Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advanced PHEV Engine Systems and Emissions Control Modeling and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PHEV Engine Systems and Emissions Control Modeling and Analysis Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis 2011 DOE Hydrogen and Fuel Cells Program,...

2

Diesel Engine Advanced Multi-Mode Combustion Control and Generalized Nonlinear Transient Trajectory Shaping Control Methods.  

E-Print Network [OSTI]

?? This dissertation addresses the Diesel engine advanced combustion mode switching transient control and the generalized nonlinear non-equilibrium transient trajectory shaping (NETTS) control problem.Control-oriented models… (more)

Yan, Fengjun

2012-01-01T23:59:59.000Z

3

Advanced HD Engine Systems and Emissions Control Modeling and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Meeting vss089daw2012p.pdf More Documents & Publications Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations Advanced LD Engine Systems...

4

FY2000 Progress Report for Combustion and Emission Control for Advanced CIDI Engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2000 Progress Report for Combustion and Emission Control for Advanced CIDI Engines Energy Efficiency and Renewable Energy Office of Transportation Technologies Approved by Steven Chalk November 2000 Combustion and Emission Control for Advanced CIDI Engines FY 2000 Progress Report CONTENTS Page iii I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 II. EMISSION CONTROL SUBSYSTEM DEVELOPMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . .9 A. Emission Control Subsystem Evaluation for Light-Duty CIDI Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5

Argonne TTRDC - Engines - Emissions Control - Advanced Diesel Particulate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of Advanced Diesel Particulate Filtration Systems Development of Advanced Diesel Particulate Filtration Systems The U.S. Environmental Protection Agency regulations require that on-highway diesel vehicles have filtration systems to reduce tail-pipe soot emissions, known as particulate matter (PM). Diesel particulate filtration (DPF) systems are currently the most efficient at directly controlling PM. Argonne researchers, working with Corning, Inc., and Caterpillar, Inc., through a cooperative research and development agreement, are exploiting previously unavailable technology and research results on diesel PM filtration and regeneration processes, aiming to the technology transfer of advanced PM emission control to industry. Argonne's Research In operation of DPF systems, the filtration and regeneration of particulate emissions are the key processes to be controlled for high efficiency. Due to difficulties in accessing the micro-scaled structures of DPF membranes and monitoring particulate filtration and high-temperature thermal processes, however, research has been limited to macroscopic observation for the product.

6

Vehicle Technologies Office: Advanced Combustion Engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Combustion Advanced Combustion Engines to someone by E-mail Share Vehicle Technologies Office: Advanced Combustion Engines on Facebook Tweet about Vehicle Technologies Office: Advanced Combustion Engines on Twitter Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Google Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Delicious Rank Vehicle Technologies Office: Advanced Combustion Engines on Digg Find More places to share Vehicle Technologies Office: Advanced Combustion Engines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Advanced Combustion Engines

7

Advanced Reciprocating Engine Systems  

Broader source: Energy.gov [DOE]

The Advanced Reciprocating Engine Systems (ARES) program is designed to promote separate but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the...

8

Particulate Emissions Control by Advanced Filtration Systems...  

Broader source: Energy.gov (indexed) [DOE]

Particulate Emissions Control by Advanced Filtration Systems or GDI Engines Particulate Emissions Control by Advanced Filtration Systems or GDI Engines 2013 DOE Hydrogen and Fuel...

9

FY2001 Progress Report for Combusion and Emission Control for Advanced CIDI Engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COMBUSTION AND COMBUSTION AND EMISSION CONTROL FOR ADVANCED CIDI ENGINES 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory and QSS Group, Inc., for their artistic, editorial and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2001 Progress Report for Combustion and Emission Control for Advanced CIDI Engines

10

DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program  

SciTech Connect (OSTI)

The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

2012-10-26T23:59:59.000Z

11

Advanced fuel chemistry for advanced engines.  

SciTech Connect (OSTI)

Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

2009-09-01T23:59:59.000Z

12

Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Caterpillar, Inc., June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Caterpillar,...

13

Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cummins, Inc., June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Cummins, Inc., June 2011 Presentation on Advanced Natural Gas Reciprocating Engines...

14

Optimization of Advanced Diesel Engine Combustion Strategies...  

Broader source: Energy.gov (indexed) [DOE]

Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

15

Advanced Natural Gas Reciprocating Engine(s)  

SciTech Connect (OSTI)

The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

Pike, Edward

2014-03-31T23:59:59.000Z

16

Advances in Nuclear Engineering  

Science Journals Connector (OSTI)

... door, closed for fifteen years, to scientific and technical information about fission and nuclear reactors. In spite of the 1,000 papers published then, there was an enormous amount ... Engineering and Science Conference held in Philadelphia, March 1957, and comprise 130 papers on reactors, fuel and a few other matters, almost all the papers being of American origin ...

T. E. ALLIBONE

1958-07-26T23:59:59.000Z

17

Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Dresser Waukesha, June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Dresser Waukesha, June 2011 Presentation on Advanced Natural Gas Reciprocating...

18

Chemical Kinetic Models for Advanced Engine Combustion  

Broader source: Energy.gov (indexed) [DOE]

barriers to increased engine efficiency and decreased emissions by allowing optimization of fuels with advanced engine combustion 6 LLNL-PRES-652979 2014 DOE Merit Review...

19

Advanced Natural Gas Reciprocating Engine(s)  

SciTech Connect (OSTI)

Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work has consisted of both modeling and single cylinder engine experiments to quantify DIGN performance. The air handling systems of natural gas engines dissipate a percentage of available energy as a result of both flow losses and turbomachinery inefficiencies. An analytical study was initiated to increase compressor efficiency by employing a 2-stage inter-cooled compressor. Caterpillar also studied a turbo-compound system that employs a power turbine to recover energy from the exhaust gases for improved engine efficiency. Several other component and system investigations were undertaken during the final phase of the program to reach the ultimate ARES goals. An intake valve actuation system was developed and tested to improve engine efficiency, durability and load acceptance. Analytical modeling and materials testing were performed to evaluate the performance of steel pistons and compacted graphite iron cylinder head. Effort was made to improve the detonation sensing system by studying and comparing the performance of different pressure sensors. To reduce unburned hydrocarbon emissions, different camshafts were designed and built to investigate the effect of exhaust valve opening timing and value overlap. 1-D & 3-D coupled simulation was used to study intake and exhaust manifold dynamics with the goal of reducing load in-balance between cylinders. Selective catalytic reduction with on-board reductant generation to reduce NOx emissions was also engine tested. An effective mean to successfully deploy ARES technologies into the energy markets is to deploy demonstration projects in the field. In 2010, NETL and Caterpillar agreed to include a new “opportunity fuel” deliverable and two field demonstrations in the ARES program. An Organic Rankine Cycle system was designed with production intent incorporating lessons learned from the Phase II demonstration. Unfortunately, business conditions caused Caterpillar to cancel this demonstration in 2011. Nonetheless, Caterpillar partnered with a local dealer to deploy an ARES class engine using syngas from a biomass gasifier as

Kwok, Doris; Boucher, Cheryl

2009-09-30T23:59:59.000Z

20

Fuzzy Modelling and Control of a GDI Engine  

Science Journals Connector (OSTI)

This paper presents an advanced control structure and its simulation environment for a non-linear hybrid system: a GDI engine. The engine management system proposed is...

D. Passaquay; S. Boverie; M. Bross; A. Titli

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced engineering environment collaboration project.  

SciTech Connect (OSTI)

The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

2008-12-01T23:59:59.000Z

22

HCCI Engine Optimization and Control  

SciTech Connect (OSTI)

The goal of this project was to develop methods to optimize and control Homogeneous-Charge Compression Ignition (HCCI) engines, with emphasis on diesel-fueled engines. HCCI offers the potential of nearly eliminating IC engine NOx and particulate emissions at reduced cost over Compression Ignition Direct Injection engines (CIDI) by controlling pollutant emissions in-cylinder. The project was initiated in January, 2002, and the present report is the final report for work conducted on the project through December 31, 2004. Periodic progress has also been reported at bi-annual working group meetings held at USCAR, Detroit, MI, and at the Sandia National Laboratories. Copies of these presentation materials are available on CD-ROM, as distributed by the Sandia National Labs. In addition, progress has been documented in DOE Advanced Combustion Engine R&D Annual Progress Reports for FY 2002, 2003 and 2004. These reports are included as the Appendices in this Final report.

Rolf D. Reitz

2005-09-30T23:59:59.000Z

23

Advanced Natural Gas Engine Technology for Heavy Duty Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Natural gas engine technology has evolved to meet the...

24

Lighting Group: Controls: Advanced Digital Controls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Digital Controls Advanced Digital Controls HPCBS Advanced Digital Controls Objective The goal of this project is to hasten the adoption of digital lighting control systems to allow commercial building operators to optimize the neergy performance of their lighting systems, implement demand responsive control, and improve occupant comfort and productivity. The specific objectives are as follows: (1) Advance the adoption of digital lighting control systems by working with industry to embed IBECS technology into existing analog control and DALI products, and by developing compelling demonstrations of digital control systems for evaluation by early adopters. (2) In collaboration with equipment manufacturers, produce digital lighting system prototypes that demonstrate the advantages of digitally controlled lighting systems to innovative property managers and other energy stakeholders. A digitally controlled lighting system consists of lights that are individually controllable via a network. The advantages of digital control are:

25

Advanced Reciprocating Engine System (ARES)  

Broader source: Energy.gov [DOE]

Raising the Bar on Engine Technology with Increased Efficiency and Reduced Emissions, at Attractive Costs

26

ADCHEM 2006 International Symposium on Advanced Control of Chemical Processes  

E-Print Network [OSTI]

ADCHEM 2006 International Symposium on Advanced Control of Chemical Processes Gramado, Brazil-Morten Godhavn Audun Faanes Sigurd Skogestad ,1 Department of Chemical Engineering, Norwegian University instead of being transported up to the platform. Several challenges conserning process control need

Skogestad, Sigurd

27

2008 DOE Annual Merit Review Advanced Combustion Engines and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Combustion Engines and Fuels R&DTechnology Integration Plenary Session Overview 2008 DOE Annual Merit Review Advanced Combustion Engines and Fuels R&DTechnology...

28

Advances in Diesel Engine Technologies for European Passenger...  

Broader source: Energy.gov (indexed) [DOE]

Advances in Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation:...

29

Injection System and Engine Strategies for Advanced Emission...  

Broader source: Energy.gov (indexed) [DOE]

Injection System and Engine Strategies for Advanced Emission Standards Injection System and Engine Strategies for Advanced Emission Standards Presentation given at DEER 2006,...

30

Stirling engine power control  

DOE Patents [OSTI]

A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.

Fraser, James P. (Scotia, NY)

1983-01-01T23:59:59.000Z

31

Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced heavy...

32

Application for Graduate Admission Supplementary Application Advanced Engineering Programs  

E-Print Network [OSTI]

061) Nuclear Engineering (online) (Z050) Project Management (Z063) Project Management (online) (Z040) Materials Science and Engineering (PMMS) Mechanical Engineering (PMME) Nuclear Engineering (online) (MENUApplication for Graduate Admission Supplementary Application ­ Advanced Engineering Programs Please

Rubloff, Gary W.

33

E-Print Network 3.0 - advanced diesel engine Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

engine Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced diesel engine...

34

POSTDOCTORAL POSITION ADVANCED SUBSTRATE ENGINEERING  

E-Print Network [OSTI]

AND EXPECTATION: A PhD in materials science, electrical engineering or related field is requried. Prior://sauvignon.mit.edu Information about CREATE: http://www.nrf.gov.sg/nrf/otherProgrammes.aspx?id=188 Information about SMART

35

Systems Engineering Advancement Research Initiative  

E-Print Network [OSTI]

departments and programs have been developed in response to higher demand for skilled engineers who can think) at the Massachusetts Institute of Technology (MIT), a new kind of interdisciplinary academic unit that spans most

de Weck, Olivier L.

36

ADVANCED SULFUR CONTROL CONCEPTS  

SciTech Connect (OSTI)

Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

2003-01-01T23:59:59.000Z

37

Advanced Process Engineering Co-simulation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 AdvAnced Process engineering co-simulAtion Description The National Energy Technology Laboratory (NETL) and its R&D collaboration partners are developing the Advanced Process Engineering Co-Simulator (APECS) as an innovative software tool that combines process simulation with high-fidelity equipment models based on computational fluid dynamics (CFD). Winner of a 2004 R&D 100 Award and a 2007 Federal Laboratory Consortium (FLC) Excellence in Technology Transfer Award, this powerful co-simulation technology, for the first time, provides the necessary level of detail and accuracy essential for engineers to analyze and optimize the coupled fluid flow, heat and mass transfer, and chemical reactions that drive overall plant performance. Combined with advanced visualization and high-performance computing,

38

Vehicle Technologies Office: Advanced Combustion Engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Engines Combustion Engines Improving the efficiency of internal combustion engines is one of the most promising and cost-effective near- to mid-term approaches to increasing highway vehicles' fuel economy. The Vehicle Technologies Office's research and development activities address critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles. This technology has great potential to reduce U.S. petroleum consumption, resulting in greater economic, environmental, and energy security. Already offering outstanding drivability and reliability to over 230 million passenger vehicles, internal combustion engines have the potential to become substantially more efficient. Initial results from laboratory engine tests indicate that passenger vehicle fuel economy can be improved by more than up to 50 percent, and some vehicle simulation models estimate potential improvements of up to 75 percent. Advanced combustion engines can utilize renewable fuels, and when combined with hybrid electric powertrains could have even further reductions in fuel consumption. As the EIA reference case forecasts that by 2035, more than 99 percent of light- and heavy-duty vehicles sold will still have internal combustion engines, the potential fuel savings is tremendous.

39

Advances in Energy Systems Engineering  

Science Journals Connector (OSTI)

Controlled nuclear fusion, cellulosic biofuels, and natural gas hydrate belong to this category. ... Polygeneration energy systems are multi-input and multioutput energy systems that coproduce electricity and synthetic liquid fuels. ...

Pei Liu; Michael C. Georgiadis; Efstratios N. Pistikopoulos

2010-09-17T23:59:59.000Z

40

PROGRAMME SPECIFICATION POSTGRADUATE PROGRAMMES Programme name Systems and Control Engineering  

E-Print Network [OSTI]

Engineering Award MSc School School of Engineering and Mathematical Sciences Department or equivalent School of Engineering and Mathematical Sciences Programme code PSSYCO Type of study Full Time Part Time Total UK credits, linear and non-linear systems, optimisation and optimal control and advanced control techniques as well

Weyde, Tillman

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

ALS Ceramics Materials Research Advances Engine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C. Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals

42

ALS Ceramics Materials Research Advances Engine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 LBNL senior materials scientist and UC Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals and composites, Ritchie has illuminated groundbreaking cracking patterns and the underlying mechanistic processes using the x-ray synchrotron micro-tomography at ALS Beamline 8.3.2. Summary Slide ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter.

43

ALS Ceramics Materials Research Advances Engine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C. Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals

44

Advanced Reciprocating Engine Systems (ARES) R&D - Presentation...  

Broader source: Energy.gov (indexed) [DOE]

Reciprocating Engine Systems (ARES) R&D - Presentation by Argonne National Laboratory, June 2011 Advanced Reciprocating Engine Systems (ARES) R&D - Presentation by Argonne National...

45

Advanced Diesel Engine Technology Development for HECC | Department...  

Broader source: Energy.gov (indexed) [DOE]

Diesel Engine Technology Development for HECC Advanced Diesel Engine Technology Development for HECC 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and...

46

Particulate Emissions Control by Advanced Filtration Systems...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Filtration Systems for GDI Engines (ANLCorningHyundai CRADA) June 19, 2014 DOE Annual Merit Review & Peer Evaluation Meeting PI: Kyeong Lee Co-investigators: Seung Choi,...

47

Development of Advanced Small Hydrogen Engines  

SciTech Connect (OSTI)

The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

Krishna Sapru; Zhaosheng Tan; Ben Chao

2010-09-30T23:59:59.000Z

48

Advanced gray rod control assembly  

DOE Patents [OSTI]

An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

2013-09-17T23:59:59.000Z

49

Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests  

SciTech Connect (OSTI)

The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

Wright, A. D.; Fingersh, L. J.

2008-03-01T23:59:59.000Z

50

ADVANCE: Increasing the Participation and Advancement of Women in Academic Science and Engineering Careers  

E-Print Network [OSTI]

ADVANCE: Increasing the Participation and Advancement of Women in Academic Science and Engineering Careers (ADVANCE) Program Solicitation NSF 07-582 Replaces Document(s): NSF 05-584 National Science for Biological Sciences Directorate for Computer & Information Science & Engineering Directorate for Engineering

Farritor, Shane

51

Redundant marine engine control system  

SciTech Connect (OSTI)

An electro-mechanical engine control system is described for the shift and throttle functions of marine engines which comprises an electronically-controlled mechanical servo control means coupleable to the shift and throttle functions of a marine engine; a manually-operable ship-board operator engine shift and throttle control means; and an electro-mechanical transfer means coupled to the operator control means and to the servo control means for transferring operator shift and throttle settings to the servo control means, the transfer means being both electronically and mechanically coupled to the servo control means and being constructed and arranged whereby the transfer means will mechanically actuate the servo control means in the absence of electrical power and will electronically actuate the servo control means when electrical power is applied to the servo control means; the transfer means including coupling means preferentially electrically-coupling the operator control means to the servo control means, the coupling means being so constructed and arranged to automatically mechanically-couple the operator control means to the servo control means in the event of electrical power failure and to automatically electrically-couple the operator control means to the servo control means when electrical power is restored.

Burkenpas, R.W.

1993-06-29T23:59:59.000Z

52

Advanced nuclear plant control complex  

DOE Patents [OSTI]

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

53

Advanced combustion methods for simultaneous reduction of emissions and fuel consumption of compression ignition engines  

Science Journals Connector (OSTI)

In this work, advanced combustion modes i.e. improved low-temperature combustion (LTC) and reactivity controlled compression ignition (RCCI) have been achieved in a diesel engine. LTC mode has been improved us...

P. Brijesh; A. Chowdhury; S. Sreedhara

2014-07-01T23:59:59.000Z

54

NETL: Advanced Research - Sensors & Controls Innovations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensors & Controls Sensors & Controls Advanced Research Sensors & Controls Innovations OSU's O2 Sensor Ohio State University's reference-free potentiometric oxygen sensor capable of withstanding temperatures of 800 °C. Novel Sensors and Advanced Process Control Novel Sensors and Advanced Process Control are key enabling technologies for advanced near zero emission power systems. NETL's Advanced Research Program is leading the effort to develop sensing and control technologies and methods to achieve seamless, integrated, automated, optimized, and intelligent power systems. Today, the performance of advanced power systems is limited by the lack of sensors and controls capable of withstanding high temperature and pressure conditions. Harsh environments are inherent to new systems that aim to

55

MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION  

E-Print Network [OSTI]

MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION In this course you product development and innovation. You will develop a rich knowledge of additive manufacturing processes enabling advanced/additive manufacturing and personal fabrication. You will have the opportunity

Schumacher, Russ

56

Overview of the DOE Advanced Combustion Engine R&D  

Broader source: Energy.gov (indexed) [DOE]

& Non-Carbon) Electricity (Conventional & Renewable Sources) Improve Fuel Economy Reduce GHG Emissions Displace Petroleum IC Engine and Transmission Advances Light & Heavy-Duty...

57

Advanced CFD Models for High Efficiency Compression Ignition Engines  

Broader source: Energy.gov [DOE]

Advanced CFD models for high efficiency compression-ignition engines can be used to show how turbulence-chemistry interactions influence autoignition and combustion.

58

Fuel Effects on Advanced Combustion Engines | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research Greenpower Trap Mufflerl System Low-Temperature Diesel Combustion...

59

Advanced Natural Gas Reciprocating Engines (ARES)  

Broader source: Energy.gov (indexed) [DOE]

of the Art Pre-ARES Engines Characterized by the following: Limited investment in natural gas engines, based on derivatives of larger volume diesel engines Low...

60

SAPLE: Sandia Advanced Personnel Locator Engine.  

SciTech Connect (OSTI)

We present the Sandia Advanced Personnel Locator Engine (SAPLE) web application, a directory search application for use by Sandia National Laboratories personnel. SAPLE's purpose is to return Sandia personnel 'results' as a function of user search queries, with its mission to make it easier and faster to find people at Sandia. To accomplish this, SAPLE breaks from more traditional directory application approaches by aiming to return the correct set of results while placing minimal constraints on the user's query. Two key features form the core of SAPLE: advanced search query interpretation and inexact string matching. SAPLE's query interpretation permits the user to perform compound queries when typing into a single search field; where able, SAPLE infers the type of field that the user intends to search on based on the value of the search term. SAPLE's inexact string matching feature yields a high-quality ranking of personnel search results even when there are no exact matches to the user's query. This paper explores these two key features, describing in detail the architecture and operation of SAPLE. Finally, an extensive analysis on logged search query data taken from an 11-week sample period is presented.

Procopio, Michael J.

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Graduate School of Advanced Science and Engineering Department of Integrative Bioscience and Biomedical Engineering  

E-Print Network [OSTI]

and Biomedical Engineering Master's Program Doctoral Program Research Area Research Instruction Application and Engineering Department of Integrative Bioscience and Biomedical Engineering 2014/092015/04 1 Department of Integrative Bioscience and Biomedical Engineering #12; Graduate School of Advanced Science and Engineering

Kaji, Hajime

62

Elements of an advanced integrated operator control station  

SciTech Connect (OSTI)

One of the critical determinants of peformance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays, etc.) and the human operator. In the Remote Control Engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures.

Clarke, M.M.; Kreifeldt, J.G.

1984-01-01T23:59:59.000Z

63

Elements of an advanced integrated operator control station  

SciTech Connect (OSTI)

One of the critical determinants of performance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays) and the human operator. In the remote control engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures.

Clarke, M.M.; Kreifeldt, J.G.

1984-01-01T23:59:59.000Z

64

2009 Advanced Combustion Engine R&D Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COMBUSTION COMBUSTION ENGINE RESEARCH AND DEVELOPMENT annual progress report 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 Approved by Gurpreet Singh Team Leader, Advanced Combustion Engine R&D Office of Vehicle Technologies FY 2009 Progress rePort For AdvAnced combustion engine reseArcH And deveLoPment Energy Efficiency and Renewable Energy Office of Vehicle Technologies December 2009 U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 ii Advanced Combustion Engine Technologies FY 2009 Annual Progress Report

65

Control Engineering Practice ] (  

E-Print Network [OSTI]

of two-phase pipeline-riser systems at riser slugging conditions Espen Storkaasa,1 , Sigurd Skogestadb properties of a typical pipeline-riser system. Analysis of the model reveals a very interesting theoretically that riser slugging in pipeline-riser systems can be avoided with a simple control system

Skogestad, Sigurd

66

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES  

SciTech Connect (OSTI)

This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. A detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and concepts have been explored, and engine experiments will validate these concepts. An iterative process of experimentation, simulation and analysis, will be followed with the goal of demonstrating a complete optimized low-friction engine system. As planned, MIT has developed guidelines for an initial set of low-friction piston-ring-pack designs. Current recommendations focus on subtle top-piston-ring and oil-control-ring characteristics. A full-scale Waukesha F18 engine has been installed at Colorado State University and testing of the baseline configuration is in progress. Components for the first design iteration are being procured. Subsequent work includes examining the friction and engine performance data and extending the analyses to other areas to evaluate opportunities for further friction improvement and the impact on oil consumption/emission and wear, towards demonstrating an optimized reduced-friction engine system.

Victor W. Wong; Tian Tian; Grant Smedley

2003-08-28T23:59:59.000Z

67

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES  

SciTech Connect (OSTI)

This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scale Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology demonstration in an actual full-sized reciprocating natural-gas engine.

Victor W. Wong; Tian Tian; Grant Smedley; Jeffrey Jocsak

2004-09-30T23:59:59.000Z

68

Natural Gas-optimized Advanced Heavy-duty Engine  

E-Print Network [OSTI]

Natural Gas-optimized Advanced Heavy-duty Engine Transportation Research PIER Transportation of natural gas vehicles as a clean alternative is currently limited to smaller engine displacements and spark ignition, which results in lower performance. A large displacement natural gas engine has

69

Systems/Process Monitoring, Diagnostics and Control - Nuclear Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capabilities > Nuclear Systems Capabilities > Nuclear Systems Technologies > Systems/Process Monitoring, Diagnostics and Control Capabilities Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis Decontamination and Decommissioning Systems/Process Monitoring, Diagnostics and Control Overview Process Monitoring & Signal Validation Diagnostic & Advisory Systems Advanced (AI-based) Nonlinear Controllers for Industrial Processes Artificial intelligence Other Capabilities Work with Argonne Contact us For Employees Site Map Help Systems/Process Monitoring, Diagnostics and Control Bookmark and Share Systems/Process Monitoring, Diagnostics and Control Systems/Process Monitoring, Diagnostics and Control. Click on image to view larger image. The goal of the Nuclear Engineering Division's research on advanced

70

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive  

Broader source: Energy.gov (indexed) [DOE]

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America December 6, 2011 - 2:12pm Addthis Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs Who knew Escherichia coli (E. coli) could help America reduce its dependence on foreign oil? A breakthrough with the bacteria could make it cheaper to produce fuel from switchgrass -- an advanced biofuel with the

71

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive  

Broader source: Energy.gov (indexed) [DOE]

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America December 6, 2011 - 2:12pm Addthis Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs Who knew Escherichia coli (E. coli) could help America reduce its dependence on foreign oil? A breakthrough with the bacteria could make it cheaper to produce fuel from switchgrass -- an advanced biofuel with the

72

E-Print Network 3.0 - advanced nuclear engineering Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: advanced nuclear engineering Page: << < 1 2 3 4 5 > >> 1 Nuclear Engineering Graduate Program Summary:...

73

Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress...  

Broader source: Energy.gov (indexed) [DOE]

Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report DOE's Office of...

74

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES  

SciTech Connect (OSTI)

This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, with full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.

Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

2005-09-30T23:59:59.000Z

75

Reducing Safety Flaring through Advanced Control  

E-Print Network [OSTI]

An advanced process control application, using DMCplus® (Aspen Technology, Inc.), was developed to substantially reduce fuel gas losses to the flare at a large integrated refining / petrochemical complex. Fluctuations in internal fuel gas system...

Hokanson, D.; Lehman, K.; Matsumoto, S.; Takai, N.; Takase, F.

2010-01-01T23:59:59.000Z

76

REQUEST BY CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER  

Broader source: Energy.gov (indexed) [DOE]

CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF ENERGY COOPERATIVE AGREEMENT NO. DE-FC05-00OR22804; DOE WAIVER DOCKIET W(A)-00-021 [ORO-754] Petitioner, Cummins Engine Company, Inc., has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Cooperative Agreement No. DE-FC05-00OR22804. The scope of this work is to plan, develop and demonstrate advanced heavy duty diesel engine technologies to improve thermal efficiency and meet EPA proposed 2007 emissions of 0.2 NOx and 0.01 gm PM. This work is sponsored by the Office of Transportation Technologies, Office ol Heavy Vehicle

77

2011 Advanced Combustion Engine R&D Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

annual progress report 2011 annual progress report 2011 Advanced Combustion Engine Research and Development DOE-ACE-2011AR Approved by Gurpreet Singh Team Leader, Advanced Combustion Engine R&D Vehicle Technologies Program FY 2011 Progress rePort For AdvAnced combustion engine reseArcH And deveLoPment Energy Efficiency and Renewable Energy Vehicle Technologies Program U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 December 2011 DOE-ACE-2011AR ii Advanced Combustion Engine R&D FY 2011 Annual Progress Report We would like to express our sincere appreciation to Alliance Technical Services, Inc. and Oak Ridge National Laboratory for their technical and artistic contributions in preparing and publishing this report. In addition, we would like to thank all the participants for their contributions to the programs and all the

78

REQUEST BY CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER  

Broader source: Energy.gov (indexed) [DOE]

plan, develop and demonstrate advanced heavy duty diesel engine technologies to improve thermal efficiency and meet EPA proposed 2007 emissions of 0.2 NOx and 0.01 gm PM. This...

79

NETL: Advanced NOx Emissions Control: Control Technology - ALTA for Cyclone  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Full-Scale Demonstration of ALTA NOx Control for Cyclone-Fired Boilers Full-Scale Demonstration of ALTA NOx Control for Cyclone-Fired Boilers The primary goal of this project was to evaluate a technology called advanced layered technology application (ALTA) as a means to achieve NOx emissions below 0.15 lb/MMBtu in a cyclone boiler. Reaction Engineering International (REI) conducted field testing and combustion modeling to refine the process design, define the optimum technology parameters, and assess system performance. The ALTA NOx control technology combines deep staging from overfire air, rich reagent injection (RRI), and selective non-catalytic reduction (SNCR). Field testing was conducted during May-June 2005 at AmerenUE's Sioux Station Unit 1, a 500 MW cyclone boiler unit that typically burns an 80/20 blend of Powder River Basin subbituminous coal and Illinois No. 6 bituminous coal. Parametric testing was also conducted with 60/40 and 0/100 blends. The testing also evaluated process impacts on balance-of-plant issues such as the amount of unburned carbon in the ash, slag tapping, waterwall corrosion, ammonia slip, and heat distribution.

80

Heat engine generator control system  

DOE Patents [OSTI]

An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.

Rajashekara, Kaushik (Carmel, IN); Gorti, Bhanuprasad Venkata (Towson, MD); McMullen, Steven Robert (Anderson, IN); Raibert, Robert Joseph (Fishers, IN)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Heat engine generator control system  

DOE Patents [OSTI]

An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.

Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.

1998-05-12T23:59:59.000Z

82

Technologies for Gaseous Fueled Advanced Reciprocating Engine...  

Broader source: Energy.gov (indexed) [DOE]

* A user facility to developtest technologies to improve DE performance. 2 Advanced Laser Ignition System (ALIS): * Laser ignition was shown to extend lean ignitability of...

83

Principles and applications of quantum control engineering  

Science Journals Connector (OSTI)

...world of classical control engineering as a guide to future quantum...of quantum control as the engineering discipline that will guide...and these are available as audio downloads from the webpage...2011/quantum-control-engineering/ Acknowledgements: The organizing...

2012-01-01T23:59:59.000Z

84

Optimization of an Advanced Passive/Active Diesel Emission Control...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

an Advanced PassiveActive Diesel Emission Control System Optimization of an Advanced PassiveActive Diesel Emission Control System Evaluation of PM exhaust aftertreatment...

85

Development and Deployment of Advanced Emission Controls for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Deployment of Advanced Emission Controls for the Retrofit Market Development and Deployment of Advanced Emission Controls for the Retrofit Market 2003 DEER Conference Presentation:...

86

Advances in Engineering and Applications of Hexagonal Ferrites in Russia  

E-Print Network [OSTI]

4 Advances in Engineering and Applications of Hexagonal Ferrites in Russia Marina Y. Koledintseva1, Missouri 2Moscow Power Engineering Institute (Technological University), Moscow 1U.S.A. 2Russia 1-80 GHz), W (80-100 GHz) bands, and higher, have been also studied and applied in Russia since middle 1950

Koledintseva, Marina Y.

87

Vehicle Technologies Office: Advanced Combustion Engines | Department...  

Broader source: Energy.gov (indexed) [DOE]

Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction Emissions Waste Heat Recovery Lightweighting Parasitic Loss Reduction Lubricants...

88

Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...  

Broader source: Energy.gov (indexed) [DOE]

in Gasoline Turbocharged Direct Injection (GTDI) engine technology in the near term as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost...

89

Process Systems Engineering R&D for Advanced Fossil Energy Systems  

SciTech Connect (OSTI)

This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulation for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.

Zitney, S.E.

2007-09-11T23:59:59.000Z

90

Advanced Process Engineering Co-Simulator (APECS) | Open Energy Information  

Open Energy Info (EERE)

Advanced Process Engineering Co-Simulator (APECS) Advanced Process Engineering Co-Simulator (APECS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: APECS Agency/Company /Organization: National Energy Technology Laboratory Partner: ANSYS Sector: Energy Focus Area: Industry Topics: Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.netl.doe.gov/technologies/coalpower/advresearch/apecs.html APECS Screenshot References: APECS Homepage[1] Logo: APECS Advanced Process Engineering Co-Simulator (APECS) is an innovative software tool that provides process/equipment co-simulation capabilities for model-based decision support in steady-state process design and optimization. Developed by NETL, ANSYS, and other research partners, the Advanced Process

91

Advanced Process Engineering Co-Simulator (APECS) | Open Energy Information  

Open Energy Info (EERE)

Advanced Process Engineering Co-Simulator (APECS) Advanced Process Engineering Co-Simulator (APECS) (Redirected from APECS) Jump to: navigation, search Tool Summary Name: APECS Agency/Company /Organization: National Energy Technology Laboratory Partner: ANSYS Sector: Energy Focus Area: Industry Topics: Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.netl.doe.gov/technologies/coalpower/advresearch/apecs.html APECS Screenshot References: APECS Homepage[1] Logo: APECS Advanced Process Engineering Co-Simulator (APECS) is an innovative software tool that provides process/equipment co-simulation capabilities for model-based decision support in steady-state process design and optimization. Developed by NETL, ANSYS, and other research partners, the Advanced Process

92

EIS-0290: Idaho National Engineering and Environmental Laboratory Advanced  

Broader source: Energy.gov (indexed) [DOE]

90: Idaho National Engineering and Environmental Laboratory 90: Idaho National Engineering and Environmental Laboratory Advanced Mixed Waste Treatment Project (AMWTP) EIS-0290: Idaho National Engineering and Environmental Laboratory Advanced Mixed Waste Treatment Project (AMWTP) SUMMARY The AMWTP Final EIS assesses the potential environmental impacts associated with alternatives related to the construction and operation of a proposed waste treatment facility at the Idaho National Environmental and Engineering Laboratory (INEEL). PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 26, 2013 EIS-0290-SA-03: Supplement Analysis Disposition of Mixed Low-Level Waste and Low-Level Waste from Advanced Mixed Waste Treatment Project at Commercial Facilities, Idaho May 1, 2009 EIS-0290-SA-02: Supplement Analysis

93

Advanced Emissions Control Development Program  

SciTech Connect (OSTI)

Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W?s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

A. P. Evans

1998-12-03T23:59:59.000Z

94

Advanced Emission Control Development Program.  

SciTech Connect (OSTI)

Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

Evans, A.P.

1997-12-31T23:59:59.000Z

95

Large Eddy Simulation (LES) Applied to Advanced Engine Combustion...  

Broader source: Energy.gov (indexed) [DOE]

for engine combustion and emission control - Efficient and routine use of High-Performance-Computing (HPC) to establish optimal balance between predictive and affordable models...

96

Advanced Natural Gas Reciprocating Engines (ARES)  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Reciprocating Engines (ARES) Contract: DE-FC26-01CH11080 GE Energy, Dresser Inc. 102010 - 122013 Jim Zurlo, Principal Investigator james.zurlo@ge.com Tel....

97

Emissions Control for Lean Gasoline Engines  

Broader source: Energy.gov (indexed) [DOE]

Evaluation Meeting June 7-10, 2010 Gurpreet Singh and Ken Howden Advanced Combustion Engine Program U.S. Department of Energy 2 Managed by UT-Battelle for the Department of...

98

Graduate School of Advanced Science and Engineering Department of Nanoscience and Nanoengineering  

E-Print Network [OSTI]

Graduate School of Advanced Science and Engineering Department of Nanoscience and Engineering Department of Nanoscience and Nanoengineering 2014/092015/04 1 Department of Nanoscience and Nanoengineering #12; Graduate School of Advanced Science and Engineering Department of Nanoscience

Kaji, Hajime

99

Graduate School of Advanced Science and Engineering Department of Applied Chemistry  

E-Print Network [OSTI]

Graduate School of Advanced Science and Engineering Department of Applied Chemistry Master of Advanced Science and Engineering Department of Applied Chemistry Master's Program Doctoral Program Inorganic Synthetic Chemistry Professor Doctor of Engineering (Waseda Univ.) SUGAHARA Yoshiyuki Polymer

Kaji, Hajime

100

Increased Engine Efficiency via Advancements in Engine Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10sisken.pdf More Documents & Publications High-Efficiency...

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

HCCI engine control and optimization  

E-Print Network [OSTI]

measured fuel consumption of the HCCI engine by ad- justingengine-generator sets to minimize fuel consumptionthe fuel consumption of an HCCI engine by determining the

Killingsworth, Nicholas J.

2007-01-01T23:59:59.000Z

102

Advanced Materials for Aircraft Engine Applications  

Science Journals Connector (OSTI)

...strength and long creep lives, as-HIP material...cycle fatigue (LCF) lives. LCF is a failure...landing for an aircraft turbine engine). A classic...ductility and fatigue life. Examination ofLCF-tested...the atomizer, and residual dirt from gas supply lines and...

DANIEL G. BACKMAN; JAMES C. WILLIAMS

1992-02-28T23:59:59.000Z

103

Next Generation Diesel Engine Control | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel Engine Control Next Generation Diesel Engine Control Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007,...

104

The Advanced Photon Source main control room  

SciTech Connect (OSTI)

The Advanced Photon Source at Argonne National Laboratory is a third-generation light source built in the 1990s. Like the machine itself, the Main Control Room (MCR) employs design concepts based on today`s requirements. The discussion will center on ideas used in the design of the MCR, the comfort of personnel using the design, and safety concerns integrated into the control room layout.

Pasky, S.

1998-07-01T23:59:59.000Z

105

Engineered Sequestration and Advanced Power Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia University. Predictions of innovative energy technologies for the next century usually include everything from fusion to photovoltaics with the one notable exception of fossil fuels. Because of fears of diminishing supplies, pollution and climate change, the public is reluctant to consider these hydrocarbon fuels for the energy needs of the twenty- first century. An energy strategy for the new century, however, cannot ignore fossil fuels. Contrary to popular belief, they are plentiful and inexpensive. While it is true that fossil fuels are limited by their environmental impact, new technologies to eliminate environmental concerns are currently being developed. Managing the emission of

106

FY 2008 Progress Report for Advanced Combustion Engine Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COMBUSTION COMBUSTION ENGINE TECHNOLOGIES annual progress report 2008 V e h i c l e T e c h n o l o g i e s P r o g r a m U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2008 Progress rePort For AdvAnced combustion engine technologies Energy Efficiency

107

US DRIVE Advanced Combustion and Emission Control Technical Team Roadmap  

Broader source: Energy.gov [DOE]

The ACEC focuses on advanced engine and aftertreatment technology for three major combustion strategies: (1) Low-Temperature Combustion, (2) Dilute Gasoline combustion, and (3) Clean Diesel Combustion.

108

NETL: Control Technology: Advanced Hybrid Particulate Collector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Hybrid Particulate Collector Advanced Hybrid Particulate Collector Under DOE-NETL sponsorship, the University of North Dakota, Energy and Environmental Research Center (UND-EERC) has developed a new concept in particulate control, called an advanced hybrid particulate collector (AHPC). In addition to DOE and the EERC, the project team includes W.L. Gore & Associates, Inc., Allied Environmental Technologies, Inc., and the Otter Tail Power Company. The AHPC utilizes both electrostatic collection and filtration in a unique geometric configuration that achieves ultrahigh particle collection with much less collection area than conventional particulate control devices. The primary technologies for state-of-the-art particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). A major limitation of ESPs is that the fractional penetration of 0.1- to 1.0-µm particles is typically at least an order of magnitude greater than for 10-µm particles, so a situation exists where the particles that are of greatest health concern are collected with the lowest efficiency. Fabric filters are currently considered to be the best available control technology for fine particles, but emissions are dependent on ash properties and typically increase if the air-to-cloth (A/C) ratio is increased. In addition, many fabrics cannot withstand the rigors of high-SO2 flue gases, which are typical for bituminous fuels. Fabric filters may also have problems with bag cleanability and high pressure drop, which has resulted in conservatively designed, large, costly baghouses.

109

E-Print Network 3.0 - advanced engineering preliminary Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

preliminary Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced engineering preliminary Page: << < 1 2 3 4 5 > >> 1 UNIVERSITY OF NEBRASKA...

110

RD&D Study Plan for Advancement of Science and Engineering Supporting...  

Broader source: Energy.gov (indexed) [DOE]

of Science and Engineering Supporting Geologic Disposal in Bedded Salt- March 2013 Workshop Outcomes RD&D Study Plan for Advancement of Science and Engineering Supporting...

111

Combustion Modeling for Diesel Engine Control Design  

E-Print Network [OSTI]

Combustion Modeling for Diesel Engine Control Design Von der Fakult¨at f¨ur Maschinenwesen der Combustion Modeling for Diesel Engine Control Design WICHTIG: D 82 überprüfen !!! #12;Bibliographic research stays at General Motors R&D in Warren, MI, USA, possible. Furthermore, I would like thank Tom

Peters, Norbert

112

Advanced Technologies in Life Cycle Engineering  

Science Journals Connector (OSTI)

Abstract Increasing competitive pressure within industries producing long-living, cost intensive products drive the need to optimize product life cycles in terms of faster time to market, sustainable operation, reengineering and recycling. In this context, complexity of IT systems is growing and has to connect different life cycle phases. Especially new concepts of Product Service Systems (PSS) lead to a connection between product design, maintenance, repair and overhaul (MRO). There are still many challenges concerning interface problems between different IT-Systems. They are caused by different data formats, continuous demand for information or integration of new technologies. Thus, Life Cycle Engineering (LCE) has gained an important role and needs to consider integration of new industry 4.0 solutions like cloud services, big data or cyber physical systems. This paper gives an overview about these challenges, future development and new research approaches. A deeper view is taken at one promising approach in the field of maintenance of Printed Circuit Boards (PCB). This approach is about invention and implementation of a new process that combines both electrical and optical measuring techniques to automate circuit and layout plan reconstruction of long-living and cost intensive electronic boards.

Rainer Stark; Hendrik Grosser; Boris Beckmann-Dobrev; Simon Kind

2014-01-01T23:59:59.000Z

113

Advanced (AI-Based) Nonlinear Controllers for Industrial Processes -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced (AI-Based) Nonlinear Controllers for Industrial Processes Advanced (AI-Based) Nonlinear Controllers for Industrial Processes Capabilities Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis Decontamination and Decommissioning Systems/Process Monitoring, Diagnostics and Control Overview Process Monitoring & Signal Validation Diagnostic & Advisory Systems Advanced (AI-based) Nonlinear Controllers for Industrial Processes Artificial intelligence Other Capabilities Work with Argonne Contact us For Employees Site Map Help Systems/Process Monitoring, Diagnostics and Control Advanced (AI-Based) Nonlinear Controllers for Industrial Processes Bookmark and Share Advanced (AI-Based) Nonlinear Controllers for Industrial Processes The overall objective of this research is to explore and demonstrate the

114

Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments (Brochure)  

SciTech Connect (OSTI)

Fact sheet describes the top accomplishments, goals and strategies of DOEs Advanced Combustion Engine Research and Development sub program.

Not Available

2009-03-01T23:59:59.000Z

115

Characterization of Pre-Commercial Gasoline Engine Particulates Through Advanced Aerosol Methods  

Broader source: Energy.gov [DOE]

Advanced aerosol analysis methods were used to examine particulates from single cylinder test engines running on gasoline and ethanol blends.

116

Coal surface control for advanced physical fine coal cleaning technologies  

SciTech Connect (OSTI)

This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

1992-01-01T23:59:59.000Z

117

Advanced Combustion Operation in a Compression Ignition Engine  

Science Journals Connector (OSTI)

In this study, advanced combustion operating modes were investigated on a DDC/VM Motori 2.5 L, four-cylinder, turbocharged, common rail, direct-injection light-duty diesel engine, with exhaust emission being the main focus. ... This process is based on work from Al-Qurashi et al., who conducted fundamental flame studies that showed that the thermal effect of EGR enhances the oxidative reactivity of diesel soot. ... Heywood, J. B. Internal Combustion Engine Fundamentals; McGraw-Hill Book Company: New York, 1988; p 930. ...

Gregory K. Lilik; José Martín Herreros; André L. Boehman

2008-12-15T23:59:59.000Z

118

Proposed Research Center Biomedical Engineering for Advanced Technologies in Ophthalmology (BEATO)  

E-Print Network [OSTI]

Proposed Research Center Biomedical Engineering for Advanced Technologies in Ophthalmology (BEATO of a Research Center in Biomedical Engineering for Advanced Technologies in Ophthalmology (BEATO) administered with the Department of Ophthalmology. The BEATO Center will focus on advanced technology and biomedical engineering

Rose, Michael R.

119

Graduate School of Advanced Science and Engineering Department of Chemistry and Biochemistry  

E-Print Network [OSTI]

Graduate School of Advanced Science and Engineering Department of Chemistry and Biochemistry; Graduate School of Advanced Science and Engineering Department of Chemistry and Biochemistry Master/092015/04 2 Department of Chemistry and Biochemistry #12; Graduate School of Advanced Science and Engineering

Kaji, Hajime

120

Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity 2003 DEER Conference...

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Advanced Laser-Based Sensors for Industrial Process Control  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Laser-Based Sensors for Industrial Process Control Increased Efficiency and Reduced Emissions Using Advanced Laser-Based Sensors for Process Control Monitoring in Electric Arc...

122

Proceedings of the 1987 coatings for advanced heat engines workshop  

SciTech Connect (OSTI)

This Workshop was conducted to enhance communication among those involved in coating development for improved heat engine performance and durability. We were fortunate to have Bill Goward review the steady progress and problems encountered along the way in the use of thermal barrier coatings (TBC) in aircraft gas turbine engines. Navy contractors discussed their work toward the elusive goal of qualifying TBC for turbine airfoil applications. In the diesel community, Caterpillar and Cummins are developing TBC for combustion chamber components as part of the low heat rejection diesel engine concept. The diesel engine TBC work is based on gas turbine technology with a goal of more than twice the thickness used on gas turbine engine components. Adoption of TBC in production for diesel engines could justify a new generation of plasma spray coating equipment. Increasing interests in tribology were evident in this Workshop. Coatings have a significant role in reducing friction and wear under greater mechanical loadings at higher temperatures. The emergence of a high temperature synthetic lubricant could have an enormous impact on diesel engine design and operating conditions. The proven coating processes such as plasma spray, electron-beam physical vapor deposition, sputtering, and chemical vapor deposition have shown enhanced capabilities, particularly with microprocessor controls. Also, the newer coating schemes such as ion implantation and cathodic arc are demonstrating intriguing potential for engine applications. Coatings will play an expanding role in higher efficiency, more durable heat engines.

Not Available

1987-01-01T23:59:59.000Z

123

Advanced nuclear plant control room complex  

DOE Patents [OSTI]

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

124

IEP - Advanced NOx Emissions Control: Regulatory Drivers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IEP - Advanced NOx Emissions Control Regulatory Drivers Regulatory Drivers for Existing Coal-Fired Power Plants Regulatory and legislative requirements have predominantly driven the need to develop NOx control technologies for existing coal-fired power plants. The first driver was the Title IV acid rain program, established through the 1990 Clean Air Act Amendments (CAAA). This program included a two-phase strategy to reduce NOx emissions from coal-fired power plants – Phase I started January 1, 1996 and Phase II started January 1, 2000. The Title IV NOx program was implemented through unit-specific NOx emission rate limits ranging from 0.40 to 0.86 lb/MMBtu depending on the type of boiler/burner configuration and based on application of LNB technology.

125

Advanced concepts for controlling energy surety microgrids.  

SciTech Connect (OSTI)

Today, researchers, engineers, and policy makers are seeking ways to meet the world's growing demand for energy while addressing critical issues such as energy security, reliability, and sustainability. Many believe that distributed generators operating within a microgrid have the potential to address most of these issues. Sandia National Laboratories has developed a concept called energy surety in which five of these 'surety elements' are simultaneously considered: energy security, reliability, sustainability, safety, and cost-effectiveness. The surety methodology leads to a new microgrid design that we call an energy surety microgrid (ESM). This paper discusses the unique control requirement needed to produce a microgrid system that has high levels of surety, describes the control system from the most fundamental level through a real-world example, and discusses our ideas and concepts for a complete system.

Menicucci, David F.; Ortiz-Moyet, Juan

2011-05-01T23:59:59.000Z

126

Control apparatus for hot gas engine  

DOE Patents [OSTI]

A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

Stotts, Robert E. (Clifton Park, NY)

1986-01-01T23:59:59.000Z

127

Fuzzy control of a turbocharged diesel engine  

Science Journals Connector (OSTI)

In this paper an innovative fuzzy controller is proposed to regulate the intake manifold pressure and the fresh mass airflow of diesel engines simultaneously. Unlike many multivariable controllers published in the literature, it requires neither an internal model nor identification algorithms. It has been designed considering the instrumentation set usually embedded in a mass-produced passenger car. Its rule-based structure has led to an algorithm, which is easy to implement. In comparison to controllers embedded at present in standard Engine Control Units (ECUs), it improves the trajectory tracking of desired outputs as noted during simulation of EURO cycles. In terms of robustness, this controller is little sensitive to the parameter disparity generally encountered in mass-produced engines.

Jean-Francois Arnold; Nicolas Langlois; Houcine Chafouk; Gerard Tremouliere

2008-01-01T23:59:59.000Z

128

Command and Control Information Systems Engineering: Progress and Prospects  

Science Journals Connector (OSTI)

Publisher Summary Systems engineering engrosses all the activities that extend over the life cycle of a system, including requirements definitions, functional designs, development, testing, and evaluation. This chapter describes and provides an analysis of the generic information systems engineering (ISE) process, the domain of military command and control (C2), and the application of the principles of multidisciplinary information systems engineering to C2 information and decision systems engineering. The chapter also presents some command and control ISE case studies intended to illustrate the most salient features of the ISE process. ISE represents an innovative way to think about systems design and development; C2 represents an expanding applications domain; the marriage between ISE and C2 is likely to yield some creative system solutions to existing and future requirements. System solutions are not found only in structured design methodology; but also in the application of advanced and emerging technologies. ISE is structured, yet flexible enough to exploit new technological opportunities. New opportunities for the application of advanced information technology are rising dramatically. Next-generation C2 information and decision systems will appear very different to users; they will be far more powerful, much easier to use, and able to communicate with problem-solving cousins distributed across large, secure and reconstitutable networks.

Stephen J. Andriole

1990-01-01T23:59:59.000Z

129

Advanced NOx Emissions Control: Control Technology - Second Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Second Generation Advanced Reburning Second Generation Advanced Reburning General Electric - Energy and Environmental Research Corporation (GE-EER) is carrying out a two Phase research program to develop novel Advanced Reburning (AR) concepts for high efficiency and low cost NOx control from coal-fired utility boilers. AR technologies are based on combination of basic reburning and N-agent/promoter injections. Phase I of the project was successfully completed and EER was selected to continue to develop AR technology during Phase II. Phase I demonstrated that AR technologies are able to provide effective NOx control for coal-fired combustors. Three technologies were originally envisioned for development: AR-Lean, AR-Rich, and Multiple Injection AR (MIAR). Along with these, three additional technologies were identified during the project: reburning plus promoted SNCR; AR-Lean plus promoted SNCR; and AR-Rich plus promoted SNCR. The promoters are sodium salts, in particular sodium carbonate. These AR technologies have different optimum reburn heat input levels and furnace temperature requirements. For full scale application, an optimum technology can be selected on a boiler-specific basis depending on furnace temperature profile and regions of injector access.

130

REVISED NOTICE OF PROPOSED AWARDS Advanced Natural Gas Engine Research and Development for Class 3  

E-Print Network [OSTI]

REVISED NOTICE OF PROPOSED AWARDS Advanced Natural Gas Engine Research and Development for Class 3 Notice (PON-12-504) entitled "Advanced Natural Gas Engine research and Development for Class 3 through of natural gas engine concepts for application in light heavy-duty vehicles (LHDV) and medium heavy duty

131

Advanced Industrial Archaeology: A new reverse-engineering process for contextualizing and  

E-Print Network [OSTI]

1 Advanced Industrial Archaeology: A new reverse-engineering process for contextualizing.bernard@irccyn.ec-nantes.fr, michel.cotte@univ-nantes.fr Abstract Since virtual engineering has been introduced inside industries. Keywords reverse-engineering, 3D digitalization, CAD, Advanced Industrial Archaeology, technical heritage 1

Paris-Sud XI, Université de

132

Advanced Laser-Based Sensors for Industrial Process Control  

Broader source: Energy.gov [DOE]

Fact Sheet About Increased Efficiency and Reduced Emissions Using Advanced Laser-Based Sensors for Process Control Monitoring in Electric Arc Furnaces

133

Engine control techniques to account for fuel effects  

DOE Patents [OSTI]

A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.

Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.

2014-08-26T23:59:59.000Z

134

Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck  

E-Print Network [OSTI]

diesel engine, an electric motor, a Lithium-Ion battery, and an Eaton automated manual transmission03TB-45 Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck and vehicle test results for a medium-duty hybrid electric truck are reported in this paper. The design

Grizzle, Jessy W.

135

Prerequisites: Control Systems I+II, System Modeling, Engine Class (Introduction to Modeling and Control of  

E-Print Network [OSTI]

Thesis IDSC-LG-FZ-05 Gas Diesel Engine Modeling and Control The gas diesel engine is a natural gas enginePrerequisites: Control Systems I+II, System Modeling, Engine Class (Introduction to Modeling and Control of Internal Combustion Engine Systems, IC Engines, ...), Optimization Course, Matlab

Lygeros, John

136

Catalysts for Lean Engine Emission Control - Emissions & Emission Controls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Catalysts for Lean Engine Emission Control Catalysts for Lean Engine Emission Control Catalysts for controlling NOx from lean engines are studied in great detail at FEERC. Lean NOx Traps (LNTs) and Selective Catalytic Reduction (SCR) are two catalyst technologies of interest. Catalysts are studied from the nanoscale to full scale. On the nanoscale, catalyst powders are analyzed with chemisorptions techniques to determine the active metal surface area where catalysis occurs. Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy is used to observe the chemical reactions occurring on the catalyst surface during catalyst operation. Both powder and coated catalyst samples are analyzed on bench flow reactors in controlled simulated exhaust environments to better characterize the chemical

137

Engine control system having speed-based timing  

DOE Patents [OSTI]

A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a controller in communication with the actuator. The controller is configured to receive a signal indicative of engine speed and compare the engine speed signal with a desired engine speed. The controller is also configured to selectively regulate the actuator to adjust a timing of the engine valve to control an amount of air/fuel mixture delivered to the cylinder based on the comparison.

Willi, Martin L. (Dunlap, IL); Fiveland, Scott B. (Metamora, IL); Montgomery, David T. (Edelstein, IL); Gong, Weidong (Dunlap, IL)

2012-02-14T23:59:59.000Z

138

Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF...  

Broader source: Energy.gov (indexed) [DOE]

unregulated pollutants beyond 2010 APBF-DEC Structure DOE, EPA, additive companies, automobile manufacturers, engine manufacturers, energy companies, emission control mfrs.,...

139

A Virtual Engineering Framework for Simulating Advanced Power System  

SciTech Connect (OSTI)

In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering. Furthermore, with little effort the modeling capabilities described in this report can be extended to support other DOE programs, such as ultra super critical boiler development, oxy-combustion boiler development or modifications to existing plants to include CO2 capture and sequestration.

Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

2008-06-18T23:59:59.000Z

140

FY2002 Progress Report for Fuels for Advanced Compression Ignition Direct Injection (CIDI) Engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuels for Advanced Compression Fuels for Advanced Compression Ignition Direct Injection (CIDI) Engines Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Approved by Stephen Goguen November 2002 Fuels for Advanced CIDI Engines FY 2002 Progress Report iii CONTENTS CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii INDEX OF PRIMARY CONTACTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. FUEL/LUBRICANT EFFECTS TESTING ON ENGINE PERFORMANCE . . . . . . . . . 13 A. Oil Consumption Contribution to CIDI PM Emissions during Transient Operation . . . . . . . . . . . . . . . . . . . .13

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Advanced Combustion Engine R&D 2003 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1000 Independence Avenue, S.W. 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2003 Progress Report for Advanced Combustion Engine Research & Development Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Approved by Gurpreet Singh December 2003 Advanced Combustion Engine R&D FY 2003 Progress Report ii Advanced Combustion Engine R&D FY 2003 Progress Report iii CONTENTS CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii INDEX OF PRIMARY AUTHORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

142

Advanced Life Assessment Methods for Gas Turbine Engine Components  

Science Journals Connector (OSTI)

Abstract In combustion systems for aircraft applications, liners represent an interesting challenge from the engineering point of view regarding the state of stress, including high temperatures (up to 1500 °C) varying over time, high thermal gradients, creep related phenomena, mechanical fatigue and vibrations. As a matter of fact, under the imposed thermo-mechanical loading conditions, some sections of the liner can creep; the consequent residual stresses at low temperatures can cause plastic deformations. For these reasons, during engine operations, the material behaviour can be hardly non-linear and the simulation results to be time expensive. Aim of this paper is to select and implement some advanced material life assessment methods to gas turbine engine components such as combustor liners. Uniaxial damage models for Low Cycle Fatigue (LCF), based on Coffin-Manson, Neu-Sehitoglu and Chaboche works, have been implemented in Matlab®. In particular, experimental LCF and TMF results for full size specimens are compared to calibrate these models and to assess TMF life of specimens. Results obtained in different testing conditions have been used for validation. In particular, each model needs specific parameter calibrations to characterize the investigated materials; these parameters and their relation with temperature variation have been experimentally obtained by testing standard specimens.

Vincenzo Cuffaro; Francesca Curŕ; Raffaella Sesana

2014-01-01T23:59:59.000Z

143

Robust intelligent control design for marine diesel engine  

Science Journals Connector (OSTI)

This work deals with the nonlinear control of a marine diesel engine by use of a robust intelligent control ... controller (CMAC). A mathematical model of diesel engine propulsion system is presented. In order to...

Hai-de Hua ???; Ning Ma ? ?; Jie Ma ? ?…

2013-12-01T23:59:59.000Z

144

Advanced, Integrated Control for Building Operations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced, Integrated Control for Building Advanced, Integrated Control for Building Operations Advanced, Integrated Control for Building Operations The U.S. Department of Energy (DOE) is currently conducting research into advanced integrated controls for building operations and seeking to validate energy savings strategies by simulations. Project Description This project will develop an advanced, integrated control for the following building systems: Cooling and heating Lighting Ventilation Window and blind operation. A variety of operation and energy saving control strategies will be evaluated on a building equipped with alternative cooling and heating methods, including fan coil units, radiant mullions, and motorized window and blinds. Project Partners Research is being undertaken by DOE, Siemens Corporate Research, Siemens

145

Advanced Manufacturing and Engineering Equipment at the University of Southern Indiana  

SciTech Connect (OSTI)

Department of Energy grant DE-SC0005231was awarded to the University of Southern Indiana for the purchase of Advanced Manufacturing and Engineering equipment.

Mitchell, Zane Windsor [University of Southern Indiana; Gordon, Scott Allen [University of Southern Indiana

2014-08-04T23:59:59.000Z

146

Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report  

Broader source: Energy.gov [DOE]

DOE's Office of Transportation Technologies Fiscal Year 2000 Annual Progress Report for the Fuels for Advanced CIDI Engines and Fuel Cells Program highlights progress achieved during FY 2000.

147

Examinee's Number Academic Year 2014 Schools of Fundamental/Creative/Advanced Science and Engineering  

E-Print Network [OSTI]

Examinee's Number Type of transfer Academic Year 2014 Schools of Fundamental/Creative/Advanced Science and Engineering Waseda University Application Form International Program Transfer School

Kaji, Hajime

148

Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments  

Broader source: Energy.gov [DOE]

Fact sheet describing the goals, strategies, and some of the major accomplishments of the Advanced Combustion Engine R&D subprogram of VTP.

149

Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research Fuels and Combustion Strategies for High-Efficiency Clean-Combustion...

150

The Effects of Ethanol/Gasoline Blends on Advanced Combustion Strategies in Internal Combustion Engines.  

E-Print Network [OSTI]

??This dissertation presents the effects of blending ethanol with gasoline on advanced combustion strategies in internal combustion engines. The unique chemical, physical and thermal properties… (more)

Fatouraie, Mohammad

2014-01-01T23:59:59.000Z

151

Predictive control of a real-world Diesel engine using an extended online active set strategy  

Science Journals Connector (OSTI)

In order to meet tight emission limits Diesel engines are nowadays equipped with additional hardware components like an exhaust gas recirculation valve and a variable geometry turbocharger. Conventional engine control units use two SISO control loops to regulate the exhaust gas recirculation valve and the variable geometry turbocharger, although their effects are highly coupled. Moreover, these actuators are subject to physical constraints which seems to make an advanced control approach like model predictive control (MPC) the method of choice. In order to deal with MPC sampling times in the order of milliseconds, we employed an extension of the recently developed online active set strategy for controlling a real-world Diesel engine in a closed-loop manner. The results show that predictive engine control based on online optimisation can be accomplished in real-time – even on cheap controller hardware – and leads to increased controller performance.

Hans Joachim Ferreau; Peter Ortner; Peter Langthaler; Luigi del Re; Moritz Diehl

2007-01-01T23:59:59.000Z

152

Advanced Sensors, Control, Platforms, and Modeling  

Office of Environmental Management (EM)

112 productivity and safety, and boost the U.S. sensor and automation industry. 113 2. Technology Assessment and Potential 114 2.1 Performance advances 115 DRAFT -...

153

ADVANCED VISUALIZATION OF ENGINE SIMULATION DATA USING TEXTURE SYNTHESIS AND TOPOLOGICAL ANALYSIS  

E-Print Network [OSTI]

Figure 1: Idealized in-cylinder flow through a diesel engine (left) and a gas engine (right). ADVANCED motion found inside diesel and gas engines, respectively. Texture-based flow visualization techniques use for the design of a diesel engine try to create an ideal pattern of motion, which can be described by a swirling

Chen, Guoning

154

Method and system for controlled combustion engines  

DOE Patents [OSTI]

A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

Oppenheim, A. K. (Berkeley, CA)

1990-01-01T23:59:59.000Z

155

Systems and Controls Analysis and Testing; Harvesting More Wind Energy with Advanced Controls Technology (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet outlines the systems and controls analysis and testing that takes place at the NWTC on the Controls Advanced Research Turbines.

Not Available

2010-01-01T23:59:59.000Z

156

NETL: Advanced NOx Emissions Control: Control Technology - NOx Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Control Options and Integration Control Options and Integration Reaction Engineering International (REI) is optimizing the performance of, and reduce the technical risks associated with the combined application of low-NOx firing systems (LNFS) and post combustion controls through modeling, bench-scale testing, and field verification. Teaming with REI are the University of Utah and Brown University. During this two-year effort, REI will assess real-time monitoring equipment to evaluate waterwall wastage, soot formation, and burner stoichiometry, demonstrate analysis techniques to improve LNFS in combination with reburning/SNCR, assess selective catalytic reduction catalyst life, and develop UBC/fly ash separation processes. The REI program will be applicable to coal-fired boilers currently in use in the United States, including corner-, wall-, turbo-, and cyclone-fired units. However, the primary target of the research will be cyclone boilers, which are high NOx producing units and represent about 20% of the U.S. generating capacity. The results will also be applicable to all U.S. coals. The research will be divided into four key components:

157

NETL: Advanced NOx Emissions Control: Control Technology - NOx Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emissions from Multi-Burners Emissions from Multi-Burners The University of Utah working with Reaction Engineering International and Brigham Young University is investigating a project that consists of integrated experimental, theoretical and computational modeling efforts. The primary objective is to evaluate NOx formation/destruction processes as they occur in multi-burner arrays, a geometry almost always utilized in utility practice. Most controlled experimental work examining NOx has been conducted on single burners. The range of potential intra-burner interactions are likely to provide added degrees of freedom for reducing NOx. The resultant findings may allow existing utilities to arrange fuel and air distribution to minimize NOx. In new applications, orientation of individual burners within an array may also be altered to reduce NOx. Comprehensive combustion codes will be modified to incorporate the latest submodels of nitrogen release and heterogeneous chemistry. Comparison of pilot scale experiments and simulations will be utilized to validate/develop theory.

158

Double acting stirling engine phase control  

DOE Patents [OSTI]

A mechanical device for effecting a phase change between the expansion and compression volumes of a double-acting Stirling engine uses helical elements which produce opposite rotation of a pair of crankpins when a control rod is moved, so the phase between two pairs of pistons is changed by +.psi. and the phase between the other two pairs of pistons is changed by -.psi.. The phase can change beyond .psi.=90.degree. at which regenerative braking and then reversal of engine rotation occurs.

Berchowitz, David M. (Scotia, NY)

1983-01-01T23:59:59.000Z

159

NETL: Mercury Emissions Control Technologies - Advanced Utility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Utility Mercury-Sorbent Field Testing Program Advanced Utility Mercury-Sorbent Field Testing Program Sorbent Technologies Corporation, will test an advanced halgenated activated carbon to determine the mercury removal performance and relative costs of sorbent injection for advanced sorbent materials in large-scale field trials of a variety of combinations of coal-type and utility plant-configuration. These include one site (Detroit Edison's St. Clair Station) with a cold-side ESP using subbituminous coal, or blend of subbituminous and bituminous coal, and one site (Duke Energy's Buck Plant) with a hot-side ESP which burns a bituminous coal. Related Papers and Publications: Semi-Annual Technical Progress Report for the period April 1 - October 31, 2004 [PDF-2275KB] Semi-Annual Technical Progress Report for the period of October 2003 - March 2004 [PDF-1108KB]

160

The California Advanced Lighting Controls Training Program (CALCTP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The California Advanced Lighting Controls Training Program (CALCTP) The California Advanced Lighting Controls Training Program (CALCTP) Speaker(s): Bernie Kotlier Date: March 2, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Sila Kiliccote CALCTP is a broad based partnership that is dedicated to advancing the California State policy of energy conservation as the first priority for serving the state's future energy needs. CALCTP is supported, operated and directed by representatives of the California Lighting Technology Center, the California Energy Commission, the California Community College system, investor owned utilities, municipal utilities, electrical contractors, electrical workers, and manufacturers of advanced, high efficiency lighting and lighting control systems. The mission of the California Advanced Lighting Controls Training Program (CALCTP) is to make

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Comparison of advanced distillation control methods. First annual report  

SciTech Connect (OSTI)

A detailed dynamic simulator of a propylene/propane (C{sub 3}) splitter, which was bench-marked against industrial data, has been used to compare dual composition control performance for a diagonal PI controller and several advanced controllers. The advanced controllers considered are dynamic matrix control (DMC), nonlinear process model based control, and artificial neutral networks. Each controller was tuned based upon setpoint changes in the overhead product composition using 50% changes in the impurity levels. Overall, there was not a great deal of difference in controller performance based upon the setpoint and disturbance tests. Periodic step changes in feed composition were also used to compare controller performance. In this case, oscillatory variations of the product composition were observed and the variabilities of the DC and nonlinear process model based controllers were substantially smaller than that of the PI controller. The sensitivity of each controller to the frequency of the periodic step changes in feed composition was also investigated.

Riggs, J.B.

1996-11-01T23:59:59.000Z

162

54.5 MPG and Beyond: Speeding Up Development of Advanced Combustion Engines  

Broader source: Energy.gov (indexed) [DOE]

Speeding Up Development of Advanced Combustion Speeding Up Development of Advanced Combustion Engines 54.5 MPG and Beyond: Speeding Up Development of Advanced Combustion Engines December 10, 2012 - 1:00pm Addthis Argonne engineer Steve Ciatti works on an engine in Argonne's Engine Research Facility -- a facility where researchers can study in-cylinder combustion and emissions under realistic operating conditions. | Photo courtesy of Argonne National Laboratory. Argonne engineer Steve Ciatti works on an engine in Argonne's Engine Research Facility -- a facility where researchers can study in-cylinder combustion and emissions under realistic operating conditions. | Photo courtesy of Argonne National Laboratory. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs

163

On learning machines for engine control Gerard Bloch1  

E-Print Network [OSTI]

the experimental costs (Sect. 3.3). 1.1 Common features in engine control The main function of the engine is to ensure the vehicle mobility by providing the power to the vehicle transmission. Nevertheless, the engineOn learning machines for engine control G´erard Bloch1 , Fabien Lauer1 , and Guillaume Colin2 1

Paris-Sud XI, Université de

164

THE ADVANCED COURSE IN ENGINEERING ON CYBER A Learning Community for Developing Cyber-Security Leaders  

E-Print Network [OSTI]

THE ADVANCED COURSE IN ENGINEERING ON CYBER SECURITY A Learning Community for Developing Cyber-Security Advanced Course in Engineering, ACE-CS immerses students in the cyber-security discipline through for the program. Key words: Cyber-security education, technical leadership, learning community. 1. INTRODUCTION

165

ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells  

E-Print Network [OSTI]

ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells Spring 2014 Syllabus Course: ENCH 473 Electrochemical Energy Engineering ENCH: 648K Advanced Batteries and Fuel Cells, with emphasis on the principle and performance of batteries, supercapacitors and fuel cells. The objective

Rubloff, Gary W.

166

Noise control versus shock and vibration engineering  

Science Journals Connector (OSTI)

Noise control and shock and vibration engineering have many fundamentals in common and many analogous practical constraints. Yet in many respects they tend to be opposite in methodology philosophy and past history. The present discussion is an attempt to present the point of view of the practicing engineer in either field who has some perspective on the historical origins of his art. It focuses on aspects that epitomize the practical objectives of such engineers plus any administrators lawyers etc. who may also be involved in team efforts. For noise control the aspects chosen are establishment of regulations monitoring and design or other actions intended to bring about compliance with regulations. For shock and vibration engineering they are establishment of environmental specifications to ensure reliability environmental testing in accordance with these and design or redesign to bring about compliance with test requirements and also (we hope) to bring about reliability without severe penalties in weight schedule or cost. This is not to say that these aspects in their barest sense represent all the technology or methodology that is pertinent or even that these limited aspects will be treated comprehensively. It is almost self?evident that the Acoustical Society of America should and does maintain beneficial relationship with medical psychological mechanical engineering and other societies that report their particular developing lore of fundamentals and some practical information from their particular viewpoint. The Acoustical Society is an important part of this spectrum by virtue of its interdisciplinary coverage extending through materials dynamics sound instrumentation and electronics to speech and hearing. But it is also worthwhile for the ASA by whatever means are available to sample the flavor of various disciplines as unified and value?weighted in accordance with typical practical objectives. For this reason the developing beneficial relationships with the Institute of Noise Control (INCE) and the Shock and Vibration Information Center (SVIC) will become increasingly important.

Charles T. Morrow

1974-01-01T23:59:59.000Z

167

Comparison of advanced distillation control methods. First annual report  

SciTech Connect (OSTI)

A detailed dynamic simulator of a propylene/propane (C3) splitter, which was bench-marked against industrial data, has been used to compare dual composition control performance for a diagonal PI controller and several advanced controllers. The advanced controllers considered are DMC, nonlinear process model based control, and articial neutral networks. Each controller was tuned based upon setpoint changes in the overhead product composition using 50% changes in the impurity levels. Overall, there was not a great deal of difference in controller performance based upon the setpoint and disturbance tests. Periodic step changes in feed composition were also used to compare controller performance. In this case, oscillatory variations of the product composition were observed and the variabilities of the DMC and nonlinear process model based controllers were substantially smaller than that of the PI controller. The sensitivity of each controller to the frequency of the periodic step changes in feed composition was also investigated.

NONE

1996-11-01T23:59:59.000Z

168

High temperature solid lubricant materials for heavy duty and advanced heat engines  

SciTech Connect (OSTI)

Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

DellaCorte, C.; Wood, J.C.

1994-10-01T23:59:59.000Z

169

Fault Tolerant Oxygen Control of a Diesel Engine Air System  

E-Print Network [OSTI]

Fault Tolerant Oxygen Control of a Diesel Engine Air System Rainer Nitsche Matthias Bitzer control problem of a Diesel engine air system having a jammed Exhaust Gas Recirculation (EGR) valve of the air system. Keywords: Fault tolerant control, Diesel engine, Air system, Model-based trajectory

Paris-Sud XI, Université de

170

E-Print Network 3.0 - advanced control techniques Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

techniques Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced control techniques Page: << < 1 2 3 4 5 > >> 1 Advanced Photogrammetric and...

171

Advanced Combustion Concepts - Enabling Systems and Solutions...  

Broader source: Energy.gov (indexed) [DOE]

engine installed and vehicle available for application, emission and fuel economy optimization with advanced combustion modes. 4 Advanced combustion control strategy, capable of...

172

THE ADVANCED COURSE IN ENGINEERING ON CYBER A Learning Community for Developing Cyber-Security Leaders  

E-Print Network [OSTI]

THE ADVANCED COURSE IN ENGINEERING ON CYBER SECURITY A Learning Community for Developing Cyber-Security in Engineering, ACE-CS immerses students in the cyber-security discipline through a combination of intense in Engineering on Cyber Security (ACE-CS) [1] is to develop the next generation of cyber-security leaders

Older, Susan

173

Advanced Modeling of Direct-Injection Diesel Engines | Department...  

Broader source: Energy.gov (indexed) [DOE]

Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerzellat.pdf More Documents & Publications Effects of Ambient Density and...

174

Sandia National Laboratories: Advanced Controls of Wave Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Facility Tool at SWiFT Makes Rotor Work More Efficient Advanced Controls of Wave Energy Converters May Increase Power Capture Up to 330% On January 21, 2014, in...

175

Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications  

Broader source: Energy.gov [DOE]

Specific designs and material properties have to be developed for gasoline particulate filters based on the different engine and exhaust gas characteristic of gasoline engines compared to diesel engines, e.g., generally lower levels of engine-out particulate emissions or higher GDI exhaust gas temperatures

176

Advanced Control Methodology for Biomass Combustion.  

E-Print Network [OSTI]

??This thesis presents a feasibility study for a low cost sensor-based combustion control system using a predictive chemical kinetic model that captures efficiencies and pollution… (more)

Bjornsson, Stefan

2014-01-01T23:59:59.000Z

177

DEVELOPMENT OF OPERATIONAL CONCEPTS FOR ADVANCED SMRs: THE ROLE OF COGNITIVE SYSTEMS ENGINEERING  

SciTech Connect (OSTI)

Advanced small modular reactors (AdvSMRs) will use advanced digital instrumentation and control systems, and make greater use of automation. These advances not only pose technical and operational challenges, but will inevitably have an effect on the operating and maintenance (O&M) cost of new plants. However, there is much uncertainty about the impact of AdvSMR designs on operational and human factors considerations, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. Existing human factors and systems engineering design standards and methodologies are not current in terms of human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. New models and guidance for operational concepts for complex socio-technical systems need to adopt a state-of-the-art approach such as Cognitive Systems Engineering (CSE) that gives due consideration to the role of personnel. This approach we report on helps to identify and evaluate human challenges related to non-traditional concepts of operations. A framework - defining operational strategies was developed based on the operational analysis of Argonne National Laboratory’s Experimental Breeder Reactor-II (EBR-II), a small (20MWe) sodium-cooled reactor that was successfully operated for thirty years. Insights from the application of the systematic application of the methodology and its utility are reviewed and arguments for the formal adoption of CSE as a value-added part of the Systems Engineering process are presented.

Jacques Hugo; David Gertman

2014-04-01T23:59:59.000Z

178

Advanced Lighting Controls - My Venture from the Ivory Tower  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Lighting Controls - My Venture from the Ivory Tower Advanced Lighting Controls - My Venture from the Ivory Tower Speaker(s): Charlie Huizenga Date: June 15, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Dragan Charlie Curcija Lighting energy represents 30-40% of commercial building electricity consumption, yet very few buildings have advanced lighting controls. The potential energy savings are tremendous as is the opportunity to reduce demand on the grid during critical peak use periods. Charlie will describe how low-cost wireless radio technology developed at UC Berkeley and commercialized by Adura Technologies is creating a paradigm shift in the way we think about controlling lighting. Beyond deep energy savings and demand response, the technology offers personal control for occupants and

179

MIT Department of Nuclear Engineering 1 Digital Instrumentation and Control  

E-Print Network [OSTI]

1 MIT Department of Nuclear Engineering 1 Digital Instrumentation and Control Issues in Nuclear Engineering 2 Nuclear Power Plant #12;2 MIT Department of Nuclear Engineering 3 Major Protection Functions Engineering 4 Background · Analog electro-mechanical systems in existing nuclear power plants are aging

Schweik, Charles M.

180

Dual fuel engine control systems for transportation applications  

SciTech Connect (OSTI)

Microprocessor control systems have been developed for dual fuel diesel engines intended for transportation applications. Control system requirements for transportation engines are more demanding than for stationary engines, as the system must be able to cope with variable speed and load. Detailed fuel maps were determined for both normally aspirated and turbocharged diesel engines based on the criterion that the engine did not operate in the regimes where knock or incomplete combustion occurred. The control system was developed so that the engine would follow the detailed fuel map. The input variables to the control system are engine speed and load. Based on this, the system then controls the amount of natural gas and diesel fuel supplied to the engine. The performance of the system is briefly summarized.

Gettel, L.E.; Perry, G.C.; Boisvert, J.; O'Sullivan, P.J.

1987-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Air management in a diesel engine using fuzzy control techniques  

Science Journals Connector (OSTI)

Air management for diesel engines is a major challenge from the control point of view because of the highly nonlinear behavior of this system. For this reason, linear control techniques are unable to provide the required performance, and nonlinear controllers ... Keywords: Diesel engines, Fuzzy systems, Identification, LMIs, Nonlinear control

S. García-Nieto; J. Salcedo; M. Martínez; D. Laurí

2009-09-01T23:59:59.000Z

182

Control Oriented Dynamic Modeling of a Turbocharged Diesel Engine  

Science Journals Connector (OSTI)

To build a precise model is a key issue in fulfilling on optimal control of the turbocharged diesel engine. Meanvalue model has been extensively used for engine control, but neglects the scavenging efficiency. On the basis of carefully considering air-fuel ... Keywords: Diesel engine, mean-value model, AFR

Haiyan Wang; Jundong Zhang

2006-10-01T23:59:59.000Z

183

Automotive Control Systems: For Engine, Driveline, and Vehicle  

Science Journals Connector (OSTI)

Many engineers, working in the field of automotive control systems and mechatronics, as well as lecturing at technical universities, will welcome this book. It gives a broad insight view of the latest automotive technologies in use which have been adopted over a long period of time from research activities at universities and in industry. About twenty years ago the microcomputer started to revolutionize the possibility of introducing intelligence in systems, for example in the form of advanced control algorithms. By chance, this incredible evolution coincided with increasing environmental demands to reduce pollution and oil consumption and to contribute one of the major tools to meet those demands. This may have been one of the reasons why the automotive industry was rather early in introducing the new technique. However, it would have been interesting if the book had given a short historic review. In fact the authors do not rule out that the modern four-stroke engine in a car may work as an air-cleaning filter, and after going through the part describing the lambda-control together with the catalytic conversion, it is hard to argue against it, at least when the vehicle is running at constant speed. Reading this book you realize that the times are long gone when you could use a screwdriver and feeler gauge to adjust the ignition of your car engine. The subtitle of the book is engine, driveline and vehicle and the book is also divided in that logical order. In the first part, after describing the thermodynamic cycles of different engine types, spark ignited and diesel, the basic engine operations are presented and the reader is given a theoretical insight into what can be done to enhance the performance of the engine. If you have forgotten the basic laws of thermodynamics there is an appendix to recapitulate (however, there is no explanation of the word stoichiometric in case you are not familiar with that). You will also find information on the efficiency of different fuels as well as the efficiency of engines derived from crankshaft motions and thermodynamics. The next chapter describes how the derived models of engine management are used for advanced engine control. The chapter also presents simulation results as well as measurement results. What is especially interesting to read about is how effectively the catalytic conversion works together with lambda-control at stoichiometric combustion of the spark-ignited engine. This is thoroughly explained in the text but a curious reader will not get any information about problems or if there are ongoing activities with emission reduction concerning its competitor, the diesel engine. It is understandable that the book concentrates on the most popular automotive engines but an interested reader might miss that there is nothing in the book that covers the state-of-the-art spark-ignited two-stroke engine. The second part of the book covers the driveline, that is, the parts that transfer the torque of the engine to the wheels. The initial chapters cover the derivation of general models of driveline, basically by applying Newton's second law of motion. Those models are then applied to the modern truck for simulation of the dynamical behaviour. After validation, the appropriate simulation model is used in designing a control system for a transmission that does not need a clutch for shifting gears. Consequently, this part of the book is very interesting since, most likely, one of the authors has worked in close cooperation with the Swedish truck manufacturer Scania. He describes the development behind this unique and patented transmission system. The third and last part of the book deals with the vehicle itself. Initially, geometrical vehicle models of different complexity, the two-track and single-track, are described. They are used to derive the forces acting on the wheels due to road friction and road profile, as well as the driver's input, such as steering and braking. The book claims to have 291 illustrations. The third part of the book, however, could have benefited from more

U Kiencke and L Nielsen

2000-01-01T23:59:59.000Z

184

Overview of the Advanced Combustion Engine R&D  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

high-efficiency engines using hydrocarbon-based (petroleum and non-petroleum) fuels and hydrogen Light-Duty Heavy-Duty 2010 2015 2015 2018 Engine brake thermal efficiency 45% 50%...

185

Advanced mobile networking, sensing, and controls.  

SciTech Connect (OSTI)

This report describes an integrated approach for designing communication, sensing, and control systems for mobile distributed systems. Graph theoretic methods are used to analyze the input/output reachability and structural controllability and observability of a decentralized system. Embedded in each network node, this analysis will automatically reconfigure an ad hoc communication network for the sensing and control task at hand. The graph analysis can also be used to create the optimal communication flow control based upon the spatial distribution of the network nodes. Edge coloring algorithms tell us that the minimum number of time slots in a planar network is equal to either the maximum number of adjacent nodes (or degree) of the undirected graph plus some small number. Therefore, the more spread out that the nodes are, the fewer number of time slots are needed for communication, and the smaller the latency between nodes. In a coupled system, this results in a more responsive sensor network and control system. Network protocols are developed to propagate this information, and distributed algorithms are developed to automatically adjust the number of time slots available for communication. These protocols and algorithms must be extremely efficient and only updated as network nodes move. In addition, queuing theory is used to analyze the delay characteristics of Carrier Sense Multiple Access (CSMA) networks. This report documents the analysis, simulation, and implementation of these algorithms performed under this Laboratory Directed Research and Development (LDRD) effort.

Feddema, John Todd; Kilman, Dominique Marie; Byrne, Raymond Harry; Young, Joseph G.; Lewis, Christopher L.; Van Leeuwen, Brian P.; Robinett, Rush D. III; Harrington, John J.

2005-03-01T23:59:59.000Z

186

High load limits of the controlled autoignition engine  

E-Print Network [OSTI]

The controlled autoignition (CAI) engine is an engine concept that features very low soot and NOx emissions while achieving diesel-like efficiency. The CAI combustion process is characterized by a fast, volumetric burn of ...

Wildman, Craig B. E. (Craig Bradley Edward), 1987-

2009-01-01T23:59:59.000Z

187

Advanced FMEA using meta behavior modeling for concurrent design of products and controls  

E-Print Network [OSTI]

This paper presents the use of Advanced Failure Modes and Effects Analysis (AFMEA) as a methodology for the concurrent design of electro-mechanical products and their control systems. The past two years have seen the extension of AFMEA to simulate dynamic changes of device operations using meta-behavior modeling. This approach can help engineers identify failure modes associated with controls and their interaction with physical systems and drive system design toward more reliable solutions. The proposed method uses behavior modeling to map control functions to physical entities and identifies failure modes as the departure from intended control functions. AFMEA provides a framework for controls and hardware developers to discuss and understand the relationship between sub-systems, controls, and overall system performance. An example of a power generation system illustrates how AFMEA applies to the early stages of layout and controls design.

Steven Kmenta

1998-01-01T23:59:59.000Z

188

ENVIRONENTAL DEGRADATION OF ADVANCED AND TRADITIONAL ENGINERING Chapter 14. Forms of Polymer Degradation: Overview  

E-Print Network [OSTI]

ENVIRONENTAL DEGRADATION OF ADVANCED AND TRADITIONAL ENGINERING MATERIALS Chapter 14. Forms more recent. The modern plastics industry is often dated from the mid- nineteenth century, with John Hyatt's invention of celluloid (a synthetic modification of natural cellulose). The first wholly

Roylance, David

189

Advanced Natural Gas Reciprocating Engines (ARES)- Presentation by Caterpillar, Inc., June 2011  

Broader source: Energy.gov [DOE]

Presentation on Advanced Natural Gas Reciprocating Engines (ARES), given by Martin Willi at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

190

16.355J / ESD.355J Advanced Software Engineering, Fall 2002  

E-Print Network [OSTI]

A reading and discussion subject on advanced topics in the engineering of software systems. Focus on software development. Topics differ but are chosen from: software process and lifecycle; requirements development, ...

Leveson, Nancy

191

Advanced Reciprocating Engine Systems (ARES) R&D- Presentation by Argonne National Laboratory, June 2011  

Broader source: Energy.gov [DOE]

Presentation on Technologies for Gaseous Fueled Advanced Reciprocating Engine Systems (ARES), given by Sreenath Gupta at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

192

Hydrothermal spallation drilling and advanced energy conversion technologies for Engineered Geothermal Systems  

E-Print Network [OSTI]

The purpose of this research was to study the various factors affecting the economic and technical feasibility of Engineered Geothermal Systems, with a special emphasis on advanced drilling technologies. The first part of ...

Augustine, Chad R

2009-01-01T23:59:59.000Z

193

Advanced Natural Gas Reciprocating Engines (ARES)- Presentation by Dresser Waukesha, June 2011  

Broader source: Energy.gov [DOE]

Presentation on Advanced Natural Gas Reciprocating Engines (ARES), given by Jim Zurlo at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

194

Graduate School of Advanced Science and Engineering Cooperative Major in Nuclear Energy  

E-Print Network [OSTI]

Graduate School of Advanced Science and Engineering Cooperative Major in Nuclear Energy Master in Nuclear Energy Summary of Research Instruction Research Instruction Application Code Name Major in Nuclear Energy Master's Program Doctoral Program Summary of Research Instruction

Kaji, Hajime

195

Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

R&D Annual Progress Report Vehicle Technologies Office: 2008-2009 Fuels Technologies R&D Progress Report Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research...

196

Advanced Natural Gas Reciprocating Engines (ARES)- Presentation by Cummins, Inc., June 2011  

Broader source: Energy.gov [DOE]

Presentation on Advanced Natural Gas Reciprocating Engines (ARES), given by Edward Lyford-Pike at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

197

Advanced turbine systems sensors and controls needs assessment study. Final report  

SciTech Connect (OSTI)

The Instrumentation and Controls Division of the Oak Ridge National Laboratory performed an assessment of the sensors and controls needs for land-based advanced gas turbines being designed as a part of the Department of Energy`s (DOE`s) Advanced Turbine Systems (ATS) Program for both utility and industrial applications. The assessment included visits to five turbine manufacturers. During these visits, in-depth discussions were held with design and manufacturing staff to obtain their views regarding the need for new sensors and controls for their advanced turbine designs. The Unsteady Combustion Facilities at the Morgantown Energy Technology Center was visited to assess the need for new sensors for gas turbine combustion research. Finally, a workshop was conducted at the South Carolina Energy Research and Development Center which provided a forum for industry, laboratory, and university engineers to discuss and prioritize sensor and control needs. The assessment identified more than 50 different measurement, control, and monitoring needs for advanced turbines that cannot currently be met from commercial sources. While all the identified needs are important, some are absolutely critical to the success of the ATS Program.

Anderson, R.L.; Fry, D.N.; McEvers, J.A.

1997-02-01T23:59:59.000Z

198

Advanced Controls Technologies and Strategies Linking Energy Efficiency and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Controls Technologies and Strategies Linking Energy Efficiency and Advanced Controls Technologies and Strategies Linking Energy Efficiency and Demand Response Speaker(s): Sila Kiliccote Date: October 6, 2005 - 12:00pm Location: Bldg. 90 Reliable supply of affordable electricity has been in the spotlight since the blackouts in California, the grid shutdown events in New England and the terrorist threats nationwide. While the array of generation technologies and transmission safety issues have been widely discussed, capacity requirements and demand side management issues have also been revisited. This presentation will concentrate on a preliminary framework to describe how advanced controls can support multiple modes of operations including both energy efficiency and demand response (DR). A general description of DR, its benefits, and nationwide status will be outlined.

199

Large Eddy Simulation (LES) Applied to Advanced Engine Combustion...  

Broader source: Energy.gov (indexed) [DOE]

over broad operating ranges) - Requirements for efficient and routine use of high-performance computing (HPC), development of both predictive and affordable models for advanced...

200

Overview of DOE Advanced Combustion Engine R&D  

Broader source: Energy.gov (indexed) [DOE]

modeling and experiments Advanced diagnostics including optical, laser, x-ray, and neutron based techniques Multi-dimensional computational models and combustion...

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Automatic Parallelization of Hand Written Automotive Engine Control  

E-Print Network [OSTI]

Automatic Parallelization of Hand Written Automotive Engine Control Codes Using OSCAR Compiler Dan approach to realize the next- generation automobiles integrated control system. However, automotive-core processors for a long time. This paper proposes to parallelize an automotive engine crankshaft control

Kasahara, Hironori

202

Academic Year 2014 Schools of Fundamental/Creative/Advanced Science and Engineering Waseda University  

E-Print Network [OSTI]

Examinee's Number Academic Year 2014 Schools of Fundamental/Creative/Advanced Science and Engineering Waseda University Statement of Reason International Program Transfer School/Department2nd / 3 rd/department. To Senior Dean of Faculty of Science and Engineering: Applicant's Signature Faculty member's Signature seal

Kaji, Hajime

203

REQUEST BY CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER...  

Broader source: Energy.gov (indexed) [DOE]

of technologies to improve spark ignition natural gas engine efficiencies for automotive markets. Two other companies, Mack Truck and Deere & Company, are also subcontractors...

204

2011 Advanced Combustion Engine R&D Annual Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

M., Experimental evaluation of strategies to increase the operation range of a biogas HCCI engine for power generation, accepted for International Conference on Applied...

205

Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Although internal combustion engines have been used Although internal combustion engines have been used for more than a century, significant improvements in energy efficiency and emissions reduction are still possible. In fact, boosting the efficiency of internal combustion engines is one of the most promising and cost-effective approaches to increasing vehicle fuel economy over the next 30 years. The United States can cut its transportation fuel use 20%-40% through commercialization of advanced engines-resulting in greater economic, environmental, and energy security. Using these engines in hybrid and plug-in hybrid electric vehicles will enable even greater fuel savings benefits. The Advanced Combustion Engine R&D subprogram of the U.S. Department of Energy's Vehicle Technologies Program (VTP) is improving the fuel economy of

206

Turbocharged spark ignition engine modelling and control strategy  

Science Journals Connector (OSTI)

This paper deals with the non-linear modelling and control of a turbocharged spark ignition engine. In the automotive industry, downsizing-based turbocharging is considered as a powerful technique to improve engine performances as fuel economy, pumping loss reduction to increase engine efficiency or driveability optimisation. This method is largely used for diesel engines. For gasoline engines, it is more complex in terms of control. In this work, a simplified control-oriented model is presented and validated using a Smart MCC three cylinders engine data. Then, based on this model, a fuzzy non-linear control law is calculated to achieve the fuel consumption and pumping losses reduction by setting the engine states to a given profile.

D. Khiar; J. Lauber; T.M. Guerra; T. Floquet; G. Colin; Y. Chamaillard

2008-01-01T23:59:59.000Z

207

Stirling engine control mechanism and method  

SciTech Connect (OSTI)

A reciprocating-to-rotating motion conversion and power control device for a Stirling engine includes a hub mounted on an offset portion of the output shaft for rotation relative to the shaft and for sliding motion therealong which causes the hub to tilt relative to the axis of rotation of the shaft. This changes the angle of inclination of the hub relative to the shaft axis and changes the axial stroke of a set of arms connected to the hub and nutating therewith. A hydraulic actuating mechanism is connected to the hub for moving its axial position along the shaft. A balancing wheel is linked to the hub and changes its angle of inclination as the angle of inclination of the hub changes to maintain the mechanism in perfect balance throughout its range of motion.

Dineen, John J. (Durham, NH)

1983-01-01T23:59:59.000Z

208

Engine control system having fuel-based adjustment  

DOE Patents [OSTI]

A control system for an engine having a cylinder is disclosed having an engine valve configured to affect a fluid flow of the cylinder, an actuator configured to move the engine valve, and an in-cylinder sensor configured to generate a signal indicative of a characteristic of fuel entering the cylinder. The control system also has a controller in communication with the actuator and the sensor. The controller is configured to determine the characteristic of the fuel based on the signal and selectively regulate the actuator to adjust a timing of the engine valve based on the characteristic of the fuel.

Willi, Martin L. (Dunlap, IL); Fiveland, Scott B. (Metamora, IL); Montgomery, David T. (Edelstein, IL); Gong, Weidong (Dunlap, IL)

2011-03-15T23:59:59.000Z

209

Engine control system having fuel-based timing  

DOE Patents [OSTI]

A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a sensor configured to generate a signal indicative of an amount of an air/fuel mixture remaining within the cylinder after completion of a first combustion event and a controller in communication with the actuator and the sensor. The controller may be configured to compare the amount with a desired amount, and to selectively regulate the actuator to adjust a timing of the engine valve associated with a subsequent combustion event based on the comparison.

Willi, Martin L. (Dunlap, IL); Fiveland, Scott B. (Metamora, IL); Montgomery, David T. (Edelstein, IL); Gong, Weidong (Dunlap, IL)

2012-04-03T23:59:59.000Z

210

PHEV Engine Control and Energy Management Strategy | Department...  

Energy Savers [EERE]

Management Strategy PHEV Engine Control and Energy Management Strategy 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

211

Analytical Framework to Evaluate Emission Control Systems for Marine Engines.  

E-Print Network [OSTI]

??Emissions from marine diesel engines are mainly uncontrolled and affect regional air quality and health of people living near ports. Many emission control strategies are… (more)

Jayaram, Varalakshmi

2010-01-01T23:59:59.000Z

212

NETL: Advanced NOx Emissions Control: Control Technology - Optimized Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimized Fuel Injector Design Optimized Fuel Injector Design This project includes fundamental research and engineering development of low NOx burners and reburning fuel injectors. The team of Reaction Engineering International (REI), the University of Utah, Brown University and DB Riley, Inc., will develop fundamental information on low NOx burners. The work has two phases. In the first phase, the University of Utah will examine two-phase mixing and near-field behavior of coal injectors using a 15-million Btu/hr bench-scale furnace, Brown University will examine char deactivation and effectiveness of reburning, and REI will develop a comprehensive burner model using the data produced by the University of Utah and Brown University. In the second phase, an optimized injector design will be tested at the 100-million Btu/hr Riley Coal Burner Test Facility. It is anticipated that this work will provide improved hardware designs and computer simulation models for reduced NOx emissions and minimized carbon loss.

213

Comparison of Advanced Distillation Control Methods, Final Technical Report  

SciTech Connect (OSTI)

Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.

Dr. James B. Riggs

2000-11-30T23:59:59.000Z

214

Engine control system having pressure-based timing  

DOE Patents [OSTI]

A control system for an engine having a first cylinder and a second cylinder is disclosed having a first engine valve movable to regulate a fluid flow of the first cylinder and a first actuator associated with the first engine valve. The control system also has a second engine valve movable to regulate a fluid flow of the second cylinder and a sensor configured to generate a signal indicative of a pressure within the first cylinder. The control system also has a controller that is in communication with the first actuator and the sensor. The controller is configured to compare the pressure within the first cylinder with a desired pressure and selectively regulate the first actuator to adjust a timing of the first engine valve independently of the timing of the second engine valve based on the comparison.

Willi, Martin L. (Dunlap, IL); Fiveland, Scott B. (Metamora, IL); Montgomery, David T. (Edelstein, IL); Gong, Weidong (Dunlap, IL)

2011-10-04T23:59:59.000Z

215

CONTROLLABILITY ANALYSIS OF QUANTUM SYSTEMS IMMERSED WITHIN AN ENGINEERED ENVIRONMENT  

E-Print Network [OSTI]

CONTROLLABILITY ANALYSIS OF QUANTUM SYSTEMS IMMERSED WITHIN AN ENGINEERED ENVIRONMENT A. GRIGORIU with an engineered environment, whose dynamics are described by a non-Markowian master equation is addressed when the environment can be engineered i.e. its characteristics chosen at will. The resulting

Paris-Sud XI, Université de

216

Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FUELS FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS 2000 ANNUAL PROGRESS REPORT FUELS F O R ADVANCED CIDI ENGINES A N D FUEL CELLS A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory, Computer Systems Management, Inc., National Renewable Energy Laboratory, and QSS Group, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2000 Progress Report for Fuels for Advanced CIDI

217

Advanced Diesel Engine Component Development Program, final report - tasks 4-14  

SciTech Connect (OSTI)

The Advanced Diesel Engine Component Development (ADECD) Program is a multi-year, multi-phase effort to develop and demonstrate the critical technology needed to advance the heavy-duty low heat rejection (LHR) engine concept for the long-haul, heavy-duty truck market. The ADECD Program has been partitioned into two phases. The first phase, Phase 1, was completed in 1986, resulting in definition of the Advanced Diesel Reference Engine (ADRE)III. The second phase, Phase 11/111, examines the feasibility of the ADRE concepts for application to the on-highway diesel engine. Phase 11/111 is currently underway. This project is sponsored by the U.S. Department of Energy, Office of Transportation Technologies. The work has been performed by the Detroit Diesel Corporation (DDC) under Contract DEN3-329 with the NASA Lewis Research Center, who provide project management and technical direction.

Kaushal, T.S.; Weber, K.E.

1994-11-01T23:59:59.000Z

218

Advanced Burners and Combustion Controls for Industrial Heat Recovery Systems  

E-Print Network [OSTI]

ADVANCED BURNERS AND COMBUSTION CONTROLS FOR INDUSTRIAL HEAT RECOVERY SYSTEMS J.L.FERRI GTE PRODUCTS CORPORATION TOWANDA, PA ABSTRACT When recuperators are installed on indus trial furnaces, burners and ratio control systems must... recuperators by demonstrating their technical and economi cal feasibility in well monitored field installations (1). During the contract, it became evident to GTE that a systems approach (recuperator, burner, and con troIs) is necessary to be accepted...

Ferri, J. L.

219

Advanced Biofuels: How Scientists are Engineering Bacteria to...  

Energy Savers [EERE]

for advanced biofuels. Switchgrass can not only be used to produce fuels with a larger energy content than ethanol, it has other favorable characteristics that make it a highly...

220

Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report  

SciTech Connect (OSTI)

Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

Not Available

2007-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Advanced Controls and Sustainable Systems for Residential Ventilation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Controls and Sustainable Systems for Residential Ventilation Advanced Controls and Sustainable Systems for Residential Ventilation Title Advanced Controls and Sustainable Systems for Residential Ventilation Publication Type Report LBNL Report Number LBNL-5968E Year of Publication 2012 Authors Turner, William J. N., and Iain S. Walker Date Published 12/2012 Keywords ashrae standard 62,2, california title 24, passive ventilation, residential ventilation, ventilation controller Abstract Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health, and compliance with standards, such as ASHRAE 62.2. At the same time we wish to reduce the energy use in homes and therefore minimize the energy used to provide ventilation. This study examined several approaches to reducing the energy requirements of providing acceptable IAQ in residential buildings. Two approaches were taken. The first used RIVEC - the Residential Integrated VEntilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. The second used passive and hybrid ventilation systems, rather than mechanical systems, to provide whole-house ventilation.

222

Model based rail pressure control of GDI engine  

Science Journals Connector (OSTI)

This paper proposes a model-based rail pressure control (RPC) scheme for GDI engines. First, a control-oriented first-principle physics model is established for the rail pressure system. The backstepping technique is then used to derive a non-linear controller with guaranteed stability. For an engineering application, some compensations and corrections are further considered, such as input shaping, non-linear correction, anti-windup of integrator, battery voltage correction, etc. Finally, the proposed rail pressure controller is tested on the pump test rig and engine test bench. The results show the control performance is satisfactory.

Jialing Li; Pengyuan Sun; Tonghao Song; Jun Li; Baiyu Xin

2013-01-01T23:59:59.000Z

223

Development of an engine fuel and spark controller  

E-Print Network [OSTI]

The objective of this research was to develop an engine control unit (ECU) for a four cylinder engine to be used in a Formula SAE racers. The ECU must provide effective fuel injection and spark ignition control and provide for easy adjustment...

Suter, William Gregory

2012-06-07T23:59:59.000Z

224

E-Print Network 3.0 - advanced control concept Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

concept Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced control concept Page: << < 1 2 3 4 5 > >> 1 MIT LINCOLN LABORATORY ORGANIZATION OF...

225

Optimizing human performance in the advanced CANDU control room  

SciTech Connect (OSTI)

Human performance in existing Canada deuterium uranium (CANDU) nuclear power plants has been considerably enhanced by the extensive use of computers for automatic plant control and operator interface functions. This includes a number of relatively advanced functions such as alarm conditioning, trip setpoint conditioning, signal checks and intercomparisons, special-purpose information displays, and computerized safety system testing. The CANDU supervisory control philosophy has been quite successful and well received by CANDU operators and has provided a solid foundation to build upon. Optimization of human performance in the advanced CANDU control room is being achieved by systematic integration of human factors and computer technology in an intensive Canadian program of research, design, and development.

Pauksens, J. (Atomic Energy of Canada Ltd., Mississauga, Ontario (Canada)); Lupton, L.R. (Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada))

1992-01-01T23:59:59.000Z

226

Integrated intelligent systems in advanced reactor control rooms  

SciTech Connect (OSTI)

An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs., 5 figs.

Beckmeyer, R.R.

1989-01-01T23:59:59.000Z

227

Comparison of advanced distillation control methods. Fourth annual report  

SciTech Connect (OSTI)

Detailed dynamic simulations of three industrial columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selection for single-ended and dual-composition control as well as compare conventional and advanced control approaches. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that in order to identify the optimum configuration, detailed testing using dynamic simulation is required. The optimum configurations were used to evaluate the control performance of conventional PI controllers, DMC (Dynamic Matrix Control), PMBC (Process Model Based Control), and ANN (Artificial Neural Networks) control. It was determined that DMC works best when one product is much more important than the other while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and DMC.

Riggs, J.B.

1998-09-01T23:59:59.000Z

228

STATEMENT OF CONSIDERATIONS REQUEST BY CUMMINS ENGINE COMPANY, INC. FOR AN ADVANCE WAIVER  

Broader source: Energy.gov (indexed) [DOE]

CUMMINS ENGINE COMPANY, INC. FOR AN ADVANCE WAIVER CUMMINS ENGINE COMPANY, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-07NT43279; W(A)-08-032, CH-1423 The Petitioner, Cummins Engine Company, Inc, (Cummins) was awarded this cooperative agreement for the performance of work entitled, "Light Duty Efficient Clean Combustion", The goal of this program is to develop advanced combustion technologies demonstrating a 10% reduction in fuel consumption while meeting 2010 emission levels. Cummins will be evaluating a range of combustion technologies including pre-mix charged. compression ignition (PCCI) in-cylinder combustion and will be developing fuel sensing technology. The anticipated subsystems requiring performance enhancements to achieve the goals of this program include: fuel delivery; power

229

RD&D Study Plan for Advancement of Science and Engineering Supporting  

Broader source: Energy.gov (indexed) [DOE]

RD&D Study Plan for Advancement of Science and Engineering RD&D Study Plan for Advancement of Science and Engineering Supporting Geologic Disposal in Bedded Salt- March 2013 Workshop Outcomes RD&D Study Plan for Advancement of Science and Engineering Supporting Geologic Disposal in Bedded Salt- March 2013 Workshop Outcomes This report defines a key set of RD&D activities to support a safety case for disposal of heat generating radioactive waste, such as used nuclear fuel (UNF) or high-level nuclear waste (HLW), in a generic bedded salt repository, given the current state of knowledge. The recommended RD&D activities are based on the outcomes of a DOE workshop held March 6-7, 2013. The workshop goal was to formulate an expert consensus on the relative importance of various technical issues and recommending RD&D

230

Hydrazine engine start system air start performance and controls sizing  

SciTech Connect (OSTI)

Hydrazine has been used as an energy source in many applications to fuel in-flight main engine starting. In a current application, an existing hydrazine engine start system (ESS) design was adapted to meet new fuel control requirements. This paper presents a brief system description, historical context, and the motivating factors for the hydrazine controls changes and three case studies of controls design and analysis from the ESS program. 4 refs.

Johnson, A.T.

1992-01-01T23:59:59.000Z

231

Less Costly Catalysts for Controlling Engine Emissions  

Science Journals Connector (OSTI)

...Parks II Fuels, Engines, and Emissions Research...USA. Lowering the fuel consumption of transportation...dependence on fossil fuels. One way to increase...internal combustion engines is to run them “lean...technology have either diesel (2) or gasoline...

James E. Parks II

2010-03-26T23:59:59.000Z

232

Closed-loop, variable-valve-timing control of a controlled-auto-ignition engine  

E-Print Network [OSTI]

The objective of this study was to develop a closed-loop controller for use on a Controlled-Auto- Ignition (CAI) / Spark-Ignition (SI) mixed mode engine equipped with a variable-valve-timing (VVT) mechanism. The controller ...

Matthews, Jeffrey A., 1970-

2004-01-01T23:59:59.000Z

233

Advanced Rooftop Control (ARC) Retrofit: Field-Test Results  

SciTech Connect (OSTI)

The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

2013-07-31T23:59:59.000Z

234

ECUT energy data reference series: high-temperature materials for advanced heat engines  

SciTech Connect (OSTI)

Information that describes the use of high-temperature materials in advanced heat engines for ground transportation applications is summarized. Applications discussed are: automobiles, light trucks, and medium and heavy trucks. The information provided on each of these modes includes descriptions of the average conversion efficiency of the engine, the capital stock, the amount of energy used, and the activity level as measured in ton-miles.

Abarcar, R.B.; Hane, G.J.; Johnson, D.R.

1984-07-01T23:59:59.000Z

235

Advanced NOx Emissions Control: Control Technology - Second Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In Situ Device for Real-Time Catalyst Deactivation Measurements in Full-Scale SCR Systems In Situ Device for Real-Time Catalyst Deactivation Measurements in Full-Scale SCR Systems To support trends in the electric generating industry of moving from seasonal to year-round operation of Selective Catalytic Reduction (SCR) for control of NOx and mercury, as well as extending the time between generating unit outages, Fossil Energy Research Corporation (FERCo) is developing technology to determine SCR catalyst activity and remaining life without requiring an outage to obtain and analyze catalyst samples. FERCo intends to use SCR catalyst performance results measured with their in situ device at Alabama PowerÂ’s Plant Gorgas during the 2005 and 2006 ozone seasons, along with EPRIÂ’s CatReactTM catalyst management software, to demonstrate the value of real-time activity measurements with respect to the optimization of catalyst replacement strategy. Southern Company and the Electric Power Research Institute are co-funding the project.

236

NETL: Advanced NOx Emissions Control: Control Technology - SCNR Field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SNCR Field Demonstration SNCR Field Demonstration American Electric Power (AEP), in conjunction with the U.S. Department of Energy, FuelTech, the Ohio Coal Development Office, and fourteen EPRI member utilities, performed a full-scale demonstration of a urea-based Selective Non-Catalytic Reduction (SNCR) system at Cardinal Unit 1. Cardinal Unit 1 is a 600MWe opposed-wall dry bottom pulverized coal-fired boiler that began service in 1967. This unit burns eastern bituminous high-sulfur coal, (3.72%S). This unit was retrofitted with low NOx burners (LNB's) during its scheduled fall 1998 outage and the SNCR system was installed concurrently. SNCR is a post-combustion NOx control process developed to reduce NOx emissions from fossil-fuel combustion systems. SNCR processes involve the injection of a chemical containing nitrogen into the combustion products, where the temperature is in the range of 1600°F - 2200°F (870°C - 1205°C). In this temperature range, the chemical reacts selectively with NOx in the presence of oxygen, forming primarily nitrogen and water. Although a number of chemicals have been investigated and implemented for SNCR NOx reduction, urea and ammonia have been most widely used for full-scale applications.

237

Refinements and Tests of an Advanced Controller to Mitigate Fatigue Loads in the Controls Advanced Research Turbine: Preprint  

SciTech Connect (OSTI)

Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated 3-D turbulent wind inflow field, with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, while maximizing energy capture. Active damping should be added to these dynamic structures to maintain stability for operation in a complex environment. At the National Renewable Energy Laboratory (NREL), we have designed, implemented, and tested advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are generated by specialized modeling software. In this paper, we present field test results of an advanced control algorithm to mitigate blade, tower, and drivetrain loads in Region 3.

Wright, A.; Fleming, P.

2010-12-01T23:59:59.000Z

238

Neural Modeling and Control of Diesel Engine with Pollution Constraints  

E-Print Network [OSTI]

The paper describes a neural approach for modelling and control of a turbocharged Diesel engine. A neural model, whose structure is mainly based on some physical equations describing the engine behaviour, is built for the rotation speed and the exhaust gas opacity. The model is composed of three interconnected neural submodels, each of them constituting a nonlinear multi-input single-output error model. The structural identi?cation and the parameter estimation from data gathered on a real engine are described. The neural direct model is then used to determine a neural controller of the engine, in a specialized training scheme minimising a multivariable criterion. Simulations show the effect of the pollution constraint weighting on a trajectory tracking of the engine speed. Neural networks, which are ?exible and parsimonious nonlinear black-box models, with universal approximation capabilities, can accurately describe or control complex nonlinear systems, with little a priori theoretical knowledge. The present...

Ouladsine, Mustapha; Dovifaaz, Xavier; 10.1007/s10846-005-3806-y

2009-01-01T23:59:59.000Z

239

Advanced Sensor Approaches for Monitoring and Control of Gas Turbine Combustors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seitzman and T. Lieuwen Seitzman and T. Lieuwen SCIES Project 02- 01- SR102 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (5/1/2002, 36 Month Duration) $337,501 Total Contract Value ($327,501 DOE) Advanced Sensor Approaches For Monitoring and Control Of Gas Turbine Combustors Georgia Institute of Technology JS/TL 10/19/05 Advanced Sensors 10/19/05 2 Gas Turbine Need * Gas turbines must operate with ultra-low levels of pollutant emissions - Problem: lean, premixed operation causes minimal pollutant generation but introduces combustion problems, such as instabilities and blowoff * Combustor health and performance information needed to optimize engine across competing demands of emissions levels, power output, and

240

Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions  

E-Print Network [OSTI]

in a Diesel engine equipped with a variable geometry tur- bocharger (VGT) and an external exhaust gas INJECTION EXHAUST MANIFOLD EGR VALVE EGR COOLER AIR EXHAUST Figure 1: Schematic representation of the DieselControl of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions A.G. Stefanopoulouz

Stefanopoulou, Anna

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Advanced engineering design as practiced today from the view point of the CERN Industrial Liaison Officer  

E-Print Network [OSTI]

After an introduction about CERN, a brief description of the Large Hadron Collider(LHC) it is reviewed. Pros and cons of a few advanced engineering design cases are taken in consideration together with the involvement of the European Industry. The conclusion is that the LHC project has been an important driving force for Innovation in European Industry.

Barone, Michele

2012-01-01T23:59:59.000Z

242

DEMONSTRATION OF ADVANCED COMBUSTION NO X CONTROL TECHNIQUES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ADVANCED COMBUSTION NO ADVANCED COMBUSTION NO X CONTROL TECHNIQUES FOR A WALL-FIRED BOILER PROJECT PERFORMANCE SUMMARY CLEAN COAL TECHNOLOGY DEMONSTRATION PROGRAM JANUARY 2001 SOUTHERN COMPANY SERVICES, INC. DOE/FE-0429 Disclaimer This report was prepared using publicly available information, including the Final Technical Report and other reports prepared pursuant to a cooperative agreement partially funded by the U.S. Department of Energy. Neither the United States Government nor any agency, employee, contractor, or representative thereof, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately

243

New Light on Improving Engine Efficiencies | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Crystal Structure of a Meta-stable Intermediate Particle in Virus The Crystal Structure of a Meta-stable Intermediate Particle in Virus Assembly Increasing Magnetic Response of Ferromagnetic Semiconductors under High Pressure Better Switching Through Chemistry in Thin Ferroelectrics First Molecular-Level Enzyme Images Could Improve Breast-Cancer Therapy Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed New Light on Improving Engine Efficiencies MARCH 3, 2009 Bookmark and Share The DOE, as part of its Clean Coal & Natural Gas Power Systems initiative, has a "Turbines of Tomorrow" program with the Program Performance Goal to: "By 2010, develop turbine technology that is capable of efficiently

244

Engineering Thin-Film Oxide Interfaces | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel Materials Become Multifunctional at the Ultimate Quantum Limit Novel Materials Become Multifunctional at the Ultimate Quantum Limit Outsmarting Flu Viruses How Lead-Free Solder (Mis)Behaves under Stress Dynamics of Polymer Chains Atop Different Materials Priming the Pump in the Fight against Drug-Resistant Tuberculosis Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Engineering Thin-Film Oxide Interfaces NOVEMBER 12, 2012 Bookmark and Share LAO thin films on STO substrates are depicted in the top schematics (LAO indicated by blue spheres, STO by green spheres). The top left-hand panel demonstrates a chemically broad interface resulting from conventional growth in a low pressure oxygen environment. In contrast, the top

245

FY2001 Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FUELS FOR ADVANCED CIDI FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory and QSS Group, Inc., for their artistic, editorial and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2001 Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells

246

STATEMENT OF CONSIDERATIONS REQUEST BY JOHN DEERE PRODUCT ENGINEERING CENTER FOR AN ADVANCE  

Broader source: Energy.gov (indexed) [DOE]

PRODUCT ENGINEERING CENTER FOR AN ADVANCE PRODUCT ENGINEERING CENTER FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-05NT42422; W(A)-05-047, CH-1327 The Petitioner, John Deere Product Engineering Center (Deere) was awarded a cooperative agreement for the performance of work entitled, "Electrically coupled exhaust energy recovery system using a series power turbine approach." The purpose of the cooperative agreement is to design, test, and demonstrate the technical and commercial viability of electric turbo compounding. This waiver is only for inventions of Deere made under this cooperative agreement. The total estimated cost of the contract is $9,538,073 with DOE and Deere each cost sharing 50% or $4,769,037. The period of performance is from June 1, 2005 through May 31,

247

E-Print Network 3.0 - advanced control strategies Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and control and is committed to advancing this flourishing field. The Robotics... -robot simulation environments, motion planning and control ... Source: Ma, Bin - Departments...

248

Indicator system for advanced nuclear plant control complex  

DOE Patents [OSTI]

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

249

Coal surface control for advanced fine coal flotation  

SciTech Connect (OSTI)

The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

1992-03-01T23:59:59.000Z

250

School of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue University Energy Saving Control of Hydraulic SystemsEnergy Saving Control of Hydraulic Systems  

E-Print Network [OSTI]

School of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue University Energy Saving Control of Hydraulic Systems Principle Investigator: Bin Yao Research Assistant: Song Liu School of Mechanical Engineering Purdue

Yao, Bin

251

School of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue University EnergyEnergy--Saving Control of Hydraulic SystemsSaving Control of Hydraulic Systems  

E-Print Network [OSTI]

School of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue University EnergyEnergy--Saving Control of Hydraulic Principle Investigator: Bin Yao Research Assistant: Song Liu School of Mechanical Engineering Purdue

Yao, Bin

252

PHEV Engine Control and Energy Management Strategy  

Broader source: Energy.gov (indexed) [DOE]

(RealTime Software and Hardware prototype control strategies development tools) - Matlab and Simulink (modeling environment) - Autonomie (vehicle and powertrain models) *...

253

Power control system for a hot gas engine  

DOE Patents [OSTI]

A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

Berntell, John O. (Staffanstorp, SE)

1986-01-01T23:59:59.000Z

254

New well control companies stress planning, engineering  

SciTech Connect (OSTI)

The technology for capping a blowing well has not changed during the last 50 years. Still, operators are finding new ways of using well control companies' expertise to help avoid potentially disastrous situations. This trend is especially critical given the current environmentally sensitive and cost-cutting times facing the oil industry. While regulatory agencies world-wide continue to hinder well control efforts during an offshore event, well control companies are focusing on technologies to make their job easier. Some of the most exciting are the hydraulic jet cutter, which gained fame in Kuwait, and electromagnetic ranging for drilling more accurate relief wells. With the number of subsea wells increasing, subsea intervention is a major target for future innovations. Well control companies are experiencing a change in their role to the offshore oil industry. Well control professionals discuss this expanded responsibility as well as other aspects of offshore blowouts including regulatory hindrances, subsea intervention and future technologies.

Bell, S.; Wright, R.

1994-04-01T23:59:59.000Z

255

An Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine Closed-loop Control  

Broader source: Energy.gov [DOE]

Describes glow plug with integrated pressure sensor for closed-loop control of diesel engine combustion

256

Advanced LD Engine Systems and Emissions Control Modeling and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications CLEERS Coordination & Joint Development of Benchmark Kinetics for LNT & SCR CLEERS Coordination & Joint Development of Benchmark Kinetics for LNT & SCR CLEERS...

257

Particulate Emissions Control by Advanced Filtration Systems or GDI Engines  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

258

Advanced LD Engine Systems and Emissions Control Modeling and...  

Broader source: Energy.gov (indexed) [DOE]

(2): Continued updating LNT aftertreatment device model based on BMW catalyst data Automated bench reactor for CLEERS catalyst calibration New calibrations for lean GDI LNT...

259

Advanced HD Engine Systems and Emissions Control Modeling and Analysis  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

260

Advanced HD Engine Systems and Emissions Control Modeling and Analysis  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced LD Engine Systems and Emissions Control Modeling and Analysis  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

262

Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

263

Advanced Collaborative Emissions Study (ACES) - Cooperative multi...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- Cooperative multi-party effort to characterize emissions and possible health effects of new advanced heavy duty engine and control systems and fuels in the market 2007 - 2010...

264

REQUEST BY CUMMINS ENGINE COMPANY, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS  

Broader source: Energy.gov (indexed) [DOE]

FOR AN FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF ENERGY CONTRACT PROPOSAL NO. P9700016; DOE WAIVER DOCKET W(A)-97- 008 [ORO-655] Cummins Engine Company, Inc. (Cummins) has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Contract Proposal No. P9700016. The scope of the work is to plan, design,, develop and complete the specifications required to enter production for a new diesel engine for domestic light trucks. The work is sponsored by the Office of Transportation Technologies. The dollar amount of the proposed contract is $69,500,000 with Cummins cost sharing $38,200,000, or 55% of the contract.

265

Advanced Combustion Engine Program 2005 Merit Review and Peer Evaluation Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Less dependence on foreign oil, and eventual transition to an emissions-free, petroleum-free vehicle ADVANCED COMBUSTION ENGINE PROGRAM F r e e d o m C A r A n d V e h i C l e T e C h n o l o g i e s P r o g r A m MERIT REVIEW & PEER EVALUATION REPORT Department of Energy Washington, DC 20585 October 5, 2005 Dear Colleague: This document summarizes the comments provided by the Review Panel for the FY 2005 Department of Energy (DOE) Advanced Combustion Engine R&D Merit Review and Peer Evaluation Meeting, the "ACE Review," held on April 19-21, 2005 at Argonne National Laboratory (ANL). The raw evaluations and comments of the panel were provided (with reviewers' names deleted) to the presenters in early June and were used by national laboratory researchers in the development of Annual Operating Plans (AOPs) for fiscal year (FY) 2006. The panel's

266

Reference site selection report for the advanced liquid metal reactor at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This Reference Site Selection Report was prepared by EG G, Idaho Inc., for General Electric (GE) to provide information for use by the Department of Energy (DOE) in selecting a Safety Test Site for an Advanced Liquid Metal Reactor. Similar Evaluation studies are planned to be conducted at other potential DOE sites. The Power Reactor Innovative Small Module (PRISM) Concept was developed for ALMR by GE. A ALMR Safety Test is planned to be performed on a DOE site to demonstrate features and meet Nuclear Regulatory Commission Requirements. This study considered possible locations at the Idaho National Engineering Laboratory that met the ALMR Prototype Site Selection Methodology and Criteria. Four sites were identified, after further evaluation one site was eliminated. Each of the remaining three sites satisfied the criteria and was graded. The results were relatively close. Thus concluding that the Idaho National Engineering Laboratory is a suitable location for an Advanced Liquid Metal Reactor Safety Test. 23 refs., 13 figs., 9 tabs.

Sivill, R.L.

1990-03-01T23:59:59.000Z

267

Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 2, Appendices  

SciTech Connect (OSTI)

This volume presents the following appendices: ceramic test specimen drawings and schematics, mixed-mode and biaxial stress fracture of structural ceramics for advanced vehicular heat engines (U. Utah), mode I/mode II fracture toughness and tension/torsion fracture strength of NT154 Si nitride (Brown U.), summary of strength test results and fractography, fractography photographs, derivations of statistical models, Weibull strength plots for fast fracture test specimens, and size functions.

NONE

1995-03-01T23:59:59.000Z

268

REQUEST :BY CUMMINS ENGINE COMPANY, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS  

Broader source: Energy.gov (indexed) [DOE]

9/97 TUE 15:24 FAX 423 576 9189 PROCUREMENT & CONTRACTS 9/97 TUE 15:24 FAX 423 576 9189 PROCUREMENT & CONTRACTS @002 Statement of Considerations REQUEST :BY CUMMINS ENGINE COMPANY, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF ENERGY CONTRACT NO. DE- FC05-970R22585; DOE WAIVER DOCKET W(A)-97-005% [ORO-652] Cummins Engine Company, Inc. (Cummins) has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Contract No. DE-FC05-970R22585. The scope of the work calls for the development of advanced materials for use in major component systems for diesel engines. The work is sponsored by the Office of Transportation Technologies. The dollar amount of the contract is $4,804,995 with Cummins cost sharing $2,402,499, or 50%

269

STATEMENT OF CONSIDERATIONS Request by Ford Motor Company Research and Advanced Engineering  

Broader source: Energy.gov (indexed) [DOE]

No No . DE-FC26-07NT 43276; W(A)-08-002 , CH-1429 The Petitioner, Ford Motor Company Research and Advanced Engineering Laboratory (Ford), was awarded this cooperative agreement for the performance of work entitled "E85 Optim ized Engine Application ." The goal of the cooperative agreement is to develop practical technology which improves vehicle fuel efficiency using E85 and which is feasible for production implementation in the short term . Ford will : 1) utilize the favorable knock suppression properties of ethanol to build upon and enhance the recent techn ica l development of spark ignition turbocharged direct injection gasoline engines; and 2) increase the "fun-to-drive" attribute normally associated with diesel vehicles in Europe

270

Electrical, Engineering  

E-Print Network [OSTI]

Sustainable Engineering ­ advance theory and practice of sustainable engineering; provide access to clean Engineering (Ron Askin) Computer Science Computer Systems Engineering Industrial Engineering Informatics and identification Engineering of Matter, Transport, and Energy (Kyle Squires) Aerospace Engineering Chemical

Zhang, Junshan

271

Demonstrating Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control  

Broader source: Energy.gov [DOE]

Presents a next generation model-based engine controller that incorporates real-time fuel efficiency optimization and tested under fully transient engine and vehicle operating conditions.

272

EnergyCS Inc Energy Control Systems Engineering Inc | Open Energy...  

Open Energy Info (EERE)

Engineering Inc Jump to: navigation, search Name: EnergyCS Inc (Energy Control Systems Engineering, Inc) Sector: Services Product: String representation "Monrovia, Calif ... 4...

273

Investigation into the Interactions between thermal management, lubrication and control systems of a diesel engine.  

E-Print Network [OSTI]

??Engine thermal and lubricant systems have only recently been a serious focus in engine design and in general remain under passive control. The introduction of… (more)

Burke, Richard D

2011-01-01T23:59:59.000Z

274

E-Print Network 3.0 - advance stringent control Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: % since 1995. Acid gases have dropped by about 80%. ADVANCES IN AIR POLLUTION CONTROL TECHNOLOGY... Municipal Waste Combustors (MWCs), owners and operators of...

275

Improving the Performance of a Two-Shell Column with Advanced Control  

E-Print Network [OSTI]

column has yielded stable operation with reduced utility consumption and increased capacity. Prior to the application of advanced controls this column was a plant capacity limit and composition control was very difficult. The advanced controls now... allow composition to be controlled within 15% of setpoint at both ends of the column. specific energy consumption has been reduced significantly, yielding higher potential capacity. The control strategies implemented include analyzer composition...

Morrison, T. A.; Laflamme, D.

276

Advances in Sustainable Petroleum Engineering Science ISSN 1937-7991 Volume 2, Number 3 2011 Nova Science Publishers, Inc.  

E-Print Network [OSTI]

Advances in Sustainable Petroleum Engineering Science ISSN 1937-7991 Volume 2, Number 3 © 2011 Nova Science Publishers, Inc. THE MYSTERYAND UNCERTAINTY CLOUD DURING RESERVOIR SIMULATION IN THE PETROLEUM INDUSTRY M. Enamul Hossain1 and M. Rafiqul Islam2 1 Department of Petroleum Engineering, King Fahd

Hossain, M. Enamul

277

Method for Weight Control Engineering Management to Evaluate Single Engine Aircraft Weighing Activities  

E-Print Network [OSTI]

There is no greater task for a Weight Control Engineer than determining an aircraft’s weight and center of gravity (CG). Although the concept of balance or CG is easy to grasp, calculating or measuring it for complex objects, such as an aircraft...

Brown, Patrick M.

2007-05-18T23:59:59.000Z

278

Model Based Torque Control and Estimation for Common Rail Diesel Engine  

Science Journals Connector (OSTI)

A rapid control prototyping based on torque control algorithm using V-cycle mode for common rail diesel engine was developed, and a torque prediction model was present which including a feed-forward mean value engine model and a feedback correction of ... Keywords: common rail diesel engine, control strategies, torque control, torque estimation

Wang Hongrong; Wang Yongfu; Liu Zhi

2010-11-01T23:59:59.000Z

279

Vehicle Technologies Office: Combustion Engine Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Engine Combustion Engine Research to someone by E-mail Share Vehicle Technologies Office: Combustion Engine Research on Facebook Tweet about Vehicle Technologies Office: Combustion Engine Research on Twitter Bookmark Vehicle Technologies Office: Combustion Engine Research on Google Bookmark Vehicle Technologies Office: Combustion Engine Research on Delicious Rank Vehicle Technologies Office: Combustion Engine Research on Digg Find More places to share Vehicle Technologies Office: Combustion Engine Research on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Combustion Engine Research

280

Coal surface control for advanced fine coal flotation  

SciTech Connect (OSTI)

The primary objective of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Work this quarter concentrated on the following: washability studies, which included particle size distribution of the washability samples, and chemical analysis of washability test samples; characterization studies of induction time measurements, correlation between yield, combustible-material recovery (CMR), and heating-value recovery (HVR), and QA/QC for standard flotation tests and coal analyses; surface modification and control including testing of surface-modifying reagents, restoration of hydrophobicity to lab-oxidized coals, pH effects on coal flotation, and depression of pyritic sulfur in which pyrite depression with calcium cyanide and pyrite depression with xanthated reagents was investigated; flotation optimization and circuitry included staged reagent addition, cleaning and scavenging, and scavenging and middling recycling. Weathering studies are also discussed. 19 figs., 28 tabs.

Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J. (California Univ., Berkeley, CA (USA)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (USA)); Hu, Weibai; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (USA)); Choudhry, V.; Sehgal, R.; Ghosh, A. (Praxis Engineers, Inc., Milpitas, CA (USA))

1990-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hardware and Software Design for a Large Gas Engine Detonation Simulator.  

E-Print Network [OSTI]

??Demands to meet legislative exhaust emission levels, provide fuel economy, and improve engine quality have been the major driving forces for engine control advancement [1].… (more)

Lowder, Tracy

2008-01-01T23:59:59.000Z

282

Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Engineering Lawrence Livermore National Laboratory Home Technologies Core Competencies Showcase Careers Partnerships About Advanced Manufacturing Developing high-performance materials, devices, components, and assemblies enabled by innovative design tools and novel manufacturing techniques Learn more Applied Electromagnetics Supporting the development of electromagnetic systems that are pervasive and paramount to the greater National Security community. Learn more Data Sciences Enabling better decisions through the development and application of state-of-the-art techniques in machine learning, statistics, and decision sciences Learn more Precision Engineering Embracing determinism to guide rigorous design, construction, and metrology of mechatronic systems, instruments, and manufactured components

283

REQUEST BY UNITED TECHNOLOGIES CORPORATION, PRATT & WHITNEY MILITARY ENGINES, FOR AN ADVANCE WAIVER OF DOMESTIC  

Broader source: Energy.gov (indexed) [DOE]

UNITED TECHNOLOGIES CORPORATION, PRATT & UNITED TECHNOLOGIES CORPORATION, PRATT & WHITNEY MILITARY ENGINES, FOR AN ADVANCE WAIVER OF DOMESTIC AND FORE IGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER UT-BATTELLE, LLC SUBCONTRACT NO. 40001Q288 UNDER PRIME CONTRACT NO. DE-AC05-000R22725; DEPARTMENT OF ENERGY (D OE) WAIVER DOCKET W(A)201 0-051 [OR0-800] Uniteo Technolog ies , Pratt & Whitney Military Eng ines (Petitioner) has made a timely request for an advance wa iver to worldwide rights in Su bject Inventions made in the course of or under UT -Battelle , LLC Subcontract No. 400010288 entitled , and "Bulk Amorphous Alum inum Program" unde r UT -Battelle Prime Contract No . DE-AC05-000R22725 . The scope of work involves the production of eng ine components using a conventional powder metallurgy

284

Building America Technology Solutions for New and Existing Homes: Advanced Boiler Load Monitoring Controllers, Chicago, Illinois  

Broader source: Energy.gov [DOE]

In this project, the Building America team Partnership for Advanced Residential Retrofit (PARR) installed and monitored an ALM aftermarket controller, the M2G from Greffen Systems, at two Chicago area multifamily buildings with existing OTR control.

285

Advanced Metal Fiber Wall-Flow DPF For Diesel Emission Control...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Metal Fiber Wall-Flow DPF For Diesel Emission Control Advanced Metal Fiber Wall-Flow DPF For Diesel Emission Control A new metal fiber wall-flow DPF with up to 99% efficiency and...

286

Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report  

SciTech Connect (OSTI)

This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

NONE

1998-12-01T23:59:59.000Z

287

REQUEST BY CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS  

Broader source: Energy.gov (indexed) [DOE]

CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF ENERGY GRANT NO. DE-FG05-970R22584; DOE WAIVER DOCKET W(A)-97-036 [ORO-671] Petitioner, Cummins Engine Company, Inc., has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Grant No. DE-FG05-970R22584 made to the Gas Research Institute (GRI). Petitioner is a subcontractor to GRI under the grant. The work under this grant calls for the development of technologies to improve spark ignition natural gas engine efficiencies for automotive markets. Two other companies, Mack Truck and Deere & Company, are also subcontractors under this project. Deere

288

Energy Control Systems Engineering Inc | Open Energy Information  

Open Energy Info (EERE)

Control Systems Engineering Inc Control Systems Engineering Inc Jump to: navigation, search Name Energy Control Systems Engineering Inc Place Monrovia, California Zip 91016 Sector Services Product The company is focused on consulting, design and prototype services for system integration, management and monitoring of electrochemical energy systems such as batteries and fuel cells. Coordinates 6.30077°, -10.79716° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":6.30077,"lon":-10.79716,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

289

Idling control device for internal combustion engine with turbocharger  

SciTech Connect (OSTI)

An idling control device is described for an internal combustion engine with a turbocharger, comprising: an air intake pipe having an inlet at an upstream end thereof adapted to accept air which is to be supplied through the air intake pipe to the internal combustion engine a turbocharger having a housing incorporated in the air intake pipe between the inlet and the outlet, a throttle valve incorporated in the air intake pipe between the turbocharger and the outlet, a surge tank incorporated in the air intake pipe between the throttle valve and the outlet; a bypass air passage means provided in parallel with the air intake pipe between upstream of the turbocharger and downstream of the throttle valve; a flow-control valve incorporated in the bypass air passage means; an actuator operatively associated with the flow-control valve, a computer operatively associated with the actuator and arranged to receive signals relating to operating conditions of the engine; a check valve incorporated in the bypass air passage means downstream of the flow-control valve.

Ando, H.; Kondo, T.

1986-09-23T23:59:59.000Z

290

Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computational Approaches Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping Background The United States Department of Energy (DOE) National Energy Technology Laboratory (NETL) develops affordable and clean energy from coal and other fossil fuels to secure a sustainable energy economy. To further this mission, NETL funds research and development of advanced control technologies, including chemical looping (CL)

291

Advanced natural-gas-fueled-engine development. Part 1: design and analyses. Final report, April 1985-July 1986  

SciTech Connect (OSTI)

The objective of the research program was to design an advanced natural gas engine (NG 1990) to be produced in the 1990's which will have high thermal efficiency and 40,000 hours durability of the valve-train components before major engine overhaul. Preliminary design and feasibility of the NG 1990 advanced natural gas engine was completed. A natural gas engine simulation model predicts up to 43.6% brake thermal efficiency (5840 Btu/hp-hr BSFC) for the advanced engine with the advanced concepts like K-Miller cycle (early intake valve closing), lean burn combustion - A/F ratio = 24.5, high compression ratio up to 14:1, higher turbocharger efficiency of 63.2% overall, and axially stratified charge combustion system resulting in fast burning. The use of K-Miller cycle reduces the in-cylinder gas temperatures and allows engine operation at 14:1 compression ratio without knock tendencies. The design and analyses of the NG 1990 engine and its components like K-Miller system were completed in the program.

Kamo, R.; Walson, R.; Kakwani, R.M.; Kamo, L.

1986-11-01T23:59:59.000Z

292

Engine combustion control at low loads via fuel reactivity stratification  

DOE Patents [OSTI]

A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

2014-10-07T23:59:59.000Z

293

Attendees of the 2003 All Scout Nano Day sponsored by the NU-NSEC. Several are now pursuing advanced education and careers in science and engineering (see text).  

E-Print Network [OSTI]

advanced education and careers in science and engineering (see text). ALL SCOUT NANO DAY Chad A. Mirkin's interest in science and engineering. The day concludes with a pizza party and poster session advanced education in science and engineering: (1) senior, Univ. of Pittsburgh, Bioengineering; (2

Shull, Kenneth R.

294

Advanced high temperature materials for the energy efficient automotive stirling engine  

Science Journals Connector (OSTI)

The Stirling engine is under investigation jointly by the Department ... internal combustion engine for automotive applications. The Stirling engine is an external combustion engine that offers ... materials rese...

R. H. Titran; J. R. Stephens

1984-09-01T23:59:59.000Z

295

Method and apparatus for controlling hybrid powertrain system in response to engine temperature  

DOE Patents [OSTI]

A method for controlling a hybrid powertrain system including an internal combustion engine includes controlling operation of the hybrid powertrain system in response to a preferred minimum coolant temperature trajectory for the internal combustion engine.

Martini, Ryan D; Spohn, Brian L; Lehmen, Allen J; Cerbolles, Teresa L

2014-10-07T23:59:59.000Z

296

Experimental bath engineering for quantitative studies of quantum control  

E-Print Network [OSTI]

We develop and demonstrate a technique to engineer universal unitary baths in quantum systems. Using the correspondence between unitary decoherence due to ambient environmental noise and errors in a control system for quantum bits, we show how a wide variety of relevant classical error models may be realized through In-Phase/Quadrature modulation on a vector signal generator producing a resonant carrier signal. We demonstrate our approach through high-bandwidth modulation of the 12.6 GHz carrier appropriate for trapped $^{171}$Yb$^{+}$ ions. Experiments demonstrate the reduction of coherent lifetime in the system in the presence of an engineered bath, with the observed $T_{2}$ scaling as predicted by a quantitative model described herein. These techniques form the basis of a toolkit for quantitative tests of quantum control protocols, helping experimentalists characterize the performance of their quantum coherent systems.

A. Soare; H. Ball; D. Hayes; X. Zhen; M. C. Jarratt; J. Sastrawan; H. Uys; M. J. Biercuk

2014-03-18T23:59:59.000Z

297

Active Diesel Emission Control Technology for Sub-50 HP Engines with Low Exhaust Temperature Profiles  

Broader source: Energy.gov [DOE]

A new type of emission control technology was presented for the small engines used in APU's and TRU's.

298

MOTION PLANNING CONTROL OF THE AIRPATH OF AN S.I. ENGINE WITH VALVE  

E-Print Network [OSTI]

to controlling the air mass aspirated in the cylinder. Besides, it is also desired to reduce engine pollutantMOTION PLANNING CONTROL OF THE AIRPATH OF AN S.I. ENGINE WITH VALVE TIMING ACTUATORS T. Leroy , J, France Abstract: We address the control of the airpath of a turbocharged S.I. engine equipped

Boyer, Edmond

299

Appendix D: Coal Gasifier Control: A Process Engineering Approach 208 DD.. CCOOAALL GGAASSIIFFIIEERR CCOONNTTRROOLL  

E-Print Network [OSTI]

Appendix D: Coal Gasifier Control: A Process Engineering Approach 208 DD.. CCOOAALL 24 June 1998 Coventry University #12;Appendix D: Coal Gasifier Control: A Process Engineering Approach 209 Coal Gasifier Control: A Process Engineering Approach B N Asmar, W E Jones and J A Wilson

Skogestad, Sigurd

300

Engineering development of advanced physical fine coal cleaning for premium fuel applications  

SciTech Connect (OSTI)

The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

Shields, G.L.; Smit, F.J.; Jha, M.C.

1997-08-28T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Analytical Framework to Evaluate Emission Control Systems for Marine Engines  

E-Print Network [OSTI]

J. , Internal Combustion Engine Fundamentals. March 31stfrom a large ship diesel engine. Atmos. Environ. 2009, 43 (low-speed marine diesel engine. Aerosol Sci. Technol. 2007,

Jayaram, Varalakshmi

2010-01-01T23:59:59.000Z

302

College of Engineering and Science ENGINEERING  

E-Print Network [OSTI]

, Hydrogeology, Industrial Engineering, Materials Science and Engineering, Mathematical Sciences, MechanicalCollege of Engineering and Science COLLEGE OF ENGINEERING AND SCIENCE The College of Engineering and Science offers advanced degrees in Automotive Engineering, Bio- engineering, Biosystems Engineering

Stuart, Steven J.

303

College of Engineering and Science ENGINEERING  

E-Print Network [OSTI]

, Hydrogeology, Industrial Engineering, Materials Science and Engineering, Mathematical Sciences, Mechanical35 College of Engineering and Science COLLEGE OF ENGINEERING AND SCIENCE The College of Engineering and Science offers advanced degrees in Automotive Engineering, Bio- engineering, Biosystems Engineering

Stuart, Steven J.

304

College of Engineering and Science ENGINEERING  

E-Print Network [OSTI]

, Chemical Engineering, Chemistry, Civil Engineering, Com- puter Engineering, Computer Science, Digital ProCollege of Engineering and Science COLLEGE OF ENGINEERING AND SCIENCE The College of Engineering and Science offers advanced degrees in Automotive Engineering, Bioengineering, Biosystems Engineering

Bolding, M. Chad

305

NETL: Mercury Emissions Control Technologies - Advanced Mercury Sorbents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Mercury Sorbents with Low Impact on Power Plant Operations Advanced Mercury Sorbents with Low Impact on Power Plant Operations Apogee Scientific, Inc. (Apogee) will lead a Team comprised of Southern Company Services, TXU, Tennessee Valley Authority, EPRI, URS Group, University of Illinois-Illinois State Geological Survey (ISGS), Southern Research Institute (SRI), Calgon Carbon, and TDA Research, Inc., to evaluate a number of advanced sorbents for removing vapor-phase mercury from coal-fired flue gas that have minimal impact on by-product utilization and/or on existing particulate collection devices (PCD). The main objective of this program is to evaluate several advanced sorbents for removing mercury from coal-fired flue gas while posing minimal impact on plant operations through three advanced sorbent concepts: 1) Sorbents which minimize impact on concrete production through selective chemical passivation of activated carbon and use of non-carbon material, 2) sorbents that minimize baghouse pressure drop and ESP emissions, and 3) sorbents that can be recovered and reused.

306

A comparison of advanced distillation control techniques for a propylene/propane splitter  

SciTech Connect (OSTI)

A detailed dynamic simulator of a propylene/propane (C{sub 3}) splitter, which was bench-marked against industrial data, has been used to compare dual composition control performance for a diagonal PI controller and several advanced controllers. The advanced controllers considered are DMC, nonlinear process model based control, and artificial neural networks. Each controller was tuned based upon setpoint changes in the overhead production composition using 50% changes in the impurity levels. Overall, there was not a great deal of difference in controller performance based upon the setpoint and disturbance tests. Periodic step changes in feed composition were also used to compare controller performance. In this case, oscillatory variations of the product composition were observed and the variabilities of the DMC and nonlinear process model based controllers were substantially smaller than that of the PI controller. The sensitivity of each controller to the frequency of the periodic step changes in feed composition was also investigated.

Gokhale, V.; Hurowitz, S.; Riggs, J.B. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Chemical Engineering

1995-12-01T23:59:59.000Z

307

Method of controlling cyclic variation in engine combustion  

DOE Patents [OSTI]

Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling. 27 figs.

Davis, L.I. Jr.; Daw, C.S.; Feldkamp, L.A.; Hoard, J.W.; Yuan, F.; Connolly, F.T.

1999-07-13T23:59:59.000Z

308

Controlling the turbocharger whistling noise in diesel engines  

Science Journals Connector (OSTI)

Turbochargers are now commonly used in passenger cars especially in application with diesel engines because of their numerous advantages. The use of this machine greatly improves engine performance, while at the same time allowing pollutant emissions to be reduced. However, one of the important issues to take into account when a turbocharger is used in passenger cars is the whistling noise due to unbalanced forces that can be perceived by the driver, which causes discomfort. The manufacturer's efforts to reduce the whistling noise are centred on reducing the unbalanced forces by a correct balance of rotating parts. However, improving the balance means increasing the manufacturing cost as this process is very expensive. Selecting the maximum unbalance admissible is a key activity during the development of a new application. In this paper, a procedure to control the turbocharger whistling noise vs. unbalanced forces variation has been suggested in order to maintain the acoustic comfort of the vehicle.

J.A. Calvo; V. Diaz; J.L. San Roman

2006-01-01T23:59:59.000Z

309

APPLICATION EXAMPLES OF ADVANCED DIGITAL CONTROL IN WIRE INDUSTRY  

Science Journals Connector (OSTI)

Abstract In wire and cable industry, mass production is done for enamel wire production and foamed insulated cable for telephone line. This paper presents applications of multivariable control to these production processes. The control systems are designed based on state space approach using the computer aided design package. The temperature distribution control of enamelling oven is presented first, and in the second, the simultaneous control of the capacitance and diameter of the foamed insulated cable is discribed. Both control systems are now practically used with satisfactory results. Keywords. Multivariable control; Enamelling oven; Temperature distribution control foamed insulated cable.

K. Furuta; M. Sampei; Y. Nakamura; K. Asaka

1987-01-01T23:59:59.000Z

310

Systems Engineering and Innovation in Control--anSystems Engineering and Innovation in Control an Industry Perspective and an Application to Automotive  

E-Print Network [OSTI]

, about 55% of sales outside of U.S. · More than 130,000 employees, operating in more than 100 countriesHoneywell Presence in Advanced Controls Industry Example Applications Realized Benefits Oil Refining Refinery, Gas Processing, LNG/LPG · Refinery: ~$1/Barrel for advanced control · 5-20% less energy/unit product

Shapiro, Benjamin

311

Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992  

SciTech Connect (OSTI)

This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

1992-12-31T23:59:59.000Z

312

Topographic control of asynchronous glacial advances: A case study from Annapurna, Nepal  

E-Print Network [OSTI]

Topographic control of asynchronous glacial advances: A case study from Annapurna, Nepal Beth Pratt of asynchronous glacial advances: A case study from Annapurna, Nepal, Geophys. Res. Lett., 38, L24502, doi:10 10 Be dating [Zech et al., 2009]. Further east in Nepal, other glacial dating studies [Finkel et al

Heimsath, Arjun M.

313

Speed And Power Control Of An Engine By Modulation Of The Load Torque  

DOE Patents [OSTI]

A system and method of speed and power control for an engine in which speed and power of the engine is controlled by modulation of the load torque. The load torque is manipulated in order to cause engine speed, and hence power to be changed. To accomplish such control, the load torque undergoes a temporary excursion in the opposite direction of the desired speed and power change. The engine and the driven equipment will accelerate or decelerate accordingly as the load torque is decreased or increased, relative to the essentially fixed or constant engine torque. As the engine accelerates or decelerates, its power increases or decreases in proportion.

Ziph, Benjamin (Ann Arbor, MI); Strodtman, Scott (Ypsilanti, MI); Rose, Thomas K (Chelsea, MI)

1999-01-26T23:59:59.000Z

314

On the Precision of Search Engines: Results from a Controlled Experiment  

E-Print Network [OSTI]

, conventional, non-semantic search engines index and rank web pages [3]. When a user enters a search queryOn the Precision of Search Engines: Results from a Controlled Experiment Hasan Girit, Robert, search engines adopt a key role. Besides conventional search engines such as Google, semantic search

Ulm, Universität

315

A Planning, Scheduling and Control Architecture for Advanced Life Support Systems  

E-Print Network [OSTI]

A Planning, Scheduling and Control Architecture for Advanced Life Support Systems V. Jorge Leon 77058 Abstract This paper describes an integrated planning, schedul- ing and control architecture and the requirements for plan- ning, scheduling and control architectures are pre- sented. Next, the main components

Kortenkamp, David

316

Advance of Systematic Design Methods on Fuzzy Control  

E-Print Network [OSTI]

The heating, ventilation and air-conditioning (HVAC) system possesses some characteristics such as multi-parameters, nonlinear, and coupled parameters. Aimed at control problems, the author targets real-time fuzzy control and research systematically...

Zhang, J.; Chen, Y.

2006-01-01T23:59:59.000Z

317

Evaluation of traffic operations at diamond interchanges using advanced actuated control  

E-Print Network [OSTI]

This thesis documents an operational analysis of ographics. advanced actuated traffic control at signalized diamond interchanges. The study attempts to determine the benefits a "flexible'' phasing strategy provides to the interchange. Flexible...

Koonce, Peter John Vincent

1998-01-01T23:59:59.000Z

318

Advanced Powerhouse Controls Save Pulp Mill $500 in Purchased Energy in First Month  

E-Print Network [OSTI]

This case study describes the application of advanced regulatory and supervisory controls to powerhouse operations at a large pulp mill in central British Columbia. Substantial reductions in mill operating costs were achieved by actively managing...

Morrison, R.; Hilder, S.

2004-01-01T23:59:59.000Z

319

Free-Piston Diesel Engine Dynamics and Control Tor A. Johansen1, Olav Egeland  

E-Print Network [OSTI]

Free-Piston Diesel Engine Dynamics and Control Tor A. Johansen1, Olav Egeland , Erling Aa. Kv rner ASA, Postboks 169, N-1325 Lysaker, Norway. Abstract Free-piston diesel engines. This paper present a dynamic mathematical model of a free-piston diesel engine, a control oriented dynamic

Johansen, Tor Arne

320

Towards model-based control of a steam Rankine process for engine waste heat recovery  

E-Print Network [OSTI]

Towards model-based control of a steam Rankine process for engine waste heat recovery Johan Peralez steam process for exhaust gas heat recovery from a spark-ignition engine, focusing in particular results on a steam process for SI engines, [3] on generic control issues and [4] which provides a comp

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

MOTION PLANNING CONTROL OF THE AIRPATH OF AN S.I. ENGINE WITH VALVE  

E-Print Network [OSTI]

MOTION PLANNING CONTROL OF THE AIRPATH OF AN S.I. ENGINE WITH VALVE TIMING ACTUATORS T. Leroy , J, France Abstract: We address the control of the airpath of a turbocharged S.I. engine equipped with Variable Valve Timing actuators (VVT). Compared to standard configurations, the engine does not possess any

322

Tailoring surface topographies of polymers by using ion beam: Recent advances and the potential applications in biomedical and tissue engineering  

Science Journals Connector (OSTI)

Ion beam technique has recently been actively employed to create various patterns on the surface of polymers. In this paper, we highlight some of the recent advances in tailoring surface topographies of polymers by using ion beam and present a brief discussion on the potential applications in biomedical and tissue engineering.

Terumitsu Hasebe; So Nagashima; Yukihiro Yoshimoto; Atsushi Hotta; Tetsuya Suzuki

2012-01-01T23:59:59.000Z

323

Advanced regulatory control and coordinated plant-wide control strategies for IGCC targeted towards improving power ramp-rates  

SciTech Connect (OSTI)

As part of ongoing R&D activities at the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training & Research (AVESTAR™) Center, this paper highlights strategies for enhancing low-level regulatory control and system-wide coordinated control strategies implemented in a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with carbon capture. The underlying IGCC plant dynamic model contains 20 major process areas, each of which is tightly integrated with the rest of the power plant, making individual functionally-independent processes prone to routine disturbances. Single-loop feedback control although adequate to meet the primary control objective for most processes, does not take into account in advance the effect of these disturbances, making the entire power plant undergo large offshoots and/or oscillations before the feedback action has an opportunity to impact control performance. In this paper, controller enhancements ranging from retuning feedback control loops, multiplicative feed-forward control and other control techniques such as split-range control, feedback trim and dynamic compensation, applicable on various subsections of the integrated IGCC plant, have been highlighted and improvements in control responses have been given. Compared to using classical feedback-based control structure, the enhanced IGCC regulatory control architecture reduces plant settling time and peak offshoots, achieves faster disturbance rejection, and promotes higher power ramp-rates. In addition, improvements in IGCC coordinated plant-wide control strategies for “Gasifier-Lead”, “GT-Lead” and “Plantwide” operation modes have been proposed and their responses compared. The paper is concluded with a brief discussion on the potential IGCC controller improvements resulting from using advanced process control, including model predictive control (MPC), as a supervisory control layer.

Mahapatra, P.; Zitney, S.

2012-01-01T23:59:59.000Z

324

The role of fuel in determining the high load limit of controlled auto-ignition engines  

E-Print Network [OSTI]

Controlled Auto-Ignition (CAI) engines have the potential to increase fuel economy while lowering nitrogen oxide and soot emissions. One hurdle that is currently being faced is the engine's inability to operate at high ...

Maria, Amir Gamal

2009-01-01T23:59:59.000Z

325

Effects of charge motion control during cold start of SI engines  

E-Print Network [OSTI]

An experimental study was conducted to investigate the effects of various intake charge motion control approaches on the cold start-up process of a port fuel injected SI engine. Engine experiments were performed to assess ...

Lee, Dongkun

2005-01-01T23:59:59.000Z

326

Optimization of the Combustion in Large Marine Diesel Engine by Controlling the Exhaust Gas  

Science Journals Connector (OSTI)

The diesel engine performance and emissions are strongly linked to ... to regulate the air-fuel mixture in a diesel engine, by controlling the turbocharger speed through a ... work we have taken as a model a marine

Sabri Bechir

2013-01-01T23:59:59.000Z

327

A Concept for Project Manufacturing Planning and Control for Engineer-to-Order Companies  

Science Journals Connector (OSTI)

Engineer-to-order products are customized to a ... ) framework is presented in relation to typical engineer to order (ETO) companies. The existing ... manufacturing planning and control (MPC) for ETO environment ...

Pavan Kumar Sriram; Erlend Alfnes…

2013-01-01T23:59:59.000Z

328

Control of Combustion Processes in an Internal Combustion Engine by Low-Temperature Plasma  

Science Journals Connector (OSTI)

A new method of operation of internal combustion engines enhances power and reduces fuel consumption and exhaust toxicity. Low-temperature plasma control combines working processes of thermal engines and steam machines into a single process.

E. A. Olenev

2002-07-01T23:59:59.000Z

329

Control of Combustion Processes in an Internal Combustion Engine by Low-Temperature Plasma  

Science Journals Connector (OSTI)

A new method of operation of internal combustion engines enhances power and reduces fuel consumption and exhaust toxicity. Low-temperature plasma control combines working processes of thermal engines and steam...

E. A. Olenev

2002-07-01T23:59:59.000Z

330

Analytical Framework to Evaluate Emission Control Systems for Marine Engines  

E-Print Network [OSTI]

Chapter 5). A modern marine propulsion engine on a ferry/two-stroke low-speed marine propulsion engines operated onstroke low-speed marine propulsion engine. It also assesses

Jayaram, Varalakshmi

2010-01-01T23:59:59.000Z

331

Analytical Framework to Evaluate Emission Control Systems for Marine Engines  

E-Print Network [OSTI]

from a low-speed marine diesel engine. Aerosol Sci. Technol.Emissions from a Marine Diesel Engine at Various LoadNOx emissions by marine diesel engines. Transportation

Jayaram, Varalakshmi

2010-01-01T23:59:59.000Z

332

An experimental system for advanced heating, ventilating and air conditioning (HVAC) control  

Science Journals Connector (OSTI)

While having the potential to significantly improve heating, ventilating and air conditioning (HVAC) system performance, advanced (e.g., optimal, robust and various forms of adaptive) controllers have yet to be incorporated into commercial systems. Controllers consisting of distributed proportional-integral (PI) control loops continue to dominate commercial HVAC systems. Investigation into advanced HVAC controllers has largely been limited to proposals and simulations, with few controllers being tested on physical systems. While simulation can be insightful, the only true means for verifying the performance provided by HVAC controllers is by actually using them to control an HVAC system. The construction and modeling of an experimental system for testing advanced HVAC controllers, is the focus of this article. A simple HVAC system, intended for controlling the temperature and flow rate of the discharge air, was built using standard components. While only a portion of an overall HVAC system, it is representative of a typical hot water to air heating system. In this article, a single integrated environment is created that is used for data acquisition, controller design, simulation, and closed loop controller implementation and testing. This environment provides the power and flexibility needed for rapid prototyping of various controllers and control design methodologies.

Michael Anderson; Michael Buehner; Peter Young; Douglas Hittle; Charles Anderson; Jilin Tu; David Hodgson

2007-01-01T23:59:59.000Z

333

Comparison of advanced distillation control methods. Third annual report  

SciTech Connect (OSTI)

Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to study the issue of configuration selection for diagonal PI dual composition controls, feedforward from a feed composition analyzer, and decouplers. Auto Tune Variation (ATV) identification with on-line detuning for setpoint changes was used for tuning the diagonal proportional integral (PI) composition controls. In addition, robustness tests were conducted by inducting reboiler duty upsets. For single composition control, the (L, V) configuration was found to be best. For dual composition control, the optimum configuration changes from one column to another. Moreover, the use of analysis tools, such as RGA, appears to be of little value in identifying the optimum configuration for dual composition control. Using feedforward from a feed composition analyzer and using decouplers are shown to offer significant advantages for certain specific cases.

Riggs, J.B.

1997-07-01T23:59:59.000Z

334

Analytical Framework to Evaluate Emission Control Systems for Marine Engines  

E-Print Network [OSTI]

ports. Emissions from marine engines and fuel sulfur contentuse of high sulfur fuels in marine engines. This researchto lower sulfur fuels such as marine distillate oil (MDO)

Jayaram, Varalakshmi

2010-01-01T23:59:59.000Z

335

College of Engineering and Science ENGINEERING  

E-Print Network [OSTI]

, Hydrogeology, Industrial Engineering, Materials Science and Engineering, Mathematical Sciences, MechanicalCollege of Engineering and Science COLLEGE OF ENGINEERING AND SCIENCE The College of Engineering and Science offers advanced degrees in Automotive Engineering, Bioengineering, Biosystems Engineering, Chemi

Stuart, Steven J.

336

College of Engineering and Science ENGINEERING  

E-Print Network [OSTI]

, Hydrogeology, Industrial Engineering, Materials Science and Engineering, Mathematical Sciences, Mechanical35 College of Engineering and Science COLLEGE OF ENGINEERING AND SCIENCE The College of Engineering and Science offers advanced degrees in Automotive Engineering, Bioengineering, Biosystems Engineering, Chemi

Stuart, Steven J.

337

Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan  

SciTech Connect (OSTI)

Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

Bruce Hallbert

2012-09-01T23:59:59.000Z

338

Adjusting the specificity of an engine map based on the sensitivity of an engine control parameter relative to a performance variable  

DOE Patents [OSTI]

Methods and systems for engine control optimization are provided. A first and a second operating condition of a vehicle engine are detected. An initial value is identified for a first and a second engine control parameter corresponding to a combination of the detected operating conditions according to a first and a second engine map look-up table. The initial values for the engine control parameters are adjusted based on a detected engine performance variable to cause the engine performance variable to approach a target value. A first and a second sensitivity of the engine performance variable are determined in response to changes in the engine control parameters. The first engine map look-up table is adjusted when the first sensitivity is greater than a threshold, and the second engine map look-up table is adjusted when the second sensitivity is greater than a threshold.

Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

2014-10-28T23:59:59.000Z

339

Basics of Advanced Software Systems Static cyclic scheduling on automotive Electronic Control Units (ECU)  

E-Print Network [OSTI]

Basics of Advanced Software Systems Static cyclic scheduling on automotive Electronic Control Units Systems ­ Coursework ­ March 9, 2012. lic scheduling on automotive Electronic Control Units (ECU) (nicolas - Name, - Execution time, - Period of execution, - First activation date, also cal period. The scheduling

Navet, Nicolas

340

E-Print Network 3.0 - advanced engineering materials Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

following openings listed in eRecruiting before the application deadline passes Summary: Engineering, Industrial Engineering, Industrial Technology, Information Systems, Materials...

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Method for valve seating control for an electro-hydraulic engine valve  

DOE Patents [OSTI]

Valve lift in an internal combustion engine is controlled by an electro-hydraulic actuation mechanism including a selectively actuable hydraulic feedback circuit.

Sun, Zongxuan (Plymouth, MN)

2011-01-11T23:59:59.000Z

342

The advanced-step %MPC controller - Optimization Online  

E-Print Network [OSTI]

and F(•) o e tAf e pahg amet g ic pig oqp lemsr N(p ) ahg e t t ice con- tinuously diff evg ...... and one control v corresponding to the cooling w a- ter ? o w rate.

343

Real?Time Plasma Control Tools for Advanced Tokamak Operation  

Science Journals Connector (OSTI)

Real?time control will play an important role in the operation and scientific exploitation of the new generation fusion devices. This paper summarizes the real?time systems and diagnostics developed by the Portuguese Fusion Euratom Association based on digital signal processors and field programmable gate arrays.

C. A. F. Varandas; J. Sousa; A. P. Rodrigues; B. B. Carvalho; H. Fernandes; A. J. Batista; N. Cruz; A. Combo; R. C. Pereira; CFN Control and Data Acquisition Group

2006-01-01T23:59:59.000Z

344

An advanced STEP-NC controller for intelligent machining processes  

Science Journals Connector (OSTI)

Major improvements in high speed machining technologies are not followed by suitable evolutions of the programming standard ISO 6983, also called G-code. New STEP-NC standard aims at performing high level intelligent NC programming adapted to modern ... Keywords: CNC Controller, Multiprocess manufacturing, Optimization, STEP-NC, Simulation

Matthieu Rauch; Raphael Laguionie; Jean-Yves Hascoet; Suk-Hwan Suh

2012-06-01T23:59:59.000Z

345

Quantitative feedback design of air and boost pressure control system for turbocharged diesel engines  

Science Journals Connector (OSTI)

For modern diesel engines, variable geometry turbocharger (VGT) is used to boost engine power output. In addition, exhaust gas recirculation (EGR) is utilized to reduce engine out \\{NOx\\} emission. To realize these functions, a multivariable control system needs to control both VGT and EGR valve to deliver desired intake manifold (or boost) pressure, and desired EGR flow rate. This two-input and two-output system is nonlinear with cross-couplings between the boost and EGR responses to the input actuators, the system parameters are varying with different engine operating conditions. This paper proposes a closed loop design of a multivariable VGT/EGR control system for a turbocharged diesel engine. The control system is synthesized based on quantitative feedback theory to maintain robust stability and performance via sequential MIMO loop shaping in the frequency domain. Experiment results are included from a turbocharged diesel engine to show the effectiveness of the proposed control design.

Yue-Yun Wang; Ibrahim Haskara; Oded Yaniv

2011-01-01T23:59:59.000Z

346

A modeling and control approach to advanced nuclear power plants with gas turbines  

Science Journals Connector (OSTI)

Abstract Advanced nuclear power plants are currently being proposed with a number of various designs. However, there is a lack of modeling and control strategies to deal with load following operations. This research investigates a possible modeling approach and load following control strategy for gas turbine nuclear power plants in order to provide an assessment way to the concept designs. A load frequency control strategy and average temperature control mechanism are studied to get load following nuclear power plants. The suitability of the control strategies and concept designs are assessed through linear stability analysis methods. Numerical results are presented on an advanced molten salt reactor concept as an example nuclear power plant system to demonstrate the validity and effectiveness of the proposed modeling and load following control strategies.

Günyaz Ablay

2013-01-01T23:59:59.000Z

347

Energy savings and economics of advanced control strategies for packaged air conditioners with gas heat  

SciTech Connect (OSTI)

This paper presents an evaluation of the potential energy savings from adding advanced control to existing packaged air conditioners. Advanced control options include air-side economizer, multi-speed fan control, demand control ventilation and staged cooling. The energy and cost savings from the different control strategies individually and in combination are estimated using the EnergyPlus detailed energy simulation program for four building types, namely, a small office building, a stand-alone retail building, a strip mall building and a supermarket building. For each of the four building types, the simulation was run for 16 locations covering all 15 climate zones in the U.S. The maximum installed cost of a replacement controller that provides acceptable payback periods to owners is estimated.

Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

2013-10-01T23:59:59.000Z

348

A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines  

Science Journals Connector (OSTI)

Abstract The fundamental combustion and emissions properties of advanced biofuels are reviewed, and their impact on engine performance is discussed, in order to guide the selection of optimal conversion routes for obtaining desired fuel combustion properties. Advanced biofuels from second- and third-generation feedstocks can result in significantly reduced life-cycle greenhouse-gas emissions, compared to traditional fossil fuels or first-generation biofuels from food-based feedstocks. These advanced biofuels include alcohols, biodiesel, or synthetic hydrocarbons obtained either from hydrotreatment of oxygenated biofuels or from Fischer–Tropsch synthesis. The engine performance and exhaust pollutant emissions of advanced biofuels are linked to their fundamental combustion properties, which can be modeled using combustion chemical-kinetic mechanisms and surrogate fuel blends. In general, first-generation or advanced biofuels perform well in existing combustion engines, either as blend additives with petro-fuels or as pure “drop-in” replacements. Generally, oxygenated biofuels produce lower intrinsic nitric-oxide and soot emissions than hydrocarbon fuels in fundamental experiments, but engine-test results can be complicated by multiple factors. In order to reduce engine emissions and improve fuel efficiency, several novel technologies, including engines and fuel cells, are being developed. The future fuel requirements for a selection of such novel power-generation technologies, along with their potential performance improvements over existing technologies, are discussed. The trend in the biofuels and transportation industries appears to be moving towards drop-in fuels that require little changes in vehicle or fueling infrastructure, but this comes at a cost of reduced life-cycle efficiencies for the overall alternative-fuel production and utilization system. In the future, fuel-flexible, high-efficiency, and ultra-low-emissions heat-engine and fuel-cell technologies promise to enable consumers to switch to the lowest-cost and cleanest fuel available in their market at any given time. This would also enable society as a whole to maximize its global level of transportation activity, while maintaining urban air quality, within an energy- and carbon-constrained world.

Jeffrey M. Bergthorson; Murray J. Thomson

2015-01-01T23:59:59.000Z

349

Control-Oriented Linear Parameter-Varying Modelling of a Turbocharged Diesel Engine  

E-Print Network [OSTI]

Control-Oriented Linear Parameter-Varying Modelling of a Turbocharged Diesel Engine Merten Jung-- In this paper, a third order nonlinear model of the airpath of a turbocharged diesel engine is derived, which nonlinear airpath model of the diesel engine will be described in Section III. The model will be derived

Cambridge, University of

350

INERTIAL CONTROL OF MARINE ENGINES AND PROPELLERS Damir Radan*, Asgeir J. Srensen*, Tor Arne Johansen  

E-Print Network [OSTI]

, marine generators and main propulsion engines. Copyright © 2007 IFAC Keywords: Propellers, Inertia, Propulsion, Marine, Engines, Noise, Observers 1. INTRODUCTION When vessel operates in harsh weatherINERTIAL CONTROL OF MARINE ENGINES AND PROPELLERS Damir Radan*, Asgeir J. Sørensen*, Tor Arne

Johansen, Tor Arne

351

Advanced Controls for Residential Whole-House Ventilation Systems  

SciTech Connect (OSTI)

Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

Turner, William; Walker, Iain; Sherman, Max

2014-08-01T23:59:59.000Z

352

Comparison of advanced distillation control methods. Second annual report  

SciTech Connect (OSTI)

Detailed dynamic simulations of two industrial distillation columns (a propylene/propane splitter and a xylene/toluene column) have been used to study the issue of configuration selection for diagonal PI dual composition controls. Auto Tune Variation (ATV) identification with on-line detuning was used for tuning the diagonal proportional integral (PI) composition controls. Each configuration was evaluated with respect to steady-state relative gain array (RGA) values, sensitivity to feed composition changes, and open loop dynamic performance. Each configuration was tuned using setpoint changes over a wider range of operation for robustness and tested for feed composition upsets. Overall, configuration selection was shown to have a dominant effect upon control performance. Configuration analysis tools (e.g., RGA, condition number, disturbance sensitivity) were found to reject configuration choices that are obviously poor choices, but were unable to critically differentiate between the remaining viable choices. Configuration selection guidelines are given although it is demonstrated that the most reliable configuration selection approach is based upon testing the viable configurations using dynamic column simulators.

Riggs, J.B.

1996-11-01T23:59:59.000Z

353

Comparison of advanced distillation control methods. Second annual report  

SciTech Connect (OSTI)

Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to study the issue of configuration selection for diagonal PI dual composition controls. ATV identification with on-line detuning was used for tuning the diagonal PI composition controllers. Each configuration was evaluated with respect to steady-state RGA values, sensitivity to feed composition changes, and open loop dynamic performance. Each configuration was tuned using setpoint changes over a wider range of operation for robustness and tested for feed composition upsets. Overall, configuration selection was shown to have a dominant effect upon control performance. Configuration analysis tools (e.g., RGA, condition number, disturbance sensitivity), were found to reject configuration choices that are obviously poor choices, but were unable to critically differentiate between the remaining viable choices. Configuration selection guidelines are given although it is demonstrated that the most reliable configuration selection approach is based upon testing the viable configurations using dynamic column simulators.

NONE

1996-11-01T23:59:59.000Z

354

Hardware-in-the-Loop Testing of Electronically-Controlled Common-Rail Systems for Marine Diesel Engine  

Science Journals Connector (OSTI)

Tougher legislation on exhaust emissions reduction, more power and mobility and less fuel consumption, has led to stronger call for the electronic engine control units for marine diesel engines. Electronically-controlled common-rail systems for marine ... Keywords: Marine Diesel Engine, Common Rail System, Engine Controller Unit, Hardware-in-the-loop Testing, Simulation Interface Toolkit

Jiadong Zhou; Guangyao Ouyang; Minghe Wang

2010-05-01T23:59:59.000Z

355

STATEMENT OF CONSIDERATIONS REQUEST BY ALSTOM ENVIRONMENTAL CONTROL SYSTEMS FOR AN ADVANCE  

Broader source: Energy.gov (indexed) [DOE]

ALSTOM ENVIRONMENTAL CONTROL SYSTEMS FOR AN ADVANCE ALSTOM ENVIRONMENTAL CONTROL SYSTEMS FOR AN ADVANCE WAIVER OF PATENT RIGHTS TO INVENTIONS MADE UNDER SUBCONTRACT QZ001 UNDER COOPERATIVE AGREEMENT DE-FC26-03NT41986; W(A) 05-004; CH-1268 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Alstom Environmental Control Systems (Alstom) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above subject subcontract. The waiver will apply only to inventions made by Alstom employees under the subcontract. Alstom is a subcontractor to ADA Environmental Solutions (ADA-ES). under the subject cooperative agreement. ADA-ES is eligible to retain title to its inventions pursuant to P.L. 96- 517. Referring to item 2 of Alstom's petition, the purpose of the subcontract is to evaluate full-

356

Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering  

E-Print Network [OSTI]

Tissue engineering holds great promise for regeneration and repair of diseased tissues, making the development of tissue engineering scaffolds a topic of great interest in biomedical research. Because of their biocompatibility ...

Annabi, Nasim

357

Analytical Framework to Evaluate Emission Control Systems for Marine Engines  

E-Print Network [OSTI]

Hybrid Tug without Batteries -1 .Hybrid Tug without Batteries– 2 from four engines and batteries on two tugs (conventional

Jayaram, Varalakshmi

2010-01-01T23:59:59.000Z

358

RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect (OSTI)

As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft2 exchange store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).

Doebber, I.; Dean, J.; Dominick, J.; Holland, G.

2014-03-01T23:59:59.000Z

359

Development of microprocessor control for a V-6 engine fueled by prevaporized methanol  

E-Print Network [OSTI]

DEVELOPMENT OF MICROPROCESSOR CONTROL FOR A V 6 ENGINE FUELED BY PREVAPORIZED METHANOL A Thesis by DONALD F. SCHNEIDER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 19SS Major Subject: Chemical Engineering DEVELOPMENT OF MICROPROCESSOR CONTROL FOR A V 6 ENGINE FUELED BY PREVAPORIZED METHANOL A Thesis by DONALD F. SCHNEIDER Approved as to style and content by: JP& r~ R. R. Davison...

Schneider, Donald F.

2012-06-07T23:59:59.000Z

360

Modeling for control of a kinematic wobble-yoke Stirling engine  

Science Journals Connector (OSTI)

Abstract In this paper we derive the dynamical model of a four-cylinder double-acting wobble-yoke Stirling engine. In addition to the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control systems viewpoint to analyze the dynamic properties of the engine. We show that the Stirling engine can be viewed as a closed-loop system, in which the pressure variations in the cylinders behave as the feedback control law.

Eloísa García-Canseco; Alejandro Alvarez-Aguirre; Jacquelien M.A. Scherpen

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Engines - Spark Ignition Engines - Direct Injection - Omnivorous Engine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Injection, Spark-Ignited Engines Direct Injection, Spark-Ignited Engines Omnivorous Engine Omnivorous Engine Setup Omnivorous Engine Setup New engine technology has made possible engines that will operate on a wide variety of fuel inputs, from gasoline to naptha to ethanol to methanol, without driver intervention. Although flexible fuel vehicles have been produced in the millions, their engines have always been optimized for gasoline operation while accepting significant performance and efficiency degradations when using the alternative fuel. This project seeks to combine in-cylinder measurement technology, and advanced controls to optimize spark timing, the quantity and timing of injected fuel, to produce an "omnivorous engine"--one that will be able to run on any liquid spark ignition fuel with optimal efficiency and low

362

Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli  

Science Journals Connector (OSTI)

...existing internal combustion engines. Based in part on previous work (9), we constructed a...Microbial cellulose utilization: Fundamentals and biotechnology . Microbiol...precursors suitable for gasoline, diesel, and jet engines directly from ionic liquid-treated...

Gregory Bokinsky; Pamela P. Peralta-Yahya; Anthe George; Bradley M. Holmes; Eric J. Steen; Jeffrey Dietrich; Taek Soon Lee; Danielle Tullman-Ercek; Christopher A. Voigt; Blake A. Simmons; Jay D. Keasling

2011-01-01T23:59:59.000Z

363

The effect of surface finish on piston ring-pack performance in advanced reciprocating engine systems  

E-Print Network [OSTI]

Frictional losses in the piston ring-pack of an engine account for approximately 20% of the total frictional losses within an engine. Methods of surface texture optimization were investigated to reduce piston ring-pack ...

Jocsak, Jeffrey (Jeffrey Alan)

2005-01-01T23:59:59.000Z

364

College of Engineering and Science ENGINEERING  

E-Print Network [OSTI]

Toxicology, Hydrogeology, Industrial Engineering, Materials Science and Engineering, Mathematical Sciences58 College of Engineering and Science 58 COLLEGE OF ENGINEERING AND SCIENCE The College of Engineering and Science offers advanced degrees in Automotive Engineering, Bioengineering, Biosystems

Stuart, Steven J.

365

DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines  

SciTech Connect (OSTI)

Research in 2011 was focused on diesel range fuels and diesel combustion and fuels evaluated in 2011 included a series of oxygenated biofuels fuels from University of Maine, oxygenated fuel compounds representing materials which could be made from sewage, oxygenated marine diesel fuels for low emissions, and a new series of FACE fuel surrogates and FACE fuels with detailed exhaust chemistry and particulate size measurements. Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel fuel (hydrotreated vegetable oil) from UOP, University of Maine cellulosic biofuel (levulene), and pyrolysis derived fuels from UOP pyrolysis oil, upgraded at University of Georgia. We were able to demonstrate, through a project with University of Wisconsin, that a hybrid strategy for fuel surrogates provided both accurate and rapid CFD combustion modeling for diesel HCCI. In this strategy, high molecular weight compounds are used to more accurately represent physical processes and smaller molecular weight compounds are used for chemistry to speed chemical calculations. We conducted a small collaboration with sp3H, a French company developing an on-board fuel quality sensor based on near infrared analysis to determine how to use fuel property and chemistry information for engine control. We were able to show that selected outputs from the sensor correlated to both fuel properties and to engine performance. This collaboration leveraged our past statistical analysis work and further work will be done as opportunity permits. We conducted blending experiments to determine characteristics of ethanol blends based on the gasoline characteristics used for blending. Results indicate that much of the octane benefits gained by high level ethanol blending can be negated by use of low octane gasoline blend stocks, as allowed by ASTM D5798. This may limit ability to optimize engines for improved efficiency with ethanol fuels. Extensive data from current and previous years was leveraged into participation with several large proposal teams, as our fuels database covers a very wide range of conventional and emerging fuels and biofuels.

Bunting, Bruce G [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

366

Energy Savings and Economics of Advanced Control Strategies for Packaged Heat Pumps  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), evaluated a number of control strategies for packaged cooling equipment that can be implemented in an advanced controller, which can be retrofit into existing packaged heat pump units to improve their operational efficiency. This report documents the results of that analysis.

Wang, Weimin; Huang, Yunzhi; Katipamula, Srinivas

2012-10-31T23:59:59.000Z

367

Project Information Form Project Title Using Connected Vehicle Technology for Advanced Signal Control  

E-Print Network [OSTI]

,387 Total Project Cost $59,387 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates 4/14/2014 ­ 9Project Information Form Project Title Using Connected Vehicle Technology for Advanced Signal/30/15 Brief Description of Research Project Today's conventional traffic control strategies typically rely

California at Davis, University of

368

CENPES/EB-AB-G&E/AEDC Corporativo Advanced Control System Industrial  

E-Print Network [OSTI]

the specification of products, Minimize energy consumption, Minimizes the process variability which increases safety in the propane refrigeration system Limitations due to low thermal exchange area were generating saturationCENPES/EB-AB-G&E/AEDC Corporativo Advanced Control System ­ Industrial Results and New Challenges

Grossmann, Ignacio E.

369

RECENT ADVANCES IN SMART-MATERIAL ROTOR CONTROL ACTUATION. Victor Giurgiutiu*,  

E-Print Network [OSTI]

RECENT ADVANCES IN SMART-MATERIAL ROTOR CONTROL ACTUATION. Victor Giurgiutiu*, University of South achievements in the application of active-materials actuation to counteract aeroelastic and vibration effects and capabilities is done first. Attention is focused on the smart rotor-blade applications. The induced twist

Giurgiutiu, Victor

370

Efficient Emissions Control for Multi-Mode Lean DI Engines  

Broader source: Energy.gov (indexed) [DOE]

for the U.S. Department of Energy Objectives * Enable efficient lean engine market penetration by meeting emission regulations with efficient, cost effective aftertreatment...

371

Estimation and Control of Diesel Engine Processes Utilizing Variable...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

diesel engine with cooled EGR and flexible intake valve actuation developed to capture dynamic effects of gas exchange actuators deer12kocher.pdf More Documents &...

372

Modeling for Control Design of an Axisymmetric Scramjet Engine Isolator.  

E-Print Network [OSTI]

??Renewed interest in scramjet propulsion has motivated efforts to construct models of the scramjet engine flow path that capture transient flow dynamics to an extent… (more)

Zinnecker, Alicia M.

2012-01-01T23:59:59.000Z

373

Power Generating Stationary Engines Nox Control: A Closed Loop...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Low-Cost Continuous Emissions Monitoring System for Mobile and Stationary Engine SCRDPF ApplicationsData-Logger for Vehicle Data Acquisition Active DPF for Off-Road...

374

College of Engineering and Architecture Evolution of Control for the  

E-Print Network [OSTI]

HVDC 3 HVDC 1 500kV AC 2 parallel 500 kV AC 1 HVDC Tibet #12;College of Engineering and Architecture

375

Advances in nuclear engineering and radiation health physics at Oregon State University  

SciTech Connect (OSTI)

The department of Nuclear Engineering at Oregon State University (OSU) was established as a separate, stand-alone department in 1972, although nuclear engineering courses had been offered since 1957 in the Department of Mechanical Engineering. By the late 1960s, BS, MS, and PhD degrees were being offered in nuclear engineering. A major curriculum revision occurred in 1972, concurrent with the development of a 4-yr BS degree program in nuclear engineering technology (NET). The NET program was suspended about 1980, due to limited financial support and to a misunderstanding by industry of the difference between a BS-level NET graduate and a 2-yr trained nuclear technician.

Klein, A.C.; Binney, S.E. [Oregon State Univ., Corvallis, OR (United States)

1997-12-01T23:59:59.000Z

376

Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development  

Broader source: Energy.gov [DOE]

Presentation given by Ford Motor Companyh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline...

377

Advanced Control Technologies and Strategies Linking DemandResponse and Energy Efficiency  

SciTech Connect (OSTI)

This paper presents a preliminary framework to describe how advanced controls can support multiple modes of operations including both energy efficiency and demand response (DR). A general description of DR, its benefits, and nationwide status is outlined. The role of energy management and control systems for DR is described. Building systems such as HVAC and lighting that utilize control technologies and strategies for energy efficiency are mapped on to DR and demand shedding strategies are developed. Past research projects are presented to provide a context for the current projects. The economic case for implementing DR from a building owner perspective is also explored.

Kiliccote, Sila; Piette, Mary Ann

2005-09-02T23:59:59.000Z

378

Overview of the DOE Advanced Combustion Engine R&D Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

insights into combustion instability phenomena Research in close collaboration with automobile and engine manufacturers will directly impact the development of the next generation...

379

Advanced high temperature materials for the energy efficient automotive Stirling engine  

SciTech Connect (OSTI)

The Stirling engine is under investigation jointly by the Department of Energy and NASA Lewis as an alternative to the internal combustion engine for automotive applications. The Stirling engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance and high temperature creep-rupture and fatigue properties. A continuing supporting materials research and technology program has identified the wrought alloys CG-27 and 12RN72 and the cast alloys XF-818 and NASAUT 4G-A1 as candidate replacements for the cobalt containing alloys used in current prototype engines. Based on the materials research program in support of the automotive Stirling engine it is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys used in prototype engines. This paper will present results of research that led to this conclusion.

Titran, R.H.; Stephens, J.R.

1984-01-01T23:59:59.000Z

380

Development of an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain  

Broader source: Energy.gov [DOE]

Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A free-piston Stirling engine/linear alternator controls and load interaction test facility  

SciTech Connect (OSTI)

A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.

Rauch, J.S.; Kankam, M.D.; Santiago, W.; Madi, F.J.

1992-08-01T23:59:59.000Z

382

Method for detecting engine misfire and for fuel control  

SciTech Connect (OSTI)

This patent describes the method of detecting misfire in an internal combustion engine during start up. It comprises: sensing first engine speeds at positions midway between top dead center positions and second engine speeds at positions between each midway position and the previous top dead center position, during initial cranking, storing first speeds as cranking speed, and comparing the first speed with the second speed during the combustion period of each cylinder and with the cranking speed.A failure to increase speed over the cranking speed and over the second speed denotes misfire for that cylinder.

Tang, D.L.; Chang, M.F.; Sultan, M.C.

1990-06-12T23:59:59.000Z

383

Neural Modelling and Control of a Diesel Engine with Pollution Constraints Mustapha Ouladsine*, Grard Bloch**, Xavier Dovifaaz**  

E-Print Network [OSTI]

1 Neural Modelling and Control of a Diesel Engine with Pollution Constraints Mustapha Ouladsine a neural approach for modelling and control of a turbocharged Diesel engine. A neural model, whose techniques are applied to model and control a turbocharged Diesel engine. The objective is to build a model

Paris-Sud XI, Université de

384

Department of Mechanical Engineering Presents: "Towards Optimal Investment, Planning and Control of Microgrids"  

E-Print Network [OSTI]

on the optimal investment, planning, and control of distributed micro-grids. A micro-grid is characterized by its.University campuses and emerging advanced sustainable communities are examples of micro-grids. Our planning

Keaveny, Tony

385

Engineering coherent control of quantum information in spin systems  

E-Print Network [OSTI]

Quantum Information Processing (QIP) promises increased efficiency in computation. A key step in QIP is implementing quantum logic gates by engineering the dynamics of a quantum system. This thesis explores the requirements ...

Hodges, Jonathan Stuart

2007-01-01T23:59:59.000Z

386

Sponsored by Mechanical Engineering Department Distributed Control: Robots,  

E-Print Network [OSTI]

interact, albeit indirectly, in power grid, networking, and building HVAC systems. In the absence, and Nuclear Engineering. Since 2005, he has served as the Director of a New York State sponsored

Fisher, Frank

387

J. GUIDANCE, VOL. 23, NO. 4: ENGINEERING NOTES 759 Nonlinear Life-Extending Control  

E-Print Network [OSTI]

service life of a reusable rocket engine. Fatigue damage in the turbine blades is one of the most seriousJ. GUIDANCE, VOL. 23, NO. 4: ENGINEERING NOTES 759 Nonlinear Life-Extending Control of a Rocket. These components often typify behavior of the remaining components and hence are indicators of the effective

Ray, Asok

388

Relationships between physical characteristics of the pig house, the engineering and control systems of the environment,  

E-Print Network [OSTI]

: engineering, environment, pig hou.re, production, growing pigs. #12;1. Introduction From laboratoryRelationships between physical characteristics of the pig house, the engineering and control systems of the environment, and production parameters of growing pigs R. GEERS, D. BERCKMANS, V. GOEDSEELS

Paris-Sud XI, Université de

389

CSE293 Computer Science & Engineering Design Laboratory Marklin Computer Controllable Model Trains Project  

E-Print Network [OSTI]

CSE293 Computer Science & Engineering Design Laboratory Marklin Computer Controllable Model Trains" of the system. The real time control is for, of all things, model railroading trains. If you had them as a kid trains, where there is digital control for every train (each train has an onboard computer), for switches

Demurjian, Steven A.

390

Department of Computer Engineering Spring 2012 Simulated UAV with command, control and surveillance  

E-Print Network [OSTI]

PENNSTATE Department of Computer Engineering Spring 2012 Simulated UAV with command, control, an aircraft on a mission (e.g. cargo helicopter), a base station controlling the mission, and a UAV providing control to the three operators through a windows client, or an android tablet for the ground crew. The UAV

Demirel, Melik C.

391

Explicit-Ready Nonlinear Model Predictive Control for Turbocharged Spark-Ignited Engines  

E-Print Network [OSTI]

Explicit-Ready Nonlinear Model Predictive Control for Turbocharged Spark- Ignited Engines J. El with saturated actuators. In this context, the need for model-based control laws is greater than ever with saturated actuators. In this paper, we evaluate the benefits of a nonlinear model predictive control (NMPC

Paris-Sud XI, Université de

392

Proceedings of the 2002 Advanced Vehicle Control Conference, Hiroshima, Japan, September 2002 Control of a Hybrid Electric Truck Based on Driving  

E-Print Network [OSTI]

is proposed. The design goal of the control strategy is to minimize fuel consumption and engine-out NOx and PM studied in this paper is a Class VI, 7.3L diesel engine truck (International Truck, 4700 series), mainly) and a 49KW electric motor was developed, and a sub-optimal controller which considers only fuel consumption

Peng, Huei

393

College of Engineering ENGINEERING  

E-Print Network [OSTI]

College of Engineering CYCLONE ENGINEERING RESEARCH `SENSING SKIN' MAKES WIND ENERGY MORE COST of Science and Technology. All rights reserved. Sarah A. Rajala Dean of Engineering James and Katherine Melsa: The College of Engineering is dedicated to advancing alternative energy, including wind energy. Researchers

Mayfield, John

394

Numerical study on the combustion and emission characteristics of a methanol/diesel reactivity controlled compression ignition (RCCI) engine  

Science Journals Connector (OSTI)

An improved multi-dimensional model coupled with detailed chemical kinetics mechanism was applied to investigate the combustion and emission characteristics of a methanol/diesel reactivity controlled compression ignition (RCCI) engine. The fuel was supplied separately by directly injecting diesel fuel into cylinder well before top dead center, while premixing methanol through the intake port in the tested methanol/diesel RCCI engine. The effects of mass fraction of premixed methanol, start of injection (SOI) of diesel and initial in-cylinder temperature at intake valve closing (IVC) on engine combustion and emission were investigated in detail. The results show that both methanol mass fraction and SOI have a significant impact on cetane number (CN) distribution, i.e. fuel reactivity distribution, which determines the ignition delay and peak of heat release rate (HRR). Due to larger area with high-temperature region and more homogeneous fuel distribution with increased methanol, and the oxygen atom contained by methanol molecule, all the emissions are reduced with moderate methanol addition. Advanced SOI with high combustion temperature is favorable to hydrocarbon (HC) and soot reduction, yet not to the decrease of nitrogen oxide (NOx) and carbon monoxide (CO) emissions. Both increasing methanol fraction and advancing the SOI are beneficial to improve fuel economy and avoid engine knock. Moreover, it was revealed that the initial temperature must be increased with increased methanol fraction to keep the 50% burn point (CA50) constant, which results in decrease of the equivalent indicated specific fuel consumption (EISFC) and all emissions, except for slight increase in \\{NOx\\} due to the higher burning temperature.

Yaopeng Li; Ming Jia; Yaodong Liu; Maozhao Xie

2013-01-01T23:59:59.000Z

395

Fuzzy modelling and control of the air system of a diesel engine  

Science Journals Connector (OSTI)

This paper proposes a fuzzy modelling approach oriented to the design of a fuzzy controller for regulating the fresh airflow of a real diesel engine. This strategy has been suggested for enhancing the regulator design that could represent an alternative ...

S. Simani; M. Bonfč

2009-01-01T23:59:59.000Z

396

Polymer Reaction Engineering Laboratory -University of Maryland at College Park Reactor Dynamics, Control, Optimization  

E-Print Network [OSTI]

, Control, Optimization Exothermic polymerization reactions in continuous flow reactors may cause complexPolymer Reaction Engineering Laboratory - University of Maryland at College Park Reactor Dynamics nonlinear steady state and transient behaviors. The topic of reactor dynamics has been the subject

Rubloff, Gary W.

397

Enhanced Resistance to Control Potato Tuberworm by Combining Engineered Resistance, Avidin, and Natural  

E-Print Network [OSTI]

Enhanced Resistance to Control Potato Tuberworm by Combining Engineered Resistance, Avidin & Edward J. Grafius Published online: 15 November 2008 # Potato Association of America 2008 Abstract Potato tuberworm, Phthorimaea operculella (Zeller), is a destructive insect pest of potato, Solanum tuberosum (L

Douches, David S.

398

Flexible engine control system for the development of innovative combustion processes  

Science Journals Connector (OSTI)

Daimler, IAV and Etas present a flexible engine control system for the development of innovative combustion processes. The functionality of conventional indication systems has ... important step in forwarding the...

Dr. Josef Steuer; Dr. Michael Mladek; Christian Dengler…

2009-09-01T23:59:59.000Z

399

Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines  

SciTech Connect (OSTI)

Continuing work in controlled testing uses a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout the gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NOX emissions. Technologies including one pre-combustion chamber, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing have been evaluated in previous reports. Current work focuses on final preparations for testing pre-combustion chambers with different characteristics and using mid-to-high-pressure fuel valves and initial runs of these tests. By using the Ajax DP-115 these tests are completed in a low-cost and efficient manner. The various technologies can be quickly exchanged with different hardware, and it is inexpensive to run the engine. Progress in moving toward field testing is discussed, and changes to the first planned field test are presented. Although changes have been made to the previous plan, it is expected that several new sites will be selected soon. Field tests will begin in the next quarter.

Kirby S. Chapman; Sarah R. Nuss-Warren

2006-07-01T23:59:59.000Z

400

Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines  

SciTech Connect (OSTI)

This quarterly report discusses continuing work in the testing phase of the project that evaluates emission control technologies applied to a two-stroke cycle natural gas-fueled engine. In this phase, a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) is used to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout the gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NO{sub x} emissions. This report describes potential emission reduction technologies, some of which have already been tested, and describes progress toward completing remaining tests to evaluate further synergies between some of the more promising technologies. While the end-goal is a closed-loop control system coupled with a low cost NO{sub x} retrofit package, additional work remains. Technologies including pre-combustion chambers, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing have been evaluated in previous reports. Current work focuses on preparing the test cell for tests using a 180 psig fuel valve. By using the Ajax DP-115 these tests are completed in a low-cost and efficient manner. The various technologies can be quickly exchanged with different hardware, and it is inexpensive to run the engine.

Sarah R. Nuss-Warren; Kirby S. Chapman

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Method and apparatus for controlling fuel/air mixture in a lean burn engine  

DOE Patents [OSTI]

The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

Kubesh, John Thomas (San Antonio, TX); Dodge, Lee Gene (San Antonio, TX); Podnar, Daniel James (San Antonio, TX)

1998-04-07T23:59:59.000Z

402

E-Print Network 3.0 - advanced turbine engines Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and deploy... Smit OCE msmit@fit.edu Our Team Dr. Stephen Wood OCE swood@fit.edu Advisor: Ocean Engineering ... Source: Wood, Stephen L. - Department of Marine and...

403

Biomimetic Tissue–Engineered Systems for Advancing Cancer Research: NCI Strategic Workshop Report  

Science Journals Connector (OSTI)

...engineering capillary blood vessel networks with precisely defined geometries in vitro. Photolithographic patterning or 3D printing technologies are used to generate microfluidic channels in 3D collagen. Endothelial cells seeded into these channels...

Teresa K. Schuessler; Xin Yi Chan; Huanhuan Joyce Chen; Kyungmin Ji; Kyung Min Park; Alireza Roshan-Ghias; Pallavi Sethi; Archana Thakur; Xi Tian; Aranzazu Villasante; Ioannis K. Zervantonakis; Nicole M. Moore; Larry A. Nagahara; Nastaran Z. Kuhn

2014-10-01T23:59:59.000Z

404

Chapter 5 - DP4 – Advanced Simulation Settings: Racing Car Engine Connecting Rod  

Science Journals Connector (OSTI)

Publisher Summary In developing race-winning cars, Triple Eight utilizes Autodesk Inventor and Dynamic Simulation. One of the critical design issues in developing race-winning cars is weight, as this has a considerable impact on the performance of the cars. In this design problem, one highlights the key components of the engine and demonstrates how one can make effective use of Dynamic Simulation to simulate the explosion of gases on the piston–crank assembly. In the design problem, one determines several things like the time taken for the engine speed to reach 7000 rpm, the engine torque with friction taken into account, the engine torque with friction not taken into account, and the reaction forces acting on the connecting rod.

Wasim Younis

2010-01-01T23:59:59.000Z

405

Magnetic poly(?-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering  

Science Journals Connector (OSTI)

...Italy 3 International Iberian Nanotechnology Laboratory (INL), , Braga...transduction, describing a magnetic nanotechnology that activates a biochemical...engineering and regenerative medicine [34]. Magnetically actuable...the field of regenerative medicine [38]. A superparamagnetic-like...

2013-01-01T23:59:59.000Z

406

Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli  

Science Journals Connector (OSTI)

...Microbial cellulose utilization: Fundamentals and biotechnology . Microbiol...precursors suitable for gasoline, diesel, and jet engines directly from...ZZQQhy40 minutes in a liquid cycle. After cooling, MOPS-M9 salts...

Gregory Bokinsky; Pamela P. Peralta-Yahya; Anthe George; Bradley M. Holmes; Eric J. Steen; Jeffrey Dietrich; Taek Soon Lee; Danielle Tullman-Ercek; Christopher A. Voigt; Blake A. Simmons; Jay D. Keasling

2011-01-01T23:59:59.000Z

407

Effect of Machining Procedures on the Strength of Ceramics for Advanced Diesel Engine Applications  

Broader source: Energy.gov [DOE]

Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

408

Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve Timing  

E-Print Network [OSTI]

Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve engine efficiency. Fuel-flexible engines permit the increased use of ethanol-gasoline blends. Ethanol points across the engine operating range for four blends of gasoline and ethanol. I. INTRODUCTION Fuel

409

Combustion Timing Control of Natural Gas HCCI Engines Using Physics-Based Modeling and LQR Controller  

E-Print Network [OSTI]

Homogeneous Charge Compression Ignition (HCCI) Engines hold promises of being the next generation of internal combustion engines due to their ability to produce high thermal efficiencies and low emission levels. HCCI combustion is achieved through...

Abdelgawad, Marwa

2012-07-16T23:59:59.000Z

410

PROCESS MODELING AND CONTROL The Department of Chemical Engineering  

E-Print Network [OSTI]

) · S. Ziaii ­ CO2 absorption process modeling and control/power plant energy integration (Joint research in our department #12;· Ensure safe plant operation · Meet product specifications · Optimize/Control · B. Gill ­ Virtual sensors in etch processes (Texas Instruments) · X. Jiang ­ Controller performance

Lightsey, Glenn

411

Harrer, A., Malzahn, N., Hoeksema, K. & Hoppe, U. (2005). Learning Design Engines as Remote Control to Learning Support Environments.  

E-Print Network [OSTI]

2005 ISSN: 1365-893X Learning Design Engines as Remote Control to Learning Support Environments Andreas documents) and learning environments. According to its current state, the engine controls the learning, that are mapped to the environments' existing functionality (such as "create new workspace"). Thus the engine

Paris-Sud XI, Université de

412

NETL: Advanced NOx Emissions Control: Control Technology - Methane de-NOx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

METHANE de-NOx® METHANE de-NOx® The Gas Technology Institute (GTI) is teaming with the All-Russian Thermal Engineering Institute and DB Riley to develop a pulverized-coal (PC)-combustion system that is an extension of IGT's METHANE de-NOx® technology. The technology is composed of a novel PC burner design using natural gas fired coal preheating developed and demonstrated in Russia, LNBs with internal combustion staging, and additional natural gas injection with overfire air. The coal is preheated at elevated temperatures (up to 1500oF) in oxygen deficient conditions prior to combustion. Coal preheat releases fuel-bound nitrogen together with volatiles present in the coal. These conditions promote the conversion of fuel-bound nitrogen to molecular nitrogen rather than to NOx.

413

Identification of tribological research and development needs for lubrication of advanced heat engines  

SciTech Connect (OSTI)

The continuous evolution of higher power density propulsion systems has always fueled the search for materials and lubricants with improved thermal and/or durability characteristics. Tribology of the upper cylinder region is the major technology roadblock in the path of the adiabatic diesel engine which has an energy reduction potential that exceeds that of all other engine development types. This tribology assessment resulted in the following major conclusions: a low friction and a low wear seal between the ring belt and cylinder bore are the most critical tribology functions in the diesel combustion chamber; development of solid lubrication systems will not satisfy the simultaneous low friction and low wear requirements in the upper cylinder area; development of separate upper cylinder liquid lubrication systems offers the most attractive design alternative for meeting the operational goals of future ''minimum cooled'' diesel engines.

Fehrenbacher, L.L.; Levinson, T.M.

1985-09-01T23:59:59.000Z

414

COMPUTATIONAL STEERING: TOWARDS ADVANCED INTERACTIVE HIGH PERFORMANCE COMPUTING IN ENGINEERING SCIENCES  

E-Print Network [OSTI]

Key-words: Computational steering, high-performance computing, interactive simulation, virtual reality, CFD Computational Science and Engineering faces a continuous increase of speed of computers and availability of very fast networks. Yet, it seems that some opportunities offered by these ongoing developments are only used to a fraction for numerical simulation. Moreover, despite new possibilities from computer visualization, virtual or augmented reality and collaboration models, most available engineering software still follows the classical way of a strict separation of preprocessing, computing and postprocessing. This paper will first identify some of the major obstructions of an interactive computation for complex simulation tasks in engineering sciences. These are especially found in traditional software structures, in the definition of geometric models and boundary conditions and in the often still very tedious work of generating computational meshes. It then presents a generic approach for collaborative computational steering, where pre- and postprocessing is integrated with high

Ernst Rank; André Borrmann; Er Düster; Christoph Van Treeck; Petra Wenisch

2008-01-01T23:59:59.000Z

415

NETL: Advanced NOx Emissions Control: Control Technology - Ultra Low-NOx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ultra Low NOx Integrated System Ultra Low NOx Integrated System TFS 2000(tm) Low NOx Firing System Project Summary: ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important,

416

Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels  

SciTech Connect (OSTI)

The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

Pratapas, John; Zelepouga, Serguei; Gnatenko, Vitaliy; Saveliev, Alexei; Jangale, Vilas; Li, Hailin; Getz, Timothy; Mather, Daniel

2013-08-31T23:59:59.000Z

417

Engineering design and analysis of advanced physical fine coal cleaning technologies  

SciTech Connect (OSTI)

The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cycloning, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level. The ASPEN PLUS process simulation package will be extended to handle coal cleaning applications. Algorithms for predicting the process performance, equipment size, and flowsheet economics of commercial coal cleaning devices and related ancillary equipment will be incorporated into the coal cleaning simulator. The work plan for the froth quarter called for completion of the washability interpolation routine, gravity separation models, and dewatering models. As these items were completed, work in the areas of size reduction, classification and froth flotation were scheduled to begin. As each model was completed, testing and validation procedures were scheduled to begin. Costing models were also planned to be implemented and tested as each of the gravity separation models were completed. 1 tab.

Gallier, P.W.

1990-10-20T23:59:59.000Z

418

GUIDELINES FOR IMPLEMENTATION OF AN ADVANCED OUTAGE CONTROL CENTER TO IMPROVE OUTAGE COORDINATION, PROBLEM RESOLUTION, AND OUTAGE RISK MANAGEMENT  

SciTech Connect (OSTI)

This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provide the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Managing NPP outages is a complex and difficult task due to the large number of maintenance and repair activities that are accomplished in a short period of time. During an outage, the outage control center (OCC) is the temporary command center for outage managers and provides several critical functions for the successful execution of the outage schedule. Essentially, the OCC functions to facilitate information inflow, assist outage management in processing information, and to facilitate the dissemination of information to stakeholders. Currently, outage management activities primarily rely on telephone communication, face to face reports of status, and periodic briefings in the OCC. It is a difficult task to maintain current the information related to outage progress and discovered conditions. Several advanced communication and collaboration technologies have shown promise for facilitating the information flow into, across, and out of the OCC. The use of these technologies will allow information to be shared electronically, providing greater amounts of real-time information to the decision makers and allowing OCC coordinators to meet with supporting staff remotely. Passively monitoring status electronically through advances in the areas of mobile worker technologies, computer-based procedures, and automated work packages will reduce the current reliance on manually reporting progress. The use of these technologies will also improve the knowledge capture and management capabilities of the organization. The purpose of this research is to improve management of NPP outages through the development of an advanced outage control center (AOCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This technical report for industry implementation outlines methods and considerations for the establishment of an AOCC. This report provides a process for implementation of a change management plan, evaluation of current outage processes, the selection of technology, and guidance for the implementation of the selected technology. Methods are presented for both adoption of technologies within an existing OCC and for a complete OCC replacement, including human factors considerations for OCC design and setup.

Shawn St. Germain; Ronald Farris; April M. Whaley; Heather Medema; David Gertman

2014-09-01T23:59:59.000Z

419

Red rice (Oryza sativa L.) control in herbicide tolerant rice (Oryza sativa L.)  

E-Print Network [OSTI]

controlling this weed. More recently, advances in plant breeding and genetic engineering have led to commercial rice tolerant of several herbicides that control red rice. Two recent advances include glufosinate and imazethapyr tolerant rice. This technology...

Steele, Gregory Lee

2012-06-07T23:59:59.000Z

420

Injection Control Research on High Pressure Common Rail Diesel Engine Based on MPC5554  

Science Journals Connector (OSTI)

Based on new generation MCU MPC5554, new hardware for injection control was designed in this paper. The features of MPC5554 and the ˇ®Peak & Hold' drive method for injection solenoids were introduced. The performance of eTPU module in MPC5554 was ... Keywords: Diesel Engine, Common Rail System, Injection Control, MPC5554, eTPU

Chong Luo; Ming Zhou; Shao-Jie Liu

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Air Charge Control for Turbocharged Spark Ignition Engines with Internal Exhaust Gas Recirculation  

E-Print Network [OSTI]

, the turbocharger wastegate, and the Variable Valve Timing (VVT) system are three actuators in the air path systemAir Charge Control for Turbocharged Spark Ignition Engines with Internal Exhaust Gas Recirculation of transient cylin- der charge control, based on a cycle-averaged mean-value model for a turbocharged spark

Stefanopoulou, Anna

422

Neural control of fast nonlinear systems Application to a turbocharged SI engine with VCT  

E-Print Network [OSTI]

Ignition (SI) engines. In this context, an efficient control of the air actuators (throttle, Turbo Timing (VCT) for air scavenging from the intake to the exhaust. Moreover, VCT decreases pollutants of the ignition coils, fuel injectors and air actuators. The air actuator controllers generally used are PID

Paris-Sud XI, Université de

423

University of Maryland1Center for Advanced Life Cycle Engineering Calculating the Return on Investment  

E-Print Network [OSTI]

on Investment (ROI) for DMSMS Management Peter Sandborn CALCE, Department of Mechanical Engineering (301) 405 a return on investment argument · The value of DMSMS management activities is usually quantified as a "cost Associated with DMSMS Management What is ROI? Investment Investment-Return =ROI (Arithmetic Formulation) Why

Sandborn, Peter

424

Air intake modelling with fuzzy AFR control of a turbocharged diesel engine  

Science Journals Connector (OSTI)

One of the most vital factors in combustion control is Air-to-Fuel Ratio (AFR) estimation and control. In this work a detailed mathematical, nonlinear and control oriented model of dynamic processes of turbocharged diesel engines is presented. This model has been developed using physical equations and also experimental data. Common Rail Injection (CRI) that is a flexible fuel injection system in which quantity, timing and pressure of injection are controllable separately is chosen for this purpose. AFR control is performed making use of fuzzy logic methodology with a fast fuzzy controller. All above-mentioned models are programmed in Matlab/Simulink software.

Amir H. Shamdani; Amir H. Shamekhi; M. Ziabasharhagh

2008-01-01T23:59:59.000Z

425

Control of xenon oscillations in Advanced Heavy Water Reactor via two-stage decomposition  

Science Journals Connector (OSTI)

Abstract Xenon induced spatial oscillations developed in large nuclear reactors, like Advanced Heavy Water Reactor (AHWR) need to be controlled for safe operation. Otherwise, a serious situation may arise in which different regions of the core may undergo variations in neutron flux in opposite phase. If these oscillations are left uncontrolled, the power density and rate of change of power at some locations in the reactor core may exceed their respective thermal limits, resulting in fuel failure. In this paper, a state feedback based control strategy is investigated for spatial control of AHWR. The nonlinear model of AHWR including xenon and iodine dynamics is characterized by 90 states, 5 inputs and 18 outputs. The linear model of AHWR, obtained by linearizing the nonlinear equations is found to be highly ill-conditioned. This higher order model of AHWR is first decomposed into two comparatively lower order subsystems, namely, 73rd order ‘slow’ subsystem and 17th order ‘fast’ subsystem using two-stage decomposition. Composite control law is then derived from individual subsystem feedback controls and applied to the vectorized nonlinear model of AHWR. Through the dynamic simulations it is observed that the controller is able to suppress xenon induced spatial oscillations developed in AHWR and the overall performance is found to be satisfactory.

R.K. Munje; J.G. Parkhe; B.M. Patre

2015-01-01T23:59:59.000Z

426

Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System  

Broader source: Energy.gov (indexed) [DOE]

Suite of Projects Suite of Projects RTU Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System Michael Brambley, Ph.D. Pacific Northwest National Laboratory Michael.Brambley@pnnl.gov (509) 375-6875 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Packaged air conditioners and heat pumps (RTUs) are used in about 58% of all cooled commercial buildings, serving about 69% of the cooled commercial building floor space (EIA 2003) - Navigant estimates that packaged air conditioners

427

Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Suite of Projects Suite of Projects RTU Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System Michael Brambley, Ph.D. Pacific Northwest National Laboratory Michael.Brambley@pnnl.gov (509) 375-6875 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Packaged air conditioners and heat pumps (RTUs) are used in about 58% of all cooled commercial buildings, serving about 69% of the cooled commercial building floor space (EIA 2003) - Navigant estimates that packaged air conditioners

428

Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992  

SciTech Connect (OSTI)

The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. [California Univ., Berkeley, CA (United States); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. [Columbia Univ., New York, NY (United States); Hu, W.; Zou, Y.; Chen, W. [Utah Univ., Salt Lake City, UT (United States); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. [Praxis Engineers, Inc., Milpitas, CA (United States)

1992-03-01T23:59:59.000Z

429

Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology  

Broader source: Energy.gov [DOE]

Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

430

Automotive Powertrain Control: A Survey Jeffrey A. Cook, Jing Sun  

E-Print Network [OSTI]

and diesel engines and their aftertreatment systems are reviewed, and chal- lenging control problems for conventional engines, hybrid vehicles and fuel cell powertrains are discussed. Fundamentals are revisited to systems engineering, aftertreatment, and control of advanced technology gasoline and diesel engines

Grizzle, Jessy W.

431

Faculty of Engineering Civil and Environmental  

E-Print Network [OSTI]

pollution control, chemical reaction engineering, environmental microbiology and environmental assessment industry · Environmental protection · Project, process and systems management · Robotics and advanced institution in Canada. The CEI was constructed to meet the highest environmental standards and to provide

432

9 - An economic and engineering analysis of a 700 °C advanced ultra-supercritical pulverized coal power plant  

Science Journals Connector (OSTI)

Abstract: EPRI has completed an engineering and economic evaluation of advanced ultra-supercritical pulverized coal (A-USC PC) technology to determine its generating efficiency and cost effectiveness. For a location in the United States, absent any cost imposed for CO2 emissions, the cost of electricity from the A-USC PC design is slightly higher than that from a conventional supercritical PC design. However, as the CO2/MWh emitted by the A-USC PC plant is lower, imposing a relatively modest cost of $25 per tonne of CO2 shifts the economics in its favor. The lower CO2 emissions also lower the cost of carbon capture and storage once integrated with the A-USC PC power plant.

J.M. Wheeldon; J.N. Phillips

2013-01-01T23:59:59.000Z

433

Advanced Models and Controls for Prediction and Extension of Battery Lifetime (Presentation)  

SciTech Connect (OSTI)

Predictive models of capacity and power fade must consider a multiplicity of degradation modes experienced by Li-ion batteries in the automotive environment. Lacking accurate models and tests, lifetime uncertainty must presently be absorbed by overdesign and excess warranty costs. To reduce these costs and extend life, degradation models are under development that predict lifetime more accurately and with less test data. The lifetime models provide engineering feedback for cell, pack and system designs and are being incorporated into real-time control strategies.

Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Pesaran, A.

2014-02-01T23:59:59.000Z

434

Stirling engine power control and motion conversion mechanism  

DOE Patents [OSTI]

A motion conversion device for converting between the reciprocating motion of the pistons in a Stirling engine and the rotating motion of its output shaft, and for changing the stroke and phase of the pistons, includes a lever pivoted at one end and having a cam follower at the other end. The piston rod engages the lever intermediate its ends and the cam follower engages a cam keyed to the output shaft. The lever pivot can be moved to change the length of the moment arm defined between the cam follower and the piston rod the change the piston stroke and force exerted on the cam, and the levers can be moved in opposite directions to change the phase between pistons.

Marks, David T. (Birmingham, MI)

1983-01-01T23:59:59.000Z

435

Concurrent Engineering Support with an Advanced DMS Mike Clift and Robert Amor, Building Research Establishment, UK  

E-Print Network [OSTI]

and also through an open interface to all services provided to the project. This allows controlled access the flow of control in the running project. With the ToCEE approach of a totally generic document integrated system in which the scope needs to be extended to documents. 2.1 Electronic Document Management

Amor, Robert

436

Building America Case Study: Advanced Boiler Load Monitoring Controllers, Chicago, Illinois (Fact Sheet)  

SciTech Connect (OSTI)

Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

PARR

2014-09-01T23:59:59.000Z

437

Final Report - ADVANCED LASER-BASED SENSORS FOR INDUSTRIAL PROCESS CONTROL  

SciTech Connect (OSTI)

The objective of this work is to capture the potential of real-time monitoring and overcome the challenges of harsh industrial environments, Los Gatos Research (LGR) is fabricating, deploying, and commercializing advanced laser-based gas sensors for process control monitoring in industrial furnaces (e.g. electric arc furnaces). These sensors can achieve improvements in process control, leading to enhanced productivity, improved product quality, and reduced energy consumption and emissions. The first sensor will utilize both mid-infrared and near-infrared lasers to make rapid in-situ measurements of industrial gases and associated temperatures in the furnace off-gas. The second sensor will make extractive measurements of process gases. During the course of this DOE project, Los Gatos Research (LGR) fabricated, tested, and deployed both in-situ tunable diode laser absorption spectrometry (TDLAS) analyzers and extractive Off-Axis Integrated Cavity Output Spectroscopy (Off-Axis ICOS) analyzers.

Gupta, Manish; Baer, Douglas

2013-09-30T23:59:59.000Z

438

Technology Reinvestment Program/Advanced ``Zero Emission'' Control Valve (Phase II)  

SciTech Connect (OSTI)

The objectives of this effort are to determine, develop and demonstrate the feasibility of significantly reducing the cost and expanding the applications for a family of Advanced Zero Emissions Control Valves that meets the fugitive emissions requirements of the 1990 Amendments to the Clean Air Act. This program is a direct technology spin-off from the valve technology that is critical to the US Navy's Nuclear Powered Fleet. These zero emissions valves will allow the Hydrocarbon and Chemical Processing Industries, etc., to maintain their competitiveness and still meet environmental and safety requirements. Phase 2 is directed at refining the basic technologies developed during Phase 1 so that they can be more readily selected and utilized by the target market. In addition to various necessary certifications, the project will develop a full featured digital controller with ``smart valve'' growth capability, expanding valve sizes/applications and identifying valve materials to permit applications in severe operational environments.

J. Napoleon

1998-12-01T23:59:59.000Z

439

Advanced Combustion, Emission Control, Health Impacts, and Fuels Merit Review and Peer Evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

06 06 a n n u a l p r o g r e s s r e p o r t L e s s d e p e n d e n c e o n f o r e i g n o i l t o d a y, a n d t r a n s i t i o n t o a p e t r o l e u m - f r e e , e m i s s i o n s - f r e e v e h i c l e t o m o r r o w . F r e e d o m C A r A n d V e h i C l e T e C h n o l o g i e s P r o g r A m AdvAnced combustion, emission controls, HeAltH impActs, And Fuels merit review And peer evAluAtion Department of Energy Washington, DC 20585 October 2006 Dear Colleague: This document summarizes the comments provided by the Review Panel for the FY 2006 Department of Energy (DOE) Advanced Combustion, Emission Controls, Health Impacts, and Fuels Merit Review and Peer Evaluation Meeting, the "ACE Review," held on May 15-18, 2006 at Argonne National Laboratory (ANL). The raw evaluations and comments of the panel were provided (with reviewers' names deleted) to the presenters in early June and were used by national laboratory

440

Controlling O&M Costs of Advanced SMRs using Prognostics and Enhanced Risk Monitoring  

SciTech Connect (OSTI)

Advanced small modular reactors (AdvSMRs) can contribute to safe, sustainable, and carbon-neutral energy production. The economics of small reactors (including AdvSMRs) will be impacted by the reduced economy-of-scale savings when compared to traditional light water reactors. The most significant controllable element of the day-to-day costs involves operations and maintenance (O&M). Enhancing affordability of AdvSMRs through technologies that help control O&M costs will be critical to ensuring their practicality for wider deployment.A significant component of O&M costs is the management and mitigation of degradation of components due to their impact on planning maintenance activities and staffing levels. Technologies that help characterize real-time risk of failure of key components are important in this context. Given the possibility of frequently changing AdvSMR plant configurations, approaches are needed to integrate three elements – advanced plant configuration information, equipment condition information, and risk monitors – to provide a measure of risk that is customized for each AdvSMR unit and support real-time decisions on O&M. This article describes an overview of ongoing research into diagnostics/prognostics and enhanced predictive risk monitors (ERM) for this purpose.

Ramuhalli, Pradeep; Hirt, Evelyn H.; Coles, Garill A.; Meyer, Ryan M.; Coble, Jamie B.; Wood, Richard T.

2014-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.  

SciTech Connect (OSTI)

The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

2009-01-01T23:59:59.000Z

442

Fuzzy Economizer control using a Prolog-C inference engine  

E-Print Network [OSTI]

This research is in two parts: I. Develop a generic tool to perform fuzzy inference on a wide class of systems.Thisis done using Prolog and C. 2.Develop a hierarchical control scheme using this fuzzy inference mechanism tool for a constant volume...

Belur, Raghuveer R.

2012-06-07T23:59:59.000Z

443

Biostirling({trademark}): A small biomass power conversion system using an advanced stirling engine  

SciTech Connect (OSTI)

Over the past decade the need for small power conversion systems to serve rural and/or remote needs has increased dramatically. The requirements for systems <100 kW are very similar, whether the need is defined as {open_quotes}rural electrification{close_quotes} in developed countries, or as {open_quotes}village power{close_quotes} in developing countries. The availability of biomass fuel resources to serve such systems is not in doubt, be they agricultural, forestry, animal or urban wastes. The main inhibiting factor has been the absence of a biomass power conversion system characterized by: reliability, cost effectiveness, low pollution, and ease of maintenance. Stirling Thermal Motors of Ann Arbor, Michigan, is recognized as the leader worldwide in the development and application of Stirling engine technology. It is currently demonstrating a {open_quotes}BioStirling({trademark}){close_quotes} Power Conversion System which combines its unique STM4-120 engine rated at 25 kW with a proven commercial gasifier. The BioStirling({trademark}) proof-of-concept demonstration is funded by DOE`s National Renewable Energy Laboratory and is to be completed in late 1996, with field demonstrations in 1997 and commercial availability 1998.

Johansson, L. [Stirling Thermal Motors, Inc., Ann Arbor, MI (United States); Ziph, B.; McKeough, W.; Houtman, W.

1996-12-31T23:59:59.000Z

444

Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli  

Science Journals Connector (OSTI)

...and yard waste, respectively...for yard waste control strain...pCellulose on plant biomass treated...liquid pre-treatment . Biofuel...Insights into plant cell wall degradation...bioenergy systems . Biofuels Bioprod...2010 ) An integrated catalytic approach...

Gregory Bokinsky; Pamela P. Peralta-Yahya; Anthe George; Bradley M. Holmes; Eric J. Steen; Jeffrey Dietrich; Taek Soon Lee; Danielle Tullman-Ercek; Christopher A. Voigt; Blake A. Simmons; Jay D. Keasling

2011-01-01T23:59:59.000Z

445

Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Engineering Engineering1354608000000EngineeringSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Engineering Some of these resources are LANL-only and will require Remote Access. Key Resources Reference Standards Data Sources Organizations Journals Key Resources Engineering Village Includes Engineering Index (Ei) and Compendex Knovel Handbooks, databases, and eBooks integrated with analytical and search tools IEEE Xplore Full text access to technical literature, standards, and conference proceedings in engineering and technology SPIE Digital Library Full-text papers from SPIE journals and proceedings published since 1998; subject coverage includes optics, photonics, electronic imaging, visual information processing, biomedical optics, lasers, and

446

Argonne TTRDC - Engines - Home - combustion, compression ignition,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Combustion Visualization * Combustion Visualization * Compression-Ignition * Emissions Control * Fuel Injection and Sprays * Idling * Multi-Dimensional Modeling * Particulate Matter * Spark Ignition Green Racing GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Engines Omnivorous engine tested by Thomas Wallner Thomas Wallner tests the omnivorous engine, a type of spark-ignition engine. Argonne's engine research is contributing to advances in technology that will impact the use of conventional and alternative fuels and the design of advanced technology vehicles. Compression Ignition

447

Start-up and control method and apparatus for resonant free piston Stirling engine  

SciTech Connect (OSTI)

A resonant free-piston Stirling engine having a new and improved start-up and control method and system. A displacer linear electrodynamic machine is provided having an armature secured to and movable with the displacer and having a stator supported by the Stirling engine housing in juxtaposition to the armature. A control excitation circuit is provided for electrically exciting the displacer linear electrodynamic machine with electrical excitation signals having substantially the same frequency as the desired frequency of operation of the Stirling engine. The excitation control circuit is designed so that it selectively and controllably causes the displacer electrodynamic machine to function either as a generator load to extract power from the displacer or the control circuit selectively can be operated to cause the displacer electrodynamic machine to operate as an electric drive motor to apply additional input power to the displacer in addition to the thermodynamic power feedback to the displacer whereby the displacer linear electrodynamic machine also is used in the electric drive motor mode as a means for initially starting the resonant free-piston Stirling engine.

Walsh, Michael M. (Schenectady, NY)

1984-01-01T23:59:59.000Z

448

Start-up and control method and apparatus for resonant free piston Stirling engine  

SciTech Connect (OSTI)

A resonant free-piston Stirling engine having a new and improved start-up and control method and system. A displacer linear electrodynamic machine is provided having an armature secured to and movable with the displacer and having a stator supported by the Stirling engine housing in juxtaposition to the armature. A control excitation circuit is provided for electrically exciting the displacer linear electrodynamic machine with electrical excitation signals having substantially the same frequency as the desired frequency of operation of the Stirling engine. The excitation control circuit is designed so that it selectively and controllably causes the displacer electrodynamic machine to function either as a generator load to extract power from the displacer or the control circuit selectively can be operated to cause the displacer electrodynamic machine to operate as an electric drive motor to apply additional input power to the displacer in addition to the thermodynamic power feedback to the displacer whereby the displacer linear electrodynamic machine also is used in the electric drive motor mode as a means for initially starting the resonant free-piston Stirling engine. 3 figs.

Walsh, M.M.

1984-03-06T23:59:59.000Z

449

Emission Control Systems and Components for Retrofit and First...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Advanced Emission Controls for the Retrofit Market Development of a Stand-Alone Urea-SCR System for NOx Reduction in Marine Diesel Engines HD Truck and Engine Fuel Efficiency...

450

Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.  

SciTech Connect (OSTI)

This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

Saffer, Shelley (Sam) I.

2014-12-01T23:59:59.000Z

451

Geometry and Structural Properties for the Controls Advanced Research Turbine (CART) from Model Tuning: August 25, 2003--November 30, 2003  

SciTech Connect (OSTI)

The Controls Advanced Research Turbine (CART) is a modified Westinghouse WWG-0600 machine rated at 600 kW. It is located at the National Wind Technology Center (NWTC) in Boulder, Colorado, and has been installed to test new control schemes for power and load regulation. In its original configuration, the WWG-0600 uses a synchronous generator, fluid coupling, and hydraulic collective pitch actuation. However, the CART is fitted with an induction generator, rigid coupling, and individual electromechanical pitch actuators. The rotor runs upwind of the tower and consists of two blades and a teetering hub. In order to design advanced control schemes for the CART, representative computational models are essential.

Stol, K. A.

2004-09-01T23:59:59.000Z

452

Biotechnol. Appl. Biochem. (2004) 40, 516 (Printed in Great Britain) 5 The biology and engineering of stem-cell control  

E-Print Network [OSTI]

and engineering of stem-cell control Analeah O'Neill and David V. Schaffer1 Department of Chemical Engineering the history and current state of the stem- cell biology field, but will then focus on the develop- ment engineering and regenerative medicine, progress in harnessing these cells to repair tissue damaged by disease

Schaffer, David V.

453

Multi-bottle, no compressor, mean pressure control system for a Stirling engine  

DOE Patents [OSTI]

The invention relates to an apparatus for mean pressure control of a Stirling engine without the need for a compressor. The invention includes a multi-tank system in which there is at least one high pressure level tank and one low pressure level tank wherein gas flows through a maximum pressure and supply line from the engine to the high pressure tank when a first valve is opened until the maximum pressure of the engine drops below that of the high pressure tank opening an inlet regulator to permit gas flow from the engine to the low pressure tank. When gas flows toward the engine it flows through the minimum pressure supply line 2 when a second valve is opened from the low pressure tank until the tank reaches the engine's minimum pressure level at which time the outlet regulator opens permitting gas to be supplied from the high pressure tank to the engine. Check valves between the two tanks prevent any backflow of gas from occurring.

Corey, John A. (Melrose, NY)

1990-01-01T23:59:59.000Z

454

Ammonia Generation over TWC for Passive SCR NOX Control for Lean Gasoline Engines  

SciTech Connect (OSTI)

A commercial three-way catalyst (TWC) was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential low cost approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. NH3 generation was evaluated at different air-fuel equivalence ratios at multiple engine speed and load conditions. Near complete conversion of NOX to NH3 was achieved at =0.96 for nearly all conditions studied. At the =0.96 condition, HC emissions were relatively minimal, but CO emissions were significant. Operation at AFRs richer than =0.96 did not provide more NH3 yield and led to higher HC and CO emissions. Results of the reductant conversion and consumption processes were used to calculate a representative fuel consumption of the engine operating with an ideal passive SCR system. The results show a 1-7% fuel economy benefit at various steady-state engine speed and load points relative to a stoichiometric engine operation.

Prikhodko, Vitaly Y [ORNL] [ORNL; Parks, II, James E [ORNL; Pihl, Josh A [ORNL] [ORNL; Toops, Todd J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

455

Materials for advanced turbine engines (MATE). Project 4: erosion resistant compressor airfoil coating  

SciTech Connect (OSTI)

The ability of coatings to provide at least a 2X improvement in particulate erosion resistance for steel, nickel and titanium compressor airfoils was identified and demonstrated. Coating materials evaluated included plasma sprayed cobalt tungsten carbide, nickel carbide and diffusion applied chromium plus boron. Several processing parameters for plasma spray processing and diffusion coating were evaluated to identify coating systems having the most potential for providing airfoil erosion resistance. Based on laboratory results and analytical evaluations, selected coating systems were applied to gas turbine blades and evaluated for surface finish, burner rig erosion resistance and effect on high cycle fatigue strength. Based on these tests, the following coatings were recommended for engine testing: Gator-Gard plasma spray 88WC-12Co on titanium alloy airfoils, plasma spray 83WC-17Co on steel and nickel alloy airfoils, and Cr+B on nickel alloy airfoils.

Rashid, J.M.; Freling, M.; Friedrich, L.A.

1987-05-01T23:59:59.000Z

456

Advanced fabrication techniques for hydrogen-cooled engine structures. Final report, October 1975-June 1982  

SciTech Connect (OSTI)

Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

Buchmann, O.A.; Arefian, V.V.; Warren, H.A.; Vuigner, A.A.; Pohlman, M.J.

1985-11-01T23:59:59.000Z

457

Control scheme for power modulation of a free piston Stirling engine  

SciTech Connect (OSTI)

This patent describes a control system for power modulation of a free piston Stirling engine. It comprises: a receiver adapted to absorb solar energy and to convert the solar energy into thermal energy; a power module comprising a displacer type free piston Stirling engine having power and displacer pistons, and a linear alternator connected to the engine, the power module adapted to receive and to convert the thermal energy into electrical energy; a utility grid adapted to receive the electrical energy from the power module; an autotransformer connected in series between the linear alternator and the grid, the autotransformer being connected by feedback means to the receiver so that a change in solar insolation to the receiver varies the autotransformer turns ratio thus changing the linear alternator's terminal voltage and changing power piston and displacer piston amplitude accordingly to maintain a high engine efficiency cycle over a large operating range for solar insolation absorbed by the receiver.

Dhar, M.

1989-10-17T23:59:59.000Z

458

Active control of thermoacoustic amplification in a thermo-acousto-electric engine  

Science Journals Connector (OSTI)

In this paper a new approach is proposed to control the operation of a thermoacoustic Stirling electricity generator. This control basically consists in adding an additional acoustic source to the device connected through a feedback loop to a reference microphone a phase-shifter and an audio amplifier. Experiments are performed to characterize the impact of the feedback loop (and especially that of the controlled phase-shift) on the overall efficiency of the thermal to electric energy conversion performed by the engine. It is demonstrated that this external forcing of thermoacoustic self-sustained oscillations strongly impacts the performance of the engine and that it is possible under some circumstances to improve the efficiency of the thermo-electric transduction compared to the one reached without active control. Applicability and further directions of investigation are also discussed.

Come Olivier; Guillaume Penelet; Gaelle Poignand; Pierrick Lotton

2014-01-01T23:59:59.000Z

459

Implementation of Engine Control and Measurement Strategies for Biofuel Research in Compression-Ignition Engines  

E-Print Network [OSTI]

) in M2SEC Basement. ___________________ 353 Figure 5-41. 480VAC Transformer (left) and Dynamometer Drive Cabinet (right). ________________ 353 Figure 5-42. Dynamometer Power Lockout Cabinet Closed (left) and Open (right). _______________ 354 Figure 5...-43. Disconnect Switch in Dynamometer Lockout Cabinet. ___________________________ 355 Figure 5-44. Dynamometer Junction Box Internal Connections. ______________________________ 355 Figure 5-45. Dynamometer Control and Monitoring Interface...

Mangus, Michael D.

2014-05-31T23:59:59.000Z

460

ENGINEERING SURFACE MICRO-STRUCTURE TO CONTROL FOULING AND HYSTERESIS IN DROPLET BASED MICROFLUIDIC BIOANALYTICAL SYSTEMS  

E-Print Network [OSTI]

ENGINEERING SURFACE MICRO-STRUCTURE TO CONTROL FOULING AND HYSTERESIS IN DROPLET BASED MICROFLUIDIC"--for droplet-based microfluidics. Building on the theory of wetting of rough surfaces, we have developed novel on contact angle hysteresis--a major dissipative mechanism in droplet based microfluidic systems

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Motion planning for experimental air path control of a variable-valve-timing spark ignition engine  

E-Print Network [OSTI]

to driveability problems) and on the fuel/air ratio (FAR) (leading to pollution peaks). To compensateMotion planning for experimental air path control of a variable-valve-timing spark ignition engine Syste´mes, Mines-ParisTech 60, bd St Michel, 75272 Paris, France a r t i c l e i n f o Article history

462

Robust control for the air path of a downsized engine Guillaume Colin  

E-Print Network [OSTI]

in particular the control of ignition coils, fuel injectors and air actuators (throttle, turbocharger, etc). 1 points [2]. Turbocharging is one of the relevant ways to achieve efficient downsizing [3]. Moreover.1. System description The air intake of a turbocharged SI engine, represented in Figure 1 can be described

Paris-Sud XI, Université de

463

Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration  

SciTech Connect (OSTI)

Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topical areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus on meeting two of the eight needs outlined in the recently published 'Technology Roadmap on Instrumentation, Control, and Human-Machine Interface (ICHMI) to Support DOE Advanced Nuclear Energy Programs' which was created 'to provide a systematic path forward for the integration of new ICHMI technologies in both near-term and future nuclear power plants and the reinvigoration of the U.S. nuclear ICHMI community and capabilities.' The research consortium is led by The University of Tennessee (UT) and is focused on three interrelated topics: Topic 1 (simulator development and measurement sensitivity analysis) is led by Dr. Mike Doster with Dr. Paul Turinsky of North Carolina State University (NCSU). Topic 2 (multivariate autonomous control of modular reactors) is led by Dr. Belle Upadhyaya of the University of Tennessee (UT) and Dr. Robert Edwards of Penn State University (PSU). Topic 3 (monitoring, diagnostics, and prognostics system development) is led by Dr. Wes Hines of UT. Additionally, South Carolina State University (SCSU, Dr. Ken Lewis) participated in this research through summer interns, visiting faculty, and on-campus research projects identified throughout the grant period. Lastly, Westinghouse Science and Technology Center (Dr. Mario Carelli) was a no-cost collaborator and provided design information related to the IRIS demonstration platform and defining needs that may be common to other SMR designs. The results of this research are reported in a six-volume Final Report (including the Executive Summary, Volume 1). Volumes 2 through 6 of the report describe in detail the research and development under the topical areas. This volume serves to introduce the overall NERI-C project and to summarize the key results. Section 2 provides a summary of the significant contributions of this project. A list of all the publications under this project is also given in Section 2. Section 3 provides a brief summary of each of the five volumes (2-6) of the report. The contributions of SCSU are described in Section 4, including a summary of undergraduate research exper

J. Wesley Hines; Belle R. Upadhyaya; J. Michael Doster; Robert M. Edwards; Kenneth D. Lewis; Paul Turinsky; Jamie Coble

2011-05-31T23:59:59.000Z

464

SC e-journals, Engineering  

Office of Scientific and Technical Information (OSTI)

Engineering Engineering ACM Transactions on Design Automation of Electronic Systems (TODAES) ACM Transactions on Embedded Computing Systems (TECS) ACS Nano Acta Mechanica Acta Mechanica Sinica Adsorption Advanced Engineering Materials Advanced Powder Technology Advanced Robotics Advances in Computational Mathematics Advances In Engineering Software Advances in Materials Science and Engineering - OAJ Advances in Mathematical Engineering - OAJ Advances in Optics and Photonics AlChE Journal Algorithmica American Journal of Engineering and Applied Sciences - OAJ Analog Integrated Circuits and Signal Processing Annals of Nuclear Energy Annual Review of Fluid Mechanics Annual Review of Materials Research Applicable Algebra in Engineering, Communication and Computing Applied Composite Materials

465

Engineering Development of Advanced Physical Fine Coal Cleaing for Premium Fuel Applications  

SciTech Connect (OSTI)

The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel? column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications -- Less than 2 pounds of ash per million Btu (860 grams per gigajoule) and

Frank J. Smit; Gene L. Schields; Mehesh C. Jha; Nick Moro

1997-09-26T23:59:59.000Z

466

Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine cycle  

E-Print Network [OSTI]

Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine steam process for exhaust gas heat recovery from a spark-ignition (SI) engine, from a prototyping of a practical supervi- sion and control system for a pilot Rankine steam process for exhaust gas heat recovery

Paris-Sud XI, Université de

467

A linear approach with µ-analysis control adaptation for a complete-model diesel-engine diagnosis  

Science Journals Connector (OSTI)

This paper proposes an innovative fault-diagnosis system for a turbocharged diesel engine with variable-geometry turbocharger control. Numerous and diversified actuator faults are identified and analyzed such as air-leakage in the admission collector, ... Keywords: H?/ µ control, diagnosis, diesel engine, fault detection and estimation (FDE), structured singular value

Chady Nohra; Hassan Noura; Rafic Younes

2009-06-01T23:59:59.000Z

468

Integration of Advanced Emissions Controls to Produce Next-Generation Circulating Fluid Bed Coal Generating Unit (withdrawn prior to award)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

contacts contacts Brad tomer Director Office of Major Demonstrations National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4692 brad.tomer@netl.doe.gov PaRtIcIPant Colorado Springs Utilities Colorado Springs, CO aDDItIonaL tEaM MEMBERs Foster Wheeler Power Group, Inc. Clinton, NJ IntegratIon of advanced emIssIons controls to Produce next-generatIon cIrculatIng fluId Bed coal generatIng unIt (wIthdrawn PrIor to award) Project Description Colorado Springs Utilities (Springs Utilities) and Foster Wheeler are planning a joint demonstration of an advanced coal-fired electric power plant using advanced, low-cost emission control systems to produce exceedingly low emissions. Multi- layered emission controls will be

469

Controlling combustion noise in direct injection diesel engine through mechanical vibration measurement  

Science Journals Connector (OSTI)

The next generations of direct injection diesel engines have greatly improved their performances compared with petrol engines. However, one of the pending subjects is the noise and vibration levels, due to working cycle itself. The design effort to reduce the emissions of noise and vibration transmitted to the vehicle's driver could be lessened because of the assembly process variation. In this paper, a procedure to control this variation has been suggested in order to maintain noise and vibration performances within the limits of design.

J.A. Calvo; V. Diaz; J.L. San Roman

2005-01-01T23:59:59.000Z

470

DrControl --An Interactive Course Material for Teaching Control Engineering  

E-Print Network [OSTI]

8th Modelica Conference, Dresden, Germany, March 20-22, 2011 801 #12;2.1 DrControl ApplicationControl for teaching control theory concepts mixed together with exercises and example models in Modelica. The active tool for teaching, experimentation, simulation, scripting, model documentation, storage, etc. Keywords

Zhao, Yuxiao

471

Production of potato minitubers using advanced environmental control technologies developed for growing plants in space  

Science Journals Connector (OSTI)

Development of plant growth systems for use in outer space have been modified for use on earth as the backbone of a new system for rapid growth of potato minitubers. The automation of this new biotechnology provides for a fully controllable method of producing pathogen-free nuclear stock potato minitubers from tissue cultured clones of varieties of potato in a biomanufacturing facility. These minitubers are the beginning stage of seed potato production. Because the new system provides for pathogen-free minitubers by the tens-of-millions rather than by the thousands which are currently produced in advanced seed potato systems a new-dimension in seed potato development breeding and multiplication has been achieved. The net advantage to earth-borne agricultural farming systems will be the elimination of several years of seed multiplication from the current system higher quality potato production and access to new potato varieties resistant to diseases and insects which will eliminate the need for chemical controls.

Robert G. Britt

1998-01-01T23:59:59.000Z

472

University of California, Irvine Henry Samueli School of Engineering  

E-Print Network [OSTI]

and Aerospace Engineering Computational Environmental Sciences Laboratory Principal Investigator: Donald Dabdub engines as a Toxic Air Contaminant. For diesel engines, advances in emissions control technology and after to increase the NO2 contribution to the total NOx. Using "late model" transit buses, ARB staff has recently

Dabdub, Donald

473

Advanced Communication and Control for Distributed Energy Resource Integration: Phase 2 Scientific Report  

SciTech Connect (OSTI)

The objective of this research project is to demonstrate sensing, communication, information and control technologies to achieve a seamless integration of multivendor distributed energy resource (DER) units at aggregation levels that meet individual user requirements for facility operations (residential, commercial, industrial, manufacturing, etc.) and further serve as resource options for electric and natural gas utilities. The fully demonstrated DER aggregation system with embodiment of communication and control technologies will lead to real-time, interactive, customer-managed service networks to achieve greater customer value. Work on this Advanced Communication and Control Project (ACCP) consists of a two-phase approach for an integrated demonstration of communication and control technologies to achieve a seamless integration of DER units to reach progressive levels of aggregated power output. Phase I involved design and proof-of-design, and Phase II involves real-world demonstration of the Phase I design architecture. The scope of work for Phase II of this ACCP involves demonstrating the Phase I design architecture in large scale real-world settings while integrating with the operations of one or more electricity supplier feeder lines. The communication and control architectures for integrated demonstration shall encompass combinations of software and hardware components, including: sensors, data acquisition and communication systems, remote monitoring systems, metering (interval revenue, real-time), local and wide area networks, Web-based systems, smart controls, energy management/information systems with control and automation of building energy loads, and demand-response management with integration of real-time market pricing. For Phase II, BPL Global shall demonstrate the Phase I design for integrating and controlling the operation of more than 10 DER units, dispersed at various locations in one or more Independent System Operator (ISO) Control Areas, at an aggregated scale of more than 1 MW, to provide grid support. Actual performance data with respect to each specified function above is to be collected during the Phase II field demonstration. At a minimum, the Phase II demonstration shall span one year of field operations. The demonstration performance will need to be validated by the target customer(s) for acceptance and subsequent implementation. An ISO must be involved in demonstration planning and execution. As part of the Phase II work, BPL Global shall develop a roadmap to commercialization that identifies and quantifies the potential markets for the integrated, aggregated DER systems and for the communication and control technologies demonstrated in Phase I. In addition, the roadmap must identify strategies and actions, as well as the regional and national markets where the aggregated DER systems with communication and control solutions will be introduced, along with a timeline projected for introduction into each identified market. In Phase I of this project, we developed a proof-of-concept ACCP system and architecture and began to test its functionality at real-world sites. These sites had just over 10 MW of DERs and allowed us to identify what needed to be done to commercialize this concept. As a result, we started Phase II by looking at our existing platform and identified its strengths and weaknesses as well as how it would need to evolve for commercialization. During this process, we worked with different stakeholders in the market including: Independent System Operators, DER owners and operators, and electric utility companies to fully understand the issues from all of the different perspectives. Once we had an understanding of the commercialized ACCP system, we began to document and prepare detailed designs of the different system components. The components of the system with the most significant design improvements were: the on-site remote terminal unit, the communication technology between the remote site and the data center, and the scalability and reliability of the data center application.

BPL Global

2008-09-30T23:59:59.000Z

474

Study of the control strategies on soot reduction under early-injection conditions on a diesel engine  

Science Journals Connector (OSTI)

Abstract To explore the more effective method to fulfill soot reduction challenges of early-injection conditions, different engine operating parameters such as intake pressure, exhaust gas recirculation (EGR), equivalence ratio, intake temperature, coolant temperature, injection pressure and fuel properties such as using the blends of diesel/gasoline, diesel/n-butanol and dual-fuel were investigated on a diesel engine. A wide range of injection timing from 5° CA to ?70° CA ATDC were tested, which covered both conventional diesel injection and early-injection conditions. Results showed that the soot emission increased as the injection timing was advanced from ?35° CA to ?55° CA ATDC, which was attributed to that more spray liquid was out of the piston bowl and impinged on the piston top and cylinder liner. The soot emission decreased as the injection timing further advanced from ?55° to ?70° CA ATDC, which was attributed to the suppressed soot formation. Although more advanced injection (?55° to ?70° CA ATDC) decreased soot emissions, the combustion efficiency was deteriorated. EGR combined with higher intake pressure resulted in lower soot emissions than that of sole EGR control under the same equivalence ratio. Increasing intake temperature and coolant temperature reduced soot emissions at the injection timing later than ?55° CA ATDC but barely affected the soot peak-value. Increasing injection pressure had little impact on soot emissions at early-injection conditions. Regarding to fuel properties, employing the diesel/gasoline and diesel/n-butanol blends dramatically reduced soot emissions and the smokeless combustion was achieved by using pure gasoline or n-heptane. Soot peak-value of diesel/gasoline combustion was higher than that of diesel/n-butanol at low diesel replacement ratio (30%), while for high replacement ratio (70%) the opposite trend was presented. The dual-fuel injection composed by port-injection of gasoline and direct-injection of diesel was more effective in reducing soot emissions than that of single direct-injection under the same gasoline/diesel ratio.

Haifeng Liu; Shuaiying Ma; Zhong Zhang; Zunqing Zheng; Mingfa Yao

2015-01-01T23:59:59.000Z

475

DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE  

SciTech Connect (OSTI)

In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

Curran, Scott [ORNL; Briggs, Thomas E [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL

2011-01-01T23:59:59.000Z

476

Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine  

SciTech Connect (OSTI)

Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

477

Graduate studies in acoustics and noise control in the School of Mechanical Engineering at Purdue University  

Science Journals Connector (OSTI)

The acoustics community at Purdue University will be described with special emphasis on the graduate program in Mechanical Engineering (ME). Purdue is home to around 30 faculty who study various aspects of acoustics and related disciplines and so there are many classes to choose from as graduate students structure their plans of study to complement their research activities and to broaden their understanding of the various aspects of acoustics. In Mechanical Engineering the primary emphasis is on understanding noise generation noise propagation and the impact of noise on people as well as development of noise control strategies experimental techniques and noise and noise impact prediction tools. The ME acoustics research is conducted at the Ray W. Herrick Laboratories which houses several large acoustics chambers that are designed to facilitate testing of a wide array mechanical systems reflecting the Laboratories’ long history of industry-relevant research. Complementing the acoustics research Purdue has vibrations dynamics and electromechanical systems research programs and is home to a collaborative group of engineering and psychology professors who study human perception and its integration into engineering design. There are also very strong ties between ME acoustics faculty and faculty in Biomedical Engineering and Speech Language and Hearing Sciences.

2014-01-01T23:59:59.000Z

478

Control Engineering Practice 12 (2004) 987988 Emerging technologies for active noise and vibration control systems  

E-Print Network [OSTI]

and vibration control systems Noise and vibration are often limiting factors in performance of many industrial be of little use at lower frequencies. Active noise and vibration control (ANVC) systems have emerged as viable-dimensional enclosure. One of the panels of the enclosure is vibrated, hence generating acoustic noise inside

Pota, Himanshu Roy

479

Spark ignition engine control strategies for minimising cold start fuel consumption under cumulative tailpipe emissions constraints  

Science Journals Connector (OSTI)

Abstract This paper proposes a methodology for minimising the fuel consumption of a gasoline fuelled vehicle during cold starting. It first takes a validated dynamic model of an engine and its aftertreatment reported in a previous study (Andrianov, Brear, & Manzie, 2012) to identify optimised engine control strategies using iterative dynamic programming. This is demonstrated on a family of optimisation problems, in which fuel consumption is minimised subject to different tailpipe emissions constraints and exhaust system designs. Potential benefits of using multi-parameter optimisation, involving spark timing, air–fuel ratio and cam timing, are quantified. Single switching control policies are then proposed that perform close to the optimised strategies obtained from the dynamic programming but which require far less computational effort.

D.I. Andrianov; C. Manzie; M.J. Brear

2013-01-01T23:59:59.000Z

480

OSCAR API v2.1: Extensions for an Advanced Accelerator Control Scheme to a Low-Power  

E-Print Network [OSTI]

OSCAR API v2.1: Extensions for an Advanced Accelerator Control Scheme to a Low-Power Multicore API optimization and low-power optimization, has been developed. Furthermore, the OSCAR API has been also developed, AMD, Tilera, Fujitsu, Renesas Electronics, and so on. The OSCAR API v1.0 and v2.0 have been opened

Kasahara, Hironori

Note: This page contains sample records for the topic "advanced engine controls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Demonstrations of Integrated Advanced Rooftop Unit Controls and Automated Fault Detection and Diagnostics- 2014 BTO Peer Review  

Broader source: Energy.gov [DOE]

Presenter: Srinivas Katipamula, Pacific Northwest National Laboratory This multiyear research and development project aims to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioner units (RTUs) with advanced control strategies not ordinarily used for packaged units.

482

Advanced Outage and Control Center: Strategies for Nuclear Plant Outage Work Status Capabilities  

SciTech Connect (OSTI)

The research effort is a part of the Light Water Reactor Sustainability (LWRS) Program. LWRS is a research and development program sponsored by the Department of Energy, performed in close collaboration with industry to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. The LWRS Program serves to help the US nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The Outage Control Center (OCC) Pilot Project was directed at carrying out the applied research for development and pilot of technology designed to enhance safe outage and maintenance operations, improve human performance and reliability, increase overall operational efficiency, and improve plant status control. Plant outage management is a high priority concern for the nuclear industry from cost and safety perspectives. Unfortunately, many of the underlying technologies supporting outage control are the same as those used in the 1980’s. They depend heavily upon large teams of staff, multiple work and coordination locations, and manual administrative actions that require large amounts of paper. Previous work in human reliability analysis suggests that many repetitive tasks, including paper work tasks, may have a failure rate of 1.0E-3 or higher (Gertman, 1996). With between 10,000 and 45,000 subtasks being performed during an outage (Gomes, 1996), the opportunity for human error of some consequence is a realistic concern. Although a number of factors exist that can make these errors recoverable, reducing and effectively coordinating the sheer number of tasks to be performed, particularly those that are error prone, has the potential to enhance outage efficiency and safety. Additionally, outage management requires precise coordination of work groups that do not always share similar objectives. Outage managers are concerned with schedule and cost, union workers are concerned with performing work that is commensurate with their trade, and support functions (safety, quality assurance, and radiological controls, etc.) are concerned with performing the work within the plants controls and procedures. Approaches to outage management should be designed to increase the active participation of work groups and managers in making decisions that closed the gap between competing objectives and the potential for error and process inefficiency.

Gregory Weatherby

2012-05-01T23:59:59.000Z

483

Vehicle Technologies Office Merit Review 2014: Particulate Emissions Control by Advanced Filtration Systems for GDI Engines  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about particulate...

484

Active flow control in an advanced serpentine jet engine inlet duct  

E-Print Network [OSTI]

..........................................................................25 Figure 13: Schematic of the Fluidic Actuators.................................................................30 Figure 14: Centrifugal Fan and Fan Housing...................................................................31 Figure 15...: First and Second Bend Suction Plenum Chambers and Fan Compartments ..31 Figure 16: Slotted Shaft Valves Linked with Universal Joints .......................................32 Figure 17: Slotted Shaft Valve Installed in a Blowing Plenum Chamber...

Kirk, Aaron Michael

2009-05-15T23:59:59.000Z

485

Control scheme for power modulation of a free piston Stirling engine  

SciTech Connect (OSTI)

The present invention relates to a control scheme for power modulation of a free-piston Stirling engine-linear alternator power generator system. The present invention includes connecting an autotransformer in series with a tuning capacitance between a linear alternator and a utility grid to maintain a constant displacement to piston stroke ratio and their relative phase angle over a wide range of operating conditions.

Dhar, Manmohan (Schenectady, NY)

1989-01-01T23:59:59.000Z

486

Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology  

SciTech Connect (OSTI)

This project was a subtask of Energy Saving Melting and Revert Reduction Technology (�¢����Energy SMARRT�¢���) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy saving estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU�¢����s/year and 6.46 trillion BTU�¢����s/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).

Harry Littleton; John Griffin

2011-07-31T23:59:59.000Z

487

Engines - Spark Ignition Engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spark Ignition Engines Spark Ignition Engines Thomas Wallner and omni engine Thomas Wallner and the omnivorous engine Background Today the United States import more than 60% of its crude oil and petroleum products. Transportation accounts for a major portion of these imports. Research in this field is focused on reducing the dependency on foreign oil by increasing the engine efficiency on the one hand and blending gasoline with renewable domestic fuels, such as ethanol, on the other. Argonne's Research The main focus of research is on evaluation of advanced combustion concepts and effects of fuel properties on engine efficiency, performance and emissions. The platforms used are a single-cylinder research engine as well as an automotive-size four-cylinder engine with direct fuel injection.

488

Space–time kinetics modeling of Advanced Heavy Water Reactor for control studies  

Science Journals Connector (OSTI)

The paper presents the mathematical modeling of the space–time kinetics phenomena in Advanced Heavy Water Reactor (AHWR), a 920 MW (thermal), vertical pressure tube type thorium based nuclear reactor. The physical dimensions and the internal feedback effects of the AHWR are such that it is susceptible to xenon induced spatial oscillations. For the study of spatial effects and design of suitable control strategy, the need for a suitable mathematical model which is not of a very large order arises. In this paper, a mathematical model of the reactor within the framework of nodal modeling is derived with the two group neutron diffusion equation as the basis. A linear model in standard state space form is formulated from the set of equations so obtained. It has been shown that comparison of linear system properties could be helpful in deciding upon an appropriate nodalization scheme and thus obtaining a reasonably accurate model. For validation, the transient response of the simplified model has been compared with those from a rigorous finite-difference model.

S.R. Shimjith; A.P. Tiwari; M. Naskar; B. Bandyopadhyay

2010-01-01T23:59:59.000Z

489

Force-optimized alignment for optical control of the Advanced Technology Solar Telescope  

Science Journals Connector (OSTI)

We present formalism and analysis of three active alignment reconstruction techniques applied to the Advanced Technology Solar Telescope. The three reconstructors generate optical...

Upton, Robert; Cho, Myung; Rimmele, Thomas

2010-01-01T23:59:59.000Z

490

E-Print Network 3.0 - advanced vehicle control Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a resolution of major vehicle components for advanced class vehicles and systems. The Cost Model ASCM estimates... -duty EPA vehicle classes can be considered for the life cycle...

491

E-Print Network 3.0 - advanced vehicle control systems Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a resolution of major vehicle components for advanced class vehicles and systems. The Cost Model ASCM estimates... Automotive System Cost Modeling Tool (ASCM) T he affordability...

492

Development, Implementation, and Testing of Fault Detection Strategies on the National Wind Technology Center's Controls Advanced Research Turbines  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory's National Wind Technology Center dedicates two 600 kW turbines for advanced control systems research. A fault detection system for both turbines has been developed, analyzed, and improved across years of experiments to protect the turbines as each new controller is tested. Analysis of field data and ongoing fault detection strategy improvements have resulted in a system of sensors, fault definitions, and detection strategies that have thus far been effective at protecting the turbines. In this paper, we document this fault detection system and provide field data illustrating its operation while detecting a range of failures. In some cases, we discuss the refinement process over time as fault detection strategies were improved. The purpose of this article is to share field experience obtained during the development and field testing of the existing fault detection system, and to offer a possible baseline for comparison with more advanced turbine fault detection controllers.

Johnson, K. E.; Fleming, P. A.

2011-06-01T23:59:59.000Z

493

Qualification issues associated with the use of advanced instrumentation and control systems hardware in nuclear power plants  

SciTech Connect (OSTI)

The instrumentation and control (I&C) systems in advanced reactors will make extensive use of digital controls, microprocessors, multiplexing, and Tiber-optic transmission. Elements of these advances in I&C have been implemented on some current operating plants. However, the widespread use of the above technologies, as well as the use of artificial intelligence with minimum reliance on human operator control of reactors, highlights the need to develop standards for qualifying I&C used in the next generation of nuclear power plants. As a first step in this direction, the protection system I&C for present-day plants was compared to that proposed for advanced light water reactors (ALWRs). An evaluation template was developed by assembling a configuration of a safety channel instrument string for a generic ALWR, then comparing the impact of environmental stressors on that string to their effect on an equivalent instrument string from an existing light water reactor. The template was then used to address reliability issues for microprocessor-based protection systems. Standards (or lack thereof) for the qualification of microprocessor-based safety I&C systems were also identified. This approach addresses in part issues raised in Nuclear Regulatory Commission policy document SECY-91-292. which recognizes that advanced I&C systems for the nuclear industry are ``being developed without consensus standards, as the technology available for design is ahead of the technology that is well understood through experience and supported by application standards.``

Korsah, K. [Oak Ridge National Lab., TN (United States); Antonescu, C. [Nuclear Regulatory Commission, Rockville, MD (United States). Office of Nuclear Regulatory Research

1993-10-01T23:59:59.000Z

494

Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications, Phase 1. Final report  

SciTech Connect (OSTI)

The program goals were to develop and demonstrate significant improvements in processing methods, process controls and non-destructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1,370{degrees}C. The program focused on a Si{sub 3}N{sub 4}-4% Y{sub 2}O{sub 3} high temperature ceramic composition and hot-isostatic-pressing as the method of densification. Stage I had as major objectives: (1) comparing injection molding and colloidal consolidation process routes, and selecting one route for subsequent optimization, (2) comparing the performance of water milled and alcohol milled powder and selecting one on the basis of performance data, and (3) adapting several NDE methods to the needs of ceramic processing. The NDE methods considered were microfocus X-ray radiography, computed tomography, ultrasonics, NMR imaging, NMR spectroscopy, fluorescent liquid dye penetrant and X-ray diffraction residual stress analysis. The colloidal consolidation process route was selected and approved as the forming technique for the remainder of the program. The material produced by the final Stage II optimized process has been given the designation NCX 5102 silicon nitride. According to plan, a large number of specimens were produced and tested during Stage III to establish a statistically robust room temperature tensile strength database for this material. Highlights of the Stage III process demonstration and resultant database are included in the main text of the report, along with a synopsis of the NCX-5102 aqueous based colloidal process. The R and D accomplishments for Stage I are discussed in Appendices 1--4, while the tensile strength-fractography database for the Stage III NCX-5102 process demonstration is provided in Appendix 5. 4 refs., 108 figs., 23 tabs.

Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Wilkens, C.A.; Yeckley, R.L. [Norton Co., Northboro, MA (United States)

1993-08-01T23:59:59.000Z

495

Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter  

SciTech Connect (OSTI)

Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report also analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.

Chakraborty, S.; Kroposki, B.; Kramer, W.

2008-11-01T23:59:59.000Z

496

DAINTREE NETWORKS PARTNERS WITH CLTC TO ADVANCE LIGHTING CONTROLS UC Davis' California Lighting Technology Center (CLTC) and Daintree team up to increase adoption with  

E-Print Network [OSTI]

- more - DAINTREE NETWORKS PARTNERS WITH CLTC TO ADVANCE LIGHTING CONTROLS UC Davis' California affiliate partnership with UC Davis' California Lighting Technology Center (CLTC) with the goal of advancing wireless smart building solutions for enterprise control and energy management, today announced its

California at Davis, University of

497

Controlling the start of combustion on an HCCI Diesel engine Mathieu HILLION, Jonathan CHAUVIN, and Nicolas PETIT  

E-Print Network [OSTI]

Controlling the start of combustion on an HCCI Diesel engine Mathieu HILLION, Jonathan CHAUVIN time is adjusted based on a simple Knock Integral Model and real time intake manifold signals com- bustion modes. For Diesel engines, cost of after treatment devices are usually high. In turn

498

Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube-Oil-Consumption Control  

E-Print Network [OSTI]

of estimating and controlling air pollution from ocean-going ships carrying international cargo is particularly1 Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube-lube-oil-consumption designs, for example, could be an option with existing engines. AIR POLLUTION FROM SHIPS The motivation

Brown, Alan

499

Department of Computer Science & Engineering Control of a Robotic Arm Using Low-Dimensional EMG and ECoG  

E-Print Network [OSTI]

Department of Computer Science & Engineering 2007-39 Control of a Robotic Arm Using Low a human body to allow control of a small robot arm. We compare direct joystick control with electromyogram dimensional data and map specific patterns to resulting actions of a robot arm. #12;WASHINGTON UNIVERSITY

Smart, William