Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Smart Engines Via Advanced Model Based Controls  

DOE Green Energy (OSTI)

A ''new'' process for developing control systems - Less engine testing - More robust control system - Shorter development cycle time - ''Smarter'' approach to engine control - On-board models describe engine behavior - Shorter, systematic calibration process - Customer and legislative requirements designed-in.

Allain, Marc

2000-08-20T23:59:59.000Z

2

Argonne TTRDC - Engines - Emissions Control - Advanced Diesel Particulate  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Advanced Diesel Particulate Filtration Systems Development of Advanced Diesel Particulate Filtration Systems The U.S. Environmental Protection Agency regulations require that on-highway diesel vehicles have filtration systems to reduce tail-pipe soot emissions, known as particulate matter (PM). Diesel particulate filtration (DPF) systems are currently the most efficient at directly controlling PM. Argonne researchers, working with Corning, Inc., and Caterpillar, Inc., through a cooperative research and development agreement, are exploiting previously unavailable technology and research results on diesel PM filtration and regeneration processes, aiming to the technology transfer of advanced PM emission control to industry. Argonne's Research In operation of DPF systems, the filtration and regeneration of particulate emissions are the key processes to be controlled for high efficiency. Due to difficulties in accessing the micro-scaled structures of DPF membranes and monitoring particulate filtration and high-temperature thermal processes, however, research has been limited to macroscopic observation for the product.

3

FY2000 Progress Report for Combustion and Emission Control for Advanced CIDI Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2000 Progress Report for Combustion and Emission Control for Advanced CIDI Engines Energy Efficiency and Renewable Energy Office of Transportation Technologies Approved by Steven Chalk November 2000 Combustion and Emission Control for Advanced CIDI Engines FY 2000 Progress Report CONTENTS Page iii I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 II. EMISSION CONTROL SUBSYSTEM DEVELOPMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . .9 A. Emission Control Subsystem Evaluation for Light-Duty CIDI Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4

Vehicle Technologies Office: Advanced Combustion Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Combustion Advanced Combustion Engines to someone by E-mail Share Vehicle Technologies Office: Advanced Combustion Engines on Facebook Tweet about Vehicle Technologies Office: Advanced Combustion Engines on Twitter Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Google Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Delicious Rank Vehicle Technologies Office: Advanced Combustion Engines on Digg Find More places to share Vehicle Technologies Office: Advanced Combustion Engines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Advanced Combustion Engines

5

FY2001 Progress Report for Combusion and Emission Control for Advanced CIDI Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

COMBUSTION AND COMBUSTION AND EMISSION CONTROL FOR ADVANCED CIDI ENGINES 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory and QSS Group, Inc., for their artistic, editorial and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2001 Progress Report for Combustion and Emission Control for Advanced CIDI Engines

6

DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program  

DOE Green Energy (OSTI)

The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

2012-10-26T23:59:59.000Z

7

Systems Engineering Advancement Research Initiative  

E-Print Network (OSTI)

strategic partners Define and research fundamental concepts for advanced system engineering Contribute materials, and handbooks to inspire, inform, and guide students and practitioners VENUE SEAri is located

de Weck, Olivier L.

8

Active flow control in an advanced serpentine jet engine inlet duct  

E-Print Network (OSTI)

An experimental investigation was performed to understand the development and suppression of the secondary flow structures within a compact, serpentine jet engine inlet duct. By employing a variety of flow diagnostic techniques, the formation of a pair of counter-rotating vortices was revealed. A modular fluidic actuator system that would apply several different methods of flow control was then designed and manufactured to improve duct performance. At the two bends of the inlet, conformal flow control devices were installed to deliver varying degrees of boundary layer suction, suction and steady fluid injection, and suction and oscillatory injection. Testing showed that suction alone could delay flow separation and improve the pressure recovery of the duct by as much as 70%. However, this technique was not able to rid the duct completely of the nonuniformities that exist at the engine face plane. Suction with steady blowing, however, increased pressure recovery by 37% and reduced distortion by 41% at the engine face. Suction with pulsed injection had the least degree of success in suppressing the secondary flow structures, with improvements in pressure recovery of only 16.5% and a detrimental impact on distortion. The potential for gains in the aerodynamic efficiency of serpentine inlets by active flow control was demonstrated in this study.

Kirk, Aaron Michael

2006-12-01T23:59:59.000Z

9

Advanced fuel chemistry for advanced engines.  

SciTech Connect

Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

2009-09-01T23:59:59.000Z

10

Achievement of Low Emissions by Engine Modification to Utilize Gas-to-Liquid Fuel and Advanced Emission Controls on a Class 8 Truck  

DOE Green Energy (OSTI)

A 2002 Cummins ISM engine was modified to be optimized for operation on gas-to-liquid (GTL) fuel and advanced emission control devices. The engine modifications included increased exhaust gas recirculation (EGR), decreased compression ratio, and reshaped piston and bowl configuration.

Alleman, T. L.; Tennant, C. J.; Hayes, R. R.; Miyasato, M.; Oshinuga, A.; Barton, G.; Rumminger, M.; Duggal, V.; Nelson, C.; Ray, M.; Cherrillo, R. A.

2005-11-01T23:59:59.000Z

11

Ceramic Technology for Advanced Heat Engines Project  

DOE Green Energy (OSTI)

The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

Not Available

1990-08-01T23:59:59.000Z

12

Ceramic Technology For Advanced Heat Engines Project  

DOE Green Energy (OSTI)

Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.

Not Available

1990-12-01T23:59:59.000Z

13

Advanced engineering environment pilot project.  

SciTech Connect

The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty (Parametric Technology Corporation, Needham, MA)

2006-10-01T23:59:59.000Z

14

Advanced engineering environment collaboration project.  

SciTech Connect

The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

2008-12-01T23:59:59.000Z

15

Advanced engineering environment collaboration project.  

SciTech Connect

The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

2008-12-01T23:59:59.000Z

16

Ceramic technology for Advanced Heat Engines Project  

DOE Green Energy (OSTI)

Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

Johnson, D.R.

1991-07-01T23:59:59.000Z

17

ADVANCED BIOMASS REBURNING FOR HIGH EFFICIENCY NOx CONTROL AND BIOMASS REBURNING - MODELING/ENGINEERING STUDIES JOINT FINAL REPORT  

DOE Green Energy (OSTI)

This report presents results of studies under a Phase II SBIR program funded by the U. S. Department of Agriculture, and a closely coordinated project sponsored by the DOE National Energy Technology Laboratory (NETL, formerly FETC). The overall Phase II objective of the SBIR project is to experimentally optimize the biomass reburning technologies and conduct engineering design studies needed for process demonstration at full scale. The DOE project addresses supporting issues for the process design including modeling activities, economic studies of biomass handling, and experimental evaluation of slagging and fouling. The performance of biomass has been examined in a 300 kW (1 x 10{sup 6} Btu/hr) Boiler Simulator Facility under different experimental conditions. Fuels under investigation include furniture waste, willow wood and walnut shells. Tests showed that furniture pellets and walnut shells provided similar NO{sub x} control as that of natural gas in basic reburning at low heat inputs. Maximum NO{sub x} reduction achieved with walnut shell and furniture pellets was 65% and 58% respectively. Willow wood provided a maximum NO{sub x} reduction of 50% and was no better than natural gas at any condition tested. The efficiency of biomass increases when N-agent is injected into reburning and/or burnout zones, or along with OFA (Advanced Reburning). Co-injection of Na{sub 2}CO{sub 3} with N-agent further increases efficiency of NO{sub x} reduction. Maximum NO{sub x} reduction achieved with furniture pellets and willow wood in Advanced Reburning was 83% and 78% respectively. All combustion experiments of the Phase II project have been completed. All objectives of the experimental tasks were successfully met. The kinetic model of biomass reburning has been developed. Model agrees with experimental data for a wide range of initial conditions and thus correctly represents main features of the reburning process. Modeling suggests that the most important factors that provide high efficiency of biomass in reburning are low fuel-N content and high content of alkali metals in ash. These results indicate that the efficiency of biomass as a reburning fuel may be predicted based on its ultimate, proximate, and ash analyses. The results of experimental and kinetic modeling studies were utilized in applying a validated methodology for reburning system design to biomass reburning in a typical coal-fired boiler. Based on the trends in biomass reburning performance and the characteristics of the boiler under study, a preliminary process design for biomass reburning was developed. Physical flow models were applied to specific injection parameters and operating scenarios, to assess the mixing performance of reburning fuel and overfire air jets which is of paramount importance in achieving target NO{sub x} control performance. The two preliminary cases studied showed potential as candidate reburning designs, and demonstrated that similar mixing performance could be achieved in operation with different quantities of reburning fuel. Based upon this preliminary evaluation, EER has determined that reburning and advanced reburning technologies can be successfully applied using biomass. Pilot-scale studies on biomass reburning conducted by EER have indicated that biomass is an excellent reburning fuel. This generic design study provides a template approach for future demonstrations in specific installations.

Vladimir M. Zamansky; Mark S. Sheldon; Vitali V. Lissianski; Peter M. Maly; David K. Moyeda; Antonio Marquez; W. Randall Seeker

2000-10-01T23:59:59.000Z

18

HCCI Engine Optimization and Control  

DOE Green Energy (OSTI)

The goal of this project was to develop methods to optimize and control Homogeneous-Charge Compression Ignition (HCCI) engines, with emphasis on diesel-fueled engines. HCCI offers the potential of nearly eliminating IC engine NOx and particulate emissions at reduced cost over Compression Ignition Direct Injection engines (CIDI) by controlling pollutant emissions in-cylinder. The project was initiated in January, 2002, and the present report is the final report for work conducted on the project through December 31, 2004. Periodic progress has also been reported at bi-annual working group meetings held at USCAR, Detroit, MI, and at the Sandia National Laboratories. Copies of these presentation materials are available on CD-ROM, as distributed by the Sandia National Labs. In addition, progress has been documented in DOE Advanced Combustion Engine R&D Annual Progress Reports for FY 2002, 2003 and 2004. These reports are included as the Appendices in this Final report.

Rolf D. Reitz

2005-09-30T23:59:59.000Z

19

NETL: 2009 Conference Proceedings - Advanced Process Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Development PRESENTATIONS APECS Overview Advanced Process Engineering Co-Simulation for Design and Optimization of Fossil Energy Systems with Carbon Capture PDF-4MB Stephen E....

20

NETL: Advanced NOx Emissions Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Advanced NOx Emissions Control Innovations for Existing Plants Advanced NOx Emissions Control Adv....

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Stirling engine power control  

DOE Patents (OSTI)

A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.

Fraser, James P. (Scotia, NY)

1983-01-01T23:59:59.000Z

22

Advanced Biofuels: How Scientists are Engineering Bacteria to...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America December 6, 2011 -...

23

Advanced optical sensor for monitoring and control of multiple...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced optical sensor for monitoring and control of multiple gas and turbine-blade properties University of Wisconsin - Madison Department of Mechanical Engineering Principal...

24

Advanced Engineering Preliminary Program Planning, Rough Draft  

SciTech Connect

The purpose of this document is to assembly certain job elements which may become part of the Advanced Engineerng Subsection programs, so that those individuals who may be requested to participate in such programs may be aware of the nature and form of Advanced Engineering planning.

Towle, H.C.

1961-04-20T23:59:59.000Z

25

The Intelligent Systems and Control Laboratory and the Advanced Power Systems Research Center in the Department of Mechanical Engineering Engineering Mechanics at Michigan Technological University invites  

E-Print Network (OSTI)

and practical knowledge of how their performance varies when engines are run with biodiesel fuel blends Tech owned properties. For details visit: http://www.mtu.edu/. To apply please send

Endres. William J.

26

Advanced Process Engineering Co-simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 AdvAnced Process engineering co-simulAtion Description The National Energy Technology Laboratory (NETL) and its R&D collaboration partners are developing the Advanced Process Engineering Co-Simulator (APECS) as an innovative software tool that combines process simulation with high-fidelity equipment models based on computational fluid dynamics (CFD). Winner of a 2004 R&D 100 Award and a 2007 Federal Laboratory Consortium (FLC) Excellence in Technology Transfer Award, this powerful co-simulation technology, for the first time, provides the necessary level of detail and accuracy essential for engineers to analyze and optimize the coupled fluid flow, heat and mass transfer, and chemical reactions that drive overall plant performance. Combined with advanced visualization and high-performance computing,

27

Vehicle Technologies Office: Advanced Combustion Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Engines Combustion Engines Improving the efficiency of internal combustion engines is one of the most promising and cost-effective near- to mid-term approaches to increasing highway vehicles' fuel economy. The Vehicle Technologies Office's research and development activities address critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles. This technology has great potential to reduce U.S. petroleum consumption, resulting in greater economic, environmental, and energy security. Already offering outstanding drivability and reliability to over 230 million passenger vehicles, internal combustion engines have the potential to become substantially more efficient. Initial results from laboratory engine tests indicate that passenger vehicle fuel economy can be improved by more than up to 50 percent, and some vehicle simulation models estimate potential improvements of up to 75 percent. Advanced combustion engines can utilize renewable fuels, and when combined with hybrid electric powertrains could have even further reductions in fuel consumption. As the EIA reference case forecasts that by 2035, more than 99 percent of light- and heavy-duty vehicles sold will still have internal combustion engines, the potential fuel savings is tremendous.

28

Guidelines for Particulate Control for Advanced SO2 Control Processes  

Science Conference Proceedings (OSTI)

To assist utilities in complying with Phase II of the Clean Air Act Amendments, this report delineates the effects of advanced SO2 control technologies on particulate control systems. This guide can prove invaluable to environmental engineers and planners who must select compatible systems and identify sound operating strategies for these technologies.

1994-12-30T23:59:59.000Z

29

ALS Ceramics Materials Research Advances Engine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C. Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals

30

ALS Ceramics Materials Research Advances Engine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 LBNL senior materials scientist and UC Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals and composites, Ritchie has illuminated groundbreaking cracking patterns and the underlying mechanistic processes using the x-ray synchrotron micro-tomography at ALS Beamline 8.3.2. Summary Slide ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter.

31

ALS Ceramics Materials Research Advances Engine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C. Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals

32

Lighting Group: Controls: Advanced Digital Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Digital Controls Advanced Digital Controls HPCBS Advanced Digital Controls Objective The goal of this project is to hasten the adoption of digital lighting control systems to allow commercial building operators to optimize the neergy performance of their lighting systems, implement demand responsive control, and improve occupant comfort and productivity. The specific objectives are as follows: (1) Advance the adoption of digital lighting control systems by working with industry to embed IBECS technology into existing analog control and DALI products, and by developing compelling demonstrations of digital control systems for evaluation by early adopters. (2) In collaboration with equipment manufacturers, produce digital lighting system prototypes that demonstrate the advantages of digitally controlled lighting systems to innovative property managers and other energy stakeholders. A digitally controlled lighting system consists of lights that are individually controllable via a network. The advantages of digital control are:

33

Avoid advanced control project mistakes  

Science Conference Proceedings (OSTI)

On-line process optimization is worth working for but without robust advanced controls it will never happen. In this paper, the author evaluates how well advanced controls worked in five refineries. Having spent money on such projects, the refineries faced a situation in which there was no measurable improvement in overall plant performance. These refineries are owned by different companies, yet they share a pattern of mistakes in administrating advanced controls. Highlighting these mistakes shows ways to improve the organization of advanced control technology, to avoid obvious pitfalls.

Friedman, Y.Z. (Petrocontrol, Madison, NJ (United States))

1992-10-01T23:59:59.000Z

34

Ceramic technology for advanced heat engines  

DOE Green Energy (OSTI)

The Ceramic Technology Project was initiated in 1983 for the purpose of developing highly reliable structural ceramics for applications in advanced heat engines, such as automotive gas turbines and advanced heavy duty diesel engines. The reliability problem was determined to be a result of uncontrolled populations of processing flaws in the brittle, flaw-sensitive materials, along with microstructural features, such as grain boundary phases, that contribute to time dependent strength reduction in service at high temperatures. The approaches taken to develop high reliability ceramics included the development of tougher materials with greater tolerance to microstructural flaws, the development of advanced processing technology to minimize the size and number of flaws, and the development of mechanical testing methodology and the characterization of time dependent mechanical behavior, leading to a life prediction methodology for structural ceramics. The reliability goals of the program were largely met by 1993, but commercial implementation of ceramic engine components has been delayed by the high cost of the components. A new effort in Cost Effective Ceramics for Heat Engines was initiated in 1993 and is expected to develop the manufacturing technology leading to an order of magnitude cost reduction. The program has been planned for a five year period.

Johnson, D.R. [Oak Ridge National Lab., TN (United States); Schulz, R.B. [Dept. of Energy, Washington, DC (United States)

1994-10-01T23:59:59.000Z

35

2010 Advanced Combustion Engine R&D Report  

NLE Websites -- All DOE Office Websites (Extended Search)

and Development Approved by Gurpreet Singh Team Leader, Advanced Combustion Engine R&D Vehicle Technologies Program FY 2010 Progress rePort For AdvAnced combustion engine...

36

Engine idle speed control system  

SciTech Connect

An idle speed control system is described for an internal combustion engine having a fuel delivery means for supplying fuel to the engine, the idle speed control system comprising in combination: means for controlling the fuel delivery means to supply a scheduled idle fuel quantity during a idle operating state of the engine; means for sensing the engine idle speed; integrator means responsive to the engine idle speed and a desired engine idle speed for adjusting the scheduled idle fuel quantity in direction and amount to cause correspondence between the engine idle speed and the desired engine idle speed, the integrator means adjustment being a measure of engine load conditions; and means for establishing the scheduled idle fuel quantity, the means including (A) means for establishing a family of curves as a function of the amount of integrator adjustment of the scheduled idle fuel quantity, each curve of the family of curves representing idle fuel quantity as a function of engine idle speed for a respective engine load condition, and (B) means for selecting the curve corresponding to the integrator adjustment of the scheduled idle fuel quantity and providing the scheduled fuel quantity from the selected curve in accord with the sensed engine idle speed.

Ament, F.

1986-07-01T23:59:59.000Z

37

Advanced concurrent-engineering environment. Final report  

SciTech Connect

Sandia demonstrated large-scale visualization in a conference room environment. Project focused in the installation of hardware for visualization and display, and the integration of software tools for design and animation of 3-dimensional parts. Using a high-end visualization server, 3-dimensional modeling and animation software, and leading edge World Wide Web technology, an advanced concurrent engineering environment was simulated where a design team was able to work collectively, rather than as solely disjoint individual efforts. Finally, a successful animation of a Sandia part was demonstrated, and a computer video generated. This video is now accessible on a Sandia internal web server.

Jortner, J.N.; Friesen, J.A.

1997-07-01T23:59:59.000Z

38

Advanced concurrent engineering environment final report  

SciTech Connect

Sandia demonstrated large-scale visualization in a conference room environment. Project focused on the installation of hardware for visualization and display, and the integration of software tools for design and animation of 3-dimensional parts. Using a high-end visualization server, 3-dimensional modeling and animation software, and leading edge World Wide Web technology, and advanced concurrent engineering environment was simulated where a design team was able to work collectively, rather than as solely disjoint individual efforts. Finally, a successful animation of a Sandia part was demonstrated, and a computer video generated. This video is now accessible on a Sandia internal web server.

Jortner, J.N.; Friesen, J.A.; Schwegel, J.

1997-08-01T23:59:59.000Z

39

Ceramic technology for advanced heat engines project  

DOE Green Energy (OSTI)

The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

Not Available

1990-09-01T23:59:59.000Z

40

SAPLE: Sandia Advanced Personnel Locator Engine.  

SciTech Connect

We present the Sandia Advanced Personnel Locator Engine (SAPLE) web application, a directory search application for use by Sandia National Laboratories personnel. SAPLE's purpose is to return Sandia personnel 'results' as a function of user search queries, with its mission to make it easier and faster to find people at Sandia. To accomplish this, SAPLE breaks from more traditional directory application approaches by aiming to return the correct set of results while placing minimal constraints on the user's query. Two key features form the core of SAPLE: advanced search query interpretation and inexact string matching. SAPLE's query interpretation permits the user to perform compound queries when typing into a single search field; where able, SAPLE infers the type of field that the user intends to search on based on the value of the search term. SAPLE's inexact string matching feature yields a high-quality ranking of personnel search results even when there are no exact matches to the user's query. This paper explores these two key features, describing in detail the architecture and operation of SAPLE. Finally, an extensive analysis on logged search query data taken from an 11-week sample period is presented.

Procopio, Michael J.

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

AMO Industrial Distributed Energy: Advanced Reciprocating Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gas fueled engines for power generation that combine high efficiency, low emissions, fuel flexibility, and reduced cost of ownership. Phase I of the Cummins reciprocating engine...

42

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES  

SciTech Connect

This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. A detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and concepts have been explored, and engine experiments will validate these concepts. An iterative process of experimentation, simulation and analysis, will be followed with the goal of demonstrating a complete optimized low-friction engine system. As planned, MIT has developed guidelines for an initial set of low-friction piston-ring-pack designs. Current recommendations focus on subtle top-piston-ring and oil-control-ring characteristics. A full-scale Waukesha F18 engine has been installed at Colorado State University and testing of the baseline configuration is in progress. Components for the first design iteration are being procured. Subsequent work includes examining the friction and engine performance data and extending the analyses to other areas to evaluate opportunities for further friction improvement and the impact on oil consumption/emission and wear, towards demonstrating an optimized reduced-friction engine system.

Victor W. Wong; Tian Tian; Grant Smedley

2003-08-28T23:59:59.000Z

43

2009 Advanced Combustion Engine R&D Annual Report  

NLE Websites -- All DOE Office Websites (Extended Search)

COMBUSTION COMBUSTION ENGINE RESEARCH AND DEVELOPMENT annual progress report 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 Approved by Gurpreet Singh Team Leader, Advanced Combustion Engine R&D Office of Vehicle Technologies FY 2009 Progress rePort For AdvAnced combustion engine reseArcH And deveLoPment Energy Efficiency and Renewable Energy Office of Vehicle Technologies December 2009 U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 ii Advanced Combustion Engine Technologies FY 2009 Annual Progress Report

44

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES  

Science Conference Proceedings (OSTI)

This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scale Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology demonstration in an actual full-sized reciprocating natural-gas engine.

Victor W. Wong; Tian Tian; Grant Smedley; Jeffrey Jocsak

2004-09-30T23:59:59.000Z

45

Advanced Reactor Development and Technology - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Nuclear Data Program Advanced Reactor Development Overview Advanced Fast Reactor...

46

Natural Gas-optimized Advanced Heavy-duty Engine  

E-Print Network (OSTI)

Natural Gas-optimized Advanced Heavy-duty Engine Transportation Research PIER Transportation of natural gas vehicles as a clean alternative is currently limited to smaller engine displacements and spark ignition, which results in lower performance. A large displacement natural gas engine has

47

Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests  

SciTech Connect

The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

Wright, A. D.; Fingersh, L. J.

2008-03-01T23:59:59.000Z

48

Power control for heat engines  

DOE Patents (OSTI)

A power control arrangement for a Stirling engine includes a sleeve mounted in each cylinder for axial movement and a port in the sleeve leading to a dead space. The port is covered by the piston at a position that is determined by the piston position and the axial adjustment of the sleeve. The compression phase of the Stirling cycle for that piston begins when the port is covered, so the position of the sleeve is used to set the Stirling engine power level.

Dineen, John J. (Durham, NH)

1984-01-01T23:59:59.000Z

49

HCCI engine control and optimization  

E-Print Network (OSTI)

natural gas engine setup for stationary power generation. . . . . . . . . . .natural gas engine setup for stationary power generation.

Killingsworth, Nicholas J.

2007-01-01T23:59:59.000Z

50

Advanced gray rod control assembly  

DOE Patents (OSTI)

An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

2013-09-17T23:59:59.000Z

51

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES  

Science Conference Proceedings (OSTI)

This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, with full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.

Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

2005-09-30T23:59:59.000Z

52

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America December 6, 2011 - 2:12pm Addthis Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs Who knew Escherichia coli (E. coli) could help America reduce its dependence on foreign oil? A breakthrough with the bacteria could make it cheaper to produce fuel from switchgrass -- an advanced biofuel with the

53

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America December 6, 2011 - 2:12pm Addthis Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs Who knew Escherichia coli (E. coli) could help America reduce its dependence on foreign oil? A breakthrough with the bacteria could make it cheaper to produce fuel from switchgrass -- an advanced biofuel with the

54

Advanced Computation & Visualization - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

55

Heat engine generator control system  

SciTech Connect

An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.

Rajashekara, Kaushik (Carmel, IN); Gorti, Bhanuprasad Venkata (Towson, MD); McMullen, Steven Robert (Anderson, IN); Raibert, Robert Joseph (Fishers, IN)

1998-01-01T23:59:59.000Z

56

Heat engine generator control system  

DOE Patents (OSTI)

An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.

Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.

1998-05-12T23:59:59.000Z

57

Small engine control by fuzzy logic  

Science Conference Proceedings (OSTI)

Small spark-ignition gasoline-fuelled internal-combustion engines can be found all over the world performing in various roles including power generation, agricultural applications and motive power for small boats. To attain low cost, these engines are ... Keywords: applied artificial intelligence, emissions reduction, engine control, engine management systems, fuzzy control, intelligent system

S. H. Lee; R. J. Howlett; S. D. Walters

2004-12-01T23:59:59.000Z

58

Advanced nuclear plant control complex  

DOE Patents (OSTI)

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

59

Materials Physics and Engineering | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety and Training Divisions APS Engineering Support Division AES Groups Accelerator Systems Division ASD Groups X-ray Science Division XSD Groups Industry Argonne Home ...

60

2011 Advanced Combustion Engine R&D Annual Report  

NLE Websites -- All DOE Office Websites (Extended Search)

annual progress report 2011 annual progress report 2011 Advanced Combustion Engine Research and Development DOE-ACE-2011AR Approved by Gurpreet Singh Team Leader, Advanced Combustion Engine R&D Vehicle Technologies Program FY 2011 Progress rePort For AdvAnced combustion engine reseArcH And deveLoPment Energy Efficiency and Renewable Energy Vehicle Technologies Program U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 December 2011 DOE-ACE-2011AR ii Advanced Combustion Engine R&D FY 2011 Annual Progress Report We would like to express our sincere appreciation to Alliance Technical Services, Inc. and Oak Ridge National Laboratory for their technical and artistic contributions in preparing and publishing this report. In addition, we would like to thank all the participants for their contributions to the programs and all the

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

REQUEST BY CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF ENERGY COOPERATIVE AGREEMENT NO. DE-FC05-00OR22804; DOE WAIVER DOCKIET W(A)-00-021 [ORO-754] Petitioner, Cummins Engine Company, Inc., has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Cooperative Agreement No. DE-FC05-00OR22804. The scope of this work is to plan, develop and demonstrate advanced heavy duty diesel engine technologies to improve thermal efficiency and meet EPA proposed 2007 emissions of 0.2 NOx and 0.01 gm PM. This work is sponsored by the Office of Transportation Technologies, Office ol Heavy Vehicle

62

Systems/Process Monitoring, Diagnostics and Control - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities > Nuclear Systems Capabilities > Nuclear Systems Technologies > Systems/Process Monitoring, Diagnostics and Control Capabilities Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis Decontamination and Decommissioning Systems/Process Monitoring, Diagnostics and Control Overview Process Monitoring & Signal Validation Diagnostic & Advisory Systems Advanced (AI-based) Nonlinear Controllers for Industrial Processes Artificial intelligence Other Capabilities Work with Argonne Contact us For Employees Site Map Help Systems/Process Monitoring, Diagnostics and Control Bookmark and Share Systems/Process Monitoring, Diagnostics and Control Systems/Process Monitoring, Diagnostics and Control. Click on image to view larger image. The goal of the Nuclear Engineering Division's research on advanced

63

EGR Distribution in Engine Cylinders Using Advanced Virtual Simulation  

DOE Green Energy (OSTI)

Exhaust Gas Recirculation (EGR) is a well-known technology for reduction of NOx in diesel engines. With the demand for extremely low engine out NOx emissions, it is important to have a consistently balanced EGR flow to individual engine cylinders. Otherwise, the variation in the cylinders' NOx contribution to the overall engine emissions will produce unacceptable variability. This presentation will demonstrate the effective use of advanced virtual simulation in the development of a balanced EGR distribution in engine cylinders. An initial design is analyzed reflecting the variance in the EGR distribution, quantitatively and visually. Iterative virtual lab tests result in an optimized system.

Fan, Xuetong

2000-08-20T23:59:59.000Z

64

2000 Annual Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells  

DOE Green Energy (OSTI)

The Department of Energy's Office of Transportation Technologies Fiscal Year (FY) 2000 Annual Progress Report for the Fuels for Advanced CIDI Engines and Fuel Cells Program highlights progress achieved during FY 2000 and comprises 22 summaries of industry and National Laboratory projects that were conducted. The report provides an overview of the exciting work being conducted to tackle the tough technical challenges associated with developing clean burning fuels that will enable meeting the performance goals of the Emission Control R and D for Advanced CIDI Engines and the Transportation Fuel Cell Power Systems Programs. The summaries cover the effects of CIDI engine emissions and fuel cell power system performance, the effects of lubricants on engine emissions, the effects of fuel and consumed lubricants on exhaust emission control devices and the health and safety, materials compatibility, and economics of advanced petroleum-based fuels.

Chalk, S.

2000-12-11T23:59:59.000Z

65

Engine emissions control apparatus and method  

Science Conference Proceedings (OSTI)

This patent describes an apparatus for reducing the emissions of a diesel engine. It comprises: a hydrous alcohol fuel of between about 33 percent and about 70 percent alcohol by volume and between about 30 percent and 67 percent water by volume; a fuel injector for delivering the hydrous alcohol fuel for combustion in the engine; and means for controlling the delivery of the fuel to the engine in response to operating conditions of the engine, such that the fuel is delivered for combustion only when the engine is being operated to increase the rate of engine revolutions and when the engine is being operated substantially to maintain the rate of engine revolutions.

Fosseen, D.

1990-09-25T23:59:59.000Z

66

ALS Ceramics Materials Research Advances Engine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

and at temperature. "The nickel-based superalloy materials that are currently used in our gas-turbine engines have reached the absolute limit of their temperature range," says...

67

Advanced Pulverizer Control: Design and Testbed Implementation  

Science Conference Proceedings (OSTI)

Coal pulverizers play an important role in all aspects of power plant performance, including availability, efficiency, and responsiveness. In relationship to dynamic response, pulverizer control often limits a plant's maximum load rate-of-change. EPRI has been investigating the use of advanced multivariable control techniques on several plant subsystems and in this project is developing an advanced pulverizer control system. The ultimate goal is to design, implement, and test an advanced control system o...

2004-03-22T23:59:59.000Z

68

EIS-0290: Idaho National Engineering and Environmental Laboratory Advanced  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

90: Idaho National Engineering and Environmental Laboratory 90: Idaho National Engineering and Environmental Laboratory Advanced Mixed Waste Treatment Project (AMWTP) EIS-0290: Idaho National Engineering and Environmental Laboratory Advanced Mixed Waste Treatment Project (AMWTP) SUMMARY The AMWTP Final EIS assesses the potential environmental impacts associated with alternatives related to the construction and operation of a proposed waste treatment facility at the Idaho National Environmental and Engineering Laboratory (INEEL). PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 26, 2013 EIS-0290-SA-03: Supplement Analysis Disposition of Mixed Low-Level Waste and Low-Level Waste from Advanced Mixed Waste Treatment Project at Commercial Facilities, Idaho May 1, 2009 EIS-0290-SA-02: Supplement Analysis

69

Advanced Process Engineering Co-Simulator (APECS) | Open Energy Information  

Open Energy Info (EERE)

Advanced Process Engineering Co-Simulator (APECS) Advanced Process Engineering Co-Simulator (APECS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: APECS Agency/Company /Organization: National Energy Technology Laboratory Partner: ANSYS Sector: Energy Focus Area: Industry Topics: Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.netl.doe.gov/technologies/coalpower/advresearch/apecs.html APECS Screenshot References: APECS Homepage[1] Logo: APECS Advanced Process Engineering Co-Simulator (APECS) is an innovative software tool that provides process/equipment co-simulation capabilities for model-based decision support in steady-state process design and optimization. Developed by NETL, ANSYS, and other research partners, the Advanced Process

70

Advanced Process Engineering Co-Simulator (APECS) | Open Energy Information  

Open Energy Info (EERE)

Advanced Process Engineering Co-Simulator (APECS) Advanced Process Engineering Co-Simulator (APECS) (Redirected from APECS) Jump to: navigation, search Tool Summary Name: APECS Agency/Company /Organization: National Energy Technology Laboratory Partner: ANSYS Sector: Energy Focus Area: Industry Topics: Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.netl.doe.gov/technologies/coalpower/advresearch/apecs.html APECS Screenshot References: APECS Homepage[1] Logo: APECS Advanced Process Engineering Co-Simulator (APECS) is an innovative software tool that provides process/equipment co-simulation capabilities for model-based decision support in steady-state process design and optimization. Developed by NETL, ANSYS, and other research partners, the Advanced Process

71

NETL: Advanced Research - Sensors & Controls Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors & Controls Sensors & Controls Advanced Research Sensors & Controls Innovations OSU's O2 Sensor Ohio State University's reference-free potentiometric oxygen sensor capable of withstanding temperatures of 800 °C. Novel Sensors and Advanced Process Control Novel Sensors and Advanced Process Control are key enabling technologies for advanced near zero emission power systems. NETL's Advanced Research Program is leading the effort to develop sensing and control technologies and methods to achieve seamless, integrated, automated, optimized, and intelligent power systems. Today, the performance of advanced power systems is limited by the lack of sensors and controls capable of withstanding high temperature and pressure conditions. Harsh environments are inherent to new systems that aim to

72

Engine control system for multiple combustion modes  

Science Conference Proceedings (OSTI)

To reduce the emission by Diesel-engine in railway traction, continuous development and innovation in combustion, sensing net, control method and strategies are required to met the legal requirements. Multiple combustion modes by Diesel engines can reduce ...

D. Bonta; V. Tulbure; Cl. Festila

2008-05-01T23:59:59.000Z

73

Internal combustion engine and method for control  

SciTech Connect

In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

Brennan, Daniel G

2013-05-21T23:59:59.000Z

74

Active structures in advanced engineering - an overview  

Science Conference Proceedings (OSTI)

In the paper, the usefulness of active systems is considered, whereby both their advantages and disadvantages are emphasised. Some characteristic examples of breakdowns and disasters of objects and construction are presented, such as the catastrophe ... Keywords: active suspension, active systems, aerofoil flutter, cooling tower, disaster, safety engineering, shaft vehicle, variable geometry

Miomir K. Vukobratovic

2000-07-01T23:59:59.000Z

75

Process Systems Engineering R&D for Advanced Fossil Energy Systems  

SciTech Connect

This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulation for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.

Zitney, S.E.

2007-09-11T23:59:59.000Z

76

Aircraft Engine Noise Control as Viewed by the Engine Manufacturer  

Science Conference Proceedings (OSTI)

The aircraft engine manufacturer has been continually confronted with the factor of noise control in conjunction with the development and production testing of engines. The scope of this control activity has increased many fold during recent years as the result of the rapid growth in types and size of military power plants. Presented in this paper is a review of the over?all control procedure including typical noise sources

Donald M. Hazard

1953-01-01T23:59:59.000Z

77

Advanced Controls Technologies and Strategies Linking Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Controls Technologies and Strategies Linking Energy Efficiency and Demand Response Speaker(s): Sila Kiliccote Date: October 6, 2005 - 12:00pm Location: Bldg. 90 Reliable...

78

Advanced nonlinear control of complex power systems.  

E-Print Network (OSTI)

??Nowadays, advanced controller design is called upon to guarantee the secure and reliable operation of power systems. To meet this requirement, this work proposed three… (more)

Li, Hong Yin.

2008-01-01T23:59:59.000Z

79

REQUEST :BY CUMMINS ENGINE COMPANY, INC. FOR AN ADVANCE WAIVER...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in 1995 topped five billion and it employed over 24,000 people. It has also implemented ceramic materials for fuel systems, catalyst systems for emission control, advanced...

80

Advanced turbine design for coal-fueled engines  

DOE Green Energy (OSTI)

The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500[degrees]F (815[degrees]C), relatively innocuous salts. In this study it is found that at 1650[degrees]F (900[degrees]C) and above, calcium sulfate becomes an aggressive corrodent.

Bornstein, N.S.

1992-07-17T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Engineered Sequestration and Advanced Power Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia University. Predictions of innovative energy technologies for the next century usually include everything from fusion to photovoltaics with the one notable exception of fossil fuels. Because of fears of diminishing supplies, pollution and climate change, the public is reluctant to consider these hydrocarbon fuels for the energy needs of the twenty- first century. An energy strategy for the new century, however, cannot ignore fossil fuels. Contrary to popular belief, they are plentiful and inexpensive. While it is true that fossil fuels are limited by their environmental impact, new technologies to eliminate environmental concerns are currently being developed. Managing the emission of

82

Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993  

DOE Green Energy (OSTI)

The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

Not Available

1990-07-01T23:59:59.000Z

83

ENGINE COMBUSTION CONTROL VIA FUEL REACTIVITY ...  

A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a ...

84

Hydrogen engine and combustion control process  

DOE Patents (OSTI)

Hydrogen engine with controlled combustion comprises suction means connected to the crankcase reducing or precluding flow of lubricating oil or associated gases into the combustion chamber.

Swain, Michael R. (Coral Gables, FL); Swain, Matthew N. (Miami, FL)

1997-01-01T23:59:59.000Z

85

FY 2008 Progress Report for Advanced Combustion Engine Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

COMBUSTION COMBUSTION ENGINE TECHNOLOGIES annual progress report 2008 V e h i c l e T e c h n o l o g i e s P r o g r a m U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2008 Progress rePort For AdvAnced combustion engine technologies Energy Efficiency

86

Injection engine as a control object. II. Problems of automatic control of the engine  

Science Conference Proceedings (OSTI)

Specific features of injection engine as a control object are discussed, strict formulations of problems of engine automatic control and principles of their solution are presented. Examples of solution of the problem of stabilization of air-fuel ratio ...

D. N. Gerasimov; H. Javaherian; D. V. Efimov; V. O. Nikiforov

2010-12-01T23:59:59.000Z

87

Internal Combustion Engine Advances for Distributed Generation Markets  

Science Conference Proceedings (OSTI)

Internal combustion engines (ICEs) can play a potentially significant role as a distributed generation resource. This report provides intelligence on vendor programs and on advances in ICE technology that could lead to commercial offerings within a 2-5 year time frame.

1997-09-30T23:59:59.000Z

88

Engineering development of advanced froth flotation. Volume 2, Final report  

SciTech Connect

This report is an account of findings related to the Engineering and Development of Advanced Froth Flotation project. The results from benchscale and proof-of-concept (POC) level testing are presented and the important results from this testing are used to refine a conceptual design and cost estimate for a 20 TPH Semi-Works Facility incorporating the final proposed technology.

Ferris, D.D.; Bencho, J.R.; Torak, E.R. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)

1995-03-01T23:59:59.000Z

89

Joseph F. Ware Advanced Engineering Lab Ware Lab Summary Report  

E-Print Network (OSTI)

) ................................................................................... Section 12: Hybrid Electric Vehicle Team (HEVT the United States and overseas. Our Hybrid Electric Vehicle Team took first place at EcoCAR this year (2011Joseph F. Ware Advanced Engineering Lab Ware Lab Summary Report Academic Year 2011-12 Virginia Tech

Beex, A. A. "Louis"

90

Human Factors Aspects of Advanced Process Control  

E-Print Network (OSTI)

Energy conservation practices, such as heat recovery and integration, require that many chemical and related processes use advanced control systems. Many of the more advanced process control strategies and algorithms can cause operator confusion, leading to incorrect operator actions and negating the advantages of the advanced control. If the operator makes a mistake and upsets the process, or fails to respond correctly to a process upset, the loss can exceed the possible savings of the advanced control. Further, the experience can result in the operator not using the control capability in the future. Display and man/machine interface techniques, based on an understanding of human factors and of an operator's typical analysis of a process, can be used to present information to the operator in a manner which will prevent confusion. This paper discusses techniques for selecting and displaying process and control information to the operator.

Shaw, J. A.

1986-06-01T23:59:59.000Z

91

ADVANCED DIESEL ENGINE AND AFTERTREATMENT TECHNOLOGY DEVELOPMENT FOR TIER 2 EMISSIONS  

DOE Green Energy (OSTI)

Advanced diesel engine and aftertreatment technologies have been developed for multiple engine and vehicle platforms. Tier 2 (2007 and beyond) emissions levels have been demonstrated for a light truck vehicle over a FTP-75 test cycle on a vehicle chassis dynamometer. These low emissions levels are obtained while retaining the fuel economy advantage characteristic of diesel engines. The performance and emissions results were achieved by integrating advanced combustion strategies (CLEAN Combustion{copyright}) with prototype aftertreatment systems. CLEAN Combustion{copyright} allows partial control of exhaust species for aftertreatment integration in addition to simultaneous NOx and PM reduction. Analytical tools enabled the engine and aftertreatment sub-systems development and system integration. The experimental technology development methodology utilized a range of facilities to streamline development of the eventual solution including utilization of steady state and transient dynamometer test-beds to simulate chassis dynamometer test cycles.

Aneja, R.; Bolton, B; Oladipo, A; Pavlova-MacKinnon, Z; Radwan, A

2003-08-24T23:59:59.000Z

92

Advanced Space Propulsion Based on Vacuum (Spacetime Metric) Engineering  

E-Print Network (OSTI)

A theme that has come to the fore in advanced planning for long-range space exploration is the concept that empty space itself (the quantum vacuum, or spacetime metric) might be engineered so as to provide energy/thrust for future space vehicles. Although far-reaching, such a proposal is solidly grounded in modern physical theory, and therefore the possibility that matter/vacuum interactions might be engineered for space-flight applications is not a priori ruled out. As examples, the current development of theoretical physics addresses such topics as warp drives, traversable wormholes and time machines that provide for such vacuum engineering possibilities. We provide here from a broad perspective the physics and correlates/consequences of the engineering of the spacetime metric.

Harold E. Puthoff

2012-02-03T23:59:59.000Z

93

NETL: Advanced NOx Emissions Control: Control Technology - ALTA for Cyclone  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Scale Demonstration of ALTA NOx Control for Cyclone-Fired Boilers Full-Scale Demonstration of ALTA NOx Control for Cyclone-Fired Boilers The primary goal of this project was to evaluate a technology called advanced layered technology application (ALTA) as a means to achieve NOx emissions below 0.15 lb/MMBtu in a cyclone boiler. Reaction Engineering International (REI) conducted field testing and combustion modeling to refine the process design, define the optimum technology parameters, and assess system performance. The ALTA NOx control technology combines deep staging from overfire air, rich reagent injection (RRI), and selective non-catalytic reduction (SNCR). Field testing was conducted during May-June 2005 at AmerenUE's Sioux Station Unit 1, a 500 MW cyclone boiler unit that typically burns an 80/20 blend of Powder River Basin subbituminous coal and Illinois No. 6 bituminous coal. Parametric testing was also conducted with 60/40 and 0/100 blends. The testing also evaluated process impacts on balance-of-plant issues such as the amount of unburned carbon in the ash, slag tapping, waterwall corrosion, ammonia slip, and heat distribution.

94

Proceedings of the 1987 coatings for advanced heat engines workshop  

DOE Green Energy (OSTI)

This Workshop was conducted to enhance communication among those involved in coating development for improved heat engine performance and durability. We were fortunate to have Bill Goward review the steady progress and problems encountered along the way in the use of thermal barrier coatings (TBC) in aircraft gas turbine engines. Navy contractors discussed their work toward the elusive goal of qualifying TBC for turbine airfoil applications. In the diesel community, Caterpillar and Cummins are developing TBC for combustion chamber components as part of the low heat rejection diesel engine concept. The diesel engine TBC work is based on gas turbine technology with a goal of more than twice the thickness used on gas turbine engine components. Adoption of TBC in production for diesel engines could justify a new generation of plasma spray coating equipment. Increasing interests in tribology were evident in this Workshop. Coatings have a significant role in reducing friction and wear under greater mechanical loadings at higher temperatures. The emergence of a high temperature synthetic lubricant could have an enormous impact on diesel engine design and operating conditions. The proven coating processes such as plasma spray, electron-beam physical vapor deposition, sputtering, and chemical vapor deposition have shown enhanced capabilities, particularly with microprocessor controls. Also, the newer coating schemes such as ion implantation and cathodic arc are demonstrating intriguing potential for engine applications. Coatings will play an expanding role in higher efficiency, more durable heat engines.

Not Available

1987-01-01T23:59:59.000Z

95

Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments (Brochure)  

SciTech Connect

Fact sheet describes the top accomplishments, goals and strategies of DOEs Advanced Combustion Engine Research and Development sub program.

Not Available

2009-03-01T23:59:59.000Z

96

Advanced Emissions Control Development Program  

Science Conference Proceedings (OSTI)

McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and hydrogen chloride and hydrogen fluoride.

M. J. Holmes

1998-12-03T23:59:59.000Z

97

Advanced Emissions Control Development Program  

Science Conference Proceedings (OSTI)

McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species, hydrogen chloride and hydrogen fluoride.

A. P. Evans

1998-12-03T23:59:59.000Z

98

Advanced Emissions Control Development Program  

Science Conference Proceedings (OSTI)

Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W?s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

A. P. Evans

1998-12-03T23:59:59.000Z

99

Advanced Emission Control Development Program.  

SciTech Connect

Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

Evans, A.P.

1997-12-31T23:59:59.000Z

100

Control apparatus for hot gas engine  

DOE Patents (OSTI)

A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

Stotts, Robert E. (Clifton Park, NY)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Advanced control and information systems `97  

Science Conference Proceedings (OSTI)

Data are presented on advanced control and information systems, describing specific application, control strategy, economics, commercial installations, and licensor. Uses include alkylation, amine treating, catalytic reforming, cryogenic separation, catalytic cracking, hydrocracking, hydrogen production, LNG separation, lube oils, olefins, plant scheduling, polymers, refineries, steam reforming, and utilities.

NONE

1997-09-01T23:59:59.000Z

102

Ion-gap sensing for engine control  

Science Conference Proceedings (OSTI)

This article reports that in addition to detecting misfire to conform with California onboard diagnostic (OBD II) regulations, Delco Electronics and Mecel AB engineers are looking at ion-gap sensing to control knock, A/F ratio, and other possible engine control parameters. The combustion of fuel in an engine cylinder produces ions. Detection of those ions by the spark plug (ion-gap sensing), and use of the resulting ion currents, has been employed in engine management systems since 1988. Saab introduced the first application, for cam-phase sensing. The main driving force for ion-gap sensing is OBD II requirements for 100% misfire detection at all speeds and loads. The technique has been expanded in subsequent applications to include misfire, knock, and pre-ignition detection and control, and more recently in combustion-ion detection using a capacitance-type, ion-current measurement method. Use of the ion current`s wave shape to control knock allows elimination of the separate piezoelectric type (PZT) sensor. Future applications could provide additional engine-control features including air/fuel ratio measurement and control.

NONE

1995-09-01T23:59:59.000Z

103

Surrogate Model Development for Fuels for Advanced Combustion Engines  

Science Conference Proceedings (OSTI)

The fuels used in internal-combustion engines are complex mixtures of a multitude of different types of hydrocarbon species. Attempting numerical simulations of combustion of real fuels with all of the hydrocarbon species included is highly unrealistic. Thus, a surrogate model approach is generally adopted, which involves choosing a few representative hydrocarbon species whose overall behavior mimics the characteristics of the target fuel. The present study proposes surrogate models for the nine fuels for advanced combustion engines (FACE) that have been developed for studying low-emission, high-efficiency advanced diesel engine concepts. The surrogate compositions for the fuels are arrived at by simulating their distillation profiles to within a maximum absolute error of 4% using a discrete multi-component (DMC) fuel model that has been incorporated in the multi-dimensional computational fluid dynamics (CFD) code, KIVA-ERC-CHEMKIN. The simulated surrogate compositions cover the range and measured concentrations of the various hydrocarbon classes present in the fuels. The fidelity of the surrogate fuel models is judged on the basis of matching their specific gravity, lower heating value, hydrogen/carbon (H/C) ratio, cetane number, and cetane index with the measured data for all nine FACE fuels.

Anand, Krishnasamy [University of Wisconsin, Madison; Ra, youngchul [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin; Bunting, Bruce G [ORNL

2011-01-01T23:59:59.000Z

104

Advanced controls and modeling of a hybrid vehicle.  

E-Print Network (OSTI)

??The Texas Tech University Advanced Vehicle Engineering Team has been working in vehicle competitions for 20 years. From that experience the team designed a hybrid… (more)

Harrison, Matthew

2008-01-01T23:59:59.000Z

105

MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. An additional task was included in this project to evaluate mercury oxidation upstream of a dry scrubber by using mercury oxidants. This project demonstrated at the pilot-scale level a technology that provides a cost-effective technique to control mercury and, at the same time, greatly enhances fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution for improved fine particulate control combined with effective mercury control for a large segment of the U.S. utility industry as well as other industries.

Ye Zhuang; Stanley J. Miller

2005-05-01T23:59:59.000Z

106

Comparison of engine simulation software for development of control system  

Science Conference Proceedings (OSTI)

Most commonly used commercial engine simulation packages generate detailed estimation of the combustion and gas flow parameters. These parameters are required for advanced research on fluid flow and heat transfer and development of geometries of engine ...

KinYip Chan, Andrzej Ordys, Konstantin Volkov, Olga Duran

2013-01-01T23:59:59.000Z

107

Process Systems Engineering R&D for Advanced Fossil Energy Systems  

SciTech Connect

This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulation for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.

Zitney, S.E.

2007-09-11T23:59:59.000Z

108

REVISED NOTICE OF PROPOSED AWARDS Advanced Natural Gas Engine Research and Development for Class 3  

E-Print Network (OSTI)

REVISED NOTICE OF PROPOSED AWARDS Advanced Natural Gas Engine Research and Development for Class 3 Notice (PON-12-504) entitled "Advanced Natural Gas Engine research and Development for Class 3 through of natural gas engine concepts for application in light heavy-duty vehicles (LHDV) and medium heavy duty

109

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES  

Science Conference Proceedings (OSTI)

This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% ARES engine efficiency. The design strategies developed in this study have promising potential for application in all modern reciprocating engines as they represent simple, low-cost methods to extract significant fuel savings. The current program has possible spinoffs and applications in other industries as well, including transportation, CHP, and diesel power generation. The progress made in this program has wide engine efficiency implications, and potential deployment of low-friction engine components or lubricants in the near term is possible as current investigations continue.

Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

2006-03-31T23:59:59.000Z

110

A Virtual Engineering Framework for Simulating Advanced Power System  

SciTech Connect

In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering. Furthermore, with little effort the modeling capabilities described in this report can be extended to support other DOE programs, such as ultra super critical boiler development, oxy-combustion boiler development or modifications to existing plants to include CO2 capture and sequestration.

Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

2008-06-18T23:59:59.000Z

111

Method and system for controlled combustion engines  

DOE Patents (OSTI)

A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

Oppenheim, A. K. (Berkeley, CA)

1990-01-01T23:59:59.000Z

112

Advanced Sensor Approaches for Monitoring and Control of Gas...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contract Value (327,501 DOE) Advanced Sensor Approaches For Monitoring and Control Of Gas Turbine Combustors Georgia Institute of Technology JSTL 101905 Advanced Sensors 10...

113

Catalysts for Lean Engine Emission Control - Emissions & Emission...  

NLE Websites -- All DOE Office Websites (Extended Search)

controlling NOx emissions from lean engines is challenging. Traditionally, for the stoichiometric gasoline engine vehicles that dominate the U.S. passenger car market, a three-way...

114

NETL: Control Technology: Advanced Hybrid Particulate Collector  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Hybrid Particulate Collector Advanced Hybrid Particulate Collector Under DOE-NETL sponsorship, the University of North Dakota, Energy and Environmental Research Center (UND-EERC) has developed a new concept in particulate control, called an advanced hybrid particulate collector (AHPC). In addition to DOE and the EERC, the project team includes W.L. Gore & Associates, Inc., Allied Environmental Technologies, Inc., and the Otter Tail Power Company. The AHPC utilizes both electrostatic collection and filtration in a unique geometric configuration that achieves ultrahigh particle collection with much less collection area than conventional particulate control devices. The primary technologies for state-of-the-art particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). A major limitation of ESPs is that the fractional penetration of 0.1- to 1.0-µm particles is typically at least an order of magnitude greater than for 10-µm particles, so a situation exists where the particles that are of greatest health concern are collected with the lowest efficiency. Fabric filters are currently considered to be the best available control technology for fine particles, but emissions are dependent on ash properties and typically increase if the air-to-cloth (A/C) ratio is increased. In addition, many fabrics cannot withstand the rigors of high-SO2 flue gases, which are typical for bituminous fuels. Fabric filters may also have problems with bag cleanability and high pressure drop, which has resulted in conservatively designed, large, costly baghouses.

115

Advanced Engine/Aftertreatment System R&D  

DOE Green Energy (OSTI)

Navistar and ORNL established this CRADA to develop diesel engine aftertreatment configurations and control strategies that could meet emissions regulations while maintaining or improving vehicle efficiency. The early years of the project focused on reducing the fuel penalty associated with lean NOx trap (LNT, also known as NOx adsorber catalyst) regeneration and desulfation. While Navistar pursued engine-based (in-cylinder) approaches to LNT regeneration, complementary experiments at ORNL focused on in-exhaust fuel injection. ORNL developed a PC-based controller for transient electronic control of EGR valve position, intake throttle position, and actuation of fuel injectors in the exhaust system of a Navistar engine installed at Oak Ridge. Aftertreatment systems consisting of different diesel oxidation catalysts (DOCs) in conjunction with a diesel particle filter and LNT were evaluated under quasi-steady-state conditions. Hydrocarbon (HC) species were measured at multiple locations in the exhaust system with Gas chromatograph mass spectrometry (GC-MS) and Fourier transform infrared (FTIR) spectroscopy.

Pihl, J.; West, B.; Toops, T.; Adelman, B. (Navistar, Inc.); Derybowski, E. (Navistar, Inc.)

2011-09-30T23:59:59.000Z

116

Catalysts for Lean Engine Emission Control - Emissions & Emission Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysts for Lean Engine Emission Control Catalysts for Lean Engine Emission Control Catalysts for controlling NOx from lean engines are studied in great detail at FEERC. Lean NOx Traps (LNTs) and Selective Catalytic Reduction (SCR) are two catalyst technologies of interest. Catalysts are studied from the nanoscale to full scale. On the nanoscale, catalyst powders are analyzed with chemisorptions techniques to determine the active metal surface area where catalysis occurs. Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy is used to observe the chemical reactions occurring on the catalyst surface during catalyst operation. Both powder and coated catalyst samples are analyzed on bench flow reactors in controlled simulated exhaust environments to better characterize the chemical

117

Double acting stirling engine phase control  

DOE Patents (OSTI)

A mechanical device for effecting a phase change between the expansion and compression volumes of a double-acting Stirling engine uses helical elements which produce opposite rotation of a pair of crankpins when a control rod is moved, so the phase between two pairs of pistons is changed by +.psi. and the phase between the other two pairs of pistons is changed by -.psi.. The phase can change beyond .psi.=90.degree. at which regenerative braking and then reversal of engine rotation occurs.

Berchowitz, David M. (Scotia, NY)

1983-01-01T23:59:59.000Z

118

Advanced CIDI Emission Control System Development  

DOE Green Energy (OSTI)

Ford Motor Company, with ExxonMobil and FEV, participated in the Department of Energy's (DOE) Ultra-Clean Transportation Fuels Program with the goal to develop an innovative emission control system for light-duty diesel vehicles. The focus on diesel engine emissions was a direct result of the improved volumetric fuel economy (up to 50%) and lower CO2 emissions (up to 25%) over comparable gasoline engines shown in Europe. Selective Catalytic Reduction (SCR) with aqueous urea as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) were chosen as the primary emission control system components. The program expected to demonstrate more than 90% durable reduction in particulate matter (PM) and NOx emissions on a light-duty truck application, based on the FTP-75 drive cycle. Very low sulfur diesel fuel (<15 ppm-wt) enabled lower PM emissions, reduced fuel economy penalty due to the emission control system and improved long-term system durability. Significant progress was made toward a durable system to meet Tier 2 Bin 5 emission standards on a 6000 lbs light-duty truck. A 40% reduction in engine-out NOx emissions was achieved with a mid-size prototype diesel engine through engine recalibration and increased exhaust gas recirculation. Use of a rapid warm-up strategy and urea SCR provided over 90% further NOx reduction while the CDPF reduced tailpipe PM to gasoline vehicle levels. Development work was conducted to separately improve urea SCR and CDPF system durability, as well as improved oxidation catalyst function. Exhaust gas NOx and ammonia sensors were also developed further. While the final emission control system did not meet Tier 2 Bin 5 NOx after 120k mi of aging on the dynamometer, it did meet the standards for HC, NMOG, and PM, and an improved SCR catalyst was shown to have potential to meet the NOx standard, assuming the DOC durability could be improved further. Models of DOC and SCR function were developed to guide the study of several key design factors for SCR systems and aid in the development of urea control strategy for maximum NOx reduction with minimum NH3 slip. A durable co-fueling system was successfully built and tested, with the help of service station nozzle and dispenser manufacturers, for simultaneous delivery of diesel fuel and aqueous urea to the vehicle. The business case for an aqueous urea infrastructure in the US for light-duty vehicles was explored.

Lambert, Christine

2006-05-31T23:59:59.000Z

119

Advanced Dehumidification and Humidity Control Solutions  

Science Conference Proceedings (OSTI)

This technical brief explains the foundation of conventional, advanced, and emerging technologies for humidity control in air-conditioned buildings in easy-to-understand language for utility executives as well as end-users. It also describes new packaged solutions that integrate vapor compression cooling and desiccant dehumidification technologies in creative ways to offer more energy efficient solutions for applications in existing or new construction, especially in humid climates.

2008-12-23T23:59:59.000Z

120

Advanced Combustion Engine R&D 2003 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1000 Independence Avenue, S.W. 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2003 Progress Report for Advanced Combustion Engine Research & Development Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Approved by Gurpreet Singh December 2003 Advanced Combustion Engine R&D FY 2003 Progress Report ii Advanced Combustion Engine R&D FY 2003 Progress Report iii CONTENTS CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii INDEX OF PRIMARY AUTHORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

FY2002 Progress Report for Fuels for Advanced Compression Ignition Direct Injection (CIDI) Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels for Advanced Compression Fuels for Advanced Compression Ignition Direct Injection (CIDI) Engines Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Approved by Stephen Goguen November 2002 Fuels for Advanced CIDI Engines FY 2002 Progress Report iii CONTENTS CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii INDEX OF PRIMARY CONTACTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. FUEL/LUBRICANT EFFECTS TESTING ON ENGINE PERFORMANCE . . . . . . . . . 13 A. Oil Consumption Contribution to CIDI PM Emissions during Transient Operation . . . . . . . . . . . . . . . . . . . .13

122

Nuclear engine flow reactivity shim control  

DOE Patents (OSTI)

A nuclear engine control system is provided which automatically compensates for reactor reactivity uncertainties at the start of life and reactivity losses due to core corrosion during the reactor life in gas-cooled reactors. The coolant gas flow is varied automatically by means of specially provided control apparatus so that the reactor control drums maintain a predetermined steady state position throughout the reactor life. This permits the reactor to be designed for a constant drum position and results in a desirable, relatively flat temperature profile across the core. (Official Gazette)

Walsh, J.M.

1973-12-11T23:59:59.000Z

123

Engine combustion control via fuel reactivity stratification  

Science Conference Proceedings (OSTI)

A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

2013-12-31T23:59:59.000Z

124

Advanced (AI-Based) Nonlinear Controllers for Industrial Processes -  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced (AI-Based) Nonlinear Controllers for Industrial Processes Advanced (AI-Based) Nonlinear Controllers for Industrial Processes Capabilities Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis Decontamination and Decommissioning Systems/Process Monitoring, Diagnostics and Control Overview Process Monitoring & Signal Validation Diagnostic & Advisory Systems Advanced (AI-based) Nonlinear Controllers for Industrial Processes Artificial intelligence Other Capabilities Work with Argonne Contact us For Employees Site Map Help Systems/Process Monitoring, Diagnostics and Control Advanced (AI-Based) Nonlinear Controllers for Industrial Processes Bookmark and Share Advanced (AI-Based) Nonlinear Controllers for Industrial Processes The overall objective of this research is to explore and demonstrate the

125

Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines  

SciTech Connect

This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% ARES engine efficiency. The design strategies developed in this study have promising potential for application in all modern reciprocating engines as they represent simple, low-cost methods to extract significant fuel savings. The current program has possible spinoffs and applications in other industries as well, including transportation, CHP, and diesel power generation. The progress made in this program has wide engine efficiency implications, and potential deployment of low-friction engine components or lubricants in the near term is quite possible.

Victor Wong; Tian Tian; G. Smedley; L. Moughon; Rosalind Takata; J. Jocsak

2006-11-30T23:59:59.000Z

126

54.5 MPG and Beyond: Speeding Up Development of Advanced Combustion Engines  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Speeding Up Development of Advanced Combustion Speeding Up Development of Advanced Combustion Engines 54.5 MPG and Beyond: Speeding Up Development of Advanced Combustion Engines December 10, 2012 - 1:00pm Addthis Argonne engineer Steve Ciatti works on an engine in Argonne's Engine Research Facility -- a facility where researchers can study in-cylinder combustion and emissions under realistic operating conditions. | Photo courtesy of Argonne National Laboratory. Argonne engineer Steve Ciatti works on an engine in Argonne's Engine Research Facility -- a facility where researchers can study in-cylinder combustion and emissions under realistic operating conditions. | Photo courtesy of Argonne National Laboratory. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs

127

Advanced nuclear plant control room complex  

DOE Patents (OSTI)

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

128

Advanced concepts for controlling energy surety microgrids.  

Science Conference Proceedings (OSTI)

Today, researchers, engineers, and policy makers are seeking ways to meet the world's growing demand for energy while addressing critical issues such as energy security, reliability, and sustainability. Many believe that distributed generators operating within a microgrid have the potential to address most of these issues. Sandia National Laboratories has developed a concept called energy surety in which five of these 'surety elements' are simultaneously considered: energy security, reliability, sustainability, safety, and cost-effectiveness. The surety methodology leads to a new microgrid design that we call an energy surety microgrid (ESM). This paper discusses the unique control requirement needed to produce a microgrid system that has high levels of surety, describes the control system from the most fundamental level through a real-world example, and discusses our ideas and concepts for a complete system.

Menicucci, David F.; Ortiz-Moyet, Juan

2011-05-01T23:59:59.000Z

129

Combustion diagnostic for active engine feedback control  

DOE Patents (OSTI)

This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

Green, Jr., Johney Boyd (Knoxville, TN); Daw, Charles Stuart (Knoxville, TN); Wagner, Robert Milton (Knoxville, TN)

2007-10-02T23:59:59.000Z

130

IEP - Advanced NOx Emissions Control: Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

IEP - Advanced NOx Emissions Control Regulatory Drivers Regulatory Drivers for Existing Coal-Fired Power Plants Regulatory and legislative requirements have predominantly driven the need to develop NOx control technologies for existing coal-fired power plants. The first driver was the Title IV acid rain program, established through the 1990 Clean Air Act Amendments (CAAA). This program included a two-phase strategy to reduce NOx emissions from coal-fired power plants – Phase I started January 1, 1996 and Phase II started January 1, 2000. The Title IV NOx program was implemented through unit-specific NOx emission rate limits ranging from 0.40 to 0.86 lb/MMBtu depending on the type of boiler/burner configuration and based on application of LNB technology.

131

High temperature solid lubricant materials for heavy duty and advanced heat engines  

DOE Green Energy (OSTI)

Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

DellaCorte, C.; Wood, J.C.

1994-10-01T23:59:59.000Z

132

Linearizing and Distributing Engine Models for Control Design.  

E-Print Network (OSTI)

??Turbine engine control is used widely today and is about to undergo a revolution in its control architecture. Currently, all calculations are done on a… (more)

Seitz, Timothy M

2013-01-01T23:59:59.000Z

133

Flow control optimization in a jet engine serpentine inlet duct  

E-Print Network (OSTI)

Computational investigations were carried out on an advanced serpentine jet engine inlet duct to understand the development and propagation of secondary flow structures. Computational analysis which went in tandem with experimental investigation was required to aid secondary flow control required for enhanced pressure recovery and decreased distortion at the engine face. In the wake of earlier attempts with modular fluidic actuators used for this study, efforts were directed towards optimizing the actuator configurations. Backed by both computational and experimental resources, many variations in the interaction of fluidic actuators with the mainstream flow were attempted in the hope of best controlling secondary flow formation. Over the length of the studies, better understanding of the flow physics governing flow control for 3D curved ducts was developed. Blowing tangentially, to the wall at the bends of the S-duct, proved extremely effective in enforcing active flow control. At practical jet momentum coefficients, significant improvements characterized by an improved pressure recove ry of 37% and a decrease in distortion close to 90% were seen.

Kumar, Abhinav

2007-08-01T23:59:59.000Z

134

Advances in process intensification through multifunctional reactor engineering.  

SciTech Connect

A multifunctional reactor is a chemical engineering device that exploits enhanced heat and mass transfer to promote production of a desired chemical, combining more than one unit operation in a single system. The main component of the reactor system under study here is a vertical column containing packing material through which liquid(s) and gas flow cocurrently downward. Under certain conditions, a range of hydrodynamic regimes can be achieved within the column that can either enhance or inhibit a desired chemical reaction. To study such reactors in a controlled laboratory environment, two experimental facilities were constructed at Sandia National Laboratories. One experiment, referred to as the Two-Phase Experiment, operates with two phases (air and water). The second experiment, referred to as the Three-Phase Experiment, operates with three phases (immiscible organic liquid and aqueous liquid, and nitrogen). This report describes the motivation, design, construction, operational hazards, and operation of the both of these experiments. Data and conclusions are included.

Cooper, Marcia A.; Miller, James Edward; O'Hern, Timothy John; Gill, Walter; Evans, Lindsey R.

2011-02-01T23:59:59.000Z

135

Reducing Safety Flaring through Advanced Control  

E-Print Network (OSTI)

An advanced process control application, using DMCplus® (Aspen Technology, Inc.), was developed to substantially reduce fuel gas losses to the flare at a large integrated refining / petrochemical complex. Fluctuations in internal fuel gas system pressure required changes in C3/C4 make-up gas usage. These changes led, in turn, to some instability in the fuel gas system that sometimes required purge to the safety flare system to stabilize. As the composition of the fuel gas supply changed, so did its heating value, which caused fluctuations in the control of various fuel gas consumers. The DMCplus application now controls fuel gas pressure tightly and also stabilizes the fuel gas heating value. The understanding of each fuel gas provider and user was essential to the success of this application, as was the design of the DMCplus application. SmartStepTM (Aspen Technology, Inc.) - automated testing software - was used to efficiently develop the DMCplus models; however, a number of models were developed prior to the plant test period using long-term plant history data.

Hokanson, D.; Lehman, K.; Matsumoto, S.; Takai, N.; Takase, F.

2010-01-01T23:59:59.000Z

136

Advanced NOx Emissions Control: Control Technology - Second Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Second Generation Advanced Reburning Second Generation Advanced Reburning General Electric - Energy and Environmental Research Corporation (GE-EER) is carrying out a two Phase research program to develop novel Advanced Reburning (AR) concepts for high efficiency and low cost NOx control from coal-fired utility boilers. AR technologies are based on combination of basic reburning and N-agent/promoter injections. Phase I of the project was successfully completed and EER was selected to continue to develop AR technology during Phase II. Phase I demonstrated that AR technologies are able to provide effective NOx control for coal-fired combustors. Three technologies were originally envisioned for development: AR-Lean, AR-Rich, and Multiple Injection AR (MIAR). Along with these, three additional technologies were identified during the project: reburning plus promoted SNCR; AR-Lean plus promoted SNCR; and AR-Rich plus promoted SNCR. The promoters are sodium salts, in particular sodium carbonate. These AR technologies have different optimum reburn heat input levels and furnace temperature requirements. For full scale application, an optimum technology can be selected on a boiler-specific basis depending on furnace temperature profile and regions of injector access.

137

Advanced Vehicle Testing Activity - Diesel Engine Idling Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Engine Idling Test In support of the Department of Energys FreedomCAR and Vehicle Technologies Program goal to minimize diesel engine idling and reduce the consumption of...

138

Jet engine's speed controller with constant pressure chamber  

Science Conference Proceedings (OSTI)

The paper deals with an automatic system meant to control a jet engine's rotation speed, through the fuel injection's control, based on a constant pressure chamber controller. One has established the non-linear mathematical model (based on the motion ... Keywords: actuator, control, fuel injection, fuel pump, jet-engine, pressure chamber

Alexandru Nicolae Tudosie

2008-06-01T23:59:59.000Z

139

High load limits of the controlled autoignition engine  

E-Print Network (OSTI)

The controlled autoignition (CAI) engine is an engine concept that features very low soot and NOx emissions while achieving diesel-like efficiency. The CAI combustion process is characterized by a fast, volumetric burn of ...

Wildman, Craig B. E. (Craig Bradley Edward), 1987-

2009-01-01T23:59:59.000Z

140

Development of Fuzzy Logic and Neural Network Control and Advanced Emissions Modeling for Parallel Hybrid Vehicles  

DOE Green Energy (OSTI)

This report describes the development of new control strategies and models for Hybrid Electric Vehicles (HEV) by the Ohio State University. The report indicates results from models created in NREL's ADvanced VehIcle SimulatOR (ADVISOR 3.2), and results of a scalable IC Engine model, called in Willan's Line technique, implemented in ADVISOR 3.2.

Rajagopalan, A.; Washington, G.; Rizzoni, G.; Guezennec, Y.

2003-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

New York Institute for Biomimetic Engineering and Advanced ...  

Science Conference Proceedings (OSTI)

... Technology investments (Advanced Materials, Production Technologies Platforms ... to attract and grow renewable energy-related companies in New ...

2012-10-16T23:59:59.000Z

142

Advanced Materials and Reservoir Engineering for Extreme Oil ...  

Science Conference Proceedings (OSTI)

Nanostructured and advanced materials potentially offer new possibilities in drilling, exploration and production. In this symposium both academia and industry ...

143

Stirling engine control mechanism and method  

DOE Patents (OSTI)

A reciprocating-to-rotating motion conversion and power control device for a Stirling engine includes a hub mounted on an offset portion of the output shaft for rotation relative to the shaft and for sliding motion therealong which causes the hub to tilt relative to the axis of rotation of the shaft. This changes the angle of inclination of the hub relative to the shaft axis and changes the axial stroke of a set of arms connected to the hub and nutating therewith. A hydraulic actuating mechanism is connected to the hub for moving its axial position along the shaft. A balancing wheel is linked to the hub and changes its angle of inclination as the angle of inclination of the hub changes to maintain the mechanism in perfect balance throughout its range of motion.

Dineen, John J. (Durham, NH)

1983-01-01T23:59:59.000Z

144

REQUEST BY CUMMINS ENGINE COMPANY, INC. FOR AN ADVANCE WAIVER...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

develop and complete the specifications required to enter production for a new diesel engine for domestic light trucks. The work is sponsored by the Office of...

145

Hydrothermal spallation drilling and advanced energy conversion technologies for Engineered Geothermal Systems  

E-Print Network (OSTI)

The purpose of this research was to study the various factors affecting the economic and technical feasibility of Engineered Geothermal Systems, with a special emphasis on advanced drilling technologies. The first part of ...

Augustine, Chad R

2009-01-01T23:59:59.000Z

146

Synthesis and microfabrication of elastomeric biomaterials for advanced tissue engineering scaffolds  

E-Print Network (OSTI)

The subject of this thesis lies at the interface of microfabrication technology and advanced biomaterials synthesis and processing for use in designing and fabricating novel tissue engineered constructs. The unifying theme ...

Bettinger, Christopher John, 1981-

2008-01-01T23:59:59.000Z

147

16.355J / ESD.355J Advanced Software Engineering, Fall 2002  

E-Print Network (OSTI)

A reading and discussion subject on advanced topics in the engineering of software systems. Focus on software development. Topics differ but are chosen from: software process and lifecycle; requirements development, ...

Leveson, Nancy

148

Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli  

E-Print Network (OSTI)

One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical ...

Bokinsky, Gregory

149

Advanced simulations of building energy and control systems with...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Development Contact Us Department Contacts Media Contacts Advanced simulations of building energy and control systems with an example of chilled water plant modeling Title...

150

Building Technologies Office: Advanced, Integrated Control for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings News Building Technologies Office Announces 3 Million to Advance Building Automation Software Solutions in Small to Medium-Sized Commercial Buildings March 29,...

151

Engineering Fundamentals - Process Control Systems, Version 2.0  

Science Conference Proceedings (OSTI)

The Process Control Systems (PCS) module of Engineering Fundamentals (EF-PCS) Version 2.0 provides a basic overview of this topic, applicable to users in all engineering disciplines who are beginning their career in the nuclear power industry.The Process Control Systems Version 2.0 module covers basic terms and concepts of process control systems and discusses their applications in nuclear power plants. This course will help new engineers understand how their work might impact and/or be ...

2013-02-05T23:59:59.000Z

152

Advances in Surface Engineering: Alloyed and Composite Coatings  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... This symposium aims to capture the advances in the following areas of: ... Sprayed Carbon Nanotube Reinforced Aluminum Composites.

153

Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments  

NLE Websites -- All DOE Office Websites (Extended Search)

Although internal combustion engines have been used Although internal combustion engines have been used for more than a century, significant improvements in energy efficiency and emissions reduction are still possible. In fact, boosting the efficiency of internal combustion engines is one of the most promising and cost-effective approaches to increasing vehicle fuel economy over the next 30 years. The United States can cut its transportation fuel use 20%-40% through commercialization of advanced engines-resulting in greater economic, environmental, and energy security. Using these engines in hybrid and plug-in hybrid electric vehicles will enable even greater fuel savings benefits. The Advanced Combustion Engine R&D subprogram of the U.S. Department of Energy's Vehicle Technologies Program (VTP) is improving the fuel economy of

154

NETL: Advanced NOx Emissions Control: Control Technology - NOx Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions from Multi-Burners Emissions from Multi-Burners The University of Utah working with Reaction Engineering International and Brigham Young University is investigating a project that consists of integrated experimental, theoretical and computational modeling efforts. The primary objective is to evaluate NOx formation/destruction processes as they occur in multi-burner arrays, a geometry almost always utilized in utility practice. Most controlled experimental work examining NOx has been conducted on single burners. The range of potential intra-burner interactions are likely to provide added degrees of freedom for reducing NOx. The resultant findings may allow existing utilities to arrange fuel and air distribution to minimize NOx. In new applications, orientation of individual burners within an array may also be altered to reduce NOx. Comprehensive combustion codes will be modified to incorporate the latest submodels of nitrogen release and heterogeneous chemistry. Comparison of pilot scale experiments and simulations will be utilized to validate/develop theory.

155

NETL: Advanced NOx Emissions Control: Control Technology - NOx Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Options and Integration Control Options and Integration Reaction Engineering International (REI) is optimizing the performance of, and reduce the technical risks associated with the combined application of low-NOx firing systems (LNFS) and post combustion controls through modeling, bench-scale testing, and field verification. Teaming with REI are the University of Utah and Brown University. During this two-year effort, REI will assess real-time monitoring equipment to evaluate waterwall wastage, soot formation, and burner stoichiometry, demonstrate analysis techniques to improve LNFS in combination with reburning/SNCR, assess selective catalytic reduction catalyst life, and develop UBC/fly ash separation processes. The REI program will be applicable to coal-fired boilers currently in use in the United States, including corner-, wall-, turbo-, and cyclone-fired units. However, the primary target of the research will be cyclone boilers, which are high NOx producing units and represent about 20% of the U.S. generating capacity. The results will also be applicable to all U.S. coals. The research will be divided into four key components:

156

Advanced, Integrated Control for Building Operations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced, Integrated Control for Building Advanced, Integrated Control for Building Operations Advanced, Integrated Control for Building Operations The U.S. Department of Energy (DOE) is currently conducting research into advanced integrated controls for building operations and seeking to validate energy savings strategies by simulations. Project Description This project will develop an advanced, integrated control for the following building systems: Cooling and heating Lighting Ventilation Window and blind operation. A variety of operation and energy saving control strategies will be evaluated on a building equipped with alternative cooling and heating methods, including fan coil units, radiant mullions, and motorized window and blinds. Project Partners Research is being undertaken by DOE, Siemens Corporate Research, Siemens

157

Engineering design and analysis of advanced physical fine coal cleaning technologies  

SciTech Connect

This project is sponsored by the United States Department of Energy (DOE) for the Engineering Design and Analysis of Advanced Physical Fine Coal Cleaning Technologies. The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This DOE project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cylconing, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level.

1992-01-20T23:59:59.000Z

158

Advanced Control Demonstration on a Combined Cycle Plant  

Science Conference Proceedings (OSTI)

Southern Company, Electricit de France (EDF), and EPRI have undertaken a project to demonstrate the applicability of advanced control techniques on a combined-cycle heat recovery steam generator (HRSG). This report describes progress on the project during 2005 including model identification, the advanced controller design, controller program development, and controller testing in a simulation environment. A combined-cycle plant was selected as the host plant because many combined-cycle plants have chang...

2006-03-31T23:59:59.000Z

159

Compatibility of alternative fuels with advanced automotive gas-turbine and Stirling engines. A literature survey  

DOE Green Energy (OSTI)

The application of alternative fuels in advanced automotive gas turbine and Stirling engines is discussed on the basis of a literature survey. These alternative engines are briefly described, and the aspects that will influence fuel selection are identified. Fuel properties and combustion properties are discussed, with consideration given to advanced materials and components. Alternative fuels from petroleum, coal, oil shale, alcohol, and hydrogen are discussed, and some background is given about the origin and production of these fuels. Fuel requirements for automotive gas turbine and Stirling engines are developed, and the need for certain research efforts is discussed. Future research efforts planned at Lewis are described. 52 references.

Cairelli, J.; Horvath, D.

1981-05-01T23:59:59.000Z

160

NETL: Mercury Emissions Control Technologies - Advanced Utility  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Utility Mercury-Sorbent Field Testing Program Advanced Utility Mercury-Sorbent Field Testing Program Sorbent Technologies Corporation, will test an advanced halgenated activated carbon to determine the mercury removal performance and relative costs of sorbent injection for advanced sorbent materials in large-scale field trials of a variety of combinations of coal-type and utility plant-configuration. These include one site (Detroit Edison's St. Clair Station) with a cold-side ESP using subbituminous coal, or blend of subbituminous and bituminous coal, and one site (Duke Energy's Buck Plant) with a hot-side ESP which burns a bituminous coal. Related Papers and Publications: Semi-Annual Technical Progress Report for the period April 1 - October 31, 2004 [PDF-2275KB] Semi-Annual Technical Progress Report for the period of October 2003 - March 2004 [PDF-1108KB]

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Advanced Diesel Engine Component Development Program, final report - tasks 4-14  

DOE Green Energy (OSTI)

The Advanced Diesel Engine Component Development (ADECD) Program is a multi-year, multi-phase effort to develop and demonstrate the critical technology needed to advance the heavy-duty low heat rejection (LHR) engine concept for the long-haul, heavy-duty truck market. The ADECD Program has been partitioned into two phases. The first phase, Phase 1, was completed in 1986, resulting in definition of the Advanced Diesel Reference Engine (ADRE)III. The second phase, Phase 11/111, examines the feasibility of the ADRE concepts for application to the on-highway diesel engine. Phase 11/111 is currently underway. This project is sponsored by the U.S. Department of Energy, Office of Transportation Technologies. The work has been performed by the Detroit Diesel Corporation (DDC) under Contract DEN3-329 with the NASA Lewis Research Center, who provide project management and technical direction.

Kaushal, T.S.; Weber, K.E.

1994-11-01T23:59:59.000Z

162

Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FUELS FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS 2000 ANNUAL PROGRESS REPORT FUELS F O R ADVANCED CIDI ENGINES A N D FUEL CELLS A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory, Computer Systems Management, Inc., National Renewable Energy Laboratory, and QSS Group, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2000 Progress Report for Fuels for Advanced CIDI

163

Systems and Controls Analysis and Testing; Harvesting More Wind Energy with Advanced Controls Technology (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet outlines the systems and controls analysis and testing that takes place at the NWTC on the Controls Advanced Research Turbines.

Not Available

2010-01-01T23:59:59.000Z

164

The California Advanced Lighting Controls Training Program (CALCTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

The California Advanced Lighting Controls Training Program (CALCTP) The California Advanced Lighting Controls Training Program (CALCTP) Speaker(s): Bernie Kotlier Date: March 2, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Sila Kiliccote CALCTP is a broad based partnership that is dedicated to advancing the California State policy of energy conservation as the first priority for serving the state's future energy needs. CALCTP is supported, operated and directed by representatives of the California Lighting Technology Center, the California Energy Commission, the California Community College system, investor owned utilities, municipal utilities, electrical contractors, electrical workers, and manufacturers of advanced, high efficiency lighting and lighting control systems. The mission of the California Advanced Lighting Controls Training Program (CALCTP) is to make

165

Advanced Petroleum-Based Fuels--Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 1 Summary, July 2004  

DOE Green Energy (OSTI)

The Advanced Petroleum Based Fuels-Diesel Emission Control project is a government/industry collaborative project to identify the optimal combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emission standards for the 2004-2010 time period. This summary describes the results of the first phase of the lubricants study investigating the impact on lubricant formulation on engine-out emissions.

Not Available

2004-07-01T23:59:59.000Z

166

Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines  

DOE Green Energy (OSTI)

This final report describes a project intended to identify, develop, test, and commercialize emissions control and monitoring technologies that can be implemented by E&P operators to significantly lower their cost of environmental compliance and expedite project permitting. Technologies were installed and tested in controlled laboratory situations and then installed and tested on field engines based on the recommendations of an industry-based steering committee, analysis of installed horsepower, analysis of available emissions control and monitoring technologies, and review of technology and market gaps. The industry-recognized solution for lean-burn engines, a low-emissions-retrofit including increased airflow and pre-combustion chambers, was found to successfully control engine emissions of oxides of nitrogen (NO{sub X}) and carbon monoxide (CO). However, the standard non-selective catalytic reduction (NSCR) system recognized by the industry was found to be unable to consistently control both NO{sub X} and CO emissions. The standard NSCR system was observed to produce emissions levels that changed dramatically on a day-to-day or even hour-to-hour basis. Because difficulties with this system seemed to be the result of exhaust gas oxygen (EGO) sensors that produced identical output for very different exhaust gas conditions, models were developed to describe the behavior of the EGO sensor and an alternative, the universal exhaust gas oxygen (UEGO) sensor. Meanwhile, an integrated NSCR system using an advanced, signal-conditioned UEGO sensor was tested and found to control both NO{sub X} and CO emissions. In conjunction with this project, advanced monitoring technologies, such as Ion Sense, and improved sensors for emissions control, such as the AFM1000+ have been developed and commercialized.

Keith Hohn; Sarah R. Nuss-Warren

2011-08-31T23:59:59.000Z

167

Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving  

SciTech Connect

we developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource Uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplaceâ??s northern section (IWn). The advanced control program was then installed in the IWn control system; the performance were measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building occupants and the building operator. Lifecycle cost analyses of the advanced building control were performed, and a Building Control System Guide was prepared and published to inform owners, architects, and engineers dealing with new construction or renovation of buildings.

Dr. Zhen Song, Prof. Vivian Loftness, Dr. Kun Ji, Dr. Sam Zheng, Mr. Bertrand Lasternas, Ms. Flore Marion, Mr. Yuebin Yu

2012-10-15T23:59:59.000Z

168

RD&D Study Plan for Advancement of Science and Engineering Supporting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RD&D Study Plan for Advancement of Science and Engineering RD&D Study Plan for Advancement of Science and Engineering Supporting Geologic Disposal in Bedded Salt- March 2013 Workshop Outcomes RD&D Study Plan for Advancement of Science and Engineering Supporting Geologic Disposal in Bedded Salt- March 2013 Workshop Outcomes This report defines a key set of RD&D activities to support a safety case for disposal of heat generating radioactive waste, such as used nuclear fuel (UNF) or high-level nuclear waste (HLW), in a generic bedded salt repository, given the current state of knowledge. The recommended RD&D activities are based on the outcomes of a DOE workshop held March 6-7, 2013. The workshop goal was to formulate an expert consensus on the relative importance of various technical issues and recommending RD&D

169

STATEMENT OF CONSIDERATIONS REQUEST BY CUMMINS ENGINE COMPANY, INC. FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CUMMINS ENGINE COMPANY, INC. FOR AN ADVANCE WAIVER CUMMINS ENGINE COMPANY, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-07NT43279; W(A)-08-032, CH-1423 The Petitioner, Cummins Engine Company, Inc, (Cummins) was awarded this cooperative agreement for the performance of work entitled, "Light Duty Efficient Clean Combustion", The goal of this program is to develop advanced combustion technologies demonstrating a 10% reduction in fuel consumption while meeting 2010 emission levels. Cummins will be evaluating a range of combustion technologies including pre-mix charged. compression ignition (PCCI) in-cylinder combustion and will be developing fuel sensing technology. The anticipated subsystems requiring performance enhancements to achieve the goals of this program include: fuel delivery; power

170

Demonstration of a NOx Control System for Stationary Diesel Engines  

Science Conference Proceedings (OSTI)

California has over 26,000 stationary diesel engines, mostly in emergency power and direct drive applications. In the past few years, various incentive programs in the state have resulted in the change-out of older, dirtier engines for newer, cleaner models or replacement with electric motors. Emissions reductions can be accomplished by equipping existing engines with controls for nitrogen oxides (NOx) and particulate matter (PM). The retrofit systems currently available, however, either are not cost com...

2005-06-30T23:59:59.000Z

171

Low Wind Speed Technology Phase I: Advanced Independent Pitch Control; Advanced Energy System, Inc.  

SciTech Connect

This fact sheet describes a subcontract with Advanced Energy Systems, Inc. to conduct a conceptual study of independent blade pitch control and possible impact on loads and cost of energy (COE).

2006-03-01T23:59:59.000Z

172

Advanced Lighting Controls - My Venture from the Ivory Tower  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Lighting Controls - My Venture from the Ivory Tower Speaker(s): Charlie Huizenga Date: June 15, 2012 - 12:00pm Location: 90-3122 Seminar HostPoint of Contact: Dragan...

173

NETL: IEP - Post-Combustion CO2 Emissions Control - Advanced...  

NLE Websites -- All DOE Office Websites (Extended Search)

IEP Post-Combustion CO2 Emissions Control Advanced Low Energy Enzyme Catalyzed Solvent for CO2 Capture Project No.: DE-FE0004228 Akermin, Inc. is to conduct bench-scale testing...

174

Status report on the Advanced Light Source control system  

SciTech Connect

This paper is a status report on the ADVANCED LIGHT SOURCE (ALS) control system. The current status, performance data, and future plans will be discussed. Manpower, scheduling, and costs issues are addressed.

Magyary, S.; Chin, M.; Fahmie, M.; Lancaster, H.; Molinari, P.; Robb, A.; Timossi, C.; Young, J.

1991-11-11T23:59:59.000Z

175

Advanced Islanded-Mode Control of Microgrids.  

E-Print Network (OSTI)

??This thesis is focused on modeling, control, stability, and power management of electronically-interfaced distributed energy resource (DER) units for microgrids. Voltage amplitude and frequency regulation… (more)

Delghavi, Mohammad Bagher

2011-01-01T23:59:59.000Z

176

Guidelines for the Beneficial Use of Advanced SO2 Control By-Products  

Science Conference Proceedings (OSTI)

This design guide describes the use of the by-products produced from advanced SO2 control processes as construction materials in high-volume applications such as road base stabilization, structural fills, manufactured aggregates, soil amendments, and concrete applications. The engineering data, major design parameters, standard specifications, and construction procedures in the report should help utility by-product managers and power plant managers incorporate these applications in their by-product manag...

1997-08-19T23:59:59.000Z

177

ECUT energy data reference series: high-temperature materials for advanced heat engines  

DOE Green Energy (OSTI)

Information that describes the use of high-temperature materials in advanced heat engines for ground transportation applications is summarized. Applications discussed are: automobiles, light trucks, and medium and heavy trucks. The information provided on each of these modes includes descriptions of the average conversion efficiency of the engine, the capital stock, the amount of energy used, and the activity level as measured in ton-miles.

Abarcar, R.B.; Hane, G.J.; Johnson, D.R.

1984-07-01T23:59:59.000Z

178

Orbit Control at the Advanced Photon Source  

E-Print Network (OSTI)

The Advanced Photon Source (APS) began operation in 1995 with the objective of providing ultra-stable high-brightness hard x-rays to its user community. This paper will be a review of the instrumentation and software presently in use for orbit stabilization. Broad-band and narrow-band rf beam position monitors as well as x-ray beam position monitors supporting bending magnet and insertion device source points are used in an integrated system. Status and upgrade plans for the system will be discussed.

Decker, G

2001-01-01T23:59:59.000Z

179

Method for starting and operating an advanced regenerative parallel compound dual fluid heat engine-advanced Cheng cycle(ACC)  

SciTech Connect

In a Cheng cycle, dual fluid heat engine of the type is described having: (i) a gas turbine engine including a compressor for compressing a first working fluid, having a compressor outlet, a combustion chamber in fluid communication with the compressor outlet, a turbine unit having an inlet in fluid communication with the combustion chamber for performing work by expansion of working fluid, and a turbine exhaust; (ii) a heat recovery steam generator coupled to the turbine exhaust for heating a second working fluid having a superheater with an outlet and an inlet, an evaporator having an outlet coupled to the superheater inlet and an evaporator inlet, a heat recovery boiler between the evaporator inlet and outlet having a drum; (iii) an injector for introducing heated second working fluid from the heat recovery steam generator into the gas turbine; (iv) a coolant inlet port for introducing coolant to at least one of turbine nozzles and blades in the gas turbine; and (v) control valve means for selectively throttling flow rate of second working fluid into the gas turbine connected upstream of the injector; (vi) a compressed gas source and pressure regulator selectively in communication with the drum; (vii) a sensor system coupled to gas turbine engine and the heat recovery steam generator for temperature and pressure detection; and (viii) a control system for operating fuel flow to the gas turbine; a method of operation of the heat engine comprising: (a) initializing start conditions in the gas turbine engine and the heat recovery steam generator with the control system; (b) setting the control valve means for idle flow condition of the heat engine; (c) pressurizing the drum with the compressed gas source, (d) starting the gas turbine engine from idle to full load; (e) throttling second working fluid flow rate with the control valve means and shutting off the compressed gas source.

Cheng, D.Y.

1993-08-10T23:59:59.000Z

180

Studies of dynamic contact of ceramics and alloys for advanced heat engines. Final report  

DOE Green Energy (OSTI)

Advanced materials and coatings for low heat rejection engines have been investigated for almost a decade. Much of the work has concentrated on the critical wear interface between the piston ring and cylinder liner. Simplified bench tests have identified families of coatings with high temperature wear performance that could meet or exceed that of conventional engine materials at today`s operating temperatures. More recently, engine manufacturers have begun to optimize material combinations and manufacturing processes so that the materials not only have promising friction and wear performance but are practical replacements for current materials from a materials and manufacturing cost standpoint. In this study, the advanced materials supplied by major diesel engine manufacturers were evaluated in an experimental apparatus that simulates many of the in-cylinder conditions of a low heat rejection diesel engine. Results include ring wear factors and average dynamic friction coefficients measured at intervals during the test. These results are compared with other advanced materials tested in the past as well as the baseline wear of current engines. Both fabricated specimens and sections of actual ring and cylinder liners were used in the testing. Observations and relative friction and wear performance of the individual materials are provided.

Gaydos, P.A.; Dufrane, K.F. [Battelle, Columbus, OH (United States)

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

CONTROL OF DIESEL ENGINE UREA SELECTIVE CATALYTIC REDUCTION SYSTEMS.  

E-Print Network (OSTI)

??A systematic nonlinear control methodology for urea-SCR systems applicable for light-to-heavy-duty Diesel engine platforms in a variety of on-road, off-road, and marine applications is developed… (more)

Hsieh, Ming-Feng

2010-01-01T23:59:59.000Z

182

New Light on Improving Engine Efficiencies | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

The Crystal Structure of a Meta-stable Intermediate Particle in Virus The Crystal Structure of a Meta-stable Intermediate Particle in Virus Assembly Increasing Magnetic Response of Ferromagnetic Semiconductors under High Pressure Better Switching Through Chemistry in Thin Ferroelectrics First Molecular-Level Enzyme Images Could Improve Breast-Cancer Therapy Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed New Light on Improving Engine Efficiencies MARCH 3, 2009 Bookmark and Share The DOE, as part of its Clean Coal & Natural Gas Power Systems initiative, has a "Turbines of Tomorrow" program with the Program Performance Goal to: "By 2010, develop turbine technology that is capable of efficiently

183

Engineering Thin-Film Oxide Interfaces | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Materials Become Multifunctional at the Ultimate Quantum Limit Novel Materials Become Multifunctional at the Ultimate Quantum Limit Outsmarting Flu Viruses How Lead-Free Solder (Mis)Behaves under Stress Dynamics of Polymer Chains Atop Different Materials Priming the Pump in the Fight against Drug-Resistant Tuberculosis Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Engineering Thin-Film Oxide Interfaces NOVEMBER 12, 2012 Bookmark and Share LAO thin films on STO substrates are depicted in the top schematics (LAO indicated by blue spheres, STO by green spheres). The top left-hand panel demonstrates a chemically broad interface resulting from conventional growth in a low pressure oxygen environment. In contrast, the top

184

Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)  

DOE Green Energy (OSTI)

The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.

Taylor, J.; Li, H.; Neill, S.

2006-08-01T23:59:59.000Z

185

A digital control algorithm for diesel engine governing  

SciTech Connect

The performance of a microprocessor based precision engine speed control system was investigated. A sample rate selection criteria is presented along with a procedure to implement a high performance digital PID control algorithm. The algorithm requires a digital speed sensor of 12 to 14 bits to minimize excessive fuel rack motion at a steady state due to digital quantization effects. Computer simulation and experimental test results of the algorithm are presented for an 1800 RPM, 125 Kilowatt engine generator set.

Garvey, P.C.

1985-01-01T23:59:59.000Z

186

Advances in process intensification through multifunctional reactor engineering  

SciTech Connect

This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes critical to process intensification and implementation in commercial applications. Physics of the heat and mass transfer and chemical kinetics and how these processes are ultimately scaled were investigated. Specifically, we progressed the knowledge and tools required to scale a multifunctional reactor for acid-catalyzed C4 paraffin/olefin alkylation to industrial dimensions. Understanding such process intensification strategies is crucial to improving the energy efficiency and profitability of multifunctional reactors, resulting in a projected energy savings of 100 trillion BTU/yr by 2020 and a substantial reduction in the accompanying emissions.

O'Hern, T. J.

2012-03-01T23:59:59.000Z

187

Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report  

Science Conference Proceedings (OSTI)

Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

Not Available

2007-03-01T23:59:59.000Z

188

Advanced Lighting Controls - My Venture from the Ivory Tower  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Lighting Controls - My Venture from the Ivory Tower Advanced Lighting Controls - My Venture from the Ivory Tower Speaker(s): Charlie Huizenga Date: June 15, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Dragan Charlie Curcija Lighting energy represents 30-40% of commercial building electricity consumption, yet very few buildings have advanced lighting controls. The potential energy savings are tremendous as is the opportunity to reduce demand on the grid during critical peak use periods. Charlie will describe how low-cost wireless radio technology developed at UC Berkeley and commercialized by Adura Technologies is creating a paradigm shift in the way we think about controlling lighting. Beyond deep energy savings and demand response, the technology offers personal control for occupants and

189

Closed-loop, variable-valve-timing control of a controlled-auto-ignition engine  

E-Print Network (OSTI)

The objective of this study was to develop a closed-loop controller for use on a Controlled-Auto- Ignition (CAI) / Spark-Ignition (SI) mixed mode engine equipped with a variable-valve-timing (VVT) mechanism. The controller ...

Matthews, Jeffrey A., 1970-

2004-01-01T23:59:59.000Z

190

Advanced mobile networking, sensing, and controls.  

SciTech Connect

This report describes an integrated approach for designing communication, sensing, and control systems for mobile distributed systems. Graph theoretic methods are used to analyze the input/output reachability and structural controllability and observability of a decentralized system. Embedded in each network node, this analysis will automatically reconfigure an ad hoc communication network for the sensing and control task at hand. The graph analysis can also be used to create the optimal communication flow control based upon the spatial distribution of the network nodes. Edge coloring algorithms tell us that the minimum number of time slots in a planar network is equal to either the maximum number of adjacent nodes (or degree) of the undirected graph plus some small number. Therefore, the more spread out that the nodes are, the fewer number of time slots are needed for communication, and the smaller the latency between nodes. In a coupled system, this results in a more responsive sensor network and control system. Network protocols are developed to propagate this information, and distributed algorithms are developed to automatically adjust the number of time slots available for communication. These protocols and algorithms must be extremely efficient and only updated as network nodes move. In addition, queuing theory is used to analyze the delay characteristics of Carrier Sense Multiple Access (CSMA) networks. This report documents the analysis, simulation, and implementation of these algorithms performed under this Laboratory Directed Research and Development (LDRD) effort.

Feddema, John Todd; Kilman, Dominique Marie; Byrne, Raymond Harry; Young, Joseph G.; Lewis, Christopher L.; Van Leeuwen, Brian P.; Robinett, Rush D. III; Harrington, John J.

2005-03-01T23:59:59.000Z

191

Control Engineering Practice 14 (2006) 757767 Model predictive control for ramp metering of motorway traffic  

E-Print Network (OSTI)

Control Engineering Practice 14 (2006) 757­767 Model predictive control for ramp metering metering implemented. Two types of controllers are compared: a traditional ALINEA based controller and a model predictive control based ramp metering controller. In order to evaluate the controllers

192

Development of an engine fuel and spark controller  

E-Print Network (OSTI)

The objective of this research was to develop an engine control unit (ECU) for a four cylinder engine to be used in a Formula SAE racers. The ECU must provide effective fuel injection and spark ignition control and provide for easy adjustment by the user for engine tuning purposes. The controller was designed to operate using a speed-throttle fuel map, with acceleration enrich, meet and other fuel compensating factors. A paired double-tiring strategy was adapted to avoid the complications associated with sequential fuel injection. The ECU utilized a Motorola 68HC16 development board, as well as special injector and ignition driver circuits. The software was designed to be primarily interrupt driven, with a task manager to arbitrate among other tasks. A user interface program, which runs on a PC, allows the user to instantly alter operating parameters in the ECU during engine tuning and development. The controller was tested on a Yamaha YZF 600 motorcycle engine with a custom intake manifold and fuel injection system. The fuel and spark maps and other parameters were configured for this engine by using the user interface. Dynamometer testing verities that engine performance with this ECU meets design specifications.

Suter, William Gregory

1999-01-01T23:59:59.000Z

193

Center for Advanced Life Cycle Engineering University of Maryland AC Autoclave  

E-Print Network (OSTI)

CALCE® Center for Advanced Life Cycle Engineering CB Citizens Band CBGA Ceramic Ball Grid Array CCA Circuit Card Assembly CCD Charge Coupled Device CCGA Ceramic Column Grid Array CDM Charged Device Model Industry Association ELD Electroluminiscent Displays EMC Electromagnetic Compatibility EMC Encapsulated

Shapiro, Benjamin

194

Designing and Testing Controls to Mitigate Tower Dynamic Loads in the Controls Advanced Research Turbine: Preprint  

DOE Green Energy (OSTI)

This report describes NREL's efforts to design, implement, and test advanced controls for maximizing energy extraction and reducing structural dynamic loads in wind turbines.

Wright, A. D.; Fingersh, L. J.; Stol, K. A.

2007-01-01T23:59:59.000Z

195

EnergyCS Inc Energy Control Systems Engineering Inc | Open Energy...  

Open Energy Info (EERE)

EnergyCS Inc Energy Control Systems Engineering Inc Jump to: navigation, search Name EnergyCS Inc (Energy Control Systems Engineering, Inc) Sector Services Product String...

196

Advanced Power Electronics Controllers for Substations  

Science Conference Proceedings (OSTI)

Substations located at various points in the power delivery system serve several purposes. In a broad sense, power substations are installations capable of interrupting or establishing electric circuits and changing the voltage level, frequency, or other characteristic of the electric energy flow. Solid-state power electronic switching devices are continuing to evolve and multi-megawatt solid-state power control systems are becoming increasingly applied in industrial electrical installations. Both have a...

2008-12-17T23:59:59.000Z

197

STATEMENT OF CONSIDERATIONS REQUEST BY JOHN DEERE PRODUCT ENGINEERING CENTER FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PRODUCT ENGINEERING CENTER FOR AN ADVANCE PRODUCT ENGINEERING CENTER FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-05NT42422; W(A)-05-047, CH-1327 The Petitioner, John Deere Product Engineering Center (Deere) was awarded a cooperative agreement for the performance of work entitled, "Electrically coupled exhaust energy recovery system using a series power turbine approach." The purpose of the cooperative agreement is to design, test, and demonstrate the technical and commercial viability of electric turbo compounding. This waiver is only for inventions of Deere made under this cooperative agreement. The total estimated cost of the contract is $9,538,073 with DOE and Deere each cost sharing 50% or $4,769,037. The period of performance is from June 1, 2005 through May 31,

198

Injection engine as a control object. I. Schematic diagram of the engine and synthesis of a mathematical model  

Science Conference Proceedings (OSTI)

The paper is devoted to the analysis of injection engine as an object of automatic control by a built-in microprocessor system. The schematic diagram of the engine is presented; controlled, measured, and input variables are indicated; a mathematical ...

D. N. Gerasimov; H. Javaherian; D. V. Efimov; V. O. Nikiforov

2010-10-01T23:59:59.000Z

199

FY2001 Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

FUELS FOR ADVANCED CIDI FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory and QSS Group, Inc., for their artistic, editorial and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2001 Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells

200

Advances in Process Intensification through Multifunctional Reactor Engineering  

SciTech Connect

This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in other technologies.

Timothy O’Hern, Lindsey Evans, Jim Miller, Marcia Cooper, John Torczynski, Donovan Pena, and Walt Gill, SNL, Will Groten, Arvids Judzis, Richard Foley, Larry Smith, and Will Cross, CR& L / CDTECH; T. Vogt, Lummus Technology / CDTECH.

2011-06-27T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advances in Process Intensification through Multifunctional Reactor Engineering  

SciTech Connect

This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in other technologies.

Timothy O’Hern, Lindsey Evans, Jim Miller, Marcia Cooper, John Torczynski, Donovan Pena, and Walt Gill, SNL

2011-02-01T23:59:59.000Z

202

Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Engineering Lawrence Livermore National Laboratory Home Technologies Core Competencies Showcase Careers Partnerships About Advanced Manufacturing Developing high-performance materials, devices, components, and assemblies enabled by innovative design tools and novel manufacturing techniques Learn more Applied Electromagnetics Supporting the development of electromagnetic systems that are pervasive and paramount to the greater National Security community. Learn more Data Sciences Enabling better decisions through the development and application of state-of-the-art techniques in machine learning, statistics, and decision sciences Learn more Precision Engineering Embracing determinism to guide rigorous design, construction, and metrology of mechatronic systems, instruments, and manufactured components

203

NETL: Advanced NOx Emissions Control: Control Technology - Optimized Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimized Fuel Injector Design Optimized Fuel Injector Design This project includes fundamental research and engineering development of low NOx burners and reburning fuel injectors. The team of Reaction Engineering International (REI), the University of Utah, Brown University and DB Riley, Inc., will develop fundamental information on low NOx burners. The work has two phases. In the first phase, the University of Utah will examine two-phase mixing and near-field behavior of coal injectors using a 15-million Btu/hr bench-scale furnace, Brown University will examine char deactivation and effectiveness of reburning, and REI will develop a comprehensive burner model using the data produced by the University of Utah and Brown University. In the second phase, an optimized injector design will be tested at the 100-million Btu/hr Riley Coal Burner Test Facility. It is anticipated that this work will provide improved hardware designs and computer simulation models for reduced NOx emissions and minimized carbon loss.

204

Hydraulic engine valve actuation system including independent feedback control  

DOE Patents (OSTI)

A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

Marriott, Craig D

2013-06-04T23:59:59.000Z

205

Advanced turbine systems sensors and controls needs assessment study. Final report  

DOE Green Energy (OSTI)

The Instrumentation and Controls Division of the Oak Ridge National Laboratory performed an assessment of the sensors and controls needs for land-based advanced gas turbines being designed as a part of the Department of Energy`s (DOE`s) Advanced Turbine Systems (ATS) Program for both utility and industrial applications. The assessment included visits to five turbine manufacturers. During these visits, in-depth discussions were held with design and manufacturing staff to obtain their views regarding the need for new sensors and controls for their advanced turbine designs. The Unsteady Combustion Facilities at the Morgantown Energy Technology Center was visited to assess the need for new sensors for gas turbine combustion research. Finally, a workshop was conducted at the South Carolina Energy Research and Development Center which provided a forum for industry, laboratory, and university engineers to discuss and prioritize sensor and control needs. The assessment identified more than 50 different measurement, control, and monitoring needs for advanced turbines that cannot currently be met from commercial sources. While all the identified needs are important, some are absolutely critical to the success of the ATS Program.

Anderson, R.L.; Fry, D.N.; McEvers, J.A.

1997-02-01T23:59:59.000Z

206

Advanced Controls Technologies and Strategies Linking Energy Efficiency and  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Controls Technologies and Strategies Linking Energy Efficiency and Advanced Controls Technologies and Strategies Linking Energy Efficiency and Demand Response Speaker(s): Sila Kiliccote Date: October 6, 2005 - 12:00pm Location: Bldg. 90 Reliable supply of affordable electricity has been in the spotlight since the blackouts in California, the grid shutdown events in New England and the terrorist threats nationwide. While the array of generation technologies and transmission safety issues have been widely discussed, capacity requirements and demand side management issues have also been revisited. This presentation will concentrate on a preliminary framework to describe how advanced controls can support multiple modes of operations including both energy efficiency and demand response (DR). A general description of DR, its benefits, and nationwide status will be outlined.

207

Controlling engine exhaust gas recirculation and vacuum inverter  

SciTech Connect

Engine manifold vacuum is inverted by an in-line vacuum inverter which provides a power source for an egr valve actuator for providing desired egr flow in a predetermined range of engine power loading and egr flow is cut off outside the range. The invention utilizes a vacuum inverter employing a pair of spaced diaphragms for controlling an atmospheric air bleed valve to a vacuum chamber powered by manifold vacuum. The diaphragms are spring loaded so as to seek equilibrium positions as vacuum in the chamber varies force. The inverter produces a vacuum output signal which changes inversely with changes in engine manifold vacuum.

Bradshaw, C.E.; Uitvlugt, M.W.

1982-12-28T23:59:59.000Z

208

Local control stations: Human engineering issues and insights  

SciTech Connect

The objective of this research project was to evaluate current human engineering at local control stations (LCSs) in nuclear power plants, and to identify good human engineering practices relevant to the design of these operator interfaces. General literature and reports of operating experience were reviewed to determine the extent and type of human engineering deficiencies at LCSs in nuclear power plants. In-plant assessments were made of human engineering at single-function as well as multifunction LCSs. Besides confirming the existence of human engineering deficiencies at LCSs, the in-plant assessments provided information about the human engineering upgrades that have been made at nuclear power plants. Upgrades were typically the result of any of three influences regulatory activity, broad industry initiatives such as INPO, and specific in-plant programs (e.g. activities related to training). It is concluded that the quality of LCSs is quite variable and might be improved if there were greater awareness of good practices and existing human engineering guidance relevant to these operator interfaces, which is available from a variety of sources. To make such human engineering guidance more readily accessible, guidelines were compiled from such sources and included in the report as an appendix.

Brown, W.S.; Higgins, J.C.; O`Hara, J.M. [Brookhaven National Lab., Upton, NY (United States)

1994-09-01T23:59:59.000Z

209

NETL: Advanced NOx Emissions Control: Control Technology - Mercury...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Speciation from NOx Control University of North Dakota Energy and Environmental Research Center (UNDEERC) is addressing the impact that selective catalytic reduction (SCR),...

210

Engine Control Improvement through Application of Chaotic Time Series Analysis  

SciTech Connect

The objective of this program was to investigate cyclic variations in spark-ignition (SI) engines under lean fueling conditions and to develop options to reduce emissions of nitrogen oxides (NOx) and particulate matter (PM) in compression-ignition direct-injection (CIDI) engines at high exhaust gas recirculation (EGR) rates. The CIDI activity builds upon an earlier collaboration between ORNL and Ford examining combustion instabilities in SI engines. Under the original CRADA, the principal objective was to understand the fundamental causes of combustion instability in spark-ignition engines operating with lean fueling. The results of this earlier activity demonstrated that such combustion instabilities are dominated by the effects of residual gas remaining in each cylinder from one cycle to the next. A very simple, low-order model was developed that explained the observed combustion instability as a noisy nonlinear dynamical process. The model concept lead to development of a real-time control strategy that could be employed to significantly reduce cyclic variations in real engines using existing sensors and engine control systems. This collaboration led to the issuance of a joint patent for spark-ignition engine control. After a few years, the CRADA was modified to focus more on EGR and CIDI engines. The modified CRADA examined relationships between EGR, combustion, and emissions in CIDI engines. Information from CIDI engine experiments, data analysis, and modeling were employed to identify and characterize new combustion regimes where it is possible to simultaneously achieve significant reductions in NOx and PM emissions. These results were also used to develop an on-line combustion diagnostic (virtual sensor) to make cycle-resolved combustion quality assessments for active feedback control. Extensive experiments on engines at Ford and ORNL led to the development of the virtual sensor concept that may be able to detect simultaneous reductions in NOx and PM emissions under low temperature combustion (LTC) regimes. An invention disclosure was submitted to ORNL for the virtual sensor under the CRADA. Industrial in-kind support was available throughout the project period. Review of the research results were carried out on a regular basis (annual reports and meetings) followed by suggestions for improvement in ongoing work and direction for future work. A significant portion of the industrial support was in the form of experimentation, data analysis, data exchange, and technical consultation.

Green, J.B., Jr.; Daw, C.S.

2003-07-15T23:59:59.000Z

211

Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines  

SciTech Connect

During the second reporting period, the project team focused on identifying promising technologies that can then be used to monitor and control emissions from E&P engines. These technologies include control and monitoring technologies and in most cases can be used to monitor engine performance as well as control and monitor engine emissions. The project team also identified three potential sources to receive a Cooper Ajax engine that is approximately 100 bhp. The goal is to have this engine delivered to the project team by the end of the calendar year 2003. This will then allow the team to prepare the engine for testing at Ricardo in early 2004.

Kirby S. Chapman

2003-12-01T23:59:59.000Z

212

NETL: Advanced NOx Emissions Control: Control Technology - ALTA...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the burner design is to achieve homogeneity of the combustion products in the boiler. Not only does this create ideal conditions for combustion-related NOx control, it...

213

Buried waste integrated demonstration human engineered control station. Final report  

SciTech Connect

This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.

Not Available

1994-09-01T23:59:59.000Z

214

REQUEST BY CUMMINS ENGINE COMPANY, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOR AN FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF ENERGY CONTRACT PROPOSAL NO. P9700016; DOE WAIVER DOCKET W(A)-97- 008 [ORO-655] Cummins Engine Company, Inc. (Cummins) has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Contract Proposal No. P9700016. The scope of the work is to plan, design,, develop and complete the specifications required to enter production for a new diesel engine for domestic light trucks. The work is sponsored by the Office of Transportation Technologies. The dollar amount of the proposed contract is $69,500,000 with Cummins cost sharing $38,200,000, or 55% of the contract.

215

Advanced Combustion Engine Program 2005 Merit Review and Peer Evaluation Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Less dependence on foreign oil, and eventual transition to an emissions-free, petroleum-free vehicle ADVANCED COMBUSTION ENGINE PROGRAM F r e e d o m C A r A n d V e h i C l e T e C h n o l o g i e s P r o g r A m MERIT REVIEW & PEER EVALUATION REPORT Department of Energy Washington, DC 20585 October 5, 2005 Dear Colleague: This document summarizes the comments provided by the Review Panel for the FY 2005 Department of Energy (DOE) Advanced Combustion Engine R&D Merit Review and Peer Evaluation Meeting, the "ACE Review," held on April 19-21, 2005 at Argonne National Laboratory (ANL). The raw evaluations and comments of the panel were provided (with reviewers' names deleted) to the presenters in early June and were used by national laboratory researchers in the development of Annual Operating Plans (AOPs) for fiscal year (FY) 2006. The panel's

216

Engineering development of advanced coal-fired low-emission boiler system  

Science Conference Proceedings (OSTI)

The Pittsburgh Energy Technology Center of the US Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems'' Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: NO[sub x] emissions not greater than one-third NSPS; SO[sub x] emissions not greater than one-third NSPS; and particulate emissions not greater than one-half NSPS. The specific secondary objectives are: Improved ash disposability and reduced waste generation; reduced air toxics emissions; increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a commercial generation unit.

Not Available

1993-02-26T23:59:59.000Z

217

Utilization Potential of Advanced SO2 Control By Products  

Science Conference Proceedings (OSTI)

Using results of literature surveys and preliminary market assessments, this report evaluates potential applications for advanced SO2 control by-products. Investigators formed their evaluations by comparing the marketability of these by-products with that of coal ash and wet scrubber sludge.

1987-06-18T23:59:59.000Z

218

Advanced Voltage Control Strategies for High Penetration of Distributed Generation  

Science Conference Proceedings (OSTI)

This research addresses advanced voltage control strategies for inverter-connected distributed generation. The emphasis is on photovoltaic (PV) generation, and results also apply to distributed wind, fuel cells, micro-turbines, and battery systems that are connected to the grid through an inverter. In related work, the Electric Power Research Institute (EPRI) identified a set of high-priority functions for distributed generation. These included reactive power control such as intelligent and autonomous vo...

2010-12-31T23:59:59.000Z

219

Tribopolymerization: An advanced lubrication concept for automotive engines and systems of the future  

DOE Green Energy (OSTI)

Advanced lubrication technologies based on the concept of tribopolymerization as a mechanism of boundary lubrication are described. Advantages of this approach as well as potential applications which could have an impact on the design, manufacture, and performance of existing and future automotive engines are presented and discussed. Tribopolymerization, a novel concept of molecular design developed by Furey and Kajdas, involves the continuous formation of thin polymeric films on rubbing surfaces; the protective films formed are self-replenishing. The antiwear compounds developed from this technology are effective with metals as well as ceramics and in the liquid as well as vapor phases. Furthermore, they are ashless and contain no harmful phosphorus or sulfur; and many are biodegradable. Thus, potential applications of this technology are diverse and include a variety of cost/performance/energy/environmental advantages. Examples include the following: (a) machining and cutting applications using thin films to reduce friction and ceramic tool wear; (b) the lubrication of ceramic engines (e.g., low heat rejection diesel engines) or ceramic components; (c) the development of ashless lubricants for existing and future automotive engines to reduce exhaust catalyst poisoning and environmental emissions; (d) ashless antiwear or ``lubricity`` additives for fuels, including gasoline, diesel and jet fuel; (e) vapor phase applications of this technology to high temperature gaseous systems or to fuel injector wear problems associated with the use of natural gas engines; and (f) the use of the concept of tribopolymerization as an enabling technology in the development of new engines and new automotive propulsion systems.

Furey, M.J. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Kajdas, C. [Warsaw Univ. of Technology, Plock (Poland); Kaltenbach, K.W. [Triad Investors Corp., Baltimore, MD (United States)

1997-12-31T23:59:59.000Z

220

Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 2, Appendices  

DOE Green Energy (OSTI)

This volume presents the following appendices: ceramic test specimen drawings and schematics, mixed-mode and biaxial stress fracture of structural ceramics for advanced vehicular heat engines (U. Utah), mode I/mode II fracture toughness and tension/torsion fracture strength of NT154 Si nitride (Brown U.), summary of strength test results and fractography, fractography photographs, derivations of statistical models, Weibull strength plots for fast fracture test specimens, and size functions.

NONE

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Advanced Controls and Sustainable Systems for Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Controls and Sustainable Systems for Residential Ventilation Advanced Controls and Sustainable Systems for Residential Ventilation Title Advanced Controls and Sustainable Systems for Residential Ventilation Publication Type Report LBNL Report Number LBNL-5968E Year of Publication 2012 Authors Turner, William J. N., and Iain S. Walker Date Published 12/2012 Keywords ashrae standard 62,2, california title 24, passive ventilation, residential ventilation, ventilation controller Abstract Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health, and compliance with standards, such as ASHRAE 62.2. At the same time we wish to reduce the energy use in homes and therefore minimize the energy used to provide ventilation. This study examined several approaches to reducing the energy requirements of providing acceptable IAQ in residential buildings. Two approaches were taken. The first used RIVEC - the Residential Integrated VEntilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. The second used passive and hybrid ventilation systems, rather than mechanical systems, to provide whole-house ventilation.

222

Supervisory Control System Architecture for Advanced Small Modular Reactors  

SciTech Connect

This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.

Cetiner, Mustafa Sacit [ORNL] [ORNL; Cole, Daniel L [University of Pittsburgh] [University of Pittsburgh; Fugate, David L [ORNL] [ORNL; Kisner, Roger A [ORNL] [ORNL; Melin, Alexander M [ORNL] [ORNL; Muhlheim, Michael David [ORNL] [ORNL; Rao, Nageswara S [ORNL] [ORNL; Wood, Richard Thomas [ORNL] [ORNL

2013-08-01T23:59:59.000Z

223

REQUEST :BY CUMMINS ENGINE COMPANY, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9/97 TUE 15:24 FAX 423 576 9189 PROCUREMENT & CONTRACTS 9/97 TUE 15:24 FAX 423 576 9189 PROCUREMENT & CONTRACTS @002 Statement of Considerations REQUEST :BY CUMMINS ENGINE COMPANY, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF ENERGY CONTRACT NO. DE- FC05-970R22585; DOE WAIVER DOCKET W(A)-97-005% [ORO-652] Cummins Engine Company, Inc. (Cummins) has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Contract No. DE-FC05-970R22585. The scope of the work calls for the development of advanced materials for use in major component systems for diesel engines. The work is sponsored by the Office of Transportation Technologies. The dollar amount of the contract is $4,804,995 with Cummins cost sharing $2,402,499, or 50%

224

STATEMENT OF CONSIDERATIONS Request by Ford Motor Company Research and Advanced Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

No No . DE-FC26-07NT 43276; W(A)-08-002 , CH-1429 The Petitioner, Ford Motor Company Research and Advanced Engineering Laboratory (Ford), was awarded this cooperative agreement for the performance of work entitled "E85 Optim ized Engine Application ." The goal of the cooperative agreement is to develop practical technology which improves vehicle fuel efficiency using E85 and which is feasible for production implementation in the short term . Ford will : 1) utilize the favorable knock suppression properties of ethanol to build upon and enhance the recent techn ica l development of spark ignition turbocharged direct injection gasoline engines; and 2) increase the "fun-to-drive" attribute normally associated with diesel vehicles in Europe

225

Advanced radiation techniques for inspection of diesel engine combustion chamber materials components. Final report  

DOE Green Energy (OSTI)

Heavy duty truck engines must meet stringent life cycle cost and regulatory requirements. Meeting these requirements has resulted in convergence on 4-stroke 6-in-line, turbocharged, and after-cooled engines with direct-injection combustion systems. These engines provide much higher efficiencies (42%, fuel consumption 200 g/kW-hr) than automotive engines (31%, fuel consumption 270 g/kW-hr), but at higher initial cost. Significant near-term diesel engine improvements are necessary and are spurred by continuing competitive, Middle - East oil problems and Congressional legislation. As a result of these trends and pressures, Caterpillar has been actively pursuing a low-fuel consumption engine research program with emphasis on product quality through process control and product inspection. The goal of this project is to combine the nondestructive evaluation and computational resources and expertise available at LLNL with the diesel engine and manufacturing expertise of the Caterpillar Corporation to develop in-process monitoring and inspection techniques for diesel engine combustion chamber components and materials. Early development of these techniques will assure the optimization of the manufacturing process by design/inspection interface. The transition from the development stage to the manufacturing stage requires a both a thorough understanding of the processes and a way of verifying conformance to process standards. NDE is one of the essential tools in accomplishing both elements and in this project will be integrated with Caterpillar`s technological and manufacturing expertise to accomplish the project goals.

NONE

1995-10-09T23:59:59.000Z

226

FY11 annual Report: PHEV Engine Control and Energy Management Strategy  

DOE Green Energy (OSTI)

Objectives are to: (1) Investigate novel engine control strategies targeted at rapid engine/catalyst warming for the purpose of mitigating tailpipe emissions from plug-in hybrid electric vehicles (PHEV) exposed to multiple engine cold start events; and (2) Validate and optimize hybrid supervisory control techniques developed during previous and on-going research projects by integrating them into the vehicle level control system and complementing them with the modified engine control strategies in order to further reduce emissions during both cold start and engine re-starts. Approach used are: (1) Perform a literature search of engine control strategies used in conventional powertrains to reduce cold start emissions; (2) Develop an open source engine controller providing full access to engine control strategies in order to implement new engine/catalyst warm-up behaviors; (3) Modify engine cold start control algorithms and characterize impact on cold start behavior; and (4) Develop an experimental Engine-In-the-Loop test stand in order to validate control methodologies and verify transient thermal behavior and emissions of the real engine when combined with a virtual hybrid powertrain. Some major accomplishments are: (1) Commissioned a prototype engine controller on a GM Ecotec 2.4l direct injected gasoline engine on an engine test cell at the University of Tennessee. (2) Obtained from Bosch (with GM's approval) an open calibration engine controller for a GM Ecotec LNF 2.0l Gasoline Turbocharged Direct Injection engine. Bosch will support the bypass of cold start strategies if calibration access proves insufficient. The LNF engine and its open controller were commissioned on an engine test cell at ORNL. (3) Completed a literature search to identify key engine cold start control parameters and characterized their impact on the real engine using the Bosch engine controller to calibrate them. (4) Ported virtual hybrid vehicle model from offline simulation environment to real-time Hardware-In-the-Loop platform.

Chambon, Paul H [ORNL

2011-10-01T23:59:59.000Z

227

Expanding Robust HCCI Operation with Advanced Valve and Fuel Control Technologies Pub ID 38707 Title Expanding Robust HCCI Operation with Advanced Valve and Fuel Control Technologies Status Distributed Communication Type ORNL report ORNL Review? Scientific communication that requires ORNL review Information Category Protected CRADA Information ORNL Report Classification Final Expanding Robust HCCI Operation with Advanced Valve and Fuel Control Technologies  

SciTech Connect

Delphi Automotive Systems and ORNL established this CRADA to advance the commercialization potential of the homogeneous charge compression ignition (HCCI) advanced combustion strategy for gasoline engine platforms. HCCI combustion has been shown by others to produce high diesel-like efficiency on a gasoline engine platform while simultaneously producing low NOX and particulate matter emissions. However, the commercialization barriers that face HCCI combustion are significant, with requirements for a more active engine control system, likely with next-cycle closed-loop feedback control, and with advanced valve train technologies to enable negative valve overlap conditions. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has made a number of breakthroughs with production-intent valve train technologies and controls in recent years to make a part time production-intent HCCI engine plausible. ORNL has extensive knowledge and expertise with HCCI combustion, and also has a versatile research engine with hydraulic valve actuation (HVA) that is useful for guiding production of a cam-based HCCI system. Partnering these knowledge bases and capabilities was essential towards making progress to better understand HCCI combustion and the commercialization barriers that it faces. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided guidance to ORNL regarding operational strategies to investigate on their single-cylinder research engine with HVA and data from their experimental multi-cylinder engine for modeling. ORNL provided single-cylinder engine data and modeling results.

Szybist, J.P.; Confer, K. (Delphi Automotive Systems)

2012-09-11T23:59:59.000Z

228

Controllable Gaussian-qubit interface for extremal quantum state engineering  

E-Print Network (OSTI)

We study state engineering through bilinear interactions between two remote qubits and two-mode Gaussian light fields. The attainable two-qubit states span the entire physically allowed region in the entanglement-versus-global-purity plane. Two-mode Gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. We show that a small set of parameters characterizing extremally entangled two-mode Gaussian states is sufficient to control the engineering of extremally entangled two-qubit states, which can be realized in realistic matter-light scenarios.

G. Adesso; S. Campbell; F. Illuminati; M. Paternostro

2010-03-11T23:59:59.000Z

229

Control method for turbocharged diesel engines having exhaust gas recirculation  

SciTech Connect

A method of controlling the airflow into a compression ignition engine having an EGR and a VGT. The control strategy includes the steps of generating desired EGR and VGT turbine mass flow rates as a function of the desired and measured compressor mass airflow values and exhaust manifold pressure values. The desired compressor mass airflow and exhaust manifold pressure values are generated as a function of the operator-requested fueling rate and engine speed. The EGR and VGT turbine mass flow rates are then inverted to corresponding EGR and VGT actuator positions to achieve the desired compressor mass airflow rate and exhaust manifold pressure. The control strategy also includes a method of estimating the intake manifold pressure used in generating the EGR valve and VGT turbine positions.

Kolmanovsky, Ilya V. (Ypsilanti, MI); Jankovic, Mrdjan J (Birmingham, MI); Jankovic, Miroslava (Birmingham, MI)

2000-03-14T23:59:59.000Z

230

NETL: Advanced NOx Emissions Control: Control Technology - SCNR Field  

NLE Websites -- All DOE Office Websites (Extended Search)

SNCR Field Demonstration SNCR Field Demonstration American Electric Power (AEP), in conjunction with the U.S. Department of Energy, FuelTech, the Ohio Coal Development Office, and fourteen EPRI member utilities, performed a full-scale demonstration of a urea-based Selective Non-Catalytic Reduction (SNCR) system at Cardinal Unit 1. Cardinal Unit 1 is a 600MWe opposed-wall dry bottom pulverized coal-fired boiler that began service in 1967. This unit burns eastern bituminous high-sulfur coal, (3.72%S). This unit was retrofitted with low NOx burners (LNB's) during its scheduled fall 1998 outage and the SNCR system was installed concurrently. SNCR is a post-combustion NOx control process developed to reduce NOx emissions from fossil-fuel combustion systems. SNCR processes involve the injection of a chemical containing nitrogen into the combustion products, where the temperature is in the range of 1600°F - 2200°F (870°C - 1205°C). In this temperature range, the chemical reacts selectively with NOx in the presence of oxygen, forming primarily nitrogen and water. Although a number of chemicals have been investigated and implemented for SNCR NOx reduction, urea and ammonia have been most widely used for full-scale applications.

231

Advanced NOx Emissions Control: Control Technology - Second Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

In Situ Device for Real-Time Catalyst Deactivation Measurements in Full-Scale SCR Systems In Situ Device for Real-Time Catalyst Deactivation Measurements in Full-Scale SCR Systems To support trends in the electric generating industry of moving from seasonal to year-round operation of Selective Catalytic Reduction (SCR) for control of NOx and mercury, as well as extending the time between generating unit outages, Fossil Energy Research Corporation (FERCo) is developing technology to determine SCR catalyst activity and remaining life without requiring an outage to obtain and analyze catalyst samples. FERCo intends to use SCR catalyst performance results measured with their in situ device at Alabama PowerÂ’s Plant Gorgas during the 2005 and 2006 ozone seasons, along with EPRIÂ’s CatReactTM catalyst management software, to demonstrate the value of real-time activity measurements with respect to the optimization of catalyst replacement strategy. Southern Company and the Electric Power Research Institute are co-funding the project.

232

Engineering a 1: 2 Bio-multiplexer for controlled stem cell differentiation  

Science Conference Proceedings (OSTI)

Precise control of stem cell differentiation offers tremendous potential for tissue engineering. Synthetic gene networks provide a framework for understanding and engineering life. We propose to use synthetic gene networks to engineer circuits that dictate ...

Sairam Subramanian; Ihor Lemischka; Ron Weiss

2005-08-01T23:59:59.000Z

233

Testing State-Space Controls for the Controls Advanced Research Turbine: Preprint  

SciTech Connect

Control can improve wind turbine performance by enhancing energy capture and reducing dynamic loads. At the National Renewable Energy Laboratory, we are implementing and testing state-space controls on the Controls Advanced Research Turbine (CART), a turbine specifically configured to test advanced controls. We show the design of control systems to regulate turbine speed in Region 3 using rotor collective pitch and reduce dynamic loads in Regions 2 and 3 using generator torque. These controls enhance damping in the first drive train torsion mode. We base these designs on sensors typically used in commercial turbines. We evaluate the performance of these controls by showing field test results. We also compare results from these modern controllers to results from a baseline proportional integral controller for the CART. Finally, we report conclusions to this work and outline future studies.

Wright, A. D.; Fingersh, L. J.; Balas, M. J.

2006-01-01T23:59:59.000Z

234

Advanced Rooftop Control (ARC) Retrofit: Field-Test Results  

Science Conference Proceedings (OSTI)

The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

2013-07-31T23:59:59.000Z

235

Advanced Sensor Approaches for Monitoring and Control of Gas Turbine Combustors  

NLE Websites -- All DOE Office Websites (Extended Search)

Seitzman and T. Lieuwen Seitzman and T. Lieuwen SCIES Project 02- 01- SR102 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (5/1/2002, 36 Month Duration) $337,501 Total Contract Value ($327,501 DOE) Advanced Sensor Approaches For Monitoring and Control Of Gas Turbine Combustors Georgia Institute of Technology JS/TL 10/19/05 Advanced Sensors 10/19/05 2 Gas Turbine Need * Gas turbines must operate with ultra-low levels of pollutant emissions - Problem: lean, premixed operation causes minimal pollutant generation but introduces combustion problems, such as instabilities and blowoff * Combustor health and performance information needed to optimize engine across competing demands of emissions levels, power output, and

236

Vehicle Technologies Office: Combustion Engine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Engine Combustion Engine Research to someone by E-mail Share Vehicle Technologies Office: Combustion Engine Research on Facebook Tweet about Vehicle Technologies Office: Combustion Engine Research on Twitter Bookmark Vehicle Technologies Office: Combustion Engine Research on Google Bookmark Vehicle Technologies Office: Combustion Engine Research on Delicious Rank Vehicle Technologies Office: Combustion Engine Research on Digg Find More places to share Vehicle Technologies Office: Combustion Engine Research on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Combustion Engine Research

237

Energy Control Systems Engineering Inc | Open Energy Information  

Open Energy Info (EERE)

Control Systems Engineering Inc Control Systems Engineering Inc Jump to: navigation, search Name Energy Control Systems Engineering Inc Place Monrovia, California Zip 91016 Sector Services Product The company is focused on consulting, design and prototype services for system integration, management and monitoring of electrochemical energy systems such as batteries and fuel cells. Coordinates 6.30077°, -10.79716° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":6.30077,"lon":-10.79716,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

Refinements and Tests of an Advanced Controller to Mitigate Fatigue Loads in the Controls Advanced Research Turbine: Preprint  

DOE Green Energy (OSTI)

Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated 3-D turbulent wind inflow field, with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, while maximizing energy capture. Active damping should be added to these dynamic structures to maintain stability for operation in a complex environment. At the National Renewable Energy Laboratory (NREL), we have designed, implemented, and tested advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are generated by specialized modeling software. In this paper, we present field test results of an advanced control algorithm to mitigate blade, tower, and drivetrain loads in Region 3.

Wright, A.; Fleming, P.

2010-12-01T23:59:59.000Z

239

Engineering to Control Noise, Loading, and Optimal Operating Points  

Science Conference Proceedings (OSTI)

Successful engineering of low-energy nuclear systems requires control of noise, loading, and optimum operating point (OOP) manifolds. The latter result from the biphasic system response of low-energy nuclear reaction (LENR)/cold fusion systems, and their ash production rate, to input electrical power. Knowledge of the optimal operating point manifold can improve the reproducibility and efficacy of these systems in several ways. Improved control of noise, loading, and peak production rates is available through the study, and use, of OOP manifolds. Engineering of systems toward the OOP-manifold drive-point peak may, with inclusion of geometric factors, permit more accurate uniform determinations of the calibrated activity of these materials/systems.

Mitchell R. Swartz

2000-11-12T23:59:59.000Z

240

Advanced Control Technology Update: Multi-Loop Tuning and Model Predictive Control  

Science Conference Proceedings (OSTI)

This technical update provides information on two projects in the advanced control area. The first project is a study of control system tuning methods for multiple interacting proportional-integral-derivative PID control loops. The traditional method for tuning such systems, common on power plant boiler control systems, is to tune each loop in a specified sequence. An alternative method, in which all loops are tuned simultaneously, is being developed in this study and will be compared to the traditional ...

2008-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

REQUEST BY UNITED TECHNOLOGIES CORPORATION, PRATT & WHITNEY MILITARY ENGINES, FOR AN ADVANCE WAIVER OF DOMESTIC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNITED TECHNOLOGIES CORPORATION, PRATT & UNITED TECHNOLOGIES CORPORATION, PRATT & WHITNEY MILITARY ENGINES, FOR AN ADVANCE WAIVER OF DOMESTIC AND FORE IGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER UT-BATTELLE, LLC SUBCONTRACT NO. 40001Q288 UNDER PRIME CONTRACT NO. DE-AC05-000R22725; DEPARTMENT OF ENERGY (D OE) WAIVER DOCKET W(A)201 0-051 [OR0-800] Uniteo Technolog ies , Pratt & Whitney Military Eng ines (Petitioner) has made a timely request for an advance wa iver to worldwide rights in Su bject Inventions made in the course of or under UT -Battelle , LLC Subcontract No. 400010288 entitled , and "Bulk Amorphous Alum inum Program" unde r UT -Battelle Prime Contract No . DE-AC05-000R22725 . The scope of work involves the production of eng ine components using a conventional powder metallurgy

242

Testing of advanced ceramic fabric heat pipe for a Stirling engine  

SciTech Connect

The development and application of Stirling engines for space power production requires concomitant development of an advanced heat rejection system. We are currently involved in the design, development, and testing of advanced ceramic fabric (ACF) water heat pipes for optimal heat rejection from the Stirling cycle without the use of hazardous working fluids such as mercury. Our testing to-date has been with a 200-{mu}m thick titanium heat pipe utilizing Nextel {trademark} fabric as both the outer structural component and as a wick. This heat pipe has been successfully started up from a frozen condition against a negative 4 degree tilt (i.e., fluid return to evaporator was against gravity), with 75 W heat input, in ambient air. In a horizontal orientation, up to 100 W heat input was tolerated without experiencing dryout. 7 refs., 5 figs., 2 tabs.

Antoniak, Z.I.; Webb, B.J.; Bates, J.M.

1991-09-01T23:59:59.000Z

243

Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report  

DOE Green Energy (OSTI)

This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

NONE

1998-12-01T23:59:59.000Z

244

REQUEST BY CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF ENERGY GRANT NO. DE-FG05-970R22584; DOE WAIVER DOCKET W(A)-97-036 [ORO-671] Petitioner, Cummins Engine Company, Inc., has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Grant No. DE-FG05-970R22584 made to the Gas Research Institute (GRI). Petitioner is a subcontractor to GRI under the grant. The work under this grant calls for the development of technologies to improve spark ignition natural gas engine efficiencies for automotive markets. Two other companies, Mack Truck and Deere & Company, are also subcontractors under this project. Deere

245

DEMONSTRATION OF ADVANCED COMBUSTION NO X CONTROL TECHNIQUES  

NLE Websites -- All DOE Office Websites (Extended Search)

ADVANCED COMBUSTION NO ADVANCED COMBUSTION NO X CONTROL TECHNIQUES FOR A WALL-FIRED BOILER PROJECT PERFORMANCE SUMMARY CLEAN COAL TECHNOLOGY DEMONSTRATION PROGRAM JANUARY 2001 SOUTHERN COMPANY SERVICES, INC. DOE/FE-0429 Disclaimer This report was prepared using publicly available information, including the Final Technical Report and other reports prepared pursuant to a cooperative agreement partially funded by the U.S. Department of Energy. Neither the United States Government nor any agency, employee, contractor, or representative thereof, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately

246

Indicator system for advanced nuclear plant control complex  

DOE Patents (OSTI)

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

247

Appendix D: Coal Gasifier Control: A Process Engineering Approach 208 DD.. CCOOAALL GGAASSIIFFIIEERR CCOONNTTRROOLL  

E-Print Network (OSTI)

Appendix D: Coal Gasifier Control: A Process Engineering Approach 208 DD.. CCOOAALL 24 June 1998 Coventry University #12;Appendix D: Coal Gasifier Control: A Process Engineering Approach 209 Coal Gasifier Control: A Process Engineering Approach B N Asmar, W E Jones and J A Wilson

Skogestad, Sigurd

248

Method of controlling cyclic variation in engine combustion  

DOE Patents (OSTI)

Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling.

Davis, Jr., Leighton Ira (Ann Arbor, MI); Daw, Charles Stuart (Knoxville, TN); Feldkamp, Lee Albert (Plymouth, MI); Hoard, John William (Livonia, MI); Yuan, Fumin (Canton, MI); Connolly, Francis Thomas (Ann Arbor, MI)

1999-01-01T23:59:59.000Z

249

Method of controlling cyclic variation in engine combustion  

DOE Patents (OSTI)

Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling. 27 figs.

Davis, L.I. Jr.; Daw, C.S.; Feldkamp, L.A.; Hoard, J.W.; Yuan, F.; Connolly, F.T.

1999-07-13T23:59:59.000Z

250

Engineering development of advanced physical fine coal cleaning technologies - froth flotation. Quarterly technical progress report No. 24, July 1, 1994--September 30, 1994  

SciTech Connect

A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

NONE

1995-04-01T23:59:59.000Z

251

Progress in Implementing and Testing State-Space Controls for the Controls Advanced Research Turbine: Preprint  

DOE Green Energy (OSTI)

Designing wind turbines with maximum energy production and longevity for minimal cost is a major goal of the federal wind program and the wind industry. Control can improve the performance of wind turbines by enhancing energy capture and reducing dynamic loads. At the National Renewable Energy Laboratory (NREL) we are designing state-space control algorithms for turbine speed regulation and load reduction and testing them on the Controls Advanced Research Turbine (CART). The CART is a test-bed especially designed to test advanced control algorithms on a two-bladed teetering hub upwind turbine. In this paper we briefly describe the design of control systems to regulate turbine speed in region 3 for the CART. These controls use rotor collective pitch to regulate speed and also enhance damping in the 1st drive-train torsion, 1st rotor symmetric flap mode, and the 1st tower fore-aft mode. We designed these controls using linear optimal control techniques using state estimation based on limited turbine measurements such as generator speed and tower fore-aft bending moment. In this paper, we describe the issues and steps involved with implementing and testing these controls on the CART, and we show simulated tests to quantify controller performance. We then present preliminary results after implementing and testing these controls on the CART. We compare results from these controls to field test results from a baseline Proportional Integral control system. Finally we report conclusions to this work and outline future studies.

Wright, A. D.; Fingersh, L. J.; Stol, K. A.

2004-12-01T23:59:59.000Z

252

Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System  

Science Conference Proceedings (OSTI)

HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials’ ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, including commercial and residential buildings, data centers, and telecom facilities.

None

2011-12-31T23:59:59.000Z

253

Second Generation Advanced Reburning for High Efficiency NOx Control  

SciTech Connect

This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning (SGAR) which has the potential to achieve 90+ NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction. The ninth reporting period in Phase II (October 1-December 31, 1999) included preparation of the 10 x 10{sup 6} Btu/hr Tower Furnace for tests and setting the SGAR model to predict process performance under Tower Furnace conditions. Based on results of previous work, a paper has been prepared and submitted for the presentation at the 28 Symposium (International) on Combustion to be held at the University of Edinburgh, Scotland.

Vladimir M. Zamansky; Vitali V. Lissianski

1999-12-31T23:59:59.000Z

254

MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR  

DOE Green Energy (OSTI)

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the ADVANCED HYBRID{trademark} Filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

Stanley J. Miller; Ye Zhuang; Michelle R. Olderbak

2002-11-01T23:59:59.000Z

255

Mercuty Control With The Advanced Hybrid Particulate Collector  

SciTech Connect

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak

2003-03-31T23:59:59.000Z

256

OVERVIEW OF ADVANCED PETROLEUM-BASED FUELS-DIESEL EMISSIONS CONTROL PROGRAM (APBF-DEC)  

DOE Green Energy (OSTI)

The Advanced Petroleum-Based Fuels-Diesel Emissions Control Program (APBF-DEC) began in February 2000 and is supported by government agencies and industry. The purpose of the APBF-DEC program is to identify and evaluate the optimal combinations of fuels, lubricants, diesel engines, and emission control systems to meet the projected emission standards for the 2000 to 2010 time period. APBF-DEC is an outgrowth of the earlier Diesel Emission Control-Sulfur Effects Program (DECSE), whose objective is to determine the impact of the sulfur levels in fuel on emission control systems that could lower the emissions of NOx and particulate matter (PM) from diesel powered vehicles in the 2002 to 2004 period. Results from the DECSE studies of two emission control technologies-diesel particle filter (DPF) and NOx adsorber-will be used in the APBF-DEC program. These data are expected to provide initial information on emission control technology options and the effects of fuel properties (including additives) on the performance of emission control systems.

Sverdrup, George M.

2000-08-20T23:59:59.000Z

257

Advanced turbine design for coal-fueled engines. Topical report, Task 1.6, Task 1.7  

DOE Green Energy (OSTI)

The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500{degrees}F (815{degrees}C), relatively innocuous salts. In this study it is found that at 1650{degrees}F (900{degrees}C) and above, calcium sulfate becomes an aggressive corrodent.

Bornstein, N.S.

1992-07-17T23:59:59.000Z

258

Neural network control of air-to-fuel ratio in a bi-fuel engine  

Science Conference Proceedings (OSTI)

In this paper, a neural network-based control system is proposed for fine control of the intake air/fuel ratio in a bi-fuel engine. This control system is an add-on module for an existing vehicle manufacturer's electronic control units (ECUs). Typically ... Keywords: Artificial neural networks, bi-fuel engines, compressed natural gas (CNG), fuel injection control

G. Gnanam; S. R. Habibi; R. T. Burton; M. T. Sulatisky

2006-09-01T23:59:59.000Z

259

Testing Controls to Mitigate Fatigue Loads in the Controls Advanced Research Turbine  

Science Conference Proceedings (OSTI)

Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines is nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated three-dimensional (3D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energy Laboratory are designing, implementing, and testing advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on a linear model of the turbine that is generated by specialized modeling software. This paper describes testing of a control algorithm to mitigate blade, tower, and drivetrain loads using advanced state-space control methods. The controller uses independent blade pitch to regulate the turbine's speed in Region 3, mitigate the effects of shear across the rotor disk, and add active damping to the tower's first fore-aft bending mode. Additionally, a separate generator torque control loop is designed to add active damping to the tower's first side-side mode and the first drivetraintorsion mode. This paper discusses preliminary implementation and field tests of this controller in the Controls Advanced Research Turbine at the National Renewable Energy Laboratory. Also included are preliminary comparisons of the performance of this controller to results from a typical baseline Proportional-Integral-Derivative controller designed with just Region 3 speed regulation as the goal.

Wright, A. D.; Fingersh, L. J.; Stol, K. A.

2009-01-01T23:59:59.000Z

260

Advanced Communication and Control Solutions of Distributed Energy Resources (DER)  

SciTech Connect

This report covers work performed in Phase II of a two phase project whose objective was to demonstrate the aggregation of multiple Distributed Energy Resources (DERs) and to offer them into the energy market. The Phase I work (DE-FC36-03CH11161) created an integrated, but distributed, system and procedures to monitor and control multiple DERs from numerous manufacturers connected to the electric distribution system. Procedures were created which protect the distribution network and personnel that may be working on the network. Using the web as the communication medium for control and monitoring of the DERs, the integration of information and security was accomplished through the use of industry standard protocols such as secure SSL,VPN and ICCP. The primary objective of Phase II was to develop the procedures for marketing the power of the Phase I aggregated DERs in the energy market, increase the number of DER units, and implement the marketing procedures (interface with ISOs) for the DER generated power. The team partnered with the Midwest Independent System Operator (MISO), the local ISO, to address the energy market and demonstrate the economic dispatch of DERs in response to market signals. The selection of standards-based communication technologies offers the ability of the system to be deployed and integrated with other utilities’ resources. With the use of a data historian technology to facilitate the aggregation, the developed algorithms and procedures can be verified, audited, and modified. The team has demonstrated monitoring and control of multiple DERs as outlined in phase I report including procedures to perform these operations in a secure and safe manner. In Phase II, additional DER units were added. We also expanded on our phase I work to enhance communication security and to develop the market model of having DERs, both customer and utility owned, participate in the energy market. We are proposing a two-part DER energy market model--a utility need business model and an independent energy aggregator-business model. The approach of developing two group models of DER energy participation in the market is unique. The Detroit Edison (DECo, Utility)-led team includes: DTE Energy Technologies (Dtech, DER provider), Electrical Distribution Design (EDD, Virginia Tech company supporting EPRI’s Distribution Engineering Workstation, DEW), Systems Integration Specialists Company (SISCO, economic scheduling and real-time protocol integrator), and OSIsoft (PI software system for managing real-time information). This team is focused on developing the application engineering, including software systems necessary for DER’s integration, control and sale into the market place. Phase II Highlights Installed and tested an ICCP link with SSL (security) between DECo, the utility, and DTE Energy Technologies (DTECH), the aggregator, making DER data available to the utility for both monitoring and control. Installed and tested PI process book with circuit & DER operational models for DECo SOC/ROC operator’s use for monitoring of both utility circuit and customer DER parameters. The PI Process Book models also included DER control for the DECo SOC/ROC operators, which was tested and demonstrated control. The DER Tagging and Operating Procedures were developed, which allowed that control to be done in a safe manner, were modified for required MOC/MISO notification procedures. The Distribution Engineering Workstation (DEW) was modified to include temperature normalized load research statistics, using a 30 hour day-ahead weather feed. This allowed day-ahead forecasting of the customer load profile and the entire circuit to determine overload and low voltage problems. This forecast at the point of common coupling was passed to DTech DR SOC for use in their economic dispatch algorithm. Standard Work Instructions were developed for DER notification, sale, and operation into the MISO market. A software mechanism consisting of a suite of new and revised functionality was developed that integrated with the local ISO such that offe

Asgeirsson, Haukur; Seguin, Richard; Sherding, Cameron; de Bruet, Andre, G.; Broadwater, Robert; Dilek, Murat

2007-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

FY12 annual Report: PHEV Engine Control and Energy Management Strategy  

DOE Green Energy (OSTI)

The objectives are: (1) Investigate novel engine control strategies targeted at rapid engine/catalyst warming for the purpose of mitigating tailpipe emissions from plug-in hybrid electric vehicles (PHEV) exposed to multiple engine cold start events; (2) Optimize integration of engine control strategies with hybrid supervisory control strategies in order to reduce cold start emissions and fuel consumption of PHEVs; and (3) Ensure that development of new vehicle technologies complies with existing emission standards.

Chambon, Paul H [ORNL

2012-05-01T23:59:59.000Z

262

Estimating the impact on fuel tax revenues from a changing light vehicle fleet with increased advanced internal combustion engine vehicles and electric vehicles.  

E-Print Network (OSTI)

??Advanced fuel economies in both traditional internal combustion engine vehicles (ICEs) and electric vehicles (EVs) have a strong influence on transportation revenue by reducing fuel… (more)

Hall, Andrea Lynn

2013-01-01T23:59:59.000Z

263

The Fuel Control System and Performance Optimization of a Spark-Ignition LPG Engine  

Science Conference Proceedings (OSTI)

This paper presents an approach to control air fuel ratio of a Liquefied Petroleum Gas (LPG) automotive engine. The optimization of compression ratio is also described in this paper. HC, CO & NOx emissions of LPG engines can be reduced after the application ... Keywords: control, LPG engine, air fuel ratio, optimization

Hongwei Cui

2009-04-01T23:59:59.000Z

264

Advanced process engineering co-simulation using CFD-based reduced order models  

Science Conference Proceedings (OSTI)

The process and energy industries face the challenge of designing the next generation of plants to operate with unprecedented efficiency and near-zero emissions, while performing profitably amid fluctuations in costs for raw materials, finished products, and energy. To achieve these targets, the designers of future plants are increasingly relying upon modeling and simulation to create virtual plants that allow them to evaluate design concepts without the expense of pilot-scale and demonstration facilities. Two of the more commonly used simulation tools include process simulators for describing the entire plant as a network of simplified equipment models and computational fluid dynamic (CFD) packages for modeling an isolated equipment item in great detail by accounting for complex thermal and fluid flow phenomena. The Advanced Process Engineering Co-Simulator (APECS) sponsored by the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has been developed to combine process simulation software with CFD-based equipment simulation software so that design engineers can analyze and optimize the coupled fluid flow, heat and mass transfer, and chemical reactions that drive overall plant performance (Zitney et al., 2006). The process/CFD software integration was accomplished using the process-industry standard CAPE-OPEN interfaces.

Lang, Y.-D.; Biegler, L.T.; Munteanu, S.; Madsen, J.I.; Zitney, S.E.

2007-11-04T23:59:59.000Z

265

Ceramic technology for advanced heat engines project: Semiannual progress report, October 1986-March 1987  

DOE Green Energy (OSTI)

This report contains four subelements: (1) Monolithics, (2) Ceramic Composites, (3) Thermal and Wear Coatings, and (4) Joining. Ceramic research conducted within the Monolithics subelement currently includes work activities on green state ceramic fabrication, characterization, and densification and on structural, mechanical, and physical properties of these ceramics. Research conducted within the Ceramic Composites subelement currently includes silicon carbide and oxide-based composites, which, in addition to the work activities cited for Monolithics, include fiber synthesis and characterization. Research conducted in the Thermal and Wear Coatings subelement is currently limited to oxide-base coatings and involves coating synthesis, characterization, and determination of the mechanical and physical properties of the coatings. Research conducted in the Joining subelement currently includes studies of processes to produce strong stable joints between zirconia ceramics and iron-base alloys. A major objective of the research in the Materials and Processing project element is to systematically advance the understanding of the relationships between ceramic raw materials such as powders and reactant gases, the processing variables involved in producing the ceramic materials, and the resultant microstructures and physical and mechanical properties of the ceramic materials. Success in meeting this objective will provide US companies with new or improved ways for producing economical highly reliable ceramic components for advanced heat engines.

Not Available

1987-08-01T23:59:59.000Z

266

CAPE-OPEN Integration for Advanced Process Engineering Co-Simulation  

SciTech Connect

This paper highlights the use of the CAPE-OPEN (CO) standard interfaces in the Advanced Process Engineering Co-Simulator (APECS) developed at the National Energy Technology Laboratory (NETL). The APECS system uses the CO unit operation, thermodynamic, and reaction interfaces to provide its plug-and-play co-simulation capabilities, including the integration of process simulation with computational fluid dynamics (CFD) simulation. APECS also relies heavily on the use of a CO COM/CORBA bridge for running process/CFD co-simulations on multiple operating systems. For process optimization in the face of multiple and some time conflicting objectives, APECS offers stochastic modeling and multi-objective optimization capabilities developed to comply with the CO software standard. At NETL, system analysts are applying APECS to a wide variety of advanced power generation systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based FutureGen power and hydrogen production plant.

Zitney, S.E.

2006-11-01T23:59:59.000Z

267

Effects of charge motion control during cold start of SI engines  

E-Print Network (OSTI)

An experimental study was conducted to investigate the effects of various intake charge motion control approaches on the cold start-up process of a port fuel injected SI engine. Engine experiments were performed to assess ...

Lee, Dongkun

2005-01-01T23:59:59.000Z

268

Control of Combustion Processes in an Internal Combustion Engine by Low-Temperature Plasma  

Science Conference Proceedings (OSTI)

A new method of operation of internal combustion engines enhances power and reduces fuel consumption and exhaust toxicity. Low-temperature plasma control combines working processes of thermal engines and steam machines into a single process.

E. A. Olenev

2002-07-01T23:59:59.000Z

269

Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines  

SciTech Connect

The objective of this project is to identify, develop, test, and commercialize emissions control and monitoring technologies that can be implemented by exploration and production (E&P) operators to significantly lower the cost of environmental compliance and expedite project permitting. The project team takes considerable advantage of the emissions control research and development efforts and practices that have been underway in the gas pipeline industry for the last 12 years. These efforts and practices are expected to closely interface with the E&P industry to develop cost-effective options that apply to widely-used field and gathering engines, and which can be readily commercialized. The project is separated into two phases. Phase 1 work establishes an E&P industry liaison group, develops a frequency distribution of installed E&P field engines, and identifies and assesses commercially available and emerging engine emissions control and monitoring technologies. Current and expected E&P engine emissions and monitoring requirements are reviewed, and priority technologies are identified for further development. The identified promising technologies are tested on a laboratory engine to confirm their generic viability. In addition, a full-scale field test of prototype emissions controls will be conducted on at least ten representative field engine models with challenging emissions profiles. Emissions monitoring systems that are integrated with existing controls packages will be developed. Technology transfer/commercialization is expected to be implemented through compressor fleet leasing operators, engine component suppliers, the industry liaison group, and the Petroleum Technology Transfer Council. This topical report discusses work completed during Phase 1 of the project Cost Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines. In this report information, data, and results are compiled and summarized from quarterly reports 1 through 15. Results for each of the tasks in Phase 1 are presented.

Kirby S. Chapman; Sarah R. Nuss-Warren

2007-02-01T23:59:59.000Z

270

Advances in Sustainable Petroleum Engineering Science ISSN 1937-7991 Volume 2, Number 3 2011 Nova Science Publishers, Inc.  

E-Print Network (OSTI)

factor, 0 = oil formation volume factor at pressure 0 , = fluid compressibility of the system, 1Advances in Sustainable Petroleum Engineering Science ISSN 1937-7991 Volume 2, Number 3 © 2011 Nova it with commercial simulator, ECLIPSE. A 1-D, horizontal, and heterogeneous reservoir with time dependent rock

Hossain, M. Enamul

271

Advances in Sustainable Petroleum Engineering Science, Volume 1, Issue 2, 2009, pp. 141 -162 AComprehensiveMaterialBalanceEquationwiththeInclusionof  

E-Print Network (OSTI)

Advances in Sustainable Petroleum Engineering Science, Volume 1, Issue 2, 2009, pp. 141 - 162 141 a continuous change of rock-fluid properties with time. However, few studies report such alterations and their consequences. This study investigates the effects of permeability, pore volume, and porosity with time during

Hossain, M. Enamul

272

ENGINEERING DEVELOPMENT OF ADVANCED PHYSICAL FINE COAL CLEANING FOR PREMIUM FUEL APPLICATIONS  

SciTech Connect

Bechtel, together with Amax Research and Development Center (Amax R&D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program ?Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications,? (Contract No. DE-AC22- 92PC92208), under Task 11, Project Final Report. The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed $2.5 /MBtu ($ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes. Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at Amax R&D, Golden, Colorado by Entech Global for process evaluation tests. The tests successfully demonstrated the capability of advanced column flotation as well as selective agglomeration to produce ultra-clean coal at specified levels of purity and recovery efficiency. Test results and the experience gained during the operation of the PDU have provided valuable insights into the processes studied. Based on the design data obtained from the test work and a set of project design criteria, two sets of conceptual designs for commercial CWF production plants have been developed, one using column flotation and the other using selective agglomeration process. Using these designs, Capital as well as Operating and Maintenance (O&M) cost estimates for the plants have been compiled. These estimates have then been used to derive the annualized cost of production of premium CWF on a commercial scale. Further, a series of sensitivity analysis have been completed to evaluate the effects of variations in selected cost components and process parameters on the overall economics of premium fuel production

NONE

1997-06-01T23:59:59.000Z

273

Domain Engineered Configuration Control Mark Ardis, Peter Dudak, Liz Dor, Wen-jenq Leu, Lloyd Nakatani, Bob Olsen,  

E-Print Network (OSTI)

, application engineering, domain specific language, configuration control, FAST, InfoWiz, VFSM, Tcl/Tk Abstract

Ardis, Mark

274

Analytical Framework to Evaluate Emission Control Systems for Marine Engines  

E-Print Network (OSTI)

720 rpm) marine diesel engines with a maximum power ratingpower are under consideration to reduce energy requirements of marinemarine diesel engines, are operated near/at the port to provide power

Jayaram, Varalakshmi

2010-01-01T23:59:59.000Z

275

Microphones and Knock Sensors for Feedback Control of HCCI Engines  

E-Print Network (OSTI)

HCCI engine. NOMENCLATURE ACF autocorrelation function ARMA(The autocorrela- tion function (ACF) of the residuals (the

Souder, Jason S; Mack, John Hunter; Hedrick, J. Karl; Dibble, Robert W

2004-01-01T23:59:59.000Z

276

College of Engineering CME Chemical Engineering  

E-Print Network (OSTI)

: COM 199, CME 455, CME 550 and engineering standing. CME 462 PROCESS CONTROL. (3) Basic theory. Technologies covered include coal, natural gas, nuclear, biomass, wind, solar and advanced technologies. Prereq: Engineering standing or consent of instructor. (Same as EGR 542.) CME 550 CHEMICAL REACTOR DESIGN. (3

Kim, Mi-Ok

277

Human factors engineering guidance for the review of advanced alarm systems  

SciTech Connect

This report provides guidance to support the review of the human factors aspects of advanced alarm system designs in nuclear power plants. The report is organized into three major sections. The first section describes the methodology and criteria that were used to develop the design review guidelines. Also included is a description of the scope, organization, and format of the guidelines. The second section provides a systematic review procedure in which important characteristics of the alarm system are identified, described, and evaluated. The third section provides the detailed review guidelines. The review guidelines are organized according to important characteristics of the alarm system including: alarm definition; alarm processing and reduction; alarm prioritization and availability; display; control; automated; dynamic, and modifiable characteristics; reliability, test, maintenance, and failure indication; alarm response procedures; and control-display integration and layout.

O`Hara, J.M.; Brown, W.S.; Higgins, J.C.; Stubler, W.F. [Brookhaven National Lab., Upton, NY (United States)

1994-09-01T23:59:59.000Z

278

Method for valve seating control for an electro-hydraulic engine valve  

DOE Patents (OSTI)

Valve lift in an internal combustion engine is controlled by an electro-hydraulic actuation mechanism including a selectively actuable hydraulic feedback circuit.

Sun, Zongxuan (Plymouth, MN)

2011-01-11T23:59:59.000Z

279

Engines - Spark Ignition Engines - Direct Injection - Omnivorous Engine  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Injection, Spark-Ignited Engines Direct Injection, Spark-Ignited Engines Omnivorous Engine Omnivorous Engine Setup Omnivorous Engine Setup New engine technology has made possible engines that will operate on a wide variety of fuel inputs, from gasoline to naptha to ethanol to methanol, without driver intervention. Although flexible fuel vehicles have been produced in the millions, their engines have always been optimized for gasoline operation while accepting significant performance and efficiency degradations when using the alternative fuel. This project seeks to combine in-cylinder measurement technology, and advanced controls to optimize spark timing, the quantity and timing of injected fuel, to produce an "omnivorous engine"--one that will be able to run on any liquid spark ignition fuel with optimal efficiency and low

280

Challenges to cognitive systems engineering: understanding qualitative aspects of control actions  

Science Conference Proceedings (OSTI)

The paper discusses the future role of Cognitive Systems Engineering (CSE) in contributing to integrated design of process, automation and human machine systems. Existing concepts and methods of Cognitive Systems Engineering do not integrate well with ... Keywords: cognitive system engineering, means-end analysis, multilevel flow modeling, process control

Morten Lind

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Cyclone Boiler Reburn NOx Control Improvements via Cyclone Design Improvements and Advanced Air Staging  

E-Print Network (OSTI)

Eastman Kodak owns three Babcock & Wilcox coal fired cyclone boilers and one Combustion Engineering pulverized coal boiler located at Kodak Park in Rochester, New York. Duke Energy Generation Services (DEGS) operates and maintains the steam and electric generation equipment for Kodak and has primary responsibility for related capital project development and execution. The Kodak plant is capable of generating approximately 1,900,000 pounds of steam and 130 MW’s of electrical power. To achieve the required level of NOx control, Kodak chose The Babcock & Wilcox (B&W) Company's, Natural Gas Reburn technology for the three cyclone boilers. The relatively low capital cost of the system and reasonable cost of natural gas in the mid 1990’s made Natural Gas Reburn an economic fit for the RACT requirements of 0.60#’s/Mmbtu NOx. The run up in natural gas prices since 2002 has increased the cost of NOx removed from ~ $2000/ton to ~$5000/ton based on fuel expense alone. In an effort to curtail the cost of control, Duke Energy Generations Services and Kodak implemented a series of projects that integrated Cyclone Design Improvements and Advancements in Air Staging along with ESP inlet flue modifications that resulted in decreasing the Natural Gas required for NOx control ~ 40% from baseline levels saving the plant several million dollars per year in fuel expense. Significant improvements in opacity and filterable PM were also realized by these changes.

Morabito, B.; Nee, B.; Goff, V.; Maringo, G.

2008-01-01T23:59:59.000Z

282

Apparatus for closed-loop combustion control in internal combustion engines  

SciTech Connect

Schematically disclosed is an engine control apparatus wherein cylinder pressure is sensed before and after the top dead center position. Desired cylinder pressure curves are stored in a microcomputer for a range of engine speed-load combinations. By electrically comparing the actual pressure-time curve with the desired pressure curve for the existing speed-load combination it should be possible to generate an error signal representing deviation of actual engine performance from the desired performance, i.e., a permissible plus or minus band following the desired curve. The invention would provide a control action using only three parameters, namely engine speed, engine load and cylinder pressure.

Cheklich, G.E.

1983-03-10T23:59:59.000Z

283

Using a Phenomenological Computer Model to Investigate Advanced Combustion Trajectories in a CIDI Engine  

SciTech Connect

This paper summarizes results from simulations of conventional, high-dilution, and high-efficiency clean combustion in a diesel engine based on a two-zone phenomenological model. The two-zone combustion model is derived from a previously published multi-zone model, but it has been further simplified to increase computational speed by a factor of over 100. The results demonstrate that this simplified model is still able to track key aspects of the combustion trajectory responsible for NOx and soot production. In particular, the two-zone model in combination with highly simplified global kinetics correctly predicts the importance of including oxygen mass fraction (in addition to equivalence ratio and temperature) in lowering emissions from high-efficiency clean combustion. The methodology also provides a convenient framework for extracting information directly from in-cylinder pressure measurements. This feature is likely to be useful for on-board combustion diagnostics and controls. Because of the possibility for simulating large numbers of engine cycles in a short time, models of this type can provide insight into multi-cycle and transient combustion behavior not readily accessible to more computationally intensive models. Also the representation of the combustion trajectory in 3D space corresponding to equivalence ratio, flame temperature, and oxygen fraction provides new insight into optimal combustion management.

Gao, Zhiming [ORNL; Wagner, Robert M [ORNL; Sluder, Scott [ORNL; Daw, C Stuart [ORNL; Green Jr, Johney Boyd [ORNL

2011-01-01T23:59:59.000Z

284

Advanced Communication and Control of Distributed Energy Resources at Detroit Edison  

DOE Green Energy (OSTI)

The project objective was to create the communication and control system, the process and the economic procedures that will allow owners (e.g., residential, commercial, industrial, manufacturing, etc.) of Distributed Energy Resources (DER) connected in parallel to the electric distribution to have their resources operated in a manner that protects the electric utility distribution network and personnel that may be working on the network. The Distribution Engineering Workstation (DEW) (a power flow and short circuit modeling tool) was modified to calculate the real-time characteristics of the distribution network based on the real-time electric distribution network information and provide DER operating suggestions to the Detroit Edison system operators so that regional electric stability is maintained. Part of the suggestion algorithm takes into account the operational availability of DER’s, which is known by the Energy Aggregator, DTE Energy Technologies. The availability information will be exchanged from DTE Energy Technologies to Detroit Edison. For the calculated suggestions to be used by the Detroit Edison operators, procedures were developed to allow an operator to operate a DER by requesting operation of the DER through DTE Energy Technologies. Prior to issuing control of a DER, the safety of the distribution network and personnel needs to be taken into account. This information will be exchanged from Detroit Edison to DTE Energy Technologies. Once it is safe to control the DER, DTE Energy Technologies will issue the control signal. The real-time monitoring of the DECo system will reflect the DER control. Multi-vendor DER technologies’ representing approximately 4 MW of capacity was monitored and controlled using a web-based communication path. The DER technologies included are a photovoltaic system, energy storage, fuel cells and natural gas/diesel internal combustion engine generators. This report documents Phase I result for the Detroit Edison (Utility) led team, which also includes: DTE Energy Technology (DER provider & Aggregator), Electrical Distribution Design (Virginia Tech company supporting DEW); Systems Integration Specialists Company (real-time protocol integrator); and OSIsoft (software system for managing real-time information). This work was performed in anticipation of being selected for Phase II of the Advanced Communication and Control of Distributed Energy Resources project.

Haukur Asgeirsson; Richard Seguin

2004-01-31T23:59:59.000Z

285

Advanced Combustion and Emission Control Techical Team Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

the vehicle mix and volume sold, and each vehicle has a fuel economy target based on the vehicle footprint. 4 Manufacturers do not assume that the engine alone will provide the...

286

Advanced underground Vehicle Power and Control: The locomotive Research Platform  

DOE Green Energy (OSTI)

Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost to the project) a new motor controller capable of operating the higher rpm motor and different power characteristics of the fuelcells. In early August 2002, CANMET, with the technical assistance of Nuvera Fuel Cells and Battery Electric, installed the new PLC software, installed the new motor controller, and installed the new fuelcell stacks. After minor adjustments, the fuelcell locomotive pulled its first fully loaded ore cars on a surface track. The fuelcell-powered locomotive easily matched the battery powered equivalent in its ability to pull tonnage and equaled the battery-powered locomotive in acceleration. The final task of Phase 2, testing the locomotive underground in a production environment, occurred in early October 2002 in a gold mine. All regulatory requirements to allow the locomotive underground were completed and signed off by Hatch Associates prior to going underground. During the production tests, the locomotive performed flawlessly with no failures or downtime. The actual tests occurred during a 2-week period and involved moving both gold ore and waste rock over a 1,000 meter track. Refueling, or recharging, of the metal-hydride storage took place on the surface. After each shift, the metal-hydride storage module was removed from the locomotive, transported to surface, and filled with hydrogen from high-pressure tanks. The beginning of each shift started with taking the fully recharged metal-hydride storage module down into the mine and re-installing it onto the locomotive. Each 8 hour shift consumed approximately one half to two thirds of the onboard hydrogen. This indicates that the fuelcell-powered locomotive can work longer than a similar battery-powered locomotive, which operates about 6 hours, before needing a recharge.

Vehicle Projects LLC

2003-01-28T23:59:59.000Z

287

Controller and computer display interface in an advanced terminal area ATC system  

E-Print Network (OSTI)

Controller and display interactions and information requirements in an advanced Air Traffic Control (ATC) system are investigated. A description of the present ATC system and of some proposed developments for the future ...

Dopart, Kevin Peter

1980-01-01T23:59:59.000Z

288

Inferential control -- Part 1: Crude unit advanced controls pass accuracy and repeatability tests  

Science Conference Proceedings (OSTI)

An inferential model is one that provides a quality for which an analyzer is not available. This type of model uses readily available physical measurements -- such as temperatures, pressures, and flow rates -- to infer a quality such as kerosine flash point. The No. 2 crude distillation unit (CDU-2) at Singapore Refining Co. Pte. Ltd.'s Pulau Merlimau refinery has a nominal 130,000 b/d capacity. It produces naphtha, kerosine, diesel, and residue products from a wide range of crude blends. Over the past 12 months, extensive advanced control applications have been implemented on the unit. This first of two articles will describe the control system and its implementation. The second will outline the project's achievements, including reduced quality giveaway and increased profits. The paper describes background of the company and unit, the process, project implementation, the Infer model, model tuning, closed-loop control, feed rate maximization, and economic monitoring.

San, Y.P. (Singapore Refining Co. Ptd. Ltd., Pulau Merlimau (Singapore)); Landells, K.C.; Mackay, D.C. (BP Oil International, London (United Kingdom))

1994-11-28T23:59:59.000Z

289

Method and apparatus for selectively controlling the speed of an engine  

DOE Patents (OSTI)

A control assembly 12 for use within a vehicle 10 having an engine 14 and which selectively controls the speed of the engine 14 in order to increase fuel efficiency and to effect relatively smooth starting and stopping of the engine. Particularly, in one embodiment, control assembly 12 cooperatively operates with a starter/alternator assembly 20 and is adapted for use with hybrid vehicles employing a start/stop powertrain assembly, wherein fuel efficiency is increased by selectively stopping engine operation when the vehicle has stopped.

Davis, Roy Inge (Saline, MI)

2001-02-27T23:59:59.000Z

290

Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Approaches Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping Background The United States Department of Energy (DOE) National Energy Technology Laboratory (NETL) develops affordable and clean energy from coal and other fossil fuels to secure a sustainable energy economy. To further this mission, NETL funds research and development of advanced control technologies, including chemical looping (CL)

291

The effect of surface finish on piston ring-pack performance in advanced reciprocating engine systems  

E-Print Network (OSTI)

Frictional losses in the piston ring-pack of an engine account for approximately 20% of the total frictional losses within an engine. Methods of surface texture optimization were investigated to reduce piston ring-pack ...

Jocsak, Jeffrey (Jeffrey Alan)

2005-01-01T23:59:59.000Z

292

Designing and Testing Contols to Mitigate Dynamic Loads in the Controls Advanced Research Turbine: Preprint  

SciTech Connect

The National Renewable Energy Laboratory is designing, implementing, and testing advanced controls to maximize energy extraction and reduce structural dynamic loads of wind turbines. These control designs are based on a linear model of the turbine that is generated by specialized modeling software. In this paper, we show the design and simulation testing of a control algorithm to mitigate blade, tower, and drivetrain loads using advanced state-space control design methods.

Wright, A.D.; Stol, K.A.

2008-01-01T23:59:59.000Z

293

Review: A review of active structural control: challenges for engineering informatics  

Science Conference Proceedings (OSTI)

An active structure is an engineering structure containing sensors and actuators that, when active, modify the response of the structure to its environment. Research into active structural control is growing due to factors such as new challenges in extreme ... Keywords: Active structural control, Active structures, Adaptive structures, Biomimetics, Engineering informatics, Intelligent structures

Sinan Korkmaz

2011-12-01T23:59:59.000Z

294

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network (OSTI)

by petition only. 405 Applications of Probability and Statistics for Chemical Engineers (3, Fa) Principles of probability and statistics, random variables and random functions. Application to chemical engineering Chemical Reactor Analysis (3, Fa) Basic concepts of chemical kinetics and chemical reactor design

Wang, Hai

295

Development of ceramic matrix composites for application in Ceramic Technology for Advanced Heat Engine program  

DOE Green Energy (OSTI)

The objectives of the program are to develop an advanced toughened silicon nitride composite and a process for near net shape part fabrication. This program was initiated in 1985. The initial phase of the program considered particulate and whisker-reinforced composites and examined the effect of TiC and SiC dispersoids on fracture toughness of Si{sub 3}N{sub 4}. The best results were obtained with whisker reinforcements. Silicon carbide whisker-reinforced Si{sub 3}N{sub 4} was selected for further development. A predictive model that relates microstructure-fracture toughness dependence developed and scrutinized in the course of these studies has shown that fracture toughness of polycrystalline ceramics could be affected by changes of grain size and shape as well as strength of intergranular bond. Accordingly, it was shown that a deflection/debonding mechanism could utilize Si{sub 3}N{sub 4} whiskers to toughen Si{sub 3}N{sub 4} body. Si{sub 3}N{sub 4}-SiC composites offer a number of distinct advantages over monolith,'' which in addition to their improved thermal shock and wear resistance (due particularly to improved conductivity and hardness), Si{sub 3}N{sub 4}-SiC composites are tailorable with respect to high-temperature properties. It was considered that in heat engine applications, Si{sub 3}N{sub 4}-SiC whisker composites, due to their higher hardness, thermal conductivity, thermal shock, and wear resistance, have a definite advantage and warrant further development. In the current program (Phase 11), 1987--1989, the properties were further improved to achieve nearly two times higher fracture toughness and considerably improved elevated temperature (1400{degrees}C) strength of the composite. These improvements were obtained through optimization of processing and modifications of composite phase assembly, primarily intergranular phase.

Buljan, S.T.; Baldoni, J.G.; Huckabee, M.L.; Neil, J.; Hefter, J. (GTE Labs., Inc., Waltham, MA (United States))

1992-04-01T23:59:59.000Z

296

DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines  

DOE Green Energy (OSTI)

Research in 2011 was focused on diesel range fuels and diesel combustion and fuels evaluated in 2011 included a series of oxygenated biofuels fuels from University of Maine, oxygenated fuel compounds representing materials which could be made from sewage, oxygenated marine diesel fuels for low emissions, and a new series of FACE fuel surrogates and FACE fuels with detailed exhaust chemistry and particulate size measurements. Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel fuel (hydrotreated vegetable oil) from UOP, University of Maine cellulosic biofuel (levulene), and pyrolysis derived fuels from UOP pyrolysis oil, upgraded at University of Georgia. We were able to demonstrate, through a project with University of Wisconsin, that a hybrid strategy for fuel surrogates provided both accurate and rapid CFD combustion modeling for diesel HCCI. In this strategy, high molecular weight compounds are used to more accurately represent physical processes and smaller molecular weight compounds are used for chemistry to speed chemical calculations. We conducted a small collaboration with sp3H, a French company developing an on-board fuel quality sensor based on near infrared analysis to determine how to use fuel property and chemistry information for engine control. We were able to show that selected outputs from the sensor correlated to both fuel properties and to engine performance. This collaboration leveraged our past statistical analysis work and further work will be done as opportunity permits. We conducted blending experiments to determine characteristics of ethanol blends based on the gasoline characteristics used for blending. Results indicate that much of the octane benefits gained by high level ethanol blending can be negated by use of low octane gasoline blend stocks, as allowed by ASTM D5798. This may limit ability to optimize engines for improved efficiency with ethanol fuels. Extensive data from current and previous years was leveraged into participation with several large proposal teams, as our fuels database covers a very wide range of conventional and emerging fuels and biofuels.

Bunting, Bruce G [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

297

NETL: Mercury Emissions Control Technologies - Advanced Mercury Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Mercury Sorbents with Low Impact on Power Plant Operations Advanced Mercury Sorbents with Low Impact on Power Plant Operations Apogee Scientific, Inc. (Apogee) will lead a Team comprised of Southern Company Services, TXU, Tennessee Valley Authority, EPRI, URS Group, University of Illinois-Illinois State Geological Survey (ISGS), Southern Research Institute (SRI), Calgon Carbon, and TDA Research, Inc., to evaluate a number of advanced sorbents for removing vapor-phase mercury from coal-fired flue gas that have minimal impact on by-product utilization and/or on existing particulate collection devices (PCD). The main objective of this program is to evaluate several advanced sorbents for removing mercury from coal-fired flue gas while posing minimal impact on plant operations through three advanced sorbent concepts: 1) Sorbents which minimize impact on concrete production through selective chemical passivation of activated carbon and use of non-carbon material, 2) sorbents that minimize baghouse pressure drop and ESP emissions, and 3) sorbents that can be recovered and reused.

298

Field Testing LIDAR Based Feed-Forward Controls on the NREL Controls Advanced Research Turbine: Preprint  

DOE Green Energy (OSTI)

Wind turbines are complex, nonlinear, dynamic systems driven by aerodynamic, gravitational, centrifugal, and gyroscopic forces. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a chaotic three-dimensional (3-D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. In order to reduce cost of energy, future large multimegawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energy Laboratory (NREL) and University of Stuttgart are designing, implementing, and testing advanced feed-back and feed-forward controls in order to reduce the cost of energy for wind turbines.

Scholbrock, A. K.; Fleming, P. A.; Fingersh, L. J.; Wright, A. D.; Schlipf, D.; Haizmann, F.; Belen, F.

2013-01-01T23:59:59.000Z

299

Advanced Wind Turbine Controls Reduce Loads (Fact Sheet)  

DOE Green Energy (OSTI)

NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms.

Not Available

2012-03-01T23:59:59.000Z

300

Engineering coherent control of quantum information in spin systems  

E-Print Network (OSTI)

Quantum Information Processing (QIP) promises increased efficiency in computation. A key step in QIP is implementing quantum logic gates by engineering the dynamics of a quantum system. This thesis explores the requirements ...

Hodges, Jonathan Stuart

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Engineering Engineering1354608000000EngineeringSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Engineering Some of these resources are LANL-only and will require Remote Access. Key Resources Reference Standards Data Sources Organizations Journals Key Resources Engineering Village Includes Engineering Index (Ei) and Compendex Knovel Handbooks, databases, and eBooks integrated with analytical and search tools IEEE Xplore Full text access to technical literature, standards, and conference proceedings in engineering and technology SPIE Digital Library Full-text papers from SPIE journals and proceedings published since 1998; subject coverage includes optics, photonics, electronic imaging, visual information processing, biomedical optics, lasers, and

302

Advance of Systematic Design Methods on Fuzzy Control  

E-Print Network (OSTI)

The heating, ventilation and air-conditioning (HVAC) system possesses some characteristics such as multi-parameters, nonlinear, and coupled parameters. Aimed at control problems, the author targets real-time fuzzy control and research systematically via the fuzzification method, fuzzy inference method, fuzzy control rules online obtaining and optimizing method, self-organizing fuzzy control method, and fuzzy predictive control of a time-delayed process. This paper will briefly introduce previous research results.

Zhang, J.; Chen, Y.

2006-01-01T23:59:59.000Z

303

Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrodynamics Bioscience, Biosecurity, Health Chemical Science Earth, Space Sciences Energy Engineering High Energy Density Plasmas, Fluids Information Science, Computing,...

304

Development of Advanced Natural Gas Reciprocating Engines for the DR Market  

Science Conference Proceedings (OSTI)

Currently, reciprocating engines are a key facet of the distributed resources (DR) market, ranging from residential, commercial, and industrial standby generators to peaking, peakshaving, prime power, and cogeneration units used in commercial, institutional, and industrial applications. Reciprocating engines have over 100 years of development and application experience for mobile and stationary uses, with several million engines produced annually. In more recent time, forecasts have been made about decre...

2000-12-19T23:59:59.000Z

305

Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992  

SciTech Connect

This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

1992-12-31T23:59:59.000Z

306

SCE perspective Syed Ahmed is a Consulting Engineer for Advanced Technology at Southern California Edison.  

E-Print Network (OSTI)

California Edison Key Issues · Aging electric power infrastructure. · Limited network capacity to absorb - Continued · Financial Resources ­ Limited ­ Too costly to completely replace the aging system ­ Utilities. ­ There is an industry-wide shortage of power engineers and faculty. ­ 60% of utility engineers are of retirement age

Levi, Anthony F. J.

307

College of Engineering CME Chemical Engineering  

E-Print Network (OSTI)

550andengineeringstanding. CME 462 PROCESS CONTROL. (3) Basic theory of automatic control devices. Technologies covered include coal, natural gas, nuclear, biomass, wind, solar and advanced technologies. Prereq: Engineering standing or consent of instructor. (Same as EGR 542.) CME 550 CHEMICAL REACTOR DESIGN. (3

Kim, Mi-Ok

308

Control of HCCI engine fueled with gasoline with electro-hydraulic variable valve system  

Science Conference Proceedings (OSTI)

The homogeneous charge compression ignition-HCCI (also to be known as controlled auto ignition-CAI) engine concept has the potential to be highly efficient and to produce low NOx emissions whilst conventional engine suffered from consumption and emission ... Keywords: HCCI, gasoline, trapped residual gas

Gao Fengjun; Guo Yingnan; Liu Fafa; Li Hua; Ji Honggang; Tan Manzhi

2010-03-01T23:59:59.000Z

309

Experimental Study of Air-Fuel Ratio Control Strategy for a Hydrogen Internal Combustion Engine  

Science Conference Proceedings (OSTI)

One of the most attractive combustive features for hydrogen fuel is its wide range of flammability. The wide flammability limits allow hydrogen engine to be operated at extremely lean air–fuel ratios compared to conventional fuels. Concepts for ... Keywords: Hydrogen internal combustion engine, Air/Fuel ratio, Control strategy

Zhong-yu Zhao; Fu-shui Liu

2010-11-01T23:59:59.000Z

310

Fusion Engineering and Design 80 (2006) 2562 Physics basis for the advanced tokamak fusion  

E-Print Network (OSTI)

2005 Abstract The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-axis. Transport projections are presented using the drift-wave based GLF23 model. The approach to power.V. All rights reserved. Keywords: Reactor studies; Fusion power plant; Advanced tokamak; Physics basis 1

311

WPF Control Development Unleashed: Building Advanced User Experiences, 1st edition  

Science Conference Proceedings (OSTI)

WPF Control Development Unleashed Building Advanced User Experiences In this book, two leading Windows Presentation Foundation experts give developers everything they need to build next-generation WPF applicationssoftware that is more robust, usable, ...

Pavan Podila; Kevin Hoffman

2009-09-01T23:59:59.000Z

312

FEASIBILITY STUDY OF THE POTENTIAL USE OF CHEMISTRY BASED EMISSION PREDICTIONS FOR REAL-TIME CONTROL OF MODERN DIESEL ENGINES.  

E-Print Network (OSTI)

. Adding the model to the overall engine and aftertreatment control and diagnostics strategy. "NOx prediction in diesel engines for aftertreatment control," ASME 2003-41196. [5] Aithal SM. 2008-TIME CONTROL OF MODERN DIESEL ENGINES. S. M. Aithal Mathematics and Computer Science Division Argonne National

313

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network (OSTI)

Chemical Process and Plant Design (3, Sp) Applications of unit opera- tions, thermodynamics, kinetics variables and random functions. Application to chemical engineering problems, including process design concepts of chemical kinetics and chemi- cal reactor design. Prerequisite: MATH 245. coUrSeS of in

Wang, Hai

314

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network (OSTI)

. Enrollment by petition only. CHE 405 Applications of Probability and Statistics for Chemical Engineers (3, Fa) Principles of probability and statistics, random variables and random functions. Application to chemical) CHE 442 Chemical Reactor Analysis (3, Fa) Basic concepts of chemical kinetics and chemical reactor

Wang, Hai

315

Method and apparatus for controlling fuel/air mixture in a lean burn engine  

DOE Patents (OSTI)

The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

Kubesh, John Thomas (San Antonio, TX); Dodge, Lee Gene (San Antonio, TX); Podnar, Daniel James (San Antonio, TX)

1998-04-07T23:59:59.000Z

316

Recent advances and future challenges for artificial neural systems in geotechnical engineering applications  

Science Conference Proceedings (OSTI)

Artificial neural networks (ANNs) are a form of artificial intelligence that has proved to provide a high level of competency in solving many complex engineering problems that are beyond the computational capability of classicalmathematics and traditional ...

Mohamed A. Shahin; Mark B. Jaksa; Holger R. Maier

2009-01-01T23:59:59.000Z

317

System theoretic framework for assuring safety and dependability of highly integrated aero engine control systems  

E-Print Network (OSTI)

The development of complex, safety-critical systems for aero-engine control is subject to the, often competing, demands for higher safety and reduced development cost. Although the commercial aerospace industry has a general ...

Atherton, Malvern J

2005-01-01T23:59:59.000Z

318

Experimental Dependability Evaluation of a Fail-Bounded Jet Engine Control System for Unmanned Aerial Vehicles  

E-Print Network (OSTI)

to the Boeing X45 variants B and C [2], which use a similar engine (F404-GE- 102D). The controller decreased. Previously, such upsets mainly occurred in electronic equipment in space because of heavy

Karlsson, Johan

319

Thermal Performance Engineering Handbook, Volume II: Advanced Concepts in Thermal Performance  

Science Conference Proceedings (OSTI)

The two-volume Thermal Performance Engineering Handbook will assist thermal performance engineers in identifying and investigating the cause of megawatt (MWe) losses as well as in proposing new ways to increase MWe output. Volume I contains a thermal performance primer to provide a brief review of thermodynamic principles involved in the steam power plant thermal cycle. The primer also contains brief descriptions of the equipment and systems in the cycle that can be sources of thermal losses. Also in Vol...

1998-10-29T23:59:59.000Z

320

Enhanced model and fuzzy strategy of air to fuel ratio control for spark ignition engines  

Science Conference Proceedings (OSTI)

Various mathematical models for the air to fuel ratio and control for spark ignition (SI) engines have been proposed to satisfy technical specifications. This paper reveals an improvement of the mean value model (MVEM) and a simple yet effective nonlinear ... Keywords: Air-fuel ratio, FOPDDT, Fuzzy control, Internal combustion, Nonlinear control

Anurak Jansri; Pitikhate Sooraksa

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control  

Science Conference Proceedings (OSTI)

Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

Li, Liyu [Richland, WA; King, David L [Richland, WA

2011-03-15T23:59:59.000Z

322

Variable cooling circuit for thermoelectric generator and engine and method of control  

DOE Patents (OSTI)

An apparatus is provided that includes an engine, an exhaust system, and a thermoelectric generator (TEG) operatively connected to the exhaust system and configured to allow exhaust gas flow therethrough. A first radiator is operatively connected to the engine. An openable and closable engine valve is configured to open to permit coolant to circulate through the engine and the first radiator when coolant temperature is greater than a predetermined minimum coolant temperature. A first and a second valve are controllable to route cooling fluid from the TEG to the engine through coolant passages under a first set of operating conditions to establish a first cooling circuit, and from the TEG to a second radiator through at least some other coolant passages under a second set of operating conditions to establish a second cooling circuit. A method of controlling a cooling circuit is also provided.

Prior, Gregory P

2012-10-30T23:59:59.000Z

323

The advanced-step %MPC controller: optimality, stability and ...  

E-Print Network (OSTI)

tory reactor [5] asw ell as in numerous industrial stud- ies. ... ous stirred tank reactor (C STR) example and discuss ...... Control Theory Appl., 147(4), 387-394,.

324

Open loop pneumatic control of a Lysholm engine or turbine exhaust pressure  

DOE Green Energy (OSTI)

A Lysholm engine, or helical screw expander, is currently being evaluated at the University of California, Berkeley for staging with a conventional turbine in geothermal energy conversion. A pneumatic closed loop, proportional-integral control system was implemented to control the Lysholm engine's exhaust pressure for performance testing of the engine at constant inlet/outlet pressure ratios. The control system will also be used to control the exhaust pressure of the conventional turbine during future testing of the staged Lysholm-turbine system. Analytical modeling of the control system was performed and successful tuning was achieved by applying Ziegler-Nichol's tuning method. Stable control and quick response, of approximately 1 minute, was demonstrated for load and set point changes in desired exhaust pressures.

Plonski, B.A.

1981-07-17T23:59:59.000Z

325

Controls Advanced Research Turbine (CART) Commissioning and Baseline Data Collection  

DOE Green Energy (OSTI)

During FY2002, the CART turbine and controller were developed and commissioned. This included developing and checking out the protection and operational control systems. More than 50 hours of data were collected in constant and variable-speed modes. A new strategy, which underwent limited testing on the machine, was created for avoiding tower resonance. All the data from the checkout through the operational periods were organized, archived, and backed up.

Fingersh, L. J.; Johnson, K.

2002-10-01T23:59:59.000Z

326

Advanced Data Processing and Computing Technologies at Control Centers  

Science Conference Proceedings (OSTI)

Control center operation is becoming more complex as new and often-conflicting reliability, economics, and public policy issues emerge. To manage the complexity, control center operators need prompt, comprehensive information about their own systems and neighboring systems. Computer simulations analyze system data and what-if-scenarios to derive succinct information for operators to make more informed decisions. This report reviews the applicability of new technologies and some solution methods for addre...

2011-12-05T23:59:59.000Z

327

Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan  

SciTech Connect

Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

Bruce Hallbert

2012-09-01T23:59:59.000Z

328

Technology enabled re-engineering : a business strategy for advancing Bangladesh  

E-Print Network (OSTI)

A strategy is presented to rapidly advance a developing nation utilizing the power of Information and Communication Technologies (ICT). A banking institution is chosen to be the anchor tenant to spread ICT. A radical ...

Hasan, Abdullah

2003-01-01T23:59:59.000Z

329

Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 1, Final report  

DOE Green Energy (OSTI)

Emphasis of this program is to develop and demonstrate ceramics life prediction methods, including fast fracture, stress rupture, creep, oxidation, and nondestructive evaluation. Significant advancements were made in these methods and their predictive capabilities successfully demonstrated.

Cuccio, J.C.; Brehm, P.; Fang, H.T. [Allied-Signal Aerospace Co., Phoenix, AZ (United States). Garrett Engine Div.] [and others

1995-03-01T23:59:59.000Z

330

Advanced regulatory control and coordinated plant-wide control strategies for IGCC targeted towards improving power ramp-rates  

Science Conference Proceedings (OSTI)

As part of ongoing R&D activities at the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training & Research (AVESTAR™) Center, this paper highlights strategies for enhancing low-level regulatory control and system-wide coordinated control strategies implemented in a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with carbon capture. The underlying IGCC plant dynamic model contains 20 major process areas, each of which is tightly integrated with the rest of the power plant, making individual functionally-independent processes prone to routine disturbances. Single-loop feedback control although adequate to meet the primary control objective for most processes, does not take into account in advance the effect of these disturbances, making the entire power plant undergo large offshoots and/or oscillations before the feedback action has an opportunity to impact control performance. In this paper, controller enhancements ranging from retuning feedback control loops, multiplicative feed-forward control and other control techniques such as split-range control, feedback trim and dynamic compensation, applicable on various subsections of the integrated IGCC plant, have been highlighted and improvements in control responses have been given. Compared to using classical feedback-based control structure, the enhanced IGCC regulatory control architecture reduces plant settling time and peak offshoots, achieves faster disturbance rejection, and promotes higher power ramp-rates. In addition, improvements in IGCC coordinated plant-wide control strategies for “Gasifier-Lead”, “GT-Lead” and “Plantwide” operation modes have been proposed and their responses compared. The paper is concluded with a brief discussion on the potential IGCC controller improvements resulting from using advanced process control, including model predictive control (MPC), as a supervisory control layer.

Mahapatra, P.; Zitney, S.

2012-01-01T23:59:59.000Z

331

Identification of tribological research and development needs for lubrication of advanced heat engines  

DOE Green Energy (OSTI)

The continuous evolution of higher power density propulsion systems has always fueled the search for materials and lubricants with improved thermal and/or durability characteristics. Tribology of the upper cylinder region is the major technology roadblock in the path of the adiabatic diesel engine which has an energy reduction potential that exceeds that of all other engine development types. This tribology assessment resulted in the following major conclusions: a low friction and a low wear seal between the ring belt and cylinder bore are the most critical tribology functions in the diesel combustion chamber; development of solid lubrication systems will not satisfy the simultaneous low friction and low wear requirements in the upper cylinder area; development of separate upper cylinder liquid lubrication systems offers the most attractive design alternative for meeting the operational goals of future ''minimum cooled'' diesel engines.

Fehrenbacher, L.L.; Levinson, T.M.

1985-09-01T23:59:59.000Z

332

COMPUTATIONAL STEERING: TOWARDS ADVANCED INTERACTIVE HIGH PERFORMANCE COMPUTING IN ENGINEERING SCIENCES  

E-Print Network (OSTI)

Key-words: Computational steering, high-performance computing, interactive simulation, virtual reality, CFD Computational Science and Engineering faces a continuous increase of speed of computers and availability of very fast networks. Yet, it seems that some opportunities offered by these ongoing developments are only used to a fraction for numerical simulation. Moreover, despite new possibilities from computer visualization, virtual or augmented reality and collaboration models, most available engineering software still follows the classical way of a strict separation of preprocessing, computing and postprocessing. This paper will first identify some of the major obstructions of an interactive computation for complex simulation tasks in engineering sciences. These are especially found in traditional software structures, in the definition of geometric models and boundary conditions and in the often still very tedious work of generating computational meshes. It then presents a generic approach for collaborative computational steering, where pre- and postprocessing is integrated with high

Ernst Rank; André Borrmann; Er Düster; Christoph Van Treeck; Petra Wenisch

2008-01-01T23:59:59.000Z

333

Advanced Branching Control and Characterization of Inorganic Semiconducting Nanocrystals  

E-Print Network (OSTI)

and Shape-Controlled Colloidal CdSe Quantum Rods. Nano Lett.of highly luminescent CdSe/CdS core–shell nanocrystals viabowings, and defects in CdS, CdSe, CdTe, and …. In Journal

Hughes, Steven Michael

2009-01-01T23:59:59.000Z

334

Designing for man: advances in control room operation  

SciTech Connect

Considers the human factor in nuclear power plants in relation to improving control room and maintenance operations. Control room operators face thousands of dials, meters, and indicator lights dispersed over large control boards. Components may not be arranged in clearly identifiable panels of related elements; sometimes related controls may not be near each other. Extensive alarm systems may sometimes confuse rather than alert the operators; communications with other parts of the plant may be difficult. Maintenance personnel may have to squeeze past pipes and similar obstructions to make repairs while carrying equipment and tools, sometimes while wearing protective gear. EPRI has developed a cool suit consisting of 16 pounds of water-filled compartments built into a two-piece repair suit that can be frozen to keep body temperatures at acceptable levels for up to 2 hrs. in high-heat areas of the plant. An ergonomics guide, which examines alternative solutions to heat stress (such as rest cycles and worker screening) is also being developed. Because few new nuclear plants are currently being built, many of the improvements will be retrofits in existing plants. EPRI's human factors work emphasizes thorough validation of new techniques through simulators and mockups.

Lihach, N.

1982-07-01T23:59:59.000Z

335

Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels  

SciTech Connect

The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

Pratapas, John; Zelepouga, Serguei; Gnatenko, Vitaliy; Saveliev, Alexei; Jangale, Vilas; Li, Hailin; Getz, Timothy; Mather, Daniel

2013-08-31T23:59:59.000Z

336

Analytical and experimental evaluation of joining silicon nitride to metal and silicon carbide to metal for advanced heat engine applications  

DOE Green Energy (OSTI)

This report summarizes the results of Phase I of Analytical and Experimental Evaluation of Joining Silicon Nitride to Metal and Silicon Carbide to Metal and Silicon Carbide to Metal for Advanced Heat Engine Applications. A general methodology was developed to optimize the joint geometry and material systems for 650 and 950{degree}C applications. Failure criteria were derived to predict the fracture of the braze and ceramic. Extensive finite element analyses (FEA), using ABAQUS code, were performed to examine various joint geometries and to evaluate the affect of different interlayers on the residual stress state. Also, material systems composed of coating materials, interlayers, and braze alloys were developed for the program based on the chemical stability and strength of the joints during processing and service. Finally, the FEA results were compared with experiments using an idealized strength relationship. The results showed that the measured strength of the joint reached 30--90% of the strength by predicted by FEA. Overall results demonstrated that FEA is an effective tool for designing the geometries of ceramic-metal joints and that joining by brazing is a relevant method for advanced heat engine applications. 33 refs., 54 figs., 36 tabs.

Kang, S.; Selverian, J.H.; Kim, H.; O'Niel, D.; Kim, K. (GTE Labs., Inc., Waltham, MA (USA))

1990-04-01T23:59:59.000Z

337

Vehicle Technologies Office: Emission Control R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Control R&D The Vehicle Technologies Office (VTO) supports research and development of aftertreatment technologies to control advanced combustion engine exhaust emissions. All...

338

Advanced Control and Protection system Design Methods for Modular HTGRs  

DOE Green Energy (OSTI)

The project supported the Nuclear Regulatory Commission (NRC) in identifying and evaluating the regulatory implications concerning the control and protection systems proposed for use in the Department of Energy's (DOE) Next-Generation Nuclear Plant (NGNP). The NGNP, using modular high-temperature gas-cooled reactor (HTGR) technology, is to provide commercial industries with electricity and high-temperature process heat for industrial processes such as hydrogen production. Process heat temperatures range from 700 to 950 C, and for the upper range of these operation temperatures, the modular HTGR is sometimes referred to as the Very High Temperature Reactor or VHTR. Initial NGNP designs are for operation in the lower temperature range. The defining safety characteristic of the modular HTGR is that its primary defense against serious accidents is to be achieved through its inherent properties of the fuel and core. Because of its strong negative temperature coefficient of reactivity and the capability of the fuel to withstand high temperatures, fast-acting active safety systems or prompt operator actions should not be required to prevent significant fuel failure and fission product release. The plant is designed such that its inherent features should provide adequate protection despite operational errors or equipment failure. Figure 1 shows an example modular HTGR layout (prismatic core version), where its inlet coolant enters the reactor vessel at the bottom, traversing up the sides to the top plenum, down-flow through an annular core, and exiting from the lower plenum (hot duct). This research provided NRC staff with (a) insights and knowledge about the control and protection systems for the NGNP and VHTR, (b) information on the technologies/approaches under consideration for use in the reactor and process heat applications, (c) guidelines for the design of highly integrated control rooms, (d) consideration for modeling of control and protection system designs for VHTR, and (e) input for developing the bases for possible new regulatory guidance to assist in the review of an NGNP license application. This NRC project also evaluated reactor and process heat application plant simulation models employed in the protection and control system designs for various plant operational modes and accidents, including providing information about the models themselves, and the appropriateness of the application of the models for control and protection system studies. A companion project for the NRC focused on the potential for new instrumentation that would be unique to modular HTGRs, as compared to light-water reactors (LWRs), due to both the higher temperature ranges and the inherent safety features.

Ball, Sydney J [ORNL; Wilson Jr, Thomas L [ORNL; Wood, Richard Thomas [ORNL

2012-06-01T23:59:59.000Z

339

Engines - Emissions Control - cerium-oxide catalyst, diesel,...  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Control Heavy duty diesel vehicles product particulate matter emissions. The U.S. Environmental Protection Agency regulations require that heavy-duty diesel vehicles have...

340

Advanced Cogeneration Control, Optimization, and Management: A Case Study  

E-Print Network (OSTI)

The performance of cogeneration power plants can now be assessed on line in real time using a distributed microprocessor-based data acquisition and control system. A representative implementation is described for cogeneration power in a food processing plant. The COPA (COgeneration Performance Assessment) package comprises separate, distributed control modules for data input, performance analysis for each plant device, overall plant performance summary, and operator displays. Performance of each of the respective cogeneration devices is assessed relative to a performance model of the device, thus an accurate assessment of performance is provided under all load conditions. Operator displays provide real time depiction of the performance of each device and the overall plant performance. Deterioration of performance of a device is quantified in terms of the cost of additional fuel requirements and/or the value of power not produced.

Hinson, F.; Curtin, D.

1988-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advanced control strategies for HVAC&R systems—An overview: Part II: Soft and fusion control  

SciTech Connect

A chronological overview of the advanced control strategies for HVAC&R is presented. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and the fusion or hybrid of hard and soft control techniques. Part I focused on hardcontrol strategies; Part II focuses on soft and fusion control and some future directions in HVA&R research. This overview is not intended to be an exhaustive survey on this topic, and any omissions of other works is purely unintentional.

D. Subbaram Naidu; Craig G. Rieger

2011-04-01T23:59:59.000Z

342

Designing for man: advances in control room operation  

SciTech Connect

Power plants are made up of hardware, but they are operated and maintained by humans. Since Three Mile Island, the role of human factors in safe and economic power generation has been more fully appreciated. Control board displays, alarm systems, procedures, and even the space allotted for making repairs are all under industry study. Many of the improvements will be retrofits because so few new plants are being built. An effort will be made to pace regulatory changes and train operators with simulators so that the rate of change doesn't become a major problem. 7 references, 2 figures.

Lihach, N.; Cain, D.; Loewenstein, W.; Long, A.; O'Brien, J.; Parris, H.; Rossin, A.D.; Rubio, A.

1982-07-01T23:59:59.000Z

343

Stirling engine power control and motion conversion mechanism  

DOE Patents (OSTI)

A motion conversion device for converting between the reciprocating motion of the pistons in a Stirling engine and the rotating motion of its output shaft, and for changing the stroke and phase of the pistons, includes a lever pivoted at one end and having a cam follower at the other end. The piston rod engages the lever intermediate its ends and the cam follower engages a cam keyed to the output shaft. The lever pivot can be moved to change the length of the moment arm defined between the cam follower and the piston rod the change the piston stroke and force exerted on the cam, and the levers can be moved in opposite directions to change the phase between pistons.

Marks, David T. (Birmingham, MI)

1983-01-01T23:59:59.000Z

344

Human-factors engineering-control-room design review: Shoreham Nuclear Power Station. Draft audit report  

Science Conference Proceedings (OSTI)

A human factors engineering preliminary design review of the Shoreham control room was performed at the site on March 30 through April 3, 1981. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. This report was prepared on the basis of the HFEB's review of the applicant's Preliminary Design Assessment and the human factors engineering design review/audit performed at the site. The presented sections are numbered to conform to the guidelines of the draft version of NUREG-0700. They summarize the teams's observations of the control room design and layout, and of the control room operators' interface with the control room environment.

Peterson, L.R.; Preston-Smith, J.; Savage, J.W.; Rousseau, W.F.

1981-04-24T23:59:59.000Z

345

University of California, Irvine Henry Samueli School of Engineering  

E-Print Network (OSTI)

engines as a Toxic Air Contaminant. For diesel engines, advances in emissions control technology and after-treatmentUniversity of California, Irvine Henry Samueli School of Engineering Department of Mechanical and Aerospace Engineering Computational Environmental Sciences Laboratory Principal Investigator: Donald Dabdub

Dabdub, Donald

346

Modeling of liner finish effects on oil control ring lubrication in internal combustion engines based on deterministic method  

E-Print Network (OSTI)

Twin-land oil control ring is widely used in the automotive diesel engines, and is gaining more and more applications in the modern designs of gasoline engines. Its interaction with the cylinder liner surface accounts for ...

Chen, Haijie

2008-01-01T23:59:59.000Z

347

Energy savings and economics of advanced control strategies for packaged air conditioners with gas heat  

Science Conference Proceedings (OSTI)

This paper presents an evaluation of the potential energy savings from adding advanced control to existing packaged air conditioners. Advanced control options include air-side economizer, multi-speed fan control, demand control ventilation and staged cooling. The energy and cost savings from the different control strategies individually and in combination are estimated using the EnergyPlus detailed energy simulation program for four building types, namely, a small office building, a stand-alone retail building, a strip mall building and a supermarket building. For each of the four building types, the simulation was run for 16 locations covering all 15 climate zones in the U.S. The maximum installed cost of a replacement controller that provides acceptable payback periods to owners is estimated.

Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

2013-10-01T23:59:59.000Z

348

Engineering-Economic Evaluations of Advanced Coal Technologies with Carbon Capture and Storage  

Science Conference Proceedings (OSTI)

This is the current update in a continuing report series that distills the results of engineering and economic studies, by the Electric Power Research Institute (EPRI) and others, to furnish an overview of the expected costs and performance for fossil-fuel-based power plants with carbon dioxide capture and sequestration, including pulverized coal, fluidized-bed combustion, integrated gasification combined cycle, and natural gas combined cycle. The report surveys publicly reported cost estimates and statu...

2010-09-30T23:59:59.000Z

349

Engineering/Economic Evaluations of Advanced Coal Technologies with Carbon Capture and Storage - 2012  

Science Conference Proceedings (OSTI)

This is the 2012 update in an annual report series that distills the results of engineering and economic studies by the Electric Power Research Institute (EPRI) and others to provide an overview of the expected costs and performance for fossil-fuel-based power plants with carbon capture and storage (CCS). Power plant types covered in the report include pulverized coal, fluidized-bed combustion, integrated-gasification combined-cycle, and natural-gas combined-cycle. The report surveys publicly ...

2012-08-31T23:59:59.000Z

350

Engineering-Economic Evaluations of Advanced Coal Technologies with Carbon Capture and Storage -- 2011  

Science Conference Proceedings (OSTI)

This is the 2011 update in a continuing report series that distills the results of engineering and economic studies by the Electric Power Research Institute (EPRI) and others to furnish an overview of the expected costs and performance for fossil-fuel-based power plants with carbon dioxide (CO2) capture and sequestration, including pulverized coal, fluidized-bed combustion, integrated-gasification combined-cycle, and natural-gas combined-cycle plants. The report surveys publicly reported cost estimates a...

2011-06-30T23:59:59.000Z

351

Project title: A UK masters course in Advanced Chemical Engineering Practice  

E-Print Network (OSTI)

program design to share courses wherever possible, and bring together students from different disciplines. Joint delivery of management and technical material in order to focus innovation into more high-value areas of problem definition and needs... -related subjects. Benefits to companies Companies can benefit from this programme in two main ways. The first is by direct recruitment of the very highly trained and motivated chemical engineers who complete the programme. The second is by hosting...

2009-07-10T23:59:59.000Z

352

Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications Phase II. Final report  

SciTech Connect

The research program had as goals the development and demonstration of significant improvements in processing methods, process controls, and nondestructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1370{degrees}C. In Phase I of the program a process was developed that resulted in a silicon nitride - 4 w% yttria HIP`ed material (NCX 5102) that displayed unprecedented strength and reliability. An average tensile strength of 1 GPa and a strength distribution following a 3-parameter Weibull distribution were demonstrated by testing several hundred buttonhead tensile specimens. The Phase II program focused on the development of methodology for colloidal consolidation producing green microstructure which minimizes downstream process problems such as drying, shrinkage, cracking, and part distortion during densification. Furthermore, the program focused on the extension of the process to gas pressure sinterable (GPS) compositions. Excellent results were obtained for the HIP composition processed for minimal density gradients, both with respect to room-temperature strength and high-temperature creep resistance. Complex component fabricability of this material was demonstrated by producing engine-vane prototypes. Strength data for the GPS material (NCX-5400) suggest that it ranks very high relative to other silicon nitride materials in terms of tensile/flexure strength ratio, a measure of volume quality. This high quality was derived from the closed-loop colloidal process employed in the program.

Pujari, V.J.; Tracey, D.M.; Foley, M.R. [and others

1996-02-01T23:59:59.000Z

353

Advanced Control Design and Field Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint  

DOE Green Energy (OSTI)

Utility-scale wind turbines require active control systems to operate at variable rotational speeds. As turbines become larger and more flexible, advanced control algorithms become necessary to meet multiple objectives such as speed regulation, blade load mitigation, and mode stabilization. At the same time, they must maximize energy capture. The National Renewable Energy Laboratory has developed control design and testing capabilities to meet these growing challenges.

Hand, M. M.; Johnson, K. E.; Fingersh, L. J.; Wright, A. D.

2004-05-01T23:59:59.000Z

354

STATEMENT OF CONSIDERATIONS REQUEST BY ALSTOM ENVIRONMENTAL CONTROL SYSTEMS FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ALSTOM ENVIRONMENTAL CONTROL SYSTEMS FOR AN ADVANCE ALSTOM ENVIRONMENTAL CONTROL SYSTEMS FOR AN ADVANCE WAIVER OF PATENT RIGHTS TO INVENTIONS MADE UNDER SUBCONTRACT QZ001 UNDER COOPERATIVE AGREEMENT DE-FC26-03NT41986; W(A) 05-004; CH-1268 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Alstom Environmental Control Systems (Alstom) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above subject subcontract. The waiver will apply only to inventions made by Alstom employees under the subcontract. Alstom is a subcontractor to ADA Environmental Solutions (ADA-ES). under the subject cooperative agreement. ADA-ES is eligible to retain title to its inventions pursuant to P.L. 96- 517. Referring to item 2 of Alstom's petition, the purpose of the subcontract is to evaluate full-

355

Systems engineering identification and control of mixed waste technology development  

SciTech Connect

The Department of Energy (DOE) established the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop technologies required to meet the Department`s commitments for treatment of mixed low-level and transuranic wastes. Waste treatment includes all necessary steps from generation through disposal. Systems engineering was employed to reduce programmatic risk, that is, risk of failure to meet technical commitments within cost and schedule. Customer needs (technology deficiencies) are identified from Site Treatment Plans, Consent Orders, ten year plans, Site Technical Coordinating Groups, Stakeholders, and Site Visits. The Technical Baseline, a prioritized list of technology deficiencies, forms the basis for determining which technology development activities will be supported by the MWFA. Technology Development Requirements Documents are prepared for each technology selected for development. After technologies have been successfully developed and demonstrated, they are documented in a Technology Performance Report. The Technology Performance Reports are available to any of the customers or potential users of the technology, thus closing the loop between problem identification and product development. This systematic approach to technology development and its effectiveness after 3 years is discussed in this paper.

Beitel, G.A.

1997-08-01T23:59:59.000Z

356

Structural control Architecture Optimization for 3-D Systems Using Advanced Multi-Objective Genetic Algorithms  

E-Print Network (OSTI)

The architectures of the control devices in active control algorithm are an important fact in civil structural buildings. Traditional research has limitations in finding the optimal architecture of control devices such as using predefined numbers or locations of sensors and dampers within the 2-and 3-dimensional (3-D) model of the structure. Previous research using single-objective optimization only provides limited data for defining the architecture of sensors and control devices. The Linear Quadratic Gaussian (LQG) control algorithm is used as the active control strategy. The American Society of Civil Engineers (ASCE) control benchmark building definition is used to develop the building system model. The proposed gene manipulation genetic algorithm (GMGA) determines the near-optimal Pareto fronts which consist of varying numbers and locations of sensors and control devices for controlling the ASCE benchmark building by considering multi-objectives such as interstory drift and minimizing the number of the control devices. The proposed GMGA reduced the central processing unit (CPU) run time and produced more optimal Pareto fronts for the 2-D and 3-D 20-story building models. Using the GMGA provided several benefits: (1) the possibility to apply any presuggested multi-objective optimization mechanism; (2) the availability to perform a objective optimization problem; (3) the adoptability of the diverse encoding provided by the GA; (4) the possibility of including the engineering judgment in generating the next generation population by using a gene creation mechanisms; and (5) the flexibility of the gene creation mechanism in applying and changing the mechanism dependent on optimization problem. The near-optimal Pareto fronts obtained offer the structural engineer a diverse choice in designing control system and installing the control devices. The locations and numbers of the dampers and sensors in each story are highly dependent on the sensor locations. By providing near-Pareto fronts of possible solutions to the engineer that also consider diverse earthquakes, the engineer can get normalized patterns of architectures of control devices and sensors about random earthquakes.

Cha, Young Jin

2008-12-01T23:59:59.000Z

357

Energy Requirement of Control: Comments on Maxwell's Demon and Szilard's Engine  

E-Print Network (OSTI)

In mathematical physical analyses of Maxwell's demon and Szilard's engine, a general assumption (explicit or implicit) is that one can neglect the energy needed for driving the trap door in the Maxwell demon and for relocating the piston in the Szilard engine. If this basic assumption is wrong, then the conclusions of a vast literature on the implications of the Second Law of Thermodynamics and Landauer's erasure theorem are incorrect too. Our analysis indicates that the permitted errors in the control, the friction, the velocity versus the thermal velocity, and the quantization of electrical charge play crucial roles in determining the minimum energy requirement of velocity control. The analysis further indicates that the ultimate minimum energy requirements of continuous control of the trapdoor and the piston are much greater than the energy that the Maxwell demon and Szilard engine are able to produce even if all other sources of dissipation (measurement, decision, memory, etc) are neglected.

Kish, Laszlo B

2011-01-01T23:59:59.000Z

358

Active flow control for maximizing performance of spark ignited stratified charge engines. Final report  

DOE Green Energy (OSTI)

Reducing the cycle-to-cycle variability present in stratified-charge engines is an important step in the process of increasing their efficiency. As a result of this cycle-to-cycle variability, fuel injection systems are calibrated to inject more fuel than necessary, in an attempt to ensure that the engines fire on every cycle. When the cycle-to-cycle variability is lowered, the variation of work per cycle is reduced and the lean operating limit decreases, resulting in increased fuel economy. In this study an active flow control device is used to excite the intake flow of an engine at various frequencies. The goal of this excitation is to control the way in which vortices shed off of the intake valve, thus lowering the cycle-to-cycle variability in the flow field. This method of controlling flow is investigated through the use of three engines. The results of this study show that the active flow control device did help to lower the cycle-to-cycle variability of the in-cylinder flow field; however, the reduction did not translate directly into improved engine performance.

Fedewa, Andrew; Stuecken, Tom; Timm, Edward; Schock, Harold J.; Shih, Tom-I.P.; Koochesfahani, Manooch; Brereton, Giles

2002-10-15T23:59:59.000Z

359

Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 15, April 15 1996--June 1996  

SciTech Connect

The Pittsburgh Energy Technology center of the US Department of Energy (DOE) has contracted with Combustion Engineering; Inc. (ABB CE) to perform work on the {open_quotes}Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems{close_quote} Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis and Phases II and III on a cost-share basis.

1996-08-19T23:59:59.000Z

360

ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS  

SciTech Connect

Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-?g/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-?g/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine and hydrogen selenide sorbents. The noncarbon sorbent was able to reduce the concentration to 0 ppb from a starting concentration of 120 ppb. This compares to the target value of 5 ppb (~17?g/m3). The EERC-prepared metal-based pellet and coprecipitate sorbents exhibited arsine reductions of 90% or greater, being below 10 ppb. Corning SR Liquid monoliths exhibited brief periods (<1 hour) of attaining 90% arsine reduction but were able to achieve greater than 80% reduction for several hours. With respect to hydrogen selenide, all Group IB and IIB metal-based sorbents tested exhibited 100% reduction from an inlet concentration of approximately 400 ppb. Corning SR Liquid monoliths exhibited an 82% reduction when two monoliths were tested simultaneously in series.

Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

2010-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Advanced control strategies for heating, ventilation, air-conditioning, and refrigeration systems—An overview: Part I: Hard control  

SciTech Connect

A chronological overview of the advanced control strategies for heating, ventilation, air-conditioning, and refrigeration (HVAC&R) is presented in this article. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and on the fusion or hybrid of hard- and soft-control techniques. Thus, it is to be noted that the terminology “hard” and “soft” computing/control has nothing to do with the “hardware” and “software” that is being generally used. Part I of a two-part series focuses on hard-control strategies, and Part II focuses on softand fusion-control in addition to some future directions in HVAC&R research. This overview is not intended to be an exhaustive survey on this topic, and any omission of other works is purely unintentional.

D. Subbaram Naidu; Craig G. Rieger

2011-02-01T23:59:59.000Z

362

Economics of electron beam and electrical discharge processing for post-combustion NO{sub x} control in internal combustion engines  

DOE Green Energy (OSTI)

This paper discusses the physics and chemistry of non-thermal plasma processing for post-combustion NO{sub x} control in internal combustion engines. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO{sub x} removal mechanisms, and by-product formation. Pollution control applications present a good opportunity for transferring pulsed power techniques to the commercial sector. However, unless advances are made to drastically reduce the price and power consumption of electron beam sources and pulsed power systems, these plasma techniques will not become commercially competitive with conventional thermal or surface-catalytic methods.

Penetrante, B.M.

1993-08-02T23:59:59.000Z

363

Multi-bottle, no compressor, mean pressure control system for a Stirling engine  

SciTech Connect

The invention relates to an apparatus for mean pressure control of a Stirling engine without the need for a compressor. The invention includes a multi-tank system in which there is at least one high pressure level tank and one low pressure level tank wherein gas flows through a maximum pressure and supply line from the engine to the high pressure tank when a first valve is opened until the maximum pressure of the engine drops below that of the high pressure tank opening an inlet regulator to permit gas flow from the engine to the low pressure tank. When gas flows toward the engine it flows through the minimum pressure supply line 2 when a second valve is opened from the low pressure tank until the tank reaches the engine's minimum pressure level at which time the outlet regulator opens permitting gas to be supplied from the high pressure tank to the engine. Check valves between the two tanks prevent any backflow of gas from occurring.

Corey, John A. (Melrose, NY)

1990-01-01T23:59:59.000Z

364

Multi-bottle, no compressor, mean pressure control system for a Stirling engine  

DOE Patents (OSTI)

The invention relates to an apparatus for mean pressure control of a Stirling engine without the need for a compressor. The invention includes a multi-tank system in which there is at least one high pressure level tank and one low pressure level tank wherein gas flows through a maximum pressure and supply line from the engine to the high pressure tank when a first valve is opened until the maximum pressure of the engine drops below that of the high pressure tank opening an inlet regulator to permit gas flow from the engine to the low pressure tank. When gas flows toward the engine it flows through the minimum pressure supply line 2 when a second valve is opened from the low pressure tank until the tank reaches the engine's minimum pressure level at which time the outlet regulator opens permitting gas to be supplied from the high pressure tank to the engine. Check valves between the two tanks prevent any backflow of gas from occurring.

Corey, John A. (Melrose, NY)

1990-01-01T23:59:59.000Z

365

Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.  

Science Conference Proceedings (OSTI)

The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

2009-01-01T23:59:59.000Z

366

Apparatus for controlling the air-fuel ratio in an internal combustion engine  

Science Conference Proceedings (OSTI)

Apparatus for controlling the air-fuel ratio in an internal combustion engine to substantially maintain the ratio at a predetermined value while the engine is operating under various load conditions. The engine has a carburetor with an air passageway through which air is drawn into the engine. Fuel is supplied to the carburetor through a fuel system and mixed with air passing through the carburetor. The presence of oxygen in the combustion products, which is a function of the air-fuel ratio of the mixture, is sensed and a first electrical signal representative of the oxygen content is supplied. The first electrical signal is compared with a predetermined reference level which is a function of the predetermined value to produce a second electrical signal having first and second signal elements, a first signal element being produced when the air-fuel ratio of the mixture is greater than the predetermined level and a second signal element being produced when the ratio is less than the level. A control responsive to the second electrical signal supplies to an air metering unit a control signal by which the quantity of air introduced into the fuel system is controlled. A change in the control signal is produced whenever the second electrical signal has a transition from one signal element to the other thereby for the air metering unit to change the quantity of air introduced into the fuel system conduit by an amount necessary to substantially maintain the air-fuel ratio at the predetermined value.

Gantzert, T.R.; Hicks, D.L.; Lindberg, A.W.

1981-07-21T23:59:59.000Z

367

Start-up and control method and apparatus for resonant free piston Stirling engine  

SciTech Connect

A resonant free-piston Stirling engine having a new and improved start-up and control method and system. A displacer linear electrodynamic machine is provided having an armature secured to and movable with the displacer and having a stator supported by the Stirling engine housing in juxtaposition to the armature. A control excitation circuit is provided for electrically exciting the displacer linear electrodynamic machine with electrical excitation signals having substantially the same frequency as the desired frequency of operation of the Stirling engine. The excitation control circuit is designed so that it selectively and controllably causes the displacer electrodynamic machine to function either as a generator load to extract power from the displacer or the control circuit selectively can be operated to cause the displacer electrodynamic machine to operate as an electric drive motor to apply additional input power to the displacer in addition to the thermodynamic power feedback to the displacer whereby the displacer linear electrodynamic machine also is used in the electric drive motor mode as a means for initially starting the resonant free-piston Stirling engine. 3 figs.

Walsh, M.M.

1984-03-06T23:59:59.000Z

368

Start-up and control method and apparatus for resonant free piston Stirling engine  

DOE Patents (OSTI)

A resonant free-piston Stirling engine having a new and improved start-up and control method and system. A displacer linear electrodynamic machine is provided having an armature secured to and movable with the displacer and having a stator supported by the Stirling engine housing in juxtaposition to the armature. A control excitation circuit is provided for electrically exciting the displacer linear electrodynamic machine with electrical excitation signals having substantially the same frequency as the desired frequency of operation of the Stirling engine. The excitation control circuit is designed so that it selectively and controllably causes the displacer electrodynamic machine to function either as a generator load to extract power from the displacer or the control circuit selectively can be operated to cause the displacer electrodynamic machine to operate as an electric drive motor to apply additional input power to the displacer in addition to the thermodynamic power feedback to the displacer whereby the displacer linear electrodynamic machine also is used in the electric drive motor mode as a means for initially starting the resonant free-piston Stirling engine.

Walsh, Michael M. (Schenectady, NY)

1984-01-01T23:59:59.000Z

369

Baseline Results and Future Plans for the NREL Controls Advanced Research Turbine: Preprint  

DOE Green Energy (OSTI)

During the 2002 - 2003 wind season, several new algorithms were tested on the Controls Advanced Research Turbine (CART) at the National Renewable Energy Laboratory. These include an''Optimally Tracking Rotor'' algorithm proposed before, an adaptive power tracking algorithm and several full-state feedback systems. General results from these algorithms are presented here with detailed results presented elsewhere.

Fingersh, L. J.; Johnson, K. E.

2003-11-01T23:59:59.000Z

370

Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck  

E-Print Network (OSTI)

03TB-45 Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck and vehicle test results for a medium-duty hybrid electric truck are reported in this paper. The design the benchmark vehicle. INTRODUCTION Hybrid powertrain is among the most visible transportation technology

Grizzle, Jessy W.

371

Energy Savings and Economics of Advanced Control Strategies for Packaged Heat Pumps  

SciTech Connect

Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), evaluated a number of control strategies for packaged cooling equipment that can be implemented in an advanced controller, which can be retrofit into existing packaged heat pump units to improve their operational efficiency. This report documents the results of that analysis.

Wang, Weimin; Huang, Yunzhi; Katipamula, Srinivas

2012-10-31T23:59:59.000Z

372

An approach for modeling the valve train system to control the homogeneous combustion in a compression ignition engine  

Science Conference Proceedings (OSTI)

This paper presents an approach for modeling the valve train system to obtain a homogeneous charge compression ignition (HCCI) engine from a gasoline engine. The HCCI engines use different indirect strategies to control the start of the combustion. The ... Keywords: exhaust gas recirculation, homogeneous charge compression ignition, variable valve timing

Radu Cosgarea; Corneliu Cofaru; Mihai Aleonte; Maria Luminita Scutaru; Liviu Jelenschi; Gabriel Sandu

2011-04-01T23:59:59.000Z

373

Engines - Spark Ignition Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Spark Ignition Engines Spark Ignition Engines Thomas Wallner and omni engine Thomas Wallner and the omnivorous engine Background Today the United States import more than 60% of its crude oil and petroleum products. Transportation accounts for a major portion of these imports. Research in this field is focused on reducing the dependency on foreign oil by increasing the engine efficiency on the one hand and blending gasoline with renewable domestic fuels, such as ethanol, on the other. Argonne's Research The main focus of research is on evaluation of advanced combustion concepts and effects of fuel properties on engine efficiency, performance and emissions. The platforms used are a single-cylinder research engine as well as an automotive-size four-cylinder engine with direct fuel injection.

374

Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications: Task 9 - Selective agglomeration Module Testing and Evaluation.  

SciTech Connect

The primary goal of this project was the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing of both processes on six coals to optimize the processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report summarizes the findings of all the selective agglomeration (SA) test work performed with emphasis on the results of the PDU SA Module testing. Two light hydrocarbons, heptane and pentane, were tested as agglomerants in the laboratory research program which investigated two reactor design concepts: a conventional two-stage agglomeration circuit and a unitized reactor that combined the high- and low-shear operations in one vessel. The results were used to design and build a 25 lb/hr bench-scale unit with two-stage agglomeration. The unit also included a steam stripping and condensation circuit for recovery and recycle of heptane. It was tested on six coals to determine the optimum grind and other process conditions that resulted in the recovery of about 99% of the energy while producing low ash (1-2 lb/MBtu) products. The fineness of the grind was the most important variable with the D80 (80% passing size) varying in the 12 to 68 micron range. All the clean coals could be formulated into coal-water-slurry-fuels with acceptable properties. The bench-scale results were used for the conceptual and detailed design of the PDU SA Module which was integrated with the existing grinding and dewatering circuits. The PDU was operated for about 9 months. During the first three months, the shakedown testing was performed to fine tune the operation and control of various equipment. This was followed by parametric testing, optimization/confirmatory testing, and finally a 72-hour round the clock production run for each of the three project coals (Hiawatha, Taggart, and Indiana VII). The parametric testing results confirmed that the Taggart coal ground to a D80 of 30 microns could be cleaned to 1 lb ash/MBtu, whereas the Hiawatha and Indiana Vil coals had to be ground to D80s of 40 and 20 microns, respectively, to be cleaned to 2 lb ash/MBtu. The percent solids, residence time, shear intensity (impeller tip speed and energy input per unit volume), and heptane dosage were the main variables that affected successful operation (phase inversion or microagglomerate formation in the high-shear reactor and their growth to 2-3 mm in size during low shear). Downward inclination of the vibrating screen and adequate spray water helped produce the low ash products. Btu recoveries were consistently greater than 98%. Two-stage steam stripping achieved about 99% heptane recovery for recycle to the process. Residual hydrocarbon concentrations were in the 3000 to 5000 ppm range on a dry solids basis.

Moro, N.` Jha, M.C.

1997-09-29T23:59:59.000Z

375

Argonne TTRDC - Engines - Home - combustion, compression ignition,  

NLE Websites -- All DOE Office Websites (Extended Search)

* Combustion Visualization * Combustion Visualization * Compression-Ignition * Emissions Control * Fuel Injection and Sprays * Idling * Multi-Dimensional Modeling * Particulate Matter * Spark Ignition Green Racing GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Engines Omnivorous engine tested by Thomas Wallner Thomas Wallner tests the omnivorous engine, a type of spark-ignition engine. Argonne's engine research is contributing to advances in technology that will impact the use of conventional and alternative fuels and the design of advanced technology vehicles. Compression Ignition

376

From Design to Production Control Through the Integration of Engineering Data Management and Workflow Management Systems  

E-Print Network (OSTI)

At a time when many companies are under pressure to reduce "times-to-market" the management of product information from the early stages of design through assembly to manufacture and production has become increasingly important. Similarly in the construction of high energy physics devices the collection of ( often evolving) engineering data is central to the subsequent physics analysis. Traditionally in industry design engineers have employed Engineering Data Management Systems ( also called Product Data Management Systems) to coordinate and control access to documented versions of product designs. However, these systems provide control only at the collaborative design level and are seldom used beyond design. Workflow management systems, on the other hand, are employed in industry to coordinate and support the more complex and repeatable work processes of the production environment. Commer cial workflow products cannot support the highly dynamic activities found both in the design stages of product developmen...

Le Goff, J M; Bityukov, S; Estrella, F; Kovács, Z; Le Flour, T; Lieunard, S; McClatchey, R; Murray, S; Organtini, G; Vialle, J P; Bazan, A; Chevenier, G

1997-01-01T23:59:59.000Z

377

CHEMICAL ENGINEERING Fall 2013-Winter 2014  

E-Print Network (OSTI)

ADVANCED CHEMICAL ENGINEERING Fall 2013-Winter 2014 Certificate Program CONTINUING AND PROFESSIONAL EDUCATIONCONTINUING AND PROFESSIONAL EDUCATION #12;About the Advanced Chemical Engineering Certificate Program The new Advanced Chemical Engineering Certificate Program offers professionals in chemi- cal engineering

California at Davis, University of

378

Advanced control methodology for intelligent universal transformers based on fuzzy logic controllers  

Science Conference Proceedings (OSTI)

Intelligent Universal Transformer (IUT) is a power electronic base transformer introducing for Advanced Distribution Automation (ADA) in future. ADA is the state of art employing the new architecture based on both the flexible electrical network and ... Keywords: ADA, FLC, IED, IUT, membership function, power electronic

Maryam Sadeghi; Magid Gholami

2011-03-01T23:59:59.000Z

379

Controlling magnetoelectric coupling by nanoscale phase transformation instrain engineered bismuth ferrite  

Science Conference Proceedings (OSTI)

The magnetoelectric coupling in multiferroic materials is promising for a wide range of applications, yet manipulating magnetic ordering by electric field proves elusive to obtain and difficult to control. In this paper, we explore the prospect of controlling magnetic ordering in misfit strained bismuth ferrite (BiFeO3, BFO) films, combining theoretical analysis, numerical simulations, and experimental characterizations. Electric field induced transformation from a tetragonal phase to a distorted rhombohedral one in strain engineered BFO films has been identified by thermodynamic analysis, and realized by scanning probe microscopy (SPM) experiment. By breaking the rotational symmetry of a tip-induced electric field as suggested by phase field simulation, the morphology of distorted rhombohedral variants has been delicately controlled and regulated. Such capabilities enable nanoscale control of magnetoelectric coupling in strain engineered BFO films that is difficult to achieve otherwise, as demonstrated by phase field simulations.

Liu, Y. Y. [University of Washington, Seattle; Vasudevan, Rama K [ORNL; Pan, K. [Xiangtan University, Xiangtan Hunan, China; Xie, S. H. [University of Washington, Seattle; Liang, W. -I. [National Chiao Tung University, Hsinchu, Taiwan; Kumar, Amit [ORNL; Jesse, Stephen [ORNL; Chen, Y. -C. [National Cheng Kung University, Tainan, Taiwan; Chu, Y.-H. [National Chiao Tung University, Hsinchu, Taiwan; Nagarajan, Valanoor [University of New South Wales; Kalinin, Sergei V [ORNL; Li, J. Y. [University of Washington, Seattle

2012-01-01T23:59:59.000Z

380

SC e-journals, Engineering  

Office of Scientific and Technical Information (OSTI)

Engineering Engineering ACM Transactions on Design Automation of Electronic Systems (TODAES) ACM Transactions on Embedded Computing Systems (TECS) ACS Nano Acta Mechanica Acta Mechanica Sinica Adsorption Advanced Engineering Materials Advanced Powder Technology Advanced Robotics Advances in Computational Mathematics Advances In Engineering Software Advances in Materials Science and Engineering - OAJ Advances in Mathematical Engineering - OAJ Advances in Optics and Photonics AlChE Journal Algorithmica American Journal of Engineering and Applied Sciences - OAJ Analog Integrated Circuits and Signal Processing Annals of Nuclear Energy Annual Review of Fluid Mechanics Annual Review of Materials Research Applicable Algebra in Engineering, Communication and Computing Applied Composite Materials

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Department of Mechanical Engineering Presents: "Towards Optimal Investment, Planning and Control of Microgrids"  

E-Print Network (OSTI)

of Microgrids" Mohsen A. Jafari, Ph.D. Department of Industrial & Systems Engineering Rutgers University Friday on the optimal investment, planning, and control of distributed micro-grids. A micro-grid is characterized by its of microgrids quite challenging problems. From the power grid point of view, microgrids are resource nodes

Keaveny, Tony

382

Composite bearing and seal materials for advanced heat engine applications to 900 degree C  

DOE Green Energy (OSTI)

Plasma sprayed composite coatings of metal-bonded chromium carbide with additions of silver and thermochemically stable fluorides were previously reported to be lubricative in pin on disk bench tests from room temperature to 900{degree}C. An early coating formulation of this type, designated as PS200, was successfully tested as a cylinder coating in a Stirling engine at a TRRT of 760{degree}C (1450{degree}F) in a hydrogen atmosphere, and as a backup lubricant for gas bearings to 650{degree}C (1250{degree}F). A subsequent optimization program as shown that tribological properties are further improved by increasing the solid lubricant content. The improved coating is designated as PS212. The same powder formulation has been used to make free-standing powder metallurgy (PM212) parts by sintering or hot isostatic pressing. The process is very attractive for making parts that cannot be readily plasma sprayed such as bushings and cylinders that have small bore diameters and/or high length to diameter ratios. The properties of coatings and free-standing parts fabricated from these powders are reviewed. 6 refs., 14 figs., 1 tab.

Sliney, H.E.

1990-01-01T23:59:59.000Z

383

Attendees of the 2003 All Scout Nano Day sponsored by the NU-NSEC. Several are now pursuing advanced education and careers in science and engineering (see text).  

E-Print Network (OSTI)

Attendees of the 2003 All Scout Nano Day sponsored by the NU-NSEC. Several are now pursuing advanced education and careers in science and engineering (see text). ALL SCOUT NANO DAY Chad A. Mirkin an annual All Scout Nano Day each spring since 2003. The event includes interactive activities

Shull, Kenneth R.

384

Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference  

SciTech Connect

The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

Geiling, D.W. [ed.

1993-08-01T23:59:59.000Z

385

Advanced Controls and Communications for Demand Response andEnergy Efficiency in Commercial Buildings  

SciTech Connect

Commercial buildings account for a large portion of summer peak demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial building's contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. This paper discusses recent research results and new opportunities for advanced building control systems to provide demand response (DR) to improve electricity markets and reduce electric grid problems. The main focus of this paper is the role of new and existing control systems for HVAC and lighting in commercial buildings. A demand-side management framework from building operations perspective with three main features: daily energy efficiency, daily peak load management and event driven, dynamic demand response is presented. A general description of DR, its benefits, and nationwide potential in commercial buildings is outlined. Case studies involving energy management and control systems and DR savings opportunities are presented. The paper also describes results from three years of research in California to automate DR in buildings. Case study results and research on advanced buildings systems in New York are also presented.

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-17T23:59:59.000Z

386

Advanced Controls and Communications for Demand Response andEnergy Efficiency in Commercial Buildings  

SciTech Connect

Commercial buildings account for a large portion of summer peak demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial building's contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. This paper discusses recent research results and new opportunities for advanced building control systems to provide demand response (DR) to improve electricity markets and reduce electric grid problems. The main focus of this paper is the role of new and existing control systems for HVAC and lighting in commercial buildings. A demand-side management framework from building operations perspective with three main features: daily energy efficiency, daily peak load management and event driven, dynamic demand response is presented. A general description of DR, its benefits, and nationwide potential in commercial buildings is outlined. Case studies involving energy management and control systems and DR savings opportunities are presented. The paper also describes results from three years of research in California to automate DR in buildings. Case study results and research on advanced buildings systems in New York are also presented.

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-17T23:59:59.000Z

387

Advanced Control Techniques and High Performance Discharges on DIII-D  

Science Conference Proceedings (OSTI)

The advancement of plasma control techniques has enabled significant progress to be made toward the scientific understanding and realization of Advanced Tokamak operation on DIII-D. The Advanced Tokamak features fully noninductive current drive, operation at high plasma pressure and high energy confinement time. These features require efficient current drive systems, simultaneous control of plasma current and pressure profiles, and active feedback control of plasma instabilities. A number of key systems on DIII-D have been developed to provide this control capability. A versatile electron cyclotron heating and current drive system is routinely providing in excess of 2 MW of power for pulse lengths from 2 to 5 s. This system has been used to provide offaxis current drive, direct electron heating and pressure profile modification, and stabilization of the Neoclassical Tearing Mode instability. A combination of control of magnetic error fields, neutral beam induced plasma rotation, and active feedback stabilization using both external and internal nonaxisymmetric coil systems has been used to stabilize the Resistive Wall Mode at high values of plasma pressure. Control of the ELM instability has recently been demonstrated using the newly installed internal coil system. The higher speed and expanded realtime diagnostic capability of our recently upgraded plasma control system permits these various control techniques to be simultaneously integrated to achieve our high performance discharges. This has resulted in fully noninductively driven plasmas with {beta}{sub N} = 3.5 and {beta}{sub T} = 3.6% sustained for up to 1 s. Upgrades and facility modifications to further enhance our control and scientific capabilities including rotation of a neutral beamline, expanded EC system power, and installation of a new lower divertor are discussed.

Kellman, A.G. [General Atomics (United States)] (and others)

2005-04-15T23:59:59.000Z

388

Development of a closed-loop, lean-burn natural gas engine control system. Final report, February 1993-December 1995  

SciTech Connect

The overall objective of this project was to develop a closed-loop, lean-burn control system for medium and heavy duty, lean-burn, gaseous fueled engines. The closed-loop F/A ratio control system was designed to provide diesel engine-like performance and fuel economy, and take advantage of the emissions benefits of a gaseous fueled engine. The control system was designed to have the processing power and I/O capacity to accommodate the engine Original Equipment Manufacturers (OEM`s).

Morris, D.A.

1996-06-01T23:59:59.000Z

389

Design goals for advanced heat pumps: Engineering economics methodology: Final report  

SciTech Connect

An advanced heat pump (AHP) could make significant improvements in both the seasonal efficiency and peak power demand characteristics of all-electric equipment for space heating and cooling and water heating in residential and small commercial buildings. At the same time, however, the initial cost premium of an AHP must be low enough to make it a competitive offering in the heating and cooling marketplace of the 1990's. An essential step in the research and development process is the evaluation of the economic benefits of alternative AHP candidates. A present, residential electric rates do not provide an adequate basis for measuring such benefits in terms of actual resource utilization, especially with regard to power demand. For this reason, incremental electricity supply costs are developed in this report for typical utilities in different regions of the United States. These costs include both energy and demand charges on an hourly basis. A methodology is established to estimate the hourly kWh consumption of air-source heat pump systems with and without integrated water heating capability and to determine the annual operating cost of these systems based on the incremental electricity supply costs. Alternative design approaches for an AHP are evaluated in this analytical framework in order to determine the cost effectiveness of each approach in each region. Based on a preliminary analysis of a limited number of design alternatives, an air-source heat pump with an Energy Efficiency Ratio at 95/sup 0/F of 11.0 Btu/Wh, with integrated water heating, and in some regions, an adjustable-speed compressor, appears to be the most economic candidate for an AHP.

Petersen, S.R.

1987-06-01T23:59:59.000Z

390

Proposed center for advanced industrial processes. Washington State University, College of Engineering and Architecture  

Science Conference Proceedings (OSTI)

The DOE proposes to authorize Washington State University (WSU) to proceed with the detailed design, construction, and equipping of the proposed Center for Advanced Industrial Processes (CAIP). The proposed project would involve construction of a three story building containing laboratories, classrooms, seminar rooms, and graduate student and administrative office space. Existing buildings would be demolished. The proposed facility would house research in thermal/fluid sciences, bioengineering, manufacturing processes, and materials processing. Under the {open_quotes}no-action{close_quotes} DOE would not authorize WSU to proceed with construction under the grant. WSU would then need to consider alternatives for proceeding without DOE funds. Such alternatives (including delaying or scaling back the project), would result in a postponement or slight reduction in the minor adverse environmental, safety and health Impacts of the project evaluated in this assessment. More importantly, these alternatives would affect the important environmental, safety, health, and programmatic benefits of the projects. The surrounding area is fully urbanized and the campus is intensely developed around the proposed site. The buildings scheduled for demolition do not meet State energy codes, are not air conditioned, and lack handicapped access. Sensitive resources (historical/archeological, protected species/critical habitats, wetlands/floodplains, national forests/parks/trails, prime farmland and special sources of water) would not be affected as they do not occur on or near the proposed site. Cumulative impacts would be small. The proposed action is not related to other actions being considered under other NEPA reviews. There is no conflict between the proposed action and any applicable Federal, State, regional or local land use plans and policies.

NONE

1995-03-01T23:59:59.000Z

391

TECHNOLOGIES TO OPTIMIZE ADVANCED TOKAMAK  

SciTech Connect

OAK-B135 Commercial fusion power systems must operate near the limits of the engineering systems and plasma parameters. Achieving these objectives will require real time feedback control of the plasma. This paper describes plasma control systems being used in the national DIII-D advanced tokamak research program.

SIMONEN, TC

2004-01-01T23:59:59.000Z

392

Monovalve with integrated fuel injector and port control valve, and engine using same  

DOE Patents (OSTI)

An engine includes an engine casing that defines a hollow piston cavity separated from an exhaust passage and an intake passage by a valve seat. A gas exchange valve member is positioned adjacent the valve seat and is moveable between an open position and a closed position. The gas exchange valve member also defines an opening that opens into the hollow piston cavity. A needle valve member is positioned in the gas exchange valve member adjacent a nozzle outlet and is moveable between an inject position and a blocked position. A port control valve member, which has a hydraulic surface, is mounted around the gas exchange valve member and moveable between an intake position and an exhaust position. A pilot valve is moveable between a first position at which the port control hydraulic surface is exposed to a source of high pressure fluid, and a second position at which the port control hydraulic surface is exposed to a source of low pressure fluid.

Milam, David M. (Metamora, IL)

2001-11-06T23:59:59.000Z

393

Stirling engines  

Science Conference Proceedings (OSTI)

The Stirling engine was invented by a Scottish clergyman in 1816, but fell into disuse with the coming of the diesel engine. Advances in materials science and the energy crisis have made a hot air engine economically attractive. Explanations are full and understandable. Includes coverage of the underlying thermodynamics and an interesting historical section. Topics include: Introduction to Stirling engine technology, Theoretical concepts--practical realities, Analysis, simulation and design, Practical aspects, Some alternative energy sources, Present research and development, Stirling engine literature.

Reader, G.T.; Hooper

1983-01-01T23:59:59.000Z

394

CRADA Final Report for CRADA Number ORNL00-0605: Advanced Engine/Aftertreatment System R&D  

DOE Green Energy (OSTI)

Navistar and ORNL established this CRADA to develop diesel engine aftertreatment configurations and control strategies that could meet emissions regulations while maintaining or improving vehicle efficiency. The early years of the project focused on reducing the fuel penalty associated with lean NOx trap (LNT), also known as NOx adsorber catalyst regeneration and desulfation. While Navistar pursued engine-based (in-cylinder) approaches to LNT regeneration, complementary experiments at ORNL focused on in-exhaust fuel injection. ORNL developed a PC-based controller for transient electronic control of EGR valve position, intake throttle position, and actuation of fuel injectors in the exhaust system of a Navistar engine installed at Oak Ridge. Aftertreatment systems consisting of different diesel oxidation catalysts (DOCs) in conjunction with a diesel particle filter and LNT were evaluated under quasi-steady-state conditions. Hydrocarbon (HC) species were measured at multiple locations in the exhaust system with Gas chromatograph mass spectrometry (GC-MS) and Fourier transform infrared (FTIR) spectroscopy. Under full-load, rated speed conditions, injection of fuel upstream of the DOC reduced the fuel penalty for a given level of NOx reduction by 10-20%. GC-MS showed that fuel compounds were 'cracked' into smaller hydrocarbon species over the DOC, particularly light alkenes. GC-MS analysis of HC species entering and exiting the LNT showed high utilization of light alkenes, followed by mono-aromatics; branched alkanes passed through the LNT largely unreacted. Follow-on experiments at a 'road load' condition were conducted, revealing that the NOx reduction was better without the DOC at lower temperatures. The improved performance was attributed to the large swings in the NOx adsorber core temperature. Split-injection experiments were conducted with ultra-low sulfur diesel fuel and three pure HC compounds: 1-pentene, toluene, and iso-octane. The pure compound experiments confirmed the previous results regarding hydrocarbon reactivity: 1-pentene was the most efficient LNT reductant, followed by toluene. Injection location had minimal impact on the reactivity of these two compounds. Iso-octane was an ineffective LNT reductant, requiring high doses (resulting in high HC emissions) to achieve reasonable NOx conversions. Diesel fuel reactivity was sensitive to injection location, with the best performance achieved through fuel injection downstream of the DOC. This configuration generated large LNT temperature excursions, which probably improved the efficiency of the NOx storage/reduction process, but also resulted in very high HC emissions. The ORNL team demonstrated an LNT desulfation under 'road load' conditions using throttling, EGR, and in-pipe injection of diesel fuel. Flow reactor characterization of core samples cut from the front and rear of the engine-aged LNT revealed complex spatially dependent degradation mechanisms. The front of the catalyst contained residual sulfates, which impacted NOx storage and conversion efficiencies at high temperatures. The rear of the catalyst showed significant sintering of the washcoat and precious metal particles, resulting in lower NOx conversion efficiencies at low temperatures. Further flow reactor characterization of engine-aged LNT core samples established that low temperature performance was limited by slow release and reduction of stored NOx during regeneration. Carbon monoxide was only effective at regenerating the LNT at temperatures above 200 C; propene was unreactive even at 250 C. Low temperature operation also resulted in unselective NOx reduction, resulting in high emissions of both N{sub 2}O and NH{sub 3}. During the latter years of the CRADA, the focus was shifted from LNTs to other aftertreatment devices. Two years of the CRADA were spent developing detailed ammonia SCR device models with sufficient accuracy and computational efficiency to be used in development of model-based ammonia injection control algorithms.ORNL, working closely with partners at Navistar and Mi

Pihl, Josh A [ORNL; West, Brian H [ORNL; Toops, Todd J [ORNL; Adelman, Brad [Navistar; Derybowski, Edward [Navistar

2011-10-01T23:59:59.000Z

395

Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways  

SciTech Connect

Significant energy savings can be achieved in commercial building operation, along with increased comfort and control for occupants, through the implementation of advanced technologies. This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies. This paper is actually a synthesis of five other white papers: the first describes the market assessment including estimates of market potential and energy savings for sensors and control strategies currently on the market as well as a discussion of market barriers to these technologies. The other four cover technology pathways: (1) current applications and strategies for new applications, (2) sensors and controls, (3) networking, security, and protocols and standards, and (4) automated diagnostics, performance monitoring, commissioning, optimal control and tools. Each technology pathway chapter gives an overview of the technology or application. This is followed by a discussion of needs and the current status of the technology. Finally, a series of research topics is proposed.

Brambley, Michael R.; Haves, Philip; McDonald, Sean C.; Torcellini, Paul; Hansen, David G.; Holmberg, David; Roth, Kurt

2005-04-13T23:59:59.000Z

396

Design of Controls to Attenuate Loads in the Controls Advanced Research Turbine: Preprint  

DOE Green Energy (OSTI)

Designing wind turbines to maximize energy production and increase fatigue life is a major goal of the wind industry. To achieve this goal, we must design wind turbines to extract maximum energy and reduce component and system loads. This paper applies modern state-space control design methods to a two-bladed teetering-hub upwind machine located at the National Wind Technology Center*. The design objective is to regulate turbine speed in region 3 (above rated wind speed) and enhance damping in several low-damped flexible modes of the turbine. The controls approach is based on the Disturbance Accommodating Control (DAC) method and provides accountability for wind-speed disturbances. First, controls are designed using the single control input rotor collective pitch to stabilize the first drive-train torsion as well as the tower first fore-aft bending modes. Generator torque is then incorporated as an additional control input. This reduces some of the demand placed on the rotor collective pitch control system and enhances first drive train torsion mode damping. Individual blade pitch control is then used to attenuate wind disturbances having spatial variation over the rotor and effectively reduces blade flap deflections caused by wind shear.

Wright, A. D.; Balas, M. J.

2003-11-01T23:59:59.000Z

397

Characterization of Engine Control Authority on HCCI Combustion as the High Load Limit is Approached  

SciTech Connect

While the potential emissions and efficiency benefits of homogeneous charge compression ignition (HCCI) combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on characterizing the authority of the available engine controls as the high load limit of HCCI combustion is approached. The experimental work is performed on a boosted single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), and a hydraulic valve actuation (HVA) valve train to enable the negative valve overlap (NVO) breathing strategy. Valve lift and duration are held constant while phasing is varied in an effort to make the results as relevant as possible to production intent cam-based variable valve actuation (VVA) systems on multi-cylinder engines. Results presented include engine loads from 350 to 650 kPa IMEPnet and manifold pressure from 98 to 190 kPaa at 2000 rpm. It is found that in order to increase engine load to 650 kPa IMEPnet, it is necessary to increase manifold pressure and external EGR while reducing the NVO duration. Both NVO duration and fuel injection timing are effective means of controlling combustion phasing, with NVO duration being a coarse control and fuel injection timing being a fine control. NOX emissions are low throughout the study, with emissions below 0.1 g/kW-h at all boosted HCCI conditions, while good combustion efficiency is maintained (>96.5%). Net indicated thermal efficiency increases with load up to 600 kPa IMEPnet, where a peak efficiency of 41% is achieved. Results of independent parametric investigations are presented on the effect of external EGR, intake effect of manifold pressure, and the effect of NVO duration. It is found that increasing EGR at a constant manifold pressure and increasing manifold pressure at a constant EGR rate both have the effect of retarding combustion phasing. It is also found that combustion phasing becomes increasingly sensitive to NVO duration as engine load increases. Finally, comparisons are made between three commonly used noise metrics (AVL noise meter, ringing intensity (RI), and maximum pressure rise rate (MPRR)). It is found that compared to the AVL noise meter, RI significantly underestimates combustion noise under boosted conditions.

Szybist, James P [ORNL; Edwards, Kevin Dean [ORNL; Foster, Matthew [Delphi; Confer, Keith [Delphi; Moore, Wayne [Delphi

2013-01-01T23:59:59.000Z

398

NERI PROJECT 99-119. TASK 1. ADVANCED CONTROL TOOLS AND METHODS. FINAL REPORT  

SciTech Connect

Nuclear plants of the 21st century will employ higher levels of automation and fault tolerance to increase availability, reduce accident risk, and lower operating costs. Key developments in control algorithms, fault diagnostics, fault tolerance, and communication in a distributed system are needed to implement the fully automated plant. Equally challenging will be integrating developments in separate information and control fields into a cohesive system, which collectively achieves the overall goals of improved performance, safety, reliability, maintainability, and cost-effectiveness. Under the Nuclear Energy Research Initiative (NERI), the U. S. Department of Energy is sponsoring a project to address some of the technical issues involved in meeting the long-range goal of 21st century reactor control systems. This project, ''A New Paradigm for Automated Development Of Highly Reliable Control Architectures For Future Nuclear Plants,'' involves researchers from Oak Ridge National Laboratory, University of Tennessee, and North Carolina State University. This paper documents a research effort to develop methods for automated generation of control systems that can be traced directly to the design requirements. Our final goal is to allow the designer to specify only high-level requirements and stress factors that the control system must survive (e.g. a list of transients, or a requirement to withstand a single failure.) To this end, the ''control engine'' automatically selects and validates control algorithms and parameters that are optimized to the current state of the plant, and that have been tested under the prescribed stress factors. The control engine then automatically generates the control software from validated algorithms. Examples of stress factors that the control system must ''survive'' are: transient events (e.g., set-point changes, or expected occurrences such a load rejection,) and postulated component failures. These stress factors are specified by the designer and become a database of prescribed transients and component failures. The candidate control systems are tested, and their parameters optimized, for each of these stresses. Examples of high-level requirements are: response time less than xx seconds, or overshoot less than xx% ... etc. In mathematical terms, these types of requirements are defined as ''constraints,'' and there are standard mathematical methods to minimize an objective function subject to constraints. Since, in principle, any control design that satisfies all the above constraints is acceptable, the designer must also select an objective function that describes the ''goodness'' of the control design. Examples of objective functions are: minimize the number or amount of control motions, minimize an energy balance... etc.

March-Leuba, J.A.

2002-09-09T23:59:59.000Z

399

Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine  

Science Conference Proceedings (OSTI)

Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

400

NETL: Advanced NOx Emissions Control: Control Technology - Methane de-NOx  

NLE Websites -- All DOE Office Websites (Extended Search)

METHANE de-NOx® METHANE de-NOx® The Gas Technology Institute (GTI) is teaming with the All-Russian Thermal Engineering Institute and DB Riley to develop a pulverized-coal (PC)-combustion system that is an extension of IGT's METHANE de-NOx® technology. The technology is composed of a novel PC burner design using natural gas fired coal preheating developed and demonstrated in Russia, LNBs with internal combustion staging, and additional natural gas injection with overfire air. The coal is preheated at elevated temperatures (up to 1500oF) in oxygen deficient conditions prior to combustion. Coal preheat releases fuel-bound nitrogen together with volatiles present in the coal. These conditions promote the conversion of fuel-bound nitrogen to molecular nitrogen rather than to NOx.

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

AISI/DOE Advanced Process Control Program Vol. 6 of 6: Temperature Measurement of Galvanneal Steel  

SciTech Connect

This report describes the successful completion of the development of an accurate in-process measurement instrument for galvanneal steel surface temperatures. This achievement results from a joint research effort that is a part of the American Iron and Steel Institute's (AISI) Advanced Process Control Program, a collaboration between the U.S> Department of Energy and fifteen North American Steelmakers. This three-year project entitled ''Temperature Measurement of Galvanneal Steel'' uses phosphor thermography, and outgrowth of Uranium enrichment research at Oak Ridge facilities. Temperature is the controlling factor regarding the distribution of iron and zinc in the galvanneal strip coating, which in turn determines the desired product properties

S.W. Allison; D.L. Beshears; W.W. Manges

1999-06-30T23:59:59.000Z

402

Service- and energy-related optimization of advanced automatic train control  

DOE Green Energy (OSTI)

The Bay Area Rapid Transit (BART) system, in collaboration with Hughes Aircraft Company and Harmon Industries, is in the process of developing an Advanced Automatic Train Control (AATC) system to replace the current fixed-block automatic system. As in the current ATC system, the trains will be controlled by station computers at the wayside; however, spread-spectrum radios rather than track-circuits will be employed to determine train locations and reliably transfer control information, allowing for finer speed and acceleration control, as well as more precise train locating capabilities and moving-block control. The authors have developed a simulator of the train control and power consumption of the AATC system, and are now employing this tool to develop enhanced train control algorithms to supplement the safety-critical controller. These algorithms do not attempt to globally optimize the control system with respect to a cost function, but rather they modify the baseline vital control to smooth the train trajectories, and to reduce energy consumption and power infrastructure requirements, through coordination of multiple trains. Several control algorithms are under development, including (1) delay recovery, which smoothly and efficiently controls trains approaching and stopped behind a delayed train, (2) interference management, which controls closely-following trains to avoid oscillatory brake/acceleration cycles, and (3) low voltage avoidance, which limits power consumption by multiple trains in an area to prevent low voltage events. The authors discuss progress to date on development of these control algorithms, as well as their service- and energy-related benefits.

Gordon, S.P. [Sandia National Labs., Livermore, CA (United States); Lehrer, D.G. [Bay Area Rapid Transit District, Oakland, CA (United States)

1998-05-01T23:59:59.000Z

403

DEMONSTRATION OF AN ADVANCED INTEGRATED CONTROL SYSTEM FOR SIMULTANEOUS EMISSIONS REDUCTION  

Science Conference Proceedings (OSTI)

The primary objective of the project titled ''Demonstration of an Advanced Integrated Control System for Simultaneous Emissions Reduction'' was to demonstrate at proof-of-concept scale the use of an online software package, the ''Plant Environmental and Cost Optimization System'' (PECOS), to optimize the operation of coal-fired power plants by economically controlling all emissions simultaneously. It combines physical models, neural networks, and fuzzy logic control to provide both optimal least-cost boiler setpoints to the boiler operators in the control room, as well as optimal coal blending recommendations designed to reduce fuel costs and fuel-related derates. The goal of the project was to demonstrate that use of PECOS would enable coal-fired power plants to make more economic use of U.S. coals while reducing emissions.

Suzanne Shea; Randhir Sehgal; Ilga Celmins; Andrew Maxson

2002-02-01T23:59:59.000Z

404

Fatigue of Advanced Materials  

Science Conference Proceedings (OSTI)

Oct 19, 2011... isolate the internal components from the external environment while ... overall thermal efficiency of advanced internal combustion engines ...

405

Control scheme for power modulation of a free piston Stirling engine  

DOE Patents (OSTI)

The present invention relates to a control scheme for power modulation of a free-piston Stirling engine-linear alternator power generator system. The present invention includes connecting an autotransformer in series with a tuning capacitance between a linear alternator and a utility grid to maintain a constant displacement to piston stroke ratio and their relative phase angle over a wide range of operating conditions.

Dhar, Manmohan (Schenectady, NY)

1989-01-01T23:59:59.000Z

406

NETL: Advanced NOx Emissions Control: Control Technology - Ultra Low-NOx  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultra Low NOx Integrated System Ultra Low NOx Integrated System TFS 2000(tm) Low NOx Firing System Project Summary: ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important,

407

Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine Equipped with Variable Valve Timing  

SciTech Connect

Widespread implementation of homogeneous charge compression ignition (HCCI) engines is presently hindered by stability, control, and load range issues. Although the operable HCCI speed/load range is expanding, it is likely that the initial HCCI engines will rely on conventional combustion for part of the operating cycle. In the present study, we have investigated the role of fuel properties and chemistry on the operation of a spark-assisted gasoline HCCI engine. The engine employed is a single cylinder, 500 cc, port fuel injected research engine, operating near lambda = 1.0 and equipped with hydraulic variable valve actuation. HCCI is initiated by early exhaust valve closing to retain exhaust in the cylinder, thereby increasing the cylinder gas temperature. This is also referred to as a 'negative overlap' strategy. A total of 10 custom blended gasolines and three different batches of indolene from two suppliers were run at 5 speed-load combinations and performance was characterized by timing sweeps. Within the quality of the data set, we can say the all fuels provided equivalent combustion and performance characteristics when compared at the same combustion phasing. The fuels did, however, require different degrees of retained exhaust as measured by exhaust valve closing angle to achieve the same combustion phasing. Fuels with higher octane sensitivity were found to ignite more easily or more quickly and to burn more quickly than fuels with lower octane sensitivity. This is an expected result since the engine is naturally aspirated and operates with high compression temperatures due to the high retained exhaust fraction and recompression.

Bunting, Bruce G [ORNL

2006-01-01T23:59:59.000Z

408

Futuristic concepts in engines and components  

Science Conference Proceedings (OSTI)

This publication includes papers on two-stroke engines and components, Brayton Stirling and Otto Cycles, alternative cycles, advanced combustion, and other related topics. Contents include: Paving the way to controlled combustion engines (CCE); A new class of stratified-charge internal combustion engine; Internal combustion (IC) engine with minimum number of moving parts; New type of heat engine -- externally heated air engine; A porous media burner for reforming methanol for fuel cell powered electric vehicles; Using a Stirling engine simulation program as a regenerator design aid; In-cylinder regenerated engines; High speed electronic fuel injection for direct injected rotary engine; and The characteristics of fuel consumption and exhaust emissions of the side exhaust port rotary engine.

NONE

1995-12-31T23:59:59.000Z

409

Engineering development of advanced coal-fired low-emission boiler system. Technical progress report No. 1, August--December 1992  

Science Conference Proceedings (OSTI)

The Pittsburgh Energy Technology Center of the US Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the ``Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems`` Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: NO{sub x} emissions not greater than one-third NSPS; SO{sub x} emissions not greater than one-third NSPS; and particulate emissions not greater than one-half NSPS. The specific secondary objectives are: Improved ash disposability and reduced waste generation; reduced air toxics emissions; increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a commercial generation unit.

Not Available

1993-02-26T23:59:59.000Z

410

Control Engineering Practice 14 (2006) 319326 Life extending control of boilerturbine systems via model  

E-Print Network (OSTI)

, fuel flow, attemperator spray flow and air flow. Like a traditional controller design, difficulties : fuel flow (kg/s), u3 : attemperator spray flow (kg/s), u4 : air flow (kg/s), y1 : drum level (m), y2, the attemperator of CO boiler in the utility power plant of SCL has been chosen as the controlled object of our

Marquez, Horacio J.

411

Development of ceramic matrix composites for application in Ceramic Technology for Advanced Heat Engine program. Final report  

DOE Green Energy (OSTI)

The objectives of the program are to develop an advanced toughened silicon nitride composite and a process for near net shape part fabrication. This program was initiated in 1985. The initial phase of the program considered particulate and whisker-reinforced composites and examined the effect of TiC and SiC dispersoids on fracture toughness of Si{sub 3}N{sub 4}. The best results were obtained with whisker reinforcements. Silicon carbide whisker-reinforced Si{sub 3}N{sub 4} was selected for further development. A predictive model that relates microstructure-fracture toughness dependence developed and scrutinized in the course of these studies has shown that fracture toughness of polycrystalline ceramics could be affected by changes of grain size and shape as well as strength of intergranular bond. Accordingly, it was shown that a deflection/debonding mechanism could utilize Si{sub 3}N{sub 4} whiskers to toughen Si{sub 3}N{sub 4} body. Si{sub 3}N{sub 4}-SiC composites offer a number of distinct advantages over ``monolith,`` which in addition to their improved thermal shock and wear resistance (due particularly to improved conductivity and hardness), Si{sub 3}N{sub 4}-SiC composites are tailorable with respect to high-temperature properties. It was considered that in heat engine applications, Si{sub 3}N{sub 4}-SiC whisker composites, due to their higher hardness, thermal conductivity, thermal shock, and wear resistance, have a definite advantage and warrant further development. In the current program (Phase 11), 1987--1989, the properties were further improved to achieve nearly two times higher fracture toughness and considerably improved elevated temperature (1400{degrees}C) strength of the composite. These improvements were obtained through optimization of processing and modifications of composite phase assembly, primarily intergranular phase.

Buljan, S.T.; Baldoni, J.G.; Huckabee, M.L.; Neil, J.; Hefter, J. [GTE Labs., Inc., Waltham, MA (United States)

1992-04-01T23:59:59.000Z

412

Engineering Escherichia coli to Control Biofilm Formation, Dispersal, and Persister Cell Formation  

E-Print Network (OSTI)

Biofilms are formed in aquatic environments by the attachment of bacteria to submerged surfaces, to the air/liquid interface, and to each other. Although biofilms are associated with disease and biofouling, the robust nature of biofilms; for example, their ability to tolerate chemical and physical stresses, makes them attractive for beneficial biotechnology applications such as bioremediation and biofuels. Based on an understanding of diverse signals and regulatory networks during biofilm development, biofilms can be engineered for these applications by manipulating extracellular/intercellular signals and regulators. Here, we rewired the global regulator H-NS of Escherichia coli to control biofilm formation using random protein engineering. H-NS variant K57N was obtained that reduces biofilm formation 10-fold compared with wild-type H-NS (wild-type H-NS increases biofilm formation whereas H-NS K57N reduces it) via its interaction with the nucleoid-associated proteins Cnu and StpA. H-NS K57N leads to enhanced excision of the defective prophage Rac and results in cell lysis through the activation of a host killing toxin HokD. We also engineered another global regulator, Hha, which interacts with H-NS, to disperse biofilms. Hha variant Hha13D6 was obtained that causes nearly complete biofilm dispersal by increasing cell death by the activation of proteases. Bacterial quorum sensing (QS) systems are important components of a wide variety of engineered biological devices, since autoinducers are useful as input signals because they are small, diffuse freely in aqueous media, and are easily taken up by cells. To demonstrate that biofilms may be controlled for biotechnological applications such as biorefineries, we constructed a synthetic biofilm engineering circuit to manipulate biofilm formation. By using a population-driven QS switch based on the LasI/LasR system and biofilm dispersal proteins Hha13D6 and BdcAE50Q (disperses biofilms by titrating cyclic diguanylate), we displaced an existing biofilm and then removed the second biofilm. Persisters are a subpopulation of metabolically-dormant cells in biofilms that are resistant to antibiotics; hence, understanding persister cell formation is important for controlling bacterial infections. Here, we engineered toxin MqsR with greater toxicity and demonstrated that the more toxic MqsR increases persistence by decreasing the ability of the cell to respond to antibiotic stress through its RpoS-based regulation of acid resistance, multidrug resistance, and osmotic resistance systems.

Hong, Seok Hoon

2011-12-01T23:59:59.000Z

413

Controlling fuel and diluent gas flow for a diesel engine operating in the fuel rich low-temperature-combustion mode  

E-Print Network (OSTI)

The flow of a diluent gas supplied to a motoring engine was controlled at a diluent to air mass flow ratios of 10%, 30%, 50%, and 70%. This arrangement was a significant set up for running the engine in the Low-Temperature ...

Lopez, David M

2007-01-01T23:59:59.000Z

414

From Design to Production Control Through the Integration of Engineering Data Management and Workflow Management Systems  

E-Print Network (OSTI)

At a time when many companies are under pressure to reduce "times-to-market" the management of product information from the early stages of design through assembly to manufacture and production has become increasingly important. Similarly in the construction of high energy physics devices the collection of (often evolving) engineering data is central to the subsequent physics analysis. Traditionally in industry design engineers have employed Engineering Data Management Systems (also called Product Data Management Systems) to coordinate and control access to documented versions of product designs. However, these systems provide control only at the collaborative design level and are seldom used beyond design. Workflow management systems, on the other hand, are employed in industry to coordinate and support the more complex and repeatable work processes of the production environment. Commercial workflow products cannot support the highly dynamic activities found both in the design stages of product development and in rapidly evolving workflow definitions. The integration of Product Data Management with Workflow Management can provide support for product development from initial CAD/CAM collaborative design through to the support and optimisation of production workflow activities. This paper investigates this integration and proposes a philosophy for the support of product data throughout the full development and production lifecycle and demonstrates its usefulness in the construction of CMS detectors.

J-M. Le Goff; G. Chevenier; A. Bazan; T. Le Flour; S. Lieunard; S. Murray; J-P. Vialle; N. Baker; F. Estrella; Z. Kovacs; R. McClatchey; G. Organtini; S. Bityukov

1998-02-06T23:59:59.000Z

415

ENERGY EFFICIENT THERMAL MANAGEMENT FOR NATURAL GAS ENGINE AFTERTREATMENT VIA ACTIVE FLOW CONTROL  

Science Conference Proceedings (OSTI)

The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

David K. Irick; Ke Nguyen

2004-04-01T23:59:59.000Z

416

Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control  

SciTech Connect

The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

2006-04-01T23:59:59.000Z

417

Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control  

SciTech Connect

The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

2005-04-01T23:59:59.000Z

418

Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology  

SciTech Connect

This project was a subtask of Energy Saving Melting and Revert Reduction Technology (�¢����Energy SMARRT�¢���) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy saving estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU�¢����s/year and 6.46 trillion BTU�¢����s/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).

Harry Littleton; John Griffin

2011-07-31T23:59:59.000Z

419

An advanced plasma control system for the DIII-D tokamak  

SciTech Connect

An advanced plasma control system is being implemented for the DIII-D tokamak utilizing digital technology. This system will regulate the position and shape of tokamak discharges that range from elongated limiter to single-null divertor and double-null divertor with elongation as high as 2.6. Development of this system is expected to lead to control system technology appropriate for use on future tokamaks such as ITER and BPX. The digital system will allow for increased precision in shape control through real time adjustment of the control algorithm to changes in the shape and discharge parameters such as {beta}{sub p}, {ell}{sub i} and scrape-off layer current. The system will be used for research on real time optimization of discharge performance for disruption avoidance, current and pressure profile control, optimization of rf antenna loading, or feedback on heat deposition patterns through divertor strike point position control, for example. Shape control with this system is based on linearization near a target shape of the controlled parameters as a function of the magnetic diagnostic signals. This digital system is unique in that it is designed to have the speed necessary to control the unstable vertical motion of highly elongated tokamak discharges such as those produced in DIII-D and planned for BPX and ITER. a 40 MHz Intel i860 processor is interfaced to up to 112 channels of analog input signals. The commands to the poloidal field coils can be updated at 80 {mu}s intervals for the control of vertical position with a delay between sampling of the analog signal and update of the command of less than 80 {mu}s.

Ferron, J.R.; Kellman, A.; McKee, E.; Osborne, T.; Petrach, P.; Taylor, T.S.; Wight, J. (General Atomics, San Diego, CA (United States)); Lazarus, E. (Oak Ridge National Lab., TN (United States))

1991-11-01T23:59:59.000Z

420

Predicted costs of environmental controls for a commercial oil shale industry. Volume 1. An engineering analysis  

SciTech Connect

The pollution control costs for a commercial oil shale industry were determined in a joint effort by Denver Research Institute, Water Purification Associates of Cambridge, and Stone and Webster Engineering of Boston and Denver. Four commercial oil shale processes were considered. The results in terms of cost per barrel of syncrude oil are predicted to be as follows: Paraho Process, $0.67 to $1.01; TOSCO II Process, $1.43 to $1.91; MIS Process, $2.02 to $3.03; and MIS/Lurgi-Ruhrgas Process, $1.68 to $2.43. Alternative pollution control equipment and integrated pollution control strategies were considered and optimal systems selected for each full-scale plant. A detailed inventory of equipment (along with the rationale for selection), a detailed description of control strategies, itemized costs and predicted emission levels are presented for each process. Capital and operating cost data are converted to a cost per barrel basis using detailed economic evaluation procedures. Ranges of cost are determined using a subjective self-assessment of uncertainty approach. An accepted methodology for probability encoding was used, and cost ranges are presented as subjective probability distributions. Volume I presents the detailed engineering results. Volume II presents the detailed analysis of uncertainty in the predicted costs.

Nevens, T.D.; Culbertson, W.J. Jr.; Wallace, J.R.; Taylor, G.C.; Jovanovich, A.P.; Prien, C.H.; Hicks, R.E.; Probstein, R.F.; Domahidy, G.

1979-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Anomaly Detection for Resilient Control Systems Using Fuzzy-Neural Data Fusion Engine  

SciTech Connect

Resilient control systems in critical infrastructures require increased cyber-security and state-awareness. One of the necessary conditions for achieving the desired high level of resiliency is timely reporting and understanding of the status and behavioral trends of the control system. This paper describes the design and development of a neural-network based data-fusion system for increased state-awareness of resilient control systems. The proposed system consists of a dedicated data-fusion engine for each component of the control system. Each data-fusion engine implements three-layered alarm system consisting of: (1) conventional threshold-based alarms, (2) anomalous behavior detector using self-organizing maps, and (3) prediction error based alarms using neural network based signal forecasting. The proposed system was integrated with a model of the Idaho National Laboratory Hytest facility, which is a testing facility for hybrid energy systems. Experimental results demonstrate that the implemented data fusion system provides timely plant performance monitoring and cyber-state reporting.

Ondrej Linda; Milos Manic; Timothy R. McJunkin

2011-08-01T23:59:59.000Z

422

Systems Engineering Group  

Science Conference Proceedings (OSTI)

... advances, and deploys measurement science to address application of engineering information systems to complex cyber-physical systems. ...

2011-10-03T23:59:59.000Z

423

The progress and challenges of threshold voltage control of high-k/metal-gated devices for advanced technologies (Invited Paper)  

Science Conference Proceedings (OSTI)

This paper discusses recent progress in and challenges of threshold voltage control for advanced high-k/metal-gated (HKMG) devices. It presents the impact on threshold voltage (V"t) control of incorporating La and Al into HKMG devices. A dipole moment ... Keywords: CMOS, Capping layer, EOT, High-k, Metal gate, Threshold voltage control

Hsing-Huang Tseng; Paul Kirsch; C. S. Park; Gennadi Bersuker; Prashant Majhi; Muhammad Hussain; Raj Jammy

2009-07-01T23:59:59.000Z

424

Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Suite of Projects Suite of Projects RTU Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System Michael Brambley, Ph.D. Pacific Northwest National Laboratory Michael.Brambley@pnnl.gov (509) 375-6875 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Packaged air conditioners and heat pumps (RTUs) are used in about 58% of all cooled commercial buildings, serving about 69% of the cooled commercial building floor space (EIA 2003) - Navigant estimates that packaged air conditioners

425

Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System  

NLE Websites -- All DOE Office Websites (Extended Search)

Suite of Projects Suite of Projects RTU Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System Michael Brambley, Ph.D. Pacific Northwest National Laboratory Michael.Brambley@pnnl.gov (509) 375-6875 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Packaged air conditioners and heat pumps (RTUs) are used in about 58% of all cooled commercial buildings, serving about 69% of the cooled commercial building floor space (EIA 2003) - Navigant estimates that packaged air conditioners

426

U.S. Department of Energy Instrumentation and Controls Technology Research for Advanced Small Modular Reactors  

Science Conference Proceedings (OSTI)

Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, key DOE programs have substantial ICHMI RD&D elements to their respective research portfolio. This article describes current ICHMI research to support the development of advanced small modular reactors.

Wood, Richard Thomas [ORNL

2012-01-01T23:59:59.000Z

427

Analysis and synthesis of logical-dynamic systems of automatic control of a gas-turbine engine  

Science Conference Proceedings (OSTI)

Specific features of analysis and synthesis of logical-dynamic automatic control systems with algebraic selectors for gas-turbine engines are considered. Equivalent nonlinear structures of these systems are obtained. Methods for providing stability, ...

V. I. Petunin; A. I. Frid

2012-11-01T23:59:59.000Z

428

Reducing cold start hydrocarbon emissions from port fuel injected spark ignition engines with improved management of hardware & controls  

E-Print Network (OSTI)

An experimental study was performed to investigate strategies for reducing cold start hydrocarbon (HC) emissions from port fuel injected (PFI) spark ignition (SI) engines with better use of existing hardware and control ...

Lang, Kevin R., 1980-

2006-01-01T23:59:59.000Z

429

Advanced in-duct sorbent injection for SO{sub 2} control. Final technical report  

Science Conference Proceedings (OSTI)

The objective of this research project was to develop a second generation duct sorbent injection technology as a cost-effective compliance option for the 1990 Clean Air Act Amendments. Research and development work was focused on the Advanced Coolside process, which showed the potential for exceeding the original performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. Process development was conducted in a 1000 acfm pilot plant. The pilot plant testing showed that the Advanced Coolside process can achieve 90% SO{sub 2} removal at sorbent utilizations up to 75%. The testing also showed that the process has the potential to achieve very high removal efficiency (90 to >99%). By conducting conceptual process design and economic evaluations periodically during the project, development work was focused on process design improvements which substantially lowered process capital and operating costs, A final process economic study projects capital costs less than one half of those for limestone forced oxidation wet FGD. Projected total SO{sub 2} control cost is about 25% lower than wet FGD for a 260 MWe plant burning a 2.5% sulfur coal. A waste management study showed the acceptability of landfill disposal; it also identified a potential avenue for by-product utilization which should be further investigated. Based on the pilot plant performance and on the above economic projections, future work to scale up the Advanced Coolside process is recommended.

Stouffer, M.R.; Withium, J.A.; Rosenhoover, W.A.; Maskew, J.T.

1994-12-01T23:59:59.000Z

430

Proceedings of the 2002 Advanced Vehicle Control Conference, Hiroshima, Japan, September 2002 Control of a Hybrid Electric Truck Based on Driving  

E-Print Network (OSTI)

and found to work satisfactorily. Keywords / Hybrid Electric Vehicles, Powertrain Control, Heavy DutyProceedings of the 2002 Advanced Vehicle Control Conference, Hiroshima, Japan, September 2002 Control of a Hybrid Electric Truck Based on Driving Pattern Recognition Chan-Chiao Lin, Huei Peng Soonil

Peng, Huei

431

Advanced Vehicle Testing Activity: Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Other Internal Combustion Engine Vehicles on Facebook Tweet about Advanced...

432

Human Factors Engineering (HFE) Computer Based Training Module for Utilities Involved in Implementing Digital Instrumentation and Control Systems  

Science Conference Proceedings (OSTI)

This product provides a brief computer-based training (CBT) module on human factors engineering (HFE) that was developed explicitly to be included in training materials on digital instrumentation and control (I&C) issues for new nuclear power plants (NPPs). This module is intended for engineers, technicians and project managers responsible for design, implementation, testing, operation and maintenance of digital I&C systems in NPPs. The primary focus of the HFE training is the main control room and its h...

2012-03-23T23:59:59.000Z