:59.000Z

307

Phys. Med. Biol. 43 (1998) 24072412. Printed in the UK PII: S0031-9155(98)90934-4 Effects of read-out light sources and ambient light on  

E-Print Network [OSTI]

laser, light emitting diode (LED) and incandescent read-out light sources produce an equivalent dose, fluorescent light and incandescent ambient light produce an equivalent dose coloration of 30 cGy h-1, 18 cGy h the optical density of Gafchromic films include, helium neon lasers, ultrabright diodes, incandescent

Yu, K.N.

308

Irradiation research capabilities at HFIR (High Flux Isotope Reactor) and ANS (Advanced Neutron Source)  

SciTech Connect (OSTI)

A variety of materials irradiation facilities exist in the High Flux Isotope Reactor (HFIR) and are planned for the Advanced Neutron Source (ANS) reactor. In 1986 the HFIR Irradiation Facilities Improvement (HIFI) project began modifications to the HFIR which now permit the operation of two instrumented capsules in the target region and eight capsules of 46-mm OD in the RB region. Thus, it is now possible to perform instrumented irradiation experiments in the highest continuous flux of thermal neutrons available in the western world. The new RB facilities are now large enough to permit neutron spectral tailoring of experiments and the modified method of access to these facilities permit rotation of experiments thereby reducing fluence gradients in specimens. A summary of characteristics of irradiation facilities in HFIR is presented. The ANS is being designed to provide the highest thermal neutron flux for beam facilities in the world. Additional design goals include providing materials irradiation and transplutonium isotope production facilities as good, or better than, HFIR. The reference conceptual core design consists of two annular fuel elements positioned one above the other instead of concentrically as in the HFIR. A variety of materials irradiation facilities with unprecedented fluxes are being incorporated into the design of the ANS. These will include fast neutron irradiation facilities in the central hole of the upper fuel element, epithermal facilities surrounding the lower fuel element, and thermal facilities in the reflector tank. A summary of characteristics of irradiation facilities presently planned for the ANS is presented. 2 tabs.

Thoms, K.R.

1990-01-01T23:59:59.000Z

309

Phase loop bandwidth measurements on the advanced photon source 352 MHz rf systems  

SciTech Connect (OSTI)

Phase loop bandwidth tests were performed on the Advanced Photon Source storage ring 352-MHz rf systems. These measurements were made using the HP3563A Control Systems Analyzer, with the rf systems running at 30 kilowatts into each of the storage ring cavities, without stored beam. An electronic phase shifter was used to inject approximately 14 degrees of stimulated phase shift into the low-level rf system, which produced measureable response voltage in the feedback loops without upsetting normal rf system operation. With the PID (proportional-integral-differential) amplifier settings at the values used during accelerator operation, the measurement data revealed that the 3-dB response for the cavity sum and klystron power-phase loops is approximately 7 kHz and 45 kHz, respectively, with the cavities the primary bandwidth-limiting factor in the cavity-sum loop. Data were taken at various PID settings until the loops became unstable. Crosstalk between the two phase loops was measured.

Horan, D.; Nassiri, A.; Schwartz, C.

1997-08-01T23:59:59.000Z

310

Global search tool for the Advanced Photon Source Integrated Relational Model of Installed Systems (IRMIS) database.  

SciTech Connect (OSTI)

The Integrated Relational Model of Installed Systems (IRMIS) is a relational database tool that has been implemented at the Advanced Photon Source to maintain an updated account of approximately 600 control system software applications, 400,000 process variables, and 30,000 control system hardware components. To effectively display this large amount of control system information to operators and engineers, IRMIS was initially built with nine Web-based viewers: Applications Organizing Index, IOC, PLC, Component Type, Installed Components, Network, Controls Spares, Process Variables, and Cables. However, since each viewer is designed to provide details from only one major category of the control system, the necessity for a one-stop global search tool for the entire database became apparent. The user requirements for extremely fast database search time and ease of navigation through search results led to the choice of Asynchronous JavaScript and XML (AJAX) technology in the implementation of the IRMIS global search tool. Unique features of the global search tool include a two-tier level of displayed search results, and a database data integrity validation and reporting mechanism.

Quock, D. E. R.; Cianciarulo, M. B.; APS Engineering Support Division; Purdue Univ.

2007-01-01T23:59:59.000Z

311

E-Print Network 3.0 - advanced light reactor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 3 4 5 > >> Page: << < 1 2 3 4 5 > >> 21 Nuclear reactor safeguards and monitoring with antineutrino detectors A. Bernsteina) Summary: at the end of 2000.2 Most are light water...

312

Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding...  

Energy Savers [EERE]

is closed. The U.S. Department of Energy (DOE) announced a solid-state lighting (SSL) R&D funding opportunity on October 14, 2014. Under this funding opportunity...

313

Assessing the Performance of 5mm White LED Light Sources for Developing-Country Applications  

E-Print Network [OSTI]

performance variations. Incandescent and fluorescent lightbetter than the common incandescent lamp. Off-grid lighting

Mills, Evan

2007-01-01T23:59:59.000Z

314

E-Print Network 3.0 - advanced light-water reactors Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of low-energy antineutrino detectors, together... Nuclear reactor safeguards and monitoring with ... Source: Gratta, Giorgio - Kavli Institute for Particle Astrophysics...

315

E-Print Network 3.0 - advanced laser light Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nirwan Ansari, Fellow... -band optical access. The wavelength provisioning flexibility of tunable lasers can increase the ... Source: Ansari, Nirwan - Department of Electrical and...

316

E-Print Network 3.0 - advanced supercritical light Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

liquid-like densities of supercritical fluids. Even... demonstrated using propane at subcritical and supercritical temperatures between 35 C and 97 C ... Source: Stanford...

317

Advanced method for increasing the efficiency of white light quantum dot LEDs  

SciTech Connect (OSTI)

Covering a light-emitting diode (LED) with quantum dots (QDs) can produce a broad spectrum of white light. However, current techniques for applying QDs to LEDs suffer from a high density of defects and a non-uniform distribution of QDs, which, respectively, diminish the efficiency and quality of emitted light. Oak Ridge National Laboratory (ORNL) has the unique capability to thermally anneal QD structures at extremely high power densities for very short durations. This process, called pulse thermal processing (PTP), reduces the number of point defects while maintaining the size and shape of the original QD nanostructure. Therefore, the efficiency of the QD wavelength conversion layer is improved without altering the emission spectrum defined by the size distribution of theQD nanoparticles. The current research uses a thermal model to predict annealing temperatures during PTP and demonstrates up to a 300% increase in photoluminescence for QDs on passive substrates.

Duty, Chad E [ORNL; Bennett, Charlee J C [ORNL; Sabau, Adrian S [ORNL; Jellison Jr, Gerald Earle [ORNL; Boudreaux, Philip R [ORNL; Walker, Steven C [ORNL; Ott, Ronald D [ORNL

2011-01-01T23:59:59.000Z

318

Advances  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScienceScripting forAdvances in

319

National Synchrotron Light Source Facility Manual Maintenance Management Program. Revision 1  

SciTech Connect (OSTI)

The purpose of this program s to meet the policy and objectives for the management and performance of cost-effective maintenance and repair of the National Synchrotron Light Source, as required by the US Department of Energy order DOE 433O.4A. It is the DOE`s policy that: The maintenance management program for the NSLS be consistent with this Order and that NSLS property is maintained in a manner which promotes operational safety, worker health, environmental protection and compliance, property preservation, and cost-effectiveness while meeting the NSLS`s programmatic mission. Structures, components and systems (active and passive) that are imporant to safe operation of the NSLS shall be subject to a maintenance program to ensure that they meet or exceed their design requirements throughout the life of the NSLS. Periodic examination of structures, systems components and equipment be performed to determine deterioration or technical obsolescence which may threaten performance and/or safety. Primary responsibility, authority, and accountability for the direction and management of the maintenance program at the NSLS reside with the line management assigned direct programmatic responsibility. Budgeting and accounting for maintenance programs are consistent with DOE Orders guidance.

Fewell, N.

1993-12-01T23:59:59.000Z

320

Electron Beam Energy Chirp Control with a Rectangular Corrugated Structure at the Linac Coherent Light Source  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Electron beam energy chirp is an important parameter that affects the bandwidth and performance of a linac-based, free-electron laser. In this paper we study the wakefields generated by a beam passing between at metallic plates with small corrugations, and then apply such a device as a passive dechirper for the Linac Coherent Light Source (LCLS) energy chirp control with a multi-GeV and femtosecond electron beam. Similar devices have been tested in several places at relatively low energies (#24;100 MeV) and with relatively long bunches (> 1ps). In the parameter regime of the LCLS dechirper, with the corrugation size similar to the gap between the plates, the analytical solutions of the wakefields are no longer applicable, and we resort to a #12;field matching program to obtain the wakes. Based on the numerical calculations, we #12;fit the short-range, longitudinal wakes to simple formulas, valid over a large, useful parameter range. Finally, since the transverse wakefields - both dipole and quadrupole-are strong, we compute and include them in beam dynamics simulations to investigate the error tolerances when this device is introduced in the LCLS.

Zhang, Zhen; Bane, Karl; Ding, Yantao; Huang, Zhirong; Iverson, Richard; Maxwell, Timothy; Stupakov, Gennady; Wang, Lanfa

2015-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NSLS (National Synchrotron Light Source) X-19A beamline performance for x-ray absorption measurements  

SciTech Connect (OSTI)

Characterization of the X-19A beamline at the National Synchrotron Light Source (NSLS) is described. The beamline is designed for high resolution x-ray absorption spectroscopy over a wide energy range. All of the beamline optical components are compatible with ultrahigh vacuum (UHV) operation. This permits measurements to be made in a window-less mode, thereby facilitating lower energy (<4 KeV) studies. To upgrade the beamline performance, several possible improvements in instrumentation and practice are discussed to increase photon statistics with an optimum energy resolution, while decreasing the harmonic contamination and noise level. A special effort has been made to improve the stability and UHV compatibility of the monochromator system. Initial x-ray absorption results demonstrate the capabilities of this beamline for x-ray absorption studies of low Z elements (e.g. S) in highly dilute systems. The future use of this beamline for carrying out various x-ray absorption experiments is presented. 10 refs., 4 figs.

Yang, C.Y.; Penner-Hahn, J.E.; Stefan, P.M. (Michigan Univ., Ann Arbor, MI (USA). Dept. of Chemistry; Brookhaven National Lab., Upton, NY (USA))

1989-01-01T23:59:59.000Z

322

CITIUS: An infrared-extreme ultraviolet light source for fundamental and applied ultrafast science  

SciTech Connect (OSTI)

We present the main features of CITIUS, a new light source for ultrafast science, generating tunable, intense, femtosecond pulses in the spectral range from infrared to extreme ultraviolet (XUV). The XUV pulses (about 10{sup 5}-10{sup 8} photons/pulse in the range 14-80 eV) are produced by laser-induced high-order harmonic generation in gas. This radiation is monochromatized by a time-preserving monochromator, also allowing one to work with high-resolution bandwidth selection. The tunable IR-UV pulses (10{sup 12}-10{sup 15} photons/pulse in the range 0.4-5.6 eV) are generated by an optical parametric amplifier, which is driven by a fraction of the same laser pulse that generates high order harmonics. The IR-UV and XUV pulses follow different optical paths and are eventually recombined on the sample for pump-probe experiments. We also present the results of two pump-probe experiments: with the first one, we fully characterized the temporal duration of harmonic pulses in the time-preserving configuration; with the second one, we demonstrated the possibility of using CITIUS for selective investigation of the ultra-fast dynamics of different elements in a magnetic compound.

Grazioli, C.; Gauthier, D.; Ivanov, R.; De Ninno, G. [Laboratory of Quantum Optics, University of Nova Gorica, Nova Gorica (Slovenia) [Laboratory of Quantum Optics, University of Nova Gorica, Nova Gorica (Slovenia); Elettra Sincrotrone Trieste, Trieste (Italy)] [Italy; Callegari, C.; Spezzani, C. [Elettra Sincrotrone Trieste, Trieste (Italy)] [Elettra Sincrotrone Trieste, Trieste (Italy); Ciavardini, A. [Sapienza University, Rome (Italy)] [Sapienza University, Rome (Italy); Coreno, M. [Elettra Sincrotrone Trieste, Trieste (Italy) [Elettra Sincrotrone Trieste, Trieste (Italy); Institute of Inorganic Methodologies and Plasmas (CNR-IMIP), Montelibretti, Roma (Italy); Frassetto, F.; Miotti, P.; Poletto, L. [Institute of Photonics and Nanotechnologies (CNR-IFN), Padova (Italy)] [Institute of Photonics and Nanotechnologies (CNR-IFN), Padova (Italy); Golob, D. [Kontrolni Sistemi d.o.o., Seana (Slovenia)] [Kontrolni Sistemi d.o.o., Seana (Slovenia); Kivimki, A. [Institute of Materials Manufacturing (CNR-IOM), TASC Laboratory, Trieste (Italy)] [Institute of Materials Manufacturing (CNR-IOM), TASC Laboratory, Trieste (Italy); Mahieu, B. [Elettra Sincrotrone Trieste, Trieste (Italy) [Elettra Sincrotrone Trieste, Trieste (Italy); Service des Photons Atomes et Molcules, Commissariat l'Energie Atomique, Centre d'Etudes de Saclay, Btiment 522, 91191 Gif-sur-Yvette (France); Bu?ar, B.; Merhar, M. [Laboratory of Mechanical Processing Technologies, University of Ljubljana, Ljubljana (Slovenia)] [Laboratory of Mechanical Processing Technologies, University of Ljubljana, Ljubljana (Slovenia); Polo, E. [Institute of Organic Synthesis and Photoreactivity (CNR-ISOF), Ferrara (Italy)] [Institute of Organic Synthesis and Photoreactivity (CNR-ISOF), Ferrara (Italy); Ressel, B. [Laboratory of Quantum Optics, University of Nova Gorica, Nova Gorica (Slovenia)] [Laboratory of Quantum Optics, University of Nova Gorica, Nova Gorica (Slovenia)

2014-02-15T23:59:59.000Z

323

Tunable blue light source by intracavity frequency doubling of a Cr-LiSrAIF6 laser  

E-Print Network [OSTI]

Tunable blue light source by intracavity frequency doubling of a Cr- LiSrAIF6 laser Franqois-switched operation at 10 kHz was intracavity frequency doubled by using a LiIOl crystal. The 230 ns tunable blue lasers emitting in the blue-green wavelength range are expected to be the key components for optical

Paris-Sud XI, Université de

324

Advanced Technologies for Light-Duty Vehicles (released in AEO2006)  

Reports and Publications (EIA)

A fundamental concern in projecting the future attributes of light-duty vehicles-passenger cars, sport utility vehicles, pickup trucks, and minivans-is how to represent technological change and the market forces that drive it. There is always considerable uncertainty about the evolution of existing technologies, what new technologies might emerge, and how consumer preferences might influence the direction of change. Most of the new and emerging technologies expected to affect the performance and fuel use of light-duty vehicles over the next 25 years are represented in the National Energy Modeling System (NEMS); however, the potential emergence of new, unforeseen technologies makes it impossible to address all the technology options that could come into play. The previous section of Issues in Focus discussed several potential technologies that currently are not represented in NEMS. This section discusses some of the key technologies represented in NEMS that are expected to be implemented in light-duty vehicles over the next 25 years.

2006-01-01T23:59:59.000Z

325

Advanced Fuel Performance: Modeling and Simulation Light Water Reactor Fuel Performance:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4TCombustionOptimizing enzymeAdvanced 63

326

Light emission of very low density hydrogen excited by an extremely hot light source; applications in astrophysics  

E-Print Network [OSTI]

Stromgren studied the action of an extremely hot source on a diluted pure hydrogen cloud; a very ionized, spherical hydrogen plasma surrounded by neutral atomic hydrogen is formed. A relatively thin intermediate, partially ionized, hydrogen shell, is cooled by the radiation of the atoms. Stromgren was unaware of that this plasma, similar to the plasma of a gas laser, can be superradiant at several eigen frequencies of atomic hydrogen; the superradiant rays emitted tangentially with the sphere appear resulting from a discontinuous ring because of the competition of optical modes. The superradiance intensely depopulates the excited levels, including the continuum of proton-electron collisions, by cascades of transitions combined into resonant multiphotonic transitions so that the gas is cooled brutally beyond the radius of the Stromgren sphere. The extreme brightness of the rays emitted by the source allows a multiphotonic non-resonant absorption leading in stationary states or the ionization continuum. This absorption combines with the superradiant emissions in a multiphotonic diffusion induced by the superradiant rays. Although its brightness remains higher than that of the superradiant rays, the source becomes invisible if it is observed through a small solid angle. The lines emitted inside the sphere are all the more weak as they arrive of an internal area, lower in atoms, and more reddened also by a parametric transfer of energy towards the thermal radiation catalyzed by excited atomic hydrogen present in the sphere only. The Stromgren sphere appears to help to simply explain the appearance and the spectrum of supernova 1987A.

Jacques Moret-Bailly

2008-07-19T23:59:59.000Z

327

National synchrotron light source. Activity report, October 1, 1995--September 30, 1996  

SciTech Connect (OSTI)

The hard work done by the synchrotron radiation community, in collaboration with all those using large-scale central facilities during 1995, paid off in FY 1996 through the DOE`s Presidential Scientific Facilities Initiative. In comparison with the other DOE synchrotron radiation facilities, the National Synchrotron Light Source benefited least in operating budgets because it was unable to increase running time beyond 100%-nevertheless, the number of station hours was maintained. The major thrust at Brookhaven came from a 15% increase in budget which allowed the recruitment of seven staff in the beamlines support group and permitted a step increment in the funding of the extremely long list of upgrades; both to the sources and to the beamlines. During the December 1995 shutdown, the VUV Ring quadrant around U10-U12 was totally reconstructed. New front ends, enabling apertures up to 90 mrad on U10 and U12, were installed. During the year new PRTs were in formation for the infrared beamlines, encouraged by the investment the lab was able to commit from the initiative funds and by awards from the Scientific Facilities Initiative. A new PRT, specifically for small and wide angle x-ray scattering from polymers, will start work on X27C in FY 1997 and existing PRTs on X26C and X9B working on macromolecular crystallography will be joined by new members. Plans to replace aging radio frequency cavities by an improved design, originally a painfully slow six or eight year project, were brought forward so that the first pair of cavities (half of the project for the X-Ray Ring) will now be installed in FY 1997. Current upgrades to 350 mA initially and to 438 mA later in the X-Ray Ring were set aside due to lack of funds for the necessary thermally robust beryllium windows. The Scientific Facilities Initiative allowed purchase of all 34 windows in FY 1996 so that the power upgrade will be achieved in FY 1997.

Rothman, E.Z.; Hastings, J.B. [eds.

1997-05-01T23:59:59.000Z

328

Microencapsulated Fuel Technology for Commercial Light Water and Advanced Reactor Application  

SciTech Connect (OSTI)

The potential application of microencapsulated fuels to light water reactors (LWRs) has been explored. The specific fuel manifestation being put forward is for coated fuel particles embedded in silicon carbide or zirconium metal matrices. Detailed descriptions of these concepts are presented, along with a review of attributes, potential benefits, and issues with respect to their application in LWR environments, specifically from the standpoints of materials, neutronics, operations, and economics. Preliminary experiment and modeling results imply that with marginal redesign, significant gains in operational reliability and accident response margins could be potentially achieved by replacing conventional oxide-type LWR fuel with microencapsulated fuel forms.

Terrani, Kurt A [ORNL; Snead, Lance Lewis [ORNL; Gehin, Jess C [ORNL

2012-01-01T23:59:59.000Z

329

Some Specific CASL Requirements for Advanced Multiphase Flow Simulation of Light Water Reactors  

SciTech Connect (OSTI)

Because of the diversity of physical phenomena occuring in boiling, flashing, and bubble collapse, and of the length and time scales of LWR systems, it is imperative that the models have the following features: Both vapor and liquid phases (and noncondensible phases, if present) must be treated as compressible. Models must be mathematically and numerically well-posed. The models methodology must be multi-scale. A fundamental derivation of the multiphase governing equation system, that should be used as a basis for advanced multiphase modeling in LWR coolant systems, is given in the Appendix using the ensemble averaging method. The remainder of this work focuses specifically on the compressible, well-posed, and multi-scale requirements of advanced simulation methods for these LWR coolant systems, because without these are the most fundamental aspects, without which widespread advancement cannot be claimed. Because of the expense of developing multiple special-purpose codes and the inherent inability to couple information from the multiple, separate length- and time-scales, efforts within CASL should be focused toward development of a multi-scale approaches to solve those multiphase flow problems relevant to LWR design and safety analysis. Efforts should be aimed at developing well-designed unified physical/mathematical and high-resolution numerical models for compressible, all-speed multiphase flows spanning: (1) Well-posed general mixture level (true multiphase) models for fast transient situations and safety analysis, (2) DNS (Direct Numerical Simulation)-like models to resolve interface level phenmena like flashing and boiling flows, and critical heat flux determination (necessarily including conjugate heat transfer), and (3) Multi-scale methods to resolve both (1) and (2) automatically, depending upon specified mesh resolution, and to couple different flow models (single-phase, multiphase with several velocities and pressures, multiphase with single velocity and pressure, etc.) A unified, multi-scale approach is advocated to extend the necessary foundations and build the capability to simultaneously solve the fluid dynamic interface problems (interface resolution) as well as multiphase mixtures (homogenization).

R. A. Berry

2010-11-01T23:59:59.000Z

330

Development of Advanced Manufacturing Methods for Warm White LEDs for General Lighting  

SciTech Connect (OSTI)

GE Lighting Solutions will develop precise and efficient manufacturing techniques for the remote phosphor platform of warm-white LED products. In volume, this will be demonstrated to drive significant materials, labor and capital productivity to achieve a maximum possible 53% reduction in overall cost. In addition, the typical total color variation for these white LEDs in production will be well within the ANSI bins and as low as a 4-step MacAdam ellipse centered on the black body curve. Achievement of both of these objectives will be demonstrated while meeting a performance target of > 75 lm/W for a warm-white LED and a reliability target of <30% lumen drop / <2-step MacAdam ellipse shift, estimated over 50,000 hrs.

Deshpande, Anirudha; Kolodin, Boris; Jacob, Cherian; Chowdhury, Ashfaqul; Kuenzler, Glenn; Sater, Karen; Aesram, Danny; Glaettli, Steven; Gallagher, Brian; Langer, Paul; Setlur, Anant; Beers, Bill

2012-03-31T23:59:59.000Z

331

Advanced dry head-end reprocessing of light water reactor spent nuclear fuel  

SciTech Connect (OSTI)

A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

Collins, Emory D.; Delcul, Guillermo D.; Hunt, Rodney D.; Johnson, Jared A.; Spencer, Barry B.

2014-06-10T23:59:59.000Z

332

Advanced dry head-end reprocessing of light water reactor spent nuclear fuel  

DOE Patents [OSTI]

A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

Collins, Emory D; Delcul, Guillermo D; Hunt, Rodney D; Johnson, Jared A; Spencer, Barry B

2013-11-05T23:59:59.000Z

333

Breakthroughs in Practical-Sized, High Quality OLED Light Panel Source  

Broader source: Energy.gov [DOE]

General Electric Global Research has achieved a major breakthrough, developing a fully functional 2 ft. x 2 ft. light panel that produces more than 1200 lumens of quality white light with an efficacy of 15 lumens per watt. This device offers 50% better energy performance than their previous device, breaking two world records.

334

Protein Structures Through use of "Superbends" at the Advance Light  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios HighRadiobiology:Princeton Plasma(SC)U.S.Source |

335

E-Print Network 3.0 - advanced power sources Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with Feedback Control MISO control laws SISO control law Summary: : To mitigate wind power intermittency using rechargeable battery as reserve power source Simulation Results......

336

DOE LABORATORY OPEN SOURCE SOFTWARE: ADVANCE DOE PROGRAM Approval and other oss Licensing Issues  

Broader source: Energy.gov [DOE]

On Feb 1, 2002, DOE Patent Counsel issued an IPI-II-1-01 for "Development and Use of Open Source Software."

337

Advanced Variable Speed Air-Source Integrated Heat Pump | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance PatentDepartment|AdvancedEnergy Pump

338

X-RAY ACTIVE MATRIX PIXEL SENSORS BASEDON J-FET TECHNOLOGY DEVELOPED FOR THE LINAC COHERENT LIGHT SOURCE.  

SciTech Connect (OSTI)

An X-ray Active Matrix Pixel Sensor (XAMPS) is being developed for recording data for the X-ray Pump Probe experiment at the Linac Coherent Light Source (LCLS). Special attention has to be paid to some technological challenges that this design presents. New processes were developed and refined to address problems encountered during previous productions of XAMPS. The development of these critical steps and corresponding tests results are reported here.

CARINI,G.A.; CHEN, W.; LI, Z.; REHAK, P.; SIDDONS, D.P.

2007-10-29T23:59:59.000Z

339

Final LDRD report : development of advanced UV light emitters and biological agent detection strategies.  

SciTech Connect (OSTI)

We present the results of a three year LDRD project which has focused on the development of novel, compact, ultraviolet solid-state sources and fluorescence-based sensing platforms that apply such devices to the sensing of biological and nuclear materials. We describe our development of 270-280 nm AlGaN-based semiconductor UV LEDs with performance suitable for evaluation in biosensor platforms as well as our development efforts towards the realization of a 340 nm AlGaN-based laser diode technology. We further review our sensor development efforts, including evaluation of the efficacy of using modulated LED excitation and phase sensitive detection techniques for fluorescence detection of bio molecules and uranyl-containing compounds.

Figiel, Jeffrey James; Crawford, Mary Hagerott; Banas, Michael Anthony; Farrow, Darcie; Armstrong, Andrew M.; Serkland, Darwin Keith; Allerman, Andrew Alan; Schmitt, Randal L.

2007-12-01T23:59:59.000Z

340

Evaluation of advanced technologies for residential appliances and residential and commercial lighting  

SciTech Connect (OSTI)

Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

EK 131/132 Photonics Engineering with light Photonics is used in advanced technology as well as everyday familiar objects. This 6 week freshman  

E-Print Network [OSTI]

EK 131/132 Photonics Engineering with light Photonics is used in advanced technology as well: golden rule, follower, non-inverting amplifier, inverting amplifier Optoelectronics: Band gap, Optical: Using breadboards, oscilloscope, voltmeter, function generator, using op-amps, reading C and R, Reading

342

Advanced Variable Speed Air-Source Integrated Heat Pump 2013 Peer Review |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------ChapterJuly 20142 U.S.AdvancedThermal

343

Optical and UV Light Curves of the Accretion Disk Corona Source 4U 1822-371  

E-Print Network [OSTI]

The eclipsing low-mass X-ray binary 4U is the prototypical accretion disk corona (ADC) system. We have obtained new time-resolved UV spectrograms of 4U with the Hubble Space Telescope and new V- and J-band light curves with the 1.3-m SMARTS telescope at CTIO. We present an updated ephemeris for the times of the optical/UV eclipses. Model light curves do not give acceptable fits to the UV eclipses unless the models include an optically-thick ADC.

A. J. Bayless; E. L. Robinson; R. I. Hynes; T. A. Ashcraft; M. E. Cornell

2008-03-18T23:59:59.000Z

344

Advanced variable speed air-source integrated heat pump (AS-IHP)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergyPolicy andAdvanced

345

Phase Estimation with Weak Measurement Using a White Light Source Xiao-Ye Xu,1  

E-Print Network [OSTI]

, University of Science and Technology of China, CAS, Hefei 230026, People's Republic of China 2 Raymond quantum noise [2]. To reduce the influence of the noise, quantum metrology technologies [3], including N00 to be useless in quantum metrology. Recently, it has been proposed that white light can be used for a very

Vaidman, Lev

346

Performance of new infrared beamline U12IR at the National Synchrotron Light Source  

E-Print Network [OSTI]

frequency limit of 2 cm 1 i.e., 60 GHz or a photon energy of 250 eV . The infrared light from infrared beamline at the NSLS and, with increasing demand for measurement time, has been followed by a series of new infrared ports presently under construction and com- missioning. This also allowed for some

Tanner, David B.

347

The role of plasma evolution and photon transport in optimizing future advanced lithography sources  

E-Print Network [OSTI]

, and reduced contamination and damage to the optical mirror collection system from plasma debris and energetic particles. The ideal target is to generate a source of maximum EUV radiation output and collection in the 13 and plasma, ioniza- tion, plasma radiation, and details of photon transport in these media. We studied

Harilal, S. S.

348

POLARIZATION AND VARIATION OF NEAR-INFRARED LIGHT FROM FERMI/LAT {gamma}-RAY SOURCES  

SciTech Connect (OSTI)

We present the results of our follow-up observation program of {gamma}-ray sources detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. Twenty-six blazars and thirty-nine sources unidentified at other wavelengths were targeted at the Infrared Survey Facility 1.4 m telescope equipped with the SIRIUS/SIRPOL imager and polarimeter. H-band magnitudes of the blazars at the epoch of 2010 December-2011 February are presented, which reveal clear flux variation since the Two Micron All Sky Survey observations and can be useful data for variation analyses of these objects in longer periods. We also find that nearly half of the {gamma}-ray blazars are highly (>10%) polarized in near-infrared wavelengths. Combining the polarization and variation properties, most ({approx}90%) of the blazars are clearly distinguished from all other types of objects at high Galactic latitudes. On the other hand, we find only one highly polarized and/or variable object in the fields of unidentified sources. This object is a counterpart of the optical variable source PQV1 J131553.00-073302.0 and the radio source NVSS J131552-073301 and is a promising candidate of new {gamma}-ray blazars. From the measured polarization and variation statistics, we conclude that most of the Fermi/LAT unidentified sources are not likely similar types of objects to the known {gamma}-ray blazars.

Fujiwara, M.; Matsuoka, Y. [Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Ienaka, N., E-mail: matsuoka@a.phys.nagoya-u.ac.jp [Institute of Astronomy, The University of Tokyo, Osawa 2-21-1, Mitaka, Tokyo 181-0015 (Japan)

2012-10-01T23:59:59.000Z

349

Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources  

SciTech Connect (OSTI)

The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique power panel approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin power panels consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 C and cold-side temperatures = 40 C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

2010-09-01T23:59:59.000Z

350

7-GeV Advanced Photon Source Instrumentation Initiative conceptual design report  

SciTech Connect (OSTI)

In this APS Instrumentation Initiative, 2.5-m-long and 5-m-long insertion-device x-ray sources will be built on 9 straight sections of the APS storage ring, and an additional 9 bending-magnet sources will also be put in use. The front ends for these 18 x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build state-of-the-art insertion-device beamlines to meet scientific and technological research demands well into the next century. This new initiative will also include four user laboratory modules and a special laboratory designed to meet the x-ray imaging research needs of the users. The Conceptual Design Report (CDR) for the APS Instrumentation Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. According to these plans, this new initiative begins in FY 1994 and ends in FY 1998. The document also describes the preconstruction R D plans for the Instrumentation Initiative activities and provides the cost estimates for the required R D.

Not Available

1992-12-01T23:59:59.000Z

351

7-GeV Advanced Photon Source Instrumentation Initiative conceptual design report  

SciTech Connect (OSTI)

In this APS Instrumentation Initiative, 2.5-m-long and 5-m-long insertion-device x-ray sources will be built on 9 straight sections of the APS storage ring, and an additional 9 bending-magnet sources will also be put in use. The front ends for these 18 x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build state-of-the-art insertion-device beamlines to meet scientific and technological research demands well into the next century. This new initiative will also include four user laboratory modules and a special laboratory designed to meet the x-ray imaging research needs of the users. The Conceptual Design Report (CDR) for the APS Instrumentation Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. According to these plans, this new initiative begins in FY 1994 and ends in FY 1998. The document also describes the preconstruction R&D plans for the Instrumentation Initiative activities and provides the cost estimates for the required R&D.

Not Available

1992-12-01T23:59:59.000Z

352

Design of a compact electron cyclotron resonance ion source for medium charge state light ions  

SciTech Connect (OSTI)

At the Australian Nuclear Science and Technology Organization we are developing a new isotope ratio mass spectrometer based on the measurement of multiple charge state ions. We have carried out a review of our existing ECR ion source and identified a number of design flaws. For the new instrument, we are producing a new ECR source and have refined the design, in particular by using 3D simulations to improve the magnetic confinement field and by a combination of simulations and experiments to improve the design of the microwave coupling.

Button, D.; Hotchkis, M. A. C. [Australian Nuclear Science and Technology Organization, Sydney, NSW 2234 (Australia); Milford, G. N. [University of New South Wales, Canberra, ACT 2600 (Australia)

2012-02-15T23:59:59.000Z

353

SciTech Connect: 1994 Activity Report, National Synchrotron Light Source.  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article:Biasi, A.long baseline neutrino experiment" Find + Advanced SearchAnnual

354

Quantifying sources of methane using light alkanes in the Los Angeles basin, California  

E-Print Network [OSTI]

Air Resources Board (CARB) was tasked with compiling and verifying an inventory of GHG emissions of the statewide 2006 CARB GHG inventory and from a bottom-up accounting of CH4 sources, respectively. [3] Several are larger than expected from population-apportioned bottom-up state inventories, consistent with previously

Cohen, Ronald C.

355

X-Ray Light Sources | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1of Energy WorldwideX-RayX-RayX-Ray Light

356

Advanced Ultrasonic Inspection Techniques for General Purpose Heat Source Fueled Clad Closure Welds  

SciTech Connect (OSTI)

A radioisotope thermoelectric generator is used to provide a power source for long-term deep space missions. This General Purpose Heat Source (GPHS) is fabricated using iridium clad vent sets to contain the plutonium oxide fuel pellets. Integrity of the closure weld is essential to ensure containment of the plutonium. The Oak Ridge Y-12 Plant took the lead role in developing the ultrasonic inspection for the closure weld and transferring the inspection to Los Alamos National Laboratory for use in fueled clad inspection for the Cassini mission. Initially only amplitude and time-of-flight data were recorded. However, a number of benign geometric conditions produced signals that were larger than the acceptance threshold. To identify these conditions, a B-scan inspection was developed that acquired full ultrasonic waveforms. Using a test protocol the B-scan inspection was able to identify benign conditions such as weld shield fusion and internal mismatch. Tangential radiography was used to confirm the ultrasonic results. All but two of 29 fueled clads for which ultrasonic B-scan data was evaluated appeared to have signals that could be attributed to benign geometric conditions. This report describes the ultrasonic inspection developed at Y-12 for the Cassini mission.

Moyer, M.W.

2001-01-11T23:59:59.000Z

357

Lighting Inventory Lighting Theatre and Drama  

E-Print Network [OSTI]

Lighting Inventory Lighting Theatre and Drama Description Totals R.Halls Wells- Metz Light ERS ETC SourceFour 25 25 50 degree ERS Strand Lighting 64 14 24 12 14 36 degree ERS ETC Source Four 15 15 36 degree ERS Strand Lighting 124 60 58 2 4 26 degree ERS ETC SourceFour 2 2 26 degree ERS Strand

Indiana University

358

Advanced Light Water Reactor Plants System 80+{trademark} Design Certification Program. Annual progress report, October 1, 1992--September 30, 1993  

SciTech Connect (OSTI)

The purpose of this report is to provide a status of the progress that was made towards Design Certification of System 80+{trademark} during the US government`s 1993 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW{sub t} (1350 MWe) Pressurized Water Reactor (PWR). The design consists of an essentially complete plant. It is based on evolutionary improvements to the Standardized System 80 nuclear steam supply system in operation at Palo Verde Units 1, 2, and 3, and the Duke Power Company P-81 balance-of-plant (BOP) that was designed and partially constructed at the Cherokee plant site. The System 80/P-81 original design has been substantially enhanced to increase conformance with the EPRI ALWR Utility Requirements Document (URD). Some design enhancements incorporated in the System 80+ design are included in the four units currently under construction in the Republic of Korea. These units form the basis of the Korean standardization program. The full System 80+ standard design has been offered to the Republic of China, in response to their recent bid specification. The ABB-CE Standard Safety Analysis Report (CESSAR-DC) was submitted to the NRC and a Draft Safety Evaluation Report was issued by the NRC in October 1992. CESSAR-DC contains the technical basis for compliance with the EPRI URD for simplified emergency planning. The Nuclear Steam Supply System (NSSS) is the standard ABB-Combustion Engineering two-loop arrangement with two steam generators, two hot legs and four cold legs each with a reactor coolant pump. The System 80+ standard plant includes a sperical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual containment.

Not Available

1993-12-31T23:59:59.000Z

359

THE Low-level Radio Frequency System for the superconducting cavities of National Synchrotron Light Source II  

SciTech Connect (OSTI)

A digital low-level radio frequency (LLRF) field controller has been developed for the storage ring of The National Synchrotron Light Source-II (NSLS-II). The primary performance goal for the LLRF is to support the required RF operation of the superconducting cavities with a beam current of 500mA and a 0.14 degree or better RF phase stability. The digital field controller is FPGA-based, in a standard format 19-inch/I-U chassis. It has an option of high-level control support with MATLAB running on a local host computer through a USB2.0 port. The field controller has been field tested with the high-power superconducting RF (SRF) at Canadian light Source, and successfully stored a high beam current of 250 mA. The test results show that required specifications for the cavity RF field stability are met. This digital field controller is also currently being used as a development platform for other functional modules in the NSLS-II RF systems.

Ma, H.; Rose, J.; Holub, B.; Cupolo, J.; Oliva, J.; Sikora, R.; Yeddulla, M.

2011-03-28T23:59:59.000Z

360

High-power RF testing of a 352-MHZ fast-ferrite RF cavity tuner at the Advanced Photon Source.  

SciTech Connect (OSTI)

A 352-MHz fast-ferrite rf cavity tuner, manufactured by Advanced Ferrite Technology, was high-power tested on a single-cell copper rf cavity at the Advanced Photon Source. These tests measured the fast-ferrite tuner performance in terms of power handling capability, tuning bandwidth, tuning speed, stability, and rf losses. The test system comprises a single-cell copper rf cavity fitted with two identical coupling loops, one for input rf power and the other for coupling the fast-ferrite tuner to the cavity fields. The fast-ferrite tuner rf circuit consists of a cavity coupling loop, a 6-1/8-inch EIA coaxial line system with directional couplers, and an adjustable 360{sup o} mechanical phase shifter in series with the fast-ferrite tuner. A bipolar DC bias supply, controlled by a low-level rf cavity tuning loop consisting of an rf phase detector and a PID amplifier, is used to provide a variable bias current to the tuner ferrite material to maintain the test cavity at resonance. Losses in the fast-ferrite tuner are calculated from cooling water calorimetry. Test data will be presented.

Horan, D.; Cherbak, E.; Accelerator Systems Division (APS)

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

X-ray Diffraction and Multi-Frame Phase Contrast Imaging Diagnostics for IMPULSE at the Advanced Photon Source  

SciTech Connect (OSTI)

The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSE experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.

Iverson, Adam [National Security Technologies, LLC; Carlson, Carl [National Security Technologies, LLC; Young, Jason [National Security Technologies, LLC; Curtis, Alden [National Security Technologies, LLC; Jensen, Brian [Los Alamos National Laboratory; Ramos, Kyle [Los Alamos National Laboratory; Yeager, John [Los Alamos National Laboratory; Montgomery, David [Los Alamos National Laboratory; Fezza, Kamel [Argonne National Laboratory

2013-07-08T23:59:59.000Z

362

Improvement of the dynamic aperture in Chasman Green lattice design light source storage rings  

SciTech Connect (OSTI)

The Chasman-Green half cell illustrates a typical electron or positron storage ring lattice specifically designed for photon beams from undulators and wigglers located in each dispersion-free straight section. The need for a small particle beam emittance requires that the horizontal phase advance per cell should be in the neighborhood of 0.9 x 2 . Necessary chromaticity correcting sextupoles, S/sub D/ and S/sub F/, located in the dispersion straight section introduce non-linear perturbations which limit the dynamic aperture because of amplitude dependent tune shifts. Two families of sextupoles, S1 and S2, can be introduced into the dispersion-free region to moderate the more harmful effects of S/sub D/ and S/sub F/. The nature of the perturbations are discussed and some guidelines for the adjustment of S1 and S2 sextupoles are given.

Crosbie, E.A.

1987-01-01T23:59:59.000Z

363

The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory  

SciTech Connect (OSTI)

The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube.

NONE

1995-10-01T23:59:59.000Z

364

Prospects for advanced electron cyclotron resonance and electron beam ion source charge breeding methods for EURISOL  

SciTech Connect (OSTI)

As the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to post-acceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R and D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources. We describe here the guidelines of this R and D.

Delahaye, P.; Jardin, P.; Maunoury, L.; Traykov, E.; Varenne, F. [GANIL, CEA/DSM-CNRS/IN2P3, Bd. Becquerel, BP 55027, 14076 Caen Cedex 05 (France); Galata, A.; Porcellato, A. M.; Prete, G. F. [INFN-Laboratori Nazionali di Legnaro, Viale dell'Universita 2, 35020 Legnaro, Padova (Italy); Angot, J.; Lamy, T.; Sortais, P.; Thuillier, T. [LPSC Grenoble, 53, rue des Martyrs, 38026 Grenoble Cedex (France); Ban, G. [LPC Caen, 6 bd Marechal Juin, 14050 Caen Cedex (France); Celona, L.; Lunney, D. [INFN-Laboratori Nazionali del Sud, via S.Sofia 62, 95125 Catania (Italy); Choinski, J.; Gmaj, P.; Jakubowski, A.; Steckiewicz, O. [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5a, 02 093 Warsaw (Poland); Kalvas, T. [Department of Physics, University of Jyvaeskylae, PB 35 (YFL) 40351 Jyvaeskylae (Finland); and others

2012-02-15T23:59:59.000Z

365

Design of a High Power Continuous Source of Broadband Down-Converted Light  

E-Print Network [OSTI]

We present the design and experimental proof of principle of a low threshold optical parametric oscillator (OPO) that continuously oscillates over a large bandwidth allowed by phase matching. The large oscillation bandwidth is achieved with a selective two-photon loss that suppresses the inherent mode competition, which tends to narrow the bandwidth in conventional OPOs. Our design performs pairwise mode-locking of many frequency pairs, in direct equivalence to passive mode-locking of ultrashort pulsed lasers. The ability to obtain high powers of continuous \\textit{and} broadband down-converted light enables the optimal exploitation of the correlations within the down-converted spectrum, thereby strongly affecting two-photon interactions even at classically high power levels, and opening new venues for applications such as two-photon spectroscopy and microscopy and optical spread spectrum communication.

Avi Pe'er; Yaron Silberberg; Barak Dayan; Asher A. Friesem

2006-08-29T23:59:59.000Z

366

LUNEX5: A FRENCH FEL TEST FACILITY LIGHT SOURCE PROPOSAL A. Loulergue, C. Benabderrahmane, M. Bessire, P. Betinelli, F. Bouvet, A. Buteau, L. Cassinari,  

E-Print Network [OSTI]

is mandatory for the FEL performance. Although the Solid State Amplifiers (SSA) technology [8] is not yetLUNEX5: A FRENCH FEL TEST FACILITY LIGHT SOURCE PROPOSAL A. Loulergue, C. Benabderrahmane, M is a new Free Electron Laser (FEL) source project aimed at delivering short and coherent X-ray pulses

Boyer, Edmond

367

Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles  

Broader source: Energy.gov [DOE]

Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

368

Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source  

SciTech Connect (OSTI)

Einstein-Podolsky-Rosen (EPR) entanglement is a criterion that is more demanding than just certifying entanglement. We theoretically and experimentally analyze the low-resource generation of bipartite continuous-variable entanglement, as realized by mixing a squeezed mode with a vacuum mode at a balanced beam splitter, i.e., the generation of so-called vacuum-class entanglement. We find that in order to observe EPR entanglement the total optical loss must be smaller than 33.3 %. However, arbitrarily strong EPR entanglement is generally possible with this scheme. We realize continuous-wave squeezed light at 1550 nm with up to 9.9 dB of nonclassical noise reduction, which is the highest value at a telecom wavelength so far. Using two phase-controlled balanced homodyne detectors we observe an EPR covariance product of 0.502{+-}0.006<1, where 1 is the critical value. We discuss the feasibility of strong Gaussian entanglement and its application for quantum key distribution in a short-distance fiber network.

Eberle, Tobias [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) and Institut fuer Gravitationsphysik der Leibniz Universitaet Hannover, Callinstrasse 38, D-30167 Hannover (Germany); Centre for Quantum Engineering and Space-Time Research - QUEST, Leibniz Universitaet Hannover, Welfengarten 1, D-30167 Hannover (Germany); Haendchen, Vitus; Schnabel, Roman [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) and Institut fuer Gravitationsphysik der Leibniz Universitaet Hannover, Callinstrasse 38, D-30167 Hannover (Germany); Duhme, Joerg [Centre for Quantum Engineering and Space-Time Research - QUEST, Leibniz Universitaet Hannover, Welfengarten 1, D-30167 Hannover (Germany); Institut fuer Theoretische Physik der Leibniz Universitaet Hannover, Appelstrasse 2, D-30167 Hannover (Germany); Franz, Torsten; Werner, Reinhard F. [Institut fuer Theoretische Physik der Leibniz Universitaet Hannover, Appelstrasse 2, D-30167 Hannover (Germany)

2011-05-15T23:59:59.000Z

369

Study of Pu consumption in advanced light water reactors: Evaluation of GE advanced boiling water reactor plants - compilation of Phase 1B task reports  

SciTech Connect (OSTI)

This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.

NONE

1993-09-15T23:59:59.000Z

370

Linac Coherent Light Source II (LCLS-II) Conceptual Design Report  

SciTech Connect (OSTI)

The LCLS-II Project is designed to support the DOE Office of Science mission, as described in the 22 April 2010 Mission Need Statement. The scope of the Project was chosen to provide an increase in capabilities and capacity for the facility both at project completion in 2017 and in the subsequent decade. The Project is designed to address all points of the Mission Need Statement (MNS): (1) Expanded spectral reach; (2) Capability to provide x-ray beams with controllable polarization; (3) Capability to provide 'pump' pulses over a vastly extended range of photon energies to a sample, synchronized to LCLS-II x-ray probe pulses with controllable inter-pulse time delay; and (4) Increase of user access through parallel rather than serial x-ray beam use within the constraint of a $300M-$400M Total Project Cost (TPC) range. The LCLS-II Project will construct: (1) A hard x-ray undulator source (2-13 keV); (2) A soft x-ray undulator source (250-2,000 eV); (3) A dedicated, independent electron source for these new undulators, using sectors 10-20 of the SLAC linac; (4) Modifications to existing SLAC facilities for the injector and new shielded enclosures for the undulator sources, beam dumps and x-ray front ends; (5) A new experiment hall capable of accommodating four experiment stations; and (6) Relocation of the two soft x-ray instruments in the existing Near Experiment Hall (NEH) to the new experiment hall (Experiment Hall-II). A key objective of LCLS-II is to maintain near-term international leadership in the study of matter on the fundamental atomic length scale and the associated ultrafast time scales of atomic motion and electronic transformation. Clearly, such studies promise scientific breakthroughs in key areas of societal needs like energy, environment, health and technology, and they are uniquely enabled by forefront X-ray Free Electron Laser (X-FEL) facilities. While the implementation of LCLS-II extends to about 2017, it is important to realize that LCLS-II only constitutes a stepping stone to what we believe is needed over a longer time scale. At present, a practical time horizon for planning is about 15 years into the future, matching that of worldwide planning activities for competitive X-FEL facilities in Europe and Asia. We therefore envision LCLS-II as an important stage in development to what is required by about 2025, tentatively called LCLS-2025, for continued US leadership even as new facilities around the world are being completed. We envision LCLS primarily as a hard x-ray FEL facility with some soft x-ray capabilities. A survey of planned X-FEL facilities around the world suggests that US planning to 2025 needs to include an internationally competitive soft x-ray FEL facility which complements the LCLS plans outlined in this document.

Stohr, J

2011-11-16T23:59:59.000Z

371

National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991  

SciTech Connect (OSTI)

This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

Hulbert, S.L.; Lazarz, N.M. [eds.

1992-04-01T23:59:59.000Z

372

Development of soft X-ray polarized light beamline on Indus-2 synchrotron radiation source  

SciTech Connect (OSTI)

This article describes the development of a soft x-ray beamline on a bending magnet source of Indus-2 storage ring (2.5 GeV) and some preliminary results of x-ray absorption spectroscopy (XAS) measurements using the same. The beamline layout is based on a spherical grating monochromator. The beamline is able to accept synchrotron radiation from the bending magnet port BL-1 of the Indus-2 ring with a wide solid angle. The large horizontal and vertical angular acceptance contributes to high photon flux and selective polarization respectively. The complete beamline is tested for ultrahigh vacuum (UHV) ? 10{sup ?10} mbar. First absorption spectrum was obtained on HOPG graphite foil. Our performance test indicates that modest resolving power has been achieved with adequate photon flux to carry out various absorption experiments.

Phase, D. M., E-mail: mgupta@csr.res.in; Gupta, Mukul, E-mail: mgupta@csr.res.in; Potdar, S., E-mail: mgupta@csr.res.in; Behera, L., E-mail: mgupta@csr.res.in; Sah, R., E-mail: mgupta@csr.res.in; Gupta, Ajay, E-mail: mgupta@csr.res.in [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore, 452001 (India)

2014-04-24T23:59:59.000Z

373

METALLICITY AS A SOURCE OF DISPERSION IN THE SNIa BOLOMETRIC LIGHT CURVE LUMINOSITY-WIDTH RELATIONSHIP  

SciTech Connect (OSTI)

The recognition that the metallicity of Type Ia supernova (SNIa) progenitors might bias their use for cosmological applications has led to an increasing interest in its role in shaping SNIa light curves. We explore the sensitivity of the synthesized mass of {sup 56}Ni, M({sup 56}Ni), to the progenitor metallicity starting from pre-main-sequence models with masses M {sub 0} = 2-7 M {sub sun} and metallicities Z = 10{sup -5}-0.10. The interplay between convective mixing and carbon burning during the simmering phase eventually raises the neutron excess, {eta}, and leads to a smaller {sup 56}Ni yield, but does not change substantially the dependence of M({sup 56}Ni) on Z. Uncertain attributes of the progenitor white dwarf, like the central density, have a minor effect on M({sup 56}Ni). Our main results are: (1) a sizeable amount of {sup 56}Ni is synthesized during incomplete Si-burning, which leads to a stronger dependence of M({sup 56}Ni) on Z than obtained by assuming that {sup 56}Ni is produced in material that burns fully to nuclear statistical equilibrium; (2) in one-dimensional delayed detonation simulations a composition dependence of the deflagration-to-detonation transition (DDT) density gives a nonlinear relationship between M({sup 56}Ni) and Z and predicts a luminosity larger than previously thought at low metallicities (however, the progenitor metallicity alone cannot explain the whole observational scatter of SNIa luminosities); and (3) an accurate measurement of the slope of the Hubble residuals versus metallicity for a large enough data set of SNIa might give clues to the physics of DDT in thermonuclear explosions.

Bravo, E. [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Carrer Comte d'Urgell 187, 08036 Barcelona (Spain); DomInguez, I. [Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, 18071 Granada (Spain); Badenes, C. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Piersanti, L.; Straniero, O. [INAF-Osservatorio Astronomico di Teramo, via mentore Maggini snc, 64100 Teramo (Italy)], E-mail: eduardo.bravo@upc.edu, E-mail: inma@ugr.es, E-mail: carles@wise.tau.ac.il

2010-03-10T23:59:59.000Z

374

Creating an EPICS Based Test Stand Development System for a BPM Digitizer of the Linac Coherent Light Source  

SciTech Connect (OSTI)

The Linac Coherent Light Source (LCLS) is required to deliver a high quality electron beam for producing coherent X-rays. As a result, high resolution beam position monitoring is required. The Beam Position Monitor (BPM) digitizer acquires analog signals from the beam line and digitizes them to obtain beam position data. Although Matlab is currently being used to test the BPM digitizer?s functions and capability, the Controls Department at SLAC prefers to use Experimental Physics and Industrial Control Systems (EPICS). This paper discusses the transition of providing similar as well as enhanced functionalities, than those offered by Matlab, to test the digitizer. Altogether, the improved test stand development system can perform mathematical and statistical calculations with the waveform signals acquired from the digitizer and compute the fast Fourier transform (FFT) of the signals. Finally, logging of meaningful data into files has been added.

Not Available

2011-06-22T23:59:59.000Z

375

National Synchrotron Light Source user`s manual: Guide to the VUV and x-ray beamlines. Fifth edition  

SciTech Connect (OSTI)

The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User`s Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines.

Gmuer, N.F. [ed.

1993-04-01T23:59:59.000Z

376

A compact, sample-in-atmospheric-pressure soft x-ray microscope developed at Pohang Light Source  

SciTech Connect (OSTI)

A full-field transmission soft x-ray microscope (TXM) was developed at the Pohang Light Source. With a 2 mm diameter condenser zone plate and a 40 nm outermost-zone-width objective zone plate, the TXM's achieved spatial resolution is better than 50 nm at the photon energy of 500 eV (wavelength: 2.49 nm). The TXM is portable and mounted in tandem with a 7B1 spectroscopy end station. The sample position is outside the vacuum, allowing for quick sample changes and enhanced in situ experimental capability. In addition, the TXM is pinhole-free and easy to align, having commercial mounts located outside the vacuum components.

Lim, Jun; Shin, Hyun-Joon [Pohang Accelerator Laboratory, POSTECH, San31, Pohang 790-784 (Korea, Republic of); Department of Physics, POSTECH, San31, Pohang 790-784 (Korea, Republic of); Chae, Keun Hwa [Materials Science and Technology Research Division, KIST, Seoul 130-791 (Korea, Republic of); Hwang, Chan-Cuk; Hwang, Han-Na [Pohang Accelerator Laboratory, POSTECH, San31, Pohang 790-784 (Korea, Republic of); Hong, Chung Ki [Department of Physics, POSTECH, San31, Pohang 790-784 (Korea, Republic of)

2010-06-15T23:59:59.000Z

377

Differential spectral responsivity measurement of photovoltaic detectors with a light-emitting-diode-based integrating sphere source  

SciTech Connect (OSTI)

We present an experimental realization of differential spectral responsivity measurement by using a light-emitting diode (LED)-based integrating sphere source. The spectral irradiance responsivity is measured by a Lambertian-like radiation field with a diameter of 40mm at the peak wavelengths of the 35 selectable LEDs covering a range from 280 to 1550nm. The systematic errors and uncertainties due to lock-in detection, spatial irradiance distribution, and reflection from the test detector are experimentally corrected or considered. In addition, we implemented a numerical procedure to correct the error due to the broad spectral bandwidth of the LEDs. The overall uncertainty of the DSR measurement is evaluated to be 2.2% (k=2) for Si detectors. To demonstrate its application, we present the measurement results of two Si photovoltaic detectors at different bias irradiance levels up to 120mW/cm{sup 2}.

Zaid, Ghufron; Park, Seung-Nam; Park, Seongchong; Lee, Dong-Hoon

2010-12-10T23:59:59.000Z

378

Optical reaction cell and light source for [18F] fluoride radiotracer synthesis  

DOE Patents [OSTI]

An apparatus is disclosed for performing organic synthetic reactions, particularly no-carrier-added nucleophilic radiofluorination reactions for PET radiotracer production. The apparatus includes an optical reaction cell and a source of broadband infrared radiant energy, which permits direct coupling of the emitted radiant energy with the reaction medium to heat the reaction medium. Preferably, the apparatus includes means for focusing the emitted radiant energy into the reaction cell, and the reaction cell itself is preferably configured to reflect transmitted radiant energy back into the reaction medium to further improve the efficiency of the apparatus. The apparatus is well suited to the production of high-yield syntheses of 2-[{sup 18}F]fluoro-2-deoxy-Dglucose. Also provided is a method for performing organic synthetic reactions, including the manufacture of [{sup 18}F]-labeled compounds useful as PET radiotracers, and particularly for the preparation of 2-[{sup 18}F]fluoro-2-deoxy-D-glucose in higher yields than previously possible. 4 figs.

Ferrieri, R.A.; Schlyer, D.; Becker, R.J.

1998-09-15T23:59:59.000Z

379

Optical reaction cell and light source for 18F! fluoride radiotracer synthesis  

DOE Patents [OSTI]

Apparatus for performing organic synthetic reactions, particularly no-carrier-added nucleophilic radiofluorination reactions for PET radiotracer production. The apparatus includes an optical reaction cell and a source of broadband infrared radiant energy, which permits direct coupling of the emitted radiant energy with the reaction medium to heat the reaction medium. Preferably, the apparatus includes means for focusing the emitted radiant energy into the reaction cell, and the reaction cell itself is preferably configured to reflect transmitted radiant energy back into the reaction medium to further improve the efficiency of the apparatus. The apparatus is well suited to the production of high-yield syntheses of 2-.sup.18 F!fluoro-2-deoxy-D-glucose. Also provided is a method for performing organic synthetic reactions, including the manufacture of .sup.18 F!-labeled compounds useful as PET radiotracers, and particularly for the preparation of 2-.sup.18 F!fluoro-2-deoxy-D-glucose in higher yields than previously possible.

Ferrieri, Richard A. (Patchogue, NY); Schlyer, David (Bellport, NY); Becker, Richard J. (Islip, NY)

1998-09-15T23:59:59.000Z

380

SOURCE?  

Energy Savers [EERE]

Department of Energy (DOE) in partnership with Lawrence Berkeley National Laboratory (LBNL), is an open-source code package designed to be a common, low-cost, standardized tool...

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Physics of the Gas Attenuator for the Linac Coherent Light Source (LCLS)  

SciTech Connect (OSTI)

A systematic assessment of a variety of physics issues affecting the performance of the LCLS X-ray beam attenuator is presented. Detailed analysis of the gas flow in the gas attenuator and in the apertures is performed. A lot of attention is directed towards the gas ionization and heating by intense X-ray pulses. The role of these phenomena in possible deviations of the attenuation coefficient from its 'dialed in' value is evaluated and found small in most cases. Other sources of systematic and statistical errors are also discussed. The regimes where the errors may reach a few percent correspond to the lower X-ray energies (less than 2 keV) and highest beam intensities. Other effects discussed include chemical interaction of the gas with apertures, shock formation in the transonic flow in the apertures of the attenuator, generation of electromagnetic wakes in the gas, and head-to-tail variation of the attenuation caused by the ionization of gas or solid. Possible experimental tests of the consistency of the physics assumptions used in the concept of the gas attenuator are discussed. Interaction of X-rays with the solid attenuator (that will be used at higher X-ray energies, from 2.5 to 8 keV) is considered and thermo-mechanical effects caused by the beam heating are evaluated. Wave-front distortions induced by non-uniform heating of both the solid and the gas are found to be small. An overall conclusion drawn from the analysis presented is that the attenuator will be a reliable and highly versatile device, provided that some caution is exercised in its use for highest beam intensities at lowest X-ray energies.

Ryutov, D.D.; Bionta, R.M.; Hau-Riege, S.P.; Kishiyama, K.I.; McMahon, D.; Roeben, M.D.; Shen, S.; /LLNL, Livermore; Stefan, P.M.; /SLAC; ,

2011-02-07T23:59:59.000Z

382

Design of the commissioning filter/mask/window assembly for undulator beamline front ends at the Advanced Photon Source  

SciTech Connect (OSTI)

A compact filter/mask/window assembly has been designed for undulator beamline commissioning activity at the Advanced Photon Source beamlines. The assembly consists of one 300-{mu}m graphite filter, one 127-{mu}m CVD diamond filter and two 250-{mu}m beryllium windows. A water-cooled Glidcop fixed mask with a 4.5-mm {times} 4.5-mm output optical aperture and a 0.96-mrad {times} 1.6-mrad beam missteering acceptance is a major part in the assembly. The CVD diamond filter which is mounted on the downstream side of the fixed mask is designed to also function as a transmitting x-ray beam position monitor. The sum signal from the latter can be used to monitor the physical condition of the graphite filter and prevent any possible chain reaction damage to the beryllium windows downstream. In this paper, the design concept as well as the detailed structural design of the commissioning window are presented. Further applications of the commissioning window commissioning window components are also discussed.

Shu, D.; Kuzay, T.M.

1995-10-20T23:59:59.000Z

383

Advanced Neutron Source Reactor (ANSR) phenomena identification and ranking (PIR) for large break loss of coolant accidents (LBLOCA)  

SciTech Connect (OSTI)

A team of experts in reactor analysis conducted a phenomena identification and ranking (PIR) exercise for a large break loss-of-coolant accident (LBLOCA) in the Advanced Neutron source Reactor (ANSR). The LBLOCA transient is broken into two separate parts for the PIR exercise. The first part considers the initial depressurization of the system that follows the opening of the break. The second part of the transient includes long-term decay heat removal after the reactor is shut down and the system is depressurized. A PIR is developed for each part of the LBLOCA. The ranking results are reviewed to establish if models in the RELAP5-MOD3 thermalhydraulic code are adequate for use in ANSR LBLOCA simulations. Deficiencies in the RELAP5-MOD3 code are identified and existing data or models are recommended to improve the code for this application. Experiments were also suggested to establish models for situations judged to be beyond current knowledge. The applicability of the ANSR PIR results is reviewed for the entire set of transients important to the ANSR safety analysis.

Ruggles, A.E. [Oak Ridge National Lab., TN (United States)]|[Tennessee Univ., Knoxville, TN (United States); Cheng, L.Y. [Brookhaven National Lab., Upton, NY (United States); Dimenna, R.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Griffith, P. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Wilson, G.E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1994-06-01T23:59:59.000Z

384

Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

Elgowainy, Mr. Amgad [Argonne National Laboratory (ANL); Rousseau, Mr. Aymeric [Argonne National Laboratory (ANL); Wang, Mr. Michael [Argonne National Laboratory (ANL); Ruth, Mr. Mark [National Renewable Energy Laboratory (NREL); Andress, Mr. David [David Andress & Associates, Inc.; Ward, Jacob [U.S. Department of Energy; Joseck, Fred [U.S. Department of Energy; Nguyen, Tien [U.S. Department of Energy; Das, Sujit [ORNL

2013-01-01T23:59:59.000Z

385

Committees | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and UserofProtein structureAnalysisDOE-ID

386

Contacts | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-Gov LeAnnProjectContacts

387

Training | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler Tina ButlerToday inm"TopoTracking LivingTraining

388

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home| Visitors| Education| REU|Archaeal

389

People | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to the PacificCollaboration »People ProfilesAbout the

390

Publications | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNewsCenter for GasNewsnuclear APS Publications

391

About | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects ofAbout Science Education OurUsthe

392

People | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven AshbyDepartment ofGE's Manual Chapter 8.0 -γ-Al2O3:

393

Divisions | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct:Directives Templates The OfficeDitch

394

Visiting | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdatesValley winsVideo HistoryVisitingVisiting

395

Welcome | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlender NetAdministration NNSAWelcomeWelcome

396

Beamlines | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi, P.2.2 Beamline21 Print21 Print2

397

Brochures | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M.ExtracellularBradburyBrian ToonenBrianBroader NationalH

398

Posters | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design PassivePostdoctoral Opportunities Are you Your Cart (0

399

Overview | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeedingOptimizing I/O performanceOtherOutreach fordefault SignAPS

400

Archives | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mailRadioimmunotherapyArchive ArchiveArchived

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Evaluating the impact of advanced vehicle and fuel technologies in U.S. light duty vehicle fleet  

E-Print Network [OSTI]

The unrelenting increase in oil use by the U.S. light-duty vehicle (LDV) fleet presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce ...

Bandivadekar, Anup P

2008-01-01T23:59:59.000Z

402

Study of an HHG-Seeded Free-Electron Laser for the LBNL Next Generation Light Source  

SciTech Connect (OSTI)

The Next Generation Light Source (NGLS) is a high repetition rate free-electron laser facility proposed by Lawrence Berkeley National Laboratory (LBNL). The proposed facility will provide multiple FEL lines with varying spectral characteristics to satisfy a broad soft X-ray physics programme. At this stage of the project a number of FEL technologies and concepts are being investigated for possible implementation on the facility. In this report we consider a free-electron laser seeded by a Higher Harmonic Generation (HHG) source in which a high power (and consequently relatively low repetition rate) laser pulse is injected into a chamber of inert gas. Through a process of ionisation and recombination coherent higher harmonics of the laser are emitted from the gas and can be injected into an FEL system as a seed field. Further harmonic upconversion can be done within the FEL system to enable temporally coherent FEL output at wavelengths much shorter than, and pulse energies orders of magnitude higher than, the HHG source emission. The harmonic conversion within the FEL works in the following way. The seed field induces an energy modulation within the electron bunch at the start of the modulator. This energy modulation grows within the modulator due to the FEL interaction and starts to convert into a density modulation, or bunching, at the seed wavelength. However, this bunching also has components at higher harmonics which retain the longitudinal coherence of the initial seed. The beam passes through a magnetic chicane, which shears the longitudinal phase space to maximise the bunching at the required harmonic, then a further undulator which is tuned to this harmonic. If this second undulator is short it acts as a further modulator, and because the beam is pre-bunched at the modulator resonance there is a strong coherent burst of radiation which acts to modulate the electron beam energy in much the same way the input laser seed field acted in the first modulator. This second modulator is followed by a second bunching chicane and then a final long radiator tuned to a yet higher harmonic of the laser seed - the final output wavelength. Alternatively, the second undulator can be the radiator itself, in which case only one harmonic conversion from seed wavelength to final output is necessary. We initially consider the case of a 400kW peak power HHG seed source at wavelength 12nm (currently considered the cutoff wavelength for sufficient seed power to dominate shot noise in the electron beam) which is converted in either one or two stages or harmonic conversion to FEL emission at 1nm. We then consider the implications of a factor of ten reduction in seed power to 40kW.

Thompson, Neil

2010-10-20T23:59:59.000Z

403

MID-AND FAR-INFRARED SPECTROSCOPY AT THE ADVANCED LIGHT SOURCE. S. Bajt1 , J. Bradley2  

E-Print Network [OSTI]

techniques for cometary dust particles captured in aerogel. In this abstract we describe the efforts to obtain their infrared spectra. The technique is being developed using IDPs, particles captured in aerogel trapped in aerogel collected on the MIR space station. The beamline is equipped with a ThermoNicolet Magna

Martin, Michael C.

404

A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source  

E-Print Network [OSTI]

bases is controlled with a Peltier module. The heat flowsthe flexural assembly to the Peltier thus stabilizing thecrystal is cooled through a Peltier element, which in turn

Kunz, Martin; Advanced Light Source

2009-01-01T23:59:59.000Z

405

Description of TASHA: Thermal Analysis of Steady-State-Heat Transfer for the Advanced Neutron Source Reactor  

SciTech Connect (OSTI)

This document describes the code used to perform Thermal Analysis of Steady-State-Heat-Transfer for the Advanced Neutron Source (ANS) Reactor (TASHA). More specifically, the code is designed for thermal analysis of the fuel elements. The new code reflects changes to the High Flux Isotope Reactor steady-state thermal-hydraulics code. These changes were aimed at both improving the code`s predictive ability and allowing statistical thermal-hydraulic uncertainty analysis to be performed. A significant portion of the changes were aimed at improving the correlation package in the code. This involved incorporating more recent correlations for both single-phase flow and two-phase flow thermal limits, including the addition of correlations to predict the phenomenon of flow excursion. Since the code was to be used in the design of the ANS, changes were made to allow the code to predict limiting powers for a variety of thermal limits, including critical heat flux, flow excursion, incipient boiling, oxide spallation, maximum centerline temperature, and surface temperature equal to the saturation temperature. Statistical uncertainty analysis also required several changes to the code itself as well as changes to the code input format. This report describes these changes in enough detail to allow the reader to interpret code results and also to understand where the changes were made in the code programming. This report is not intended to be a stand alone report for running the code, however, and should be used in concert with the two previous reports published on the original code. Sample input and output files are also included to help accomplish these goals. In addition, a section is included that describes requirements for a new, more modem code that the project planned to develop.

Morris, D.G.; Chen, N.C.; Nelson, W.R.; Yoder, G.L.

1996-10-01T23:59:59.000Z

406

SSRL Light Source Status  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome toResearchInnovationSPEAR3Deadlines Beam7 -

407

SSRL Light Source Status  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA REPORTSORNRecovery ActR E Q7113 Detailed

408

Light-Source Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocsCenterCenter (LMI-EFRC) - HarryCenter

409

Variable Gap Undulator for 1.5-48 Kev Free Electron Laser at Linac Coherent Light Source  

SciTech Connect (OSTI)

We study the feasibility of generating femtosecond duration Free-Electron Laser with a variable photon energy from 1.5 to 48 keV, using an electron bunch with the same characteristics of the LINAC Coherent Light Source (LCLS) bunch, and a planar undulator with additional focusing. We assume that the electron bunch energy can be changed, and the undulator has a variable gap, allowing a variable undulator parameter. It is assumed to be operated in an ultra-low charge and ultra-short pulse regime. We study the feasibility of a tunable, short pulse, X-ray FEL with photon energy from 1.5 to 48 keV, using an electron beam like the one in the LCLS and a 2:5 cm period, variable gap, planar undulator. The beam energy changes from 4.6 to 13.8 GeV, the electorn charge is kept at 10 pC, and the undulator parameter varies from 1 to 3. The undulator length needed to saturate the 48 keV FEL is about 55 m, with a peak power around 5 GW. At longer wavelength the saturation length is as short as 15 m, and the peak power around 20 GW. The results from the analytical models and the GENESIS simulations show that the system is feasible. The large wavelength range, full tunability and short, few femtosecond pulses, together with the large peak power, would provide a powerful research tool.

Pellegrini, C.; /UCLA; Wu, J.; /SLAC; ,

2011-08-17T23:59:59.000Z

410

Optical Design of a Broadband Infrared Spectrometer for Bunch Length Measurement at the Linac Coherent Light Source  

SciTech Connect (OSTI)

The electron pulses generated by the Linac Coherent Light Source at the SLAC National Accelerator Laboratory occur on the order of tens of femtoseconds and cannot be directly measured by conventional means. The length of the pulses can instead be reconstructed by measuring the spectrum of optical transition radiation emitted by the electrons as they move toward a conducting foil. Because the emitted radiation occurs in the mid-infrared from 0.6 to 30 microns a novel optical layout is required. Using a helium-neon laser with wavelength 633 nm, a series of gold-coated off-axis parabolic mirrors were positioned to direct a beam through a zinc selenide prism and to a focus at a CCD camera for imaging. Constructing this layout revealed a number of novel techniques for reducing the aberrations introduced into the system by the off-axis parabolic mirrors. The beam had a recorded radius of less than a millimeter at its final focus on the CCD imager. This preliminary setup serves as a model for the spectrometer that will ultimately measure the LCLS electron pulse duration.

Williams, Kiel; /SLAC

2012-09-07T23:59:59.000Z

411

Arnold Schwarzenegger LIGHTING RESEARCH PROGRAM  

E-Print Network [OSTI]

Project Summaries ELEMENT 2: ADVANCE LIGHTING TECHNOLOGIES PROJECT 2.1 LIGHT EMITTING DIODE (LED light emitting diodes (LED) technology for general lighting applications by developing a task lamp

412

Types of Lighting in Commercial Buildings - Lighting Characteristics  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

of a light source's accuracy in rendering different colors when compared to a reference light source. The highest attainable CRI is 100. Lamps with CRIs above 70 are...

413

LIGHT WATER REACTOR SUSTAINABILITY PROGRAM ADVANCED INSTRUMENTATION, INFORMATION, AND CONTROL SYSTEMS TECHNOLOGIES TECHNICAL PROGRAM PLAN FOR 2013  

SciTech Connect (OSTI)

Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

Hallbert, Bruce; Thomas, Ken

2014-07-01T23:59:59.000Z

414

Interference-induced enhancement of intensity and energy of a multimode quantum optical field by a subwavelength array of coherent light sources  

E-Print Network [OSTI]

Recently, we have showed a mechanism that could provide a great transmission enhancement of the light waves passed through subwavelength aperture arrays in thin metal films not by the plasmon-polariton waves, but by the constructive interference of diffracted waves (beams generated by the apertures) at the detector placed in the far-field zone. We now present a quantum reformulation of the model. The Hamiltonian describing the interference-induced enhancement of the intensity and energy of a multimode quantum optical field is derived. Such a field can be produced, for instance, by a subwavelength array of coherent light sources.

S. V. Kukhlevsky

2008-06-13T23:59:59.000Z

415

Light Water Reactor Sustainability Program Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study  

SciTech Connect (OSTI)

Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced RISMC toolkit that enables more accurate representation of NPP safety margin. This report describes the RISMC methodology demonstration where the Advanced Test Reactor (ATR) was used as a test-bed for purposes of determining safety margins. As part of the demonstration, we describe how both the thermal-hydraulics and probabilistic safety calculations are integrated and used to quantify margin management strategies.

Curtis Smith; David Schwieder; Cherie Phelan; Anh Bui; Paul Bayless

2012-08-01T23:59:59.000Z

416

Advanced Fuel Cycle Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

417

Advanced Fuel Cycle Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

418

NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669  

SciTech Connect (OSTI)

The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

Not Available

1994-08-01T23:59:59.000Z

419

NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669  

SciTech Connect (OSTI)

The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

Not Available

1994-08-01T23:59:59.000Z

420

Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies  

SciTech Connect (OSTI)

The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U.S. Department of Energy (DOE). The program is operated in close collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of Nuclear Power Plants that are currently in operation. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. Advanced instruments and control (I&C) technologies are needed to support the safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear assets. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. The strategic objective of the LWRS Program Advanced Instrumentation, Information, and Control Systems Technology R&D pathway is to establish a technical basis for new technologies needed to achieve safety and reliability of operating nuclear assets and to implement new technologies in nuclear energy systems. This will be achieved by carrying out a program of R&D to develop scientific knowledge in the areas of: Sensors, diagnostics, and prognostics to support characterization and prediction of the effects of aging and degradation phenomena effects on critical systems, structures, and components (SSCs) Online monitoring of SSCs and active components, generation of information, and methods to analyze and employ online monitoring information New methods for visualization, integration, and information use to enhance state awareness and leverage expertise to achieve safer, more readily available electricity generation. As an initial step in accomplishing this effort, the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies was held March 2021, 2009, in Columbus, Ohio, to enable industry stakeholders and researchers in identification of the nuclear industrys needs in the areas of future I&C technologies and corresponding technology gaps and research capabilities. Approaches for collaboration to bridge or fill the technology gaps were presented and R&D activities and priorities recommended. This report documents the presentations and discussions of the workshop and is intended to serve as a basis for the plan under development to achieve the goals of the I&C research pathway.

Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

2009-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Specific light in sculpture  

E-Print Network [OSTI]

Specific light is defined as light from artificial or altered natural sources. The use and manipulation of light in three dimensional sculptural work is discussed in an historic and contemporary context. The author's work ...

Powell, John William

1989-01-01T23:59:59.000Z

422

ECE 466: LED Lighting Systems -Incandescent lightings rise and  

E-Print Network [OSTI]

versus cost - Power Electronic Drives for CFL and LED light sources to achieve dimmable operation - Basic electric AC and DC circuits at Sophomore level or equivalents Absolutes Lighting System Requirements index as a metric of a light source - Power Electronic Energy sources driving light sources in a compact

Schumacher, Russ

423

Metameric Modulation for Diffuse Visible Light Communications with Constant Ambient Lighting  

E-Print Network [OSTI]

untapped for wireless communications. Advancements in light emitting diode (LED) technology are making

Little, Thomas

424

Accident source terms for light-water nuclear power plants using high-burnup or MOX fuel.  

SciTech Connect (OSTI)

Representative accident source terms patterned after the NUREG-1465 Source Term have been developed for high burnup fuel in BWRs and PWRs and for MOX fuel in a PWR with an ice-condenser containment. These source terms have been derived using nonparametric order statistics to develop distributions for the timing of radionuclide release during four accident phases and for release fractions of nine chemical classes of radionuclides as calculated with the MELCOR 1.8.5 accident analysis computer code. The accident phases are those defined in the NUREG-1465 Source Term - gap release, in-vessel release, ex-vessel release, and late in-vessel release. Important differences among the accident source terms derived here and the NUREG-1465 Source Term are not attributable to either fuel burnup or use of MOX fuel. Rather, differences among the source terms are due predominantly to improved understanding of the physics of core meltdown accidents. Heat losses from the degrading reactor core prolong the process of in-vessel release of radionuclides. Improved understanding of the chemistries of tellurium and cesium under reactor accidents changes the predicted behavior characteristics of these radioactive elements relative to what was assumed in the derivation of the NUREG-1465 Source Term. An additional radionuclide chemical class has been defined to account for release of cesium as cesium molybdate which enhances molybdenum release relative to other metallic fission products.

Salay, Michael (U.S. Nuclear Regulatory Commission, Washington, D.C.); Gauntt, Randall O.; Lee, Richard Y. (U.S. Nuclear Regulatory Commission, Washington, D.C.); Powers, Dana Auburn; Leonard, Mark Thomas

2011-01-01T23:59:59.000Z

425

The IMM solar cell's advanced ultra-light, highly flexible design earned it a 2008 R&D 100 Award and a 2009 Award for Excellence in Technology Transfer by the Federal Laboratory  

E-Print Network [OSTI]

innovati n The IMM solar cell's advanced ultra-light, highly flexible design earned it a 2008 R. The cell's inventors pioneered a new class of solar cells with marked advantages in performance--particularly for complex multijunction cells. These cells convert solar energy more efficiently than single- junction cells

426

Lighting Options for Homes.  

SciTech Connect (OSTI)

This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

Baker, W.S.

1991-04-01T23:59:59.000Z

427

Generation of circularly polarized radiation from a compact plasma-based extreme ultraviolet light source for tabletop X-ray magnetic circular dichroism studies  

SciTech Connect (OSTI)

Generation of circularly polarized light in the extreme ultraviolet (EUV) spectral region (about 25 eV250 eV) is highly desirable for applications in spectroscopy and microscopy but very challenging to achieve in a small-scale laboratory. We present a compact apparatus for generation of linearly and circularly polarized EUV radiation from a gas-discharge plasma light source between 50 eV and 70 eV photon energy. In this spectral range, the 3p absorption edges of Fe (54 eV), Co (60 eV), and Ni (67 eV) offer a high magnetic contrast often employed for magneto-optical and electron spectroscopy as well as for magnetic imaging. We simulated and designed an instrument for generation of linearly and circularly polarized EUV radiation and performed polarimetric measurements of the degree of linear and circular polarization. Furthermore, we demonstrate first measurements of the X-ray magnetic circular dichroism at the Co 3p absorption edge with a plasma-based EUV light source. Our approach opens the door for laboratory-based, element-selective spectroscopy of magnetic materials and spectro-microscopy of ferromagnetic domains.

Wilson, Daniel; Rudolf, Denis, E-mail: d.rudolf@fz-juelich.de; Juschkin, Larissa [RWTH Aachen University, Experimental Physics of EUV, Steinbachstrae 15, 52074 Aachen (Germany); Forschungszentrum Jlich GmbH, Peter Grnberg Institut (PGI-9), JARA-FIT, 52425 Jlich (Germany); Weier, Christian; Adam, Roman; Schneider, Claus M. [Forschungszentrum Jlich GmbH, Peter Grnberg Institut (PGI-6), JARA-FIT, 52425 Jlich (Germany); Winkler, Gerrit; Frmter, Robert [Institut fr Angewandte Physik, Universitt Hamburg, Jungiusstrae 11, 20355 Hamburg (Germany); Danylyuk, Serhiy [RWTH Aachen University, Chair for Technology of Optical Systems, JARA-FIT, Steinbachstrae 15, 52074 Aachen (Germany); Bergmann, Klaus [Fraunhofer Institute for Laser Technology, Steinbachstrasse 15, 52074 Aachen (Germany); Grtzmacher, Detlev [Forschungszentrum Jlich GmbH, Peter Grnberg Institut (PGI-9), JARA-FIT, 52425 Jlich (Germany)

2014-10-15T23:59:59.000Z

428

at the Stanford Linear Accelerator Center The Linac Coherent Light Source (LCLS) is transforming the face of  

E-Print Network [OSTI]

extraordinarily tiny that visible light waves pass right by them without being reflected. X-rays, on the other. Harnessing the Ultra-fast The atomic and molecular world is abuzz with frenetic motion. Mol- ecules understanding of photosyn- thesis--a highly efficient use of the sun's energy--has implications for future

Wechsler, Risa H.

429

Advanced Engine Trends, Challenges and Opportunities  

Broader source: Energy.gov (indexed) [DOE]

Petroleum (Conventional and Alternative Sources) Alternative Fuels (Ethanol, Biodiesel, CNG, LPG) Electricity (Conv. and Alternative Sources) Hydrogen Time ADVANCED...

430

Large-field high-contrast hard x-ray Zernike phase-contrast nano-imaging beamline at Pohang Light Source  

SciTech Connect (OSTI)

We developed an off-axis-illuminated zone-plate-based hard x-ray Zernike phase-contrast microscope beamline at Pohang Light Source. Owing to condenser optics-free and off-axis illumination, a large field of view was achieved. The pinhole-type Zernike phase plate affords high-contrast images of a cell with minimal artifacts such as the shade-off and halo effects. The setup, including the optics and the alignment, is simple and easy, and allows faster and easier imaging of large bio-samples.

Lim, Jun; Huang, Jung Yun [Pohang Accelerator Laboratory, POSTECH, Pohang 790-784 (Korea, Republic of); Park, So Yeong [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of); Han, Sung Mi; Kim, Hong-Tae [Department of Anatomy, Catholic University of Daegu, Daegu 705-034 (Korea, Republic of)

2013-01-15T23:59:59.000Z

431

Advanced Propulsion Technology Strategy  

Broader source: Energy.gov (indexed) [DOE]

Alternative Sources) Hydrogen Time ADVANCED PROPULSION TECHNOLOGY STRATEGY DOWNSIZED TURBO GAS ENGINE CHEVROLET CRUZE 1.4L TURBO ECOTEC Downsized SIDI Turbo Boosting HCCI -...

432

Windows and lighting program  

SciTech Connect (OSTI)

More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity -- factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout the indoor environment, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Windows and lighting are thus essential components of any comprehensive building science program. Despite important achievements in reducing building energy consumption over the past decade, significant additional savings are still possible. These will come from two complementary strategies: (1) improve building designs so that they effectively apply existing technologies and extend the market penetration of these technologies; and (2) develop advanced technologies that increase the savings potential of each application. Both the Windows and Daylighting Group and the Lighting System Research Group have made substantial contributions in each of these areas, and continue to do so through the ongoing research summarized here. 23 refs., 16 figs.

Not Available

1990-06-01T23:59:59.000Z

433

Monte Carlo Studies of the Radiation Fields in the Linac Coherent Light Source Undulators and of the Corresponding Signals in the Cerenkov Beam Loss Monitors  

SciTech Connect (OSTI)

In 2009 the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Center started free electron laser (FEL) operation. In order to continue to produce the bright and short-pulsed x-ray laser demanded by FEL scientists, this pioneer hard x-ray FEL requires a perfectly tailored magnetic field at the undulators, so that the photons generated at the electron wiggling path interact at the right phase with the electron beam. In such a precise system, small (>0.01%) radiation-induced alterations of the magnetic field in the permanent magnets could affect FEL performance. This paper describes the simulation studies of radiation fields in permanent magnets and the expected signal in the detectors. The transport of particles from the radiation sources (i.e. diagnostic insert) to the undulator magnets and to the beam loss monitors (BLM) was simulated with the intra nuclear cascade codes FLUKA and MARS15. In order to accurately reproduce the optics of LCLS, lattice capabilities and magnetic fields were enabled in FLUKA and betatron oscillations were validated against reference data. All electron events entering the BLMs were printed in data files. The paper also introduces the Radioactive Ion Beam Optimizer (RIBO) Monte Carlo 3-D code, which was used to read from the event files, to compute Cerenkov production and then to simulate the optical coupling of the BLM detectors, accounting for the transmission of light through the quartz.

Santana Leitner, Mario

2010-09-14T23:59:59.000Z

434

Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the Advanced Neutron Source reactor at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at ORNL. Damage propagation is postulated to occur from thermal conduction between dmaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur beause of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A parametric study was done for several uncertain variables. The study included investigating effects of plate contact area, convective heat transfer coefficient, thermal conductivity on fuel swelling, and initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects of damage propagation. Results provide useful insights into how variouss uncertain parameters affect damage propagation.

Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.

1995-12-31T23:59:59.000Z

435

Techniques and use of a tunable, laser-based, MeV-Class Compton scattering light source  

SciTech Connect (OSTI)

A Compton scattering {gamma}-ray source, capable of producing photons with energies ranging from 0.1 MeV to 0.9 MeV has been commissioned and characterized, and then used to perform nuclear resonance fluorescence (NRF) experiments. The key source parameters are the size (0.01 mm{sup 2}), horizontal and vertical divergence (6 x 10 mrad{sup 2}), duration (10 ps), spectrum and intensity (10{sup 5} photons/shot). These parameters are summarized by the peak brightness, 1.5 x 10{sup 15} photons/mm{sup 2}/mrad{sup 2}/s/0.1%bandwidth, measured at 478 keV. Additional measurements of the flux as a function of the timing difference between the drive laser pulse and the relativistic photoelectron bunch, {gamma}-ray beam profile, and background evaluations are presented. These results are systematically compared to theoretical models and computer simulations. NRF measurements performed on {sup 7}Li in LiH demonstrate the potential of Compton scattering photon sources to accurately detect isotopes in situ.

Albert, F; Anderson, S G; Gibson, D J; Hagmann, C A; Johnson, M S; Messerly, M; Semenov, V; Shverdin, M Y; Rusnak, B; Tremaine, A M; Hartemann, F V; Siders, C W; McNabb, D P; Barty, C P

2009-06-30T23:59:59.000Z

436

Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments  

SciTech Connect (OSTI)

A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/?E of order 10?000 and spatial resolution better than 10 ?m. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

Hill, K. W., E-mail: khill@pppl.gov; Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lu, J. [Key Laboratory of Optoelectronic Technology and System of Ministry of Education, Chongqing University, Chongqing 400030 (China); Beiersdorfer, P.; Chen, H.; Magee, E. [Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2014-11-15T23:59:59.000Z

437

OLED lighting devices having multi element light extraction and luminescence conversion layer  

DOE Patents [OSTI]

An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

Krummacher, Benjamin Claus (Regensburg, DE); Antoniadis, Homer (Mountain View, CA)

2010-11-16T23:59:59.000Z

438

Exploring Mbar shock conditions and isochorically heated aluminum at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (invited)  

SciTech Connect (OSTI)

Recent experiments performed at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatter x-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using velocity interferometer system for any reflector have been measured. The combination of experiments fully demonstrates the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision.

Fletcher, L. B. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Physics Department, University of California Berkeley, Berkeley, California 94709 (United States); Lee, H. J.; Gauthier, M.; Galtier, E.; Nagler, B.; Heimann, P.; Hastings, J. B.; Glenzer, S. H. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Barbrel, B.; Falcone, R. W. [Physics Department, University of California Berkeley, Berkeley, California 94709 (United States); Dppner, T.; LePape, S.; Ma, T.; Pak, A.; Turnbull, D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); White, T.; Gregori, G. [Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Wei, M. [General Atomics, San Diego, California 87544 (United States); Zastrau, U. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Institute for Optics and Quantum Electronics, Friedrich-Schiller-University, 07743 Jena (Germany)

2014-11-15T23:59:59.000Z

439

Fuels for Advanced Combustion Engines  

Broader source: Energy.gov (indexed) [DOE]

2011-2015 MYPP Goals (cross-cut w Advanced Combustion Engines) - By 2015, improve the fuel economy of light-duty gasoline vehicles by 25% and of light-duty diesel vehicles by 40%...

440

Fuels for Advanced Combustion Engines  

Broader source: Energy.gov (indexed) [DOE]

2011-1015 MYPP Goals (cross-cut w Advanced Combustion Engines) - By 2015, improve the fuel economy of light-duty gasoline vehicles by 25% and of light-duty diesel vehicles by 40%...

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EK101 Engineering Light Smart Lighting  

E-Print Network [OSTI]

EK101 Engineering Light Smart Lighting Homework for 9/10 1. Make an estimate (using if the patent is granted.) 3. What is a lumen? A lux? How are the two related? How would you use a lux meter, (Lux, Lumens/m2) Luminous Flux: Perceivable light power from a source, (Lumens) Use the lux meter

Bifano, Thomas

442

Compact Gamma-ray Source Technology Development Study  

SciTech Connect (OSTI)

This study focuses on the applicability of current accelerator and laser technologies to the construction of compact, narrow bandwidth, gamma-ray sources for DHS missions in illicit materials detection. It also identifies research and development areas in which advancement will directly benefit these light sources. In particular, we review the physics of Compton scattering based light sources and emphasize the source properties most important to Nuclear Resonance Fluorescence (NRF) applications of interest. The influences of laser and electron beam properties on the light source are examined in order to evaluate the utility of different technologies for this application. Applicable bulk and fiber-based laser systems and laser recirculation technologies are discussed and Radio Frequency (RF) Linear Accelerator (linac) technologies are examined to determine the optimal frequency and pulse formats achievable.

Anderson, S G; Gibson, D J; Rusnak, B

2009-09-25T23:59:59.000Z

443

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network [OSTI]

LIGHT-DUTY VEHICLES, AND AUTOMOBILES Mark A. Miller Victorand The analysis involves automobiles in California arePowered Electric Automobiles -a---- Range of Estimated

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

444

Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the Advanced Neutron Source Reactor at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at the Oak Ridge National Laboratory (ORNL). Damage propagation is postulated to occur from thermal conduction between damaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur because of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A scoping study was conducted to learn what parameters are important for core damage propagation, and to obtain initial estimates of core melt mass for addressing recriticality and steam explosion events. The study included investigating the effects of the plate contact area, the convective heat transfer coefficient, thermal conductivity upon fuel swelling, and the initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects on damage propagation. The results provide useful insights into how various uncertain parameters affect damage propagation.

Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.

1995-09-01T23:59:59.000Z

445

Postirradiation evaluations of capsules HANS-1 and HANS-2 irradiated in the HFIR target region in support of fuel development for the advanced neutron source  

SciTech Connect (OSTI)

This report describes the design, fabrication, irradiation, and evaluation of two capsule tests containing U{sub 3}Si{sub 2} fuel particles in contact with aluminum. The tests were in support of fuel qualification for the Advanced Neutron Source (ANS) reactor, a high-powered research reactor that was planned for the Oak Ridge National Laboratory. At the time of these tests, the fuel consisted of U{sub 3}Si{sub 2}, containing highly enriched uranium dispersed in aluminum at a volume fraction of {approximately}0.15. The extremely high thermal flux in the target region of the High Flux Isotope Reactor provided up to 90% burnup in one 23-d cycle. Temperatures up to 450{degrees}C were maintained by gamma heating. Passive SiC temperature monitors were employed. The very small specimen size allowed only microstructural examination of the fuel particles but also allowed many specimens to be tested at a range of temperatures. The determination of fission gas bubble morphology by microstructural examination has been beneficial in developing a fuel performance model that allows prediction of fuel performance under these extreme conditions. The results indicate that performance of the reference fuel would be satisfactory under the ANS conditions. In addition to U{sub 3}Si{sub 2}, particles of U{sub 3}Si, UAl{sub 2}, UAl{sub x}, and U{sub 3}O{sub 8} were tested.

Hofman, G.L.; Snelgrove, J.L. [Argonne National Lab., IL (United States); Copeland, G.L. [Oak Ridge National Lab., TN (United States)

1995-08-01T23:59:59.000Z

446

Use of the high-energy x-ray microprobe at the Advanced Photon Source to investigate the interactions between metals and bacteria.  

SciTech Connect (OSTI)

Understanding the fate of heavy-metal contaminants in the environment is of fundamental importance in the development and evaluation of effective remediation and sequestration strategies. Among the factors influencing the transport of these contaminants are their chemical separation and the chemical and physical attributes of the surrounding medium. Bacteria and the extracellular material associated with them are thought to play a key role in determining a contaminant's speciation and thus its mobility in the environment. In addition, the microenvironment at and adjacent to actively metabolizing cell surfaces can be significantly different from the bulk environment. Thus, the spatial distribution and chemical separation of contaminants and elements that are key to biological processes must be characterized at micron and submicron resolution in order to understand the microscopic physical, geological, chemical, and biological interfaces that determine a contaminant's macroscopic fate. Hard X-ray microimaging is a powerful technique for the element-specific investigation of complex environmental samples at th needed micron and submicron resolution. An important advantage of this technique results from the large penetration depth of hard X-rays in water. This advantage minimizes the requirements for sample preparation and allows the detailed study of hydrated samples. This paper presents results of studies of the spatial distribution of naturally occurring metals and a heavy-metal contaminant (Cr) in and near hydrated bacteria (Pseudomonas fluorescens) in the early stages of biofilm development, performed at the Advanced Photon Source Sector 2 X-ray microscopy beamline.

Kemner, K. M.; Lai, B.; Maser, J.; Schneegurt, M. A.; Cai, Z.; Ilinski, P. P.; Kulpa, C. F.; Legnini, D. G.; Nealson, K. H.; Pratt, S. T.; Rodrigues, W.; Tischler, M. L.; Yun, W.

1999-09-30T23:59:59.000Z

447

APS Upgrade | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

APS View Larger The brightness and energy of x-ray beams are critical properties for research. Higher brightness means more x-rays can be focused onto a smaller, laser-like spot,...

448

Hazard Classes | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSiteAboutRadioactive

449

Detectors (XSD) | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape, Density, andagingaboutDrizzlethiolOfficer

450

Construction Schedule | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial Validation andPWR MediaHuman

451

Users Meetings | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsedUser Services

452

Video Library | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha PatriPhotoelectron Spectroscopy ofVictor F.Video

453

Video Library | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha PatriPhotoelectron Spectroscopy ofVictor

454

Proposal Types | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for Plutonium CleanupProposalTeam: D.N. Basov 1

455

Recent Publications | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1PrincipalRareRequirementsRecentScience

456

Linear Accelerator | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011Liisa O'Neill About Us LiisaLin WangLinear

457

APS Upgrade | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGasandArgonneALS inRelated ReportsAPS

458

ASD Groups | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects of GlobalASCR User Facilities UserASD Groups

459

Imaging (XSD) | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasicsScience atIanIgorIlyaBuildingImaging About

460

Beamlines Directory | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground8.0.1 PrintTemperatures Energy:

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Data Exchange | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases

462

Video Library | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdatesValley wins 2015MayoXML Bookmark and

463

XSD Groups | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL Home SRNL main campusMoreXRAYOPS -- APSXRootD inXSD

464

Optics (XSD) | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002Optics Group (X-ray Science Division) The mission of the

465

AES Groups | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A FirstEMSLAEMSL341AACEiiRenewablesAES

466

APS News | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies ColoradoTechnical109)Long Range72005News

467

APS Today | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRing Under Maintenance Upcoming Events

468

Media Center | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMissionreal-timeMaRIEMcNary-Dam-hits-the-rewind Sign In

469

Beamlines Directory | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES ReportsExperimentBasicBeam

470

Booster Synchrotron | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply forBiosurveillance A8^ -inPictureBooster

471

CAT Communicator | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route Segments (notCAMDL20-000 Initial1-000108-000News

472

Spectroscopy (XSD) | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering Facilities5:68MtrCParticles.photoelectron

473

Storage Ring | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4American'! ITransportStorageThe Electron

474

Site Map | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smartversatileplatform chemical.

475

Technical Bulletins | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and Innovation » Technical

476

Welcome to Linac Coherent Light Source | Linac Coherent Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition3February 2015ProgramMy mentorsTA

477

VIRTUAL LIGHT: DIGITALLY-GENERATED LIGHTING FOR VIDEO CONFERENCING APPLICATIONS  

E-Print Network [OSTI]

VIRTUAL LIGHT: DIGITALLY-GENERATED LIGHTING FOR VIDEO CONFERENCING APPLICATIONS Andrea Basso method to improve the lighting conditions of a real scene or video sequence. In particular we concentrate on modifying real light sources intensities and inserting virtual lights into a real scene viewed from a fixed

Fisher, Kathleen

478

Next Generation Light Source Workshops  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNationalNewport News Business55News andFebruarySeptemberNext

479

SLAC Linac Coherent Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|Physics ResearchLCLS Sign In Launch the

480

SAC - Linac Coherent Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 Resource ProgramEnergyMaterials:BillRussellJayMillion

Note: This page contains sample records for the topic "advanced light source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Safety | Linac Coherent Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA1 0-SA-02 SeptemberMaterialsSafety forSafety

482

A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions  

SciTech Connect (OSTI)

A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II ? lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

Brown, Matthew A.; Redondo, Amaia Beloqui; Duyckaerts, Nicolas; Mchler, Jean-Pierre [Institute for Chemical and Bioengineering, ETH Zrich, CH-8093 Zrich (Switzerland)] [Institute for Chemical and Bioengineering, ETH Zrich, CH-8093 Zrich (Switzerland); Jordan, Inga; Wrner, Hans Jakob [Laboratory of Physical Chemistry, ETH Zrich, CH-8093 Zrich (Switzerland)] [Laboratory of Physical Chemistry, ETH Zrich, CH-8093 Zrich (Switzerland); Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Birrer, Mario; Honegger, Juri; Wetter, Reto [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)] [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Bokhoven, Jeroen A. van [Institute for Chemical and Bioengineering, ETH Zrich, CH-8093 Zrich (Switzerland) [Institute for Chemical and Bioengineering, ETH Zrich, CH-8093 Zrich (Switzerland); Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

2013-07-15T23:59:59.000Z

483

Impact of Lighting Requirements on VLC Systems J. Gancarz, H. Elgala, T.D.C. Little  

E-Print Network [OSTI]

Report No. 11-01-2013 Abstract Advances in Solid State Lighting (SSL) are enabling Light-Emitting Diodes

Little, Thomas

484

Sleep, mood, and circadian responses to bright green light during sleep  

E-Print Network [OSTI]

white light from fluorescent bulbs, as point sources mightthan incandescent bulbs. Also, fluorescent light is easier

Grandner, Michael Andrew

2007-01-01T23:59:59.000Z