Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advancing Energy Systems through Integration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Energy Systems Advancing Energy Systems through Integration Presented in partnership with the United States Department of Energy November 20, 2012 Webinar Community Renewable Energy Success Stories: District Heating with Renewable Energy Saint Paul's Community Energy System * Underground network of pipes aggregate heating and cooling needs * Aggregated thermal loads allows application of technologies and fuels not feasible for individual buildings * Increases fuel flexibility, rate stability, and reliability Community Scale Heating and Cooling 4 ever-greenenergy.com Ever-Green Energy Integrated Energy System flexible & renewable fuel sources reliable and effective production & storage hot & chilled water loops maximize energy conservation & reliability

2

Distributed Sensor Coordination for Advanced Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Sensor Coordination for Advanced Energy Systems Background As advanced energy systems grow in size, they require an increasing number of pressure, temperature, and...

3

Energy Programs | Advanced Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Storage Systems Advanced Storage Systems Tapping Into Fuel Cells and Batteries Page 1 of 2 Imagine being able to drive a forty-mile round-trip commute every day without ever going near a gas pump. As the United States moves towards an energy economy with reduced dependence on foreign oil and fewer carbon emissions, development of alternative fuel sources and transmission of the energy they provide is only part of the equation. An increase in energy generated from intermittent renewable sources and the growing need for mobile energy will require new, efficient means of storing it, and technological advancements will be necessary to support the nation's future energy storage needs. A change toward alternative transportation - hydrogen fuel-cell vehicles, hybrid electric vehicles, plug-in hybrid-electric vehicles and electric

4

Structural Materials in Advanced Nuclear Energy Systems  

Science Conference Proceedings (OSTI)

Apr 28, 2008 ... Structural Materials in Advanced Nuclear Energy Systems: The Need for ... of functionalized interfaces for optimization of materials properties.

5

Advanced Energy Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Ltd Jump to: navigation, search Name Advanced Energy Systems Ltd Place Welshpool, Western Australia, Australia Zip 6016 Sector Solar, Wind energy Product Manufacturer and distributor of micro wind turbines, solar systems, gas generators and balance of plant. Currently undergoing restructuring. Coordinates 38.211449°, -85.574524° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.211449,"lon":-85.574524,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

6

Advanced Energy Efficient Roof System  

SciTech Connect

Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The options considered to date are not ideal. One approach is to insulate between the trusses at the roof plane. The construction process is time consuming and costs more than conventional attic construction. Moreover, the problems of air infiltration and thermal bridges across the insulation remain. Another approach is to use structurally insulated panels (SIPs), but conventional SIPs are unlikely to be the ultimate solution because an additional underlying support structure is required except for short spans. In addition, wood spline and metal locking joints can result in thermal bridges and gaps in the foam. This study undertook a more innovative approach to roof construction. The goal was to design and evaluate a modular energy efficient panelized roof system with the following attributes: (1) a conditioned and clear attic space for HVAC equipment and additional finished area in the attic; (2) manufactured panels that provide structure, insulation, and accommodate a variety of roofing materials; (3) panels that require support only at the ends; (4) optimal energy performance by minimizing thermal bridging and air infiltration; (5) minimal risk of moisture problems; (6) minimum 50-year life; (7) applicable to a range of house styles, climates and conditions; (8) easy erection in the field; (9) the option to incorporate factory-installed solar systems into the panel; and (10) lowest possible cost. A nationwide market study shows there is a defined market opportunity for such a panelized roof system with production and semi-custom builders in the United States. Senior personnel at top builders expressed interest in the performance attributes and indicate long-term opportunity exists if the system can deliver a clear value proposition. Specifically, builders are interested in (1) reducing construction cycle time (cost) and (2) offering increased energy efficiency to the homebuyer. Additional living space under the roof panels is another low-cost asset identified as part of the study. The market potential is enhanced through construction activity levels in target marke

Jane Davidson

2008-09-30T23:59:59.000Z

7

DOE Announces Webinars on Energy Systems Advances, Hydrogen Safety...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Systems Advances, Hydrogen Safety Events Databases, and More DOE Announces Webinars on Energy Systems Advances, Hydrogen Safety Events Databases, and More September 9, 2013...

8

Advanced Wind Energy Systems AWES | Open Energy Information  

Open Energy Info (EERE)

AWES AWES Jump to: navigation, search Name Advanced Wind Energy Systems (AWES) Place Toms River, New Jersey Sector Wind energy Product Advanced Wind Energy Systems (AWES) was formed in 2006 to commercialize the novel wind turbine energy capture technologies invented by Frank McClintic, AWES founder and Chief Designer. References Advanced Wind Energy Systems (AWES)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Advanced Wind Energy Systems (AWES) is a company located in Toms River, New Jersey . References ↑ "Advanced Wind Energy Systems (AWES)" Retrieved from "http://en.openei.org/w/index.php?title=Advanced_Wind_Energy_Systems_AWES&oldid=341809

9

Advanced Systems of Efficient Use of Electrical Energy SURE ...  

Open Energy Info (EERE)

of Efficient Use of Electrical Energy SURE (Smart Grid Project) Jump to: navigation, search Project Name Advanced Systems of Efficient Use of Electrical Energy SURE Country...

10

Basic Research Needs for Advanced Nuclear Energy Systems - TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems. Summarizes current status...

11

Advanced Lighting Systems | Open Energy Information  

Open Energy Info (EERE)

Centre, Minnesota Zip 56378 Product Advanced Lighting Systems (ALS) provides a number of LED and fiber optic lighting solutions. It was acquired by Nexxus Lighting in September...

12

Advanced Energy Systems Inc AESI also Advanced Energy Inc | Open Energy  

Open Energy Info (EERE)

AESI also Advanced Energy Inc AESI also Advanced Energy Inc Jump to: navigation, search Name Advanced Energy Systems Inc (AESI) (also Advanced Energy Inc) Place Tempe, Arizona Zip 85283-4315 Sector Renewable Energy Product Advanced Energy Systems specialises in the engineering design and development of power conditioning and control electronics for renewable energy generation. Coordinates 33.42551°, -111.937419° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.42551,"lon":-111.937419,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

13

Gills Onions Advanced Energy Recovery System  

NLE Websites -- All DOE Office Websites (Extended Search)

Gills Onions Gills Onions Advanced Energy Recovery System Turning a Waste Liability into a Renewable Resource Waste to Energy Using Fuel Cells Workshop Washington, DC J 13 2011 January 13, 2011 Dave Reardon, , PE National Director - Water Sustainability HDR Engineering, Inc., Folsom, CA t Gills Onions Backg ground ● 3 rd largest onion p producer in the nation ● 100,000 square-foot processing facility in Oxnard, CA ● 800,000 lbs of onions processed every day ● Prepackaged diced, sliced, whole, pureed, and ring product line P i l 6 ● Process is operati ional 6 days a week - - The Problem... ● 250,000 lbs/day waste onion hauled off site - H l Hauled b d by t tract tor and d wagon t to l local fi l field ld s t to incorporate into soil - Disrupted traffic

14

Distributed Sensor Coordination for Advanced Energy Systems  

Science Conference Proceedings (OSTI)

The ability to collect key system level information is critical to the safe, efficient and reli- able operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called agents from here on) to actively collect and process data, and provide key control deci- sions to significantly improve both the quality/relevance of the collected data and the as- sociating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as ad- vanced energy systems, where crucial decisions may need to be reached quickly and lo- cally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination rou- tines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shift- ing the focus towards what to observe rather than how to observe in large sensor networks, allowing the agents to actively determine both the structure of the network and the relevance of the information they are seeking to collect. In addition to providing an implicit coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Outcome Summary: All milestones associated with this project have been completed. In particular, private sensor objective functions were developed which are aligned with the global objective function, sensor effectiveness has been improved by using sensor teams, system efficiency has been improved by 30% using difference evaluation func- tions, we have demonstrated system reconfigurability for 20% changes in system con- ditions, we have demonstrated extreme scalability of our proposed algorithm, we have demonstrated that sensor networks can overcome disruptions of up to 20% in network conditions, and have demonstrated system reconfigurability to 20% changes in system conditions in hardware-based simulations. This final report summarizes how each of these milestones was achieved, and gives insight into future research possibilities past the work which has been completed. The following publications support these milestones [6, 8, 9, 10, 16, 18, 19].

Tumer, Kagan

2013-07-31T23:59:59.000Z

15

MIT - Center for Advanced Nuclear Energy Systems | Open Energy Information  

Open Energy Info (EERE)

MIT - Center for Advanced Nuclear Energy Systems MIT - Center for Advanced Nuclear Energy Systems Jump to: navigation, search Logo: MIT - Center for Advanced Nuclear Energy Systems Name MIT - Center for Advanced Nuclear Energy Systems Address 77 Massachusetts Avenue, 24-215 Place Cambridge, Massachusetts Zip 02139-4307 Phone number (617) 452-2660 Coordinates 42.3613041°, -71.0967653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3613041,"lon":-71.0967653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

16

Advanced simulations of building energy and control systems with...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Development Contact Us Department Contacts Media Contacts Advanced simulations of building energy and control systems with an example of chilled water plant modeling Title...

17

Advanced Conservation Systems | Open Energy Information  

Open Energy Info (EERE)

Conservation Systems Conservation Systems Jump to: navigation, search Logo: Advanced Conservation Systems Inc. Name Advanced Conservation Systems Inc. Address 42622 N. 7th Street East Place Lancaster, California Zip 93535 Product Solar power systems, products Year founded 1983 Phone number (661) 945-4545 Website http://www.avsolar.com/ Coordinates 34.657478°, -118.116149° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.657478,"lon":-118.116149,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

18

NETL: Gasification Systems - Advanced Virtual Energy Simulation Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Virtual Energy Simulation Training And Research (AVESTAR(tm)) Facility Advanced Virtual Energy Simulation Training And Research (AVESTAR(tm)) Facility Project No: Adv Gas-FY131415 Task 6 Developed as a part of NETL's initiative to advance new clean coal technology, the Advanced Virtual Energy Simulation Training And Research (AVESTARTM) Center is focused on training engineers and energy plant operators in the efficient, productive, and safe operation of highly efficient power generation systems that also protect the environment. Comprehensive dynamic simulator-based instruction better prepares operators and engineers to manage advanced energy plants according to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. Advanced Virtual Energy Simulation Training and Research Center - AVESTAR

19

DOE Announces Webinars on Energy Systems Advances, Hydrogen Safety Events  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Webinars on Energy Systems Advances, Hydrogen Safety Webinars on Energy Systems Advances, Hydrogen Safety Events Databases, and More DOE Announces Webinars on Energy Systems Advances, Hydrogen Safety Events Databases, and More September 9, 2013 - 12:00pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars September 10: Live Webinar on the Hydrogen Safety Events Database Webinar Sponsor: Fuel Cell Technologies Office The Energy Department will present a live webcast titled "What We Can Learn

20

Low Wind Speed Technology Phase I: Advanced Independent Pitch Control; Advanced Energy System, Inc.  

SciTech Connect

This fact sheet describes a subcontract with Advanced Energy Systems, Inc. to conduct a conceptual study of independent blade pitch control and possible impact on loads and cost of energy (COE).

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Materials for Energy Systems | Global and Regional Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials for Energy Systems Advanced Materials for Energy Systems The Advanced Materials Group's mission is to conduct research on materials in extreme environments for advanced energy systems. As part of that mission, the group utilizes synchrotron characterization techniques such as diffraction, spectroscopy, and imaging and is developing sample chambers for the in situ study of materials at the National Synchrotron Light Source (NSLS). The 200 MeV proton beam of the BNL Linac and the target facility of the Brookhaven Linear Isotope Producer (BLIP) is being extensively used for irradiation damage studies on materials for fast !ssion and fusion reactors as well as high particle accelerator elements such as pion production targets for neutrino experiments. The irradiation facility is augmented with post-irradiation hot labs where analysis and

22

Advancing Energy Systems through Integration | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ken Smith as part of the November 20, 2012, Community Renewable Energy Deployment webinar District Heating with Renewable Energy. 20121120evergreenenergypresentation.pdf More...

23

Advanced Fuel Cell Systems | Open Energy Information  

Open Energy Info (EERE)

Fuel Cell Systems Fuel Cell Systems Place Amherst, New York Zip 14228 Product Collaboration of three companies (ATSI Engineering, ENrg, BioEconomy Development Corp) active in the development and application of fuel cell systems. Coordinates 44.450509°, -89.281675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.450509,"lon":-89.281675,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

24

Advanced Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Systems: Advanced Systems: high Performance fenestration systems Research areas: Research activities to improve the performance of windows and other fenestration products must address window systems issues as well as Glazing Materials research. LBNL activities in the area of Advanced Systems include research at both the product level and the building envelope and building systems levels. Highly insulating windows - using non structural center layers Lower cost solutions to more insulating three layer glazing systems, with the potential to turn windows in U.S. heating dominated residential applications into net-energy gainers. Highly Insulating Window Frames In collaboration with the Norwegian University of Science and Technology, we are researching the potentials for highly insulating window frames. Our initial work examines European frames with reported U-factors under 0.15 Btu/hr-ft2-F. Future research aims to analyze these designs, verify these performance levels and ensure that procedures used to calculate frame performance are accurate.

25

Center for Advanced Power Systems CAPS | Open Energy Information  

Open Energy Info (EERE)

on advanced power system technologies with emphasis on the needs of the future naval ship power systems and electricity supply grid of the US. References Center for Advanced Power...

26

SunShot Initiative: Solar Energy Grid Integration Systems-Advanced...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy Grid Integration Systems-Advanced Concepts to someone by E-mail Share SunShot Initiative: Solar Energy Grid Integration Systems-Advanced Concepts on Facebook Tweet...

27

Process Systems Engineering R&D for Advanced Fossil Energy Systems  

SciTech Connect

This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulation for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.

Zitney, S.E.

2007-09-11T23:59:59.000Z

28

Process Systems Engineering R&D for Advanced Fossil Energy Systems  

SciTech Connect

This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulation for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.

Zitney, S.E.

2007-09-11T23:59:59.000Z

29

Program on Technology Innovation: Cladding and Structural Materials for Advanced Nuclear Energy Systems  

Science Conference Proceedings (OSTI)

This EPRI technical update gives an overview of the initial work being done under a 3-year research program on cladding and structural materials for advanced nuclear energy systems. This research is part of EPRI's Program on Technology Innovation.

2008-12-23T23:59:59.000Z

30

Advanced Energy Storage Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Energy Storage Publications Reports: Advanced Technology Development Program For Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report Advanced Technology...

31

HYDROGEN LEARNING FOR LOCAL LEADERS GILLS ONIONS ADVANCED ENERGY RECOVERY SYSTEM  

E-Print Network (OSTI)

TO RENEWABLE ENERGY, ULTRA-CLEAN BIOGAS AND CATTLE FEED · MEETS OUR GOALS FOR AIR QUALITY, ZERO WASTE COSTS · AERS TOTAL COST INSTALLED: $10.8 M · SEMPRA ENERGY SELF GENERATION INCENTIVE $2.7 M · ARRAHYDROGEN LEARNING FOR LOCAL LEADERS GILLS ONIONS ADVANCED ENERGY RECOVERY SYSTEM MAY 17, 2011 #12

32

2012 Grid Strategy: Distribution Management System (DMS) Advanced Applications for Distributed Energy Resources  

Science Conference Proceedings (OSTI)

This report provides an overview of the management systems and the advanced applications that utilities in the Electric Power Research Institutes (EPRIs) multi-year Smart Grid Demonstration Initiative are using or plan to use to manage the distribution system and to monitor and control distributed energy resources (DER). The management systems covered in this report are the distribution management system (DMS), the distributed energy resource management system (DERMS), and the demand ...

2012-10-10T23:59:59.000Z

33

REQUEST BY INGERSOLL-RAND ENERGY SYSTEMS, INC., FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INGERSOLL-RAND ENERGY SYSTEMS, INC., FOR AN ADVANCE INGERSOLL-RAND ENERGY SYSTEMS, INC., FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER SUBCONTRACT NO. 4000009528 UNDER DOE PRIME CONTRACT NO. DE-AC05-00OR22725; DOE WAIVER DOCKET W(A)-01- 034 IORO-768] Petitioner, Ingersoll-Rand Energy Systems Corporation, has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Subcontract No. 4000009528 under DOE Prime Contract No. DE-ACO5-00OR22725 with UT- Battelle, Inc., M&O Contractor of Oak Ridge National Laboratory. The scope of this work is for the development of a packaged/modular building cooling heating and power (BCHP) system, combining the commercial-ready Ingersoll-Rand Energy Systems' PowerWorksTM 70 kW

34

Advanced Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Glazing Systems Glazing Systems Using Non-Structural Center Glazing Layers Windows in the United States use aproximately 2 quads a year in heating energy, approximately one third of all building space heating energy used and the largest single end use attributed to windows. Even if all existing windows were replaced with today’s ENERGY STAR low-e products (U values < 0.35 Btu/hr-ft2-F), windows related heating would still be over 1 Quad. Because heating loads are strongly tied to conductive losses, technologies which lead to lower window U-factors are the key to reducing heating energy. A 0.1 Btu/hr-ft2-F window is targeted as a product, which will meet the requirements of zero-energy homes. Dynamic control of solar gains will further reduce heating needs by allowing winter solar heat gains to be effectively utilized while limiting cooling season gains. Significant cooling load savings can also be expected from lower U-factor windows in certain climates and from dynamic windows in all climates.

35

SunShot Initiative: Solar Energy Grid Integration Systems-Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Integration Systems-Advanced Concepts Grid Integration Systems-Advanced Concepts On September 1, 2011, DOE announced $25.9 million to fund eight solar projects that are targeting ways to develop power electronics and build smarter, more interactive systems and components so that solar energy can be integrated into the electric power distribution and transmission grid at higher levels. Part of the SunShot Systems Integration efforts, the Solar Energy Grid Integration Systems - Advanced Concepts (SEGIS-AC) projects will help advance a smart grid that will handle two-way flows of power and communication, in contrast to the one-way power flow and limited communication that exists today. More information about these projects is available on the SEGIS-AC Projects page at the High Penetration Solar Portal.

36

Weldability and joining techniques for advanced fossil energy system alloys  

Science Conference Proceedings (OSTI)

The efforts represent the concerns for the basic understanding of the weldability and fabricability of the advanced high temperature alloys so necessary to affect increases in the efficiency of the next generation Fossil Energy Power Plants. The effort was divided into three tasks with the first effort dealing with the welding and fabrication behavior of 310HCbN (HR3C), the second task details the studies aimed at understanding the weldability of a newly developed 310TaN high temperature stainless (a modification of 310 stainless) and Task 3 addressed the cladding of austenitic tubing with Iron-Aluminide using the GTAW process. Task 1 consisted of microstructural studies on 310HCbN and the development of a Tube Weldability test which has applications to production welding techniques as well as laboratory weldability assessments. In addition, the evaluation of ex-service 310HCbN which showed fireside erosion and cracking at the attachment weld locations was conducted. Task 2 addressed the behavior of the newly developed 310 TaN modification of standard 310 stainless steel and showed that the weldability was excellent and that the sensitization potential was minimal for normal welding and fabrication conditions. The microstructural evolution during elevated temperature testing was characterized and the second phase particles evolved upon aging were identified. Task 3 details the investigation undertaken to clad 310HCbN tubing with Iron Aluminide and developed welding conditions necessary to provide a crack free cladding. The work showed that both a preheat and a post-heat was necessary for crack free deposits and the effect of a third element on the cracking potential was defined together with the effect of the aluminum level for optimum weldability.

Lundin, C.D.; Qiao, C.Y.P.; Liu, W.; Yang, D.; Zhou, G.; Morrison, M. [Univ. of Tennessee, Knoxville, TN (United States)

1998-05-01T23:59:59.000Z

37

The U.S. Department of Energy`s advanced turbine systems program  

SciTech Connect

Advanced Turbine Systems (ATS) are poised to capture the majority of new electric power generation capacity well into the next century. US Department of Energy (DOE) programs supporting the development of ATS technology will enable gas turbine manufacturers to provide ATS systems to the commercial marketplace at the turn of the next century. A progress report on the ATS Program will he presented in this paper. The technical challenges, advanced critical technology requirements, and system configurations meeting the goals of the program will be discussed. Progress has been made in the are as of materials, heat transfer, aerodynamics, and combustion. Applied research conducted by universities, industry, and Government has resulted in advanced designs and power cycle configurations to develop an ATS which operates on natural gas, coal, and biomass fuels. Details on the ATS Program research, development, and technology validation and readiness activities will be presented. The future direction of the program and relationship to other Government programs will be discussed in this paper.

Layne, A.W. [Dept. of Energy, Morgantown, WV (United States). Federal Energy Technology Center; Layne, P.W. [Dept. of Energy, Washington, DC (United States)

1998-06-01T23:59:59.000Z

38

Advanced Manufacturing Office: Motor Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Systems to Motor Systems to someone by E-mail Share Advanced Manufacturing Office: Motor Systems on Facebook Tweet about Advanced Manufacturing Office: Motor Systems on Twitter Bookmark Advanced Manufacturing Office: Motor Systems on Google Bookmark Advanced Manufacturing Office: Motor Systems on Delicious Rank Advanced Manufacturing Office: Motor Systems on Digg Find More places to share Advanced Manufacturing Office: Motor Systems on AddThis.com... Quick Links Energy Resource Center Technical Publications by Energy System Energy-Efficient Technologies Incentives & Resources by Zip Code Better Plants Superior Energy Performance Contacts Motor Systems Photo of Man Checking Motor Performance Motor-driven equipment accounts for 54% of manufacturing electricity use. Dramatic energy and cost savings can be achieved in motor systems by

39

Advanced drilling systems study  

DOE Green Energy (OSTI)

This work was initiated as part of the National Advanced Drilling and Excavation Technologies (NADET) Program. It is being performed through joint finding from the Department of Energy Geothermal Division and the Natural Gas Technology Branch, Morgantown Energy Technology Center. Interest in advanced drilling systems is high. The Geothermal Division of the Department of Energy has initiated a multi-year effort in the development of advanced drilling systems; the National Research Council completed a study of drilling and excavation technologies last year; and the MIT Energy Laboratory recently submitted a proposal for a national initiative in advanced drilling and excavation research. The primary reasons for this interest are financial. Worldwide expenditures on oil and gas drilling approach $75 billion per year. Also, drilling and well completion account for 25% to 50% of the cost of producing electricity from geothermal energy. There is incentive to search for methods to reduce the cost of drilling. Work on ideas to improve or replace rotary drilling technology dates back at least to the 1930`s. There was a significant amount of work in this area in the 1960`s and 1970`s; and there has been some continued effort through the 1980`s. Undoubtedly there are concepts for advanced drilling systems that have yet to be studied; however, it is almost certain that new efforts to initiate work on advanced drilling systems will build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems provide the basis for the current study of advanced drilling.

Pierce, K.G. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants, San Diego, CA (United States)

1995-03-01T23:59:59.000Z

40

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

energy conversion systems ..on thermal energy conversion systems As energy demandsefficient energy conversion in power systems," in Thermal

Ho, Tony

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Current Building Energy Codes: Using the Process to Advance Energy Efficient Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12 12 NREL / Build America Stakeholders Meeting Presented by David Karmol, VP, Federal & External Affairs  The purpose of this presentation is to provide information on ICC model codes that impact the design and construction of buildings, and tactics to allow Building America advances to be incorporated into the model code and/or recognized by building code officials  The expected outcome is an ability to expand the reach of Build America innovations, by using available resources to mainstream new energy efficiency systems into building practices nationwide 2 3  Will apply to traditional commercial and high-performance buildings.  Consistent and coordinated with the ICC family of Codes & Standards.  Applicable to the construction of

42

Advanced Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Highly Insulating Windows Windows in the United States use approximately 2 quads a year in heating energy, approximately one third of all building space heating energy used and approximately 2% of total US energy consumption. Heating is the largest single end use attributed to windows. Even if all existing windows were replaced with today’s ENERGY STAR low-e products (U values < 0.35 Btu/hr-ft2-F), windows related heating would still be over 1 Quad. Because heating loads are strongly tied to conductive losses, technologies which lead to lower window U-factors are the key to reducing heating energy. In the long term a 0.1 Btu/hr-ft2-F window is targeted as a product, which will meet the requirements of zero-energy homes. Dynamic control of solar gains will further reduce heating needs by allowing winter

43

Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies  

DOE Green Energy (OSTI)

This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.

Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.

2008-03-01T23:59:59.000Z

44

Trends in Energy Management Technology - Part 4: Review ofAdvanced Applications in Energy Management, Control, and InformationSystems  

SciTech Connect

In this article, the fourth in a series, we provide a review of advanced applications in Energy Management, Control, and Information Systems (EMCIS). The available features for these products are summarized and analyzed with regard to emerging trends in EMCIS and potential benefits to the Federal sector. The first article [1] covered enabling technologies for emerging energy management systems. The second article [2] serves as a basic reference for building control system (BCS) networking fundamentals and includes an assessment of current approaches to open communications. The third article [3] evaluated several products that exemplify the current state of practice in EMCIS. It is important for energy managers in the Federal sector to have a high level of knowledge and understanding of these complex energy management systems. This series of articles provides energy practitioners with some basic informational and educational tools to help make decisions relative to energy management systems design, specification, procurement, and energy savings potential.

Yee, Gaymond; Webster, Tom

2003-08-01T23:59:59.000Z

45

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

46

FY 1977 Progress report, Compressed air energy storage advanced systems analysis.  

DOE Green Energy (OSTI)

The goal of the Compressed Air Energy Storage (CAES) Advanced Systems Analysis task is to accelerate the development of new technologies that will reduce the consumption of natural gas and oil. The immediate overall objectives of this program are to: (1) provide a screening cost assessment for thermal energy storage (TES) systems that are suitable for CAES applications; (2) establish the potential fuel savings of hybrid CAES cycles that incorporate TES for recovery of the heat of compression and estimate the economic incentive for using TES in CAES systems; and (3) investigate modified CAES cycles that eliminate the use of gas and oil by the use of alternative fuels.

Kreid, D.K.; McKinnon, M.A.

1978-03-01T23:59:59.000Z

47

Potential use of dry cooling in support of advanced energy generation systems  

SciTech Connect

Advanced energy technologies were investigated for filling the energy supply and demand gap, including fuel cells, thermionic converters, and fusion. Technologies that have the potential for supplying energy in the future are solar, geothermal, coal gasification and liquefaction, clean solid fuel from coal, and oil shale. Results are presented of an analysis of the advanced energy generation systems, the potential for using dry cooling, and the waste heat generation characteristics of the advanced technologies. The magnitude of the waste heat expected to be generated indicates the following percentages of total cooling requirements would be needed by advanced energy technologies: (a) 1% to 2% in 1985, (b) 17% to 40% in 2000, and (c) 24% to 76% in 2025. Dry cooling could be required for flashed steam and dry steam geothermal plants if balancing withdrawal and reinjection of the geothermal fluid becomes a requirement. Binary cycle geothermal plants and plants using the hot dry rocks geothermmal resource are even more likely to require dry cooling since these plants will need an outside source of water. Solar central tower plants have a high potential for the use of dry cooling since they are likely to be located in the Southwest where water availability problems are already apparent. The high water consumption associated with the projected synthetic fuel production levels indicates that dry cooling will be desirable, perhaps even mandatory, to achieve a high level of synthetic fuel production. In the year 2000, between 2.5 and 13 GW of electrical energy produced by advanced power generation systems may require dry cooling. In the year 2025, this requirement may increase to between 4.5 and 81 GW/sub e/.

Mayer, D.W.; Arnold, E.M.; Allemann, R.T.

1979-09-01T23:59:59.000Z

48

Advanced Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimal gap width for double and triple glazing systems Optimal gap width for double and triple glazing systems Glazing systems in the US are commonly designed with a 1/2 " (12.7 mm) gap. The optimal gap width depends on many factors, such as gas fill (air, argon, krypton), the use of Low-e coatings, the environmental conditions (temperature difference across the window), and the calculation standard used. NFRC standard conditions are -18 C (-0.4 F) outside, and 21 C (69.8 F) inside. The calculation standard used in the US is based on the ISO 15099 standard. European standard conditions are 0 C (32 F) outside, and 20 C (68 F) inside. The calculation standard is based on the EN 673 standard. A number of common glazing configurations both with and without Low-e coatings, and with a variety of gas fills were evaluated using both the North American NFRC standard and the European EN 673 standard. All results were calculated using WINDOW 6.3 from LBNL. All IGU's (Insulated Glazing Units) have a standard height of 1 meter.

49

Using Process/CFD Co-Simulation for the Design and Analysis of Advanced Energy Systems  

Science Conference Proceedings (OSTI)

In this presentation we describe the major features and capabilities of NETLs Advanced Process Engineering Co-Simulator (APECS) and highlight its application to advanced energy systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based electricity and hydrogen plant in the DOEs $1 billion, 10-year FutureGen demonstration project. APECS is an integrated software suite which allows the process and energy industries to optimize overall plant performance with respect to complex thermal and fluid flow phenomena by combining process simulation (e.g., Aspen Plus) with high-fidelity equipment simulations based on computational fluid dynamics (CFD) models (e.g., FLUENT).

Zitney, S.E.

2007-04-01T23:59:59.000Z

50

Status report: The US Department of Energy`s Advanced Turbine Systems Program  

SciTech Connect

ATS is poised to capture the majority of new electric power generation capacity well into the next century. US DOE led the programs supporting the development of ATS technology enabling gas turbine manufacturers to provide ATS systems to the commercial marketplace. A progress report on the ATS program is presented in this paper. The technical challenges, advanced critical technology requirements, and system configurations meeting the goals of the program are discussed.

Zeh, C.M.

1996-12-31T23:59:59.000Z

51

Advanced Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Jump to: navigation, search Name Advanced Renewable Energy Place Italy Sector Biomass, Renewable Energy, Wind energy Product Advanced Renewable Energy Ltd combines...

52

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

Ho, Tony

2012-01-01T23:59:59.000Z

53

Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006  

Science Conference Proceedings (OSTI)

The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

2006-10-01T23:59:59.000Z

54

Advanced drilling systems  

DOE Green Energy (OSTI)

Drilling is ubiquitous in oil, gas, geothermal, minerals, water well, and mining industries. Drilling and well completion account for 25% to 50% of the cost of producing power from geothermal energy. Reduced drilling costs will reduce the cost of electricity produced from geothermal resources. Undoubtedly, there are concepts for advanced drilling systems that have yet to be studied. However, the breadth and depth of previous efforts in this area almost guarantee that any new efforts will at least initially build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts, coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems, provide the basis for this study.

Pierce, K.G.; Finger, J.T. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants, San Diego, CA (United States)

1995-12-31T23:59:59.000Z

55

Advanced Energy Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Guides Energy Guides Shanti Pless National Renewable Energy Laboratory shanti.pless@nrel.gov 303-384-6365 April 4 2013 2 | Building Technologies Office eere.energy.gov Advanced Energy Design Guides Provide prescriptive energy savings guidance and recommendations by building type and geographic location: * Design packages and strategies to help owners and designers achieve 50% site energy savings over Standard 90.1 * Two series: - 30% savings over 90.1-1999

56

Advanced Energy Guides  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Guides Energy Guides Shanti Pless National Renewable Energy Laboratory shanti.pless@nrel.gov 303-384-6365 April 4 2013 2 | Building Technologies Office eere.energy.gov Advanced Energy Design Guides Provide prescriptive energy savings guidance and recommendations by building type and geographic location: * Design packages and strategies to help owners and designers achieve 50% site energy savings over Standard 90.1 * Two series: - 30% savings over 90.1-1999

57

Asola Advanced and Automotive Solar Systems GmbH | Open Energy Information  

Open Energy Info (EERE)

Asola Advanced and Automotive Solar Systems GmbH Asola Advanced and Automotive Solar Systems GmbH Jump to: navigation, search Name Asola Advanced and Automotive Solar Systems GmbH Place Erfurt, Germany Zip D-99428 Sector Solar Product German manufacturer of PV modules and spherical solar sun roofs for the automotive industry. References Asola Advanced and Automotive Solar Systems GmbH[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Asola Advanced and Automotive Solar Systems GmbH is a company located in Erfurt, Germany . References ↑ "Asola Advanced and Automotive Solar Systems GmbH" Retrieved from "http://en.openei.org/w/index.php?title=Asola_Advanced_and_Automotive_Solar_Systems_GmbH&oldid=34237

58

Advanced Microturbine Systems  

SciTech Connect

Dept. of Energy (DOE) Cooperative Agreement DE-FC02-00-CH11061 was originally awarded to Honeywell International, Inc. ?? Honeywell Power Systems Inc. (HPSI) division located in Albuquerque, NM in October 2000 to conduct a program titled Advanced Microturbine Systems (AMS). The DOE Advanced Microturbines Systems Program was originally proposed as a five-year program to design and develop a high efficiency, low emissions, durable microturbine system. The period of performance was to be October 2000 through September 2005. Program efforts were underway, when one year into the program Honeywell sold the intellectual property of Honeywell Power Systems Inc. and HPSI ceased business operations. Honeywell made an internal decision to restructure the existing program due to the HPSI shutdown and submitted a formal request to DOE on September 24, 2001 to transfer the Cooperative Agreement to Honeywell Engines, Systems and Services (HES&S) in Phoenix, AZ in order to continue to offer support for DOE's Advanced Microturbine Program. Work continued on the descoped program under Cooperative Agreement No. DE-FC26-00-CH11061 and has been completed.

None

2005-12-31T23:59:59.000Z

59

Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary Formations  

Science Conference Proceedings (OSTI)

There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. Terralog USA, in collaboration with the University of California, Irvine (UCI), are currently investigating advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. This two-year research project, funded by the US Department of Energy, includes combined efforts for: 1) Resource characterization; 2) Small and large scale laboratory investigations; 3) Numerical simulation at both the laboratory and field scale; and 4) Engineering feasibility studies and economic evaluations. The research project is currently in its early stages. This paper summarizes our technical approach and preliminary findings related to potential resources, small-scale laboratory simulation, and supporting numerical simulation efforts.

Mike Bruno; Russell L. Detwiler; Kang Lao; Vahid Serajian; Jean Elkhoury; Julia Diessl; Nicky White

2012-09-30T23:59:59.000Z

60

Advanced Systems of Efficient Use of Electrical Energy SURE (Smart Grid  

Open Energy Info (EERE)

Efficient Use of Electrical Energy SURE (Smart Grid Efficient Use of Electrical Energy SURE (Smart Grid Project) Jump to: navigation, search Project Name Advanced Systems of Efficient Use of Electrical Energy SURE Country Slovenia Coordinates 46.151241°, 14.995463° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.151241,"lon":14.995463,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Advanced Manufacturing Office: Pump Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Pump Systems on Twitter Bookmark Advanced Manufacturing Office: Pump Systems on Google Bookmark Advanced Manufacturing Office: Pump Systems on Delicious Rank Advanced...

62

Systems and Controls Analysis and Testing; Harvesting More Wind Energy with Advanced Controls Technology (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet outlines the systems and controls analysis and testing that takes place at the NWTC on the Controls Advanced Research Turbines.

Not Available

2010-01-01T23:59:59.000Z

63

Trends in Energy Management Technology - Part 4: Review of Advanced Applications in Energy Management, Control, and Information Systems  

E-Print Network (OSTI)

for emerging energy management systems. The second article [of these complex energy management systems. This series ofrelative to energy management systems design, specification,

Yee, Gaymond; Webster, Tom

2003-01-01T23:59:59.000Z

64

Advanced drilling systems study.  

Science Conference Proceedings (OSTI)

This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

1996-05-01T23:59:59.000Z

65

Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems  

Science Conference Proceedings (OSTI)

This report summarizes technical progress on the program ??Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems? funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed jointly by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering and the Department of Materials Science and Engineering at Virginia Tech. This three-year project started on October 1, 2008. In the project, a fiber optical sensing system based on intrinsic Fabry-Perot Interferometer (IFPI) was developed for strain and temperature measurements for Ultra Supercritical boiler condition assessment. Investigations were focused on sensor design, fabrication, attachment techniques and novel materials for high temperature and strain measurements. At the start of the project, the technical requirements for the sensing technology were determined together with our industrial partner Alstom Power. As is demonstrated in Chapter 4, all the technical requirements are successfully met. The success of the technology extended beyond laboratory test; its capability was further validated through the field test at DOE NETL, in which the sensors yielded distributed temperature mapping of a testing coupon installed in the turbine test rig. The measurement results agreed well with prior results generated with thermocouples. In this project, significant improvements were made to the IFPI sensor technology by splicing condition optimization, transmission loss reduction, sensor signal demodulation and sensor system design.

Anbo Wang; Gary Pickrell

2011-12-31T23:59:59.000Z

66

Ohio Advanced Energy | Open Energy Information  

Open Energy Info (EERE)

Advanced Energy Jump to: navigation, search Name Ohio Advanced Energy Address 100 S. Third Street Place Columbus, Ohio Zip 43201 Website http:www.ohioadvancedenergy. References...

67

Advanced Energy Conversion LLC AEC | Open Energy Information  

Open Energy Info (EERE)

Energy Conversion LLC (AEC) Place New York Zip 12020 Product R&D company focused on power electronics, motion control systems and embedded control. References Advanced Energy...

68

Evaluation of thermal energy storage materials for advanced compressed air energy storage systems  

DOE Green Energy (OSTI)

Advanced Compressed-Air Energy Storage (ACAS) plants have the near-term potential to reduce the fuel consumption of compressed-air plants from 33 to 100%, depending upon their design. Fuel is saved by storing some or all of the heat of compression as sensible heat which is subsequently used to reheat the compressed air prior to expansion in the turbine generator. The thermal storage media required for this application must be low cost and durable. The objective of this project was to screen thermal store materials based on their thermal cycle durability, particulate formation and corrosion resistant characteristics. The materials investigated were iron oxide pellets, Denstone pebbles, cast-iron balls, and Dresser basalt rock. The study specifically addressed the problems of particle formation and thermal ratcheting of the materials during thermal cycling and the chemical attack on the materials by the high temperature and moist environment in an ACAS heat storage bed. The results indicate that from the durability standpoint Denstone, cast iron containing 27% or more chromium, and crushed Dresser basalt would possibly stand up to ACAS conditions. If costs are considered in addition to durability and performance, the crushed Dresser basalt would probably be the most desirable heat storage material for adiabatic and hybrid ACAS plants, and more in-depth longer term thermal cycling and materials testing of Dresser basalt is recommended. Also recommended is the redesign and costing analysis of both the hybrid and adiabatic ACAS facilities based upon the use of Dresser basalt as the thermal store material.

Zaloudek, F.R.; Wheeler, K.R.; Marksberry, L.

1983-03-01T23:59:59.000Z

69

Well-to-wheel energy use and greenhouse gas emissions of advanced fuel/vehicle systems North American analysis.  

DOE Green Energy (OSTI)

There are differing, yet strongly held views among the various ''stakeholders'' in the advanced fuel/propulsion system debate. In order for the introduction of advanced technology vehicles and their associated fuels to be successful, it seems clear that four important stakeholders must view their introduction as a ''win'': Society, Automobile manufacturers and their key suppliers, Fuel providers and their key suppliers, and Auto and energy company customers. If all four of these stakeholders, from their own perspectives, are not positive regarding the need for and value of these advanced fuels/vehicles, the vehicle introductions will fail. This study was conducted to help inform public and private decision makers regarding the impact of the introduction of such advanced fuel/propulsion system pathways from a societal point of view. The study estimates two key performance criteria of advanced fuel/propulsion systems on a total system basis, that is, ''well'' (production source of energy) to ''wheel'' (vehicle). These criteria are energy use and greenhouse gas emissions per unit of distance traveled. The study focuses on the U.S. light-duty vehicle market in 2005 and beyond, when it is expected that advanced fuels and propulsion systems could begin to be incorporated in a significant percentage of new vehicles. Given the current consumer demand for light trucks, the benchmark vehicle considered in this study is the Chevrolet Silverado full-size pickup.

Wang, M.

2001-04-18T23:59:59.000Z

70

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect

Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

Gregory Gaul

2004-04-21T23:59:59.000Z

71

Hydrothermal spallation drilling and advanced energy conversion technologies for Engineered Geothermal Systems  

E-Print Network (OSTI)

The purpose of this research was to study the various factors affecting the economic and technical feasibility of Engineered Geothermal Systems, with a special emphasis on advanced drilling technologies. The first part of ...

Augustine, Chad R

2009-01-01T23:59:59.000Z

72

Tomorrow`s energy today for cities and counties -- Alternative wastewater treatment: Advanced Integrated Pond systems  

DOE Green Energy (OSTI)

This report provides a discussion of the design, construction, operation, and maintenance of the Advanced Integrated Pond System as an alternative for other more costly municipal waste water treatment plants.

Not Available

1993-10-01T23:59:59.000Z

73

Advanced fossil energy utilization  

Science Conference Proceedings (OSTI)

This special issue of Fuel is a selection of papers presented at the symposium Advanced Fossil Energy Utilization co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 2630, 2009.

Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

2010-01-01T23:59:59.000Z

74

Advanced Energy Technologies: Solar Energy and Storage  

Science Conference Proceedings (OSTI)

Advanced Energy Technologies: Solar Energy and Storage (+18 FTE, +$7,500,000). image: Shutterstock, copyright Chayne Gregg. Challenge. ...

2011-10-11T23:59:59.000Z

75

Nuclear Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Role of Synchrotron Radiation in Solving Scientific Challenges in Advanced Nuclear Energy Systems 27 to 28 January 2010 at Argonne's Advanced Photon Source Scope Third-generation...

76

Advancing Residential Energy Retrofits  

Science Conference Proceedings (OSTI)

To advance the market penetration of residential retrofits, Oak Ridge National Laboratory (ORNL) and Southface Energy Institute (Southface) partnered to provide technical assistance on nine home energy retrofits in metropolitan Atlanta with simulated source energy savings of 30% to 50%. Retrofit measures included duct sealing, air infiltration reductions, attic sealing and roofline insulation, crawlspace sealing, HVAC and water heating equipment replacement, and lighting and appliance upgrades. This paper will present a summary of these measures and their associated impacts on important home performance metrics, such as air infiltration and duct leakage. The average estimated source energy savings for the homes is 33%, and the actual heating season average savings is 32%. Additionally, a case study describing expected and realized energy savings of completed retrofit measures of one of the homes is described in this paper.

Jackson, Roderick K [ORNL; Boudreaux, Philip R [ORNL; Kim, Eyu-Jin [Southface Energy Institute; Roberts, Sydney [Southface Energy Institute

2012-01-01T23:59:59.000Z

77

Advanced Energy | Open Energy Information  

Open Energy Info (EERE)

Name Advanced Energy Name Advanced Energy Address 1625 Sharp Point Drive Place Fort Collins, Colorado Zip 80525 Sector Solar Product Solar cell, passive-solar architectural glass, solar grid-tie inverter, semiconductor, flat panel display, data storage Year founded 1981 Number of employees 1001-5000 Website http://www.advanced-energy.com Coordinates 40.565708°, -105.030749° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.565708,"lon":-105.030749,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect

Boise Paper Solutions and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources. The overall objective of this project is to demonstrate the commercial applicability of an advanced biomass gasification-based power generation system at Boise Paper Solutions' pulp and paper mill located at DeRidder, Louisiana.

Joseph Rabovitser; Bruce Bryan

2002-10-01T23:59:59.000Z

79

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

DOE Green Energy (OSTI)

Boise Paper Solutions and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources. The overall objective of this project is to demonstrate the commercial applicability of an advanced biomass gasification-based power generation system at Boise Paper Solutions' pulp and paper mill located at DeRidder, Louisiana.

Joseph Rabovitser; Bruce Bryan

2002-10-01T23:59:59.000Z

80

Advanced Modeling & Simulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation ADVANCING THE STATE OF THE ART Innovation advances science. Historically, innovation resulted almost exclusively from fundamental theories combined with observation and experimentation over time. With advancements in engineering, computing power and visualization tools, scientists from all disciplines are gaining insights into physical systems in ways not possible with traditional approaches alone. Modeling and simulation has a long history with researchers and scientists exploring nuclear energy technologies. In fact, the existing fleet of currently operating reactors was licensed with computational tools that were produced or initiated in the 1970s. Researchers and scientists in

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Advanced Research Projects Agency - Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Research Projects Agency - Energy Advanced Research Projects Agency - Energy recovery act Advanced Research Projects Agency - Energy More Documents & Publications Advanced...

82

Advanced Monitoring systems initiative  

SciTech Connect

The Advanced Monitoring Systems Initiative (AMSI) actively searches for promising technologies and aggressively moves them from the research bench into DOE/NNSA end-user applications. There is a large unfulfilled need for an active element that reaches out to identify and recruit emerging sensor technologies into the test and evaluation function. Sensor research is ubiquitous, with the seeds of many novel concepts originating in the university systems, but at present these novel concepts do not move quickly and efficiently into real test environments. AMSI is a widely recognized, self-sustaining ''business'' accelerating the selection, development, testing, evaluation, and deployment of advanced monitoring systems and components.

R.J. Venedam; E.O. Hohman; C.F. Lohrstorfer; S.J. Weeks; J.B. Jones; W.J. Haas

2004-09-30T23:59:59.000Z

83

Advanced turbine systems program  

SciTech Connect

In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

1992-12-31T23:59:59.000Z

84

Advanced turbine systems program  

SciTech Connect

In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

1992-01-01T23:59:59.000Z

85

Advanced Energy Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Energy Fund Advanced Energy Fund Advanced Energy Fund < Back Eligibility Commercial Industrial Institutional Residential Utility Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Wind Solar Heating & Cooling Heating Water Heating Program Info State Ohio Program Type Public Benefits Fund Provider Ohio Development Services Agency Ohio's Advanced Energy Fund was originally authorized by the state's 1999 electric restructuring legislation. The Fund supports the Advanced Energy Program, which at different times has provided grants for renewable energy and energy efficiency projects to different economic sectors. Grant and loan funds are awarded through periodic Notices of Funding Availability

86

Advanced Containment System  

SciTech Connect

An advanced containment system for containing buried waste and associated leachate. The advanced containment system comprises a plurality of casing sections with each casing section interlocked to an adjacent casing section. Each casing section includes a complementary interlocking structure that interlocks with the complementary interlocking structure on an adjacent casing section. A barrier filler substantially fills the casing sections and may substantially fill the spaces of the complementary interlocking structure to form a substantially impermeable barrier. Some of the casing sections may include sensors so that the casing sections and the zone of interest may be remotely monitored after the casing sections are emplaced in the ground.

Kostelnik, Kevin M. (Idaho Falls, ID); Kawamura, Hideki (Tokyo, JP); Richardson, John G. (Idaho Falls, ID); Noda, Masaru (Tokyo, JP)

2005-02-08T23:59:59.000Z

87

Trends in Energy Management Technology - Part 4: Review of Advanced Applications in Energy Management, Control, and Information Systems  

E-Print Network (OSTI)

for energy and maintenance management. TIEMS is currentlywith a computerized maintenance management system (CMMS 4 ).Berkeley Computerized maintenance management system Fault

Yee, Gaymond; Webster, Tom

2003-01-01T23:59:59.000Z

88

Advanced Microturbine Systems  

SciTech Connect

In July 2000, the United Technologies Research Center (UTRC) was one of five recipients of a US Department of Energy contract under the Advanced Microturbine System (AMS) program managed by the Office of Distributed Energy (DE). The AMS program resulted from several government-industry workshops that recognized that microturbine systems could play an important role in improving customer choice and value for electrical power. That is, the group believed that electrical power could be delivered to customers more efficiently and reliably than the grid if an effective distributed energy strategy was followed. Further, the production of this distributed power would be accomplished with less undesirable pollutants of nitric oxides (NOx) unburned hydrocarbons (UHC), and carbon monoxide (CO). In 2000, the electrical grid delivered energy to US customers at a national average of approximately 32% efficiency. This value reflects a wide range of powerplants, but is dominated by older, coal burning stations that provide approximately 50% of US electrical power. The grid efficiency is also affected by transmission and distribution (T&D) line losses that can be significant during peak power usage. In some locations this loss is estimated to be 15%. Load pockets can also be so constrained that sufficient power cannot be transmitted without requiring the installation of new wires. New T&D can be very expensive and challenging as it is often required in populated regions that do not want above ground wires. While historically grid reliability has satisfied most customers, increasing electronic transactions and the computer-controlled processes of the 'digital economy' demand higher reliability. For them, power outages can be very costly because of transaction, work-in-progress, or perishable commodity losses. Powerplants that produce the grid electrical power emit significant levels of undesirable NOx, UHC, and CO pollutants. The level of emission is quoted as either a technology metric or a system-output metric. A common form for the technology metric is in the units of PPM {at} 15% O2. In this case the metric reflects the molar fraction of the pollutant in the powerplant exhaust when corrected to a standard exhaust condition as containing 15% (molar) oxygen, assuring that the PPM concentrations are not altered by subsequent air addition or dilution. Since fuel combustion consumes oxygen, the output oxygen reference is equivalent to a fuel input reference. Hence, this technology metric reflects the moles of pollutant per mole of fuel input, but not the useful output of the powerplant-i.e. the power. The system-output metric does embrace the useful output and is often termed an output-based metric. A common form for the output-based metric is in the units of lb/MWh. This is a system metric relating the pounds of pollutant to output energy (e.g., MWh) of the powerplant.

Rosfjord, T; Tredway, W; Chen, A; Mulugeta, J; Bhatia, T

2008-12-31T23:59:59.000Z

89

Functional Materials for Energy | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Functional Materials for Energy SHARE Functional Materials for Energy The concept of functional materials for energy occupies a very prominent position in ORNL's research and more broadly the scientific research sponsored by DOE's Basic Energy Sciences. These materials facilitate the capture and transformation of energy, the storage of energy or the efficient release and utilization of stored energy. A different kind of

90

ADVANCED TURBINE SYSTEMS PROGRAM  

Science Conference Proceedings (OSTI)

The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these technologies and the corresponding early adopters are likely to be located.

Sy Ali

2002-03-01T23:59:59.000Z

91

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect

Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and METHANE de-NOX{reg_sign} technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

Joseph Rabovitser; Bruce Bryan

2002-01-01T23:59:59.000Z

92

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect

Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

Joseph Rabovitser; Bruce Bryan

2002-07-01T23:59:59.000Z

93

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

DOE Green Energy (OSTI)

Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

Joseph Rabovitser; Bruce Bryan

2002-07-01T23:59:59.000Z

94

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

DOE Green Energy (OSTI)

Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and METHANE de-NOX{reg_sign} technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

Joseph Rabovitser; Bruce Bryan

2002-01-01T23:59:59.000Z

95

Advanced turbine systems program overview  

SciTech Connect

The US Department of Energy`s (DOE) Office of Fossil Energy and Office of Energy Efficiency & Renewable Energy are jointly supporting a program to develop Advanced Turbine Systems (ATS). Demonstrations of commercial prototypes will be completed by the year 2000 for both utility- and industrial-scale applications. The program is primarily directed toward natural gas utilization, but eventual application of the technology to coal-fired systems is not overlooked. In major procurements, contractors are required to address (in paper studies though not in testing) the eventual adaptation of their systems to coal firing. Implementation of the program is proceeding well. Phase 1 systems studies have been completed, and Phase 2 concept development has been underway for about a year. Release of solicitation for Phase 3 proposals has been announced for July, 1994. This phase of the program will see teams led by turbine manufacturers move into full scale testing of critical components. Generic research and development has been proceeding in parallel with the major development effort. METC has started testing in their Advanced Turbine Combustion test facility, and Oak Ridge National Laboratory has initiated a materials test program. The industry/university consortium established by the South Carolina Energy Research and Development Center has completed their second round of university awards, with 23 university projects now underway.

Webb, H.A.

1994-10-01T23:59:59.000Z

96

Advanced Building Efficiency Testbed Initiative/Intelligent Workplace Energy Supply System; ABETI/IWESS  

DOE Green Energy (OSTI)

ABETI/IWESS is a project carried out by Carnegie Mellon's Center for Building Performance and Diagnostics, the CBPD, supported by the U.S. Department of Energy/EERE, to design, procure, install, operate, and evaluate an energy supply system, an ESS, that will provide power, cooling, heating and ventilation for CBPD's Intelligent Workplace, the IW. The energy sources for this system, the IWESS, are solar radiation and bioDiesel fuel. The components of this overall system are: (1) a solar driven cooling and heating system for the IW comprising solar receivers, an absorption chiller, heat recovery exchanger, and circulation pump; (2) a bioDiesel fueled engine generator with heat recovery exchangers, one on the exhaust to provide steam and the other on the engine coolant to provide heated water; (3) a ventilation system including an enthalpy recovery wheel, an air based heat pump, an active desiccant wheel, and an air circulation fan; and (4) various convective and radiant cooling/heating units and ventilation air diffusers distributed throughout the IW. The goal of the ABETI/IWESS project is to demonstrate an energy supply system for a building space that will provide a healthy, comfortable environment for the occupants and that will reduce the quantity of energy consumed in the operation of a building space by a factor of 2 less than that of a conventional energy supply for power, cooling, heating, and ventilation based on utility power and natural gas fuel for heating.

David Archer; Frederik Betz; Yun Gu; Rong Li; Flore Marion; Sophie Masson; Ming Qu; Viraj Srivastava; Hongxi Yin; Chaoqin Zhai; Rui Zhang; Elisabeth Aslanian; Berangere Lartigue

2008-05-31T23:59:59.000Z

97

Evaluation of thermal-energy-storage materials for advanced compressed-air energy-storage systems. Final report  

SciTech Connect

Proposed designs of adiabatic and hybrid advanced compressed air energy storage (ACAS) plants have utilized sensible heat storage systems to store the heat developed during air compression for subsequent use during the power generation phase of operation. This experimental study was performed to screen four porposed heat storage materials for performance and durability: 3/8-in. sintered iron oxide pellets, 1/2-in. Denstone pellets, 1-in. cast iron alloy balls, and crushed Dresser basalt. Specific concerns addressed included particle formation and thermal ratcheting of the materials during thermal cycling and the chemical attack on the materials by the high temperature and moist environment in an ACAS heat storage bed. The results indicated that from the durability standpoint Denstone, cast iron containing 27% or more chromium, and crushed Dresser basalt would possible stand up to ACAS conditions. If costs are considered in addition to durability and performance, the crushed Dresser basalt would probably be the most desirable heat storage material for adiabatic and hybrid ACAS plants.

Zaloudek, F.R.; Wheeler, K.R.; Marksberry, L.

1983-03-01T23:59:59.000Z

98

ADVANCED WORKER PROTECTION SYSTEM  

Science Conference Proceedings (OSTI)

From 1993 to 2000, OSS worked under a cost share contract from the Department of Energy (DOE) to develop an Advanced Worker Protection System (AWPS). The AWPS is a protective ensemble that provides the user with both breathing air and cooling for a NIOSH-rated duration of two hours. The ensemble consists of a liquid air based backpack, a Liquid Cooling Garment (LCG), and an outer protective garment. The AWPS project was divided into two phases. During Phase 1, OSS developed and tested a full-scale prototype AWPS. The testing showed that workers using the AWPS could work twice as long as workers using a standard SCBA. The testing also provided performance data on the AWPS in different environments that was used during Phase 2 to optimize the design. During Phase 1, OSS also performed a life-cycle cost analysis on a representative clean up effort. The analysis indicated that the AWPS could save the DOE millions of dollars on D and D activities and improve the health and safety of their workers. During Phase 2, OSS worked to optimize the AWPS design to increase system reliability, to improve system performance and comfort, and to reduce the backpack weight and manufacturing costs. To support this design effort, OSS developed and tested several different generations of prototype units. Two separate successful evaluations of the ensemble were performed by the International Union of Operation Engineers (IUOE). The results of these evaluations were used to drive the design. During Phase 2, OSS also pursued certifying the AWPS with the applicable government agencies. The initial intent during Phase 2 was to finalize the design and then to certify the system. OSS and Scott Health and Safety Products teamed to optimize the AWPS design and then certify the system with the National Institute of Occupational Health and Safety (NIOSH). Unfortunately, technical and programmatic difficulties prevented us from obtaining NIOSH certification. Despite the inability of NIOSH to certify the design, OSS was able to develop and successfully test, in both the lab and in the field, a prototype AWPS. They clearly demonstrated that a system which provides cooling can significantly increase worker productivity by extending the time they can function in a protective garment. They were also able to develop mature outer garment and LCG designs that provide considerable benefits over current protective equipment, such as self donning and doffing, better visibility, and machine washable. A thorough discussion of the activities performed during Phase 1 and Phase 2 is presented in the AWPS Final Report. The report also describes the current system design, outlines the steps needed to certify the AWPS, discusses the technical and programmatic issues that prevented the system from being certified, and presents conclusions and recommendations based upon the seven year effort.

Judson Hedgehock

2001-03-16T23:59:59.000Z

99

Renewable energy for America's cities: Advanced Community Energy Systems Proposed Research, Development and Demonstration Program  

SciTech Connect

The first purpose of this paper is to describe ACES technologies and their potential impact on the environment, the US energy supply system and economy. The second purpose is to recommend an R,D D program to the US Department of Energy which has as its goal the rapid development of the most promising of the new technologies. ACES supply thermal energy to groups of buildings, communities and cities in the form of hot or chilled water for building space heating, domestic hot water or air conditioning. The energy is supplied via a network of insulated, underground pipes linking central sources of supply with buildings. ACES, by definition, employ very high energy efficiency conversion technologies such as cogeneration, heat pumps, and heat activated chillers. These systems also use renewable energy sources such as solar energy, winter cold, wind, and surface and subsurface warm and cold waters. ACES compose a new generation of community-scale building heating and air conditioning supply technologies. These new systems can effect a rapid and economical conversion of existing cities to energy supply by very efficient energy conversion systems and renewable energy systems. ACES technologies are the most promising near term means by which cities can make the transition from our present damaging dependence on fossil fuel supply systems to an economically and environmentally sustainable reliance on very high efficiency and renewable energy supply systems. When fully developed to serve an urban area, ACES will constitute a new utility system which can attain a level of energy efficiency, economy and reliance on renewable energy sources not possible with currently available energy supply systems.

Gleason, T.C.J.

1993-01-01T23:59:59.000Z

100

Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter  

Science Conference Proceedings (OSTI)

Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report also analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.

Chakraborty, S.; Kroposki, B.; Kramer, W.

2008-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Advanced Integrated Traction System  

SciTech Connect

The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.

Greg Smith; Charles Gough

2011-08-31T23:59:59.000Z

102

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

DOE Green Energy (OSTI)

The objective of this project is the development and commercial demonstration of an advanced biomass gasification-based power generation system at Boise Cascade Corporation's pulp and paper mill in DeRidder, Louisiana. The advanced power generation system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as the primary fuel resource. The novel system is based on three advanced technology components: GTI's RENUGAS{reg_sign} and 3-stage solid fuels combustion technologies coupled with one of the power generation approaches used in DOE's HIPPS program. Phase 1 of the project is a technical and economic evaluation of the system at the DeRidder site. A Continuation Application will be submitted at the conclusion of Phase 1 for authorization to proceed to testing and design in Phase 2. Phase 2 includes pilot-scale verification of selected system components and preparation of a detailed engineering design and cost estimate for retrofit of the advanced power system at the DeRidder mill. Phase 3 will complete procurement and construction of the system at the DeRidder site along with all required permitting activities. Phase 4 of the project will included plant commissioning, startup and demonstration operations. Design information for the Gasification Island was completed during the quarter. Two vendor quotations were received for the bark/hog fuel dryers. A final layout plan for the major equipment was developed and submitted to DeRidder for review and approval. The Institute of Paper Science and Technology (IPST) completed a subcontract for a laboratory study on VOC emissions from wood waste drying using bark from the DeRidder mill. Samples of DeRidder's lime mud and green liquor dregs were collected and analyzed in GTI's laboratory. It was determined that lime mud is far too fine to be utilized as inert bed material in the fluidized bed gasifier. Results for the green liquor dregs are currently being reviewed. Design analysis for the in-furnace HPHT Air Heater was completed and the external Syngas Cooler/Air Heater was begun. Materials were received for the air heater tube testing system to be installed in Boiler No. 2 at DeRidder. A refractory interference problem with the original testing system design was discovered and resolved. Analyses of the externally recuperated gas turbine cycles (air heater and booster combustor in parallel or series) were continued including the effects of steam cooling and inlet air humidification on power output and operating cost. Discussions were continued with turbine manufacturers regarding the technical, time and cost requirements for developing an externally recuperated turbine engine suitable for use in the project. A 5-month no-cost time extension was requested and received for the project to accommodate design and evaluation of externally recuperated gas turbines using HPHT air as the working fluid.

Joseph Rabovitser; Bruce Bryan

2003-04-01T23:59:59.000Z

103

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Retrofit Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Retrofit Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Retrofit Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Google Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Delicious Rank Building Technologies Office: Advanced Energy Retrofit Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Retrofit Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

104

Advancing Clean Energy Technology (Fact Sheet)  

SciTech Connect

DOE/EERE Solar Energy Technologies Program Fact Sheet - Advancing Clean Energy Technology, May 2010.

2010-07-01T23:59:59.000Z

105

Advanced Vehicle Testing Activity: Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing to someone by E-mail Share Advanced Vehicle Testing Activity: Energy Storage Testing on Facebook Tweet about Advanced Vehicle Testing Activity: Energy...

106

Tribal Renewable Energy Advanced Course: Project Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Advanced Course: Project Development Concepts Tribal Renewable Energy Advanced Course: Project Development Concepts Watch the DOE Office of Indian Energy renewable...

107

Advanced Energy Company | Open Energy Information  

Open Energy Info (EERE)

There are 26 founding investors, which include car manufactures, trading houses, battery makers and others. References Advanced Energy Company1 LinkedIn Connections...

108

Advanced Flow-Battery Systems  

Science Conference Proceedings (OSTI)

Presentation Title, Advanced Flow-Battery Systems ... Abstract Scope, Flow- battery systems (FBS) were originally developed over 30 years ago and have since...

109

Draft Advanced Fossil Solicitation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Fossil Solicitation Federal loan guarantee solicitation announcement -- Advanced Fossil Energy Projects. Microsoft Word - Draft Advanced Fossil Solicitation Final Draft.1...

110

DOE's Advanced Turbine Systems Program  

Science Conference Proceedings (OSTI)

This paper discusses the Advanced Turbine Systems (ATS) Program, which is necessary to achieve METC's vision for future IGCC systems. This major new program is a cooperative effort in which DOE's Office of Fossil Energy (FE) and Office of Conservation and Renewable Energy (CE) are joining forces with the private sector to develop ultra-high efficiency gas turbine systems. A goal of this Program is to have a utility-size gas turbine with a 60 percent efficiency (lower heating value basis (LHV)) ready for commercialization by the year 2002. (While this paper focuses on utility-size turbines which are the primary interest of this audience, an ultra-high efficiency, industrial-size gas turbine will also be developed in the ATS Program with a comparable improvement in efficiency.) Natural gas is the target fuel of the Program, a recognition by DOE that natural gas will play a significant role in supplying future power generation needs in the US. However, to insure that the US has fuel supply options, ATS designs will be adaptable to coal and biomass fuels. Therefore, the ATS Program will directly benefit IGCC and other advanced coal based power generation systems. Cost and efficiency improvements in the turbine system as well as in the gasification and gas stream cleanup plant sections will enable IGCC to reach a cost target of $1,000--$1,280/kW and an efficiency goal of 52 percent (higher heating value basis (HHV)) in the post-2000 market.

Bechtel, T.F.; Bajura, R.A.; Salvador, L.A.

1993-01-01T23:59:59.000Z

111

Ohio Advanced Energy Manufacturing Center  

Science Conference Proceedings (OSTI)

The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

Kimberly Gibson; Mark Norfolk

2012-07-30T23:59:59.000Z

112

Ohio Advanced Energy Manufacturing Center  

SciTech Connect

The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

Kimberly Gibson; Mark Norfolk

2012-07-30T23:59:59.000Z

113

Advanced Containment System  

SciTech Connect

An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

Kostelnik, Kevin M. (Idaho Falls, ID); Kawamura, Hideki (Tokyo, JP); Richardson, John G. (Idaho Falls, ID); Noda, Masaru (Tokyo, JP)

2005-05-24T23:59:59.000Z

114

Advanced Containment System  

SciTech Connect

An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

Kostelnik, Kevin M. (Idaho Falls, ID); Kawamura, Hideki (Tokyo, JP); Richardson, John G. (Idaho Falls, ID); Noda, Masaru (Tokyo, JP)

2004-10-12T23:59:59.000Z

115

Advanced high-speed flywheel energy storage systems for pulsed power application  

E-Print Network (OSTI)

Power systems on modern commercial transportation systems are moving to more electric based equipment, thus improving the reliability of the overall system. Electrical equipment on such systems will include some loads that require very high power for short periods of time, on the order of a few seconds, especially during acceleration and deceleration. The current approach to solving this problem is sizing the electrical grid for peak power, rather than the average. A method to efficiently store and discharge the pulsed power is necessary to eliminate the cost and weight of oversized generation equipment to support the pulsed power needs of these applications. Highspeed Flywheel Energy Storage Systems (FESS) are effectively capable of filling the niche of short duration, high cycle life applications where batteries and ultra capacitors are not usable. In order to have an efficient high-speed FESS, performing three important steps towards the design of the overall system are extremely vital. These steps are modeling, analysis and control of the FESS that are thoroughly investigated in this dissertation. This dissertation establishes a comprehensive analysis of a high-speed FESS in steady state and transient operations. To do so, an accurate model for the complete FESS is derived. State space averaging approach is used to develop DC and small-signal AC models of the system. These models effectively simplify analysis of the FESS and give a strong physical intuition to the complete system. In addition, they result in saving time and money by avoiding time consuming simulations performed by expensive packages, such as Simulink, PSIM, etc. In the next step, two important factors affecting operation of the Permanent Magnet Synchronous Machine (PMSM) implemented in the high-speed FESS are investigated in detail and outline a proper control strategy to achieve the required performance by the system. Next, a novel design algorithm developed by S.P. Bhattacharyya is used to design the control system. The algorithm has been implemented to a motor drive system, for the first time, in this work. Development of the complete set of the current- and speed-loop proportional-integral controller gains stabilizing the system is the result of this implementation. In the last part of the dissertation, based on the information and data achieved from the analysis and simulations, two parts of the FESS, inverter/rectifier and external inductor, are designed and the former one is manufactured. To verify the validity and feasibility of the proposed controller, several simulations and experimental results on a laboratory prototype are presented.

Talebi Rafsanjan, Salman

2008-12-01T23:59:59.000Z

116

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

collectors," Journal of Solar Energy Engineering, vol. 121,receivers," Journal of Solar Energy Engineering, vol. 117,Towers," ASME Journal of Solar Energy Engineering, vol. 129,

Ho, Tony

2012-01-01T23:59:59.000Z

117

Tribal Renewable Energy Advanced Course: Project Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development and Financing Essentials Tribal Renewable Energy Advanced Course: Project Development and Financing Essentials Watch the DOE Office of Indian Energy advanced course...

118

Advancing Building Energy Codes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Advancing Building Energy Codes Advancing Building Energy Codes 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. Energy Codes Ensure Efficiency in Buildings

119

Advanced Reactor Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Reactor Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Office of Nuclear Energy (NE) will pursue these advancements through RD&D activities at the Department of Energy (DOE) national laboratories and U.S. universities, as well as through collaboration with industry and international partners. These activities will focus on advancing scientific

120

Systems Engineering Advancement Research Initiative  

E-Print Network (OSTI)

strategic partners Define and research fundamental concepts for advanced system engineering Contribute materials, and handbooks to inspire, inform, and guide students and practitioners VENUE SEAri is located

de Weck, Olivier L.

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

DOE Announces Webinars on Energy Systems Advances, Hydrogen Safety Events Databases, and More  

Energy.gov (U.S. Department of Energy (DOE))

EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free...

122

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

159] B Sternlicht, "Waste energy recover: an excellentThis high quality waste energy though has the potential torecovery of low-grade waste heat," Energy, vol. 22, pp. 661-

Ho, Tony

2012-01-01T23:59:59.000Z

123

Advanced Green Technologies | Open Energy Information  

Open Energy Info (EERE)

Advanced Green Technologies Place Fort Lauderdale, Florida Zip 33311 Product Advanced Green Technologies is a US-based distributor of PV systems. It is owned by Advanced Roofing...

124

Integrated window systems: An advanced energy-efficient residential fenestration product  

SciTech Connect

The last several years have produced a wide variety of new window products aimed at reducing the energy impacts associated with residential windows. Improvements have focused on reducing the rate at which heat flows through the total window product by conduction/convection and thermal radiation (quantified by the U-factor) as well as in controlling solar heat gain (measured by the Solar Heat Gain Coefficient (SHGC) or Shading Coefficient (SC)). Significant improvements in window performance have been made with low-E coated glazings, gas fills in multiple pane windows and with changes in spacer and frame materials and designs. These improvements have been changes to existing design concepts. They have pushed the limits of the individual features and revealed weaknesses. The next generation of windows will have to incorporate new materials and ideas, like recessed night insulation, seasonal sun shades and structural window frames, into the design, manufacturing and construction process, to produce an integrated window system that will be an energy and comfort asset.

Arasteh, D.; Griffith, B.; LaBerge, P.

1994-03-01T23:59:59.000Z

125

NREL: Learning - Advanced Vehicle Systems and Components  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicle Systems and Components Advanced Vehicle Systems and Components Photo of a man checking out an advanced battery using testing equipment that includes a long metal tube on a table top. NREL's researchers test new batteries developed for hybrid electric vehicles. Credit: Warren Gretz Researchers and engineers at the NREL work closely with those in the automotive industry to develop new technologies, such as advanced batteries, for storing energy in cars, trucks, and buses. They also help to develop and test new technologies for using that energy more efficiently. And they work on finding new, energy-efficient ways to reduce the amount of fuel needed to heat and cool the interiors, or cabins, of vehicles. To help develop these new technologies, NREL's researchers are improving the efficiency of vehicle systems and components like these:

126

Tribal Renewable Energy Advanced Course: Project Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concepts Tribal Renewable Energy Advanced Course: Project Development Concepts Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy...

127

Advances in Energy  

Science Conference Proceedings (OSTI)

Siemens has a diverse portfolio on energy that comprises of oil and gas, fossil ... Solid Core 2-D Photonic Band-Gap Fibers (SC-PBG) with High Index Inclusions.

128

Advanced Energy Design Guides  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One way to influence above-code One way to influence above-code exemplary energy performance in commercial buildings is to provide architects, engineers, and other design practitioners prescriptive guidance that indicates, measure by measure, how to do it. To this end, the U.S. Department of Energy (DOE) actively supports development of a series of AEDGs- publications designed to provide recommendations for achieving 30 to 50

129

Fact Sheet: Energy Storage Technology Advancement Partnership...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) More Documents & Publications Webinar Presentation: Energy Storage Solutions for Microgrids (November...

130

Solar Energy, Modeling, and Advanced Materials  

Science Conference Proceedings (OSTI)

Oct 21, 2010 ... Clean Energy: Fuel Cells, Batteries, Renewables - Materials, Processing, and Manufacturing: Solar Energy, Modeling, and Advanced Materials

131

Advanced Energy Retrofit Guides | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofit Guides Retrofit Guides Advanced Energy Retrofit Guides Photo of the cover of the Advanced Energy Retrofit Guide for Healthcare Facilities. The Advanced Energy Retrofit Guides (AERGs) were created to help decision makers plan, design, and implement energy improvement projects in their facilities. With energy managers in mind, they present practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle. These guides are primarily reference documents, allowing energy managers to consult the particular sections that address the most pertinent topics.. Useful resources are also cited throughout the guides for further information. Each AERG is tailored specifically to the needs of a specific building type, with an emphasis on the most effective

132

Energy technologies advancement program underway  

SciTech Connect

The State of California is reducing the risk of developing new, innovative energy technologies under its Energy Technologies Advancement Program (ETAP), which is administered by the California Energy Commission (CEC). In the first funding round, 38 applications were received, and the Energy Commission's Research, Development, and Demonstration Committee has recommended six projects from private companies for initial funding. They are: ARCO Solar Inc. - research for $925,000 to develop thin film photovoltaic modules that capture the sun's rays and convert them into electricity; Alternative Energy Institute - research for $135,000 to collect and concentrate sunlight via a series of tracking parabolic dishes (heliostats), and transfer collected light into the interior of a commercial building; Solar Turbines Inc. - research for $52,500 to test a liquid fuel injection system that results in a reduction of oxides of nitrogen in cogeneration gas turbines; Pacific Gas and Electric Company - research for $500,000 to establish a program for field testing and evaluating emerging new photovoltaic technologies; San Diego Gas and Electric Company - research contract to test and evaluate the largest geothermal power plant in the world using an organic rankine cycle steam turbine, which uses a fluid with a lower-than-normal boiling point, thereby potentially generating electricity with lower temperature heat; and Fayette Manufacturing Corporation - loan contract for $1,250,000 to demonstrate the technical and economic feasibility of a new heat cycle process called the Kalina Cycle. The CEC will soon be releasing a Request for Proposals (RFP) for both private and public organizations for the second-round ETAP solicitation.

1986-01-01T23:59:59.000Z

133

Building Technologies Office: Advanced Energy Design Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Design Energy Design Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Design Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Design Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Design Guides on Google Bookmark Building Technologies Office: Advanced Energy Design Guides on Delicious Rank Building Technologies Office: Advanced Energy Design Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Design Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software

134

Advanced Integrated Systems Technology Development  

E-Print Network (OSTI)

Research Energy Systems Integration Environmentallyenergy use, combined with the capability of the BMS system, including alarms to identify anomalies. Integration

2013-01-01T23:59:59.000Z

135

THE EVALUATION OF TRNSYS IN CREATING ADVANCED ENERGY MANAGEMENT SYSTEMS IN BUILDINGS.  

E-Print Network (OSTI)

??In meeting the energy demands in todays society, a number of environmental, political, economic, and societal issues, in both a local and world perspective, have (more)

Klinetob, Sarah

2009-01-01T23:59:59.000Z

136

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

of low-grade heat," Renewable and Sustainable Energyof various applications," Renewable and Sustainable Energyorganic Rankine cycle," Renewable Energy, vol. 4, pp. 1196-

Ho, Tony

2012-01-01T23:59:59.000Z

137

Federal Energy Management Program: Advanced Technology Planning for Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Advanced Technology Planning for Energy Savings Performance Contracts to someone by E-mail Share Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Facebook Tweet about Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Twitter Bookmark Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Google Bookmark Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Delicious Rank Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Digg Find More places to share Federal Energy Management Program:

138

Advancing Net-Zero Energy Commercial Buildings; Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

This fact sheet provides an overview of the research the National Renewable Energy Laboratory is conducting to achieve net-zero energy buildings (NZEBs). It also includes key definitions of NZEBs and inforamtion about an NZEB database that captures information about projects around the world.

2009-10-01T23:59:59.000Z

139

Trends in Energy Management Technology - Part 4: Review of Advanced Applications in Energy Management, Control, and Information Systems  

E-Print Network (OSTI)

ExcelSyus - Excel Energy Technologies, Ltd. http://pdf Trends in Energy Management TechnologyTrends in Energy Management Technology Fault Detection and

Yee, Gaymond; Webster, Tom

2003-01-01T23:59:59.000Z

140

Advanced Virtual Energy Simulation Training And Research (AVESTAR...  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifier Optimization and Plant Supporting Systems Advanced Virtual Energy Simulation Training And Research (AVESTAR(tm)) Facility NETL Office of Research and Development Project...

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Advanced Grid Integration (AGI) | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Grid Integration (AGI) Advanced Grid Integration (AGI) Advanced Grid Integration (AGI) The Advanced Grid Integration (AGI) Division leads the federal government's efforts to accelerate modernization of the U.S. electric power grid. By enabling the two-way flow of electricity and information, a Smart Grid will increase the reliability, efficiency, and security of electric transmission, distribution, and use. A modern grid provides the foundation for a strong economy by enabling the integration of clean, renewable energy sources like wind and solar power and supporting the needs of an increasingly digital economy. AGI leverages energy industry cost-share and collaboration to foster the deployment of smart grid technologies and systems and reduce barriers to investment. To accomplish this, the Program is pursuing five core

142

Advanced Energy Design Guides | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Guides Design Guides Advanced Energy Design Guides The 50% AEDGs provide practical approaches to achieve 50% energy savings compared to base code requirements. Download them free from ASHRAE: Small and Medium Office Buildings K-12 School Buildings Medium to Big Box Retail Buildings Large Hospitals The Advanced Energy Design Guides (AEDGs) accelerate the construction of energy efficient buildings by providing prescriptive solutions to achieve significant energy savings over minimum building energy codes. The AEDG project represents a partnership between the U.S. Department of Energy (DOE), ASHRAE, American Institute of Architects, U.S. Green Building Council, and the Illuminating Engineering Society of North America (IES). The AEDG series provides design guidance for buildings that use 50% less

143

Anco Advance | Open Energy Information  

Open Energy Info (EERE)

Anco Advance Anco Advance Jump to: navigation, search Name Anco Advance Place Longmont, Colorado Zip 80503 Sector Renewable Energy Product Focused on the delivery and operation of profitable renewable waste to energy plants. Coordinates 40.16394°, -105.100504° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.16394,"lon":-105.100504,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Advanced Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Manufacturing Advanced Manufacturing Advanced Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

145

Advanced Manufacturing Office: Western Industrial Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Send a link to Advanced Manufacturing Office: Western Industrial Energy Efficiency & Combined Heat and Power Regional Dialogue Meeting to someone by E-mail Share Advanced...

146

Advanced Materials Technologies Available for Licensing - Energy ...  

Advanced Materials Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating research institutions have advanced materials ...

147

Commissioning Building Systems for Improved Energy ...  

Science Conference Proceedings (OSTI)

Commissioning Building Systems for Improved Energy Performance Project. Summary: NIST will advance commercial building ...

2012-12-17T23:59:59.000Z

148

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

in thermal energy conversion efficiency over present solarsolar thermal- photovoltaic co-generation scheme could have potentially very high solar-to-electric efficiency.solar-to-electric conversion efficiencies are attained and no thermal

Ho, Tony

2012-01-01T23:59:59.000Z

149

Trends in Energy Management Technology - Part 4: Review of Advanced Applications in Energy Management, Control, and Information Systems  

E-Print Network (OSTI)

to benchmark energy usage by normalizing it with buildingTo benchmark different buildings or sites, energy data can

Yee, Gaymond; Webster, Tom

2003-01-01T23:59:59.000Z

150

Assessment of Non-Fuel, Advanced Compressed Air Energy Storage Systems to Support High Wind Penetration  

Science Conference Proceedings (OSTI)

This report summarizes the status and progress of the RD&D work at EPRI on adiabatic no-fuel Compressed Air Energy Storage (CAES) for wind integration. Bulk energy storage (BES) has latent value in the electric grid, enhances grid reliability, and is well suited to address wind integration related challenges. Without storage, extensive ramping and spinning reserve backup of thermal generators is required, at associated high costs, poor thermal performance, poor down ramp capability and high emissions. Fu...

2009-11-16T23:59:59.000Z

151

Advanced Vehicle Testing Activity: Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energy's Vehicle Technologies Office to conduct various types of energy storage...

152

Tribal Renewable Energy Advanced Course: Project Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Process Tribal Renewable Energy Advanced Course: Project Development Process Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable...

153

Advanced fenestration systems for improved daylight performance  

E-Print Network (OSTI)

S.E. Selkowitz. Advanced Optical Daylighting Systems: LightAdvanced Fenestration Systems Based on the analysis presented above, we believe that daylighting systems

Selkowitz, S.; Lee, E.S.

1998-01-01T23:59:59.000Z

154

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

large tanks of hot molten salt are stored in containments soreceiver and the liquid molten salt coolant being heated;system; for example, high molten salt temperatures increases

Ho, Tony

2012-01-01T23:59:59.000Z

155

REQUEST BY INGERSOLL-RAND ENERGY SYSTEMS, INC., FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory. The scope of this work is for the development of a packagedmodular building cooling heating and power (BCHP) system, combining the commercial-ready Ingersoll-Rand...

156

Advanced technology thermal energy storage and heat exchange systems for solar applications: a survey of current research  

DOE Green Energy (OSTI)

A survey is presented of the advanced research and development projects underway in the U.S. in all of the known media and methods for storing and transferring thermal energy in solar applications. The technologies reviewed include innovative heat exchange and heat transport methods, advanced sensible heat storage in water, rocks, earth and combinations of these for both short term and annual storage, phase change materials, and reversible chemical reactions. This survey is presented in a structure of categories and subcategories of thermal energy storage and heat transfer technology. Within a given subcategory the project descriptions are listed under the name of the organizations conducting the work, arranged in alphabetical order.

Michaels, A. I.

1978-01-01T23:59:59.000Z

157

Computational Advances in Applied Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advances in Applied Energy Computational Advances in Applied Energy Friedmann-LLNL-SEAB.10.11.pdf More Documents & Publications Director's Perspective by George Miller...

158

Advanced Energy Design Guides | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance Regulations Resource Center Advanced Energy Design Guides The Advanced Energy Design Guides (AEDGs) are a series of publications designed to provide recommendations for...

159

Advanced system demonstration for utilization of biomass as an energy source  

DOE Green Energy (OSTI)

The results of a 20 month study to explore the technical and economic feasibility of fuelwood utilization to operate a 50 megawatt energy conversion facility are described. The availability of biomass as a fuel source, the methods of harvesting and collecting the fuelstock, the costs of providing adequate fuel to the plant, and other requirements for fueling the proposed conversion facility are investigated. (MHR)

Not Available

1980-10-01T23:59:59.000Z

160

US Department of Energy`s high-temperature and high-pressure particulate cleanup for advanced coal-based power systems  

Science Conference Proceedings (OSTI)

The availability of reliable, low-cost electricity is a cornerstone for the United States` ability to compete in the world market. The Department of Energy (DOE) projects the total consumption of electricity in the US to rise from 2.7 trillion kilowatt-hours in 1990 to 3.5 trillion in 2010. Although energy sources are diversifying, fossil fuel still produces 90 percent of the nation`s energy. Coal is our most abundant fossil fuel resource and the source of 56 percent of our electricity. It has been the fuel of choice because of its availability and low cost. A new generation of high-efficiency power systems has made it possible to continue the use of coal while still protecting the environment. Such power systems greatly reduce the pollutants associated with cola-fired plants built before the 1970s. To realize this high efficiency and superior environmental performance, advanced coal-based power systems will require gas stream cleanup under high-temperature and high-pressure (HTHP) process conditions. Presented in this paper are the HTHP particulate capture requirements for the Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized-Bed Combustion (PFBC) power systems, the HTHP particulate cleanup systems being implemented in the PFBC and IGCC Clean Coal Technology (CCT) Projects, and the currently available particulate capture performance results.

Dennis, R.A.

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Advanced Energy Solutions | Open Energy Information  

Open Energy Info (EERE)

Advanced Energy Solutions Advanced Energy Solutions Name Advanced Energy Solutions Address 192 Gates Road Place Pomona, Illinois Zip 62975 Sector Solar Year founded 1999 Company Type For Profit Phone number 618-893-1717 Website http://www.aessolar.com/ Coordinates 37.6281057°, -89.3367556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6281057,"lon":-89.3367556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

Proceedings of the Department of Energy advanced gas turbine central power systems workshop  

SciTech Connect

The basic objective of the DOE Central Power Systems group is the development of technology for increasing the use of coal in central station electric power generation in an economical and environmentally acceptable manner. The two major research and development areas of this program are the Open Cycle Gas Turbine System and the Closed Cycle Gas Turbine System. Recognizing that the ultimate success of the DOE program is measured by end-user acceptance of the technology developed, the workshop was held to obtain utility industry comments and suggestions on the development of these systems and their potential use by electric power utilities. Representatives of equipment manufacturers, architect and engineering firms, and universities were also invited as participants to provide a comprehensive review of the technology development and implementation process. The 65 participants and observers examined the following topics: technical considerations of the Open Cycle and of the Closed Cycle Gas Turbine program; commercialization of both systems; and regulatory impacts on the development of both systems. Each group evaluated the existing program, indicating R and D objectives that they supported and cited recommendations for modifications and expansion of future R and D work.

D' Angelo, S. (ed.)

1980-04-01T23:59:59.000Z

163

Flywheel energy storage advances using HTS bearings.  

DOE Green Energy (OSTI)

High-Temperature-Superconducting (HT) bearings have the potential to reduce idling losses and make flywheel energy storage economical. Demonstration of large, high-speed flywheels is key to market penetration. Toward this goal, a flywheel system has been developed and tested with 5-kg to 15-kg disk-shaped rotors. Rlm speeds exceeded 400 mls and stored energies were >80 W-hr. Test implementation required technological advances in nearly all aspects of the flywheel system. Features and limitations of the design and tests are discussed, especially those related to achieving additional energy storage.

Mulcahy, T. M.

1998-09-11T23:59:59.000Z

164

Plan for an Advanced Turbine Systems Program  

Science Conference Proceedings (OSTI)

A draft version of this paper was presented at the Clemson Clean, affordable, and reliable natural gas utilization technologies will play a growing role in meeting future power generation needs in the United States. The US Department of Energy`s (DOE) National Energy Strategy projected that total demand for natural gas will rise from 18.5 trillion cubic feet (tcf) in 1990 to 24.2 tcf by the year 2000. Much of this increase is attributed to the increased use of natural gas as a fuel for electric power generation. Candidate technologies for gas fired power generation include gas turbine and fuel cell systems. The first workshop on research needs for advanced gas turbine systems for power generation was held on April 8-10, 1991 in Greenville, South Carolina. The goals of the Clemson-I Workshop were to identify research needs which would accelerate the development of advanced gas turbines and to consider new approaches to implement this research. The Clemson-I Workshop focused on advanced gas turbine systems which would have a lower cost of electricity or better environmental performance than systems currently under development. The workshop was cosponsored by the DOE`s Morgantown Energy Technology Center (METC), Clemson University, and the South Carolina Energy Research and Development Center. The proceedings from the workshop have been published. The 75 participants in the Clemson-I Workshop represented a broad spectrum of the gas turbine Research & Development (R&D) community as well as potential users of advanced gas turbines. Gas turbine manufacturers, the electric utility industry, the university community, as well as government and private sector R&D sponsors were represented. Participants in the Clemson-I Workshop concluded that it is technically feasible to develop advanced turbine systems and that Government participation would accelerate the developmental effort. Advanced turbine systems could be operated on natural gas or adapted to coal or biomass firing.

Bajura, R.A.; Webb, H.A. [USDOE Morgantown Energy Technology Center, WV (United States); Parks, W.P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States)

1993-03-01T23:59:59.000Z

165

Projects Selected to Advance Innovative Materials for Fossil Energy Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Selected to Advance Innovative Materials for Fossil Energy Selected to Advance Innovative Materials for Fossil Energy Power Systems Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems September 14, 2010 - 1:00pm Addthis Washington, DC - Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy. The projects will develop computational capabilities for designing materials with unique thermal, chemical and mechanical properties necessary for withstanding the high temperatures and extreme environments of advanced energy systems. These innovative systems are both fuel efficient and produce lower amounts of emissions, including carbon dioxide for permanent

166

Projects Selected to Advance Innovative Materials for Fossil Energy Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Selected to Advance Innovative Materials for Fossil Energy Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems September 14, 2010 - 1:00pm Addthis Washington, DC - Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy. The projects will develop computational capabilities for designing materials with unique thermal, chemical and mechanical properties necessary for withstanding the high temperatures and extreme environments of advanced energy systems. These innovative systems are both fuel efficient and produce lower amounts of emissions, including carbon dioxide for permanent

167

Advanced Materials for Ultra Supercritical Boiler Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Road Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4721 robert.romanosky@netl.doe.gov Patricia a. Rawls Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-5882 patricia.rawls@netl.doe.gov Robert M. Purgert Prime Contractor and Administrator Energy Industries of Ohio 6100 Oak Tree Boulevard, Suite 200 Independence, OH 44131-6914 216-643-2952 purgert@msn.com AdvAnced MAteriAls for UltrA sUpercriticAl Boiler systeMs Description A consortium led by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) has conducted the first phase of a multiyear program to develop materials technology for use in advanced ultra supercritical (USC) coal-fired power plants. The advanced materials developed in this project are essential for construction of

168

Development of advanced methods for planning electric energy distribution systems. Final report  

SciTech Connect

An extensive search was made for the identification and collection of reports published in the open literature which describes distribution planning methods and techniques. In addition, a questionnaire has been prepared and sent to a large number of electric power utility companies. A large number of these companies were visited and/or their distribution planners interviewed for the identification and description of distribution system planning methods and techniques used by these electric power utility companies and other commercial entities. Distribution systems planning models were reviewed and a set of new mixed-integer programming models were developed for the optimal expansion of the distribution systems. The models help the planner to select: (1) optimum substation locations; (2) optimum substation expansions; (3) optimum substation transformer sizes; (4) optimum load transfers between substations; (5) optimum feeder routes and sizes subject to a set of specified constraints. The models permit following existing right-of-ways and avoid areas where feeders and substations cannot be constructed. The results of computer runs were analyzed for adequacy in serving projected loads within regulation limits for both normal and emergency operation.

Goenen, T.; Foote, B.L.; Thompson, J.C.; Fagan, J.E.

1979-10-01T23:59:59.000Z

169

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

forecast methods report. California Energy Commission, CEC-Chris Kavalec. California Energy Commission. CEC (2005d)Office, 5/12/2006. California Energy Advanced Energy

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

170

Advance Power Co | Open Energy Information  

Open Energy Info (EERE)

Advance Power Co Advance Power Co Jump to: navigation, search Name Advance Power Co Place Calpella, California Zip 95418 Sector Hydro, Solar, Wind energy Product Distributor of stand alone and backup power systems based on solar, hydro, wind and fuel cell energy. Coordinates 39.23423°, -123.205162° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.23423,"lon":-123.205162,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

Plan for an Advanced Turbine Systems Program  

Science Conference Proceedings (OSTI)

A draft version of this paper was presented at the Clemson Clean, affordable, and reliable natural gas utilization technologies will play a growing role in meeting future power generation needs in the United States. The US Department of Energy's (DOE) National Energy Strategy projected that total demand for natural gas will rise from 18.5 trillion cubic feet (tcf) in 1990 to 24.2 tcf by the year 2000. Much of this increase is attributed to the increased use of natural gas as a fuel for electric power generation. Candidate technologies for gas fired power generation include gas turbine and fuel cell systems. The first workshop on research needs for advanced gas turbine systems for power generation was held on April 8-10, 1991 in Greenville, South Carolina. The goals of the Clemson-I Workshop were to identify research needs which would accelerate the development of advanced gas turbines and to consider new approaches to implement this research. The Clemson-I Workshop focused on advanced gas turbine systems which would have a lower cost of electricity or better environmental performance than systems currently under development. The workshop was cosponsored by the DOE's Morgantown Energy Technology Center (METC), Clemson University, and the South Carolina Energy Research and Development Center. The proceedings from the workshop have been published. The 75 participants in the Clemson-I Workshop represented a broad spectrum of the gas turbine Research Development (R D) community as well as potential users of advanced gas turbines. Gas turbine manufacturers, the electric utility industry, the university community, as well as government and private sector R D sponsors were represented. Participants in the Clemson-I Workshop concluded that it is technically feasible to develop advanced turbine systems and that Government participation would accelerate the developmental effort. Advanced turbine systems could be operated on natural gas or adapted to coal or biomass firing.

Bajura, R.A.; Webb, H.A. (USDOE Morgantown Energy Technology Center, WV (United States)); Parks, W.P. (USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States))

1993-01-01T23:59:59.000Z

172

Advanced synchronous luminescence system  

DOE Patents (OSTI)

A method and apparatus for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition.

Vo-Dinh, Tuan (Knoxville, TN)

1997-01-01T23:59:59.000Z

173

Building Technologies Office: Advanced Energy Design Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

K-12 School Buildings Medium to Big Box Retail Buildings Large Hospitals The Advanced Energy Design Guides (AEDGs) accelerate the construction of energy efficient buildings by...

174

Session: CSP Advanced Systems -- Advanced Overview (Presentation)  

DOE Green Energy (OSTI)

The project description is: (1) it supports crosscutting activities, e.g. advanced optical materials, that aren't tied to a single CSP technology and (2) it supports the 'incubation' of new concepts in preliminary stages of investigation.

Mehos, M.

2008-04-01T23:59:59.000Z

175

Program on Technology Innovation: New York Power Authority Advanced Sodium Sulfur (NaS) Battery Energy Storage System  

Science Conference Proceedings (OSTI)

Electric utilities, energy service companies, and utility customers lack familiarity with distributed electric storage systems. Demonstration projects highlighting the benefits, safety, and effectiveness of such systems will promote their propagation. The benefits derived from the storage of electrical energy are well defined in the EPRI-DOE Handbook of Energy Storage for Transmission and Distribution Applications (Electric Power Research Institute [EPRI] report 1001834). This report documents system des...

2011-12-22T23:59:59.000Z

176

Advanced Sensors and Instrumentation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sensors and Instrumentation Sensors and Instrumentation Advanced Sensors and Instrumentation The ASI subprogram plans to develop the scientific basis for sensors and supporting infrastructure technology that will address crosscutting technology gaps relating to measurements at existing and advanced nuclear power plants as well as within their fuel cycles. The focus of the program is on the following technical challenges and objectives: Identify needed physical measurement accuracy of nuclear system process parameters and minimize uncertainty. Identify and conduct research into monitoring and control technologies, including human factors, to achieve control of new nuclear energy processes, and new methodologies for monitoring to achieve high reliability and availability. Integrate control of multiple processes, potential reductions in

177

Advanced synchronous luminescence system  

DOE Patents (OSTI)

A method and apparatus are disclosed for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition. 14 figs.

Vo-Dinh, T.

1997-02-04T23:59:59.000Z

178

Power Systems Advanced Research  

DOE Green Energy (OSTI)

In the 17 quarters of the project, we have accomplished the following milestones - first, construction of the three multiwavelength laser scattering machines for different light scattering study purposes; second, build up of simulation software package for simulation of field and laboratory particulates matters data; third, carried out field online test on exhaust from combustion engines with our laser scatter system. This report gives a summary of the results and achievements during the project's 16 quarters period. During the 16 quarters of this project, we constructed three multiwavelength scattering instruments for PM2.5 particulates. We build up a simulation software package that could automate the simulation of light scattering for different combinations of particulate matters. At the field test site with our partner, Alturdyne, Inc., we collected light scattering data for a small gas turbine engine. We also included the experimental data feedback function to the simulation software to match simulation with real field data. The PM scattering instruments developed in this project involve the development of some core hardware technologies, including fast gated CCD system, accurately triggered Passively Q-Switched diode pumped lasers, and multiwavelength beam combination system. To calibrate the scattering results for liquid samples, we also developed the calibration system which includes liquid PM generator and size sorting instrument, i.e. MOUDI. In this report, we give the concise summary report on each of these subsystems development results.

California Institute of Technology

2007-03-31T23:59:59.000Z

179

Advanced Turbine Systems scoping and feasibility studies  

DOE Green Energy (OSTI)

The objective of the Advanced Turbine Systems (ATS) study was to investigate innovative natural gas fired cycle developments to determine the feasibility of achieving 60% (LHV) efficiency within a 10-year time frame. The potential ATS was to be environmentally superior, cost competitive and adaptable to coal-derived fuels. The National Energy Strategy (NES) calls for a balanced program of greater energy efficiency, use of alternative fuels, and the environmentally responsible development of all US energy resources> Consistent with the NES, a Department of Energy (DOE) program has been created to develop Advanced Turbine Systems. The objective of this 10-year program is to develop natural gas fired base load power plants that will have cycle efficiencies greater than 60% (LHV), be environmentally superior to current technology, and also be cost competitive.

Bannister, R.L.; Little, D.A.; Wiant, B.C. (Westinghouse Electric Corp., Orlando, FL (United States)); Archer, D.H. (Carnegie-Mellon Univ., Pittsburgh, PA (United States))

1993-01-01T23:59:59.000Z

180

Advanced Integrated Traction System  

DOE Green Energy (OSTI)

Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.

Greg Smith; Charles Gough

2011-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Trends in Energy Management Technology - Part 4: Review of Advanced Applications in Energy Management, Control, and Information Systems  

E-Print Network (OSTI)

www.nist.gov/tc411/1043-RP_FDD_Literature_Review.pdf Smith,Energy Commission, Fall 1999. FDD for Rooftop AC Purduewww.nist.gov/tc411/1043-RP_FDD_Tools.pdf IMDS Lawrence

Yee, Gaymond; Webster, Tom

2003-01-01T23:59:59.000Z

182

Advanced Patent Waivers | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Advanced Patent Waivers Advanced Patent Waivers June 12, 2013 Advance Patent Waiver W(A)2012-028 This is a request by SIEMENS ENERGY, INC. for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-FE0005666. May 7, 2013 Advance Patent Waiver W(A)2012-033 This is a request by GE-GLOBAL RESEARCH for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-OE000593. April 26, 2013 Advance Patent Waiver W(A)2012-031 This is a request by SRI INTERNATIONAL for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-NT0005578. April 3, 2013 Advance Patent Waiver W(A)2012-024 This is a request by SIEMENS ENERGY, INC. for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-EE0005493.

183

Measuring advances in HVAC distribution system designs  

Science Conference Proceedings (OSTI)

Substantial commercial building energy savings have been achieved by improving the performance of the HVAC distribution system. The energy savings result from distribution system design improvements, advanced control capabilities, and use of variable-speed motors. Yet, much of the commercial building stock remains equipped with inefficient systems. Contributing to this is the absence of a definition for distribution system efficiency as well as the analysis methods for quantifying performance. This research investigates the application of performance indices to assess design advancements in commercial building thermal distribution systems. The index definitions are based on a first and second law of thermodynamics analysis of the system. The second law or availability analysis enables the determination of the true efficiency of the system. Availability analysis is a convenient way to make system efficiency comparisons since performance is evaluated relative to an ideal process. A TRNSYS simulation model is developed to analyze the performance of two distribution system types, a constant air volume system and a variable air volume system, that serve one floor of a large office building. Performance indices are calculated using the simulation results to compare the performance of the two systems types in several locations. Changes in index values are compared to changes in plant energy, costs, and carbon emissions to explore the ability of the indices to estimate these quantities.

Franconi, Ellen

1998-07-01T23:59:59.000Z

184

Measuring Advances in HVAC Distribution System Design  

SciTech Connect

Substantial commercial building energy savings have been achieved by improving the performance of the HV AC distribution system. The energy savings result from distribution system design improvements, advanced control capabilities, and use of variable-speed motors. Yet, much of the commercial building stock remains equipped with inefficient systems. Contributing to this is the absence of a definition for distribution system efficiency as well as the analysis methods for quantifying performance. This research investigates the application of performance indices to assess design advancements in commercial building thermal distribution systems. The index definitions are based on a first and second law of thermodynamics analysis of the system. The second law or availability analysis enables the determination of the true efficiency of the system. Availability analysis is a convenient way to make system efficiency comparisons since performance is evaluated relative to an ideal process. A TRNSYS simulation model is developed to analyze the performance of two distribution system types, a constant air volume system and a variable air volume system, that serve one floor of a large office building. Performance indices are calculated using the simulation results to compare the performance of the two systems types in several locations. Changes in index values are compared to changes in plant energy, costs, and carbon emissions to explore the ability of the indices to estimate these quantities.

Franconi, E.

1998-05-01T23:59:59.000Z

185

Renewable Energy, Demand Response, Energy Efficiency, and Advanced...  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy, Demand Response, Energy Efficiency, and Advanced Energy Storage Infrastructure in UC San Diego's Microgrid Speaker(s): Byron Washom Date: August 14, 2008 -...

186

NETL: Turbine Projects - Advanced Coal Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Coal Power Systems Turbine Projects Advanced Coal Power Systems SOFC Hybrid System for Distributed Power Generation DataFact Sheets SOFC Hybrid System PDF In-House FCT...

187

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2002-02-01T23:59:59.000Z

188

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2000-01-01T23:59:59.000Z

189

Gatan Solarus Advanced Plasma System  

Science Conference Proceedings (OSTI)

The Solarus Advanced Plasma System expands this process to a new level. ... electronics and software; which when integrated allows more control and .... Ar, Ni, or Ar/O2 at 60psi (4.1bar) required for operation of pneumatic valve. Power.

190

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2002-04-01T23:59:59.000Z

191

ORISE: Coordinating Scientific Peer Reviews to Advance Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Energy Efficiency ORISE Reviews and Evaluates Technologies that Advance Energy Efficiency ORISE Reviews and Evaluates Technologies that Advance Energy Efficiency In addition to renewable energy and changes in individual behavior, energy efficiency is generally achieved through the development of more efficient technologies. Buildings are being constructed with more energy efficient systems, fluorescent light bulbs are replacing incandescent lights, and new vehicle technologies are enabling America to use less petroleum. The Oak Ridge Institute for Science Education (ORISE) realizes that energy efficiency encompasses a wide spectrum of industries and supports the U.S. Department of Energy (DOE) in its mission to reduce America's dependence on foreign oil.

192

Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks  

DOE Green Energy (OSTI)

The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

2008-12-31T23:59:59.000Z

193

Advanced Turbine Systems Program and coal applications  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) is conducting a program to develop ultra high-efficiency, cost-effective, environmentally benign gas turbine systems for industrial and utility applications. The Advanced Turbine Systems (ATS) Program, jointly managed by the DOE's Office of Fossil Energy (DOE/FE) and Office of Conservation and Renewable Energy (DOE/CE), will lead to the commercial offering by industry of systems meeting full program goals by the years 2000--2002. It is expected that some advanced technology will already have been commercialized in intermediate systems before that time. Teams, led by US turbine manufacturers, will conduct most of the development work in the ATS Program. However, a substantial technology base element of the program see universities and others conduct significant research and development (R D) on generic technology issues relevant to the program. The program is primarily aimed at developing natural gas-fired turbine systems. Although the conversion of ATS to firing with coal or biomass fuels will be addressed in the analysis of ATS, tests will not be conducted in the program to verify conversion to alternate fuel firing. The program will however, include work to transfer advanced technology to the coal- and biomass-fueled systems being developed in other DOE programs.

Webb, H.A. Jr.; Bajura, R.A.; Parsons, E.L. Jr.

1993-01-01T23:59:59.000Z

194

Advanced Turbine Systems Program and coal applications  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) is conducting a program to develop ultra high-efficiency, cost-effective, environmentally benign gas turbine systems for industrial and utility applications. The Advanced Turbine Systems (ATS) Program, jointly managed by the DOE`s Office of Fossil Energy (DOE/FE) and Office of Conservation and Renewable Energy (DOE/CE), will lead to the commercial offering by industry of systems meeting full program goals by the years 2000--2002. It is expected that some advanced technology will already have been commercialized in intermediate systems before that time. Teams, led by US turbine manufacturers, will conduct most of the development work in the ATS Program. However, a substantial technology base element of the program see universities and others conduct significant research and development (R&D) on generic technology issues relevant to the program. The program is primarily aimed at developing natural gas-fired turbine systems. Although the conversion of ATS to firing with coal or biomass fuels will be addressed in the analysis of ATS, tests will not be conducted in the program to verify conversion to alternate fuel firing. The program will however, include work to transfer advanced technology to the coal- and biomass-fueled systems being developed in other DOE programs.

Webb, H.A. Jr.; Bajura, R.A.; Parsons, E.L. Jr.

1993-06-01T23:59:59.000Z

195

Advance Electronics | Open Energy Information  

Open Energy Info (EERE)

Advance Electronics Jump to: navigation, search Name Advance Electronics Place United Kingdom Zip LL14 3YR Product Develop and deliver power conditioners, transient suppressors,...

196

Advanced Turbine Systems Program. Topical report  

SciTech Connect

The Allison Gas Turbine Division (Allison) of General Motors Corporation conducted the Advanced Turbine Systems (ATS) program feasibility study (Phase I) in accordance with the Morgantown Energy Technology Center`s (METC`s) contract DE-AC21-86MC23165 A028. This feasibility study was to define and describe a natural gas-fired reference system which would meet the objective of {ge}60% overall efficiency, produce nitrogen oxides (NO{sub x}) emissions 10% less than the state-of-the-art without post combustion controls, and cost of electricity of the N{sup th} system to be approximately 10% below that of the current systems. In addition, the selected natural gas-fired reference system was expected to be adaptable to coal. The Allison proposed reference system feasibility study incorporated Allison`s long-term experience from advanced aerospace and military technology programs. This experience base is pertinent and crucial to the success of the ATS program. The existing aeroderivative technology base includes high temperature hot section design capability, single crystal technology, advanced cooling techniques, high temperature ceramics, ultrahigh turbomachinery components design, advanced cycles, and sophisticated computer codes.

1993-03-01T23:59:59.000Z

197

Gas fired Advanced Turbine System  

SciTech Connect

The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

LeCren, R.T.; White, D.J.

1993-01-01T23:59:59.000Z

198

US Advanced Battery Consortium USABC | Open Energy Information  

Open Energy Info (EERE)

US Advanced Battery Consortium USABC US Advanced Battery Consortium USABC Jump to: navigation, search Name US Advanced Battery Consortium (USABC) Place Southfield, Michigan Zip 48075 Sector Vehicles Product Michigan-based, research consortium focused on R&D of advanced energy systems for electric vehicles. References US Advanced Battery Consortium (USABC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US Advanced Battery Consortium (USABC) is a company located in Southfield, Michigan . References ↑ "US Advanced Battery Consortium (USABC)" Retrieved from "http://en.openei.org/w/index.php?title=US_Advanced_Battery_Consortium_USABC&oldid=352587" Categories: Clean Energy Organizations

199

Advanced Energy Industries, Inc. SEGIS developments.  

DOE Green Energy (OSTI)

The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

Scharf, Mesa P. (Advanced Energy Industries, Inc., Bend, OR); Bower, Ward Isaac; Mills-Price, Michael A. (Advanced Energy Industries, Inc., Bend, OR); Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

2012-03-01T23:59:59.000Z

200

Game-Changing Advancements in Solar Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Game-Changing Advancements in Solar Energy Game-Changing Advancements in Solar Energy Addthis Record-Breaking Solar 1 of 5 Record-Breaking Solar This concentrating...

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Projects To Develop Novel Monitoring Networks for Advanced Power Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

To Develop Novel Monitoring Networks for Advanced Power To Develop Novel Monitoring Networks for Advanced Power Systems Selected Projects To Develop Novel Monitoring Networks for Advanced Power Systems Selected September 1, 2010 - 1:00pm Addthis Washington, DC - Five projects that will develop technologically sophisticated monitoring networks for advanced fossil energy power systems have been selected for continued research by the U.S. Department of Energy (DOE). The projects will support efforts by the Office of Fossil Energy's (FE) Advanced Research--Coal Utilization Science (CUS) Program to study novel approaches in model development and validation; monitoring refractory health; and wireless, self-powered sensors for advanced, next-generation power systems. They will monitor the status of equipment, materials

202

Definition: Advanced Metering Infrastructure | Open Energy Information  

Open Energy Info (EERE)

search Dictionary.png Advanced Metering Infrastructure A system of smart meters, two-way communications networks, and data management systems implemented to enable metering and...

203

Advanced Controls Technologies and Strategies Linking Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Controls Technologies and Strategies Linking Energy Efficiency and Demand Response Speaker(s): Sila Kiliccote Date: October 6, 2005 - 12:00pm Location: Bldg. 90 Reliable...

204

Advanced Materials for Our Energy Future - TMS  

Science Conference Proceedings (OSTI)

May 21, 2010 ... TMS has joined forces with four other materials societies to develop Advanced Materials for Our Energy Future, a publication that underscores...

205

Energy Department Requests Proposals for Advanced Scientific...  

Office of Science (SC) Website

Energy Department Requests Proposals for Advanced Scientific Computing Research News In the News 2013 2012 2011 2010 2009 2008 2007 2006 2005 In Focus Presentations & Testimony...

206

Under Secretary of Energy Highlights Advanced Energy Technologies to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Highlights Advanced Energy Technologies Highlights Advanced Energy Technologies to Sustain America's Economic Growth Under Secretary of Energy Highlights Advanced Energy Technologies to Sustain America's Economic Growth June 2, 2006 - 2:12pm Addthis HONEOYE FALLS, NY - U.S. Under Secretary of Energy David Garman today visited the General Motors (GM) Advanced Technologies Facility in Honeoye Falls, New York, with Rep. Randy Kuhl (NY-29th), to tour the facility and view new advanced energy technologies such as hydrogen fuel cells. Under Secretary Garman discussed the importance of the development of hydrogen and other renewable energy sources as a key to diversifying our nation's energy mix. The advancement of hydrogen is a key element of President Bush's Advanced Energy Initiative (AEI), which seeks to invest in the

207

Advanced RenewableEnergy Company ARC Energy | Open Energy Information  

Open Energy Info (EERE)

Advanced RenewableEnergy Company ARC Energy Advanced RenewableEnergy Company ARC Energy Jump to: navigation, search Name Advanced RenewableEnergy Company (ARC Energy) Place Nashua, New Hampshire Product New Hampshire-based stealth mode LED substrate manufacture equipment provider which aims to lower the cost of LEDs. Coordinates 42.758365°, -71.464209° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.758365,"lon":-71.464209,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

208

Advanced Energy Retrofit Guide: Practical Ways to Improve Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

BUILDING TECHNOLOGIES PROGRAM Advanced Energy Retrofit Guide Practical Ways to Improve Energy Performance Grocery Stores In collaboration with: Prepared by: National Renewable...

209

Advanced fenestration systems for improved daylight performance  

Science Conference Proceedings (OSTI)

The use of daylight to replace or supplement electric lighting in commercial buildings can result in significant energy and demand savings. High performance fenestration systems area necessary, but not sufficient, element of any successful daylighting design that reduces lighting energy use. However, these savings may be reduced if the fenestration systems impose adverse thermal loads. In this paper, we review the state of the art of several advanced fenestration systems which are designed to maximize the energy-saving potential of daylighting, while improving comfort and visual performance at an "affordable" cost. We first review the key performance issues that successful fenestration systems must address, and then review several classes of fenestration systems intended to meet those performance needs. The systems are reviewed in two categories: static and dynamic. Static systems include not only glazings, such as spectrally-selective and holographic glazings, but specialized designs of light-shelves and light-pipes, while dynamic systems cover automatically-operated Venetian blinds and electrochromic glazings. We include a discussion of the research directions in this area, and how these efforts might lead to static and dynamic hardware and system solutions that fulfill the multiple roles that these systems must play in terms of energy efficiency, comfort, visual performance, health, and amenity in future buildings.

Lee, E.S.; Selkowitz, S.

1998-03-01T23:59:59.000Z

210

Overview of Advanced Turbine Systems Program  

Science Conference Proceedings (OSTI)

The US Department of Energy initiated a program to develop advanced gas turbine systems to serve both central power and industrial power generation markets. The Advanced Turbine Systems Program win lead to commercial offerings by the private sector by 2002. ATS will be developed to fire natural gas but will be adaptable to coal and biomass firing. The systems will be: Highly efficient (15 Percent improvement over today`s best systems); Environmentally superior (10 percent reduction in nitrogen oxides over today`s best systems); Cost competitive (10 percent reduction in cost of electricity). The ATS Program has five elements: Innovative Cycle Development will lead to the demonstration of systems with advanced gas turbine cycles using current gas turbine technology. High-Temperature Development will lead to the increased firing temperatures needed to achieve ATS Program efficiency goals. Ceramic Component Development/Demonstration will expand the current DOE/CE program to demonstrate industrial-scale turbines with ceramic components. Technology Base will support the overall program by conducting research and development (R&D) on generic technology issues. Coal Application studies will adapt technology developed in the ATS Program to coal-fired systems being developed in other DOE programs.

Webb, H.A.; Bajura, R.A.

1992-11-01T23:59:59.000Z

211

Overview of Advanced Turbine Systems Program  

Science Conference Proceedings (OSTI)

The US Department of Energy initiated a program to develop advanced gas turbine systems to serve both central power and industrial power generation markets. The Advanced Turbine Systems Program win lead to commercial offerings by the private sector by 2002. ATS will be developed to fire natural gas but will be adaptable to coal and biomass firing. The systems will be: Highly efficient (15 Percent improvement over today's best systems); Environmentally superior (10 percent reduction in nitrogen oxides over today's best systems); Cost competitive (10 percent reduction in cost of electricity). The ATS Program has five elements: Innovative Cycle Development will lead to the demonstration of systems with advanced gas turbine cycles using current gas turbine technology. High-Temperature Development will lead to the increased firing temperatures needed to achieve ATS Program efficiency goals. Ceramic Component Development/Demonstration will expand the current DOE/CE program to demonstrate industrial-scale turbines with ceramic components. Technology Base will support the overall program by conducting research and development (R D) on generic technology issues. Coal Application studies will adapt technology developed in the ATS Program to coal-fired systems being developed in other DOE programs.

Webb, H.A.; Bajura, R.A.

1992-01-01T23:59:59.000Z

212

Center for Advanced Gas Turbine Systems Research  

SciTech Connect

An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

Golan, L.P.

1992-12-31T23:59:59.000Z

213

Center for Advanced Gas Turbine Systems Research  

SciTech Connect

An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

Golan, L.P.

1992-01-01T23:59:59.000Z

214

Department of Energy Awards More Than $11 Million to Advance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Awards More Than 11 Million to Advance Innovative Geothermal Energy Technologies Department of Energy Awards More Than 11 Million to Advance Innovative...

215

Department of Energy Awards More Than $11 Million to Advance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

here Home Department of Energy Awards More Than 11 Million to Advance Innovative Geothermal Energy Technologies Department of Energy Awards More Than 11 Million to Advance...

216

Tribal Renewable Energy Advanced Course: Project Financing Concepts  

Energy.gov (U.S. Department of Energy (DOE))

Download the DOE Office of Indian Energy's advanced renewable energy project development and financing educational course entitled "Tribal Renewable Energy Project Development: Advanced Financing...

217

Tribal Renewable Energy Advanced Course: Project Financing Concepts...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Financing Concepts Tribal Renewable Energy Advanced Course: Project Financing Concepts Watch the DOE Office of Indian Energy's advanced renewable energy course entitled "Tribal...

218

Advanced Energy Products | Open Energy Information  

Open Energy Info (EERE)

Products Products Jump to: navigation, search Name Advanced Energy Products Address 123 C Street Place Davis, CA Zip 95616 Website http://www.advancedenergyprodu Coordinates 38.542214°, -121.743393° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.542214,"lon":-121.743393,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

Department of Energy, Duke Energy and EPRI Partner to Test Advanced...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy, Duke Energy and EPRI Partner to Test Advanced Energy Technologies for Utilities Department of Energy, Duke Energy and EPRI Partner to Test Advanced Energy Technologies for...

220

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Measuring Advances in HVAC Distribution System Design  

E-Print Network (OSTI)

Gabel and Andresen, HVAC Secondary Toolkil. Atlanta: ASHRAE,P_02 Measuring Advances in HVAC Distribution System Designdesign and operation of the HVAC thermal distribution system

Franconi, E.

2011-01-01T23:59:59.000Z

222

Advanced Computing Tech Team | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and promulgate a collection of applications for advanced architecture and high performance computing (HPC) systems. Technical engagement will occur both in the scientific...

223

Nanoscale Advances in Catalysis and Energy Applications  

SciTech Connect

In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

Li, Yimin; Somorjai, Gabor A.

2010-05-12T23:59:59.000Z

224

Advanced Energy Retrofit Guide Office Buildings  

SciTech Connect

The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energys Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

2011-09-27T23:59:59.000Z

225

Advanced Energy Retrofit Guide Retail Buildings  

Science Conference Proceedings (OSTI)

The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energys Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

2011-09-19T23:59:59.000Z

226

DOE`s Advanced Turbine Systems Program  

Science Conference Proceedings (OSTI)

This paper discusses the Advanced Turbine Systems (ATS) Program, which is necessary to achieve METC`s vision for future IGCC systems. This major new program is a cooperative effort in which DOE`s Office of Fossil Energy (FE) and Office of Conservation and Renewable Energy (CE) are joining forces with the private sector to develop ultra-high efficiency gas turbine systems. A goal of this Program is to have a utility-size gas turbine with a 60 percent efficiency (lower heating value basis (LHV)) ready for commercialization by the year 2002. (While this paper focuses on utility-size turbines which are the primary interest of this audience, an ultra-high efficiency, industrial-size gas turbine will also be developed in the ATS Program with a comparable improvement in efficiency.) Natural gas is the target fuel of the Program, a recognition by DOE that natural gas will play a significant role in supplying future power generation needs in the US. However, to insure that the US has fuel supply options, ATS designs will be adaptable to coal and biomass fuels. Therefore, the ATS Program will directly benefit IGCC and other advanced coal based power generation systems. Cost and efficiency improvements in the turbine system as well as in the gasification and gas stream cleanup plant sections will enable IGCC to reach a cost target of $1,000--$1,280/kW and an efficiency goal of 52 percent (higher heating value basis (HHV)) in the post-2000 market.

Bechtel, T.F.; Bajura, R.A.; Salvador, L.A.

1993-03-01T23:59:59.000Z

227

Industrial Advanced Turbine Systems Program overview  

DOE Green Energy (OSTI)

DOE`s ATS Program will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in the 3 to 20 MW class. Market studies were conducted for application of ATS to the dispersed/distributed electric power generation market. The technology studies have led to the design of a gas-fired, recuperated, industrial size gas turbine. The Ceramic Stationary Gas Turbine program continues. In the High Performance Steam Systems program, a 100 hour development test to prove the advanced 1500 F, 1500 psig system has been successfully completed. A market transformation will take place: the customer will be offered a choice of energy conversion technologies to meet heat and power generation needs into the next century.

Esbeck, D.W.

1995-12-31T23:59:59.000Z

228

NETL: Advanced Research - Computation Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

MFIX MFIX Advanced Research Computational Energy Sciences MFIX MFIX (Multiphase Flow with Interphase eXchanges) is a general-purpose computer code developed at the National Energy Technology Laboratory (NETL) for describing the hydrodynamics, heat transfer and chemical reactions in fluid-solids systems. It has been used for describing bubbling and circulating fluidized beds and spouted beds. MFIX calculations give transient data on the three-dimensional distribution of pressure, velocity, temperature, and species mass fractions. MFIX code is based on a generally accepted set of multiphase flow equations. The code is used as a "test-stand" for testing and developing multiphase flow constitutive equations. MFIX Virtual Plant Consider a fluidized bed coal gasification reactor, in which pulverized

229

Open Energy Information Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

OpenEIS (energy information OpenEIS (energy information systems) Jessica Granderson Lawrence Berkeley National Laboratory JGranderson@lbl.gov, 510.486.6792 April 3, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Advanced algorithms and analyses can enable 5-40% savings, yet are rarely adopted; 3 relevant barriers include: 1. Lack of awareness that simple analytics can be used to generate valuable insights and actionable information, without further training

230

Open Energy Information Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OpenEIS (energy information OpenEIS (energy information systems) Jessica Granderson Lawrence Berkeley National Laboratory JGranderson@lbl.gov, 510.486.6792 April 3, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Advanced algorithms and analyses can enable 5-40% savings, yet are rarely adopted; 3 relevant barriers include: 1. Lack of awareness that simple analytics can be used to generate valuable insights and actionable information, without further training

231

Advanced House Framing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced House Framing Advanced House Framing Advanced House Framing April 13, 2012 - 7:57pm Addthis Two-story home using advanced framing techniques. Two-story home using advanced framing techniques. Advanced house framing means materials, labor, and heating and cooling cost savings because the approach: Uses less lumber and generates less waste than typical framing methods. Increases energy efficiency by replacing lumber with insulation material, resulting in a higher whole-wall R-value through reduced thermal bridging and increased insulation. How does it work? Advanced framing works structurally by aligning framing members directly over each other to transfer the load from roof trusses or rafters to second floor wall studs, to floor joists, to first floor studs to the foundation,

232

AMG Advanced Metallurgical Group NV | Open Energy Information  

Open Energy Info (EERE)

AMG Advanced Metallurgical Group NV AMG Advanced Metallurgical Group NV Jump to: navigation, search Name AMG Advanced Metallurgical Group NV Place Wayne, Pennsylvania Zip 19087 Product US-based specialty metals company offering metallurgical products and vacuum furnace systems; manufactures high purity polysilicon. References AMG Advanced Metallurgical Group NV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AMG Advanced Metallurgical Group NV is a company located in Wayne, Pennsylvania . References ↑ "AMG Advanced Metallurgical Group NV" Retrieved from "http://en.openei.org/w/index.php?title=AMG_Advanced_Metallurgical_Group_NV&oldid=342143" Categories: Clean Energy Organizations

233

Advanced, Integrated Control for Building Operations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced, Integrated Control for Building Advanced, Integrated Control for Building Operations Advanced, Integrated Control for Building Operations The U.S. Department of Energy (DOE) is currently conducting research into advanced integrated controls for building operations and seeking to validate energy savings strategies by simulations. Project Description This project will develop an advanced, integrated control for the following building systems: Cooling and heating Lighting Ventilation Window and blind operation. A variety of operation and energy saving control strategies will be evaluated on a building equipped with alternative cooling and heating methods, including fan coil units, radiant mullions, and motorized window and blinds. Project Partners Research is being undertaken by DOE, Siemens Corporate Research, Siemens

234

Energy Theft in the Advanced Metering Infrastructure  

E-Print Network (OSTI)

Energy Theft in the Advanced Metering Infrastructure Stephen McLaughlin, Dmitry Podkuiko of the smart grid is an advanced metering infrastructure (AMI). AMI replaces the analog meters, but that current AMI devices introduce a myriad of new vectors for achieving it. Key words: AMI, Smart meter

McDaniel, Patrick Drew

235

ADVANCED RESEARCH PROJECTS AGENCY - ENERGY ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WA (DOEEIS-0467) FOSSIL ENERGY 12. Hydrogen Energy California's Integrated Gasification Combined Cycle Project, CA (DOEEIS-0431) 13. FutureGen 2.0 (DOEEIS-0460) 14. Lake...

236

Advancing Clean Energy in Indian Country | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Clean Energy in Indian Country Advancing Clean Energy in Indian Country Advancing Clean Energy in Indian Country November 7, 2011 - 3:16pm Addthis Office of Indian Energy Policy and Programs Director Tracey LeBeau meets with tribal leaders from across the United States in Portland, Oregon to discuss how to advance clean energy deployment in Indian Country. | The National Conference of State Legislatures Office of Indian Energy Policy and Programs Director Tracey LeBeau meets with tribal leaders from across the United States in Portland, Oregon to discuss how to advance clean energy deployment in Indian Country. | The National Conference of State Legislatures Tracey A. LeBeau Director, Office of Indian Energy Policy & Programs Last week, I attended the National Congress for American Indians (NCAI)

237

Energy Department Releases Draft Advanced Fossil Energy Solicitation to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Draft Advanced Fossil Energy Releases Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas Pollution Energy Department Releases Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas Pollution July 2, 2013 - 12:42pm Addthis NEWS MEDIA CONTACT (202) 586-4940 Washington, D.C. - As part of President Obama's Climate Action Plan, the U.S. Department of Energy announced today a draft loan guarantee solicitation for innovative and advanced fossil energy projects and facilities that substantially reduce greenhouse gas and other air pollution. The Advanced Fossil Energy Projects solicitation, authorized by Title XVII of the Energy Policy Act of 2005 through Section 1703 of the Loan Guarantee Program, does just that. The draft solicitation will be open

238

Westinghouse Advanced Particle Filter System  

SciTech Connect

Integrated Gasification Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are being developed and demonstrated for commercial, power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC and PFBC in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of PFBC and IGCC systems. This paper reports on the development and status of testing of the Westinghouse Advanced Hot Gas Particle Filter (W-APF) including: W-APF integrated operation with the American Electric Power, 70 MW PFBC clean coal facility--approximately 6000 test hours completed; approximately 2500 hours of testing at the Hans Ahlstrom 10 MW PCFB facility located in Karhula, Finland; over 700 hours of operation at the Foster Wheeler 2 MW 2nd generation PFBC facility located in Livingston, New Jersey; status of Westinghouse HGF supply for the DOE Southern Company Services Power System Development Facility (PSDF) located in Wilsonville, Alabama; the status of the Westinghouse development and testing of HGF`s for Biomass Power Generation; and the status of the design and supply of the HGF unit for the 95 MW Pinon Pine IGCC Clean Coal Demonstration.

Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.; Bachovchin, D.M. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center

1996-12-31T23:59:59.000Z

239

Advanced DES System Evaluation Interim Report  

Science Conference Proceedings (OSTI)

A portfolio of electric energy storage options is emerging that provides electric utilities with new options for grid support and operational flexibility. This research and development (RD) project was initiated to assess and test an emerging zinc-bromine (Zn-Br) flow battery in an electric distribution system and to provide input on a utility application specification. This technology is based on a flow battery developed by Exxon in the 1970s and '80s and is now being advanced and commercialized by Prem...

2009-05-19T23:59:59.000Z

240

Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing < Back Eligibility Commercial Industrial Savings Category Bioenergy Buying & Making Electricity Solar Wind Maximum Rebate $2,000,000 Program Info Funding Source American Recovery and Reinvestment Act of 2009 (ARRA) State Michigan Program Type Industry Recruitment/Support Provider Department of Energy, Labor and Economic Growth '''''Note: This program is not currently accepting applications. Check the program web site for information regarding future solicitations.''''' In January 2010, Michigan enacted the Public Act 242 of 2009, which established the Energy Efficiency and Renewable Energy Revolving Loan Fund Program. The Clean Energy Advanced Manufacturing portion of this program is

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Advances in understanding solar energy collection materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding solar energy collection materials Understanding solar energy collection materials Advances in understanding solar energy collection materials A LANL team and collaborators have made advances in the understanding of how carbon nanotubes move charges created by light. November 9, 2012 Efficient energy transport in photovoltaic carbon nanomaterials Efficient energy transport in photovoltaic carbon nanomaterials. A LANL team and collaborators have made advances in the understanding of how carbon nanotubes move charges created by light. The research has applications for cheap, all-carbon-based photovoltaics and light detection elements. Their work measures exciton transport (excitons are small packets of energy made up of positive and negative charges) in carbon nanotubes at room temperature in a colloidal environment. A colloid is a substance that

242

Advanced Lighting Design and the Energy Code | Building Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Version Development Adoption Compliance Regulations Resource Center Advanced Lighting Design and the Energy Code This course addresses the lighting requirements of the...

243

Advanced Energy Design Guides Slash Energy Use in Schools and...  

NLE Websites -- All DOE Office Websites (Extended Search)

simulation tools and led the committee that produced the guides. Key Result The Advanced Energy Design Guides, based on the work of NREL's researchers, provide owners,...

244

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

Dryer WH - Clothes Washer Clothes Washer WH - DishwasherDishwasher Water Heating Figure 7 Breakdown of residentialUEC Water Heating (WH) Dishwasher Advanced Energy Pathways -

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

245

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop...

246

Energy Department Announces New Investments in Advanced Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Energy Department Announces New Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear...

247

Department of Energy Advances Commercialization of Climate Change...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Advances Commercialization of Climate Change Technology Department of Energy Advances Commercialization of Climate Change Technology October 31, 2006 - 9:17am...

248

Advanced Materials and Devices for Stationary Electrical Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Materials and Devices for Stationary Electrical Energy Storage Applications Advanced Materials and Devices for Stationary Electrical Energy Storage Applications Reliable...

249

Department of Energy Advance Methane Hydrates Science and Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Methane Hydrates Science and Technology Projects Department of Energy Advance Methane Hydrates Science and Technology Projects Descriptions for Energy Department Methane...

250

"Recovery Act: Advanced Energy Efficient BuildingTechnologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Recovery Act: Advanced Energy Efficient BuildingTechnologies" "Recovery Act: Advanced Energy Efficient BuildingTechnologies" Description of a FOA funding oppourtunity with funds...

251

Advanced Analysis Software Key to New, Energy-Efficient ...  

Advanced Analysis Software Key to New, Energy-Efficient Technologies Leveraging Scientific and Engineering Know-How to Advance Sources of Renewable Energy

252

Department of Energy to Invest Nearly $18 Million for Advanced...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy to Invest Nearly 18 Million for Advanced Biofuels User Facility Department of Energy to Invest Nearly 18 Million for Advanced Biofuels User Facility March...

253

Advanced Research Projects Agency - Energy Program Specific Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Research Projects Agency - Energy Program Specific Recovery Plan Advanced Research Projects Agency - Energy Program Specific Recovery Plan Microsoft Word - 44F1801D.doc...

254

Tribal Renewable Energy Advanced Course: Community Scale Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Advanced Course: Community Scale Project Development Tribal Renewable Energy Advanced Course: Community Scale Project Development Watch the DOE Office of Indian...

255

Tribal Renewable Energy Advanced Course: Commercial Scale Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Scale Project Development Tribal Renewable Energy Advanced Course: Commercial Scale Project Development Watch the DOE Office of Indian Energy advanced course...

256

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions in...

257

Development requirements for an advanced gas turbine system  

Science Conference Proceedings (OSTI)

In cooperation with US Department of Energy`s Morgantown Energy Technology Center, a Westinghouse-led team is working on the second part of an 8-year, Advanced Turbine Systems Program to develop the technology required to provide a significant increase in natural gas-fired combined cycle power generation plant efficiency. This paper reports on the Westinghouse program to develop an innovative natural gas-fired advanced turbine cycle, which, in combination with increased firing temperature, use of advanced materials, increased component efficiencies, and reduced cooling air usage, has the potential of achieving a lower heating value plant efficiency in excess of 60%.

Bannister, R.L.; Cheruvu, N.S.; Little, D.A.; McQuiggan, G. [Westinghouse Electric Corp., Orlando, FL (United States)

1995-10-01T23:59:59.000Z

258

Advance your energy program | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

corporate energy directors is without parallel. Join ENERGY STAR and get connected to the learning curve. Learn about world-class energy programs. EPA has profiled key ENERGY STAR...

259

Advanced nonlinear control of complex power systems.  

E-Print Network (OSTI)

??Nowadays, advanced controller design is called upon to guarantee the secure and reliable operation of power systems. To meet this requirement, this work proposed three (more)

Li, Hong Yin.

2008-01-01T23:59:59.000Z

260

NETL: Advanced Research - Computation Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Energy Sciences > APECS Computational Energy Sciences > APECS Advanced Research Computational Energy Sciences APECS APECS Virtual Plant APECS (Advanced Process Engineering Co-Simulator) is the first simulation software to combine the disciplines of process simulation and computational fluid dynamics (CFD). This unique combination makes it possible for engineers to create "virtual plants" and to follow complex thermal and fluid flow phenomena from unit to unit across the plant. Advanced visualization software tools aid in analysis and optimization of the entire plant's performance. This tool can significantly reduce the cost of power plant design and optimization with an emphasis on multiphase flows critical to advanced power cycles. A government-industry-university collaboration (including DOE, NETL, Ansys/

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced Leds | Open Energy Information  

Open Energy Info (EERE)

Leds Leds Jump to: navigation, search Name Advanced Leds Place Coventry, England, United Kingdom Zip CV5 6SP Product Advanced Leds develops LED technology for outdoor lighting, including street lighting applications. Coordinates 44.866737°, -72.263927° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.866737,"lon":-72.263927,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

Advanced Plasma Power APP | Open Energy Information  

Open Energy Info (EERE)

Power APP Power APP Jump to: navigation, search Name Advanced Plasma Power (APP) Place London, Greater London, United Kingdom Zip EC2A 1BR Product London-based geoplasma process technology developer for waste-to-energy systems. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

NREL: Energy Systems Integration - Energy Systems Integration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Systems Integration Facility NREL's Energy Systems Integration Facility Garners LEED Platinum View the NREL Press Release. NREL's multistory Energy Systems Integration...

264

Department of Energy Announces Fellows Program for Advance Research Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fellows Program for Advance Research Fellows Program for Advance Research Energy Projects Department of Energy Announces Fellows Program for Advance Research Energy Projects December 8, 2009 - 12:00am Addthis Cambridge, MA - The Department of Energy's Advanced Research Projects Agency - Energy (ARPA-E) announced today the creation of the ARPA-E Fellows Program at an event with Massachusetts Institute of Technology's students. ARPA-E Director, Dr. Arun Majumdar, made the announcement during a presentation to the MIT Energy Club and called on the next generation of energy leaders to join ARPA-E. Today's announcement follows US Energy Secretary Steven Chu's announcement that the Department is making $100 million in Recovery Act funding available to accelerate innovation in green technology, increase America's competitiveness and create jobs.

265

Energy Department Updates Home Energy Scoring Tool for Advancing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Updates Home Energy Scoring Tool for Advancing Updates Home Energy Scoring Tool for Advancing Residential Energy Performance Energy Department Updates Home Energy Scoring Tool for Advancing Residential Energy Performance January 9, 2014 - 3:19pm Addthis As part of the Energy Department's commitment to helping families across the United States save money by saving energy, the Department announced today its first major software update to the Home Energy Scoring Tool, developed by the Department's Building Technologies Office and Lawrence Berkeley National Laboratory (LBNL). The Home Energy Score allows homebuyers to compare homes on an "apples to apples" basis and provides recommendations for energy efficiency improvements. In addition, homeowners and homebuyers receive a cost-saving estimate of how these improvements could reduce utility bills and improve a

266

Advancements in low NOx tangential firing systems  

Science Conference Proceedings (OSTI)

The most cost effective method of reducing nitrogen oxide emissions when burning fossil fuels, such as coal, is through in-furnace NOx reduction processes. ABB Combustion Engineering, Inc. (ABB CE), through its ABB Power Plant Laboratories has been involved in the development of such low NOx pulverized coal firing systems for many years. This development effort is most recently demonstrated through ABB CE`s involvement with the U.S. Department of Energy`s (DOE) {open_quotes}Engineering Development of Advanced Coal Fired Low-Emission Boiler Systems{close_quotes} (LEBS) project. The goal of the DOE LEBS project is to use {open_quotes}near term{close_quotes} technologies to produce a commercially viable, low emissions boiler. This paper addresses one of the key technologies within this project, the NOx control subsystem. The foundation for the work undertaken at ABB CE is the TFS 2000{trademark} firing system, which is currently offered on a commercial basis. This system encompasses sub-stoichiometric combustion in the main firing zone for reduced NOx formation. Potential enhancements to this firing system focus on optimizing the introduction of the air and fuel within the primary windbox to provide additional horizontal and vertical staging. As is the case with all in-furnace NOx control processes, it is necessary to operate the system in a manner which does not decrease NOx at the expense of reduced combustion efficiency.

Hein, R. von; Maney, C.; Borio, R. [and others

1996-12-31T23:59:59.000Z

267

Advanced Telemetry | Open Energy Information  

Open Energy Info (EERE)

California Zip 92131-2435 Sector Buildings Product San Diego-based provider of energy management software, communication and display solutions for residential and commercial...

268

Alternative Fuels Data Center: Advanced Energy Research Project Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Energy Advanced Energy Research Project Grants to someone by E-mail Share Alternative Fuels Data Center: Advanced Energy Research Project Grants on Facebook Tweet about Alternative Fuels Data Center: Advanced Energy Research Project Grants on Twitter Bookmark Alternative Fuels Data Center: Advanced Energy Research Project Grants on Google Bookmark Alternative Fuels Data Center: Advanced Energy Research Project Grants on Delicious Rank Alternative Fuels Data Center: Advanced Energy Research Project Grants on Digg Find More places to share Alternative Fuels Data Center: Advanced Energy Research Project Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Energy Research Project Grants The Advanced Research Projects Agency - Energy (ARPA-E) was established

269

Advanced Overfire Air system and design  

DOE Green Energy (OSTI)

The objective of the proposed project is to design, install and optimize a prototype advanced tangential OFA air system on two mass feed stoker boilers that can burn coal, biomass and a mixture of these fuels. The results will be used to develop a generalized methodology for retrofit designs and optimization of advanced OFA air systems. The advanced OFA system will reduce particulate and NOx emissions and improve overall efficiency by reducing carbon in the ash and excess oxygen. The advanced OFA will also provide capabilities for carrying full load and improved load following and transitional operations.

Gene berkau

2004-07-30T23:59:59.000Z

270

Technical and System Requirements for Advanced Distribution Automation  

Science Conference Proceedings (OSTI)

Traditional distribution systems were designed to perform one function: distribute electrical energy to end-users. Advanced Distribution Automation (ADA) is a concept for a fully controllable and flexible distribution system that will facilitate the exchange of both electrical energy and information between participants and system components. This report presents background information on distribution automation technologies and develops a roadmap to achieve the ADA systems required for future power deli...

2004-06-09T23:59:59.000Z

271

Advanced Combustion Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Clean Coal » Advanced Combustion Science & Innovation » Clean Coal » Advanced Combustion Technologies Advanced Combustion Technologies Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses laser-based Rayleigh light scattering to measure flame density and speed over a flat flame burner. Oxyfuel combustion, using oxygen in place of air with diluents such as steam or carbon dioxide, can reduce pollutant emissions in advanced power cycles using gas turbines. Photo courtesy of NETL Multimedia. Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses laser-based Rayleigh light scattering to measure flame density and speed over a flat flame burner. Oxyfuel combustion, using oxygen in place of air with diluents such as steam or carbon dioxide, can reduce pollutant

272

PAMPA II Advanced Charting System  

E-Print Network (OSTI)

Project Management is the primary key to successful software development. In 1995 Caper Jones stated that the failure or cancellation rate of large software systems was over 20% in his article on patterns of large software systems. More than two thirds of the projects fail due to improper management of skills, activities, and personnel. One main reason is that software is not a tangible entity and is hard to visualize and hence to monitor. A manager has to be skilled in different CASE tools and technologies to track and manage a software development process successfully. The volume of results produced by these CASE tools is so huge that a high level manager cannot look into all the details. He has to get a high level picture of the project, to know where the project is heading, and if needed, then look into the finer level details by drilling down to locate and correct problems. The objective of this thesis is to build an Advanced Charting System (ACS), which would act as a companion to PAMPA 2 (Project Attribute Monitoring and Prediction Associate) and help a manager visualize the state of a software project over a standard World Wide Web browser. The PAMPA 2 ACS will be responsible for visualizing and tracking of resources, tasks, schedules and milestones of a software project described in the plan. PAMPA 2 ACS will have the ability to depict the status of the project through a variety of graphs and charts. PAMPA 2 ACS implements a novel charting technique called as DOT Chart to track the processes and activities of a software project. PAMPA 2 ACS provides a multilevel view of the project status. PAMPA 2 ACS will be able to track any arbitrary plan starting from a collapsed / concise view of a whole project. This can be further drilled down to the lowest level of detail. The status can be viewed at the project version level, plan and workbreakdown levels, process, sub process, and activity level. Among all the process models, the DOT charts can be applied effectively to spiral process model where each spiral represents a project version.

Inbarajan, Prabhu Anand

2003-12-01T23:59:59.000Z

273

21st century advanced hydropower turbine system  

DOE Green Energy (OSTI)

While hydropower turbine manufacturers have incrementally improved turbine technology to increase efficiency, the basic design concepts haven`t changed for decades. These late 19th and early 20th century designs did not consider environmental effects, since little was known about environmental effects of hydropower at the time. The U.S. Department of Energy (DOE) and the hydropower industry recognize that hydropower plants have an effect on the environment and there is a great need to bring turbine designs into the 21st century. DOE has issued a request for proposals (RFP) that requested proposers to discard conventional thinking, search out innovative solutions, and to visualize innovative turbines designed from a new perspective. This perspective would look at the {open_quotes}turbine system{close_quotes} (intake to tailrace) which will balance environmental, technical, and economic considerations. This paper describes the DOE Advanced Hydropower Turbine System Program.

Brookshier, P.A.; Flynn, J.V.; Loose, R.R.

1995-11-01T23:59:59.000Z

274

Materials research to advance fossil energy technologies at the NETL  

Science Conference Proceedings (OSTI)

A brief overview of materials research being carried out by the National Energy Technology Laboratory to advance fossil energy technologies.

Powell, C.A.

2006-10-18T23:59:59.000Z

275

Department of Energy Announces $8.5 Million to Advance Solar Energy Grid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$8.5 Million to Advance Solar Energy $8.5 Million to Advance Solar Energy Grid Integration Systems Department of Energy Announces $8.5 Million to Advance Solar Energy Grid Integration Systems September 7, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced that the Department of Energy's Sandia National Laboratories is investing $8.5 million for four projects that have reached Stage III of the Solar Energy Grid Integration Systems (SEGIS) program. These investments will be matched more than one-to-one by the SEGIS contractors to support more than $20 million in total projects. The selections announced today are part of the Department's ongoing work to improve the Nation's electrical grid reliability as solar energy technologies reach cost-competitiveness with

276

50% Advanced Energy Design Guides: Preprint  

SciTech Connect

This paper presents the process, methodology, and assumptions for the development of the 50% Energy Savings Advanced Energy Design Guides (AEDGs), a design guidance document that provides specific recommendations for achieving 50% energy savings above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004 in four building types: (1) Small to medium office buildings, (2) K-12 school buildings, (3) Medium to big box retail buildings, (4) Large hospital buildings.

Bonnema, E.; Leach, M.; Pless, S.; Liu, B.; Wang, W.; Thornton, B.; Williams, J.

2012-07-01T23:59:59.000Z

277

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrofit Guides Retrofit Guides Photo of the cover of the Advanced Energy Retrofit Guide for Healthcare Facilities. The Advanced Energy Retrofit Guides (AERGs) help building owners and managers as well as design and construction professionals plan, design, and implement energy efficiency upgrades in commercial buildings. The Advanced Energy Retrofit Guides (AERGs) were created to help decision makers plan, design, and implement energy improvement projects in their facilities. With energy managers in mind, they present practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle. These guides are primarily reference documents, allowing energy managers to consult the particular sections that address the most pertinent topics.. Useful resources are also cited throughout the guides for further information. Each AERG is tailored specifically to the needs of a specific building type, with an emphasis on the most effective retro-commissioning and retrofit measures identified by experts familiar with those unique opportunities and challenges. The guides present a broad range of proven practices that can help energy managers take specific actions at any stage of the retrofit process, resulting in energy savings for many years to come.

278

Champions of Change: Veterans Advancing Clean Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Champions of Change: Veterans Advancing Clean Energy Champions of Change: Veterans Advancing Clean Energy Champions of Change: Veterans Advancing Clean Energy November 6, 2013 - 11:00am Addthis Robin Eckstein, one of Champions honored at the White House Champions of Change event, speaks about her experience driving trucks while serving in Iraq, and how this has influenced her work in advocating for comprehensive clean energy reform. Robin Eckstein, one of Champions honored at the White House Champions of Change event, speaks about her experience driving trucks while serving in Iraq, and how this has influenced her work in advocating for comprehensive clean energy reform. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs View a slideshow of images from the event. Yesterday, Secretary Moniz honored veterans advancing clean energy and

279

Champions of Change: Veterans Advancing Clean Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Champions of Change: Veterans Advancing Clean Energy Champions of Change: Veterans Advancing Clean Energy Champions of Change: Veterans Advancing Clean Energy November 6, 2013 - 11:00am Addthis Robin Eckstein, one of Champions honored at the White House Champions of Change event, speaks about her experience driving trucks while serving in Iraq, and how this has influenced her work in advocating for comprehensive clean energy reform. Robin Eckstein, one of Champions honored at the White House Champions of Change event, speaks about her experience driving trucks while serving in Iraq, and how this has influenced her work in advocating for comprehensive clean energy reform. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs View a slideshow of images from the event. Yesterday, Secretary Moniz honored veterans advancing clean energy and

280

Advanced Carbon Aerogels for Energy Applications - Energy ...  

... graphene nanosheets that will prove necessary to provide sustainable energy applications that lessen our dependence on fossil fuels.

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NETL: Advanced Research - Computation Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Energy Sciences Computational Energy Sciences Advanced Research Computational Energy Sciences Virtual Plant Simulating the complex processes occurring inside a coal gasifier, or across an entire chemical or power plant, is an incredible tool made possible by today's supercomputers and advanced simulation software. The Computational Energy Sciences (CES) Focus Area provides such tools to the Fossil Energy program at NETL. The goal is to help scientists and engineers to better understand the fundamental steps in a complex process so they can optimize the design of the equipment needed to run it. Not only is this less costly than performing a long series of experiments under varying conditions to try to isolate important variables, but it also provides more information than such experiments can provide. Of course, the data is

282

Contributions to Key Energy Conversion Technologies and Advanced Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

Contributions to Key Energy Conversion Technologies and Advanced Methods Contributions to Key Energy Conversion Technologies and Advanced Methods for Optimum Energy Systems Design and Planning Speaker(s): Daniel Favrat Date: February 27, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare This presentation reviews some of EPFL-LENI's recent contributions to advanced cogeneration and heat pump technologies as well as to new system design approaches based on multimodal evolutionar algorithms. In the field of cogeneration, theoretical and experimental results show that gas engines with unscavenged ignition prechambers can, without the need of a catalyst, achieve high efficiencies with reasonable emissions with both natural gas and biogas. Combination with Organic Rankine Cycle (ORC) heat recovery

283

Advanced Manufacturing Office: Industrial Distributed Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industry Classification System (NAICS) code, system size, technologyprime mover, fuel, thermal energy use, and year installed. Access the CHP Project Profiles database....

284

Portland Advancing Green Image With Solar Installs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portland Advancing Green Image With Solar Installs Portland Advancing Green Image With Solar Installs Portland Advancing Green Image With Solar Installs February 22, 2010 - 12:10pm Addthis Laura Smoyer checks the net-metering device in her home, which now uses the sun for about 38 percent of its total energy use. | Department of Energy Photo | Laura Smoyer checks the net-metering device in her home, which now uses the sun for about 38 percent of its total energy use. | Department of Energy Photo | Joshua DeLung A quick Web search reveals that many sources consider Portland, Ore., to be one of the most green-minded cities in the United States. But large upfront costs have been a barrier for citizens looking to install solar power systems in the past. Now, a neighborhood solar initiative is helping communities organize to get solar discounts, meaning the city could become

285

Portland Advancing Green Image With Solar Installs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portland Advancing Green Image With Solar Installs Portland Advancing Green Image With Solar Installs Portland Advancing Green Image With Solar Installs February 22, 2010 - 12:10pm Addthis Laura Smoyer checks the net-metering device in her home, which now uses the sun for about 38 percent of its total energy use. | Department of Energy Photo | Laura Smoyer checks the net-metering device in her home, which now uses the sun for about 38 percent of its total energy use. | Department of Energy Photo | Joshua DeLung A quick Web search reveals that many sources consider Portland, Ore., to be one of the most green-minded cities in the United States. But large upfront costs have been a barrier for citizens looking to install solar power systems in the past. Now, a neighborhood solar initiative is helping communities organize to get solar discounts, meaning the city could become

286

Advanced Electric Traction System Technology Development  

SciTech Connect

As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

Anderson, Iver

2011-01-14T23:59:59.000Z

287

Advancement of DOE's EnergyPlus Building Energy Simulation Payment  

SciTech Connect

EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE??s Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Florida??s Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced significantly under this project, more enhancements are needed for further improvement to ensure that EnergyPlus is able to simulate the latest technologies and perform desired HAVC system operations for the development of next generation HVAC systems. Additional development will be performed under a new 5-year project managed by the National Renewable Energy Laboratory.

Lixing Gu; Don Shirey; Richard Raustad; Bereket Nigusse; Chandan Sharma; Linda Lawrie; Rich Strand; Curt Pedersen; Dan Fisher; Edwin Lee; Mike Witte; Jason Glazer; Chip Barnaby

2011-03-31T23:59:59.000Z

288

Small Businesses Key in Hydropower Tech Advancement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Businesses Key in Hydropower Tech Advancement Businesses Key in Hydropower Tech Advancement Small Businesses Key in Hydropower Tech Advancement September 6, 2011 - 2:59pm Addthis Earlier today, the Department of Energy and the Department of Interior announced nearly $17 million in funding over the next three years to advance hydropower technology. The funding announced today will go to sixteen innovative projects around the country, including sustainable small hydro projects, like the ones from Hydro Green Energy, a small business that handles hydroelectric power generation and power and communication line construction. The company, which has eight employees currently, has been awarded funding for two projects. Near Space Systems, a Colorado Springs-based company, is a service-disabled veteran-owned business with a manufacturing focus that's

289

Advanced research in solar-energy storage  

DOE Green Energy (OSTI)

The Solar Energy Storage Program at the Solar Energy Research Institute is reviewed. The program provides research, systems analyses, and economic assessments of thermal and thermochemical energy storage and transport. Current activities include experimental research into very high temperature (above 800/sup 0/C) thermal energy storage and assessment of novel thermochemical energy storage and transport systems. The applications for such high-temperature storage are thermochemical processes, solar thermal-electric power generation, cogeneration of heat and electricity, industrial process heat, and thermally regenerative electrochemical systems. The research results for five high-temperature thermal energy storage technologies and two thermochemical systems are described.

Luft, W.

1983-01-01T23:59:59.000Z

290

Advanced Vehicles Group: Center for Transportation Technologies and Systems  

DOE Green Energy (OSTI)

Describes R&D in advanced vehicle systems and components (e.g., batteries) by NREL's Advanced Vehicles Group.

Not Available

2008-08-01T23:59:59.000Z

291

Fossil energy: From laboratory to marketplace. Part 2, The role of advanced research  

DOE Green Energy (OSTI)

The purpose of this work is to provide a summary description of the role of advanced research in the overall Fossil Energy R&D program successes. It presents the specific Fossil Energy advanced research products that have been adopted commercially or fed into other R&D programs as part of the crosscutting enabling technology base upon which advanced systems are based.

Not Available

1992-03-01T23:59:59.000Z

292

advanced energy storage | OpenEI  

Open Energy Info (EERE)

35 35 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142280435 Varnish cache server advanced energy storage Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. Source NREL Date Released March 01st, 2006 (8 years ago) Date Updated Unknown Keywords advanced energy storage batteries biomass csp fuel cells geothermal

293

Department of Energy to Invest $50 Million to Advance Domestic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal Department of Energy to Invest 50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot...

294

Advanced Analysis Software Key to New, Energy-Efficient ...  

Advanced Analysis Software Key to New, Energy-Efficient Technologies Leveraging Scientific and Engineering Know-How to Advance Sources of Renewable En ...

295

Treasury, Energy Departments Release New Advanced Coal Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Departments Release New Advanced Coal Project Tax Credit Applications for 2007-2008 Treasury, Energy Departments Release New Advanced Coal Project Tax Credit Applications for...

296

Energy Department Accelerates the Deployment of Advanced Vehicle...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerates the Deployment of Advanced Vehicle Technologies with Private Industry Partnerships Energy Department Accelerates the Deployment of Advanced Vehicle Technologies with...

297

NETL: News Release - Energy Department Advances Carbon Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Department Advances Carbon Capture and Storage Research on Two Fronts Recovery Act Projects to Provide Student Training, Technology Advancement Washington, D.C. -...

298

Tools, Methods, and Modeling for Advanced Distribution Systems  

Science Conference Proceedings (OSTI)

This report identifies new analytical requirements for the smart distribution system and explains how electric utilities can use new analytical tools to maximize the benefits of advanced control systems, mitigate the adverse consequences of distributed energy resources (especially renewables with variable output), and leverage new information that is becoming available to planning and design engineers.

2011-12-23T23:59:59.000Z

299

Tribal Renewable Energy Advanced Course: Project Financing Process...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process and Structures Tribal Renewable Energy Advanced Course: Project Financing Process and Structures Watch the DOE Office of Indian Energy renewable energy course entitled...

300

Tribal Renewable Energy Advanced Course: Facility Scale Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Scale Project Development Tribal Renewable Energy Advanced Course: Facility Scale Project Development Watch the DOE Office of Indian Energy renewable energy course...

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced Energy Job Stimulus Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Energy Job Stimulus Program Advanced Energy Job Stimulus Program Advanced Energy Job Stimulus Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit State Government Tribal Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Heating & Cooling Heating Water Heating Wind Program Info Start Date 06/12/2008 State Ohio Program Type Industry Recruitment/Support Rebate Amount $50,000 to $2 million Provider Ohio Air Quality Development Authority This bond-funded program creates an Advanced Energy Job Stimulus Fund that is administered through a public process previously managed by the Ohio Air Quality Development Authority (OAQDA). Beginning in 2012, the program is

302

The New Center for Advanced Energy Studies  

SciTech Connect

A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundation to enable future economic growth. The next generation energy workforce in the U.S. is a critical element in meeting both national and global energy needs. The Center for Advanced Energy Studies (CAES) was established in 2005 in response to U.S. Department of Energy (DOE) requirements. CAES, located at the new Idaho National Laboratory (INL), will address critical energy education, research, policy study and training needs. CAES is a unique joint partnership between the Battelle Energy Alliance (BEA), the State of Idaho, an Idaho University Consortium (IUC), and a National University Consortium (NUC). CAES will be based in a new facility that will foster collaborative academic and research efforts among participating institutions.

L.J. Bond; K. Kostelnik; R.A. Wharton; A. Kadak

2006-06-01T23:59:59.000Z

303

Definition: Software - Advanced Analysis/Visualization | Open Energy  

Open Energy Info (EERE)

Software - Advanced Analysis/Visualization Software - Advanced Analysis/Visualization Jump to: navigation, search Dictionary.png Software - Advanced Analysis/Visualization Systems installed to analyze grid information or help human operators.[1] Related Terms System References ↑ [www.smartgrid.gov/sites/default/files/pdfs/description_of_assets.pdf SmartGrid.gov 'Description of Assets'] An Like Like You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Software_-_Advanced_Analysis/Visualization&oldid=480431" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services

304

ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM  

DOE Green Energy (OSTI)

Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

Frank Macri

2003-10-01T23:59:59.000Z

305

Recent advances in the use of density functional theory to design efficient solar energy-based renewable systems  

Science Conference Proceedings (OSTI)

This article reviews the use of Density Functional Theory (DFT) to study the electronic and optical properties of solar-active materials and dyes used in solar energy conversion applications (dye-sensitized solar cells and water splitting). We first give a brief overview of the DFT its development

Ramy Nashed; Yehea Ismail; Nageh K. Allam

2013-01-01T23:59:59.000Z

306

Advanced Vehicle Technologies Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Vehicle Technologies Awards Advanced Vehicle Technologies Awards Microsoft Word - VTP 175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 AdvancedVehiclesTechn...

307

Precipitation from Space: Advancing Earth System Science  

Science Conference Proceedings (OSTI)

Advances to space-based observing systems and data processing techniques have made precipitation datasets quickly and easily available via various data portals and widely used in Earth sciences. The increasingly lengthy time span of space-based ...

Paul A. Kucera; Elizabeth E. Ebert; F. Joseph Turk; Vincenzo Levizzani; Dalia Kirschbaum; Francisco J. Tapiador; Alexander Loew; M. Borsche

2013-03-01T23:59:59.000Z

308

Audit of Funding for Advanced Radioisotope Power Systems, IG-0413  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 17, 1997 October 17, 1997 MEMORANDUM FOR THE SECRETARY FROM: John C. Layton Inspector General SUBJECT: INFORMATION: "Audit of Funding for Advanced Radioisotope Power Systems" BACKGROUND: The Department of Energy's (Department) Advanced Radioisotope Power Systems Program maintains the sole national capability and facilities to produce radioisotope power systems for the National Aeronautics and Space Administration (NASA), the Department of Defense, and other Federal agencies. For the past seven years the program emphasis has been on providing power systems for NASA's Cassini mission to Saturn, which was launched earlier this month. We initiated this audit to determine whether the

309

TRC Advanced Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

TRC Advanced Technologies Inc TRC Advanced Technologies Inc Jump to: navigation, search Logo: TRC Advanced Technologies Inc Name TRC Advanced Technologies Inc Address 8700 Commerce Park Place Houston, Texas Zip 77036 Sector Solar Product Remote power PV systems Website http://www.trcat.com/ Coordinates 29.685775°, -95.535791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.685775,"lon":-95.535791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

adVancing frontiers in energy and  

E-Print Network (OSTI)

. Carbon emissions threaten environmental quality worldwide. Growing cities wonder where they'll acquire, nuclear energy, improvements to the electricity infrastruc- ture, and energy efficiency and renewable from today's energy economy to renewable, nuclear, and near-zero-emission hydrocar- bon energy systems

311

Advanced Energy Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Fort Collins, Colorado Zip 80525 Sector Solar Product US-based manufacturer of power conversion and control systems for the semiconductor and solar industries. The company also...

312

Advanced Integrated Systems Technology Development  

E-Print Network (OSTI)

allows the use of alternative cooling sources, for example,system, and alternative radiant cooling technology, i.e.

2013-01-01T23:59:59.000Z

313

Advanced Integrated Systems Technology Development  

E-Print Network (OSTI)

refrigeration, and fire protection systems. Figure 2.1.2-1: CalSTRS Headquarters, Sacramento, CA (Mechanical design

2013-01-01T23:59:59.000Z

314

Definition: Advanced Transmission Applications | Open Energy Information  

Open Energy Info (EERE)

Applications Applications Jump to: navigation, search Dictionary.png Advanced Transmission Applications Software that utilizes synchrophasor information for real-time grid operations or planning and off-line analysis. These applications are aimed at providing wide-area situational awareness, grid monitoring, and detailed power system analysis and the improvement or validation of power system models.[1] Related Terms smart grid References ↑ https://www.smartgrid.gov/category/technology/advanced_transmission_applications [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitionssustainability, |Template:BASEPAGENAME]]sustainability, Retrieved from "http://en.openei.org/w/index.php?title=Definition:Advanced_Transmission_Applications&oldid=502495

315

Advance Waivers - 2000 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 Advance Waivers - 2000 The following Advance Waivers are available: WA 00 001 PRAXAIR INC Waiver of Domestic and Foreign Inventi.pdf WA 00 002 SIEMENS WESTINGHOUSE Waiver of Domestic and Forei.pdf WA 00 003 DUKE SOLAR ENERGY Waiver of Domestic and Foreign P.pdf WA 00 005 GENERAL ELECTRIC Waiver of Government US and Forei.pdf WA 00 006 NORTHERN INDIANA PUBLIC SERVICE Advance Waiver Req.pdf WA 00 007 COMBUSTION ENGINEERING INC Waiver of Domestic and .pdf WA 00 008 PLUG POWER Waiver of Patent Rights in Performance .pdf WA 00 009 ARTHUR D LITTLE Waiver of Patent Rights in Perform.pdf WA 00 010 ROCKWELL SCIENCE CENTER A Subcontractor of SILICON.pdf WA 00 011 HONEYWELL INTERNATIONAL Waiver of Domestic and For.pdf WA 00 012 3M COMPANY Waiver of Domestic and Foreign Rights u.pdf

316

Advanced AMR Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Advanced AMR Technologies Inc Advanced AMR Technologies Inc Jump to: navigation, search Name Advanced AMR Technologies Inc Address 285 Newbury Street Place Peabody, Massachusetts Zip 01960 Sector Efficiency Product Energy management solutions Website http://www.advancedamr.com/ Coordinates 42.5547616°, -70.9800841° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5547616,"lon":-70.9800841,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

OPTIMIZATION OF ADVANCED FILTER SYSTEMS  

NLE Websites -- All DOE Office Websites (Extended Search)

PROGRAM FINAL REPORT PROGRAM FINAL REPORT October 1, 1999 - August 30, 2001 By R. A. Newby (SWPC), Program Manager T. E. Lippert (SWPC) Rachid B. Slimane (GTI) O. Mehmet Akpolat (GTI) Keyur Pandya (GTI) Francis S. Lau (GTI) Javad Abbasian (GTI) Brett E. Williams (GTI) Dennis Leppin (GTI) August 2001 DOE Award Number: DE-AC26-99FT40674 Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Siemens Westinghouse Power Corporation Science & Technology Center 1310 Beulah Rd. Pittsburgh, Pennsylvania 15235 & Gas Technology Institute 1700 S. Mt. Prospect Rd. Des Plaines, Illinois 60018 i DISCLAIMER This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of

318

Advanced Manufacturing Office: Technical Publications by Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

efficiency of the following energy systems: Plant-Wide Steam Process Heating Combined Heat & Power Compressed Air Motor Pump Fan Data Centers See descriptions of publications...

319

Advanced Seismic While Drilling System  

SciTech Connect

A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

2008-06-30T23:59:59.000Z

320

Energy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Systems Energy Systems webinarsteamtrap20100605.pdf webcast2009-0827hvacefficiency.pdf webcast2009-0820whmanagephsystems.pdf More Documents & Publications New and...

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced Patent Waivers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 14, 2010 May 14, 2010 Advance Patent Waiver W(A)2009-062 This is a request by MICRON TECHNOLOGY INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0000141 May 14, 2010 Advance Patent Waiver W(A)2009-029 This is a request by GENERAL MOTORS for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-09GO19003 May 13, 2010 Advance Patent Waiver W(A)2010-006 This is a request by HYDROGEN ENERGY OF CALIFORNIA for a DOE waiver of domestic and foreign patent rights under agreement DE-FE0000663 May 10, 2010 Advance Patent Waiver W(A)2009-047 This is a request by US SOLAR HOLDINGS LLP for a DOE waiver of domestic and foreign patent rights under agreement DE-FG36-08GO18155 May 6, 2010 Advance Patent Waiver W(A)2010-019 This is a request by PRAXAIR, INC. for a DOE waiver of domestic and foreign

322

Analysis of advanced solar hybrid desiccant cooling systems for buildings  

DOE Green Energy (OSTI)

This report describes an assessment of the energy savings possible from developing hybrid desiccant/vapor-compression air conditioning systems. Recent advances in dehumidifier design for solar desiccant cooling systems have resulted in a dehumidifier with a low pressure drop and high efficiency in heat and mass transfer. A recent study on hybrid desiccant/vapor compression systems showed a 30%-80% savings in resource energy when compared with the best conventional systems with vapor compression. A system consisting of a dehumidifier with vapor compression subsystems in series was found to be the simplest and best overall performer.

Schlepp, D.; Schultz, K.

1984-10-01T23:59:59.000Z

323

Advanced energy projects FY 1994 research summaries  

Science Conference Proceedings (OSTI)

The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation`s energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects.

Not Available

1994-09-01T23:59:59.000Z

324

NREL: Energy Systems Integration - Energy Systems Integration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Systems Integration Facility Newsroom The Energy Systems Integration Facility (ESIF) will be one of the only megawatt-scale test facilities in the United States that...

325

Game-Changing Advancements in Solar Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Game-Changing Advancements in Solar Energy Game-Changing Advancements in Solar Energy Game-Changing Advancements in Solar Energy Addthis Record-Breaking Solar 1 of 5 Record-Breaking Solar This concentrating photovoltaic (CPV) cell -- which uses a focused lens to magnify light to 418 times the intensity of the sun -- earned an R&D100 Award and set a new world record of 43.5 percent for solar cell conversion efficiency. The technology is based on high-efficiency multijunction research pioneered by the National Renewable Energy Laboratory (NREL). | Photo by Daniel Derkacs/Solar Junction. Date taken: 2012-11-29 09:21 Solar Innovation 2 of 5 Solar Innovation Solar Junction's record-breaking SJ3 solar cell is based on EERE-supported multijunction research. | Photo by Daniel Derkacs/Solar Junction Date taken: 2012-11-29 09:21

326

Tax Credit 48C Credit for Investment in Advanced Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credit 48C &8211; Credit for Investment in Advanced Energy Facilities Tax Credit 48C &8211; Credit for Investment in Advanced Energy Facilities Tax Credit 48C &8211; Credit...

327

Advances in cryptographic voting systems  

E-Print Network (OSTI)

Democracy depends on the proper administration of popular elections. Voters should receive assurance that their intent was correctly captured and that all eligible votes were correctly tallied. The election system as a ...

Adida, Benjamin (Benjamin Michael), 1977-

2006-01-01T23:59:59.000Z

328

Advance Waivers - 1999 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 Advance Waivers - 1999 The following Advance Waivers are available: WA 99 001 ALUMINUM COMPANY OF AMERICA-ALCOA Waiver of Patent.pdf WA 99 003 ALUMINUM COMPANY OF AMERICA-ALCOA Waiver of Patent.pdf WA 99 007 GENERAL ELECTRIC COMPANY Waiver of Domestic and Fo.pdf WA 99 008 DUPONT SUPERCONDUCTIVITY Waiver of US and Foreign .pdf WA 99 010 THE TIMKEN COMPANY Waiver of Domestic and Foreign.pdf WA 99 011 SIEMENS WESTINGHOUSE POWER CORP Waiver of Domestic.pdf WA 99 012 AIR PRODUCTS Waiver of Patent Rights Under AN NVO .pdf WA 99 014 UNITED SOLAR SYSTEMS CORP Waiver of Domestic and F.pdf WA 99 015 FORD MOTOR COMPANY Waiver of Domestic and Foreign .pdf WA 99 016 ADVANCED TECHNOLOGY MATERIALS Waiver of Domestic a.pdf WA 99 017 AIR PRODUCTS AND CHEMICALS Waiver of Domestic and .pdf

329

Combustion modeling in advanced gas turbine systems  

DOE Green Energy (OSTI)

Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K. [Brigham Young Univ., Provo, UT (United States). Advanced Combustion Engineering Research Center

1995-12-31T23:59:59.000Z

330

Development of advanced gas turbine systems  

SciTech Connect

The objective of the Advanced Turbine Systems study is to investigate innovative natural gas fired cycle developments to determine the feasibility of achieving 60% efficiency within a 8-year time frame. The potential system was to be environmentally superior, cost competitive and adaptable to coal-derived fuels. Progress is described.

Bannister, R.L.; Little, D.A.; Wiant, B.C.

1993-11-01T23:59:59.000Z

331

Advanced turbine systems study system scoping and feasibility study  

SciTech Connect

United Technologies Research Center, Pratt Whitney Commercial Engine Business, And Pratt Whitney Government Engine and Space Propulsion has performed a preliminary analysis of an Advanced Turbine System (ATS) under Contract DE-AC21-92MC29247 with the Morgantown Energy Technology Center. The natural gas-fired reference system identified by the UTC team is the Humid Air Turbine (HAT) Cycle in which the gas turbine exhaust heat and heat rejected from the intercooler is used in a saturator to humidify the high pressure compressor discharge air. This results in a significant increase in flow through the turbine at no increase in compressor power. Using technology based on the PW FT4000, the industrial engine derivative of the PW4000, currently under development by PW, the system would have an output of approximately 209 MW and an efficiency of 55.3%. Through use of advanced cooling and materials technologies similar to those currently in the newest generation military aircraft engines, a growth version of this engine could attain approximately 295 MW output at an efficiency of 61.5%. There is the potential for even higher performance in the future as technology from aerospace R D programs is adapted to aero-derivative industrial engines.

1993-04-01T23:59:59.000Z

332

Program to develop advanced gas turbine systems  

SciTech Connect

The need for an advanced turbine program for land-based engines has been broadly recognized in light of reductions in military funding for turbines, rapid growth in the sale of gas turbines for utility and industrial usage, and the fierce competition with off-shore manufacturers. Only with Government support can US manufacturers meet rapidly changing market conditions such as increased emissions requirements and lower capital cost requirements. In light of this, ATS planning was requested by Congress in the fiscal year (FY) 92 appropriations and is included in thee Energy Policy Act of 1992. The program budget has increased rapidly, with the FY 94 budget including. over $28 million for ATS program activities. The Natural Gas Strategic Plan and Multi-Year Program Crosscut Plan, 1993--1998, includes the ATS program as part of the overall DOE plan for natural gas-related research and development (R&D) activities. Private sector support for the program is sufficient. Three open meetings have been held during the last 2 years to provide an opportunity for industry suggestions and comments. As the result of a public review of the program plan held June 4, 1993, in Pittsburgh, 46 letters of support were received from industry, academia, and others. Gas turbines represent the fastest growing market segment in electrical and cogeneration markets, with over 60 percent of recent installations based on gas turbines. Gas turbine systems offer low installation and operating costs, low emissions (currently with add-on equipment for non-attainment areas), and quick installation (1--2 years). According to the Annual Energy Outlook 1993, electricity and natural gas demand should both grow substantially through 2010. Natural gas-fired gas turbine systems continue to be the prime candidates for much of both new and retrofit capacity in this period. Emissions requirements continue to ratchet downward with single-digit NO{sub x} ppM required in several non-attainment areas in the US

Webb, H.A. [USDOE Morgantown Energy Technology Center, WV (United States); Parks, W.P. [USDOE, Washington, DC (United States)

1994-07-01T23:59:59.000Z

333

Report on audit of funding for advanced radioisotope power systems  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy`s (Department) Advanced Radioisotope Power Systems Program maintains the sole national capability and facilities to produce radioisotope power systems for the National Aeronautics and Space Administration (NASA), the Department of Defense, and other Federal agencies. Projects are conducted with these agencies in accordance with written agreements and are dependent on cost sharing by the user agencies. For the past seven years the program emphasis has been on providing power systems for NASA`s Cassini mission to Saturn, which was launched earlier this month. We initiated this audit to determine whether the Department received proper reimbursement from NASA for the radioisotope power systems produced.

NONE

1997-10-17T23:59:59.000Z

334

MARKET-BASED ADVANCED COAL POWER SYSTEMS FINAL REPORT  

NLE Websites -- All DOE Office Websites (Extended Search)

MARKET-BASED ADVANCED MARKET-BASED ADVANCED COAL POWER SYSTEMS FINAL REPORT MAY 1999 DOE/FE-0400 U.S. Department of Energy Office of Fossil Energy Washington, DC 20585 Market-Based Advanced Coal Power Systems 1-1 December 1998 1. INTRODUCTION As deregulation unfolds and privatization of the utility market takes shape, priorities for power plant economics have shifted toward those of a "bottom-line" business and away from a regulated industry. Competition in utility generation and the exposure risks of large capital investments have led to a preference to minimize capital costs and fixed and variable operation and maintenance costs. With global competition from independent power producers (IPPs), non- utility generators, and utilities, the present trend of investments is with conventional pulverized

335

Siemens Westinghouse Advanced Turbine Systems Program Final Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

SIEMENS WESTINGHOUSE ADVANCED TURBINE SIEMENS WESTINGHOUSE ADVANCED TURBINE SYSTEMS PROGRAM FINAL SUMMARY Ihor S. Diakunchak Greg R. Gaul Gerry McQuiggan Leslie R. Southall Siemens Westinghouse Power Corporation 4400 Alafaya Trail Orlando, Florida 32826-2399 ABSTRACT This paper summarises achievements in the Siemens Westinghouse Advanced Turbine Systems (ATS) Program. The ATS Program, co-funded by the U.S. Department of Energy, Office of Fossil Energy, was a very successful multi-year (from 1992 to 2001) collaborative effort between government, industry and participating universities. The program goals were to develop technologies necessary for achieving significant gains in natural gas-fired power generation plant efficiency, a reduction in emissions, and a decrease in cost of electricity, while maintaining current

336

Westinghouse advanced particle filter system  

SciTech Connect

Integrated Gasification Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are being developed and demonstrated for commercial, power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC and PFBC in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of PFBC and IGCC systems. This paper updates the assessment of the Westinghouse hot gas filter design based on ongoing testing and analysis. Results are summarized from recent computational fluid dynamics modeling of the plenum flow during back pulse, analysis of candle stressing under cleaning and process transient conditions and testing and analysis to evaluate potential flow induced candle vibration.

Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

1994-10-01T23:59:59.000Z

337

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Develop Advanced Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop and demonstrate Advanced Burner Reactors (ABRs) that consume transuranic elements (plutonium and other long-lived radioactive material) while extracting their energy. The development of ABRs will allow us to build an improved nuclear fuel cycle that recycles used fuel. Accordingly, the U.S. will work with participating international partners on the design, development, and demonstration of ABRs as part of the GNEP. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors More Documents & Publications GNEP Element:Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste

338

DOE Hydrogen and Fuel Cells Program Record 5025: Advanced Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

and revolutionary solar and wind technologies will reduce overall demand for natural gas and lead to lower energy costs. The President's Advanced Energy Initiative proposes...

339

Advanced Materials and Devices for Stationary Electrical Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials and Devices for Stationary Electrical Energy Storage Applications Advanced Materials and Devices for Stationary Electrical Energy Storage Applications Reliable access to...

340

Energy Department Announces $2.5 Million to Advance Technologies ...  

Energy Department Announces $2.5 Million to Advance Technologies for Clean-Burning, Efficient Biomass Cookstoves. April 13, 2012. The Energy Department today ...

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Department Announces $2.5 Million to Advance ...  

Energy Department Announces $2.5 Million to Advance Technologies for Clean-Burning, Efficient Biomass Cookstoves. April 13, 2012. WASHINGTON, DC The Energy ...

342

Energy Department Announces New Investment to Advance Cost ...  

Energy Department Announces New Investment to Advance Cost-Competitive Hydrogen Fuel. February 14, 2013. The Energy Department today announced a $1 million investment ...

343

Advanced Materials for Energy Conversion II TABLE OF CONTENTS  

Science Conference Proceedings (OSTI)

This Table of Contents is from Advanced Materials for Energy Conversion II ... Energy Crisis Fact or Fiction? [pp. .... W.-M. Chien, A. Price and D. Chandra.

344

High Energy Diffraction Microscopy at the Advanced Photon Source ...  

Science Conference Proceedings (OSTI)

The APS 1-ID beamline is dedicated to high-energy diffraction and the status of the ... High Energy Diffraction Microscopy at the Advanced Photon Source 1-ID...

345

Department of Energy Advance Methane Hydrates Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Methane Hydrates Science and Technology Advance Methane Hydrates Science and Technology Projects Dollars awarded will go to research the advance understanding of the nature and occurrence of Deepwater and Arctic gas hydrates, and their implications for future resources, geohazards, and the environment Characterizing the Affect of Environmental Change on Gas-Hydrate-Bearing Deposits The University of California at San Diego (San Diego, Calif.) - Researchers at the University of California at San Diego will design, build, and test an electromagnetic (EM) system designed for very shallow water use and will apply the system to determine the extent of offshore permafrost on the U.S. Beaufort inner shelf. Energy Department Investment: $507,000 Duration: 36 months The University of Mississippi (Oxford, Miss.) - Using electronic measurements, the researchers will

346

Advanced Liquid Natural Gas Onboard Storage System  

DOE Green Energy (OSTI)

Cummins Westport Incorporated (CWI) has designed and developed a liquefied natural gas (LNG) vehicle fuel system that includes a reciprocating pump with the cold end submerged in LNG contained in a vacuum-jacketed tank. This system was tested and analyzed under the U.S. Department of Energy (DOE) Advanced LNG Onboard Storage System (ALOSS) program. The pumped LNG fuel system developed by CWI and tested under the ALOSS program is a high-pressure system designed for application on Class 8 trucks powered by CWI's ISX G engine, which employs high-pressure direct injection (HPDI) technology. A general ALOSS program objective was to demonstrate the feasibility and advantages of a pumped LNG fuel system relative to on-vehicle fuel systems that require the LNG to be ''conditioned'' to saturation pressures that exceeds the engine fuel pressure requirements. These advantages include the capability to store more fuel mass in given-size vehicle and station tanks, and simpler lower-cost LNG refueling stations that do not require conditioning equipment. Pumped LNG vehicle fuel systems are an alternative to conditioned LNG systems for spark-ignition natural gas and port-injection dual-fuel engines (which typically require about 100 psi), and they are required for HPDI engines (which require over 3,000 psi). The ALOSS program demonstrated the feasibility of a pumped LNG vehicle fuel system and the advantages of this design relative to systems that require conditioning the LNG to a saturation pressure exceeding the engine fuel pressure requirement. LNG tanks mounted on test carts and the CWI engineering truck were repeatedly filled with LNG saturated at 20 to 30 psig. More fuel mass was stored in the vehicle tanks as well as the station tank, and no conditioning equipment was required at the fueling station. The ALOSS program also demonstrated the general viability and specific performance of the CWI pumped LNG fuel system design. The system tested as part of this program is designed to be used on Class 8 trucks with CWI ISX G HPDI engines. Extensive test cart and engineering truck tests of the pump demonstrated good durability and the high-pressure performance needed for HPDI application. The LNG tanks manufactured by Taylor-Wharton passed SAE J2343 Recommended Practice drop tests and accelerated road-load vibration tests. NER and hold-time tests produced highly consistent results. Additional tests confirmed the design adequacy of the liquid level sensor, vaporizer, ullage volume, and other fuel system components. While the testing work performed under this program focused on a high-pressure pumped LNG fuel system design, the results also validate the feasibility of a low-pressure pumped fuel system. A low-pressure pumped fuel system could incorporate various design refinements including a simpler and lighter-weight pump, which would decrease costs somewhat relative to a high-pressure system.

Greg Harper; Charles Powars

2003-10-31T23:59:59.000Z

347

Solargenix Energy Advanced Parabolic Trough Development  

SciTech Connect

The Solargenix Advanced Trough Development Project was initiated in the Year 2000 with the support of the DOE CSP Program and, more recently, with the added support of the Nevada Southwest Energy Partnership. Parabolic trough plants are the most mature solar power technology, but no large-scale plants have been built in over a decade. Given this lengthy lull in deployment, our first Project objective was development of improved trough technology for near-term deployment, closely patterned after the best of the prior-generation troughs. The second objective is to develop further improvements in next-generation trough technology that will lead to even larger reductions in the cost of the delivered energy. To date, this Project has successfully developed an advanced trough, which is being deployed on a 1-MW plant in Arizona and will soon be deployed in a 64-MW plant in Nevada. This advanced trough offers a 10% increase in performance and over an 20% decrease in cost, relative to prior-generation troughs.

Gee, R. C.; Hale, M. J.

2005-11-01T23:59:59.000Z

348

Advanced Controls and Sustainable Systems for Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Controls and Sustainable Systems for Residential Ventilation Advanced Controls and Sustainable Systems for Residential Ventilation Title Advanced Controls and Sustainable Systems for Residential Ventilation Publication Type Report LBNL Report Number LBNL-5968E Year of Publication 2012 Authors Turner, William J. N., and Iain S. Walker Date Published 12/2012 Keywords ashrae standard 62,2, california title 24, passive ventilation, residential ventilation, ventilation controller Abstract Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health, and compliance with standards, such as ASHRAE 62.2. At the same time we wish to reduce the energy use in homes and therefore minimize the energy used to provide ventilation. This study examined several approaches to reducing the energy requirements of providing acceptable IAQ in residential buildings. Two approaches were taken. The first used RIVEC - the Residential Integrated VEntilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. The second used passive and hybrid ventilation systems, rather than mechanical systems, to provide whole-house ventilation.

349

Advanced Materials Technologies - Energy Innovation Portal  

Advanced Materials Technology Marketing Summaries Here youll find marketing summaries of advanced materials technologies available for licensing from ...

350

Advance Waivers - 1997 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 Advance Waivers - 1997 The following Advance Waivers are available: WA 97 004 FOSTER WHEELER CORP Waiver of Domestic and Foreign.pdf WA 97 005 CUMMINS ENGINE COMPANY Waiver of Domestic and Fore.pdf WA 97 006 MOTOROLA MANUFACTURING SYSTEMS Waiver of Patent Ri.pdf WA 97 007 WESTINGHOUSE ELECTRIC CORPORATION Waiver of Domest.pdf WA 97 008 CUMMINS ENGINE COMPANY Waiver of Domestic and Fore.pdf WA 97 009 DETROIT DIESEL CORPORATION Waiver of Domestic and .pdf WA 97 010 DETROIT DIESEL CORPORATION Waiver of Domestice and.pdf WA 97 011 CUMMINS ENGINE COMPANY Waiver of Domestic and Fore.pdf WA 97 012 MOTOROLA MAUFACTURING SYSTEMS Waiver of Domestic a.pdf WA 97 013 CATERPILLAR INC Waiver of Domestic and Foreign Rig.pdf WA 97 014 CATERPILLAR INC Waiver of Domestic and Foreign Rig.pdf

351

Advance Waivers -2003 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2003 2003 Advance Waivers -2003 The following Advance Waivers are available: WA 03 001 CHEVRON TEXACO Waiver of Domestic and Foreign Pate.pdf WA 03 002 3M COMPANY Waiver of Patent Rights Under A DOE Coo.pdf WA 03 003 GENERAL ELECTRIC Waiver of Domestic and Foreign Ri.pdf WA 03 004 CARGILL INC Waiver of Patent Rights Under A Coop A.pdf WA 03 008 CATERPILLAR INC Waiver of Domestic and Foreign Pat.pdf WA 03 010 SHELL SOLAR INDUSTRIES Waiver of Domestic and Fore.pdf WA 03 011 ROCKWELL AUTOMATION Waiver of Patent Rights Under .pdf WA 03 012 SIEMENS WESTINGHOUSE Waiver of Domestic and Foreig.pdf WA 03 013 ANADARKO PETROLEUM Waiver of Domestic and Foreign .pdf WA 03 014 HYBRID POWER GENERATION SYSTEMS Waiver of Domestic.pdf WA 03 015 HYBRID POWER GENERATION SYSTEMS Waiver of Domestic.pdf

352

Advance Waivers - 2004 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Advance Waivers - 2004 The following Advance Waivers are available: WA 04 001 AMENDED SILICATES Waiver of Domestic and Foreign I.pdf WA 04 002 UNITED TECHNOLOGIES Rapid Deployment of Rich Catal.pdf WA 04 003 GE GLOBAL RESEARCH CENTER Waiver of Domestic and F.pdf WA 04 004 PRAXAIR and POWER SYSTEMS MFG Waiver of Domestic a.pdf WA 04 005 PRAXAIR and POWER SYSTEMS MFG Waiver of Domestic a.pdf WA 04 006 CURTISS-WRIGHT ELECTRO-MECHANICAL Domestic and For.pdf WA 04 007 OSHKOSH TRUCK CORP Waiver of Patent Rights Under N.pdf WA 04 008 GENERAL MOTORS CORP Waiver of Patent Rights Under .pdf WA 04 009 ROCKWELL SCIENTIFIC CO Wailve of Domestic And Fore.pdf WA 04 010 UNITED TECHNOLOGIES Waiver of Domestic And Foreign.pdf WA 04 011 KENNAMETAL INC Waiver of Patent Rights Under Subco.pdf

353

Advance Waivers - 2002 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Advance Waivers - 2002 The following Advance Waivers are available: WA 02 002 GE CORPORATE RESEARCH AND DEVELOPMENT Waiver of Do.pdf WA 02 003 DEGUSSA CORP Waiver of Domestic and Foreign Invent.pdf WA 02 005 LUMILEDS LIGHTING Waiver of Domestic and Foreign I.pdf WA 02 006 UNITED TECHNOLOGIES Waiver of Domestic and Foreign.pdf WA 02 010 GENERAL ELECTRIC Waiver of Domestic and Foreign Ri.pdf WA 02 011 BP AMOCO CHEMICAL CO Waiver of Domestic and Foreig.pdf WA 02 012 CATERPILLAR INC Waiver of Domestic and Foreign Pat.pdf WA 02 013 UNITED TECHNOLOGIES Waiver of Domestic and Foreign.pdf WA 02 014 CONSOL ENERGY Waiver of Domestic and Foregin Inven.pdf WA 02 015 AIR PRODUCTS AND CHEMICALS INC Waiver of Patent Ri.pdf WA 02 016 GENERAL ELECTRIC GLOBAL RESEARCH Waiver of Domesti.pdf

354

Remote power systems with advanced storage technologies for Alaskan villages  

DOE Green Energy (OSTI)

Remote Alaskan communities pay economic and environmental penalties for electricity, because they must import diesel as their primary fuel for electric power production, paying heavy transportation costs and potentially causing environmental damage with empty drums, leakage, and spills. For these reasons, remote villages offer a viable niche market where sustainable energy systems based on renewable resources and advanced energy storage technologies can compete favorably on purely economic grounds, while providing environmental benefits. These villages can also serve as a robust proving ground for systematic analysis, study, improvement, and optimization of sustainable energy systems with advanced technologies. This paper presents an analytical optimization of a remote power system for a hypothetical Alaskan village. The analysis considers the potential of generating renewable energy (e.g., wind and solar), along with the possibility of using energy storage to take full advantage of the intermittent renewable sources available to these villages. Storage in the form of either compressed hydrogen or zinc pellets can then provide electricity from hydrogen or zinc-air fuel cells when renewable sources are unavailable.The analytical results show a great potential to reduce fossil fuel consumption and costs basing renewable energy combined with advanced energy storage devices. The best solution for our hypothetical village appears to be a hybrid energy system, which can reduce consumption of diesel fuel by over 50% with annualized cost savings by over 30% by adding wind turbines to the existing diesel generators. When energy storage devices are added, diesel fuel consumption and costs can be reduced substantially more. With optimized energy storage, use of the diesel generatorss can be reduced to almost zero, with the existing equipment only maintained for added reliability. However about one quarter of the original diesel consumption is still used for heating purposes. (We use the term diesel to encompass the fuel, often called heating or fuel oil, of similar or identical properties.)

Isherwood, W.; Smith, R.; Aceves, S.; Berry, G.; Clark, W.; Johnson, R.; Das, D.; Goering, D.; Seifert, R.

1997-12-01T23:59:59.000Z

355

Sustainable Energy Systems Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Energy Systems Group The Sustainable Energy Systems Group studies the impacts of energy generation and use, manufacturing, and other activities on the environment, the...

356

Advanced concepts for controlling energy surety microgrids.  

Science Conference Proceedings (OSTI)

Today, researchers, engineers, and policy makers are seeking ways to meet the world's growing demand for energy while addressing critical issues such as energy security, reliability, and sustainability. Many believe that distributed generators operating within a microgrid have the potential to address most of these issues. Sandia National Laboratories has developed a concept called energy surety in which five of these 'surety elements' are simultaneously considered: energy security, reliability, sustainability, safety, and cost-effectiveness. The surety methodology leads to a new microgrid design that we call an energy surety microgrid (ESM). This paper discusses the unique control requirement needed to produce a microgrid system that has high levels of surety, describes the control system from the most fundamental level through a real-world example, and discusses our ideas and concepts for a complete system.

Menicucci, David F.; Ortiz-Moyet, Juan

2011-05-01T23:59:59.000Z

357

Advanced Materials and Devices for Stationary Electrical Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials and Devices for Stationary Electrical Energy Materials and Devices for Stationary Electrical Energy Storage Applications Advanced Materials and Devices for Stationary Electrical Energy Storage Applications Reliable access to cost-effective electricity is the backbone of the U.S. economy, and electrical energy storage is an integral element in this system. Without significant investments in stationary electrical energy storage, the current electric grid infrastructure will increasingly struggle to provide reliable, affordable electricity, jeopardizing the transformational changes envisioned for a modernized grid. Investment in energy storage is essential for keeping pace with the increasing demands for electricity arising from continued growth in U.S. productivity, shifts in and continued expansion of national cultural imperatives (e.g., the distributed

358

Saving Energy Through Advanced Power Strips (Poster)  

SciTech Connect

Advanced Power Strips (APS) look just like ordinary power strips, except that they have built-in features that are designed to reduce the amount of energy used by many consumer electronics. There are several different types of APSs on the market, but they all operate on the same basic principle of shutting off the supply power to devices that are not in use. By replacing your standard power strip with an APS, you can signifcantly cut the amount of electricity used by your home office and entertainment center devices, and save money on your electric bill. This illustration summarizes the different options.

Christensen, D.

2013-10-01T23:59:59.000Z

359

Advanced Manufacturing Office: Compressed Air Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

training and other resources Training Calendar Events Calendar Tools Tools to Assess Your Energy System AIRMaster+ Tool Scorecards and Simple Calculators Compressed Air Scorecard...

360

Advanced Metering Infrastructure (AMI) System Security Requirements  

Science Conference Proceedings (OSTI)

This report identifies key cyber security requirements and suggests basic security approaches for safeguarding the many interfaces of Advanced Metering Infrastructure (AMI) systems. These requirements, which were developed through a clearly defined security assessment procedure, are generic; but they can be used to develop more specific security requirements based on actual configurations and environments.

2009-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Advanced control and information systems `97  

Science Conference Proceedings (OSTI)

Data are presented on advanced control and information systems, describing specific application, control strategy, economics, commercial installations, and licensor. Uses include alkylation, amine treating, catalytic reforming, cryogenic separation, catalytic cracking, hydrocracking, hydrogen production, LNG separation, lube oils, olefins, plant scheduling, polymers, refineries, steam reforming, and utilities.

NONE

1997-09-01T23:59:59.000Z

362

Energy Storage Systems 2007 Peer Review - International Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Energy International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - DOE-CEC Energy Storage Program FY07 Projects - Daniel Borneo, SNL.pdf ESS 2007 Peer Review - Joint NYSERDA-DOE Energy Storage Initiative Projects

363

Advance Waivers - 1996 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Advance Waivers - 1996 The following Advance Waivers are available: WA 96 002 WESTINGHOUSE ELECTRIC CORPORATION Waiver of Domest.pdf WA 96 003 CHRYSLER CORPORATION Waiver of Domestic and Foreig.pdf WA 96 004 GE CORPORATE RESEARCH & DEVELOPMENT Waiver of Dome.pdf WA 96 006 STONE AND WEBSTER CORPORATION Waiver of Domestic a.pdf WA 96 007 MONSANTO ENVIRO CHEM SYSTEMS Waiver of Domestic an.pdf WA 96 010 M4 ENVIROMENTAL L.P. Waiver of Domestic and Foreig.pdf WA 96 011 ALLIED SIGNAL Waiver of Domestic and Foreign Right.pdf WA 96 012 ALLIEDSIGNAL INC CERAMIC COMPONENTS Waiver of Dome.pdf WA 96 013 MINNESOTA MINING & MANUFACTUIRNG CO (3M) Waiver of.pdf WA 96 014 ASEC MANUFACTURING COMPANY Waiver of Domestic and .pdf WA 96 015 GENERAL ELECTRIC COMPANY Waiver of U.S. and Foreig.pdf

364

Advance Waivers - 2005 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Advance Waivers - 2005 The following Advance Waivers are available: WA 05 001 AIR PRODUCTS AND CHEMICALS Waiver of Patent Rights.pdf WA 05 002 DOW CORNING CORPORATION Waiver of domestic and for.pdf WA 05 004 ALSTOM ENVIRONMENTAL CONTROL SYSTEMS Waiver of Pat.pdf WA 05 005 HONEYWELL INC Waiver of Domestic and Foreign Inven.pdf WA 05 006 ABENGOA BIOENERGY CORPORATION Waiver of Domestic a.pdf WA 05 007 AIR PRODUCTS AND CHEMICALS INC Waiver of Domestic .pdf WA 05 008 GENERAL ELECTRIC COMPNAY Waiver of Domestic and fo.pdf WA 05 009 LUCENT TECHNOLOGIES INC Waiver of Patent Rights Un.pdf WA 05 010 ABB LUMMUS GLOBAL INC Waiver of domestic and Forei.pdf WA 05 011 UNITED TECHNOLOGIES CORPORATION Waiver of Domestic.pdf WA 05 012 CUMMINS WESTPORT INC Waiver of Domestic and Foreig.pdf

365

Advance Waivers - 1995 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Advance Waivers - 1995 The following Advance Waivers are available: WA 1995 001 SPERRY SUN DRILLING SERVICE Waiver Request for a.pdf WA 1995 002 SIEMENS SOLAR INDUSTRIES Waiver of US and Foreig.pdf WA 1995 003 KENETECH WINDPOWER INC. Waiver of Domestic and F.pdf WA 1995 004 UNITED SOLAR SYSTEMS CORPORATION Waiver of Domes.pdf WA 1995 005 JOHN DEERE AND COMPANY Waiver of Domestic and Fo.pdf WA 1995 007 AMOCO TECHNOLOGY COMPANY Waiver of Domestic and .pdf WA 1995 008 ALLIED SIGNAL INC Waiver of Domestic and Foreign .pdf WA 1995 009 AIR PRODUCTS AND CHEMICALS INC Waiver of Domesti.pdf WA 1995 012 ENGELHARDT INSTITUTE OF MOLECULAR BIOLOGY Waiver.pdf WA 1995 014 AIR PRODUCTS AND CHEMICALS INC Waiver of Domesti.pdf WA 1995 015 EASTMAN CHEMICAL COMPANY Waiver of Domestic and .pdf

366

Experience with the Development of Advanced Materials for Geothermal Systems  

Science Conference Proceedings (OSTI)

This chapter contains the following sections: Introduction, Advanced Cements, Materials Research and Development in Enhanced Geothermal Systems (EGS), Advanced Coatings, and Conclusions.

Sugama, T.; Butcher, T.; Ecker, L.

2011-01-01T23:59:59.000Z

367

Demonstration of Advanced Filtration Technologies: Developing Energy-rebate  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Advanced Filtration Technologies: Developing Energy-rebate Demonstration of Advanced Filtration Technologies: Developing Energy-rebate Criteria through Performing Standard Laboratory Tests and Statistical Analyses Title Demonstration of Advanced Filtration Technologies: Developing Energy-rebate Criteria through Performing Standard Laboratory Tests and Statistical Analyses Publication Type Report LBNL Report Number LBNL-61684 Year of Publication 2007 Authors Xu, Tengfang T., and Duo Wang Call Number LBNL-61684 Abstract Fan-filter unit systems are used for re-circulating clean air in cleanrooms are gaining popularity in California as well as in the rest of the world. Under normal operation, fan-filter units require high power demand, typically ranging from 100 to 300 W per square meter of cleanroom floor area (or approximately 10-30 W/ft2). Operating 7 by 24, they normally consume significant electric energy, while providing required contamination control for cleanrooms in various industries. Previous studies focused on development of a standard test procedure for fan-filter units. This project is to improve the methods, and develop new information to demonstrate the methods can be used to assist the industries to apply more energy-efficient fan-filter units in cleanrooms.

368

Development of advanced battery systems for vehicle applications  

SciTech Connect

The Advanced Battery Business Unit (ABBU) of Johnson Controls, Inc. is developing several promising advanced battery technologies including flow-through lead-acid, zinc/bromine, and nickel hydrogen. The flow-through lead-acid technology, which is being developed under Department of Energy (DOE) sponsorship, is progressing towards the fabrication of a 39 kWh battery system. Recent efforts have focused on achieving the aggressive specific energy goal of 56 Wh/kg in 12 volt module form. Recent DOE sponsored work in the zinc/bromine program has focused on the development of a proof-of concept 50 kWh electric vehicle system for a light van application. Efforts in the nickel hydrogen program have focused on reducing system cost in order to make the life-time premium market and EV market possible targets. The status and future direction of each of these programs are summarized.

Zagrodnik, J.P.; Eskra, M.D.; Andrew, M.G.; Gentry, W.O.

1989-01-01T23:59:59.000Z

369

Advanced turbine systems program conceptual design and product development. Quarterly report, August--October 1994  

SciTech Connect

This is a quarterly report on the Westinghouse Electric Corporation Advanced Turbine Systems Program--conceptual design and product development. The topics of the report include the management plan, National Energy Policy Act, selection of natural gas-fired advanced turbine systems, selection of coal-fired advanced turbine systems, market study, systems definition and analysis, design and test of critical components, and plans for the next reporting period.

1994-12-01T23:59:59.000Z

370

Department of Energy to Invest Nearly $18 Million for Advanced...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nearly 18 Million for Advanced Biofuels User Facility Department of Energy to Invest Nearly 18 Million for Advanced Biofuels User Facility March 31, 2010 - 12:00am Addthis...

371

Advanced Facades, Daylighting, and Complex Fenestration Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facades, Daylighting, and Facades, Daylighting, and Complex Fenestration Systems Eleanor Lee Lawrence Berkeley National Laboratory eslee@lbl.gov 510-486-4997 April 5, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: In order to reach BTO's aggressive 50% energy savings goal by 2030, innovative façade systems must minimize both lighting and HVAC energy end use consumption more optimally while addressing occupant comfort and amenity requirements.

372

Energy Basics: Alternative and Advanced Fuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

There are a variety of alternative and advanced fuels available, which are used to fuel alternative and advanced vehicles. Learn more about: Electricity Hydrogen Natural Gas...

373

Advanced Battery Factory | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Advanced Battery Factory Jump to: navigation, search Name Advanced Battery Factory Place Shen Zhen...

374

Advanced Solar Power ASP | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Advanced Solar Power ASP Jump to: navigation, search Name Advanced Solar Power (ASP) Place Israel...

375

Energy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Energy Systems webinarsteamtrap20100605.pdf webcast2009-0827hvacefficiency.pdf webcast2009-0820whmanagephsystems.pdf More Documents & Publications AMO Software...

376

Department of Energy Releases $8 Billion Solicitation for Advanced Fossil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$8 Billion Solicitation for Advanced $8 Billion Solicitation for Advanced Fossil Energy Projects Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects December 12, 2013 - 1:40pm Addthis NEWS MEDIA CONTACT (202) 586-4940 Washington, D.C. - As part of President Obama's Climate Action Plan, the Energy Department published a solicitation today, making up to $8 billion in loan guarantee authority available to support innovative advanced fossil energy projects that avoid, reduce, or sequester greenhouse gases. Authorized by Title XVII of the Energy Policy Act of 2005, loan guarantees under this new solicitation will help provide critical financing to support new or significantly improved advanced fossil energy projects - such as advanced resource development, carbon capture, low-carbon power

377

NETL: News Release -Treasury, Energy Departments Release New Advanced Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2007 7, 2007 Treasury, Energy Departments Release New Advanced Coal Project Tax Credit Applications for 2007-2008 WASHINGTON, DC - The Treasury Department and the Department of Energy (DOE) released today new instructions for applying for the tax credits for advanced coal projects and gasification projects. The new instructions provide additional time to submit applications for the credits. For the 2007-2008 allocation round, applications for DOE certification are not due to the Energy Department until October 31, 2007. "To further advance our nation's energy security, this Administration had made sustained investments in research, development, and wider use of advanced coal technologies a priority," Deputy Secretary of Energy Clay Sell said. "Through new and innovative programs such as the Clean Coal Power Initiative and FutureGen demonstration, private sector partnerships, and use of tax credits and loan guarantees, the Department of Energy is advancing research to further develop and deploy advanced coal technologies to meet growing energy demand."

378

Department of Energy, Duke Energy and EPRI Partner to Test Advanced Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy, Duke Energy and EPRI Partner to Test Advanced Energy, Duke Energy and EPRI Partner to Test Advanced Energy Technologies for Utilities Department of Energy, Duke Energy and EPRI Partner to Test Advanced Energy Technologies for Utilities April 14, 2011 - 12:00am Addthis Washington, DC - The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) has signed a partnership deal with Duke Energy, one of the largest electric power companies in the United States, and with the Electric Power Research Institute (EPRI), a non-profit research organization that focuses on the electric power utility industry in the U.S. and abroad, to identify opportunities for testing and deploying ARPA-E funded projects that will bolster the electric grid. Through the Memorandum of Understanding (MOU), ARPA-E, Duke Energy, and

379

Energy Systems Integration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Integration Systems Integration Ben Kroposki, PhD, PE Director, Energy Systems Integration National Renewable Energy Laboratory 2 Reducing investment risk and optimizing systems in a rapidly changing energy world * Increasing penetration of variable RE in grid * Increasing ultra high energy efficiency buildings and controllable loads * New data, information, communications and controls * Electrification of transportation and alternative fuels * Integrating energy storage (stationary and mobile) and thermal storage * Interactions between electricity/thermal/fuels/data pathways * Increasing system flexibility and intelligence Current Energy Systems Future Energy Systems Why Energy Systems Integration? 3 Energy Systems Integration Continuum Scale Appliance (Plug)

380

Secretary Bodman Highlights Advanced Energy Initiative in Peoria, IL |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bodman Highlights Advanced Energy Initiative in Peoria, Bodman Highlights Advanced Energy Initiative in Peoria, IL Secretary Bodman Highlights Advanced Energy Initiative in Peoria, IL April 6, 2006 - 10:15am Addthis PEORIA, IL - Secretary of Energy Samuel W. Bodman today highlighted the goals of President Bush's Advanced Energy Initiative after consulting on an energy savings assessment at Caterpillar Inc.'s manufacturing facility in Peoria, Illinois. To answer President Bush's call for Americans to be more energy efficient, the Department of Energy (DOE) is conducting no-cost energy assessments at 200 of the nation's most energy-intensive manufacturing facilities to identify energy- and money-saving opportunities. "President Bush has called on all Americans to be more energy efficient. Private industry is joining the federal government in taking a leading role

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Secretary Bodman Travels to Russia to Advance Energy Security | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Russia to Advance Energy Security Russia to Advance Energy Security Secretary Bodman Travels to Russia to Advance Energy Security March 15, 2006 - 12:20pm Addthis Promotes Transparent Markets and Clean Energy Technologies; Participates in G8 Energy Ministerial and Delivers Remarks on the Global Nuclear Energy Partnership MOSCOW, RUSSIA-U.S. Secretary of Energy Samuel W. Bodman today began a two-day visit to Russia where he will lead the U.S. delegation to the G8 Energy Ministerial. During his visit the Secretary will promote greater energy security through the use of advanced energy technologies, the promotion of stable and transparent investment climates, and increased conservation and energy efficiency. Secretary Bodman will also deliver remarks to the Carnegie Center on the Global Nuclear Energy Partnership

382

BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS  

DOE Green Energy (OSTI)

A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated system that exceeds the U.S. Department of Energy (DOE) goal of 40% (HHV) efficiency at emission levels well below the DOE suggested limits; and (5) An advanced biofueled power system whose levelized cost of electricity can be competitive with other new power system alternatives.

David Liscinsky

2002-10-20T23:59:59.000Z

383

Energy Department Releases Draft Advanced Fossil Energy Solicitation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the world's largest wind farms; several of the world's largest solar generation and thermal energy storage systems; one of the country's first commercial scale cellulosic...

384

Advanced Modeling and Simulation Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Modeling & Simulation » Advanced Modeling Advanced Modeling & Simulation » Advanced Modeling and Simulation Documents Advanced Modeling and Simulation Documents October 30, 2013 NEAMS Quarterly Report April-June 2013 The Nuclear Energy Advanced Modeling and Simulation (NEAMS) quarterly report includes highlights, fuel and reactor product line accomplishments, recent and upcoming milestones, news on BISON fuel benchmarks, the latest MeshKit release features, and information on numerical simulations of pebble-bed reactor cores performed by the thermal hydraulics team. September 9, 2013 Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements The purpose of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan is to define what the NEAMS

385

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2000-10-01T23:59:59.000Z

386

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2004-04-01T23:59:59.000Z

387

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL. As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2001-07-01T23:59:59.000Z

388

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2002-07-01T23:59:59.000Z

389

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in the quarterly report. As this program administers research, we have included all program activity herein within the past quarter dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL. As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2000-05-01T23:59:59.000Z

390

Energy Basics: Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

391

Advanced Power Projects | Open Energy Information  

Open Energy Info (EERE)

Projects Projects Jump to: navigation, search Name Advanced Power Projects Place Fremont, California Zip 94539 Sector Efficiency Product Gas turbine efficiency company, developing a simplified combined cycle system to lower system fuel consumption and lower emissions. Coordinates 44.2605°, -88.880509° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2605,"lon":-88.880509,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

392

NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEAMS: The Nuclear Energy Advanced NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program is developing a simulation tool kit using leading-edge computational methods that will accelerate the development and deployment of nuclear power technologies that employ enhanced safety and security features, produce power more cost-effectively, and utilize natural resources more efficiently. The NEAMS ToolKit

393

MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS ? PROJECT SUMMARY  

Science Conference Proceedings (OSTI)

Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach ?1425-1760?C (?2600-3200?F) with pressures of ?300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require (1) durable thermal barrier coatings (TBCs), (2) high temperature creep resistant metal substrates, and (3) effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in the TBCs and aerothermal cooling. To support the advanced turbine technology development, the Office of Research and Development (ORD) at National Energy Technology Laboratory (NETL) has continued its collaborative research efforts with the University of Pittsburgh and West Virginia University, while working in conjunction with commercial material and coating suppliers. This paper presents the technical accomplishments that were made during FY09 in the initial areas of advanced materials, aerothermal heat transfer and non-destructive evaluation techniques for use in advanced land-based turbine applications in the Materials and Component Development for Advanced Turbine Systems project, and introduces three new technology areas ? high temperature overlayer coating development, diffusion barrier coating development, and oxide dispersion strengthened (ODS) alloy development that are being conducted in this effort.

M. A. Alvin

2010-06-18T23:59:59.000Z

394

Advanced Hydropower Turbine System Design for Field Testing  

Science Conference Proceedings (OSTI)

The Alden/Concepts NREC hydroturbine was initially developed under the U.S. Department of Energy's (DOE) Advanced Hydropower Turbine Systems Program. This design work was intended to develop a new runner that would substantially reduce fish mortality at hydroelectric projects, while developing power at efficiencies similar to competing hydroturbine designs. A pilot-scale test facility was constructed to quantify the effects of the conceptual turbine design on passing fish and to verify the hydraulic char...

2009-07-31T23:59:59.000Z

395

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and...

396

Energy Storage for Advanced Electric Vehicles - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, Energy Storage for Advanced Electric Vehicles. Author(s), Christopher Johnson, David Howell. On-Site Speaker (Planned), Christopher...

397

Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012)  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Storage Technology Advancement Partnership (ESTAP) is acooperative funding and information-sharing partnership between DOE and interested states that aims to accelerate the...

398

EERE News: New Energy Department Projects to Accelerate Advanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Energy Department Projects to Accelerate Advanced Vehicles and Diversify the U.S. Fuel Economy November 28, 2012 Photo of hybrid car being charged with electric vehicle...

399

Lawrence Livermore teams with industry to advance energy technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

release: 03192012 | NR-12-03-01 Lawrence Livermore teams with industry to advance energy technologies using high performance computing Donald B Johnston , LLNL, (925)...

400

Advanced Manufacturing Office: Saving Energy in Data Centers  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

opportunities, and adopt energy efficient practices. The R&D Portfolio includes projects funded by DOE's Advanced Manufacturing Office (AMO) that can dramatically improve the...

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NETL: News Release - Department of Energy Advances Commercialization...  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2006 Department of Energy Advances Commercialization of Climate Change Technology DOE to Provide Over 450 Million to Support the Deployment of Carbon Sequestration...

402

A presentation by the Advanced Research Projects Agency - Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agency - Energy (ARPA-E) on Research Opportunities with the DOE for Historically Black Colleges and Universities A presentation by the Advanced Research Projects Agency -...

403

Department of Energy Awards $20 Million for Project to Advance...  

NLE Websites -- All DOE Office Websites (Extended Search)

0, 2009 Department of Energy Awards 20 Million for Project to Advance Industrial Carbon Capture and Storage Recovery Act Funds to Accelerate Commercial Deployment of Breakthrough...

404

Advanced Energy Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Personal) Personal) Advanced Energy Tax Credit (Personal) < Back Eligibility Commercial Savings Category Buying & Making Electricity Solar Maximum Rebate 60 million Program Info State New Mexico Program Type Personal Tax Credit Rebate Amount 6% Provider New Mexico Taxation and Revenue Department As of July 2007, the development and construction costs of solar thermal electric plants and associated energy storage devices are eligible for a 6% tax credit against gross receipts, compensating, or withholding taxes. Photovoltaics and geothermal electric generating facilities installed after July 1, 2009 with a nameplate capacity of at least 1 megawatt were added as eligible technologies by [http://www.nmlegis.gov/lcs/_session.aspx?chamber=S&legtype=B&legno=%2023...

405

Advanced Energy Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporate) Corporate) Advanced Energy Tax Credit (Corporate) < Back Eligibility Commercial Savings Category Buying & Making Electricity Solar Maximum Rebate 60 million Program Info Start Date 7/1/2009 State New Mexico Program Type Corporate Tax Credit Rebate Amount 6% credit against personal, corporate, gross receipts, compensating, or withholding taxes Provider New Mexico Taxation and Revenue Department As of July 2007, the development and construction costs of solar thermal electric plants and associated energy storage devices are eligible for a 6% tax credit against gross receipts, compensating, or withholding taxes. Photovoltaics and geothermal electric generating facilities installed after July 1, 2009 with a nameplate capacity of at least 1 megawatt were added as

406

Advanced Manufacturing Office: Training: Fan Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

the tool and presents the basics-and the benefits-of using it to target opportunities for energy savings in your plant. Fan System Assessment - self-paced workshop Availability:...

407

Advanced Power Systems and Controls Laboratory  

E-Print Network (OSTI)

. Conclusions As utility scale PV and rooftop solar PV become commonplace on our electric grid, battery energy Solar Power Generation Introduction The rapid growth of wind and solar power is a key driver of the development of grid-scale Battery Energy Storage Systems (BESS). A well implemented BESS co-located with solar

408

Advanced Vehicle Technologies Awardees | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Person Solar Energy Potential Solar Energy Potential Renewable Energy Production By State Renewable Energy Production By State 2009 Total Energy Production by State 2009 Total...

409

Materials and Component Development for Advanced Turbine Systems  

SciTech Connect

In order to meet the 2010-2020 DOE Fossil Energy goals for Advanced Power Systems, future oxy-fuel and hydrogen-fired turbines will need to be operated at higher temperatures for extended periods of time, in environments that contain substantially higher moisture concentrations in comparison to current commercial natural gas-fired turbines. Development of modified or advanced material systems, combined with aerothermal concepts are currently being addressed in order to achieve successful operation of these land-based engines. To support the advanced turbine technology development, the National Energy Technology Laboratory (NETL) has initiated a research program effort in collaboration with the University of Pittsburgh (UPitt), and West Virginia University (WVU), working in conjunction with commercial material and coating suppliers as Howmet International and Coatings for Industry (CFI), and test facilities as Westinghouse Plasma Corporation (WPC) and Praxair, to develop advanced material and aerothermal technologies for use in future oxy-fuel and hydrogen-fired turbine applications. Our program efforts and recent results are presented.

Alvin, M.A.; Pettit, F.; Meier, G.; Yanar, N.; Chyu, M.; Mazzotta, D.; Slaughter, W.; Karaivanov, V.; Kang, B.; Feng, C.; Chen, R.; Fu, T-C.

2008-10-01T23:59:59.000Z

410

Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation  

SciTech Connect

The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

Liby, Alan L [ORNL] [ORNL; Rogers, Hiram [ORNL] [ORNL

2013-10-01T23:59:59.000Z

411

Advanced Materials for Energy Conversion III  

Science Conference Proceedings (OSTI)

Nov 1, 2006 ... Print Book: Handbook of Environmental Degradation of Materials ... Advanced Materials; Characterization; Fundamentals; High-Temperature...

412

Advanced Solar Products | Open Energy Information  

Open Energy Info (EERE)

Products Products Jump to: navigation, search Name Advanced Solar Products Place Flemington, New Jersey Zip 8822 Product New Jersey-based PV systems installer and project developer. Coordinates 39.266175°, -80.132549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.266175,"lon":-80.132549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

Treasury, Energy Departments Release New Advanced Coal Project Tax Credit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Treasury, Energy Departments Release New Advanced Coal Project Tax Treasury, Energy Departments Release New Advanced Coal Project Tax Credit Applications for 2007-2008 Treasury, Energy Departments Release New Advanced Coal Project Tax Credit Applications for 2007-2008 June 7, 2007 - 1:40pm Addthis WASHINGTON, DC - The Treasury Department and the Department of Energy (DOE) released today new instructions for applying for the tax credits for advanced coal projects and gasification projects. The new instructions provide additional time to submit applications for the credits. For the 2007-2008 allocation round, applications for DOE certification are not due to the Energy Department until October 31, 2007. "To further advance our nation's energy security, this Administration had made sustained investments in research, development, and wider use of

414

Treasury, Energy Departments Release New Advanced Coal Project Tax Credit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Treasury, Energy Departments Release New Advanced Coal Project Tax Treasury, Energy Departments Release New Advanced Coal Project Tax Credit Applications for 2007-2008 Treasury, Energy Departments Release New Advanced Coal Project Tax Credit Applications for 2007-2008 June 7, 2007 - 1:40pm Addthis WASHINGTON, DC - The Treasury Department and the Department of Energy (DOE) released today new instructions for applying for the tax credits for advanced coal projects and gasification projects. The new instructions provide additional time to submit applications for the credits. For the 2007-2008 allocation round, applications for DOE certification are not due to the Energy Department until October 31, 2007. "To further advance our nation's energy security, this Administration had made sustained investments in research, development, and wider use of

415

Supervisory Control System Architecture for Advanced Small Modular Reactors  

SciTech Connect

This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.

Cetiner, Mustafa Sacit [ORNL] [ORNL; Cole, Daniel L [University of Pittsburgh] [University of Pittsburgh; Fugate, David L [ORNL] [ORNL; Kisner, Roger A [ORNL] [ORNL; Melin, Alexander M [ORNL] [ORNL; Muhlheim, Michael David [ORNL] [ORNL; Rao, Nageswara S [ORNL] [ORNL; Wood, Richard Thomas [ORNL] [ORNL

2013-08-01T23:59:59.000Z

416

Veterans Advancing Clean Energy and Climate Security Champions of Change |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Veterans Advancing Clean Energy and Climate Security Champions of Veterans Advancing Clean Energy and Climate Security Champions of Change Veterans Advancing Clean Energy and Climate Security Champions of Change Addthis 1 of 7 Nancy Sutley, Chair of the White House Council on Environmental Quality (CEQ), kicks-off Champions of Change to honor veterans for advancing clean energy and climate security. Image: Matty Greene, Energy Department. 2 of 7 Secretary Moniz and CEQ Chair Nancy Sutley watch remarks by White House Chief of Staff, Denis McDonough. Image: Matty Greene, Energy Department. 3 of 7 White House Chief of Staff, Denis McDonough, addresses attendees at the Champions of Change event. Image: Matty Greene, Energy Department. 4 of 7 Secretary Moniz delivers remarks at the Champions of Change event. Image: Matty Greene, Energy Department.

417

Advanced Technology Planning for Energy Savings Performance Contracts |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Technology Planning for Energy Savings Performance Advanced Technology Planning for Energy Savings Performance Contracts Advanced Technology Planning for Energy Savings Performance Contracts October 7, 2013 - 1:40pm Addthis Call for Projects FEMP recently issued a notice of intent to release a Funding Opportunity Announcement that will provide grants to develop capital combined heat and power projects. Read the call for projects. Legislation emphasizes the implementation of energy-efficiency and renewable energy technologies in Federal agencies. The Federal Energy Management Program (FEMP) assists agencies in identifying and planning opportunities to deploy advanced technologies using energy savings performance contracts (ESPC). A Federal financing specialist (FFS) will work with a project facilitator and a U.S. Department of Energy (DOE) national laboratory team to identify

418

Advanced Reactor Technology Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Reactor Technologies » Advanced Reactor Nuclear Reactor Technologies » Advanced Reactor Technologies » Advanced Reactor Technology Documents Advanced Reactor Technology Documents January 30, 2013 Advanced Reactor Concepts Technical Review Panel Report This report documents the establishment of a technical review process and the findings of the Advanced Reactor Concepts (ARC) Technical Review Panel (TRP).1 The intent of the process is to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. A goal of the process is to facilitate greater engagement between DOE and industry. The process involved establishing evaluation criteria, conducting a pilot review, soliciting concept inputs from industry entities, reviewing the concepts by TRP members and compiling the

419

New York Power Authority (NYPA): Advanced Grid Innovation Lab for Energy (AGILe)  

Science Conference Proceedings (OSTI)

The proposed New York Power Authority (NYPA) Advanced Grid Innovation Lab for Energy (AGILe) is slated to be a versatile research and development (R&D) center oriented towards applied research in the areas of next-generation advanced energy management systems, electric power systems protection and control, smart grid technologies, and power electronics applications. The labs goal is to promote industry and university collaboration, both from the public and private sector, in the area of ...

2013-10-09T23:59:59.000Z

420

Advanced Energy Products Corp AEP | Open Energy Information  

Open Energy Info (EERE)

Products Corp AEP Products Corp AEP Jump to: navigation, search Name Advanced Energy Products Corp. (AEP) Place Davis, California Zip 95619 Product Created to commercialise energy saving products developed by Davis Energy Group. Coordinates 39.12868°, -79.465714° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.12868,"lon":-79.465714,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Systems Analyses of Advanced Brayton Cycles  

Science Conference Proceedings (OSTI)

The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study how alternative process schemes and power cycles might be used and integrated to achieve higher systems efficiency. To achieve these design results, the total systems approach is taken requiring creative integration of the various process units within the plant. Advanced gas turbine based cycles for Integrated gasification Combined cycle (IGCC) applications are identified by a screening analysis and the more promising cycles recommended for detailed systems analysis. In the case of the IGFC task, the main objective is met by developing a steady-state simulation of the entire plant and then using dynamic simulations of the hybrid Solid Oxide Fuel Cell (SOFC)/Gas Turbine sub-system to investigate the turbo-machinery performance. From these investigations the desired performance characteristics and a basis for design of turbo-machinery for use in a fuel cell gas turbine power block is developed.

A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

2008-09-30T23:59:59.000Z

422

Advanced Redox Flow Batteries for Stationary Electrical Energy Storage  

SciTech Connect

This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energys Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

2012-03-19T23:59:59.000Z

423

Energy Department Announces $10 Million to Advance Innovative,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces $10 Million to Advance Innovative, Energy Department Announces $10 Million to Advance Innovative, Energy-Saving Lighting Technologies Energy Department Announces $10 Million to Advance Innovative, Energy-Saving Lighting Technologies December 6, 2013 - 1:48pm Addthis As part of cutting energy waste and doubling energy productivity by 2030, the Energy Department today announced nearly $10 million to support research, development, and manufacturing of solid-state lighting (SSL) technologies across the country. This funding will help accelerate the development of high-quality light-emitting diode (LED) and organic light-emitting diode (OLED) products with the potential to reduce lighting energy use for American families and businesses by one half and enhance U.S. global competitiveness. Based on the Energy Department's recent report on the adoption of LEDs,

424

Department of Energy Announces up to $70 Million to Advance Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Energy Announces up to 70 Million to Advance Technology and Reduce Cost of Geothermal Energy Department of Energy Announces up to 70 Million to Advance Technology and...

425

REQUEST BY MERIDIAN AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement of Considerations Statement of Considerations REQUEST BY MERIDIAN AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER A SUBTIER CONTRACT UNDER UT-BATTELLE, LLC SUBCONTRACT NO. 4000010928, UNDER DOE PRIME CONTRACT DE-AC05- 00OR22725; DOE WAIVER DOCKET W(A)-2003-037; [ORO-780] Meridian Automotive Systems, Inc. (Meridian) has made a request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under a subtier contract under UT-Battelle, LLC Subcontract No. 4000010928 with Volvo Trucks North America under Department of Energy (DOE) Contract DE-AC05-00OR22725. The scope of work of this project is for the utilization of Carbon Fiber Sheet Molding Compound (SMC) Materials for

426

Tribal Renewable Energy Advanced Course: Project Development and Financing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tribal Renewable Energy Advanced Course: Project Development and Tribal Renewable Energy Advanced Course: Project Development and Financing Essentials Tribal Renewable Energy Advanced Course: Project Development and Financing Essentials Watch the DOE Office of Indian Energy advanced course webinar entitled "Tribal Renewable Energy Project Development and Financing Essentials" by clicking on the .swf link below. You can also download the presentation slides and a text version of the audio. The presentation provides an overview of developing and financing clean energy projects on tribal lands, including key concepts and decision points. See the full list of DOE Office of Indian Energy educational webinars and provide your feedback on the National Training & Education Resource (NTER) website. essentials.swf Presentation Slides

427

Advanced Patent Waivers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Technology Transfer and Procurement » Technology Services » Technology Transfer and Procurement » Technology Transfer & Intellectual Property » Patent Waivers Overview » Advanced Patent Waivers Advanced Patent Waivers June 26, 2008 Advance Patent Waiver W(A)2008-007 This is a request by SCHOTT NORTH AMERICA, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FG36-07GO17001 May 6, 2008 Advance Patent Waiver W(A)2008-004 This is a request by HUNTSMAN ADVANCED MATERIALS AMERICANS, INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-FG36-07GO17012 February 26, 2008 Advance Patent Waiver W(A)2007-015 This is a request by UNITED TECHNOLOGIES CORP for a DOE waiver of domestic and foreign patent rights under agreement DE-FC26-07NT43055 February 8, 2008

428

Advanced coal-fueled gas turbine systems  

SciTech Connect

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

429

Energy Engineering and Systems Analysis - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Engineering and Systems Analysis U.S. Department of Energy Energy Engineering and Systems Analysis U.S. Department of Energy Search Argonne ... Search Decision and Information Sciences Energy Systems FutureGrid Infrastructure Assurance Center Intelligence Analysis National Security Nuclear Engineering Transportation Research and Analysis Computing Center Transportation Technology R&D Center EESA Intranet Image of battery development team standing by an electric vehicle in Argonne's Ev-Smart Grid Interoperability Center Features eesa success stories ebr-2 Argonne's Major Nuclear Energy Milestones Argonne's Nuclear Energy Exhibit Argonne's Nuclear Energy Exhibit Argonne's Glassblowing Studio Glassblowing Studio Reactor Advanced Burner Test Reactor Preconceptual Design Argonne Experts Guide Argonne Experts Guide

430

Property:AdvancedEconomy | Open Energy Information  

Open Energy Info (EERE)

AdvancedEconomy AdvancedEconomy Jump to: navigation, search This is a property of type Boolean. Pages using the property "AdvancedEconomy" Showing 25 pages using this property. (previous 25) (next 25) A Afghanistan + false + Albania + false + Algeria + false + Andorra + false + Angola + false + Anguilla + false + Antigua and Barbuda + false + Argentina + false + Armenia + false + Aruba + false + Australia + true + Austria + true + Azerbaijan + false + B Bahamas + false + Bahrain + false + Bangladesh + false + Barbados + false + Belarus + false + Belgium + true + Belize + false + Benin + false + Bermuda + false + Bhutan + false + Bolivia + false + Bosnia and Herzegovina + false + (previous 25) (next 25) Retrieved from "http://en.openei.org/w/index.php?title=Property:AdvancedEconomy&oldid=282067#SMWResults"

431

Advanced Solar Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name Advanced Solar Technologies Inc Place San Diego, California Sector Solar Product California-based domestic and commercial designer and...

432

Advanced Materials Success Stories - Energy Innovation Portal  

Advanced Materials Success Stories These success stories highlight some of the effective licensing and partnership activity between laboratories and industry in the ...

433

Advanced turbine systems: Studies and conceptual design  

SciTech Connect

The ABB selection for the Advanced Turbine System (ATS) includes advanced developments especially in the hot gas path of the combustion turbine and new state-of-the-art units such as the steam turbine and the HRSG. The increase in efficiency by more than 10% multiplicative compared to current designs will be based on: (1) Turbine Inlet Temperature Increase; (2) New Cooling Techniques for Stationary and Rotating Parts; and New Materials. Present, projected component improvements that will be introduced with the above mentioned issues will yield improved CCSC turbine performance, which will drive the ATS selected gas-fired reference CC power plant to 6 % LHV or better. The decrease in emission levels requires a careful optimization of the cycle design, where cooling air consumption has to be minimized. All interfaces of the individual systems in the complete CC Plant need careful checks, especially to avoid unnecessary margins in the individual designs. This study is an important step pointing out the feasibility of the ATS program with realistic goals set by DOE, which, however, will present challenges for Phase II time schedule of 18 months. With the approach outlined in this study and close cooperation with DOE, ATS program success can be achieved to deliver low emissions and low cost of electricity by the year 2002. The ABB conceptual design and step approach will lead to early component demonstration which will help accelerate the overall program objectives.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1993-11-01T23:59:59.000Z

434

Innovative bidirectional video-goniophotometer for advanced fenestration systems.  

E-Print Network (OSTI)

??Efficient collection and redistribution of the direct and diffuse components of daylight in buildings remains a major objective of advanced fenestration systems. Such systems, including (more)

Andersen, Marilyne

435

Innovative bidirectional video-goniophotometer for advanced fenestration systems.  

E-Print Network (OSTI)

??Efficient collection and redistribution of the direct and diffuse components of daylight in buildings remains a major objective of advanced fenestration systems. Such systems, including (more)

Andersen, Marilyne

2004-01-01T23:59:59.000Z

436

Alternative Fuels and Advanced Vehicles Data Center | Open Energy  

Open Energy Info (EERE)

Alternative Fuels and Advanced Vehicles Data Center Alternative Fuels and Advanced Vehicles Data Center Jump to: navigation, search Tool Summary Name: Alternative Fuels and Advanced Vehicles Data Center Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Fuels & Efficiency, Biomass, Hydrogen, Transportation Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Datasets, Technology characterizations Resource Type: Dataset, Guide/manual User Interface: Website Website: www.afdc.energy.gov/afdc/ Cost: Free References: Alternative Fuels and Advanced Vehicles Data Center[1] The Alternative Fuels and Advanced Vehicles Data Center provides a wide range of information and resources to enable the use of alternative fuels, in addition to other petroleum reduction options such as advanced vehicles,

437

Advanced Materials for Sustainable, Clean Energy Future  

DOE Green Energy (OSTI)

The current annual worldwide energy consumption stands at about 15 terawatts (TW, x1012 watts). Approximately 80% of it is supplied from fossil fuels: oil (34 %), coal (25 %), and natural gas (21 %). Biomass makes up 8% of the energy supply, nuclear energy accounts for 6.5 %, hydropower has a 2% share and other technologies such as wind and solar make up the rest. Even with aggressive conservation and new higher efficiency technology development, worldwide energy demand is predicted to double to 30 TW by 2050 and triple to 46 TW by the end of the century. Meanwhile oil and natural gas production is predicted to peak over the next few decades. Abundant coal reserves may maintain the current consumption level for longer period of time than the oil and gas. However, burning the fossil fuels leads to a serious environmental consequence by emitting gigantic amount of green house gases, particularly CO2 emissions which are widely considered as the primary contributor to global warming. Because of the concerns over the greenhouse gas emission, many countries, and even some states and cities in the US, have adopted regulations for limiting CO2 emissions. Along with increased CO2 regulations, is an emerging trend toward carbon trading, giving benefits to low carbon footprint industries, while making higher emitting industries purchase carbon allowances. There have been an increasing number of countries and states adopting the trade and cap systems.

Yang, Zhenguo

2009-04-01T23:59:59.000Z

438

Energy Delivery Systems Cybersecurity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cybersecurity Energy Delivery Systems Cybersecurity Energy Delivery Systems Cybersecurity About the Cybersecurity for Energy Delivery Systems Program A key mission of the...

439

Ocean thermal energy conversion (OTEC) power system development utilizing advanced, high-performance heat transfer techniques. Volume 1. Conceptual design report  

DOE Green Energy (OSTI)

The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC Demonstration Plant. In turn, this Demonstration Plant is to demonstrate, by 1984, the operation and performance of an ocean thermal power plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the Demonstration Plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibility studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report describes the full-size power system module, and summarizes the design parameters and associated costs for the Demonstration Plant module (prototype) and projects costs for commercial plants in production. The material presented is directed primarily toward the surface platform/ship basic reference hull designated for use during conceptual design; however, other containment vessels were considered during the design effort so that the optimum power system would not be unduly influenced or restricted. (WHK)

Not Available

1978-05-12T23:59:59.000Z

440

Advanced Vehicle Technologies Awards Table | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Awards Table Vehicle Technologies Awards Table Advanced Vehicle Technologies Awards Table The table contains a listing of the applicants, their locations, the amounts of the awards, and description of each project. The sub-categories of the table include: Advanced fuels and lubricants Light-weighting materials Demonstration Project for a Multi-Material Light-Weight Prototype Vehicle Advanced cells and design technology for electric drive batteries Advanced power electronics and electric motor technology Solid State Thermoelectric Energy Conversion Devices Fleet Efficiency Advanced Vehicle Testing and Evaluation Microsoft Word - VTP $175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 More Documents & Publications Advanced Vehicle Technologies Awards advanced vehicle technologies awards table

Note: This page contains sample records for the topic "advanced energy systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle System  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Advanced Vehicle System Manufacturing Incentive to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle System Manufacturing Incentive on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle System Manufacturing Incentive on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle System Manufacturing Incentive on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle System Manufacturing Incentive on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle System Manufacturing Incentive on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle System Manufacturing Incentive on AddThis.com...

442

Advanced Technology Development Center ATDC | Open Energy Information  

Open Energy Info (EERE)

Technology Development Center ATDC Technology Development Center ATDC Jump to: navigation, search Name Advanced Technology Development Center (ATDC) Place United States Sector Services Product General Financial & Legal Services ( State-owned commercial entity ) References Advanced Technology Development Center (ATDC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Advanced Technology Development Center (ATDC) is a company located in United States . References ↑ "Advanced Technology Development Center (ATDC)" Retrieved from "http://en.openei.org/w/index.php?title=Advanced_Technology_Development_Center_ATDC&oldid=341805" Categories: Clean Energy Organizations Companies

443

IEP - Water-Energy Interface: Advanced Water Treatment and Detection...  

NLE Websites -- All DOE Office Websites (Extended Search)

systems used to control nitrogen oxide emissions can appear in a power plant's wastewater streams. Research is needed for advanced technologies to detect and remove mercury,...

444

Energy Department Awards $45 Million to Deploy Advanced Transportation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

materials -- such as advanced high-strength steel, magnesium and aluminum - that allow vehicle manufacturers to include electric drive components, electronic systems and...

445

Economic Impacts of Advanced Weather Forecasting on Energy ...  

E-Print Network (OSTI)

Mar 5, 2010 ... Abstract: We analyze the impacts of adopting advanced weather forecasting systems at different levels of the decision-making hierarchy of the...

446

Advance Energy Technologies: Proposed Penalty (2013-CE-5302) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Penalty (2013-CE-5302) Proposed Penalty (2013-CE-5302) Advance Energy Technologies: Proposed Penalty (2013-CE-5302) January 31, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Advance Energy Technologies, Inc. failed to certify walk-in cooler or freezer (WICFs) components as compliant with the energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Advance Energy Technologies: Proposed Penalty (2013-CE-5302) More Documents & Publications Advance Energy Technologies: Order (2013-CE-5302)

447

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution July 2, 2013 - 12:16pm Addthis What are the key facts? This solicitation will support projects that avoid, reduce, or sequester air pollutants or greenhouse gas emissions, an important part of the Administration's long-term plan towards a cleaner and more secure energy future. Applications for projects and facilities include any fossil technology that is new or significantly improved, as compared to commercial technologies in service in the U.S. The Department of Energy's (DOE) Loan Programs Office is releasing a new draft loan guarantee solicitation for innovative and advanced fossil energy

448

Energy Department Announces New Investments in Advanced Nuclear Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces New Investments in Advanced Nuclear Energy Department Announces New Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors June 27, 2013 - 2:20pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to accelerate clean energy leadership and to enable a low-carbon economy, the Energy Department today announced $3.5 million for four advanced nuclear reactor projects that go beyond traditional light water designs. These projects -- led by General Atomics, GE Hitachi, Gen4 Energy and Westinghouse -- will address key technical challenges to designing, building and operating the next generation of nuclear reactors. These steps support the President's plan to cut carbon pollution and spark innovation

449

Energy Department Advances Carbon Capture and Storage Research on Two  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Advances Carbon Capture and Storage Research on Energy Department Advances Carbon Capture and Storage Research on Two Fronts Energy Department Advances Carbon Capture and Storage Research on Two Fronts September 16, 2009 - 1:00pm Addthis Washington, DC - Forty-three research projects that will advance carbon capture and storage (CCS) technologies while providing graduate and undergraduate student training opportunities at universities across the country will be supported by $12.7 million in U.S. Department of Energy funding announced today. View Project Details Spread over three years, the regional sequestration training projects and funding will be managed by the Office of Fossil Energy's National Energy Technology Laboratory. The projects are funded through the 2009 American Reinvestment and Recovery Act and are aimed at the broad objectives of

450

Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bodman Showcases Advanced Clean Diesel and Hybrid Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses May 10, 2005 - 12:45pm Addthis Says Energy Bill Essential to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an exhibition of energy-efficient, clean diesel and advanced hybrid commercial vehicles at a press conference in Washington, D.C. Secretary Bodman also underscored the need to pass an energy bill that encourages the use of renewable fuels and new technologies to provide the United States with greater energy independence. "Industry and government are working hand-in-hand to develop technologies

451

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution July 2, 2013 - 12:16pm Addthis What are the key facts? This solicitation will support projects that avoid, reduce, or sequester air pollutants or greenhouse gas emissions, an important part of the Administration's long-term plan towards a cleaner and more secure energy future. Applications for projects and facilities include any fossil technology that is new or significantly improved, as compared to commercial technologies in service in the U.S. The Department of Energy's (DOE) Loan Programs Office is releasing a new draft loan guarantee solicitation for innovative and advanced fossil energy

452

Repowering flexibility of coal-based advanced power systems  

Science Conference Proceedings (OSTI)

The Department of Energy`s (DOE`s) Morgantown Energy Technology Center (METC) helps enhance the economic competitiveness, environmental quality, and national well-being of the U.S. by developing advanced power-generation systems. The potential market for advanced power-generation systems is large. In the U.S., electric demand is estimated to grow at about 1 percent per year through the year 2010. The total power generation market also includes new-capacity as well as replacement of existing power plants as they age. Thus, the market for power systems over the next 15 years is estimated to be about 279,000 megawatts (MW), but could range from as much as 484,000 MW to as little as 153,000 MW. These predictions are summarized. Over the next 15 years, the replacement market is potentially much larger than the expansion market because of the large base of aging power plants in the U.S.

Bajura, R.A.; Bechtel, T.F.; Schmidt, D.K.; Wimer, J.G.

1995-03-01T23:59:59.000Z

453

Energy Information Systems website  

NLE Websites -- All DOE Office Websites (Extended Search)

and visualize the energy use of their buildings. Please visit the recently updated Energy Information System website for EETD research papers, case studies, and a download...

454

Energy Basics: Heating Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of energy sources, including electricity, boilers, solar energy, and wood and pellet-fuel heating. Small Space Heaters Used when the main heating system is inadequate or when...