Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advancing Clean Energy Technology (Fact Sheet)  

SciTech Connect

DOE/EERE Solar Energy Technologies Program Fact Sheet - Advancing Clean Energy Technology, May 2010.

2010-07-01T23:59:59.000Z

2

Advanced Energy Technologies: Solar Energy and Storage  

Science Conference Proceedings (OSTI)

Advanced Energy Technologies: Solar Energy and Storage (+18 FTE, +$7,500,000). image: Shutterstock, copyright Chayne Gregg. Challenge. ...

2011-10-11T23:59:59.000Z

3

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Retrofit Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Retrofit Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Retrofit Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Google Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Delicious Rank Building Technologies Office: Advanced Energy Retrofit Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Retrofit Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

4

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

5

Advanced Reactor Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Reactor Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Office of Nuclear Energy (NE) will pursue these advancements through RD&D activities at the Department of Energy (DOE) national laboratories and U.S. universities, as well as through collaboration with industry and international partners. These activities will focus on advancing scientific

6

Fact Sheet: Energy Storage Technology Advancement Partnership...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) More Documents & Publications Webinar Presentation: Energy Storage Solutions for Microgrids (November...

7

Building Technologies Office: Advanced Energy Design Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Design Energy Design Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Design Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Design Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Design Guides on Google Bookmark Building Technologies Office: Advanced Energy Design Guides on Delicious Rank Building Technologies Office: Advanced Energy Design Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Design Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software

8

Advanced Materials Technologies Available for Licensing - Energy ...  

Advanced Materials Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating research institutions have advanced materials ...

9

Federal Energy Management Program: Advanced Technology Planning for Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Advanced Technology Planning for Energy Savings Performance Contracts to someone by E-mail Share Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Facebook Tweet about Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Twitter Bookmark Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Google Bookmark Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Delicious Rank Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Digg Find More places to share Federal Energy Management Program:

10

Energy technologies advancement program underway  

SciTech Connect

The State of California is reducing the risk of developing new, innovative energy technologies under its Energy Technologies Advancement Program (ETAP), which is administered by the California Energy Commission (CEC). In the first funding round, 38 applications were received, and the Energy Commission's Research, Development, and Demonstration Committee has recommended six projects from private companies for initial funding. They are: ARCO Solar Inc. - research for $925,000 to develop thin film photovoltaic modules that capture the sun's rays and convert them into electricity; Alternative Energy Institute - research for $135,000 to collect and concentrate sunlight via a series of tracking parabolic dishes (heliostats), and transfer collected light into the interior of a commercial building; Solar Turbines Inc. - research for $52,500 to test a liquid fuel injection system that results in a reduction of oxides of nitrogen in cogeneration gas turbines; Pacific Gas and Electric Company - research for $500,000 to establish a program for field testing and evaluating emerging new photovoltaic technologies; San Diego Gas and Electric Company - research contract to test and evaluate the largest geothermal power plant in the world using an organic rankine cycle steam turbine, which uses a fluid with a lower-than-normal boiling point, thereby potentially generating electricity with lower temperature heat; and Fayette Manufacturing Corporation - loan contract for $1,250,000 to demonstrate the technical and economic feasibility of a new heat cycle process called the Kalina Cycle. The CEC will soon be releasing a Request for Proposals (RFP) for both private and public organizations for the second-round ETAP solicitation.

1986-01-01T23:59:59.000Z

11

Advanced Controls Technologies and Strategies Linking Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Controls Technologies and Strategies Linking Energy Efficiency and Demand Response Speaker(s): Sila Kiliccote Date: October 6, 2005 - 12:00pm Location: Bldg. 90 Reliable...

12

Advanced Vehicle Technologies Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Vehicle Technologies Awards Advanced Vehicle Technologies Awards Microsoft Word - VTP 175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 AdvancedVehiclesTechn...

13

Advanced Materials Technologies - Energy Innovation Portal  

Advanced Materials Technology Marketing Summaries Here youll find marketing summaries of advanced materials technologies available for licensing from ...

14

Materials research to advance fossil energy technologies at the NETL  

Science Conference Proceedings (OSTI)

A brief overview of materials research being carried out by the National Energy Technology Laboratory to advance fossil energy technologies.

Powell, C.A.

2006-10-18T23:59:59.000Z

15

Advanced Green Technologies | Open Energy Information  

Open Energy Info (EERE)

Advanced Green Technologies Place Fort Lauderdale, Florida Zip 33311 Product Advanced Green Technologies is a US-based distributor of PV systems. It is owned by Advanced Roofing...

16

Department of Energy Advance Methane Hydrates Science and Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Methane Hydrates Science and Technology Projects Department of Energy Advance Methane Hydrates Science and Technology Projects Descriptions for Energy Department Methane...

17

"Recovery Act: Advanced Energy Efficient BuildingTechnologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Recovery Act: Advanced Energy Efficient BuildingTechnologies" "Recovery Act: Advanced Energy Efficient BuildingTechnologies" Description of a FOA funding oppourtunity with funds...

18

Advanced Combustion Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Clean Coal » Advanced Combustion Science & Innovation » Clean Coal » Advanced Combustion Technologies Advanced Combustion Technologies Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses laser-based Rayleigh light scattering to measure flame density and speed over a flat flame burner. Oxyfuel combustion, using oxygen in place of air with diluents such as steam or carbon dioxide, can reduce pollutant emissions in advanced power cycles using gas turbines. Photo courtesy of NETL Multimedia. Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses laser-based Rayleigh light scattering to measure flame density and speed over a flat flame burner. Oxyfuel combustion, using oxygen in place of air with diluents such as steam or carbon dioxide, can reduce pollutant

19

Under Secretary of Energy Highlights Advanced Energy Technologies to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Highlights Advanced Energy Technologies Highlights Advanced Energy Technologies to Sustain America's Economic Growth Under Secretary of Energy Highlights Advanced Energy Technologies to Sustain America's Economic Growth June 2, 2006 - 2:12pm Addthis HONEOYE FALLS, NY - U.S. Under Secretary of Energy David Garman today visited the General Motors (GM) Advanced Technologies Facility in Honeoye Falls, New York, with Rep. Randy Kuhl (NY-29th), to tour the facility and view new advanced energy technologies such as hydrogen fuel cells. Under Secretary Garman discussed the importance of the development of hydrogen and other renewable energy sources as a key to diversifying our nation's energy mix. The advancement of hydrogen is a key element of President Bush's Advanced Energy Initiative (AEI), which seeks to invest in the

20

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced AMR Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Advanced AMR Technologies Inc Advanced AMR Technologies Inc Jump to: navigation, search Name Advanced AMR Technologies Inc Address 285 Newbury Street Place Peabody, Massachusetts Zip 01960 Sector Efficiency Product Energy management solutions Website http://www.advancedamr.com/ Coordinates 42.5547616°, -70.9800841° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5547616,"lon":-70.9800841,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

22

Advanced Reactor Technology Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Reactor Technologies » Advanced Reactor Nuclear Reactor Technologies » Advanced Reactor Technologies » Advanced Reactor Technology Documents Advanced Reactor Technology Documents January 30, 2013 Advanced Reactor Concepts Technical Review Panel Report This report documents the establishment of a technical review process and the findings of the Advanced Reactor Concepts (ARC) Technical Review Panel (TRP).1 The intent of the process is to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. A goal of the process is to facilitate greater engagement between DOE and industry. The process involved establishing evaluation criteria, conducting a pilot review, soliciting concept inputs from industry entities, reviewing the concepts by TRP members and compiling the

23

Advanced Solar Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name Advanced Solar Technologies Inc Place San Diego, California Sector Solar Product California-based domestic and commercial designer and...

24

Building Technologies Office: Advanced Energy Design Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

K-12 School Buildings Medium to Big Box Retail Buildings Large Hospitals The Advanced Energy Design Guides (AEDGs) accelerate the construction of energy efficient buildings by...

25

Energy Department Announces $2.5 Million to Advance Technologies ...  

Energy Department Announces $2.5 Million to Advance Technologies for Clean-Burning, Efficient Biomass Cookstoves. April 13, 2012. The Energy Department today ...

26

Advanced Technology Development Center ATDC | Open Energy Information  

Open Energy Info (EERE)

Technology Development Center ATDC Technology Development Center ATDC Jump to: navigation, search Name Advanced Technology Development Center (ATDC) Place United States Sector Services Product General Financial & Legal Services ( State-owned commercial entity ) References Advanced Technology Development Center (ATDC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Advanced Technology Development Center (ATDC) is a company located in United States . References ↑ "Advanced Technology Development Center (ATDC)" Retrieved from "http://en.openei.org/w/index.php?title=Advanced_Technology_Development_Center_ATDC&oldid=341805" Categories: Clean Energy Organizations Companies

27

TRC Advanced Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

TRC Advanced Technologies Inc TRC Advanced Technologies Inc Jump to: navigation, search Logo: TRC Advanced Technologies Inc Name TRC Advanced Technologies Inc Address 8700 Commerce Park Place Houston, Texas Zip 77036 Sector Solar Product Remote power PV systems Website http://www.trcat.com/ Coordinates 29.685775°, -95.535791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.685775,"lon":-95.535791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

28

Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012)  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Storage Technology Advancement Partnership (ESTAP) is acooperative funding and information-sharing partnership between DOE and interested states that aims to accelerate the...

29

Lawrence Livermore teams with industry to advance energy technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

release: 03192012 | NR-12-03-01 Lawrence Livermore teams with industry to advance energy technologies using high performance computing Donald B Johnston , LLNL, (925)...

30

Advanced Vehicle Technologies Awards Table | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Awards Table Vehicle Technologies Awards Table Advanced Vehicle Technologies Awards Table The table contains a listing of the applicants, their locations, the amounts of the awards, and description of each project. The sub-categories of the table include: Advanced fuels and lubricants Light-weighting materials Demonstration Project for a Multi-Material Light-Weight Prototype Vehicle Advanced cells and design technology for electric drive batteries Advanced power electronics and electric motor technology Solid State Thermoelectric Energy Conversion Devices Fleet Efficiency Advanced Vehicle Testing and Evaluation Microsoft Word - VTP $175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 More Documents & Publications Advanced Vehicle Technologies Awards advanced vehicle technologies awards table

31

Advanced Technology Planning for Energy Savings Performance Contracts |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Technology Planning for Energy Savings Performance Advanced Technology Planning for Energy Savings Performance Contracts Advanced Technology Planning for Energy Savings Performance Contracts October 7, 2013 - 1:40pm Addthis Call for Projects FEMP recently issued a notice of intent to release a Funding Opportunity Announcement that will provide grants to develop capital combined heat and power projects. Read the call for projects. Legislation emphasizes the implementation of energy-efficiency and renewable energy technologies in Federal agencies. The Federal Energy Management Program (FEMP) assists agencies in identifying and planning opportunities to deploy advanced technologies using energy savings performance contracts (ESPC). A Federal financing specialist (FFS) will work with a project facilitator and a U.S. Department of Energy (DOE) national laboratory team to identify

32

ATU Advanced Technology Upgrading Ltd | Open Energy Information  

Open Energy Info (EERE)

ATU Advanced Technology Upgrading Ltd ATU Advanced Technology Upgrading Ltd Jump to: navigation, search Name ATU (Advanced Technology Upgrading) Ltd Place Israel Product Focused on development of rechargeable magnesium battery. References ATU (Advanced Technology Upgrading) Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. ATU (Advanced Technology Upgrading) Ltd is a company located in Israel . References ↑ "ATU (Advanced Technology Upgrading) Ltd" Retrieved from "http://en.openei.org/w/index.php?title=ATU_Advanced_Technology_Upgrading_Ltd&oldid=342420" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

33

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrofit Guides Retrofit Guides Photo of the cover of the Advanced Energy Retrofit Guide for Healthcare Facilities. The Advanced Energy Retrofit Guides (AERGs) help building owners and managers as well as design and construction professionals plan, design, and implement energy efficiency upgrades in commercial buildings. The Advanced Energy Retrofit Guides (AERGs) were created to help decision makers plan, design, and implement energy improvement projects in their facilities. With energy managers in mind, they present practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle. These guides are primarily reference documents, allowing energy managers to consult the particular sections that address the most pertinent topics.. Useful resources are also cited throughout the guides for further information. Each AERG is tailored specifically to the needs of a specific building type, with an emphasis on the most effective retro-commissioning and retrofit measures identified by experts familiar with those unique opportunities and challenges. The guides present a broad range of proven practices that can help energy managers take specific actions at any stage of the retrofit process, resulting in energy savings for many years to come.

34

Advanced Capacitor Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Capacitor Technologies Inc Capacitor Technologies Inc Jump to: navigation, search Name Advanced Capacitor Technologies Inc Place Tokyo, Japan Zip 196-8558 Sector Carbon Product Japanese manufacturer of ultracapacitors from nano-carbon materials. Coordinates 35.670479°, 139.740921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.670479,"lon":139.740921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

35

Department of Energy Announces up to $70 Million to Advance Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Energy Announces up to 70 Million to Advance Technology and Reduce Cost of Geothermal Energy Department of Energy Announces up to 70 Million to Advance Technology and...

36

Advance Energy Technologies: Proposed Penalty (2013-CE-5302) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Penalty (2013-CE-5302) Proposed Penalty (2013-CE-5302) Advance Energy Technologies: Proposed Penalty (2013-CE-5302) January 31, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Advance Energy Technologies, Inc. failed to certify walk-in cooler or freezer (WICFs) components as compliant with the energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Advance Energy Technologies: Proposed Penalty (2013-CE-5302) More Documents & Publications Advance Energy Technologies: Order (2013-CE-5302)

37

Advanced Biomass Gasification Technologies Inc ABGT | Open Energy  

Open Energy Info (EERE)

Gasification Technologies Inc ABGT Gasification Technologies Inc ABGT Jump to: navigation, search Name Advanced Biomass Gasification Technologies Inc. (ABGT) Place New York, New York Zip 10036 Product Company set up by UTEK specifically for its sale to Xethanol, holding the exclusive license for microgasification technology developed at the Energy and Environmental Research Center (EERC) at the University of North Dakota. References Advanced Biomass Gasification Technologies Inc. (ABGT)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Advanced Biomass Gasification Technologies Inc. (ABGT) is a company located in New York, New York . References ↑ "Advanced Biomass Gasification Technologies Inc. (ABGT)"

38

advanced vehicle technologies awards table | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

advanced vehicle technologies awards table advanced vehicle technologies awards table Microsoft Word - VTP 175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 More...

39

Department of Energy Announces Advanced Vehicle Technology Competition,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Vehicle Technology Advanced Vehicle Technology Competition, EcoCar2: Plugging into the Future Department of Energy Announces Advanced Vehicle Technology Competition, EcoCar2: Plugging into the Future April 13, 2011 - 12:00am Addthis Washington, DC - Today, at the SAE 2011 World Congress in Detroit, Mich., U.S. Department of Energy's Assistant Secretary for Policy and International Affairs, David Sandalow, announced the official launch of the EcoCar2: Plugging into the Future competition and the sixteen university teams that were selected to participate. EcoCar2 is a unique educational partnership between General Motors and the Department of Energy to help prepare future engineers for opportunities in clean energy and advanced vehicle industries. EcoCar2 is one piece of the Department's broad

40

SEMATECH: A Model for Advancing Solar Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SEMATECH: A Model for Advancing Solar Technology SEMATECH: A Model for Advancing Solar Technology SEMATECH: A Model for Advancing Solar Technology May 24, 2011 - 11:22am Addthis SEMATECH brings 14 companies together to help them share and collaborate in their most expensive and difficult manufacturing development projects. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs One of the hardest parts for start-up companies producing an emerging technology is the cost to test and develop more efficient manufacturing processes -- and to win the clean energy race, energy technologies not only need to be invented in America, but made in America too. That's why consortiums like SEMATECH in Albany, New York, are so important. Back in the '80s and '90s, SEMATECH breathed new life into the

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hot New Advances in Water Heating Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency Questions? Our energy efficiency and renewable energy experts will answer your questions about ways to save money and incorporate renewable energy into your home during our Earth Day Google+ Hangout on April 22 at 3 pm ET. Submit your questions on Twitter, G+ and YouTube using #askEnergy,

42

Hot New Advances in Water Heating Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency Questions? Our energy efficiency and renewable energy experts will answer your questions about ways to save money and incorporate renewable energy into your home during our Earth Day Google+ Hangout on April 22 at 3 pm ET. Submit your questions on Twitter, G+ and YouTube using #askEnergy,

43

Advanced Vehicle Technologies Awardees | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Person Solar Energy Potential Solar Energy Potential Renewable Energy Production By State Renewable Energy Production By State 2009 Total Energy Production by State 2009 Total...

44

UPDATED: Energy Department Announces New Advance in Biofuel Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UPDATED: Energy Department Announces New Advance in Biofuel UPDATED: Energy Department Announces New Advance in Biofuel Technology UPDATED: Energy Department Announces New Advance in Biofuel Technology March 7, 2011 - 12:00am Addthis U.S. Energy Secretary Steven Chu today congratulated a team of researchers at the Department's BioEnergy Science Center who have achieved yet another advance in the drive toward next generation biofuels: using bacteria to convert plant matter directly into isobutanol, which can be burned in regular car engines with a heat value higher than ethanol and similar to gasoline. This research is part of a broad portfolio of work the Department is doing to reduce America's dependence on foreign oil and create new economic opportunities for rural America. "Today's announcement is yet another sign of the rapid progress we are

45

16 Projects To Advance Hydropower Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects To Advance Hydropower Technology Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology September 6, 2011 - 11:24am Addthis U.S. Department Energy Secretary Steven Chu and U.S. Department of the Interior Secretary Ken Salazar announced nearly $17 million in funding over the next three years for research and development projects to advance hydropower technology. The list of 16 projects in 11 different states can be found here. Applicant Location Award Amount; Funding is from DOE unless otherwise noted Description Sustainable Small Hydro (Topic Areas 1.1. and 1.2) Earth by Design Bend, OR $1,500,000 This project will develop and test a new low-head modular hydropower technology in a canal in Oregon's North Unit Irrigation District to produce cost-competitive electricity.

46

16 Projects To Advance Hydropower Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16 Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology September 6, 2011 - 11:24am Addthis U.S. Department Energy Secretary Steven Chu and U.S. Department of the Interior Secretary Ken Salazar announced nearly $17 million in funding over the next three years for research and development projects to advance hydropower technology. The list of 16 projects in 11 different states can be found here. Applicant Location Award Amount; Funding is from DOE unless otherwise noted Description Sustainable Small Hydro (Topic Areas 1.1. and 1.2) Earth by Design Bend, OR $1,500,000 This project will develop and test a new low-head modular hydropower technology in a canal in Oregon's North Unit Irrigation District to produce cost-competitive electricity.

47

Advanced Vehicle Technologies Awardees | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act -Energy Sector Jobs -Education & Training -Funding Opportunities --Grants -Prices & Trends -Energy Policy Environmental Cleanup -Emergency Response & Procedures or Search...

48

Contributions to Key Energy Conversion Technologies and Advanced Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

Contributions to Key Energy Conversion Technologies and Advanced Methods Contributions to Key Energy Conversion Technologies and Advanced Methods for Optimum Energy Systems Design and Planning Speaker(s): Daniel Favrat Date: February 27, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare This presentation reviews some of EPFL-LENI's recent contributions to advanced cogeneration and heat pump technologies as well as to new system design approaches based on multimodal evolutionar algorithms. In the field of cogeneration, theoretical and experimental results show that gas engines with unscavenged ignition prechambers can, without the need of a catalyst, achieve high efficiencies with reasonable emissions with both natural gas and biogas. Combination with Organic Rankine Cycle (ORC) heat recovery

49

Advanced Controls Technologies and Strategies Linking Energy Efficiency and  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Controls Technologies and Strategies Linking Energy Efficiency and Advanced Controls Technologies and Strategies Linking Energy Efficiency and Demand Response Speaker(s): Sila Kiliccote Date: October 6, 2005 - 12:00pm Location: Bldg. 90 Reliable supply of affordable electricity has been in the spotlight since the blackouts in California, the grid shutdown events in New England and the terrorist threats nationwide. While the array of generation technologies and transmission safety issues have been widely discussed, capacity requirements and demand side management issues have also been revisited. This presentation will concentrate on a preliminary framework to describe how advanced controls can support multiple modes of operations including both energy efficiency and demand response (DR). A general description of DR, its benefits, and nationwide status will be outlined.

50

Advanced Technologies for Clean Energy Manufacturing ...  

Science Conference Proceedings (OSTI)

... recovery and reuse ? Renewable feedstocks ? Electricity storage ? Fuel cells ? Renewable energy (solar, wind, geothermal, bioenergy, hydro ...

2012-10-10T23:59:59.000Z

51

Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy States Alliance Clean Energy States Alliance Batteries, flywheels, above-ground compressed air, micro pumped hydro, and other forms of energy storage may be able to provide significant support to the integration of renewable energy in the United States. Public funding and support are critical to accelerate progress, achieve cost reductions, and encourage widespread deployment of these technologies. Overview The Energy Storage Technology Advancement Partnership (ESTAP) is a new, cooperative funding and information-sharing partnership between the U.S. Department of Energy (DOE) and interested states that aims to accelerate the commercialization and deployment of energy storage technologies in the United States via joint funding and coordination. Facilitated by the Clean Energy States Alliance, ESTAP is funded by Sandia National

52

Under Secretary of Energy Highlights Advanced Energy Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and energy industry partners and the federal government to assess hydrogen fuel cell vehicle and infrastructure technology. The goal of the project is to allow for a...

53

Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation  

SciTech Connect

The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

Liby, Alan L [ORNL] [ORNL; Rogers, Hiram [ORNL] [ORNL

2013-10-01T23:59:59.000Z

54

Department of Energy Advance Methane Hydrates Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Methane Hydrates Science and Technology Projects Dollars awarded will go to research the advance understanding of the nature and occurrence of Deepwater and Arctic gas...

55

Demonstration of Advanced Filtration Technologies: Developing Energy-rebate  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Advanced Filtration Technologies: Developing Energy-rebate Demonstration of Advanced Filtration Technologies: Developing Energy-rebate Criteria through Performing Standard Laboratory Tests and Statistical Analyses Title Demonstration of Advanced Filtration Technologies: Developing Energy-rebate Criteria through Performing Standard Laboratory Tests and Statistical Analyses Publication Type Report LBNL Report Number LBNL-61684 Year of Publication 2007 Authors Xu, Tengfang T., and Duo Wang Call Number LBNL-61684 Abstract Fan-filter unit systems are used for re-circulating clean air in cleanrooms are gaining popularity in California as well as in the rest of the world. Under normal operation, fan-filter units require high power demand, typically ranging from 100 to 300 W per square meter of cleanroom floor area (or approximately 10-30 W/ft2). Operating 7 by 24, they normally consume significant electric energy, while providing required contamination control for cleanrooms in various industries. Previous studies focused on development of a standard test procedure for fan-filter units. This project is to improve the methods, and develop new information to demonstrate the methods can be used to assist the industries to apply more energy-efficient fan-filter units in cleanrooms.

56

Department of Energy Advance Methane Hydrates Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Methane Hydrates Science and Technology Advance Methane Hydrates Science and Technology Projects Dollars awarded will go to research the advance understanding of the nature and occurrence of Deepwater and Arctic gas hydrates, and their implications for future resources, geohazards, and the environment Characterizing the Affect of Environmental Change on Gas-Hydrate-Bearing Deposits The University of California at San Diego (San Diego, Calif.) - Researchers at the University of California at San Diego will design, build, and test an electromagnetic (EM) system designed for very shallow water use and will apply the system to determine the extent of offshore permafrost on the U.S. Beaufort inner shelf. Energy Department Investment: $507,000 Duration: 36 months The University of Mississippi (Oxford, Miss.) - Using electronic measurements, the researchers will

57

Department of Energy Awards up to $38 Million to Advance Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

up to 38 Million to Advance Technology and Reduce Cost of Geothermal Energy Department of Energy Awards up to 38 Million to Advance Technology and Reduce Cost of Geothermal...

58

The Center for Advanced Ceramics Technology CACT | Open Energy Information  

Open Energy Info (EERE)

Center for Advanced Ceramics Technology CACT Center for Advanced Ceramics Technology CACT Jump to: navigation, search Name The Center for Advanced Ceramics Technology (CACT) Place Alfred, New York Zip 14802 Product CACT is a NYSTAR-funded organization within the College of Ceramics at Alfred University that is dedicated to creating a diverse, stable, technological basis for the growth of the ceramics and glass industry statewide. References The Center for Advanced Ceramics Technology (CACT)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. The Center for Advanced Ceramics Technology (CACT) is a company located in Alfred, New York . References ↑ "The Center for Advanced Ceramics Technology (CACT)"

59

Advanced Energy Storage Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Energy Storage Publications Reports: Advanced Technology Development Program For Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report Advanced Technology...

60

Energy Department Announces $2.5 Million to Advance Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

agencies, is a founding partner of the Global Alliance for Clean Cookstoves, a public-private partnership to advance cookstove technologies that improve indoor air quality,...

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Energy Department Announces $2.5 Million to Advance Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2.5 million available this year for applied research to advance clean biomass cookstove technologies for use in developing countries. The funding will support the development of...

62

Department of Energy Advance Methane Hydrates Science and Technology Projects  

Energy.gov (U.S. Department of Energy (DOE))

Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

63

ZAP Advanced Battery Technologies JV | Open Energy Information  

Open Energy Info (EERE)

ZAP Advanced Battery Technologies JV ZAP Advanced Battery Technologies JV Jump to: navigation, search Name ZAP & Advanced Battery Technologies JV Place Beijing, China Product JV between ZAP & Chinese battery manufacturer Advanced Battery Technologies focusing on manufacturing and marketing of advanced batteries for electric cars using the latest in nanotechnology. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

Hydrogen energy for tomorrow: Advanced hydrogen production technologies  

SciTech Connect

The future vision for hydrogen is that it will be cost-effectively produced from renewable energy sources and made available for widespread use as an energy carrier and a fuel. Hydrogen can be produced from water and when burned as a fuel, or converted to electricity, joins with oxygen to again form water. It is a clean, sustainable resource with many potential applications, including generating electricity, heating homes and offices, and fueling surface and air transportation. To achieve this vision, researchers must develop advanced technologies to produce hydrogen at costs competitive with fossil fuels, using sustainable sources. Hydrogen is now produced primarily by steam reforming of natural gas. For applications requiring extremely pure hydrogen, production is done by electrolysis. This is a relatively expensive process that uses electric current to dissociate, or split, water into its hydrogen and oxygen components. Technologies with the best potential for producing hydrogen to meet future demand fall into three general process categories: photobiological, photoelectrochemical, and thermochemical. Photobiological and photoelectrochemical processes generally use sunlight to split water into hydrogen and oxygen. Thermochemical processes, including gasification and pyrolysis systems, use heat to produce hydrogen from sources such as biomass and solid waste.

1995-08-01T23:59:59.000Z

65

Department of Energy Announces up to $70 Million to Advance Technology and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

up to $70 Million to Advance up to $70 Million to Advance Technology and Reduce Cost of Geothermal Energy Department of Energy Announces up to $70 Million to Advance Technology and Reduce Cost of Geothermal Energy June 8, 2011 - 12:00am Addthis WASHINGTON, D.C. - In support of President Obama's goal of generating 80% of the country's electricity from clean energy sources by 2035, U.S. Department of Energy Secretary Steven Chu today announced the availability of up to $70 million in new funding over three years for technology advancements in geothermal energy to accelerate development of this promising clean energy resource. Innovations in exploration technologies to locate geothermal energy resources and improvements in resource characterization, drilling, and reservoir engineering techniques will

66

Advances in Materials Science for Environmental and Energy Technologies II  

SciTech Connect

The Materials Science and Technology 2012 Conference and Exhibition (MS&T'12) was held October 7-11, 2012, in Pittsburgh, Pennsylvania. One of the major themes of the conference was Environmental and Energy Issues. Papers from five of the symposia held under that theme are invluded in this volume. These symposia included Materials Issues in Nuclear Waste Management for the 21st Century; Green Technologies for Materials Manufacturing and Processing IV; Energy Storage: Materials, Systems and Applications; Energy Conversion-Photovoltaic, Concentraing Solar Power and Thermoelectric; and Materials Development for Nuclear Applications and Extreme Environments.

Matyas, Dr Josef [Pacific Northwest National Laboratory (PNNL); Ohji, Tatsuki [Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Tec; Liu, Xingbo [West Virginia University, Morgantown; Paranthaman, Mariappan Parans [ORNL; Devanathan, Ram [Pacific Northwest National Laboratory (PNNL); Fox, Kevin [Savannah River National Laboratory (SRNL); Singh, Mrityunjay [NASA-Glenn Research Center, Cleveland; Wong-ng, Winnie [National Institute of Standards and Technology (NIST), Gaithersburg, MD

2013-01-01T23:59:59.000Z

67

Department of Energy Awards up to $38 Million to Advance Technology and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Awards up to $38 Million to Advance Technology Department of Energy Awards up to $38 Million to Advance Technology and Reduce Cost of Geothermal Energy Department of Energy Awards up to $38 Million to Advance Technology and Reduce Cost of Geothermal Energy September 8, 2011 - 2:04pm Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced $38 million over three years for projects to accelerate the development of promising geothermal energy technologies and help diversify America's sources of clean, renewable energy. Thirty-two innovative projects in 14 states will develop and test new ways to locate geothermal resources and improve resource characterization, drilling, and reservoir engineering techniques, which will enable geothermal energy sources to help reduce the nation's reliance on fossil fuels. Funded through DOE's Office of Energy

68

Advanced Battery Technologies Inc ABAT | Open Energy Information  

Open Energy Info (EERE)

Battery Technologies Inc ABAT Battery Technologies Inc ABAT Jump to: navigation, search Name Advanced Battery Technologies Inc (ABAT) Place Shuangcheng, Heilongjiang Province, China Zip 150100 Product China-based developer, manufacturer and distributer of rechargeable polymer lithium-ion (PLI) batteries. Coordinates 45.363708°, 126.314621° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.363708,"lon":126.314621,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

IEP - Water-Energy Interface: Advanced Cooling Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Technology Cooling Technology This component of the program is focused on research to develop technologies that improve performance and reduce costs associated with wet cooling, dry cooling, and hybrid cooling technologies. In addition, the research area covers innovative methods to control bio-fouling of cooling water intake structures as well as advances in intake structure systems. Read More! It is technically possible to cool power plants with minimal water use. However, at this time such cooling methods are not as economically feasible as traditional cooling systems. Additional research and development is necessary to develop cooling systems that use as little water as possible, but at a reasonable cost. Water intake structures are also an area of concern, especially considering the Clean Water Act 316(b) regulation which requires that the location, design, construction, and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impact. With plant intake structures, the particular concern is impingement and entrainment of aquatic organisms.

70

Department of Energy Awards up to $38 Million to Advance Technology and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

up to $38 Million to Advance Technology up to $38 Million to Advance Technology and Reduce Cost of Geothermal Energy Department of Energy Awards up to $38 Million to Advance Technology and Reduce Cost of Geothermal Energy September 8, 2011 - 2:04pm Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced $38 million over three years for projects to accelerate the development of promising geothermal energy technologies and help diversify America's sources of clean, renewable energy. Thirty-two innovative projects in 14 states will develop and test new ways to locate geothermal resources and improve resource characterization, drilling, and reservoir engineering techniques, which will enable geothermal energy sources to help reduce the nation's reliance on fossil fuels. Funded through DOE's Office of Energy

71

Low Wind Speed Technology Phase I: Advanced Independent Pitch Control; Advanced Energy System, Inc.  

SciTech Connect

This fact sheet describes a subcontract with Advanced Energy Systems, Inc. to conduct a conceptual study of independent blade pitch control and possible impact on loads and cost of energy (COE).

2006-03-01T23:59:59.000Z

72

Program on Technology Innovation: Cladding and Structural Materials for Advanced Nuclear Energy Systems  

Science Conference Proceedings (OSTI)

This EPRI technical update gives an overview of the initial work being done under a 3-year research program on cladding and structural materials for advanced nuclear energy systems. This research is part of EPRI's Program on Technology Innovation.

2008-12-23T23:59:59.000Z

73

Energy Department Announces $2.5 Million to Advance Technologies for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2.5 Million to Advance Technologies 2.5 Million to Advance Technologies for Clean-Burning, Efficient Biomass Cookstoves Energy Department Announces $2.5 Million to Advance Technologies for Clean-Burning, Efficient Biomass Cookstoves April 13, 2012 - 10:39am Addthis WASHINGTON, DC - The Energy Department today announced up to $2.5 million available this year for applied research to advance clean biomass cookstove technologies for use in developing countries. The funding will support the development of innovative cookstove designs that allow users to burn wood or crop residues more efficiently and with less smoke than open fires and traditional stoves, helping to save lives and improve livelihoods. The Department of Energy, along with other federal agencies, is a founding partner of the Global Alliance for Clean Cookstoves, a public-private

74

Hydrogen energy for tomorrow: Advanced hydrogen transport and storage technologies  

DOE Green Energy (OSTI)

The future use of hydrogen to generate electricity, heat homes and businesses, and fuel vehicles will require the creation of a distribution infrastructure of safe, and cost-effective transport and storage. Present storage methods are too expensive and will not meet the performance requirements of future applications. Transport technologies will need to be developed based on the production and storage systems that come into use as the hydrogen energy economy evolves. Different applications will require the development of different types of storage technologies. Utility electricity generation and home and office use will have storage fixed in one location--stationary storage--and size and weight will be less important than energy efficiency and costs of the system. Fueling a vehicle, however, will require hydrogen storage in an ``on-board`` system--mobile storage--with weight and size similar to the gasoline tank in today`s vehicle. Researchers are working to develop physical and solid-state storage systems that will meet these diverse future application demands. Physical storage systems and solid-state storage methods (metal hydrides, gas-on-solids adsorption, and glass microspheres) are described.

NONE

1995-08-01T23:59:59.000Z

75

FY2001 Progress Report for the Batteries for Advanced Transportation Technologies (High-Energy Battery)  

NLE Websites -- All DOE Office Websites (Extended Search)

FOR ADVANCED FOR ADVANCED TRANSPORTATION TECHNOLOGIES (HIGH-ENERGY BATTERY) 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Lawrence Berkeley National Laboratory, to Argonne National Laboratory, and to Sentech, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2001 Progress Report for the

76

Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology  

SciTech Connect

This project was a subtask of Energy Saving Melting and Revert Reduction Technology (?¢????Energy SMARRT?¢???) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy saving estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU?¢????s/year and 6.46 trillion BTU?¢????s/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).

Harry Littleton; John Griffin

2011-07-31T23:59:59.000Z

77

Advanced geothermal technologies  

DOE Green Energy (OSTI)

Research and development in advanced technologies for geothermal energy production continue to increase the energy production options for the Nation. The high-risk investment over the past few years by the US Department of Energy in geopressured, hot dry rock, and magma energy resources is producing new means to lower production costs and to take advantage of these resources. The Nation has far larger and more regionally extensive geothermal resources than heretofore realized. At the end of a short 30-day closed-loop flow test, the manmade hot dry rock reservoir at Fenton Hill, New Mexico, was producing 10 MW thermal - and still climbing - proving the technical feasibility of this new technology. The scientific feasibility of magma energy extraction has been demonstrated, and new field tests to evaluate this technology are planned. Analysis and field tests confirm the viability of geopressured-geothermal energy and the prospect that many dry-hole or depleted petroleum wells can be turned into producing geopressured-geothermal wells. Technological advances achieved through hot dry rock, magma, geopressured, and other geothermal research are making these resources and conventional hydrothermal resources more competitive. Noteworthy among these technological advances are techniques in computer simulation of geothermal reservoirs, new means for well stimulation, new high-temperature logging tools and packers, new hard-rock penetration techniques, and new methods for mapping fracture flow paths across large underground areas in reservoirs. In addition, many of these same technological advances can be applied by the petroleum industry to help lower production costs in domestic oil and gas fields. 5 refs., 4 figs.

Whetten, J.T.; Murphy, H.D.; Hanold, R.J.; Myers, C.W.; Dunn, J.C.

1988-01-01T23:59:59.000Z

78

Advanced Lithium Ion Battery Technologies - Energy Innovation Portal  

The Berkeley Lab technology contributes to improved battery safety by circumventing lithium metal dendrite formation. Benefits. ... hybrid electric vehicles;

79

Vehicle Technologies Office: Advanced Combustion Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Combustion Advanced Combustion Engines to someone by E-mail Share Vehicle Technologies Office: Advanced Combustion Engines on Facebook Tweet about Vehicle Technologies Office: Advanced Combustion Engines on Twitter Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Google Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Delicious Rank Vehicle Technologies Office: Advanced Combustion Engines on Digg Find More places to share Vehicle Technologies Office: Advanced Combustion Engines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Advanced Combustion Engines

80

The Impact of Advanced Wastewater Treatment Technologies and Wastewater Strength on the Energy Consumption of Large Wastewater Treatment Plants.  

E-Print Network (OSTI)

??Wastewater treatment is an energy intensive process often requiring the use of advanced treatment technologies. Stricter effluent standards have resulted in an increase in the (more)

Newell, Timothy Stephen

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Department of Energy Announces Advanced Vehicle Technology Competition...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in Detroit, Mich., U.S. Department of Energy's Assistant Secretary for Policy and International Affairs, David Sandalow, announced the official launch of the EcoCar2: Plugging...

82

State Technologies Advancement Collaborative  

DOE Green Energy (OSTI)

The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

David S. Terry

2012-01-30T23:59:59.000Z

83

Methodology for assessing the benefits of fossil energy RD and D. Volume II. Advanced fossil energy technology outcome data and technology groups  

SciTech Connect

The information in this two-volume report is organized as follows: in Volume I, entitled Energy Network Charts for Advanced Fossil Energy Technologies, a series of charts is presented showing the applications of advanced fossil energy technologies to the recovery, conversion, or utilization of fossil energy (coal, oil shale, crude oil, and natural gas). In this Volume II, outcome tables are presented that characterize the probable results of advanced technology research, development, and demonstration (R, D and D) for coal gasification, coal liquefaction, oil shale conversion, electric power generation, enhanced oil recovery, and enhanced gas recovery. Areas are highlighted where such results are not presently available or are incomplete. Tables are also presented that show groupings of technologies; for example, technologies producing high-Btu gas from coal are grouped together. The rationale for groupings is explained.

Kohan, S.M.; Louks, B.M.

1976-11-16T23:59:59.000Z

84

DOE-WRI Base Program for Fundamental Advances in Energy Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-WRI BasE PROgRam FOR DOE-WRI BasE PROgRam FOR FunDamEntal aDvancEs In EnERgy scIEncE anD tEchnOlOgy Description For over two decades, the University of Wyoming Research Corporation - doing business as the Western Research Institute (WRI) - has been supporting the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) and its mission of developing fossil energy and related environmental technologies. The funding for these research efforts has generally been provided through congressionally mandated cooperative agreements, with the DOE's National Energy Technology Laboratory (NETL) overseeing program efforts. For this purpose, there are two current types of cooperative agreements: the Base Program, which is fully funded by federal money, and the Jointly Sponsored Research (JSR) Program,

85

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

86

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energys Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

87

Advanced Materials Technologies Available for Licensing ...  

Advanced Materials Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating research institutions have ...

88

Program on Technology Innovation: Advanced Technologies for Energy Efficiency in Residential and Commercial Buildings  

Science Conference Proceedings (OSTI)

This report presents the ideas and opinions expressed by a variety of experts related to the basic science research needs for improving the energy efficiency of end-use technologies for the residential and commercial sectors. The experts participating in this project come from a wide range of institutions, including government research laboratories, universities, state and federal energy agencies, private research laboratories, industry consultants, Electric Power Research Institute (EPRI) member electri...

2008-05-30T23:59:59.000Z

89

Program on Technology Innovation: Advanced Nondestructive Evaluation Technologies for Renewable Energy  

Science Conference Proceedings (OSTI)

This report provides an update of technical information collected and evaluated pertaining to nondestructive examination (NDE) technologies that can be used to assess the structural integrity of renewable energy source components, primarily wind turbine components. The purpose of this project is to investigate and develop NDE techniques to determine the structural integrity of major renewable energy source components, with a focus on the wind industry. The NDE capabilities are needed during the next thre...

2011-01-31T23:59:59.000Z

90

U.S. Department of Energy Instrumentation and Controls Technology Research for Advanced Small Modular Reactors  

Science Conference Proceedings (OSTI)

Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, key DOE programs have substantial ICHMI RD&D elements to their respective research portfolio. This article describes current ICHMI research to support the development of advanced small modular reactors.

Wood, Richard Thomas [ORNL

2012-01-01T23:59:59.000Z

91

Trends in Energy Management Technology - Part 4: Review of Advanced Applications in Energy Management, Control, and Information Systems  

E-Print Network (OSTI)

ExcelSyus - Excel Energy Technologies, Ltd. http://pdf Trends in Energy Management TechnologyTrends in Energy Management Technology Fault Detection and

Yee, Gaymond; Webster, Tom

2003-01-01T23:59:59.000Z

92

NIST's Advanced Technology Program  

NLE Websites -- All DOE Office Websites (Extended Search)

NIST's Advanced NIST's Advanced Technology Program NIST's Advanced Technology Program DOE Workshop on Hydrogen Separation and Purification Technologies Arlington, VA, Sept. 8-9, 2004 Jason Huang 301-975-4197 National Institute of Standards and Technology 100 Bureau Drive Stop 4730 Gaithersburg, MD 20899-4730 http://www.atp.nist.gov National Institute of Standards and Technology * Technology Administration * U.S. Department of Commerce ATP is part of NIST Helping America Measure Up NIST Mission ATP is part of NIST NIST Mission: Strengthen the U.S. economy and improve the quality of life by working with industry to develop and apply technology, measurements, and standards. * * * * * * 3,000 employees $771 million annual budget 2,000 field agents 1,800 guest researchers $2.2 billion co-funding of

93

Energy Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced sensors through laser ablation and ultrasonics; advanced materials and nanotechnology for clean energy. Batteries and Fuel Cells Buildings Energy Efficiency Electricity...

94

An Analysis of Energy Savings Possible Through Advances in Automotive Tooling Technology  

SciTech Connect

The use of lightweight and highly formable advanced materials in automobile and truck manufacturing has the potential to save fuel. Advances in tooling technology would promote the use of these materials. This report describes an energy savings analysis performed to approximate the potential fuel savings and consequential carbon-emission reductions that would be possible because of advances in tooling in the manufacturing of, in particular, non-powertrain components of passenger cars and heavy trucks. Separate energy analyses are performed for cars and heavy trucks. Heavy trucks are considered to be Class 7 and 8 trucks (trucks rated over 26,000 lbs gross vehicle weight). A critical input to the analysis is a set of estimates of the percentage reductions in weight and drag that could be achieved by the implementation of advanced materials, as a consequence of improved tooling technology, which were obtained by surveying tooling industry experts who attended a DOE Workshop, Tooling Technology for Low-Volume Vehicle Production, held in Seattle and Detroit in October and November 2003. The analysis is also based on 2001 fuel consumption totals and on energy-audit component proportions of fuel use due to drag, rolling resistance, and braking. The consumption proportions are assumed constant over time, but an allowance is made for fleet growth. The savings for a particular component is then the product of total fuel consumption, the percentage reduction of the component, and the energy audit component proportion. Fuel savings estimates for trucks also account for weight-limited versus volume-limited operations. Energy savings are assumed to be of two types: (1) direct energy savings incurred through reduced forces that must be overcome to move the vehicle or to slow it down in braking. and (2) indirect energy savings through reductions in the required engine power, the production and transmission of which incur thermodynamic losses, internal friction, and other inefficiencies. Total savings for an energy use component are estimated by scaling up the direct savings with an approximate total-to-direct savings ratio. Market penetration for new technology vehicles is estimated from projections about scrappage. Retrofit savings are assumed negligible, but savings are also assumed to accrue with increases in the fleet size, based on economic growth forecasts. It is assumed that as vehicles in the current fleet are scrapped, they are replaced with advanced-technology vehicles. Saving estimates are based on proportions of new vehicles, rather than new-vehicle mileages. In practice, of course, scrapped vehicles are often replaced with used vehicles, and used vehicles are replaced with new vehicles. Because new vehicles are typically driven more than old, savings estimates based on count rather than mileage proportions tend to be biased down (i.e., conservative). Savings are expressed in terms of gallons of fuel saved, metric tons of CO2 emissions reductions, and percentages relative to 2001 levels of fuel and CO2. The sensitivity of the savings projections to inputs such as energy-audit proportions of fuel consumed for rolling resistance, drag, braking, etc. is assessed by considering different scenarios. Though based on many approximations, the estimates approximate the potential energy savings possible because of improvements in tooling. For heavy trucks, annual diesel savings of 2.4-6.8 percent, and cumulative savings on the order of 54-154 percent, of 2001 consumption could accrue by 2050. By 2050, annual gasoline savings of 2.8-12 percent, and cumulative savings on the order of 83-350 percent of 2001 consumption could accrue for cars.

Rick Schmoyer, RLS

2004-12-03T23:59:59.000Z

95

The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report  

SciTech Connect

In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

2009-10-12T23:59:59.000Z

96

Advanced Energy Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Guides Energy Guides Shanti Pless National Renewable Energy Laboratory shanti.pless@nrel.gov 303-384-6365 April 4 2013 2 | Building Technologies Office eere.energy.gov Advanced Energy Design Guides Provide prescriptive energy savings guidance and recommendations by building type and geographic location: * Design packages and strategies to help owners and designers achieve 50% site energy savings over Standard 90.1 * Two series: - 30% savings over 90.1-1999

97

Advanced Energy Guides  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Guides Energy Guides Shanti Pless National Renewable Energy Laboratory shanti.pless@nrel.gov 303-384-6365 April 4 2013 2 | Building Technologies Office eere.energy.gov Advanced Energy Design Guides Provide prescriptive energy savings guidance and recommendations by building type and geographic location: * Design packages and strategies to help owners and designers achieve 50% site energy savings over Standard 90.1 * Two series: - 30% savings over 90.1-1999

98

Trends in Energy Management Technology - Part 4: Review ofAdvanced Applications in Energy Management, Control, and InformationSystems  

SciTech Connect

In this article, the fourth in a series, we provide a review of advanced applications in Energy Management, Control, and Information Systems (EMCIS). The available features for these products are summarized and analyzed with regard to emerging trends in EMCIS and potential benefits to the Federal sector. The first article [1] covered enabling technologies for emerging energy management systems. The second article [2] serves as a basic reference for building control system (BCS) networking fundamentals and includes an assessment of current approaches to open communications. The third article [3] evaluated several products that exemplify the current state of practice in EMCIS. It is important for energy managers in the Federal sector to have a high level of knowledge and understanding of these complex energy management systems. This series of articles provides energy practitioners with some basic informational and educational tools to help make decisions relative to energy management systems design, specification, procurement, and energy savings potential.

Yee, Gaymond; Webster, Tom

2003-08-01T23:59:59.000Z

99

Nick Wright Named Advanced Technologies Group Lead  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2013 Nick Nick Wright has been named head of the National Energy Research Scientific Computing Center's (NERSC) Advanced Technologies Group (ATG), which focuses on...

100

Advanced energy design and operation technologies research: Recommendations for a US Department of Energy multiyear program plan  

Science Conference Proceedings (OSTI)

This document describes recommendations for a multiyear plan developed for the US Department of Energy (DOE) as part of the Advanced Energy Design and Operation Technologies (AEDOT) project. The plan is an outgrowth of earlier planning activities conducted for DOE as part of design process research under the Building System Integration Program (BSIP). The proposed research will produce intelligent computer-based design and operation technologies for commercial buildings. In this document, the concept is explained, the need for these new computer-based environments is discussed, the benefits are described, and a plan for developing the AEDOT technologies is presented for the 9-year period beginning FY 1989. 45 refs., 37 figs., 9 tabs.

Brambley, M.R.; Crawley, D.B.; Hostetler, D.D.; Stratton, R.C.; Addision, M.S.; Deringer, J.J.; Hall, J.D.; Selkowitz, S.E.

1988-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency  

E-Print Network (OSTI)

Electrical Peak Demands in Commercial Buildings Center for Analysis and Dissemination of Demonstrated Energy Technologies (CADDET), IEA/OECD Analyses

Kiliccote, Sila; Piette, Mary Ann

2005-01-01T23:59:59.000Z

102

Advanced Lighting Technologies  

Science Conference Proceedings (OSTI)

This report continues the technical assessment of advanced lighting technologies in the following product areasdimmable light-emitting diode (LED) screw-in replacement lamp, hybrid compact fluorescent lamp/halogen screw-in replacement lamp, replacement recessed can LED downlight, organic LED (OLED) disc, replacement mini high-intensity discharge (HID) lamp and ballast system, and solid-state plasma lighting (miniature HID technology) high-bay fixture. The research in this project helps to demonstrate how...

2011-12-21T23:59:59.000Z

103

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGYPLUS Saves Federal Building 9 Million in Energy Costs Lawrence Berkeley National Laboratory Atmospheric Sciences Advanced Technologies Building Technologies Energy Analysis...

104

Peak Load Management of Thermal Loads Using Advanced Thermal Energy Storage Technologies  

Science Conference Proceedings (OSTI)

Almost 50% of electric energy delivered to residences is converted into some sort of thermal energyhot water, air conditioning, and refrigeration. Storing energy in thermal form is cheaper especially when the medium used to store the energy is an end-use medium for example, hot water. This technical update evaluates two different technologies for storing energyin cold water and in hot water.GreenPeak technology, a storage condensing unit (SCU) from IE Technologies, uses an ...

2013-12-20T23:59:59.000Z

105

Department of Energy, Duke Energy and EPRI Partner to Test Advanced...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy, Duke Energy and EPRI Partner to Test Advanced Energy Technologies for Utilities Department of Energy, Duke Energy and EPRI Partner to Test Advanced Energy Technologies for...

106

Advanced Energy and Water Recovery Technology from Low Grade Waste Heat  

SciTech Connect

The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer performance was also done, which shows this heat transfer enhancement approach works well in a wide parameters range for typical flue gas conditions. Better understanding of condensing heat transfer mechanism for porous membrane heat transfer surfaces, shows higher condensation and heat transfer rates than non-permeable tubes, due to existence of the porous membrane walls. Laboratory testing has documented increased TMC performance with increased exhaust gas moisture content levels, which has exponentially increased potential markets for the product. The TMC technology can uniquely enhance waste heat recovery in tandem with water vapor recovery for many other industrial processes such as drying, wet and dry scrubber exhaust gases, dewatering, and water chilling. A new metallic substrate membrane tube development and molded TMC part fabrication method, provides an economical way to expand this technology for scaled up applications with less than 3 year payback expectation. A detailed market study shows a broad application area for this advanced waste heat and water recovery technology. A commercialization partner has been lined up to expand this technology to this big market. This research work led to new findings on the TMC working mechanism to improve its performance, better scale up design approaches, and economical part fabrication methods. Field evaluation work needs to be done to verify the TMC real world performance, and get acceptance from the industry, and pave the way for our commercial partner to put it into a much larger waste heat and waste water recovery market. This project is addressing the priority areas specified for DOE Industrial Technologies Program's (ITP's): Energy Intensive Processes (EIP) Portfolio - Waste Heat Minimization and Recovery platform.

Dexin Wang

2011-12-19T23:59:59.000Z

107

Hydrothermal spallation drilling and advanced energy conversion technologies for Engineered Geothermal Systems  

E-Print Network (OSTI)

The purpose of this research was to study the various factors affecting the economic and technical feasibility of Engineered Geothermal Systems, with a special emphasis on advanced drilling technologies. The first part of ...

Augustine, Chad R

2009-01-01T23:59:59.000Z

108

Advanced technology thermal energy storage and heat exchange systems for solar applications: a survey of current research  

DOE Green Energy (OSTI)

A survey is presented of the advanced research and development projects underway in the U.S. in all of the known media and methods for storing and transferring thermal energy in solar applications. The technologies reviewed include innovative heat exchange and heat transport methods, advanced sensible heat storage in water, rocks, earth and combinations of these for both short term and annual storage, phase change materials, and reversible chemical reactions. This survey is presented in a structure of categories and subcategories of thermal energy storage and heat transfer technology. Within a given subcategory the project descriptions are listed under the name of the organizations conducting the work, arranged in alphabetical order.

Michaels, A. I.

1978-01-01T23:59:59.000Z

109

Program on Technology Innovation: Opportunities for Advancing End-Use Energy Efficiency  

Science Conference Proceedings (OSTI)

This Strategic Science and Technology project identified promising opportunities to develop technologies that improve end-use energy efficiency and gauged interest within the utility industry and other stakeholders in funding research and development initiatives to develop these opportunities.

2005-05-10T23:59:59.000Z

110

Application of a Tractive Energy Analysis to Quantify the Benefits of Advanced Efficiency Technologies Using Characteristic Drive Cycle Data  

SciTech Connect

Accurately predicting the fuel savings that can be achieved with the implementation of various technologies developed for fuel efficiency can be very challenging, particularly when considering combinations of technologies. Differences in the usage of highway vehicles can strongly influence the benefits realized with any given technology, which makes generalizations about fuel savings inappropriate for different vehicle applications. A model has been developed to estimate the potential for reducing fuel consumption when advanced efficiency technologies, or combinations of these technologies, are employed on highway vehicles, particularly medium- and heavy-duty trucks. The approach is based on a tractive energy analysis applied to drive cycles representative of the vehicle usage, and the analysis specifically accounts for individual energy loss factors that characterize the technologies of interest. This tractive energy evaluation is demonstrated by analyzing measured drive cycles from a long-haul trucking fleet and the results of an assessment of the fuel savings potential for combinations of technologies are presented. The results of this research will enable more reliable estimates of the fuel savings benefits that can be realized with particular technologies and technology combinations for individual trucking applications so that decision makers can make informed investment decisions for the implementation of advanced efficiency technologies.

LaClair, Tim J [ORNL

2012-01-01T23:59:59.000Z

111

Advanced Technology Vehicles Manufacturing Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

112

Advanced Metering Infrastructure Technology  

Science Conference Proceedings (OSTI)

Revenue security is a major concern for utilities. Theft of electric service in the United States is widespread. In 2006, the revenue estimate for non-technical losses was 6.5 billion. Non-technical losses are associated with unidentified and uncollected revenue from pilferage, tampering with meters, defective meters, and errors in meter reading. In this report, revenue security describes the use of advanced metering infrastructure (AMI) technology to minimize non-technical losses.

2008-12-08T23:59:59.000Z

113

Advanced Lighting Technologies:Energy Efficiency and Power Quality of Lighting Sources  

Science Conference Proceedings (OSTI)

his EPRI technical update is the third in a series of technical assessments of advanced lighting technologies. A total of seven lighting products were assessed in 2013: low cost screw based light-emitting diode (LED) lamps, retrofit LED ceiling fixtures, suspended LED fixtures, LED-based 2x4 troffers, LED high bay fixtures, innovative LED screw based lamps, and LED hospitality lighting. Prior to beginning an in-depth assessment, the EPRI Lighting Group evaluated each of the tested technologies to ...

2013-12-12T23:59:59.000Z

114

Advanced fossil energy utilization  

Science Conference Proceedings (OSTI)

This special issue of Fuel is a selection of papers presented at the symposium Advanced Fossil Energy Utilization co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 2630, 2009.

Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

2010-01-01T23:59:59.000Z

115

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory Atmospheric Sciences Advanced Technologies Building Technologies Energy Analysis Indoor Environment Fall 2003 Volume 4 Number 4 NEWS chool districts in...

116

ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report of Report of ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE 24 October 2003 BURTON RICHTER, CHAIR DARLEANE C. HOFFMAN SEKAZI K. MTINGWA RONALD P. OMBERG SILVIE PILLON JOY L. REMPE I. INTRODUCTION AND SUMMARY The committee met in Washington on September 16 and 17 to review progress in the program with respect to a changed set of mission priorities. Our last meeting took place in December 2002 after the reorganization that had placed the Advanced Fuel Cycle Initiative (AFCI) and the GEN IV program together in the Advanced Nuclear Research Office (AN-20). Since mission priorities have been evolving, the committee felt that it should wait until they have settled down before we met again. We have kept in touch

117

Advanced Vehicle Testing Activity: Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energy's Vehicle Technologies Office to conduct various types of energy storage...

118

Department of Energy Advances Commercialization of Climate Change...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Advances Commercialization of Climate Change Technology Department of Energy Advances Commercialization of Climate Change Technology October 31, 2006 - 9:17am...

119

Nuclear Energy Enabling Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enabling Technologies Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Energy Enabling Technologies The Nuclear Energy Enabling Technologies (NEET) Program will develop crosscutting technologies that directly support and complement the Department of Energy, Office of Nuclear Energy's (DOE-NE) advanced reactor and fuel cycle concepts, focusing on innovative research that offers the promise of dramatically improved performance. NEET will coordinate research efforts on common issues and challenges that confront the DOE-NE R&D programs (Light Water Reactor Sustainability [LWRS], Next Generation Nuclear Plant [NGNP], Advanced Reactor Technologies [ART], and Small Modular Reactors [SMR]) to advance technology development and deployment. The activities undertaken in the NEET program will

120

Information Technology | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Photon Source Information Technology Support Search APS ... Search Button About User Information News & Events Science & Education Beamlines Divisions Argonne Home >...

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Advanced solar thermal technology  

SciTech Connect

The application of dish solar collectors to industrial process heat (IPH) has been reviewed. IPH represents a market for displacement of fossil fuels (10 quads/y). A 10% market penetration would indicate a substantial market for solar thermal systems. Apparently, parabolic dish systems can produce IPH at a lower cost than that of troughs or compound parabolic concentrators, even though dish fabrication costs per unit area are more expensive. Successful tests of point-focusing collectors indicate that these systems can meet the energy requirements for process heat applications. Continued efforts in concentrator and transport technology development are needed. 7 figures.

Leibowitz, L.P.; Hanseth, E.; Liu, T.M.

1982-06-01T23:59:59.000Z

122

Green Energy Technologies Create Green Jobs  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Energy Technologies Create Green Jobs The U.S. Department of Energy (DOE) is developing advanced energy technologies that can help address climate change and reduce...

123

Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981  

DOE Green Energy (OSTI)

This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

Bradley, R.A. (comp.) [comp.

1981-12-01T23:59:59.000Z

124

Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program semiannual progress report for the period ending September 30, 1991. Fossil Energy Program  

Science Conference Proceedings (OSTI)

The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

Judkins, R.R.; Cole, N.C. [comps.

1992-04-01T23:59:59.000Z

125

Power Technologies Energy Data Book: Fourth Edition, Chapter...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Energy Storage Technology Description Advanced storage technologies under active development include processes that are mechanical (flywheels, pneumatic), electrochemical...

126

Hot New Advances in Water Heating Technology | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY.GOV - Hot New Advances in Water Heating Technology April 18, 2013 Here at the Energy Department, we are working with our National Laboratories, private companies and...

127

Department of Energy Awards More Than $11 Million to Advance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Awards More Than 11 Million to Advance Innovative Geothermal Energy Technologies Department of Energy Awards More Than 11 Million to Advance Innovative...

128

Department of Energy Awards More Than $11 Million to Advance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

here Home Department of Energy Awards More Than 11 Million to Advance Innovative Geothermal Energy Technologies Department of Energy Awards More Than 11 Million to Advance...

129

Advancing Energy Systems through Integration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Energy Systems Advancing Energy Systems through Integration Presented in partnership with the United States Department of Energy November 20, 2012 Webinar Community Renewable Energy Success Stories: District Heating with Renewable Energy Saint Paul's Community Energy System * Underground network of pipes aggregate heating and cooling needs * Aggregated thermal loads allows application of technologies and fuels not feasible for individual buildings * Increases fuel flexibility, rate stability, and reliability Community Scale Heating and Cooling 4 ever-greenenergy.com Ever-Green Energy Integrated Energy System flexible & renewable fuel sources reliable and effective production & storage hot & chilled water loops maximize energy conservation & reliability

130

Development of information and market creation mechanisms for promoting advanced energy efficient transportation technologies. Final report to the U.S. Department of Energy  

SciTech Connect

This report summarizes the work undertaken by ACEEE under the U.S. DOE project entitled ''Development of Information and Market Creation Mechanisms for Promoting Advanced Energy Efficient Transportation Technologies.'' A description of completed tasks is given, followed by recommendations and proposed next steps for ACEEE's work in this area.

DeCicco, John; Bradley, John; Richman, Nessa

2000-10-25T23:59:59.000Z

131

Advanced Modular Inverter Technology Development  

DOE Green Energy (OSTI)

Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

Adam Szczepanek

2006-02-04T23:59:59.000Z

132

Advanced Modular Inverter Technology Development  

SciTech Connect

Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

Adam Szczepanek

2006-02-04T23:59:59.000Z

133

National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology  

Science Conference Proceedings (OSTI)

National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

Hules, J. [ed.

1996-11-01T23:59:59.000Z

134

Advanced Manufacturing Technology Consortia (AMTech) ...  

Science Conference Proceedings (OSTI)

... approach, such as industry, technology, or the ... Are DOE national laboratories (federally funded ... centers, FFRDCs) or energy lab contractors eligible ...

2013-08-05T23:59:59.000Z

135

Advanced Technology and Materials Co Ltd AT M | Open Energy Information  

Open Energy Info (EERE)

Materials Co Ltd AT M Materials Co Ltd AT M Jump to: navigation, search Name Advanced Technology and Materials Co Ltd (AT&M) Place Beijing, Beijing Municipality, China Zip 100081 Sector Solar Product Materials research company with a programme working on thin-film copper indium sulphate solar PV cells. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Energy Department Accelerates the Deployment of Advanced Vehicle...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerates the Deployment of Advanced Vehicle Technologies with Private Industry Partnerships Energy Department Accelerates the Deployment of Advanced Vehicle Technologies with...

137

Ohio Advanced Energy Manufacturing Center  

Science Conference Proceedings (OSTI)

The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

Kimberly Gibson; Mark Norfolk

2012-07-30T23:59:59.000Z

138

Ohio Advanced Energy Manufacturing Center  

SciTech Connect

The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

Kimberly Gibson; Mark Norfolk

2012-07-30T23:59:59.000Z

139

Advanced Heat Transfer Technologies Increase Vehicle Performance and Reliability, The Spectrum of Clean Energy Innovation (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Heat Transfer Advanced Heat Transfer Technologies Increase Vehicle Performance and Reliability Keeping yourself cool while driving your car on a hot, sunny day can be a challenge. But it can be even more challenging to cool the power electronic components that are critically important in hybrid electric and all-electric vehicles. Researchers at the National Renewable Energy Laboratory (NREL) investigate and develop these vehicles and their components to help reduce our use of imported petroleum and curb the emissions associated with climate change. A vehicle's power electronic components include the motor controller, converters, and inverters that condition the flow of electrical power between the battery and the electric motor. The problem is that power electronics generate a lot of heat. This heat can decrease

140

Energy Storage Technologies - Energy Innovation Portal  

Hydrogen Electrochemical Energy Storage Device. The hydrogen fuel cell market is still in the early stages of development. However, with advances in technology the ...

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Advanced Technology Vehicles Manufacturing Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

142

Nick Wright Named Advanced Technologies Group Lead  

NLE Websites -- All DOE Office Websites (Extended Search)

Nick Wright Named Nick Wright Named Advanced Technologies Group Lead Nick Wright Named Advanced Technologies Group Lead February 4, 2013 Nick Nick Wright has been named head of the National Energy Research Scientific Computing Center's (NERSC) Advanced Technologies Group (ATG), which focuses on understanding the requirements of current and emerging applications to make choices in hardware design and programming models that best serve the science needs of NERSC users. ATG specializes in benchmarking, system performance, debugging and analysis, workload monitoring, use of application modeling tools, and future algorithm scaling and technology assessment. The team also engages with vendors and the general research community to advocate technological features that will enhance the effectiveness of systems for NERSC scientists.

143

Materials challenges in advanced coal conversion technologies  

SciTech Connect

Coal is a critical component in the international energy portfolio, used extensively for electricity generation. Coal is also readily converted to liquid fuels and/or hydrogen for the transportation industry. However, energy extracted from coal comes at a large environmental price: coal combustion can produce large quantities of ash and CO{sub 2}, as well as other pollutants. Advanced technologies can increase the efficiencies and decrease the emissions associated with burning coal and provide an opportunity for CO{sub 2} capture and sequestration. However, these advanced technologies increase the severity of plant operating conditions and thus require improved materials that can stand up to the harsh operating environments. The materials challenges offered by advanced coal conversion technologies must be solved in order to make burning coal an economically and environmentally sound choice for producing energy.

Powem, C.A.; Morreale, B.D. [National Energy Technology Laboratory, Albany, OR (United States)

2008-04-15T23:59:59.000Z

144

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Advanced Manufacturing Trades Training Program Business Program Lead Yvonne Baros Advanced Manufacturing Trades Training Program Tom Souther Advanced Technology Academy...

145

Advanced Energy Retrofit Guide: Practical Ways to Improve Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

BUILDING TECHNOLOGIES PROGRAM Advanced Energy Retrofit Guide Practical Ways to Improve Energy Performance Grocery Stores In collaboration with: Prepared by: National Renewable...

146

Ceramic Technology for Advanced Heat Engines Project  

DOE Green Energy (OSTI)

The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

Not Available

1990-08-01T23:59:59.000Z

147

Wave Energy Conversion Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

148

Engineered Sequestration and Advanced Power Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia University. Predictions of innovative energy technologies for the next century usually include everything from fusion to photovoltaics with the one notable exception of fossil fuels. Because of fears of diminishing supplies, pollution and climate change, the public is reluctant to consider these hydrocarbon fuels for the energy needs of the twenty- first century. An energy strategy for the new century, however, cannot ignore fossil fuels. Contrary to popular belief, they are plentiful and inexpensive. While it is true that fossil fuels are limited by their environmental impact, new technologies to eliminate environmental concerns are currently being developed. Managing the emission of

149

Advanced Analysis Software Key to New, Energy-Efficient ...  

Advanced Analysis Software Key to New, Energy-Efficient Technologies Leveraging Scientific and Engineering Know-How to Advance Sources of Renewable Energy

150

Using Advanced Control and Power Technologies to Improve the Reliability and Energy Efficiency of Petroleum Refining and Petrochemical Manufacturing in California  

Science Conference Proceedings (OSTI)

Full implementation of advanced control and power technologies could save U.S. refineries and petrochemical plants an estimated $7.14 billion/year. California refineries process 1,893,020 barrels of crude per day -- about 11% of the total U.S. crude. Implementation of advanced control and power technologies could provide California refineries and petrochemical plants significant savings from increased energy efficiency and productivity. This report identifies these savings opportunities for California re...

2004-05-17T23:59:59.000Z

151

Energy Department Launches National Fuel Cell Technology Evaluation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches National Fuel Cell Technology Evaluation Center to Advance Fuel Cell Technologies Energy Department Launches National Fuel Cell Technology Evaluation Center to Advance...

152

ADVANCE TECHNOLOGIES FOR THE INFRASTRUCTURE ...  

Science Conference Proceedings (OSTI)

... 3 Office of Technology Policy on Energy (FY) 2008 Budget, February 2007 4 Exxon Corp. July 2008 Presentation at the U. of Pennsylvania. ...

2011-08-02T23:59:59.000Z

153

Systems and Controls Analysis and Testing; Harvesting More Wind Energy with Advanced Controls Technology (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet outlines the systems and controls analysis and testing that takes place at the NWTC on the Controls Advanced Research Turbines.

Not Available

2010-01-01T23:59:59.000Z

154

Vehicle Technologies Office: Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

that feature one or more advanced technologies, including: Plug-in hybrid electric vehicle technologies Extended range electric vehicle technologies Hybrid electric, pure...

155

INTRODUCTION The U.S. Department of Energy's (DOE) Office of Advanced Automotive Technologies conducts research  

E-Print Network (OSTI)

conducts research and development on advanced rechargeable batteries for application in electric vehicles (EVs) and hybrid electric vehicle (HEV) systems. Problems impeding the development of high), which develops advanced batteries for EVs, and the Partnership for a New Generation of Vehicles (PNGV

Kwak, Juhyoun

156

Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency  

E-Print Network (OSTI)

demand shifting are thermal energy storage systems, whichlockout, pre-cooling, thermal energy storage, cooling loadlockout Pre-cooling Thermal energy storage Cooling

Kiliccote, Sila; Piette, Mary Ann

2005-01-01T23:59:59.000Z

157

Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency  

E-Print Network (OSTI)

for DR and energy efficiency reduce the cost of implementingfor DR and energy efficiency reduce the cost of implementingfor energy efficiency are expected to reduce the cost for

Kiliccote, Sila; Piette, Mary Ann

2005-01-01T23:59:59.000Z

158

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 11, 2010 CX-002350: Categorical Exclusion Determination Ohio Advanced...

159

Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency  

E-Print Network (OSTI)

equipment lockout, pre-cooling, thermal energy storage,Equipment lockout Pre-cooling Thermal energy storage

Kiliccote, Sila; Piette, Mary Ann

2005-01-01T23:59:59.000Z

160

Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams  

SciTech Connect

Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina membrane layer on the surface of the metallic tubes was evaluated. Evaluation of this new style of membrane tube involved exposure to SO{sub 2} containing gases as well as to materials with a potential for fouling. Once the choice of substrate and membrane materials and design were confirmed, about 150 tubes were fabricated and assembled into three modules. These modules were mounted on an industrial size boiler and their performance carefully monitored during a limited testing period. The positive results of this performance test confirm the feasibility of utilizing such a system for recovery of heat and water from industrial waste streams. The improved module design along with use of long metallic substrate tubes with a ceramic membrane on the outer surface resulted in the successful, limited scale demonstration of the Transport Membrane Condenser (TMC) technology in the GTI test facility. This test showed this technology can successfully recover a significant amount of heat and water from gaseous waste streams. However, before industry will make the investment to install a full scale TMC, a full scale system will need to be constructed, installed and successfully operated at a few industrial sites. Companies were identified that had an interest in serving as a host site for a demonstration system.

Keiser, J. R.; Wang, D. [Gas Technology Institute; Bischoff, B.; Ciora, [Media and Process Technology; Radhakrishnan, B.; Gorti, S. B.

2013-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Advanced Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Jump to: navigation, search Name Advanced Renewable Energy Place Italy Sector Biomass, Renewable Energy, Wind energy Product Advanced Renewable Energy Ltd combines...

162

Advanced Lighting Technology Program for Federal Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E's Innovative Federal Collaboration E's Innovative Federal Collaboration Advanced Lighting Technology Program for Federal Buildings Federal Utility Partnership Working Group November 1, 2006 "A 3 MW Success Story: Delivering on the Promise" Today's Presentation * Setting the Scene - U.S & Global Perspective * Program Overview: - Advanced Lighting Technology Program for Federal Buildings * Benefits - Energy and environmental * Conclusion: - The Lamborghini Analogy Setting the Scene U.S. Policy: The National Direction "The answer to high energy prices is the kind of comprehensive approach embraced by the President-that includes...increasing our reliance on energy efficiency and conservation. "Let me be clear: Encouraging greater energy efficiency is part and parcel of changing the way we power our homes and

163

Fossil Energy Advanced Research and Technology Development (AR TD) Materials Program semiannual progress report for the period ending September 30, 1991  

Science Conference Proceedings (OSTI)

The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

Judkins, R.R.; Cole, N.C. (comps.)

1992-04-01T23:59:59.000Z

164

Advancing Building Energy Codes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Advancing Building Energy Codes Advancing Building Energy Codes 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. Energy Codes Ensure Efficiency in Buildings

165

Energy and technology review  

SciTech Connect

Brief discussions of research progress on the following topics are given: (1) lasers and laser applications, (2) advanced energy systems, (3) science and technology, and (4) national security. Some experiments on the in- flight laser irradiation of ammonia pellets are discussed. (MOW)

Carr, R.B.; McCleb, C.S.; Prono, J.K. (eds.)

1976-01-01T23:59:59.000Z

166

University Program in Advanced Technology | National Nuclear...  

National Nuclear Security Administration (NNSA)

& Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > Institutional Research & Development > University Program in Advanced...

167

Advanced Vehicle Technology Analysis & Evaluation Team  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Technology Analysis and Evaluation Team Lee Slezak Manager, AVTAET Office of FreedomCAR and Vehicle Technologies DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. 2 Charter * AVTAET's mission is to develop and apply the tools and skills necessary to: - Identify technology development needs and requirements to support OFCVT goals and - Collect, analyze, and disseminate unbiased information on advanced transportation technology components, systems, and vehicles that potentially support OFCVT goals. * Goal of analytical groups at ANL, NREL and ORNL - Develop and apply modeling and simulation tools to help DOE, manufacturers and suppliers design and develop clean, energy efficient components and systems for

168

Energy Programs | Advanced Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Storage Systems Advanced Storage Systems Tapping Into Fuel Cells and Batteries Page 1 of 2 Imagine being able to drive a forty-mile round-trip commute every day without ever going near a gas pump. As the United States moves towards an energy economy with reduced dependence on foreign oil and fewer carbon emissions, development of alternative fuel sources and transmission of the energy they provide is only part of the equation. An increase in energy generated from intermittent renewable sources and the growing need for mobile energy will require new, efficient means of storing it, and technological advancements will be necessary to support the nation's future energy storage needs. A change toward alternative transportation - hydrogen fuel-cell vehicles, hybrid electric vehicles, plug-in hybrid-electric vehicles and electric

169

Ceramic Technology For Advanced Heat Engines Project  

DOE Green Energy (OSTI)

Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.

Not Available

1990-12-01T23:59:59.000Z

170

Nuclear Energy Enabling Technologies | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Energy Enabling Technologies The Nuclear Energy Enabling Technologies (NEET) Program will develop...

171

Leveraging advanced and smart technologies to integrate rewewable energy in New York  

Science Conference Proceedings (OSTI)

Wind energy provides many benefits such as a low energy costs and near zero carbon footprint, but it also brings new challenges, a consequence of wind's intermittent nature. These challenges must be overcome by ISO/RTOs and other entities responsible ...

Rana Mukerji

2012-01-01T23:59:59.000Z

172

Advanced Analysis Software Key to New, Energy-Efficient ...  

Advanced Analysis Software Key to New, Energy-Efficient Technologies Leveraging Scientific and Engineering Know-How to Advance Sources of Renewable En ...

173

NETL: News Release - Energy Department Advances Carbon Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Department Advances Carbon Capture and Storage Research on Two Fronts Recovery Act Projects to Provide Student Training, Technology Advancement Washington, D.C. -...

174

Building Technologies Office: Global Superior Energy Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Superior Energy Global Superior Energy Performance Partnership to someone by E-mail Share Building Technologies Office: Global Superior Energy Performance Partnership on Facebook Tweet about Building Technologies Office: Global Superior Energy Performance Partnership on Twitter Bookmark Building Technologies Office: Global Superior Energy Performance Partnership on Google Bookmark Building Technologies Office: Global Superior Energy Performance Partnership on Delicious Rank Building Technologies Office: Global Superior Energy Performance Partnership on Digg Find More places to share Building Technologies Office: Global Superior Energy Performance Partnership on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

175

National Energy Technology Laboratory National Energy Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

4U.S. Department of Energy U.S. Department of Energy National Energy Technology Laboratory National Energy Technology Laboratory Office of Public Affairs Office of Public Affairs...

176

Vehicle Technologies Office: Solid State Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid State Energy Conversion The Solid State Energy Conversion R&D activity is focused on developing advanced thermoelectric technologies for utilizing engine waste heat by...

177

Ceramic technology for advanced heat engines project  

DOE Green Energy (OSTI)

The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

Not Available

1990-09-01T23:59:59.000Z

178

Clean Cities: Advanced Vehicle Technology Competitions  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas...

179

NETL: Mercury Emissions Control Technologies - Advanced Utility  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Utility Mercury-Sorbent Field Testing Program Advanced Utility Mercury-Sorbent Field Testing Program Sorbent Technologies Corporation, will test an advanced halgenated activated carbon to determine the mercury removal performance and relative costs of sorbent injection for advanced sorbent materials in large-scale field trials of a variety of combinations of coal-type and utility plant-configuration. These include one site (Detroit Edison's St. Clair Station) with a cold-side ESP using subbituminous coal, or blend of subbituminous and bituminous coal, and one site (Duke Energy's Buck Plant) with a hot-side ESP which burns a bituminous coal. Related Papers and Publications: Semi-Annual Technical Progress Report for the period April 1 - October 31, 2004 [PDF-2275KB] Semi-Annual Technical Progress Report for the period of October 2003 - March 2004 [PDF-1108KB]

180

Saving energy and improving IAQ through application of advanced air cleaning technologies  

SciTech Connect

In the future, we may be able use air cleaning systems and reduce rates of ventilation (i.e., reduce rates of outdoor air supply) to save energy, with indoor air quality (IAQ) remaining constant or even improved. The opportunity is greatest for commercial buildings because they usually have a narrower range of indoor pollutant sources than homes. This article describes the types of air cleaning systems that will be needed in commercial buildings.

Fisk, W.J; Destaillats, H.; Sidheswaran, M.A.

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Advanced Lighting Technologies Application Guidelines: 1990  

SciTech Connect

The Advanced Lighting Technologies Application Guidelines document consists of eight guidelines that provide an overview of specific lighting technologies and design application techniques utilizing energy-efficient lighting products. Lighting Design Practice assesses energy-efficient lighting strategies and explains how to obtain quality lighting design and consulting services. Luminaries and Lighting Systems surveys advanced lighting fixture products designed to take advantage of current energy-efficient lamp technologies and includes luminaire tables to allow users to collect photometric performance characteristics for common commercial luminaires. Each of the remaining six guidelines -- Computer-Aided Lighting Design, Energy-efficient and Electronic Ballasts, Full-Size Fluorescent Lamps, Compact Fluorescent Lamps, Conventional Shape Tungsten-Halogen Lamps, and Compact Metal Halide and White High Pressure Sodium Lamps -- includes a technology overview section, a description of current products available on the market, and an applications section. The document is intended for use by electric utility personnel involved in lighting programs, lighting designers, electrical engineers, architects, lighting manufacturers' representatives, and other lighting professionals.

Eley, C. (Eley (Charles) Associates, San Francisco, CA (United States))

1992-09-01T23:59:59.000Z

182

Energy Basics: Solar Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Solar energy technologies produce electricity from the energy of the sun. Small solar energy systems can provide electricity for homes, businesses, and remote power...

183

DOE Signs Advanced Enrichment Technology License and Facility Lease |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Enrichment Technology License and Facility Lease Advanced Enrichment Technology License and Facility Lease DOE Signs Advanced Enrichment Technology License and Facility Lease December 8, 2006 - 9:34am Addthis Announces Agreements with USEC Enabling Deployment of Advanced Domestic Technology for Uranium Enrichment WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today announced the signing of a lease agreement with the United States Enrichment Corporation, Inc. (USEC) for their use of the Department's gas centrifuge enrichment plant (GCEP) facilities in Piketon, OH for their American Centrifuge Plant. The Department of Energy (DOE) also granted a non-exclusive patent license to USEC for use of DOE's centrifuge technology for uranium enrichment at the plant, which will initiate the first successful deployment of advanced domestic enrichment technology in the

184

Seven Universities Selected To Conduct Advanced Turbine Technology Studies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seven Universities Selected To Conduct Advanced Turbine Technology Seven Universities Selected To Conduct Advanced Turbine Technology Studies Seven Universities Selected To Conduct Advanced Turbine Technology Studies August 4, 2010 - 1:00pm Addthis Washington, DC - Seven universities have been selected by the U.S. Department of Energy (DOE) to conduct advanced turbine technology studies under the Office of Fossil Energy's (FE) University Turbine Systems Research (UTSR) Program. The universities - located in Georgia, Texas, North Dakota, Louisiana, California, and New York - will investigate the technology needed for the clean and efficient operation of turbines using coal-derived systhesis gas (syngas) and high hydrogen content (HHC) fuels. This technology is crucial to developing advanced coal-based power generation processes, such as

185

Seven Universities Selected To Conduct Advanced Turbine Technology Studies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seven Universities Selected To Conduct Advanced Turbine Technology Seven Universities Selected To Conduct Advanced Turbine Technology Studies Seven Universities Selected To Conduct Advanced Turbine Technology Studies August 4, 2010 - 1:00pm Addthis Washington, DC - Seven universities have been selected by the U.S. Department of Energy (DOE) to conduct advanced turbine technology studies under the Office of Fossil Energy's (FE) University Turbine Systems Research (UTSR) Program. The universities - located in Georgia, Texas, North Dakota, Louisiana, California, and New York - will investigate the technology needed for the clean and efficient operation of turbines using coal-derived systhesis gas (syngas) and high hydrogen content (HHC) fuels. This technology is crucial to developing advanced coal-based power generation processes, such as

186

Nuclear Energy Enabling Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Reactor Technologies Fuel Cycle Technologies International Nuclear Energy Policy and Cooperation Nuclear...

187

Trends in Energy Management Technology - Part 4: Review of Advanced Applications in Energy Management, Control, and Information Systems  

E-Print Network (OSTI)

for emerging energy management systems. The second article [of these complex energy management systems. This series ofrelative to energy management systems design, specification,

Yee, Gaymond; Webster, Tom

2003-01-01T23:59:59.000Z

188

FY 2006 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

AdvAnced vehicle Technology AdvAnced vehicle Technology AnAlysis And evAluATion AcTiviTies U.S. Department of Energy FreedomCAR and Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2006 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager Advanced Vehicle Technology Analysis and Evaluation Activities FY 2006 Annual Report CONTENTS I. INTRODUCTION............................................................................................................................ 1 II. MODELING AND SIMULATION ................................................................................................ 9

189

Trends in Energy Management Technology - Part 4: Review of Advanced Applications in Energy Management, Control, and Information Systems  

E-Print Network (OSTI)

to benchmark energy usage by normalizing it with buildingTo benchmark different buildings or sites, energy data can

Yee, Gaymond; Webster, Tom

2003-01-01T23:59:59.000Z

190

Advanced Modeling & Simulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation ADVANCING THE STATE OF THE ART Innovation advances science. Historically, innovation resulted almost exclusively from fundamental theories combined with observation and experimentation over time. With advancements in engineering, computing power and visualization tools, scientists from all disciplines are gaining insights into physical systems in ways not possible with traditional approaches alone. Modeling and simulation has a long history with researchers and scientists exploring nuclear energy technologies. In fact, the existing fleet of currently operating reactors was licensed with computational tools that were produced or initiated in the 1970s. Researchers and scientists in

191

DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ten Projects to Conduct Advanced Turbine Technology Ten Projects to Conduct Advanced Turbine Technology Research DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research August 14, 2013 - 1:44pm Addthis WASHINGTON, D.C. - Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program have been selected by the U.S. Department of Energy (DOE) for additional development. Developing gas turbines that run with greater cleanness and efficiency than current models is of great benefit both to the environment and the power industry, but development of such advanced turbine systems requires significant advances in high-temperature materials science, an understanding of combustion phenomena, and development of innovative

192

Conservation and renewable energy technologies for buildings  

DOE Green Energy (OSTI)

The Office of building Technologies (OBT) pursues advanced energy efficiency and renewable technologies and accelerates the rate of adoption of these technologies in the residential and commercial sectors through research, development, and demonstration.

Not Available

1991-05-01T23:59:59.000Z

193

Crossing the Valley of Death: Policy Options to Advance the Uptake of Energy-Efficient Emerging Technologies in US Industry  

E-Print Network (OSTI)

Plant managers around the world are interested in improving the energy efficiency of their facilities while both growing and modernizing their manufacturing capabilities. Emerging industrial technologies, both at the component-level and system-level, are one important means of capturing significant, lasting efficiency gains. Public policy can play a decisive role in enabling and encouraging industrial energy efficiency, whether the efficiency improvements come through equipment upgrades or best operating practices. In the United States the industrial sector is impacted by many policies-fiscal and monetary, economic development, energy pricing, climate legislation, tax code, and direct subsidies, among others-all of which help shape the strategy and health of American manufacturers. This paper examines the market conditions and policy measures that affect the commercialization and adoption rate of promising, new energy-efficient industrial technologies. Market maturity, macroeconomic health, public and private investment, perceived risk, organizational decision-making, and regulatory certainty are all factors that influence the market penetration of emerging industrial technologies. Understanding their interplay is crucial to providing a policy environment that fosters industrial energy efficiency. In addition to a thorough literary review, this paper draws from a series of discussions with research experts, government officials, academics, equipment manufacturers, technical experts, trade representatives, and leading spokespersons from industry in the US. Authors then distill key findings into a suite of policy options that can help catalyze private technology investment and increase the uptake of emerging, energy-efficient, industrial technologies. Proposed policy options are organized within four central themes: 1) Greater emphasis on emerging technologies within existing energy efficiency activities; 2) Emerging technology at the intersection of energy efficiency and air quality priorities; 3) Diffusion of reliable information and technical data; and 4) Alignment and coordination of public and private activities.

Harris, J.; Bostrom, P.; Lung, R. B.

2011-01-01T23:59:59.000Z

194

Availability of advanced foreign energy conversion and conservation technology for use in the United States. Biennial report  

SciTech Connect

The assignment by DOE requested Galaxy to, Review and evaluate all field data and to define areas where foreign work is ready to be implemented by US; areas where US work might be dropped since foreign R and D is more advanced; areas where foreign R and D indicate sufficient promise for the US to initiate work in; areas where cooperative R and D ventures or licensing agreements might prove beneficial, etc. The specific technologies to be investigated by Galaxy were set forth in Tasks I and V of the contract as follows: Task I: (A) waste heat utilization, (B) advanced cycles, (C) component reliability and efficiency, (D) heat transfer, and (E) combustion and materials; Task V: (A) controls and process efficiency; (B) materials and fabrication; (C) components and heat engines; (D) thermodynamics and heat transfer; (E) fuel cells; (F) combustion and alternate fuels; and (G) heat utilization, planning and analysis. The foreign technology is briefly identified within the areas set forth. (WHK)

Straus, R W; Thurman, R S; Carsey, J N; Fujishima, C; Hammel, J; Dietrich, P; Pfeil, R; Bottomley, K

1978-12-01T23:59:59.000Z

195

Ohio Advanced Energy | Open Energy Information  

Open Energy Info (EERE)

Advanced Energy Jump to: navigation, search Name Ohio Advanced Energy Address 100 S. Third Street Place Columbus, Ohio Zip 43201 Website http:www.ohioadvancedenergy. References...

196

Transportation technology energy options  

SciTech Connect

New transportation technologies and their potential contribution to the solution of the energy problem are discussed. DOE transportation technologies briefly discussed are: Stirling and gas-turbine engines; constant-speed accessory-drive system; heavy-duty diesel-truck bottoming cycle; continuously variable transmission; turbocompound diesel engine; gas-turbine bus; new hydrocarbons (broad-cut petroleum fuels); alcohol fuels; synthetic fuels; advanced fuels (hydrogen); electric and hybrid vehicles; marine-diesel bottoming cycle; coal/oil-slurry marine steam turbines; pipeline bottoming cycle; and medium-speed diesel alternative fuels.

Bernard, M.J. III

1979-01-01T23:59:59.000Z

197

Energy and technology review  

SciTech Connect

The state of the laboratory address by LLNL Director Roger Batzel is summarized, and a breakdown of the laboratory funding is given. The Livermore defense-related committment is described, including the design and development of advanced nuclear weapons as well as research in inertial confinement fusion, nonnuclear ordnance, and particle beam technology. LLNL is also applying its scientific and engineering resources to the dual challenge of meeting future energy needs without degrading the quality of the biosphere. Some representative examples are given of the supporting groups vital for providing the specialized expertise and new technologies required by the laboratory's major research programs. (GHT)

Stowers, I.F.; Crawford, R.B.; Esser, M.A.; Lien, P.L.; O'Neal, E.; Van Dyke, P. (eds.)

1982-07-01T23:59:59.000Z

198

Energy Basics: Renewable Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Renewable Energy Technologies Renewable energy...

199

DOE Hydrogen and Fuel Cells Program Record 5025: Advanced Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

and revolutionary solar and wind technologies will reduce overall demand for natural gas and lead to lower energy costs. The President's Advanced Energy Initiative proposes...

200

Energy Department Announces $2.5 Million to Advance ...  

Energy Department Announces $2.5 Million to Advance Technologies for Clean-Burning, Efficient Biomass Cookstoves. April 13, 2012. WASHINGTON, DC The Energy ...

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Technologies  

Technologies Energy. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor; Modular Electromechanical ...

202

Technologies  

Technologies Energy, Utilities, & Power Systems. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor

203

NETL: Control Technology: Advanced Hybrid Particulate Collector  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Hybrid Particulate Collector Advanced Hybrid Particulate Collector Under DOE-NETL sponsorship, the University of North Dakota, Energy and Environmental Research Center (UND-EERC) has developed a new concept in particulate control, called an advanced hybrid particulate collector (AHPC). In addition to DOE and the EERC, the project team includes W.L. Gore & Associates, Inc., Allied Environmental Technologies, Inc., and the Otter Tail Power Company. The AHPC utilizes both electrostatic collection and filtration in a unique geometric configuration that achieves ultrahigh particle collection with much less collection area than conventional particulate control devices. The primary technologies for state-of-the-art particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). A major limitation of ESPs is that the fractional penetration of 0.1- to 1.0-µm particles is typically at least an order of magnitude greater than for 10-µm particles, so a situation exists where the particles that are of greatest health concern are collected with the lowest efficiency. Fabric filters are currently considered to be the best available control technology for fine particles, but emissions are dependent on ash properties and typically increase if the air-to-cloth (A/C) ratio is increased. In addition, many fabrics cannot withstand the rigors of high-SO2 flue gases, which are typical for bituminous fuels. Fabric filters may also have problems with bag cleanability and high pressure drop, which has resulted in conservatively designed, large, costly baghouses.

204

Portfolio evaluation of advanced coal technology : research, development, and demonstration  

E-Print Network (OSTI)

This paper evaluates the advanced coal technology research, development and demonstration programs at the U.S. Department of Energy since the 1970s. The evaluation is conducted from a portfolio point of view and derives ...

Naga-Jones, Ayaka

2005-01-01T23:59:59.000Z

205

Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Technologies Technologies October 7, 2013 - 10:20am Addthis The Federal Energy Management Program (FEMP) offers information about energy-efficient and renewable energy technologies through the following areas. Energy-Efficient Product Procurement: Find energy-efficient product requirements and technology, purchasing specifications, energy cost savings calculators, model contract language, and resources. Technology Deployment: Look up information about developing, measuring, and implementing new and underutilized technologies for energy management in the Federal Government. Renewable Energy: Read about renewable energy requirements, resources and technologies, project planning, purchasing renewable power, and more. See FEMP's other program areas. Addthis FEMP Home

206

Virtually simulating the next generation of clean energy technologies: NETL's AVESTAR Center is dedicated to the safe, reliable and efficient operation of advanced energy plants with carbon capture  

SciTech Connect

Imagine using a real-time virtual simulator to learn to fly a space shuttle or rebuild your car's transmission without touching a piece of equipment or getting your hands dirty. Now, apply this concept to learning how to operate and control a state-of-the-art, electricity-producing power plant capable of carbon dioxide (CO{sub 2}) capture. That's what the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTAR) Center (www.netl.doe.gov/avestar) is designed to do. Established as part of the Department of Energy's (DOE) initiative to advance new clean energy technology for power generation, the AVESTAR Center focuses primarily on providing simulation-based training for process engineers and energy plant operators, starting with the deployment of a first-of-a-kind operator training simulator for an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Based on Invensys Operations Management's SimSci-Esscor DYNSIM software, the high-fidelity dynamic simulator provides realistic training on IGCC plant operations, including normal and faulted operations, as well as plant start-up, shutdown and power demand load changes. The highly flexible simulator also allows for testing of different types of fuel sources, such as petcoke and biomass, as well as co-firing fuel mixtures. The IGCC dynamic simulator is available at AVESTAR's two locations, NETL (Figure 1) and West Virginia University's National Research Center for Coal and Energy (www.nrcce.wvu.edu), both in Morgantown, W.Va. By offering a comprehensive IGCC training program, AVESTAR aims to develop a workforce well prepared to operate, control and manage commercial-scale gasification-based power plants with CO{sub 2} capture. The facility and simulator at West Virginia University promotes NETL's outreach mission by offering hands-on simulator training and education to researchers and university students.

Zitney, S.

2012-01-01T23:59:59.000Z

207

Green Technologies Enhanced by Recent Advances in ...  

Science Conference Proceedings (OSTI)

An advance in the fundamental physics of energy, thermodynamics, quantum relationships, and electromagnetic waves has occurred recently, however.

208

ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)  

SciTech Connect

The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity. Retrofit technologies that address the challenges of slow-speed integral compression are: (1) optimum turndown using a combination of speed and clearance with single-acting operation as a last resort; (2) if single-acting is required, implement infinite length nozzles to address nozzle pulsation and tunable side branch absorbers for 1x lateral pulsations; and (3) advanced valves, either the semi-active plate valve or the passive rotary valve, to extend valve life to three years with half the pressure drop. This next generation of slow-speed compression should attain 95% efficiency, a three-year valve life, and expanded turndown. New equipment technologies that address the challenges of large-horsepower, high-speed compression are: (1) optimum turndown with unit speed; (2) tapered nozzles to effectively reduce nozzle pulsation with half the pressure drop and minimization of mechanical cylinder stretch induced vibrations; (3) tunable side branch absorber or higher-order filter bottle to address lateral piping pulsations over the entire extended speed range with minimal pressure drop; and (4) semi-active plate valves or passive rotary valves to extend valve life with half the pressure drop. This next generation of large-horsepower, high-speed compression should attain 90% efficiency, a two-year valve life, 50% turndown, and less than 0.75 IPS vibration. This program has generated proof-of-concept technologies with the potential to meet these ambitious goals. Full development of these identified technologies is underway. The GMRC has committed to pursue the most promising enabling technologies for their industry.

Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

2005-12-01T23:59:59.000Z

209

NIST Advanced Technology Program Launches 54 New ...  

Science Conference Proceedings (OSTI)

... a real contribution to the technological advances that fuel our economy.". ... the potential to spark important, broad-based economic benefits for the ...

2012-12-13T23:59:59.000Z

210

New Advances - Jefferson Lab Technology Transfer  

New Advances Commercial Spin-offs Abound For New Free Electron Laser. The world of laser technology took a giant leap forward recently as researchers ...

211

ADVANCES IN COATINGS TECHNOLOGIES II: I - TMS  

Science Conference Proceedings (OSTI)

The DARPA program in advanced thin film coatings is developing innovative technologies to eliminate volatile organic compounds, heavy metals and other...

212

University Program in Advanced Technology | National Nuclear...  

National Nuclear Security Administration (NNSA)

University Program in Advanced Technology | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

213

Building Technologies Office: Advanced, Integrated Control for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings News Building Technologies Office Announces 3 Million to Advance Building Automation Software Solutions in Small to Medium-Sized Commercial Buildings March 29,...

214

Trends in Energy Management Technology - Part 4: Review of Advanced Applications in Energy Management, Control, and Information Systems  

E-Print Network (OSTI)

for energy and maintenance management. TIEMS is currentlywith a computerized maintenance management system (CMMS 4 ).Berkeley Computerized maintenance management system Fault

Yee, Gaymond; Webster, Tom

2003-01-01T23:59:59.000Z

215

DOE Projects to Advance Environmental Science and Technology | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Projects to Advance Environmental Science and Technology DOE Projects to Advance Environmental Science and Technology DOE Projects to Advance Environmental Science and Technology August 19, 2009 - 1:00pm Addthis Washington, DC - The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has selected nine new projects targeting environmental tools and technology for shale gas and coalbed methane (CBM) production. NETL's goals for these projects are to improve management of water resources, water usage, and water disposal, and to support science that will aid the regulatory and permitting processes required for shale gas development. A primary goal of Fossil Energy's Oil and Natural Gas Program is to enhance the responsible development of domestic natural gas and oil resources that supply the country's energy. A specific objective is to accelerate the

216

Renewable Energy Technology Development, Deployment, and Education...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Powered Truck 68 Fork Lift Trucks Deployed in Industry Renewable Energy Technology Development, Deployment, and Education in South Carolina EDPSC-SRNL Install Advanced Offshore...

217

Advanced Researech and Technology Development fossil energy materials program: Semiannual progress report for the period ending September 30, 1988  

SciTech Connect

The objective of the ARandTD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The ORNL Fossil Energy Materials Program Office compiles and issues this combined semiannual progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure in which projects are organized according to materials research thrust areas. These areas are (1) Structural Ceramics, (2) Alloy Development and Mechanical Properties, (3) Corrosion and Erosion of Alloys, and (4) Assessments and Technology Transfer. Individual projects are processed separately for the data bases.

Not Available

1989-01-01T23:59:59.000Z

218

January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The ANTT Subcommittee met in Washington on Dec 4-5, 2002 to review progress in the transmutation program, and to learn about major organizational changes that affect the management of the program. The NE's new Advanced Nuclear Research Office (NE-20) now oversees both the transmutation program (ANTT) and the Generation-IV program (GEN-IV). antt14Jan_03.pdf More Documents & Publications October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

219

Trends in Energy Management Technology - Part 4: Review of Advanced Applications in Energy Management, Control, and Information Systems  

E-Print Network (OSTI)

www.nist.gov/tc411/1043-RP_FDD_Literature_Review.pdf Smith,Energy Commission, Fall 1999. FDD for Rooftop AC Purduewww.nist.gov/tc411/1043-RP_FDD_Tools.pdf IMDS Lawrence

Yee, Gaymond; Webster, Tom

2003-01-01T23:59:59.000Z

220

Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program November 6, 2008 - 4:47pm Addthis On November 5, 2008, the Department of Energy issued the Interim Final Rule and accomplished writing the rule for Section 136 of EISA 2007 in approximately half of the 60-day expedited timeframe mandated by Congress. Historically, rulemaking at DOE takes 18 months. The Advanced Technology Vehicles Manufacturing Loan Program (ATVMLP) was authorized under Section 136 of the Energy Independence and Security Act of 2007 (P.L. 110-140). Section 136 is under the sole management and responsibility of the Department of Energy. The FY09 Continuing Resolution authorized up to $25 billion in direct loans to eligible applicants for the costs of reequipping,

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Technology Vehicles Manufacturing Loan Program Advanced Technology Vehicles Manufacturing Loan Program Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program November 6, 2008 - 4:47pm Addthis On November 5, 2008, the Department of Energy issued the Interim Final Rule and accomplished writing the rule for Section 136 of EISA 2007 in approximately half of the 60-day expedited timeframe mandated by Congress. Historically, rulemaking at DOE takes 18 months. The Advanced Technology Vehicles Manufacturing Loan Program (ATVMLP) was authorized under Section 136 of the Energy Independence and Security Act of 2007 (P.L. 110-140). Section 136 is under the sole management and responsibility of the Department of Energy. The FY09 Continuing Resolution authorized up to $25 billion in direct loans to eligible applicants for the costs of reequipping,

222

Energy Technologies  

Science Conference Proceedings (OSTI)

Mar 15, 2012 ... Sponsored by: The Minerals, Metals and Materials Society, TMS Extraction and ... Inventory flows include inputs of raw materials, energy and water, .... Preparation of Biodiesel by Transesterification of Canola Oil Using Solid...

223

Energy Department Announces New ARPA-E Projects to Advance Innovative...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARPA-E Projects to Advance Innovative Natural Gas Vehicle Technologies Energy Department Announces New ARPA-E Projects to Advance Innovative Natural Gas Vehicle Technologies July...

224

Building Technologies Office | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Technologies Office Building Technologies Office Building Technologies Office and You Working together to empower energy efficiency where you live, work, and play. Building Technologies Office and You Working together to empower energy efficiency where you live, work, and play. About the Building Technologies Office The Energy Department's Building Technologies Office leads a network of research and industry partners to continually develop innovative, cost-effective energy-saving solutions for homes and buildings. Learn more about the Building Technologies Office. How We Help Homes & Buildings Save Energy Value-Driven Applications Advanced energy efficiency technologies like lighting, HVAC, windows, appliances, and commercial equipment. Practical Standards

225

Advancing Residential Energy Retrofits  

Science Conference Proceedings (OSTI)

To advance the market penetration of residential retrofits, Oak Ridge National Laboratory (ORNL) and Southface Energy Institute (Southface) partnered to provide technical assistance on nine home energy retrofits in metropolitan Atlanta with simulated source energy savings of 30% to 50%. Retrofit measures included duct sealing, air infiltration reductions, attic sealing and roofline insulation, crawlspace sealing, HVAC and water heating equipment replacement, and lighting and appliance upgrades. This paper will present a summary of these measures and their associated impacts on important home performance metrics, such as air infiltration and duct leakage. The average estimated source energy savings for the homes is 33%, and the actual heating season average savings is 32%. Additionally, a case study describing expected and realized energy savings of completed retrofit measures of one of the homes is described in this paper.

Jackson, Roderick K [ORNL; Boudreaux, Philip R [ORNL; Kim, Eyu-Jin [Southface Energy Institute; Roberts, Sydney [Southface Energy Institute

2012-01-01T23:59:59.000Z

226

Nanoscale Advances in Catalysis and Energy Applications  

SciTech Connect

In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

Li, Yimin; Somorjai, Gabor A.

2010-05-12T23:59:59.000Z

227

STATEMENT OF CONSIDERATIONS REQUEST BY ADVANCED TECHNOLOGY MATERIALS INC FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ADVANCED TECHNOLOGY MATERIALS INC FOR AN ADVANCE ADVANCED TECHNOLOGY MATERIALS INC FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-NT0005578, W(A)-2012-031; CH-1666 The Petitioner, Advanced Technology Materials, Inc. (ATMI) was awarded a subcontract under the subject cooperative agreement between the Department of Energy and SRI International (SRI) for the performance of work entitled , "Development of Novel Carbon Sorbents for C02 Capture". The objective of the program is to develop an innovative, low cost, and low energy consuming carbon dioxide (C02) capture technology based on adsorption on a high-capacity and low-cost carbon sorbent. The specific objectives are to validate the performance of this concept on a bench-scale system

228

Alternative Fuels Data Center: Technology Advancement Funding - South Coast  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Technology Advancement Technology Advancement Funding - South Coast to someone by E-mail Share Alternative Fuels Data Center: Technology Advancement Funding - South Coast on Facebook Tweet about Alternative Fuels Data Center: Technology Advancement Funding - South Coast on Twitter Bookmark Alternative Fuels Data Center: Technology Advancement Funding - South Coast on Google Bookmark Alternative Fuels Data Center: Technology Advancement Funding - South Coast on Delicious Rank Alternative Fuels Data Center: Technology Advancement Funding - South Coast on Digg Find More places to share Alternative Fuels Data Center: Technology Advancement Funding - South Coast on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Technology Advancement Funding - South Coast

229

Electrochromic Windows: Advanced Processing Technology  

SciTech Connect

This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGEs production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.0261015BTU/yr) by the year 2017.

SAGE Electrochromics, Inc

2006-12-13T23:59:59.000Z

230

Systematic Discrimination of Advanced Hydrogen Production Technologies  

SciTech Connect

The U.S. Department of Energy, in concert with industry, is developing a high-temperature gas-cooled reactor at the Idaho National Laboratory (INL) to demonstrate high temperature heat applications to produce hydrogen and electricity or to support other industrial applications. A key part of this program is the production of hydrogen from water that would significantly reduce carbon emissions compared to current production using natural gas. In 2009 the INL led the methodical evaluation of promising advanced hydrogen production technologies in order to focus future resources on the most viable processes. This paper describes how the evaluation process was systematically planned and executed. As a result, High-Temperature Steam Electrolysis was selected as the most viable near-term technology to deploy as a part of the Next Generation Nuclear Plant Project.

Charles V. Park; Michael W. Patterson

2010-07-01T23:59:59.000Z

231

Technical and economic assessment of processes for the production of butanol and acetone. Phase two: analysis of research advances. Energy Conversion and Utilization Technologies Program  

DOE Green Energy (OSTI)

The initial objective of this work was to develop a methodology for analyzing the impact of technological advances as a tool to help establish priorities for R and D options in the field of biocatalysis. As an example of a biocatalyzed process, butanol/acetone fermentation (ABE process) was selected as the specific topic of study. A base case model characterizing the technology and economics associated with the ABE process was developed in the previous first phase of study. The project objectives were broadened in this second phase of work to provide parametric estimates of the economic and energy impacts of a variety of research advances in the hydrolysis, fermentation and purification sections of the process. The research advances analyzed in this study were based on a comprehensive literature review. The six process options analyzed were: continuous ABE fermentaton; vacuum ABE fermentation; Baelene solvent extraction; HRI's Lignol process; improved prehydrolysis/dual enzyme hydrolysis; and improved microorganism tolerance to butanol toxicity. Of the six options analyzed, only improved microorganism tolerance to butanol toxicity had a significant positive effect on energy efficiency and economics. This particular process option reduced the base case production cost (including 10% DCF return) by 20% and energy consumption by 16%. Figures and tables.

None

1984-08-01T23:59:59.000Z

232

SunShot Initiative: Diversity in Science and Technology Advances National  

NLE Websites -- All DOE Office Websites (Extended Search)

Diversity in Science and Diversity in Science and Technology Advances National Clean Energy in Solar to someone by E-mail Share SunShot Initiative: Diversity in Science and Technology Advances National Clean Energy in Solar on Facebook Tweet about SunShot Initiative: Diversity in Science and Technology Advances National Clean Energy in Solar on Twitter Bookmark SunShot Initiative: Diversity in Science and Technology Advances National Clean Energy in Solar on Google Bookmark SunShot Initiative: Diversity in Science and Technology Advances National Clean Energy in Solar on Delicious Rank SunShot Initiative: Diversity in Science and Technology Advances National Clean Energy in Solar on Digg Find More places to share SunShot Initiative: Diversity in Science and Technology Advances National Clean Energy in Solar on AddThis.com...

233

Vehicle Technologies Office: FY 2005 Progress Report for Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Progress Report 5 Progress Report for Advanced Combustion Engine Technologies to someone by E-mail Share Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Facebook Tweet about Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Twitter Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Google Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Delicious Rank Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Digg Find More places to share Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on

234

Vehicle Technologies Office: FY 2006 Progress Report for Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Progress Report 6 Progress Report for Advanced Combustion Engine Technologies to someone by E-mail Share Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Facebook Tweet about Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Twitter Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Google Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Delicious Rank Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Digg Find More places to share Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on

235

FY2000 Progress Report for the Advanced Technology Development Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Advanced Automotive Technologies 1000 Independence Avenue S.W. Washington, D.C. 20585-0121 FY 2000 Progress Report for the Advanced Technology Development Program Energy Efficiency and Renewable Energy Office of Transportation Technologies Office of Advanced Automotive Technologies Energy Management Team Raymond A. Sutula Energy Management Team Leader December 2000 This document highlights work sponsored by agencies of the U.S. Government. Neither the U.S. Government nor any agency, thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

236

Advanced Energy | Open Energy Information  

Open Energy Info (EERE)

Name Advanced Energy Name Advanced Energy Address 1625 Sharp Point Drive Place Fort Collins, Colorado Zip 80525 Sector Solar Product Solar cell, passive-solar architectural glass, solar grid-tie inverter, semiconductor, flat panel display, data storage Year founded 1981 Number of employees 1001-5000 Website http://www.advanced-energy.com Coordinates 40.565708°, -105.030749° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.565708,"lon":-105.030749,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

Categorical Exclusion Determinations: Advanced Technology Vehicles  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Vehicles Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations: Advanced Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations issued by Advanced Technology Vehicles Manufacturing Loan Program. DOCUMENTS AVAILABLE FOR DOWNLOAD May 29, 2012 CX-008810: Categorical Exclusion Determination One Nevada Optimization of Microwave Telecommunication System CX(s) Applied: B1.19, B4.6 Date: 05/29/2012 Location(s): Nevada, Nevada Offices(s): Advanced Technology Vehicles Manufacturing Loan Program January 24, 2012 CX-007677: Categorical Exclusion Determination Project Eagle Phase 1 Direct Wafer/Cell Solar Facility CX(s) Applied: B1.31 Date: 01/24/2012 Location(s): Massachusetts Offices(s): Advanced Technology Vehicles Manufacturing Loan Program

238

Advanced Wind Energy Systems AWES | Open Energy Information  

Open Energy Info (EERE)

AWES AWES Jump to: navigation, search Name Advanced Wind Energy Systems (AWES) Place Toms River, New Jersey Sector Wind energy Product Advanced Wind Energy Systems (AWES) was formed in 2006 to commercialize the novel wind turbine energy capture technologies invented by Frank McClintic, AWES founder and Chief Designer. References Advanced Wind Energy Systems (AWES)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Advanced Wind Energy Systems (AWES) is a company located in Toms River, New Jersey . References ↑ "Advanced Wind Energy Systems (AWES)" Retrieved from "http://en.openei.org/w/index.php?title=Advanced_Wind_Energy_Systems_AWES&oldid=341809

239

Assessment of Wireless Technologies for Advanced Automation  

Science Conference Proceedings (OSTI)

The power industry is seeing a resurgence of interest in advanced automation and customer communications. A variety of wireless technologies are becoming available that could be used in advanced automation applications for utilities. However, decisions on physical media infrastructure should be made cautiously since use of these technologies may directly impact system performance, reliability, and long-term costs. This report is a preliminary analysis of some of the leading wireless technologies that are...

2007-12-20T23:59:59.000Z

240

Solar Energy Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Technologies Solar Energy Technologies August 16, 2013 - 4:37pm Addthis Solar energy technologies produce electricity from the energy of the sun. Small solar energy...

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Advanced Technology for Groundwater Protection  

Science Conference Proceedings (OSTI)

This report documents the evaluation of automatic and in situ groundwater monitoring technologies for application at nuclear power plant (NPP) sites. The project studies the state of technology of automatic and in situ groundwater monitoring technologies and assesses whether they can be used to enhance the current groundwater monitoring capabilities at NPPs. Technologies for automatically detecting tritium and technologies that monitor non-radiological groundwater characteristics were explored. The abili...

2012-04-25T23:59:59.000Z

242

Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tribal Energy Program Tribal Summit Below are resources for Tribes on renewable energy technologies. Developing Clean Energy Projects on Tribal Lands: Data and Resources for...

243

March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The Global Nuclear Energy Partnership (GNEP) marks a major change in the direction of the DOE's nuclear energy R&D program. It is a coherent plan to test technologies that promise to markedly reduce the problem of nuclear waste treatment and to reduce the proliferation risk in a world with a greatly expanded nuclear power program. It brings the U.S. program into much closer alignment with that of the other major nuclear energy states. GNEP proposes to take spent fuel from existing light water reactors (LWRs),

244

Advanced Research Projects Agency - Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Research Projects Agency - Energy Advanced Research Projects Agency - Energy recovery act Advanced Research Projects Agency - Energy More Documents & Publications Advanced...

245

Advanced Integrated Systems Technology Development  

E-Print Network (OSTI)

allows the use of alternative cooling sources, for example,system, and alternative radiant cooling technology, i.e.

2013-01-01T23:59:59.000Z

246

Advanced Network Technologies Division Homepage  

Science Conference Proceedings (OSTI)

... network technologies, and develops, demonstrates, and ... project to develop measurement methodologies ... assist industry in developing standards for ...

2013-01-17T23:59:59.000Z

247

Department of Energy Announces Fellows Program for Advance Research Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fellows Program for Advance Research Fellows Program for Advance Research Energy Projects Department of Energy Announces Fellows Program for Advance Research Energy Projects December 8, 2009 - 12:00am Addthis Cambridge, MA - The Department of Energy's Advanced Research Projects Agency - Energy (ARPA-E) announced today the creation of the ARPA-E Fellows Program at an event with Massachusetts Institute of Technology's students. ARPA-E Director, Dr. Arun Majumdar, made the announcement during a presentation to the MIT Energy Club and called on the next generation of energy leaders to join ARPA-E. Today's announcement follows US Energy Secretary Steven Chu's announcement that the Department is making $100 million in Recovery Act funding available to accelerate innovation in green technology, increase America's competitiveness and create jobs.

248

Renewable Energy Technology Guide  

Science Conference Proceedings (OSTI)

First published in 2000 as the Renewable Energy Technical Assessment GuideTAG-RE, the Electric Power Research Institute's (EPRI's) annual Renewable Energy Technology Guide provides a consistent basis for evaluating the economic feasibility of renewable generation technologies. These technologies include wind, solar photovoltaic (PV), solar thermal, biomass, municipal solid waste, geothermal, and emerging ocean energy conversion technologies.

2011-12-22T23:59:59.000Z

249

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

Containing the Effects of Containing the Effects of Chemical and Biological Agents in Buildings Lawrence Berkeley National Laboratory Air Quality Advanced Technologies Building Technologies Energy Analysis Indoor Environment Vol. 3 No. 3 News 1 Containing the Effects of Chemical and Biological Agents in Buildings 3 Laser Ultrasonic Sensor Streamlines Papermaking Process 5 Building a Smarter Light: The IBECS Network/Ballast Interface 6 IPMVP-from a DOE-Funded Iniative to a Not-for-Profit Organization 8 Skylight Well Reduces Solar Heat Gain 9 Research Highlights The mission of the Environmental Energy Technologies Division is to perform research and development leading to better energy technologies and the reduction of adverse energy- related environmental impacts. Environmental Energy Technologies Division

250

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumers Kept Consumers Kept the Lights On Lawrence Berkeley National Laboratory Atmospheric Sciences Advanced Technologies Building Technologies Energy Analysis Indoor Environment Vol. 3 No. 4 News 1 California Consumers Kept the Lights On 3 A Quick and Easy Web-Based Assess- ment Tool for Day/Electric Lighting 5 Berkeley Lab Model Tracks Indoor Anthrax Dispersal 7 Rating "Green" Laboratories-Labs21 Environmental Performance Criteria 9 Research Highlights The mission of the Environmental Energy Technologies Division is to perform research and development leading to better energy technologies and the reduction of adverse energy- related environmental impacts. Environmental Energy Technologies Division continued on page 2 In this Issue C alifornia consumers-not mild weather or the cooling economy-should get credit

251

Energy Basics: Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Technologies Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from the Earth. Geothermal...

252

Vehicle Technologies Office: Advanced Combustion Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Engines Combustion Engines Improving the efficiency of internal combustion engines is one of the most promising and cost-effective near- to mid-term approaches to increasing highway vehicles' fuel economy. The Vehicle Technologies Office's research and development activities address critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles. This technology has great potential to reduce U.S. petroleum consumption, resulting in greater economic, environmental, and energy security. Already offering outstanding drivability and reliability to over 230 million passenger vehicles, internal combustion engines have the potential to become substantially more efficient. Initial results from laboratory engine tests indicate that passenger vehicle fuel economy can be improved by more than up to 50 percent, and some vehicle simulation models estimate potential improvements of up to 75 percent. Advanced combustion engines can utilize renewable fuels, and when combined with hybrid electric powertrains could have even further reductions in fuel consumption. As the EIA reference case forecasts that by 2035, more than 99 percent of light- and heavy-duty vehicles sold will still have internal combustion engines, the potential fuel savings is tremendous.

253

Energy Basics: Wind Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy technologies use the energy in wind for practical purposes such as generating...

254

Advanced Energy Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Energy Fund Advanced Energy Fund Advanced Energy Fund < Back Eligibility Commercial Industrial Institutional Residential Utility Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Wind Solar Heating & Cooling Heating Water Heating Program Info State Ohio Program Type Public Benefits Fund Provider Ohio Development Services Agency Ohio's Advanced Energy Fund was originally authorized by the state's 1999 electric restructuring legislation. The Fund supports the Advanced Energy Program, which at different times has provided grants for renewable energy and energy efficiency projects to different economic sectors. Grant and loan funds are awarded through periodic Notices of Funding Availability

255

NETL: News Release - Department of Energy Advances Commercialization...  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2006 Department of Energy Advances Commercialization of Climate Change Technology DOE to Provide Over 450 Million to Support the Deployment of Carbon Sequestration...

256

Information Technology | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Technology Support Search Button About Welcome Overview Visiting the APS Mission & Goals Find People Organization Charts Committees Job Openings User Information...

257

Renewable Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Technology Basics Renewable Energy Technology Basics Renewable energy technologies produce sustainable, clean energy from sources such as the sun, the wind,...

258

Renewable Energy Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Technologies Renewable Energy Technologies Renewable energy technologies produce sustainable, clean energy from sources such as the sun, the wind, plants, and...

259

IEA Technology Roadmaps | Open Energy Information  

Open Energy Info (EERE)

IEA Technology Roadmaps IEA Technology Roadmaps Jump to: navigation, search Tool Summary Name: IEA Technology Roadmaps Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Renewable Energy, Energy Efficiency, Industry, Solar, Transportation, Wind Topics: Finance, Implementation, Low emission development planning, Market analysis, Pathways analysis, Technology characterizations Resource Type: Guide/manual Website: www.iea.org/subjectqueries/keyresult.asp?KEYWORD_ID=4156 References: IEA Technology Roadmaps[1] "... the IEA is developing a series of global low-carbon energy technology roadmaps covering the most important technologies. The IEA is leading the process, under international guidance and in close consultation with government and industry. The overall aim is to advance global development

260

Advanced Electric Traction System Technology Development  

SciTech Connect

As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

Anderson, Iver

2011-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, Report of the ADVANCED NUCLEAR TRANSFORMATION 3, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The committee met in Washington in Sept 16-17 to review progress in the program with respect to a changed set of mission priorities. Our last meeting took place in Dec 2002 after the reorganization that had place the Advanced Fuel Cycle Initiative (AFCI) and GEN IV program together in the Advanced Nuclear Reserach Office (AN-20). Since mission priorities have been evolving, the committee felt that it should wait unti they have settled down before we met again. We have kept in touch during the process,

262

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

1: 1: Vol. 10, No. 2 Carbon Cycle 2.0 Analysis Team Carbon Sequestration Study Materials Genome Project Increased Building Ventilation VOC Cleaning Technology Fort Irwin Lighting Testbed Tracking the Sun IV Cool Coatings for Cars Research Highlights Sources and Credits PDF of EETD News Carbon Cycle 2.0 Energy and Environmental Analysis Team Evaluates Impacts of Technology R&D It's a grand challenge: develop clean, sustainable technologies that deliver a low-carbon energy future, and through innovation create jobs, new markets, and exports while increasing America's energy security. Researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) have made it their mission to develop low-carbon and energy-efficient technologies such as advanced materials and information technology for

263

Emerging Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies Emerging Technologies Emerging Technologies Last January, we took a look at how ARPA-E performer, 1366 Technologies is working to dramatically reduce the cost of solar energy. A year later, we revisited their headquarters in Lexington, MA to see the progress they've made. Featured Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. A pilot project that will generate electricity from Maine's ocean tides could be a game-changer for America's tidal energy industry at-large. Advanced Battery Manufacturing Making Strides in Oregon EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program

264

Advanced Vehicle Technology Analysis and Evaluation Team  

E-Print Network (OSTI)

Set ­ Models · Conventional, hybrid and electric vehicles · Fuel consumption and performanceAdvanced Vehicle Technology Analysis and Evaluation Team Lee Slezak Manager, AVTAET Office · Supports HIL/RCP · Fuel cell models ­ Net power vs. fuel consumption ­ Engineering · ADvanced Vehicle

265

About Emerging Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » About Emerging Technologies Emerging Technologies » About Emerging Technologies About Emerging Technologies The Emerging Technologies team funds the research and development of cost-effective, energy-efficient building technologies within five years of commercialization. Learn more about the: Key Technologies Benefits Results Key Technologies Specific technologies pursued within the Emerging Technologies team include: Lighting: advanced solid-state lighting systems, including core technology research and development, manufacturing R&D, and market development Heating, ventilation, and air conditioning (HVAC): heat pumps, heat exchangers, and working fluids Building Envelope: highly insulating and dynamic windows, cool roofs, building thermal insulation, façades, daylighting, and fenestration

266

ORISE: Coordinating Scientific Peer Reviews to Advance Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Energy Efficiency ORISE Reviews and Evaluates Technologies that Advance Energy Efficiency ORISE Reviews and Evaluates Technologies that Advance Energy Efficiency In addition to renewable energy and changes in individual behavior, energy efficiency is generally achieved through the development of more efficient technologies. Buildings are being constructed with more energy efficient systems, fluorescent light bulbs are replacing incandescent lights, and new vehicle technologies are enabling America to use less petroleum. The Oak Ridge Institute for Science Education (ORISE) realizes that energy efficiency encompasses a wide spectrum of industries and supports the U.S. Department of Energy (DOE) in its mission to reduce America's dependence on foreign oil.

267

DOE - Office of Legacy Management -- Pittsburgh Energy Technology...  

Office of Legacy Management (LM)

(NETL). NETL historically has focused on the development of advanced technologies related to coal and natural gas. Also see Documents Related to Pittsburgh Energy Technology Center...

268

Fossil Energy-Developed Fuel Cell Technology Being Adapted by...  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2013 Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles Solid Oxide Fuel Cell Technology Supported by Research Funding...

269

October 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, Report of the ADVANCED NUCLEAR TRANSFORMATION 6, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE October 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The Global Nuclear Energy Partnership (GNEP) program is still evolving. Since our report of March 22, 2006 the DOE has sought to gauge industry interest in participation in the program from its very beginning. At the time the ANTT committee met, August 30- 31, 2006, responses had not yet been received from industry to the DOE's request for Expressions of Interest. This report is based on the assumption that the program outlined recently, which does not include an Advanced Burner Test Reactor, is what

270

NATIONAL ENERGY TECHNOLOGY LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

NATIONAL ENERGY TECHNOLOGY LABORATORY In 2011, the Office of Fossil Energy evaluated the realized and estimated benefits provided by its programs. Implemented by NETL, these...

271

Information Technology Solutions - Energy  

texturing process is a cost effective alternative that uses nontoxic materials. Information Technology Solutions ... United States Department of Energys National

272

Wind Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain.

273

Alternative Fuels Data Center: Advanced Technology Vehicle (ATV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Technology Advanced Technology Vehicle (ATV) Manufacturing Incentives to someone by E-mail Share Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on Facebook Tweet about Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on Twitter Bookmark Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on Google Bookmark Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on Delicious Rank Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on Digg Find More places to share Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on AddThis.com... More in this section...

274

DOE Projects to Advance Environmental Science and Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Projects to Advance Environmental Science and Technology DOE Projects to Advance Environmental Science and Technology August 19, 2009 - 1:00pm Addthis Washington, DC - The...

275

Characterization and Development of Advanced Heat Transfer Technologies (Presentation)  

DOE Green Energy (OSTI)

Advancing heat transfer technologies is a critical factor in power electronics equipment. NREL aims to characterize and develop advanced heat transfer technologies.

Abraham, T.

2007-11-08T23:59:59.000Z

276

TECHNOLOGIES TO OPTIMIZE ADVANCED TOKAMAK  

SciTech Connect

OAK-B135 Commercial fusion power systems must operate near the limits of the engineering systems and plasma parameters. Achieving these objectives will require real time feedback control of the plasma. This paper describes plasma control systems being used in the national DIII-D advanced tokamak research program.

SIMONEN, TC

2004-01-01T23:59:59.000Z

277

Advanced Technology and Knowledge Transfer  

Science Conference Proceedings (OSTI)

This paper reports on a specific food and agribusiness industry project, employing new technological capabilities to better transfer expert knowledge. Knowledge transfer and technical support are key components of this project. VisIT, which stands for ...

Geetanjali Tandon; Steven T. Sonka

2003-01-01T23:59:59.000Z

278

Technology Development Advances EM Cleanup  

Energy.gov (U.S. Department of Energy (DOE))

The unique nature of many of EM's remaining facilities will require a strong and responsive engineering and technology program to improve work and public safety, and reduce costs and environmental impacts while completing the cleanup program.

279

FY 2008 Progress Report for Advanced Combustion Engine Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

COMBUSTION COMBUSTION ENGINE TECHNOLOGIES annual progress report 2008 V e h i c l e T e c h n o l o g i e s P r o g r a m U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2008 Progress rePort For AdvAnced combustion engine technologies Energy Efficiency

280

Partnerships Help Advance Small Modular Reactor Technology | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnerships Help Advance Small Modular Reactor Technology Partnerships Help Advance Small Modular Reactor Technology Partnerships Help Advance Small Modular Reactor Technology March 5, 2012 - 12:00pm Addthis WASHINGTON, D.C. - DOE recently announced three public-private partnerships to develop deployment plans for small modular nuclear reactor (SMR) technologies at Savannah River Site (SRS) facilities near Aiken, S.C. Read the full story on the Memorandums of Agreement to help leverage SRS land assets, energy facilities and nuclear expertise to support potential private sector development, testing and licensing of prototype SMR technologies. Addthis Related Articles Energy Department Announces Small Modular Reactor Technology Partnerships at Savannah River Site The development of clean, affordable nuclear power options is a key element of the Energy Department's Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. | Photo by the Energy Department.

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Advanced Integrated Systems Technology Development  

E-Print Network (OSTI)

Research Energy Systems Integration Environmentallyenergy use, combined with the capability of the BMS system, including alarms to identify anomalies. Integration

2013-01-01T23:59:59.000Z

282

Advanced Sensors and Instrumentation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sensors and Instrumentation Sensors and Instrumentation Advanced Sensors and Instrumentation The ASI subprogram plans to develop the scientific basis for sensors and supporting infrastructure technology that will address crosscutting technology gaps relating to measurements at existing and advanced nuclear power plants as well as within their fuel cycles. The focus of the program is on the following technical challenges and objectives: Identify needed physical measurement accuracy of nuclear system process parameters and minimize uncertainty. Identify and conduct research into monitoring and control technologies, including human factors, to achieve control of new nuclear energy processes, and new methodologies for monitoring to achieve high reliability and availability. Integrate control of multiple processes, potential reductions in

283

Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Technologies Technologies November 1, 2013 - 11:40am Addthis Distributed energy (DE) technologies consist primarily of energy generation and storage systems placed at or near the point of use. DE provides consumers with greater reliability, adequate power quality, and the possibility to participate in competitive electric power markets. DE also has the potential to mitigate congestion in transmission lines, control price fluctuations, strengthen energy security, and provide greater stability to the electricity grid. The use of DE technologies can lead to lower emissions and, particularly in combined heat and power (CHP) applications, to improved efficiency. Example of a thermally activated energy conversion technology (TAT) -- a type of distributed energy technology. Distributed energy technologies consist primarily of energy generation and storage systems placed at or near the point of use. This gas engine-driven heat pump is operating on a rooftop.

284

National Energy Technology Laboratory Technology Marketing ...  

National Energy Technology Laboratory Technology Marketing Summaries. Here youll find marketing summaries for technologies available for licensing from the ...

285

Building Technologies Program | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Technologies Program Building Technologies Program SHARE Building Technologies Program The Building Technologies Program Office administratively facilitates the integration of ORNL research across disciplines to support federally-and privately-funded research. ORNL's buildings research is directed and funded primarily by the DOE Office of Energy Efficiency and Renewable Energy, specifically the Building Technologies Program. The Federal Energy Management Program, Geothermal Technologies Program, Advanced Manufacturing Office,Office of Weatherization and Intergovernmental Program, Policy and International Affairs, Concentrating Solar Power Program, Sustainability Performance Office, and other partners also support ORNL's research to develop new building technologies. Building Technologies Office

286

advanced vehicle technologies awards table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

format cells with extremely high energy density, that meet performance, life, and safety requirements of electric drive vehicles. Applied Materials Inc. Santa Clara, CA...

287

Building Technologies Office: Standard Energy Efficiency Data Platform  

NLE Websites -- All DOE Office Websites (Extended Search)

Standard Energy Standard Energy Efficiency Data Platform to someone by E-mail Share Building Technologies Office: Standard Energy Efficiency Data Platform on Facebook Tweet about Building Technologies Office: Standard Energy Efficiency Data Platform on Twitter Bookmark Building Technologies Office: Standard Energy Efficiency Data Platform on Google Bookmark Building Technologies Office: Standard Energy Efficiency Data Platform on Delicious Rank Building Technologies Office: Standard Energy Efficiency Data Platform on Digg Find More places to share Building Technologies Office: Standard Energy Efficiency Data Platform on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification

288

Advanced Lost Foam Casting Technology  

Science Conference Proceedings (OSTI)

This report describes the research done under the six tasks to improve the process and make it more functional in an industrial environment. Task 1: Pattern Pyrolysis Products and Pattern Properties Task 2: Coating Quality Control Task 3: Fill and Solidification Code Task 4: Alternate Pattern Materials Task 5: Casting Distortion Task 6: Technology Transfer

Charles E. Bates; Harry E. Littleton; Don Askeland; Taras Molibog; Jason Hopper; Ben Vatankhah

2000-11-30T23:59:59.000Z

289

FY2003 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Advanced Vehicle Technology Analysis and Evaluation Activities Bringing you a prosperous future where energy is clean, abundant, reliable and affordable 2003 Annual Progress Report freedomCAR & vehicle technologies program Less dependence on foreign oil, and eventual transition to an emissions-free, petroleum-free vehicle U.S. Department of Energy FreedomCAR & Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2003 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager Advanced Vehicle Technology Analysis and Evaluation Activities

290

Energy Department Updates Home Energy Scoring Tool for Advancing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Updates Home Energy Scoring Tool for Advancing Updates Home Energy Scoring Tool for Advancing Residential Energy Performance Energy Department Updates Home Energy Scoring Tool for Advancing Residential Energy Performance January 9, 2014 - 3:19pm Addthis As part of the Energy Department's commitment to helping families across the United States save money by saving energy, the Department announced today its first major software update to the Home Energy Scoring Tool, developed by the Department's Building Technologies Office and Lawrence Berkeley National Laboratory (LBNL). The Home Energy Score allows homebuyers to compare homes on an "apples to apples" basis and provides recommendations for energy efficiency improvements. In addition, homeowners and homebuyers receive a cost-saving estimate of how these improvements could reduce utility bills and improve a

291

NREL Power Technologies Energy Data Book (2006): Technology Profiles |  

Open Energy Info (EERE)

Power Technologies Energy Data Book (2006): Technology Profiles Power Technologies Energy Data Book (2006): Technology Profiles Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. The technologies covered are: biomass, geothermal, concentrating solar power (CSP), wind, hydro, solar buildings, reciprocating engines, microturbines, fuel cells, batteries, advanced energy storage, and super conducting power technology. Depending on the technology, data may go as far back as 1980 and projections may go as far into the future as 2020.

292

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2006-05-15T23:59:59.000Z

293

Crosscutting Technology Development at the Center for Advanced Separation Technologies  

SciTech Connect

This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2006-09-30T23:59:59.000Z

294

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

SciTech Connect

This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2005-11-04T23:59:59.000Z

295

Advanced Manufacturing Office: Industries and Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Combustion Compressed Air Distributed EnergyCombined Heat and Power (CHP) Fuel and Feedstock Flexibility Information & Communications Technology Data Centers...

296

Clean Energy Manufacturing Resources - Technology Feasibility | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Feasibility Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Learn About U.S. Department of Energy Priorities Advanced Manufacturing Office Plans - features information on analysis, plan implementations, and commercial outcomes. Bioenergy Technologies Office Plans - includes technology roadmaps, multiyear program plans, analysis, and more.

297

Advancing Solar Through Photovoltaic Technology Innovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy

298

Advancing Solar Through Photovoltaic Technology Innovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy

299

Building Technologies Office: Building Energy Data Exchange Specification  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Data Building Energy Data Exchange Specification to someone by E-mail Share Building Technologies Office: Building Energy Data Exchange Specification on Facebook Tweet about Building Technologies Office: Building Energy Data Exchange Specification on Twitter Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Google Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Delicious Rank Building Technologies Office: Building Energy Data Exchange Specification on Digg Find More places to share Building Technologies Office: Building Energy Data Exchange Specification on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

300

Modern Imaging Technology: Recent Advances  

SciTech Connect

This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area.

Welch, Michael J.; Eckelman, William C.

2004-06-18T23:59:59.000Z

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

0: 0: Vol. 9, No. 1 Ashok Gadgil Named Director of Environmental Energy Technologies Division Arsenic Removal Technologies ARPA-E Funding Low-Energy Buildings User Facility ECMA International Standard U.S. Wind Power Market Clean Energy Ministerial Research Highlights Sources and Credits PDF of EETD News Ashok Gadgil Named New EETD Director Ashok Gadgil Ashok Gadgil has been named Director of Lawrence Berkeley National Laboratory's (Berkeley Lab's) Environmental Energy Technologies Division (EETD). Serving as the Acting Division Director since October, he replaces Arun Majumdar who is now Director of the DOE's Advanced Research Projects Agency-Energy (ARPA-E). Gadgil is a Professor in Civil and Environmental Engineering at UC Berkeley and joined EETD in 1988. He is recognized for

302

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

11, No. 3 [http://eetd.lbl.gov/newsletter/nl42/] 11, No. 3 [http://eetd.lbl.gov/newsletter/nl42/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] ©2013 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] WINTER 2013: VOL. 11, NO. 3 The New York Times Building Building Control Virtual Test Bed Simergy Climate Change and the Insurance Industry Energy Storage Research Hub ARPA-E Funds Berkeley Lab Projects Utility Energy-Efficiency Programs California's Energy Future FLEXLAB Testbeds Construction FLEXLAB Partners Research Highlights Sources and Credits Better tools to simulate building energy use, new funding for advanced research in batteries and energy-efficient

303

Federal Energy Management Program: New and Underutilized Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Initiatives Solid State Lighting Working Group Distributed Energy ResourcesCombined Heat & Power Resources Renewable Energy New and Underutilized Technology: Advanced Rooftop...

304

Advanced Vehicle Testing Activity: Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing to someone by E-mail Share Advanced Vehicle Testing Activity: Energy Storage Testing on Facebook Tweet about Advanced Vehicle Testing Activity: Energy...

305

Tribal Renewable Energy Advanced Course: Project Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Advanced Course: Project Development Concepts Tribal Renewable Energy Advanced Course: Project Development Concepts Watch the DOE Office of Indian Energy renewable...

306

Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events Printable Version Share this resource Send a link to Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop to someone by E-mail Share Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on Facebook Tweet about Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on Twitter Bookmark Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on Google Bookmark Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on Delicious Rank Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on Digg Find More places to share Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on AddThis.com...

307

Alternative Fuels Data Center: Alternative Fuel and Advanced Technology  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Advanced Technology Vehicle Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on AddThis.com... More in this section... Federal

308

Research on advanced photovoltaic manufacturing technology  

DOE Green Energy (OSTI)

This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

Jester, T.; Eberspacher, C. (Siemens Solar Industries, Camarillo, CA (United States))

1991-11-01T23:59:59.000Z

309

Advanced Energy Company | Open Energy Information  

Open Energy Info (EERE)

There are 26 founding investors, which include car manufactures, trading houses, battery makers and others. References Advanced Energy Company1 LinkedIn Connections...

310

Tracking Clean Energy Progress Energy Technology Perspectives...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Perspectives 2012 excerpt as IEA input to the Clean Energy Ministerial Tracking Clean Energy Progress Energy Technology Perspectives 2012 Pathways to a Clean Energy...

311

Engineering design and analysis of advanced physical fine coal cleaning technologies  

SciTech Connect

This project is sponsored by the United States Department of Energy (DOE) for the Engineering Design and Analysis of Advanced Physical Fine Coal Cleaning Technologies. The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This DOE project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cylconing, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level.

1992-01-20T23:59:59.000Z

312

DOE/EA-1678: Final Environmental Assessment for Department of Energy Loan To Nissan North America, Inc., for Advanced Technology Electric Vehicle Manufacturing Project in Smyrna, Tennessee (November 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 ENVIRONMENTAL ASSESSMENT FOR DEPARTMENT OF ENERGY LOAN TO NISSAN NORTH AMERICA, INC., FOR ADVANCED TECHNOLOGY ELECTRIC VEHICLE MANUFACTURING PROJECT IN SMYRNA, TENNESSEE U.S. Department of Energy Advanced Technology Vehicles Manufacturing Loan Program Washington, DC 20585 November 2009 FINAL ENVIRONMENTAL ASSESSMENT i SUMMARY Introduction The U.S. Department of Energy (DOE) is proposing to issue a loan to Nissan North America, Inc., (Nissan) for the production of advanced technology electric vehicles (EVs). Nissan's Electric Vehicle Production Project (EV Project) would include the expansion of the Smyrna, Tennessee Manufacturing Plant through the construction of an approximately 1.3 million square foot lithium-ion (Li-ion) battery plant (EV Battery

313

NETL: News Release - Clean Coal Technology Report Showcases Advanced Iron  

NLE Websites -- All DOE Office Websites (Extended Search)

April 6, 2000 April 6, 2000 Clean Coal Technology Report Showcases Advanced Iron Making Process, Benefits for the Environment Topical Report Profiles Blast Furnace Granular Coal Injection System; Now Available on DOE's Fossil Energy Web Site An advanced iron making technology demonstrated in the U.S. Department of Energy's Clean Coal Technology Program stands out for its potential to provide major environmental and financial benefits to the United States steel industry. Bethlehem Steel Topical Report The Energy Department has profiled the project in a topical report entitled Blast Furnace Granular Coal Injection System Demonstration Project. The report describes the federal government's partnership demonstration project with Bethlehem Steel Corporation, which tested a new method for reducing

314

Development of Advanced Manufacturing Technologies for Renewable Energy Applications, excerpt from 2007 DOE Hydrogen Program Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

65 65 FY 2007 Annual Progress Report DOE Hydrogen Program Objectives This project will address selected key manufacturability issues needing solution in two hydrogen technology areas: storage and the production of components. NCMS will evaluate, identify, and develop manufacturing technologies vital to affordable hydrogen-powered systems. NCMS will leverage manufacturing technologies from other industrial sectors and work with its extensive industrial membership to do feasibility projects on those technologies identified as key to reducing production cost by rendering a system component or subcomponent of the targeted hydrogen-powered systems producible in volume. Technical Barriers This project addresses the following technical barriers from the Manufacturing R&D section of the

315

National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Director of Energy Research for Occidental Petroleum Corp and President of Occidental Oil Shale, Inc. * Focus: Clean Coal Technology. * Located: Steamboat Springs, CO 30 Appendix D...

316

National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Director of Energy Research for Occidental Petroleum Corp and President of Occidental Oil Shale, Inc. * Focus: Clean Coal Technology. * Located: Steamboat Springs, CO 38 Appendix D...

317

Building Technologies Program - Energy  

2 Background And Outline Background Building Technology Program (BTP) focused on a goal of zero-net energy homes (2020) and commercial buildings (2025)

318

Draft Advanced Fossil Solicitation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Fossil Solicitation Federal loan guarantee solicitation announcement -- Advanced Fossil Energy Projects. Microsoft Word - Draft Advanced Fossil Solicitation Final Draft.1...

319

Building Technologies Office: Building America's Top Innovations Advance  

NLE Websites -- All DOE Office Websites (Extended Search)

America's Top America's Top Innovations Advance High Performance Homes to someone by E-mail Share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Facebook Tweet about Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Twitter Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Google Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Delicious Rank Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Digg Find More places to share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on AddThis.com...

320

Advanced technologies for perimeter intrusion detection sensors  

SciTech Connect

The development of integrated circuit fabrication techniques and the resulting devices have contributed more to the advancement of exterior intrusion detectors and alarm assessment devices than any other technology. The availability of this technology has led to the improvements in and further development of smaller more powerful computers, microprocessors, solid state memories, solid state cameras, thermal imagers, low-power lasers, and shorter pulse width and higher frequency electronic circuitry. This paper presents information on planning a perimeter intrusion detection system, identifies the site characteristics that affect its performance, and describes improvements to perimeter intrusion detection sensors and assessment devices that have been achieved by using integrated circuit technology.

Williams, J.D.

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

advanced energy storage | OpenEI  

Open Energy Info (EERE)

35 35 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142280435 Varnish cache server advanced energy storage Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. Source NREL Date Released March 01st, 2006 (8 years ago) Date Updated Unknown Keywords advanced energy storage batteries biomass csp fuel cells geothermal

322

Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions  

Open Energy Info (EERE)

Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Transportation Phase: Determine Baseline, Evaluate Options Topics: Co-benefits assessment, GHG inventory Resource Type: Online calculator, Software/modeling tools User Interface: Spreadsheet Complexity/Ease of Use: Moderate Website: www.transportation.anl.gov/modeling_simulation/AirCred/index.html

323

GeoEnergy technology  

DOE Green Energy (OSTI)

The goal of the GeoEnergy Technology Program is to improve the understanding and efficiency of energy extraction and conversion from geologic resources, hence maintaining domestic production capability of fossil energy resources and expanding the usage of geothermal energy. The GeoEnergy Technology Program conducts projects for the Department of Energy in four resource areas--coal, oil and gas, synthetic fuels and geothermal energy. These projects, which are conducted collaboratively with private industry and DOE`s Energy Technology Centers, draw heavily on expertise derived from the nuclear weapons engineering capabilities of Sandia. The primary technologies utilized in the program are instrumentation development and application, geotechnical engineering, drilling and well completions, and chemical and physical process research. Studies in all four resource areas are described.

NONE

1980-12-31T23:59:59.000Z

324

Promises of advanced technology realized at Martin  

SciTech Connect

The 2,488-MW Martin station is a gas/oil-fired facility that embodies today`s demand for flexible operations, technological advances, and reduced production costs. Martin station first rose up from the Everglades in the early 1980s, with the construction of two 814-MW oil-fired steam plants, Units 1 and 2. Natural-gas-firing capability was added to the balanced-draft, natural-circulation boilers in 1986, increasing the station`s fuel flexibility. Martin then leaped into the headlines in the early 1990s when it added combined-cycle (CC) Units 3 and 4. With this 860-MW expansion, FP and L boldly became the fleet leader for the advanced, 2350F-class 7FA gas turbines. Further pushing he technology envelope, the CC includes a three-pressure reheat steam system that raises net plant efficiency for Units 3 and 4 to 54%, on a lower-heating-value (LHV) basis. Incorporating the reheat cycle required significant redesign of the gas-turbine/heat-recovery steam generator (HRSG) train, in order to maintain a rapid startup capability without exceeding metallurgical limits. Perhaps even more important than the technological achievements, Martin stands out from the crowd for its people power, which ensured that the promises of advanced technology actually came to fruition. This station`s aggressive, empowered O and M team shows that you can pioneer technology, reduce operating costs, and deliver high availability--all at the same time.

Swanekamp, R.

1996-09-01T23:59:59.000Z

325

Advanced ignition and propulsion technology program  

DOE Green Energy (OSTI)

This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

Oldenborg, R.; Early, J.; Lester, C.

1998-11-01T23:59:59.000Z

326

February 2004, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE  

Energy.gov (U.S. Department of Energy (DOE))

The ANTT Subcommittee of NERAC met February 26th and 27th (S. Pillon absent) to begin a review of the potential role of transmutation technologies in increasing the capacity of the geological...

327

Energy Technology Engineering Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Engineering Center Technology Engineering Center 41 00 Guardian Street, Suite # 160 Simi Valley, CA 93063 Memorandum for: Gregory H. Woods General Council January 30, 2013 FROM: John Jones EL\= Federal Proje� irector Energy Technology Engineering Center (ETEC) Project Office SUBJECT: Annual National Environmental Policy Act {NEPA) Planning Summary Attached is the 2013 Annual NEPA Planning Summary for the ETEC Project Office.

328

Energy Systems Engineering 1 Clean Coal Technologies  

E-Print Network (OSTI)

Energy Systems Engineering 1 Clean Coal Technologies Presentation at BARC 4th December 2007 #12.ofPlants Source: CEA,2006, Thermal performance report 377 plants Sub-critical Pulverised coal (535-575 oC, 175/kWh) 0.14 0.03 0.6 #12;Energy Systems Engineering 9 Status of Advanced Coal Technologies Types

Banerjee, Rangan

329

Advanced Grid Integration (AGI) | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Grid Integration (AGI) Advanced Grid Integration (AGI) Advanced Grid Integration (AGI) The Advanced Grid Integration (AGI) Division leads the federal government's efforts to accelerate modernization of the U.S. electric power grid. By enabling the two-way flow of electricity and information, a Smart Grid will increase the reliability, efficiency, and security of electric transmission, distribution, and use. A modern grid provides the foundation for a strong economy by enabling the integration of clean, renewable energy sources like wind and solar power and supporting the needs of an increasingly digital economy. AGI leverages energy industry cost-share and collaboration to foster the deployment of smart grid technologies and systems and reduce barriers to investment. To accomplish this, the Program is pursuing five core

330

Energy Efficient Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficient Technologies Energy Efficient Technologies Energy efficient technologies are available now! Many of the vehicles currently on display in dealer showrooms boast new performance-enhancing, fuel-saving technologies that can save you money. Engine Technologies Transmission Technologies All Engine Technology Average Efficiency Increase Variable Valve Timing & Lift improve engine efficiency by optimizing the flow of fuel & air into the engine for various engine speeds. 5% Cylinder Deactivation saves fuel by deactivating cylinders when they are not needed. 7.5% Turbochargers & Superchargers increase engine power, allowing manufacturers to downsize engines without sacrificing performance or to increase performance without lowering fuel economy. 7.5% Integrated Starter/Generator (ISG) Systems automatically turn the engine on/off when the vehicle is stopped to reduce fuel consumed during idling. 8%

331

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Understanding the Indoor Concentrations of Outdoor Aerosols in Residences 3 EETD Develops New Commercial Duct-Sealing Technology 4 Ultraclean Low-swirl Combustion Will Help Clear the Air 6 Functional Testing Guide Aids Building Teams 7 Motor System Optimiza- tion in China: Building a Model for Industrial Energy Efficiency 8 Capturing and Tracking Energy-Savings Project Goals with the Design Intent Tool 9 Microgrids: Reliable Power in a Small Package 10 Research Highlights continued on page 2 In this Issue In this Issue Lawrence Berkeley National Laboratory Atmospheric Sciences Advanced Technologies Building Technologies Energy Analysis Indoor Environment Summer 2003 Volume 4 Number 3 NEWS n 1997, the U.S. Environmental Protection Agency (EPA) issued new National Ambient Air Quality Standards for airborne particles less than

332

NETL: News Release -Treasury, Energy Departments Release New Advanced Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2007 7, 2007 Treasury, Energy Departments Release New Advanced Coal Project Tax Credit Applications for 2007-2008 WASHINGTON, DC - The Treasury Department and the Department of Energy (DOE) released today new instructions for applying for the tax credits for advanced coal projects and gasification projects. The new instructions provide additional time to submit applications for the credits. For the 2007-2008 allocation round, applications for DOE certification are not due to the Energy Department until October 31, 2007. "To further advance our nation's energy security, this Administration had made sustained investments in research, development, and wider use of advanced coal technologies a priority," Deputy Secretary of Energy Clay Sell said. "Through new and innovative programs such as the Clean Coal Power Initiative and FutureGen demonstration, private sector partnerships, and use of tax credits and loan guarantees, the Department of Energy is advancing research to further develop and deploy advanced coal technologies to meet growing energy demand."

333

ESS 2012 Peer Review - State & Federal Energy Storage Technology Advancement Partnership - Todd Olinsky-Paul, CESA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Todd Olinsky-Paul Clean Energy States Alliance The Renaissance Hotel Washington, D.C. September 2012 Thank You: Dr. Imre Gyuk U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Dan Borneo Sandia National Laboratories ESTAP is a project of CESA Clean Energy States Alliance (CESA) is a non-profit organization providing a forum for states to work together to implement effective clean energy policies & programs: - Information Exchange - Partnership Development - Joint Projects (National RPS Collaborative, Interstate Turbine Advisory Council) - Clean Energy Program Design & Evaluations - Analysis and Reports CESA is supported by a coalition of states and public utilities representing the leading U.S. public clean energy programs.

334

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage to someone by E-mail Share Vehicle Technologies Office: Energy Storage on Facebook Tweet about Vehicle Technologies Office: Energy Storage on Twitter Bookmark...

335

Building Technologies Program: ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR on Twitter Bookmark Building Technologies Program: ENERGY STAR on Google Bookmark Building Technologies Program: ENERGY STAR on Delicious Rank Building...

336

Building Technologies Office: ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR on Twitter Bookmark Building Technologies Office: ENERGY STAR on Google Bookmark Building Technologies Office: ENERGY STAR on Delicious Rank Building...

337

Department of Energy, Duke Energy and EPRI Partner to Test Advanced Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy, Duke Energy and EPRI Partner to Test Advanced Energy, Duke Energy and EPRI Partner to Test Advanced Energy Technologies for Utilities Department of Energy, Duke Energy and EPRI Partner to Test Advanced Energy Technologies for Utilities April 14, 2011 - 12:00am Addthis Washington, DC - The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) has signed a partnership deal with Duke Energy, one of the largest electric power companies in the United States, and with the Electric Power Research Institute (EPRI), a non-profit research organization that focuses on the electric power utility industry in the U.S. and abroad, to identify opportunities for testing and deploying ARPA-E funded projects that will bolster the electric grid. Through the Memorandum of Understanding (MOU), ARPA-E, Duke Energy, and

338

Secretary Bodman Travels to Russia to Advance Energy Security | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Russia to Advance Energy Security Russia to Advance Energy Security Secretary Bodman Travels to Russia to Advance Energy Security March 15, 2006 - 12:20pm Addthis Promotes Transparent Markets and Clean Energy Technologies; Participates in G8 Energy Ministerial and Delivers Remarks on the Global Nuclear Energy Partnership MOSCOW, RUSSIA-U.S. Secretary of Energy Samuel W. Bodman today began a two-day visit to Russia where he will lead the U.S. delegation to the G8 Energy Ministerial. During his visit the Secretary will promote greater energy security through the use of advanced energy technologies, the promotion of stable and transparent investment climates, and increased conservation and energy efficiency. Secretary Bodman will also deliver remarks to the Carnegie Center on the Global Nuclear Energy Partnership

339

Advanced Energy Industries, Inc. SEGIS developments.  

DOE Green Energy (OSTI)

The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

Scharf, Mesa P. (Advanced Energy Industries, Inc., Bend, OR); Bower, Ward Isaac; Mills-Price, Michael A. (Advanced Energy Industries, Inc., Bend, OR); Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

2012-03-01T23:59:59.000Z

340

Fossil energy waste management. Technology status report  

SciTech Connect

This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

Bossart, S.J.; Newman, D.A.

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Program on Technology Innovation: New York Power Authority Advanced Sodium Sulfur (NaS) Battery Energy Storage System  

Science Conference Proceedings (OSTI)

Electric utilities, energy service companies, and utility customers lack familiarity with distributed electric storage systems. Demonstration projects highlighting the benefits, safety, and effectiveness of such systems will promote their propagation. The benefits derived from the storage of electrical energy are well defined in the EPRI-DOE Handbook of Energy Storage for Transmission and Distribution Applications (Electric Power Research Institute [EPRI] report 1001834). This report documents system des...

2011-12-22T23:59:59.000Z

342

Distributed Sensor Coordination for Advanced Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Sensor Coordination for Advanced Energy Systems Background As advanced energy systems grow in size, they require an increasing number of pressure, temperature, and...

343

Tribal Renewable Energy Advanced Course: Project Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development and Financing Essentials Tribal Renewable Energy Advanced Course: Project Development and Financing Essentials Watch the DOE Office of Indian Energy advanced course...

344

Clean Energy Technologies | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Technologies Jump to: navigation, search Name Clean Energy Technologies Place Overland Park, Kansas Sector Renewable Energy Product Producer of ethanol and other...

345

Biomass Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Energy Technology Module AgencyCompany Organization: World Bank Sector: Energy...

346

Energy Storage Technologies Available for Licensing - Energy ...  

Energy Storage Technologies Available for Licensing U.S. Department of Energy laboratories and participating research institutions have energy storage technologies ...

347

Wind Energy Technologies - Energy Innovation Portal  

Wind Energy Technology Marketing Summaries Here youll find marketing summaries of wind energy technologies available for licensing from U.S. Department of Energy ...

348

Energy Basics: Ocean Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Technologies Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar...

349

Solar Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Technology Basics Solar Energy Technology Basics August 16, 2013 - 4:37pm Addthis Solar energy technologies produce electricity from the energy of the sun. Small solar...

350

Advanced Thermionic Technology Program: summary report. Volume 2. Final report  

DOE Green Energy (OSTI)

This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This Program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. The technology has previously been developed for astronautical applications. Volume 2 (Part C) concentrates on the progress made in developing and fabricating the ''current generation'' of chemical vapor deposited hot shell thermionic converters and is addressed to those primarily concerned with today's capabilities in terrestrial thermionic technology. 30 refs., 83 figs.

Not Available

1984-10-01T23:59:59.000Z

351

Advanced NOx Emissions Control: Control Technology - Second Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Second Generation Advanced Reburning Second Generation Advanced Reburning General Electric - Energy and Environmental Research Corporation (GE-EER) is carrying out a two Phase research program to develop novel Advanced Reburning (AR) concepts for high efficiency and low cost NOx control from coal-fired utility boilers. AR technologies are based on combination of basic reburning and N-agent/promoter injections. Phase I of the project was successfully completed and EER was selected to continue to develop AR technology during Phase II. Phase I demonstrated that AR technologies are able to provide effective NOx control for coal-fired combustors. Three technologies were originally envisioned for development: AR-Lean, AR-Rich, and Multiple Injection AR (MIAR). Along with these, three additional technologies were identified during the project: reburning plus promoted SNCR; AR-Lean plus promoted SNCR; and AR-Rich plus promoted SNCR. The promoters are sodium salts, in particular sodium carbonate. These AR technologies have different optimum reburn heat input levels and furnace temperature requirements. For full scale application, an optimum technology can be selected on a boiler-specific basis depending on furnace temperature profile and regions of injector access.

352

DOE Announces Up to $7.5 Million in Advanced Technology Research to Harness  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

.5 Million in Advanced Technology Research to .5 Million in Advanced Technology Research to Harness Energy Potential of Oceans, Tides and Rivers DOE Announces Up to $7.5 Million in Advanced Technology Research to Harness Energy Potential of Oceans, Tides and Rivers May 5, 2008 - 11:30am Addthis WASHINGTON, DC - As part of the Bush Administration's ongoing commitment to invest in clean energy technologies to meet growing energy demand while reducing greenhouse gas emissions, the U.S. Department of Energy (DOE) has announced up to $7.5 million in federal funding for research and development to help advance the viability and cost-competitiveness of advanced water power systems. Through this Funding Opportunity Announcement (FOA), DOE seeks partnerships with U.S. industry and universities to develop innovative and effective technologies capable of

353

Advances in welding science and technology  

SciTech Connect

Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based design of composition, structure, and properties of welds with intelligent control and automation of the welding processes. In the last several decades, welding has evolved as an interdisciplinary activity requiring synthesis of knowledge from various disciplines and incorporating the most advanced tools of various basic applied sciences. A series of international conferences and other publications have covered the issues, current trends and directions in welding science and technology. In the last few decades, major progress has been made in (i) understanding physical processes in welding, (ii) characterization of microstructure and properties, and (iii) intelligent control and automation of welding. This paper describes some of these developments.

David, S.A.; Babu, S.S.; Vitek, J.M.

1995-12-31T23:59:59.000Z

354

Advanced manufacturing: Technology and international competitiveness  

SciTech Connect

Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

Tesar, A.

1995-02-01T23:59:59.000Z

355

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

HVAC Advanced lighting technologies Advanced lighting design Advance ASD designs Advanced compressor controls Compressed air system management Motor diagnostics Motor system optimization

2004-01-01T23:59:59.000Z

356

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

HVAC Advanced lighting technologies Advanced lighting design Advance ASD designs Advanced compressor controls Compressed air system management Motor diagnostics Motor system optimization

2005-01-01T23:59:59.000Z

357

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

HVAC Advanced lighting technologies Advanced lighting design Advance ASD designs Advanced compressor controls Compressed air system management Motor diagnostics Motor system optimization

2001-01-01T23:59:59.000Z

358

Vehicle Technologies Program Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Program Awards Vehicle Technologies Program Awards vtpnum.zip More Documents & Publications Advanced Vehicle Technologies Awards Table Advanced Vehicle...

359

Ceramic technology for advanced heat engines  

DOE Green Energy (OSTI)

The Ceramic Technology Project was initiated in 1983 for the purpose of developing highly reliable structural ceramics for applications in advanced heat engines, such as automotive gas turbines and advanced heavy duty diesel engines. The reliability problem was determined to be a result of uncontrolled populations of processing flaws in the brittle, flaw-sensitive materials, along with microstructural features, such as grain boundary phases, that contribute to time dependent strength reduction in service at high temperatures. The approaches taken to develop high reliability ceramics included the development of tougher materials with greater tolerance to microstructural flaws, the development of advanced processing technology to minimize the size and number of flaws, and the development of mechanical testing methodology and the characterization of time dependent mechanical behavior, leading to a life prediction methodology for structural ceramics. The reliability goals of the program were largely met by 1993, but commercial implementation of ceramic engine components has been delayed by the high cost of the components. A new effort in Cost Effective Ceramics for Heat Engines was initiated in 1993 and is expected to develop the manufacturing technology leading to an order of magnitude cost reduction. The program has been planned for a five year period.

Johnson, D.R. [Oak Ridge National Lab., TN (United States); Schulz, R.B. [Dept. of Energy, Washington, DC (United States)

1994-10-01T23:59:59.000Z

360

Quadrennial Technology Review | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quadrennial Technology Review Quadrennial Technology Review Quadrennial Technology Review Featured Register Here for the Public Release of the Quadrennial Technology Review Register here to attend the public release of the Department of Energy's Quadrennial Technology Review on Tuesday, September 27 at 1:00pm at the American Association for the Advancement of Science. Final Workshop of Department's Inaugural Technology Assessment Under Secretary Steven Koonin will host the sixth and final workshop of the Department's inaugural Quadrennial Technology Review. You can watch live at 8:30 am ET. Department of Energy to Host Final Quadrennial Technology Review Workshop Deparment's Quadrennial Technology Review announces final workshop to discuss preliminary findings. Introducing the Department of Energy Quadrennial Technology Review

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEAMS: The Nuclear Energy Advanced NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program is developing a simulation tool kit using leading-edge computational methods that will accelerate the development and deployment of nuclear power technologies that employ enhanced safety and security features, produce power more cost-effectively, and utilize natural resources more efficiently. The NEAMS ToolKit

362

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24, 2011 24, 2011 CX-005319: Categorical Exclusion Determination Alternative Fuel/Advanced Vehicle Technology - City of Raleigh CX(s) Applied: A1, B5.1 Date: 02/24/2011 Location(s): Raleigh, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 24, 2011 CX-005318: Categorical Exclusion Determination Alternative Fuel/Advanced Vehicle Technology - North Carolina State University CX(s) Applied: A1, B5.1 Date: 02/24/2011 Location(s): North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 24, 2011 CX-005317: Categorical Exclusion Determination University of Arkansas for Medical Sciences (UAMS), District Energy Service Modifications CX(s) Applied: A1, B5.1 Date: 02/24/2011

363

2003 U.S. Department of Energy Strategic Plan: Protecting National, Energy, and Economic Security with Advanced Science and Technology and Ensuring Environmental Cleanup  

SciTech Connect

The Department of Energy contributes to the future of the Nation by ensuring energy security, maintaining the safety, security and reliability of the nuclear weapons stockpile, cleaning up the environment from the legacy of the Cold War, and developing innovations in science and technology. After 25 years in existence, the Department now operates 24 preeminent research laboratories and facilities and four power marketing administrations, and manages the environmental cleanup from 50 years of nuclear defense activities that impacted two million acres in communities across the country. The Department has an annual budget of about $23 billion and employs about 14,500 Federal and 100,000 contractor employees. The Department of Energy is principally a national security agency and all of its missions flow from this core mission to support national security. That is true not just today, but throughout the history of the agency. The origins of the Department can be traced to the Manhattan Project and the race to develop the atomic bomb during World War II. Following the war, Congress engaged in a vigorous and contentious debate over civilian versus military control of the atom. The Atomic Energy Act of 1946 settled the debate by creating the Atomic Energy Commission, which took over the Manhattan Projects sprawling scientific and industrial complex.

None,

2003-09-30T23:59:59.000Z

364

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act Funding Enables Berkeley Lab to Help Federal Agencies Improve Recovery Act Funding Enables Berkeley Lab to Help Federal Agencies Improve Energy Efficiency Recovery Act logo The U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has received $1.8 million in American Recovery and Reinvestment Act (ARRA) funding to provide technical expertise to federal energy managers. The funding will enable Berkeley Lab scientists to provide technical expertise to help federal energy managers perform projects and monitor their performance. Work will focus on advanced energy-efficient technologies in lighting, HVAC (heating, ventilation, and air conditioning), and control systems for the buildings, laboratories, and data centers of several federal agencies. "This funding will help implement energy efficiency projects across the

365

Energy Department Announces $10 Million to Advance Innovative,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces $10 Million to Advance Innovative, Energy Department Announces $10 Million to Advance Innovative, Energy-Saving Lighting Technologies Energy Department Announces $10 Million to Advance Innovative, Energy-Saving Lighting Technologies December 6, 2013 - 1:48pm Addthis As part of cutting energy waste and doubling energy productivity by 2030, the Energy Department today announced nearly $10 million to support research, development, and manufacturing of solid-state lighting (SSL) technologies across the country. This funding will help accelerate the development of high-quality light-emitting diode (LED) and organic light-emitting diode (OLED) products with the potential to reduce lighting energy use for American families and businesses by one half and enhance U.S. global competitiveness. Based on the Energy Department's recent report on the adoption of LEDs,

366

Commercializing Department of Energy Technologies: Success Stories  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercializing Department of Energy Commercializing Department of Energy Technologies: Success Stories Entrepreneurs in clean energy, medicine, advanced manufacturing, information technology, and other fields will build the new industries of the 21st century, and help solve some of our toughest global challenges. The country's National Laboratories are playing a key role in helping start-ups, and in some cases established corporations, meet those challenges while positioning the U.S. to be a leader in major industries. Ampulse Corp., Oak Ridge sign licensing agreement for photovoltaic technology - Ampulse Corporation is a venture capital-backed company leveraging proprietary and patented technology developed at the National Renewal Energy Laboratory (NREL)

367

Technology Development | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Development Electricity Advisory Committee Technology Development Smart Grid Demand Response Federal Smart Grid Task Force Distributed Energy Recovery Act...

368

Tribal Renewable Energy Advanced Course: Project Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concepts Tribal Renewable Energy Advanced Course: Project Development Concepts Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy...

369

Energy-Efficient Industrial Waste Treatment Technologies  

Science Conference Proceedings (OSTI)

Rising energy costs coupled with the continuing need for effective environmental treatment methods have stimulated interest in advanced energy-efficient technologies. EPRI has reviewed a wide variety of electricity-based processes for industrial air pollution control, wastewater treatment, and solid waste treatment along with some closely related competing technologies. These technologies ranged from untested concepts to well-established ones. While most offer process cost savings and improvements over e...

2007-10-31T23:59:59.000Z

370

Ceramic technology for Advanced Heat Engines Project  

DOE Green Energy (OSTI)

Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

Johnson, D.R.

1991-07-01T23:59:59.000Z

371

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

SciTech Connect

This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

Hugh W. Rimmer

2004-05-12T23:59:59.000Z

372

Stimulating Energy Technology Innovation  

E-Print Network (OSTI)

The innovation system has interrelated components of invention, translation, adoption, and diffusion. Energy technology innovation has lagged that in other domains, and there is a compelling public interest in picking up ...

Moniz, Ernest J.

373

Advances in Energy  

Science Conference Proceedings (OSTI)

Siemens has a diverse portfolio on energy that comprises of oil and gas, fossil ... Solid Core 2-D Photonic Band-Gap Fibers (SC-PBG) with High Index Inclusions.

374

Advanced Energy Design Guides  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One way to influence above-code One way to influence above-code exemplary energy performance in commercial buildings is to provide architects, engineers, and other design practitioners prescriptive guidance that indicates, measure by measure, how to do it. To this end, the U.S. Department of Energy (DOE) actively supports development of a series of AEDGs- publications designed to provide recommendations for achieving 30 to 50

375

Solar Energy, Modeling, and Advanced Materials  

Science Conference Proceedings (OSTI)

Oct 21, 2010 ... Clean Energy: Fuel Cells, Batteries, Renewables - Materials, Processing, and Manufacturing: Solar Energy, Modeling, and Advanced Materials

376

Briza Technologies | Open Energy Information  

Open Energy Info (EERE)

Briza Technologies Place Hillsborough, New Jersey Zip 8844 Sector Wind energy Product Developing wind turbine technology. References Briza Technologies1 LinkedIn Connections...

377

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

lectrochromic glazings promise to be the next major advance in energy-efficient window technology, helping to achieve the goal of transforming windows and skylights from an energy liability in buildings to an energy source for the nation's building stock. The glazing can be reversibly switched from clear to a transparent, colored state by applying a low volt- age, resulting in dynamically controllable thermal and optical properties ("smart windows"). Incorporating electrochromic glaz- ings could reduce peak electric loads by 20 to 30% in many com- mercial buildings and increase daylighting benefits throughout the U.S., as well as improve comfort and potentially enhance pro- ductivity in our homes and offices. These technologies will pro- vide maximum flexibility

378

Advanced Energy Retrofit Guides | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofit Guides Retrofit Guides Advanced Energy Retrofit Guides Photo of the cover of the Advanced Energy Retrofit Guide for Healthcare Facilities. The Advanced Energy Retrofit Guides (AERGs) were created to help decision makers plan, design, and implement energy improvement projects in their facilities. With energy managers in mind, they present practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle. These guides are primarily reference documents, allowing energy managers to consult the particular sections that address the most pertinent topics.. Useful resources are also cited throughout the guides for further information. Each AERG is tailored specifically to the needs of a specific building type, with an emphasis on the most effective

379

Federal Energy Management Program: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies The Federal Energy Management Program (FEMP) offers information about energy-efficient and renewable energy technologies through the following areas. Energy-Efficient Product Procurement: Find energy-efficient product requirements and technology, purchasing specifications, energy cost savings calculators, model contract language, and resources. Technology Deployment: Look up information about developing, measuring, and implementing new and underutilized technologies for energy management in the Federal Government. Renewable Energy: Read about renewable energy requirements, resources and technologies, project planning, purchasing renewable power, and more. See FEMP's other program areas. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov

380

NATIONAL ENERGY TECHNOLOGY LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Cover image: NETL researcher Corinne Disenhof examines a basalt thin section under a geoscience laboratory petrographic microscope. NETL is investigating the effects of microbes on basalt during carbon sequestration, and petrography is one of several analysis methods being used. Others include scanning electron microscopy and x-ray diffraction. Mission Advancing energy options to fuel our economy, strengthen our security, and improve our environment. 2 Contents 2011 Letter from the Director ___________________________ 4 Advanced Power Systems __________________________ 6 Clean Energy ____________________________________ 24 Oil & Natural Gas ________________________________ 40 A Legacy of Benefit: The Return on Federal Research at NETL ______________

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Flywheel energy storage advances using HTS bearings.  

DOE Green Energy (OSTI)

High-Temperature-Superconducting (HT) bearings have the potential to reduce idling losses and make flywheel energy storage economical. Demonstration of large, high-speed flywheels is key to market penetration. Toward this goal, a flywheel system has been developed and tested with 5-kg to 15-kg disk-shaped rotors. Rlm speeds exceeded 400 mls and stored energies were >80 W-hr. Test implementation required technological advances in nearly all aspects of the flywheel system. Features and limitations of the design and tests are discussed, especially those related to achieving additional energy storage.

Mulcahy, T. M.

1998-09-11T23:59:59.000Z

382

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2010 2, 2010 CX-002250: Categorical Exclusion Determination North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: B5.1 Date: 05/12/2010 Location(s): Southlake, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 12, 2010 CX-002249: Categorical Exclusion Determination North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: B5.1 Date: 05/12/2010 Location(s): Southlake, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 12, 2010 CX-002248: Categorical Exclusion Determination Competitive Renewable Grants Program - Claflin University Solar Thermal CX(s) Applied: A1, B1.5, B5.1 Date: 05/12/2010 Location(s): Orangeburg, South Carolina

383

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31, 2010 31, 2010 CX-001453: Categorical Exclusion Determination North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: B5.1 Date: 03/31/2010 Location(s): Fort Worth, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 31, 2010 CX-001452: Categorical Exclusion Determination Development of Advanced Reservoir Characterization Techniques Date: 03/31/2010 Location(s): Grand Forks, North Dakota Office(s): Fossil Energy, National Energy Technology Laboratory March 30, 2010 CX-001462: Categorical Exclusion Determination High Performance Buildings - United Teen Equality Center CX(s) Applied: B1.15, B1.24, B2.5, A9, A11, B5.1 Date: 03/30/2010 Location(s): Lowell, Massachusetts Office(s): Energy Efficiency and Renewable Energy, National Energy

384

Advanced Wind Technology: New Challenges for a New Century  

Science Conference Proceedings (OSTI)

This paper describes the growth, advances, and challenges faced by the wind energy industry in 2006.

Thresher, R.; Laxson, A.

2006-06-01T23:59:59.000Z

385

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

2, No. 2 http:eetd.lbl.govnewsletternl45 Environmental Energy Technologies Division News http:eetd.lbl.govnewsletter 2013 Environmental Energy Technologies Division...

386

Building Technologies Office: Saving Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Saving Energy Printable Version Share this resource Send a link to Building Technologies Office: Saving Energy to someone by E-mail Share Building Technologies Office: Saving...

387

Federal Energy Management Program: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Site Map Printable Version Share this resource Send a link to Federal Energy Management Program: Technologies to someone by E-mail Share Federal Energy Management...

388

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

1, No. 1 http:eetd.lbl.govnewsletternl40 Environmental Energy Technologies Division News http:eetd.lbl.govnewsletter 2012 Environmental Energy Technologies Division...

389

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

1, No. 2 http:eetd.lbl.govnewsletternl41 Environmental Energy Technologies Division News http:eetd.lbl.govnewsletter 2012 Environmental Energy Technologies Division...

390

Program on Technology Innovation: Advanced Information Technology Requirements for the Electric Power Industry  

Science Conference Proceedings (OSTI)

The EPRI Advanced Information Technology Requirements for the Electric Power Industry workshop was held September 1617, 2008, in Knoxville, Tennessee. It was attended by 15 senior information technology (IT) professionals representing various investor-owned utilities, municipal utilities, rural cooperatives, and regional transmission organizations (RTOs), as well as the Edison Electric Institute and the U.S. Department of Energy. The workshop provided a forum to identify needs and opportunities for indu...

2009-08-24T23:59:59.000Z

391

NREL: Technology Deployment - Biopower and Waste-to-Energy Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities, and Options for Advancing Bioenergy Waste-to-Energy Evaluation: U.S. Virgin Islands See all our publications Printable Version Technology Deployment Home...

392

Advanced clean combustion technology in Shanxi province  

Science Conference Proceedings (OSTI)

Biomass energy resources in China are first described, along with biomass gasification R & D now underway. In Shanxi province biomass and other regenerative energy is relatively little used but coal resources are large. Hence Shanxi is mainly developing clean coal technology to meet its economic and environmental protection requirements. Clean combustion research at Taiyuan University of Technology includes cofiring of coal and RDF in FBC, gas purification and adsorption, fundamentals of plasma-aided coal pyrolysis and gasification and coal derived liquid fuels from synthesis gas. 5 refs.

Xie, K.-C. [Taiyuan University of Technology, Taiyuan (China)

2004-07-01T23:59:59.000Z

393

GARS | Sustainable Energy Technologies Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy storage The Sustainable Energy Technologies Department finds alternatives to fossil fuels and improves energy efficiency to meet our exponentially growing energy needs...

394

Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bodman Showcases Advanced Clean Diesel and Hybrid Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses May 10, 2005 - 12:45pm Addthis Says Energy Bill Essential to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an exhibition of energy-efficient, clean diesel and advanced hybrid commercial vehicles at a press conference in Washington, D.C. Secretary Bodman also underscored the need to pass an energy bill that encourages the use of renewable fuels and new technologies to provide the United States with greater energy independence. "Industry and government are working hand-in-hand to develop technologies

395

Wind Energy Technologies - Energy Innovation Portal  

Wind Energy Technology Marketing Summaries Here youll find marketing summaries of wind energy technologies available for licensing from U.S. ...

396

Renewable Energy Technology Center | Open Energy Information  

Open Energy Info (EERE)

Technology Center Jump to: navigation, search Name Renewable Energy Technology Center Place Hamburg, Hamburg, Germany Zip D-22335 Sector Wind energy Product RETC, a JV formed which...

397

Pihsiang Energy Technology PHET | Open Energy Information  

Open Energy Info (EERE)

Energy Technology (PHET) Place Taiwan Sector Vehicles Product Taiwanese LiFePO4 battery manufacture makes propulsion of vehicles. References Pihsiang Energy Technology...

398

Building Energy Efficiency Technologies - Energy Innovation Portal  

Building Energy Efficiency Technology Marketing Summaries Here youll find marketing summaries of building energy efficiency technologies available for licensing ...

399

Energy Storage Technologies - Energy Innovation Portal  

Energy Storage Technology Marketing Summaries Here youll find marketing summaries of energy storage technologies available for licensing from U.S. Department of ...

400

Energy Storage Technologies - Energy Innovation Portal  

Energy Storage Technology Marketing Summaries Here youll find marketing summaries of energy storage technologies available for licensing from U.S. ...

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Waste to Energy Technologies | Open Energy Information  

Open Energy Info (EERE)

Waste to Energy Technologies Jump to: navigation, search Name Waste to Energy Technologies Place Madrid, Spain Zip 28023 Sector Biomass Product Turn key WtEbiomass plant supplier...

402

Development of an Advanced Deshaling Technology to Improve the Energy Efficiency of Coal Handling, Processing, and Utilization Operations  

Science Conference Proceedings (OSTI)

The concept of using a dry, density-based separator to achieve efficient, near-face rock removal, commonly referred to as deshaling, was evaluated in several applications across the U.S.. Varying amounts of high-density rock exist in most run-of-mine feed. In the central Appalachian coalfields, a rock content exceeding 50% in the feed to a preparation plant is commonplace due to high amounts of out-of-seam dilution made necessary by extracting coal from thin seams. In the western U.S, an increase in out-of-seam dilution and environmental regulations associated with combustion emissions have resulted in a need to clean low rank coals and dry cleaning may be the only option. A 5 ton/hr mobile deshaling unit incorporating a density-based, air-table technology commercially known as the FGX Separator has been evaluated at mine sites located within the states of Utah, Wyoming, Texas, West Virginia, Virginia, Pennsylvania and Kentucky. The FGX technology utilizes table riffling principles with air as the medium. Air enters through the table and creates a fluidized bed of particles comprised of mostly fine, high density particles. The high density particle bed lifts the low-density coal particles to the top of the bed. The low-density coal moves toward the front of the table due to mass action and the downward slope of the table. The high-density particles settle through the fluidized particle bed and, upon making contact with the table, moves toward the back of the table with the assistance of table vibration. As a result, the low-density coal particles exit the front of the table closest to the feed whereas the high-density, high-ash content particles leave on the side and front of the table located at the farthest from the feed entry. At each test site, the run-of-mine feed was either directly fed to the FGX unit or pre-screened to remove the majority of the -6mm material. The surface moisture of the feed must be maintained below 9%. Pre-screening is required when the surface moisture of the feed coal exceeds the maximum limit. However, the content of -6mm in the feed to the FGX separator should be maintained between 10% and 20% to ensure an adequate fluidized bed. A parametric evaluation was conducted using a 3-level experimental design at each test site to identify the optimum separation performance and parameter values. The test data was used to develop empirical expressions that describe the response variables (i.e., mass yield and product ash content) as a function of the operating parameter values. From this process, it was established that table frequency and longitudinal slope are the most critical factors in controlling both mass yield and clean coal ash while the cross table slope was the least significant. Fan blower frequency is a critical parameter that controls mass yield. Although the splitter positions between product and middling streams and the middling and tailing streams were held constant during the tests, a separate evaluation indicated that performance is sensitive to splitter position within certain lengths of the table and insensitive in others. For a Utah bituminous coal, the FGX separator provided clean coal ash contents that ranged from a low of 8.57% to a high of 12.48% from a feed coal containing around 17% ash. From the 29 tests involved in the statistically designed test program, the average clean coal ash content was 10.76% while the tailings ash content averaged around 72%. One of the best separation performances achieved an ash reduction from 17.36% to 10.67% while recovering 85.9% of the total feed mass, which equated to an ash rejection value of around 47%. The total sulfur content was typically decreased from 1.61% to 1.49%. These performances were quantified by blending the middlings stream with the clean coal product. At a second Utah site, coal sources from three different bituminous coal seams were treated by the FGX deshaling unit. Three parameter values were varied based on the results obtained from Site No. 1 to obtain the optimum results shown in Table E-1. Approximately 9 tests w

Rick Honaker; Gerald Luttrell

2007-09-30T23:59:59.000Z

403

NATIONAL ENERGY TECHNOLOGY LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 NETL Accomplishments 2 Advancing energy options to fuel our economy, strengthen our security, and improve our environment. Our Mission 3 2010 NETL Accomplishments 86 66 54 52 28 8 6 4 CONTENTS NETL Mission Message from the Director NETL Powers the Future of Energy Advanced Power Systems 10 Gasification 14 Fuel Cells 16 SECA Reaches 2010 Program Goal 18 Turbines 22 Turbine Program Develops Prototypes for Reducing Emissions 24 Materials Clean Energy 30 Carbon Capture 34 Carbon Storage 36 Perfluorocarbon Tracers Go with the Flow 38 Carbon Sequestration Partnerships 44 Demand-Side Efficiency 48 Air, Water, Land A Century of Science Reliable Supply 56 Energy Infrastructure 60 Methane Hydrates 62 Natural Gas and Oil Production

404

Flywheel Energy Storage technology workshop  

DOE Green Energy (OSTI)

Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

O`Kain, D.; Howell, D. [comps.

1993-12-31T23:59:59.000Z

405

Game-Changing Advancements in Solar Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Game-Changing Advancements in Solar Energy Game-Changing Advancements in Solar Energy Game-Changing Advancements in Solar Energy Addthis Record-Breaking Solar 1 of 5 Record-Breaking Solar This concentrating photovoltaic (CPV) cell -- which uses a focused lens to magnify light to 418 times the intensity of the sun -- earned an R&D100 Award and set a new world record of 43.5 percent for solar cell conversion efficiency. The technology is based on high-efficiency multijunction research pioneered by the National Renewable Energy Laboratory (NREL). | Photo by Daniel Derkacs/Solar Junction. Date taken: 2012-11-29 09:21 Solar Innovation 2 of 5 Solar Innovation Solar Junction's record-breaking SJ3 solar cell is based on EERE-supported multijunction research. | Photo by Daniel Derkacs/Solar Junction Date taken: 2012-11-29 09:21

406

Remote power systems with advanced storage technologies for Alaskan villages  

DOE Green Energy (OSTI)

Remote Alaskan communities pay economic and environmental penalties for electricity, because they must import diesel as their primary fuel for electric power production, paying heavy transportation costs and potentially causing environmental damage with empty drums, leakage, and spills. For these reasons, remote villages offer a viable niche market where sustainable energy systems based on renewable resources and advanced energy storage technologies can compete favorably on purely economic grounds, while providing environmental benefits. These villages can also serve as a robust proving ground for systematic analysis, study, improvement, and optimization of sustainable energy systems with advanced technologies. This paper presents an analytical optimization of a remote power system for a hypothetical Alaskan village. The analysis considers the potential of generating renewable energy (e.g., wind and solar), along with the possibility of using energy storage to take full advantage of the intermittent renewable sources available to these villages. Storage in the form of either compressed hydrogen or zinc pellets can then provide electricity from hydrogen or zinc-air fuel cells when renewable sources are unavailable.The analytical results show a great potential to reduce fossil fuel consumption and costs basing renewable energy combined with advanced energy storage devices. The best solution for our hypothetical village appears to be a hybrid energy system, which can reduce consumption of diesel fuel by over 50% with annualized cost savings by over 30% by adding wind turbines to the existing diesel generators. When energy storage devices are added, diesel fuel consumption and costs can be reduced substantially more. With optimized energy storage, use of the diesel generatorss can be reduced to almost zero, with the existing equipment only maintained for added reliability. However about one quarter of the original diesel consumption is still used for heating purposes. (We use the term diesel to encompass the fuel, often called heating or fuel oil, of similar or identical properties.)

Isherwood, W.; Smith, R.; Aceves, S.; Berry, G.; Clark, W.; Johnson, R.; Das, D.; Goering, D.; Seifert, R.

1997-12-01T23:59:59.000Z

407

Energy Department Announces $10 Million to Advance Innovative,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Million to Advance Innovative, 0 Million to Advance Innovative, Energy-Saving Lighting Technologies Energy Department Announces $10 Million to Advance Innovative, Energy-Saving Lighting Technologies December 6, 2013 - 1:48pm Addthis As part of cutting energy waste and doubling energy productivity by 2030, the Energy Department today announced nearly $10 million to support research, development, and manufacturing of solid-state lighting (SSL) technologies across the country. This funding will help accelerate the development of high-quality light-emitting diode (LED) and organic light-emitting diode (OLED) products with the potential to reduce lighting energy use for American families and businesses by one half and enhance U.S. global competitiveness. Based on the Energy Department's recent report on the adoption of LEDs,

408

Advanced Energy Design Guides | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Guides Design Guides Advanced Energy Design Guides The 50% AEDGs provide practical approaches to achieve 50% energy savings compared to base code requirements. Download them free from ASHRAE: Small and Medium Office Buildings K-12 School Buildings Medium to Big Box Retail Buildings Large Hospitals The Advanced Energy Design Guides (AEDGs) accelerate the construction of energy efficient buildings by providing prescriptive solutions to achieve significant energy savings over minimum building energy codes. The AEDG project represents a partnership between the U.S. Department of Energy (DOE), ASHRAE, American Institute of Architects, U.S. Green Building Council, and the Illuminating Engineering Society of North America (IES). The AEDG series provides design guidance for buildings that use 50% less

409

Building Technologies Office: Advanced, Variable Speed Air-Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced, Variable Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project to someone by E-mail Share Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Facebook Tweet about Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Twitter Bookmark Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Google Bookmark Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Delicious Rank Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Digg Find More places to share Building Technologies Office: Advanced,

410

Technology Commercialization Showcase - Home - Energy ...  

Small Business and Clean Energy Alliance (CEA) Partnership; ... The Department Of Energy Technology Commercialization Showcase provides effective ...

411

Anco Advance | Open Energy Information  

Open Energy Info (EERE)

Anco Advance Anco Advance Jump to: navigation, search Name Anco Advance Place Longmont, Colorado Zip 80503 Sector Renewable Energy Product Focused on the delivery and operation of profitable renewable waste to energy plants. Coordinates 40.16394°, -105.100504° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.16394,"lon":-105.100504,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

Advanced Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Manufacturing Advanced Manufacturing Advanced Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

413

Advanced Manufacturing Office: Western Industrial Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Send a link to Advanced Manufacturing Office: Western Industrial Energy Efficiency & Combined Heat and Power Regional Dialogue Meeting to someone by E-mail Share Advanced...

414

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

2000: 2000: Vol. 2, No. 1 Electrochromic Window Tests in U.S. Office Show Promise CLASP Helps Developing Nations Implement Energy Standards EETD Scientists Aid Research Efforts Leading to MTBE Ban Power Outage Study Team Examines Electricity Reliability Research Highlights Sources and Credits PDF of EETD News Electrochromic Window Tests in U.S. Office Show Promise Electrochromic glazings promise to be the next major advance in energy-efficient window technology, helping to achieve the goal of transforming windows and skylights from an energy liability in buildings to an energy source for the nation's building stock. The glazing can be reversibly switched from clear to a transparent, colored state by applying a low voltage, resulting in dynamically controllable thermal and optical

415

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-002514: Categorical Exclusion Determination State Energy Program - Clean Energy Property Rebate Program CX(s) Applied: A9, B5.1 Date: 05/28/2010 Location(s): Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 28, 2010 CX-002513: Categorical Exclusion Determination Ohio Advanced Transportation Partnership CX(s) Applied: B5.1 Date: 05/28/2010 Location(s): Ohio Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 28, 2010 CX-002511: Categorical Exclusion Determination Rhode Island Green Public Buildings Initiative CX(s) Applied: A9, B5.1 Date: 05/28/2010 Location(s): Rhode Island Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 28, 2010

416

Technology Commercialization Fund - Home - Energy ...  

How the Technology Commercialization Fund Works. When awarded, fund dollars must be spent on prototype advancement and cannot be used for scientific ...

417

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

buildings save power through automated demand response technology and advanced "Smart Grid" development. From left: Sila Kiliccote, Girish Ghatikar, and Mary Ann Piette. The...

418

Tribal Renewable Energy Advanced Course: Project Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Process Tribal Renewable Energy Advanced Course: Project Development Process Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable...

419

NETL: Gasification Systems - Advanced Virtual Energy Simulation Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Virtual Energy Simulation Training And Research (AVESTAR(tm)) Facility Advanced Virtual Energy Simulation Training And Research (AVESTAR(tm)) Facility Project No: Adv Gas-FY131415 Task 6 Developed as a part of NETL's initiative to advance new clean coal technology, the Advanced Virtual Energy Simulation Training And Research (AVESTARTM) Center is focused on training engineers and energy plant operators in the efficient, productive, and safe operation of highly efficient power generation systems that also protect the environment. Comprehensive dynamic simulator-based instruction better prepares operators and engineers to manage advanced energy plants according to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. Advanced Virtual Energy Simulation Training and Research Center - AVESTAR

420

Solargenix Energy Advanced Parabolic Trough Development  

SciTech Connect

The Solargenix Advanced Trough Development Project was initiated in the Year 2000 with the support of the DOE CSP Program and, more recently, with the added support of the Nevada Southwest Energy Partnership. Parabolic trough plants are the most mature solar power technology, but no large-scale plants have been built in over a decade. Given this lengthy lull in deployment, our first Project objective was development of improved trough technology for near-term deployment, closely patterned after the best of the prior-generation troughs. The second objective is to develop further improvements in next-generation trough technology that will lead to even larger reductions in the cost of the delivered energy. To date, this Project has successfully developed an advanced trough, which is being deployed on a 1-MW plant in Arizona and will soon be deployed in a 64-MW plant in Nevada. This advanced trough offers a 10% increase in performance and over an 20% decrease in cost, relative to prior-generation troughs.

Gee, R. C.; Hale, M. J.

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Advanced energy projects FY 1994 research summaries  

Science Conference Proceedings (OSTI)

The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation`s energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects.

Not Available

1994-09-01T23:59:59.000Z

422

DOE Announces Webinars on Energy Systems Advances, Hydrogen Safety Events  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Webinars on Energy Systems Advances, Hydrogen Safety Webinars on Energy Systems Advances, Hydrogen Safety Events Databases, and More DOE Announces Webinars on Energy Systems Advances, Hydrogen Safety Events Databases, and More September 9, 2013 - 12:00pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars September 10: Live Webinar on the Hydrogen Safety Events Database Webinar Sponsor: Fuel Cell Technologies Office The Energy Department will present a live webcast titled "What We Can Learn

423

Advance Waivers - 2002 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Advance Waivers - 2002 The following Advance Waivers are available: WA 02 002 GE CORPORATE RESEARCH AND DEVELOPMENT Waiver of Do.pdf WA 02 003 DEGUSSA CORP Waiver of Domestic and Foreign Invent.pdf WA 02 005 LUMILEDS LIGHTING Waiver of Domestic and Foreign I.pdf WA 02 006 UNITED TECHNOLOGIES Waiver of Domestic and Foreign.pdf WA 02 010 GENERAL ELECTRIC Waiver of Domestic and Foreign Ri.pdf WA 02 011 BP AMOCO CHEMICAL CO Waiver of Domestic and Foreig.pdf WA 02 012 CATERPILLAR INC Waiver of Domestic and Foreign Pat.pdf WA 02 013 UNITED TECHNOLOGIES Waiver of Domestic and Foreign.pdf WA 02 014 CONSOL ENERGY Waiver of Domestic and Foregin Inven.pdf WA 02 015 AIR PRODUCTS AND CHEMICALS INC Waiver of Patent Ri.pdf WA 02 016 GENERAL ELECTRIC GLOBAL RESEARCH Waiver of Domesti.pdf

424

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

the state of wind power in the U.S.? We've got you covered with the annual Wind Technologies Report. What's new in advanced lithium-ion battery technologies? Check out two...

425

Computational Advances in Applied Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advances in Applied Energy Computational Advances in Applied Energy Friedmann-LLNL-SEAB.10.11.pdf More Documents & Publications Director's Perspective by George Miller...

426

Advanced Energy Design Guides | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance Regulations Resource Center Advanced Energy Design Guides The Advanced Energy Design Guides (AEDGs) are a series of publications designed to provide recommendations for...

427

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2011 3, 2011 CX-006451: Categorical Exclusion Determination Research and Development of an Advanced Low Temperature Heat Recovery Absorption Chiller CX(s) Applied: B3.6 Date: 08/03/2011 Location(s): Park Forest, Illinois Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 3, 2011 CX-006448: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: A1, B5.1 Date: 08/03/2011 Location(s): Knightdale, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 3, 2011 CX-006446: Categorical Exclusion Determination DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project CX(s) Applied: A1, B5.1 Date: 08/03/2011 Location(s): Morrow, Georgia

428

National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

CRTD-80 CRTD-80 National Energy Technology Laboratory Final Report Carbon Sequestration Project Review Meeting Greater Pittsburgh International Airport Hyatt Hotel September 26-29, 2005 Volume I: Meeting Summary and Recommendations José D. Figueroa NETL Project Manager and Meeting Coordinator D:\Project Files\EPD\RDS Sequestration Project Review Task\Volume 1\ASME Final Version Nov 28 2005\2005 Carbon Sequestration Project Review Meeting Final 11292005.doc National Energy Technology Laboratory Final Report Carbon Sequestration Project Review Meeting Greater Pittsburgh International Airport Hyatt Hotel September 26-29, 2005 Volume I: Meeting Summary and Recommendations José D. Figueroa NETL Project Manager and Meeting Coordinator

429

Transformational Energy Technologies  

SciTech Connect

Broad Funding Opportunity Announcement Project: In 2009, ARPA-E issued an open call for the most revolutionary energy technologies to form the agencys inaugural program. The first open solicitation was open to ideas from all energy areas and focused on funding projects already equipped with strong research and development plans for their potentially high-impact technologies. The 37 projects chosen received a level of financial support that could accelerate technical progress and catalyze additional investment from the private sector. After only 2 months, ARPA-Es investment in these projects catalyzed an additional $33 million in investments.

None

2010-09-01T23:59:59.000Z

430

Clean Energy Manufacturing Resources - Technology Prototyping | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guide Home » Clean Energy Manufacturing Resources - Technology Guide Home » Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Find resources to help you design and refine a prototype of a new clean energy technology or product. For prototyping, areas to consider include materials characterization; models and tools; intellectual property protection; small-scale production; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Characterize Materials Shared Research Equipment User Facility - a facility at Oak Ridge National Laboratory that provides access to advanced instruments and scientists for the scale characterization of materials.

431

Advanced Energy Solutions | Open Energy Information  

Open Energy Info (EERE)

Advanced Energy Solutions Advanced Energy Solutions Name Advanced Energy Solutions Address 192 Gates Road Place Pomona, Illinois Zip 62975 Sector Solar Year founded 1999 Company Type For Profit Phone number 618-893-1717 Website http://www.aessolar.com/ Coordinates 37.6281057°, -89.3367556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6281057,"lon":-89.3367556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

Christopher E. Hull

2005-01-20T23:59:59.000Z

433

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

precision machining technology, automated machining and manufacturing technology, welding, photonics technology, microelectromechanical systems (MEMS), and testing and...

434

Crosscutting Technology Development at the Center for Advanced Separation Technologies  

SciTech Connect

The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

Christopher Hull

2009-10-31T23:59:59.000Z

435

Conservation and renewable energy technologies for transportation  

DOE Green Energy (OSTI)

The Office of Transportation Technologies (OTT) is charged with long-term, high-risk, and potentially high-payoff research and development of promising transportation technologies that are unlikely to be undertaken by the private sector alone. OTT activities are designed to develop an advanced technology base within the US transportation industry for future manufacture of more energy-efficient, fuel-flexible, and environmentally sound transportation systems. OTT operations are focused on three areas: advanced automotive propulsion systems including gas turbines, low heat rejection diesel, and electric vehicle technologies; advanced materials development and tribology research; and research, development, demonstration, test, and evaluation (including field testing in fleet operations) of alternative fuels. Five papers describing the transportation technologies program have been indexed separately for inclusion on the data base.

Not Available

1990-11-01T23:59:59.000Z

436

Energy Department Announces Awards to Projects Advancing Innovative Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards to Projects Advancing Innovative Awards to Projects Advancing Innovative Clean Coal Technology Energy Department Announces Awards to Projects Advancing Innovative Clean Coal Technology July 26, 2012 - 1:00pm Addthis Washington, D.C. - As part of President Obama's all-of-the-above approach to American energy, the Energy Department announced today the selection of eight projects to advance the development of transformational oxy-combustion technologies capable of high-efficiency, low-cost carbon dioxide capture from coal-fired power plants. The Energy Department's $7 million investment - leveraged with recipient cost-share to support approximately $9.4 million in total projects - will support the development and deployment of Carbon Capture, Utilization, and Storage (CCUS) by focusing on further improving the efficiency and reducing the costs

437

Energy Department Announces Awards to Projects Advancing Innovative Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards to Projects Advancing Innovative Awards to Projects Advancing Innovative Clean Coal Technology Energy Department Announces Awards to Projects Advancing Innovative Clean Coal Technology July 26, 2012 - 11:37am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of President Obama's all-of-the-above approach to American energy, the Energy Department announced today the selection of eight projects to advance the development of transformational oxy-combustion technologies capable of high-efficiency, low-cost carbon dioxide capture from coal-fired power plants. The Energy Department's $7 million investment - leveraged with recipient cost-share to support approximately $9.4 million in total projects - will support the development and deployment of Carbon Capture, Utilization, and Storage (CCUS) by

438

Energy Storage and Distributed Generation Technology Assessment  

Science Conference Proceedings (OSTI)

Energy storage continues to hold a great deal of interest to utilities and other stakeholders in the electric power enterprise. Storage can be used to shift load or energy from one time to another, to provide ancillary services and grid support, and is an enabling technology for smart grid technologies. This report investigates the current state of the art of advanced lead-acid batteries and zinc-air batteries, specifically where pertinent to stationary applications. It focuses on those developments and ...

2009-12-22T23:59:59.000Z

439

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution July 2, 2013 - 12:16pm Addthis What are the key facts? This solicitation will support projects that avoid, reduce, or sequester air pollutants or greenhouse gas emissions, an important part of the Administration's long-term plan towards a cleaner and more secure energy future. Applications for projects and facilities include any fossil technology that is new or significantly improved, as compared to commercial technologies in service in the U.S. The Department of Energy's (DOE) Loan Programs Office is releasing a new draft loan guarantee solicitation for innovative and advanced fossil energy

440

Energy Department Advances Carbon Capture and Storage Research on Two  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Advances Carbon Capture and Storage Research on Energy Department Advances Carbon Capture and Storage Research on Two Fronts Energy Department Advances Carbon Capture and Storage Research on Two Fronts September 16, 2009 - 1:00pm Addthis Washington, DC - Forty-three research projects that will advance carbon capture and storage (CCS) technologies while providing graduate and undergraduate student training opportunities at universities across the country will be supported by $12.7 million in U.S. Department of Energy funding announced today. View Project Details Spread over three years, the regional sequestration training projects and funding will be managed by the Office of Fossil Energy's National Energy Technology Laboratory. The projects are funded through the 2009 American Reinvestment and Recovery Act and are aimed at the broad objectives of

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution July 2, 2013 - 12:16pm Addthis What are the key facts? This solicitation will support projects that avoid, reduce, or sequester air pollutants or greenhouse gas emissions, an important part of the Administration's long-term plan towards a cleaner and more secure energy future. Applications for projects and facilities include any fossil technology that is new or significantly improved, as compared to commercial technologies in service in the U.S. The Department of Energy's (DOE) Loan Programs Office is releasing a new draft loan guarantee solicitation for innovative and advanced fossil energy

442

Technology Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deployment Deployment Technology Deployment October 8, 2013 - 2:43pm Addthis The Federal Energy Management Program's (FEMP) Technology Deployment program provides the Federal Government and commercial building sector with unbiased information and guidance about energy-efficient and renewable energy technologies available for deployment. Specifically, this program: Identifies technologies that have high potential energy savings and cost benefits and are ready for rapid deployment Develops and conducts deployment campaigns to raise awareness about energy technologies of the highest priority Educates Federal agencies and the commercial buildings sector about targeted energy-efficient technologies. Learn about: Technology Deployment List: Read about new and underutilized

443

Wind Energy Technologies Available for Licensing - Energy ...  

Wind Energy Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating research institutions have wind energy ...

444

NREL: Energy Analysis - Energy Sciences Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Sciences Technology Analysis To help meet the nation's needs for clean energy, inexpensive alternative fuels, and a healthy environment, researchers in NREL's Energy...

445

Renewable Energy Technology Characterizations  

Science Conference Proceedings (OSTI)

Renewable energy technologies span the range from developmental to commercially available. Some can make significant contributions now to electricity supply with zero or reduced environmental emissions. This report describes the technical and economic status of the major emerging renewable options and offers projections for their future performance and cost.

1997-12-30T23:59:59.000Z

446

Advanced Leds | Open Energy Information  

Open Energy Info (EERE)

Leds Leds Jump to: navigation, search Name Advanced Leds Place Coventry, England, United Kingdom Zip CV5 6SP Product Advanced Leds develops LED technology for outdoor lighting, including street lighting applications. Coordinates 44.866737°, -72.263927° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.866737,"lon":-72.263927,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

Wind Energy Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Technologies Wind Energy Technologies August 15, 2013 - 4:10pm Addthis Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy...

448

Building Technologies Office: Advanced Insulation for High Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Insulation for Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project to someone by E-mail Share Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Facebook Tweet about Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Twitter Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Google Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Delicious Rank Building Technologies Office: Advanced Insulation for High

449

Vehicle Technologies Office: The eGallon Tool Advances Deployment...  

NLE Websites -- All DOE Office Websites (Extended Search)

The eGallon Tool Advances Deployment of Electric Vehicles to someone by E-mail Share Vehicle Technologies Office: The eGallon Tool Advances Deployment of Electric Vehicles on...

450

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

forecast methods report. California Energy Commission, CEC-Chris Kavalec. California Energy Commission. CEC (2005d)Office, 5/12/2006. California Energy Advanced Energy

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

451

Vehicle Technologies Office: FY 2004 Progress Report for Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Progress Report 4 Progress Report for Advanced Combustion Engine Research and Development to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Digg Find More places to share Vehicle Technologies Office: FY 2004

452

Federal Energy Management Program: Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

resources. The FEMP Low Standby Product List is also available. Technology Deployment: Developing, measuring, and implementing new and underutilized technologies for energy...

453

Evince Technology | Open Energy Information  

Open Energy Info (EERE)

Evince Technology Jump to: navigation, search Name Evince Technology Place United Kingdom Sector Efficiency, Wind energy Product String representation "Evince has pion ... ing...

454

Clearpower Technology | Open Energy Information  

Open Energy Info (EERE)

Clearpower Technology Jump to: navigation, search Name Clearpower Technology Place Belfast, Northern Ireland, United Kingdom Zip BT3 9DT Sector Wind energy Product Clearpower...

455

Industrial Technologies - Energy Innovation Portal  

Industrial Technologies Marketing Summaries Here youll find marketing summaries of industrial technologies available for licensing from U.S. Department of Energy ...

456

Building Technologies Office: Researching Energy Use in Hospitals  

NLE Websites -- All DOE Office Websites (Extended Search)

Researching Energy Use Researching Energy Use in Hospitals to someone by E-mail Share Building Technologies Office: Researching Energy Use in Hospitals on Facebook Tweet about Building Technologies Office: Researching Energy Use in Hospitals on Twitter Bookmark Building Technologies Office: Researching Energy Use in Hospitals on Google Bookmark Building Technologies Office: Researching Energy Use in Hospitals on Delicious Rank Building Technologies Office: Researching Energy Use in Hospitals on Digg Find More places to share Building Technologies Office: Researching Energy Use in Hospitals on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database

457

Markets for small-scale, advanced coal-combustion technologies  

SciTech Connect

This report examines the potential of using US-developed advanced coal technologies (ACTs) for small combustors in foreign markets; in particular, the market potentials of the member countries of the Organization of Economic Co-operation and Development (OECD) were determined. First, the United States and those OECD countries with very low energy demands were eliminated. The remaining 15 countries were characterized on the basis of eight factors that would influence their decision to use US ACTs: energy plan and situation, dependence on oil and gas imports, experience with coal, residential/commercial energy demand, industrial energy demand, trade relationship with the United States, level of domestic competition with US ACT manufacturers, and environmental pressure to use advanced technology. Each country was rated high, medium-high, low-medium, or low on each factor, based on statistical and other data. The ratings were then used to group the countries in terms of their relative market potential (good, good but with impediments, or limited). The best potential markets appear to be Spain, Italy, turkey, Greece, and Canada. 25 refs., 1 fig., 37 tabs.

Placet, M.; Kenkeremath, L.D.; Streets, D.G.; Dials, G.E.; Kern, D.M.; Nehring, J.L.; Szpunar, C.B.

1988-12-01T23:59:59.000Z

458

Advanced Reactor Development and Technology - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Nuclear Data Program Advanced Reactor Development Overview Advanced Fast Reactor...

459

Advanced Patent Waivers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 14, 2010 May 14, 2010 Advance Patent Waiver W(A)2009-062 This is a request by MICRON TECHNOLOGY INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0000141 May 14, 2010 Advance Patent Waiver W(A)2009-029 This is a request by GENERAL MOTORS for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-09GO19003 May 13, 2010 Advance Patent Waiver W(A)2010-006 This is a request by HYDROGEN ENERGY OF CALIFORNIA for a DOE waiver of domestic and foreign patent rights under agreement DE-FE0000663 May 10, 2010 Advance Patent Waiver W(A)2009-047 This is a request by US SOLAR HOLDINGS LLP for a DOE waiver of domestic and foreign patent rights under agreement DE-FG36-08GO18155 May 6, 2010 Advance Patent Waiver W(A)2010-019 This is a request by PRAXAIR, INC. for a DOE waiver of domestic and foreign

460

Creating the Next Generation of Energy Efficient Technology | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Creating the Next Generation of Energy Efficient Technology Creating the Next Generation of Energy Efficient Technology Creating the Next Generation of Energy Efficient Technology Supporting Innovative Research to Help Reduce Energy Use and Advance Manufacturing Supporting Innovative Research to Help Reduce Energy Use and Advance Manufacturing The Emerging Technologies team partners with national laboratories, industry, and universities to advance research, development, and commercialization of energy efficient and cost effective building technologies. These partnerships help foster American ingenuity to develop cutting-edge technologies that have less than 5 years to market readiness, and contribute to the goal to reduce energy consumption by at least 50%. Research and Development Improve the energy efficiency of appliances, including

Note: This page contains sample records for the topic "advanced energy technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 28, 2010 June 28, 2010 CX-002841: Categorical Exclusion Determination Texas Propane Fleet Pilot Program (Summary Categorical Exclusion) CX(s) Applied: A7, B5.1 Date: 06/28/2010 Location(s): Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 25, 2010 CX-002795: Categorical Exclusion Determination Market Transformation and Technology Deployment - Renewable Energy Projects CX(s) Applied: B5.1 Date: 06/25/2010 Location(s): Perkinston, Mississippi Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 25, 2010 CX-002794: Categorical Exclusion Determination Advanced Implementation of A123's Community Energy Storage (CES) System for Grid Support CX(s) Applied: B4.6, B5.1 Date: 06/25/2010 Location(s): Detroit, Michigan

462

NREL: Advanced Power Electronics - Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Basics Technology Basics Graphic of a small hydrogen-fueled fuel cell vehicle. Check out the interactive graphic of the power electronic components of a hydrogen-fueled fuel cell vehicle. If you drive a car, use a computer, cook with a microwave oven, talk on any type of telephone, listen to a stereo, or use a cordless drill, you use power electronics. Thanks to power electronics, the electricity that runs the things we use every day is processed, filtered, and delivered with maximum efficiency and minimum size and weight. Inside a vehicle's electronic power steering system, power electronics control motors and help move the steering rack. This translates into improved steering response and lower energy consumption. In broad terms, power electronics control the flow of electric power via

463

University Program in Advanced Technology | National Nuclear Security  

National Nuclear Security Administration (NNSA)

University Program in Advanced Technology | National Nuclear Security University Program in Advanced Technology | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog University Program in Advanced Technology Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

464

Vehicle Technologies Office: FY 2006 Advanced Power Electronics...  

NLE Websites -- All DOE Office Websites (Extended Search)

to overcome the challenges that remain to delivering advanced power electronics and electric machines for vehicle applications. These technologies contribute to the development...

465

Alternative Fuels and Advanced Vehicle Technologies: Information Resources (Brochure)  

DOE Green Energy (OSTI)

A Clean Cities brochure listing and describing Web sites and telephone numbers of resources for people interested in alternative fuels and advanced vehicle technologies.

Not Available

2004-02-01T23:59:59.000Z

466

Characterization and Development of Advanced Heat Transfer Technologies (Presentation)  

DOE Green Energy (OSTI)

This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

Kelly, K.

2009-05-01T23:59:59.000Z

467

Climate Change Mitigation: An Analysis of Advanced Technology Scenarios  

SciTech Connect

This report documents a scenario analysis that explores three advanced technology pathways toward climate stabilization using the MiniCAM model.

Clarke, Leon E.; Wise, Marshall A.; Placet, Marylynn; Izaurralde, R Cesar; Lurz, Joshua P.; Kim, Son H.; Smith, Steven J.; Thomson, Allison M.

2006-09-18T23:59:59.000Z

468

Alternative Fuel and Advanced Technology Vehicles Pilot Program...  

Open Energy Info (EERE)

Pilot Program Emissions Benefit Tool Jump to: navigation, search Tool Summary Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool...

469

Advanced Patent Waivers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Technology Transfer and Procurement » Technology Services » Technology Transfer and Procurement » Technology Transfer & Intellectual Property » Patent Waivers Overview » Advanced Patent Waivers Advanced Patent Waivers June 26, 2008 Advance Patent Waiver W(A)2008-007 This is a request by SCHOTT NORTH AMERICA, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FG36-07GO17001 May 6, 2008 Advance Patent Waiver W(A)2008-004 This is a request by HUNTSMAN ADVANCED MATERIALS AMERICANS, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FG36-07GO17012 February 26, 2008 Advance Patent Waiver W(A)2007-015 This is a request by UNITED TECHNOLOGIES CORP for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-07NT43055 February 8, 2008

470