Sample records for advanced emission reduction

  1. advanced emission reduction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reduction by means Multidisciplinary Databases and Resources Websites Summary: and Plasma Research Department, Ris), Helge Egsgaard (Biosystems Department, Ris), Per G....

  2. DEMONSTRATION OF AN ADVANCED INTEGRATED CONTROL SYSTEM FOR SIMULTANEOUS EMISSIONS REDUCTION

    SciTech Connect (OSTI)

    Suzanne Shea; Randhir Sehgal; Ilga Celmins; Andrew Maxson

    2002-02-01T23:59:59.000Z

    The primary objective of the project titled ''Demonstration of an Advanced Integrated Control System for Simultaneous Emissions Reduction'' was to demonstrate at proof-of-concept scale the use of an online software package, the ''Plant Environmental and Cost Optimization System'' (PECOS), to optimize the operation of coal-fired power plants by economically controlling all emissions simultaneously. It combines physical models, neural networks, and fuzzy logic control to provide both optimal least-cost boiler setpoints to the boiler operators in the control room, as well as optimal coal blending recommendations designed to reduce fuel costs and fuel-related derates. The goal of the project was to demonstrate that use of PECOS would enable coal-fired power plants to make more economic use of U.S. coals while reducing emissions.

  3. Advanced Diesel Common Rail Injection System for Future Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Rail Injection System for Future Emission Legislation Advanced Diesel Common Rail Injection System for Future Emission Legislation 2004 Diesel Engine Emissions Reduction...

  4. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO[sub x] burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulatecharacteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO[sub x] emission levels to be approximately 0.65 lb/MBtu. Flyash LOI values for the LNB configuration are approximately 8 percent at full-load. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. Abbreviated diagnostic tests for the LNB+AOFA configuration indicate that at 500 MWe, NO[sub x] emissions are approximately 0.55 lb/MBtu with corresponding flyash LOI values of approximately 11 percent. For comparison, the long-term full-load, baseline NO[sub x] emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB+AOFA configuration will be performed when the stackparticulate emissions issue is resolved. Testing of a process optimization package on Plant Hammond Unit 4 was performed during this quarter. The software was configured to minimize NO[sub x] emissions using total combustion air flow and advanced overfire air distribution as the controlled parameters. Preliminary results from this testing indicate that this package shows promise in reducing NO[sub x] emissions while maintaining or improving other boiler performance parameters.

  5. 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    ABB CE's Low NOx Bulk Furnace Staging (LNBFS) System and Low NOx Concentric Firing System (LNCFS) are demonstrated in stepwise fashion. These systems incorporate the concept of advanced overfire air (AOFA), clustered coal nozzles, and offset air. A complete description of the installed technologies is provided in the following section. The primary objective of the Plant Lansing Smith demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology are also being performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project.

  6. Characterizing Test Methods and Emissions Reduction Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Methods and Emissions Reduction Performance of In-Use Diesel Retrofit Technologies from the National Clean Diesel Campaign Characterizing Test Methods and Emissions Reduction...

  7. Demonstrating Fuel Consumption and Emissions Reductions with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Demonstrating Fuel Consumption and Emissions Reductions with Next Generation...

  8. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    SciTech Connect (OSTI)

    Noam Lior; Stuart W. Churchill

    2003-10-01T23:59:59.000Z

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at the Gordon Conference on Modern Development in Thermodynamics. The results obtained are very encouraging for the development of the RCSC as a commercial burner for significant reduction of NO{sub x} emissions, and highly warrants further study and development.

  9. Emissions Reduction Impact of Renewables

    E-Print Network [OSTI]

    Haberl, J. S.; Yazdani, B.; Culp, C.

    2012-01-01T23:59:59.000Z

    p. 1 Energy Systems Laboratory ? 2012 EMISSIONS REDUCTION IMPACT OF RENEWABLES October 2012 Jeff Haberl, Bahman Yazdani, Charles Culp Energy Systems Laboratory Texas A&M University p. 2 Energy Systems Laboratory ? 2012... Do TCEQ: Vince Meiller, Bob Gifford ERCOT: Warren Lasher USEPA: Art Diem, Julie Rosenberg ACKNOWLEDGEMENTS p. 3 Energy Systems Laboratory ? 2012 RENEWABLES Solar PV Solar Thermal Hydro Biomass Landfill Gas Geothermal p. 4...

  10. Emissions Reduction Impact of Renewables 

    E-Print Network [OSTI]

    Haberl, J. S.; Yazdani, B.; Culp, C.

    2012-01-01T23:59:59.000Z

    Systems Laboratory ? 2012 p. 9 Energy Systems Laboratory ? 2012 p. 10 Energy Systems Laboratory ? 2012 WIND PROJECTS IN TEXAS Completed, Announced, and Retired Wind Projects in Texas, as of December 2011 p. 11 Energy Systems Laboratory ? 2012... Laboratory ? 2012 p. 24 Energy Systems Laboratory ? 2012 p. 25 Energy Systems Laboratory ? 2012 NOx REDUCTIONS FROM WIND POWER New 2010 Annual eGrid for NOx Emissions West Zone North Zone Houston Zone South Zone Unit: lbs of NOx/MWh Unit: lbs...

  11. Electricity Generation and Emissions Reduction Decisions

    E-Print Network [OSTI]

    Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General analysis, and public education in global environmental change. It seeks to provide leadership;1 Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium

  12. Greenhouse Gas Emissions Reduction Act (Maryland)

    Broader source: Energy.gov [DOE]

    The Greenhouse Gas Emissions Reduction Act requires the Department of the Environment to publish and update an inventory of statewide greenhouse gas emissions for calendar year 2006 and requires...

  13. Perspectives Regarding Diesel Engine Emissions Reduction in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast 2004 Diesel Engine Emissions...

  14. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Fourth quarterly technical progress report, [October--December, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    This quarterly report discusses the technical progress of a U. S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NOx control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NOx concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. During this quarter, tests of the LNCFS Level III system were conducted to determine the effect that fuel fineness has on NOx emissions and unburned carbon levels. Results showed that changing the fineness of the fuel has almost no effect on NOx emissions; however, unburned carbon levels can be reduced significantly by increasing fuel fineness.

  15. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01T23:59:59.000Z

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  16. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-02-03T23:59:59.000Z

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an Advanced Overfire Air (AOFA) system followed by Low NO{sub x} Burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

  17. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1991

    SciTech Connect (OSTI)

    Not Available

    1992-02-03T23:59:59.000Z

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an Advanced Overfire Air (AOFA) system followed by Low NO{sub x} Burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

  18. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-11-25T23:59:59.000Z

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

  19. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Public design report (preliminary and final)

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This Public Design Report presents the design criteria of a DOE Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of NO{sub x} emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. The technologies being demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NO{sub x} burner. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NO{sub x} burners, advanced overfire systems, and digital control system.

  20. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Third quarterly progress report, 1992: Innovative Clean Coal Technology (ICCT)

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulatecharacteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO{sub x} emission levels to be approximately 0.65 lb/MBtu. Flyash LOI values for the LNB configuration are approximately 8 percent at full-load. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. Abbreviated diagnostic tests for the LNB+AOFA configuration indicate that at 500 MWe, NO{sub x} emissions are approximately 0.55 lb/MBtu with corresponding flyash LOI values of approximately 11 percent. For comparison, the long-term full-load, baseline NO{sub x} emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB+AOFA configuration will be performed when the stackparticulate emissions issue is resolved. Testing of a process optimization package on Plant Hammond Unit 4 was performed during this quarter. The software was configured to minimize NO{sub x} emissions using total combustion air flow and advanced overfire air distribution as the controlled parameters. Preliminary results from this testing indicate that this package shows promise in reducing NO{sub x} emissions while maintaining or improving other boiler performance parameters.

  1. Low Temperature Combustion and Diesel Emission Reduction Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Diesel Emission Reduction Research Low Temperature Combustion and Diesel Emission Reduction Research Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan....

  2. Fuel economy and emissions reduction of HD hybrid truck over...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    economy and emissions reduction of HD hybrid truck over transient driving cycles and interstate roads Fuel economy and emissions reduction of HD hybrid truck over transient driving...

  3. Carbon Emissions Reduction Potential in the US Chemicals and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999 Carbon Emissions Reduction Potential in the US...

  4. Idling Emissions Reduction Technology with Low Temperature Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idling Emissions Reduction Technology with Low Temperature Combustion of DI Biodiesel and PFI n-Butanol Idling Emissions Reduction Technology with Low Temperature Combustion of DI...

  5. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, first quarter 1992

    SciTech Connect (OSTI)

    Not Available

    1992-05-20T23:59:59.000Z

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO{sub x} emissions for each day of long-term testing are presented. The average NO{sub x} emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO{sub x} combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

  6. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-05-20T23:59:59.000Z

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO[sub x] emissions for each day of long-term testing are presented. The average NO[sub x] emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO[sub x] combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

  7. Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

  8. 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report second quarter, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    ABB CE`s Low NOx Bulk Furnace Staging (LNBFS) System and Low NOx Concentric Firing System (LNCFS) are demonstrated in stepwise fashion. These systems incorporate the concept of advanced overfire air (AOFA), clustered coal nozzles, and offset air. A complete description of the installed technologies is provided in the following section. The primary objective of the Plant Lansing Smith demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology are also being performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project.

  9. US DRIVE Advanced Combustion and Emission Control Technical Team...

    Energy Savers [EERE]

    Advanced Combustion and Emission Control Technical Team Roadmap US DRIVE Advanced Combustion and Emission Control Technical Team Roadmap The ACEC focuses on advanced engine and...

  10. Advanced Collaborative Emissions Study (ACES) NETL Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NETL Agreement 13919 Advanced Collaborative Emissions Study (ACES) NETL Agreement 13919 Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

  11. Advanced Collaborative Emissions Study (ACES) - Cooperative multi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Cooperative multi-party effort to characterize emissions and possible health effects of new advanced heavy duty engine and control systems and fuels in the market 2007 - 2010...

  12. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1992

    SciTech Connect (OSTI)

    Not Available

    1992-11-25T23:59:59.000Z

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

  13. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal fired boilers. Second quarterly technical progress report, [April--June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO{sub x} emission levels to be approximately 0.65 lb/MBtu with flyash LOI values of approximately 8 percent. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. For comparison, the long-term full-load, baseline NO{sub x} emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB plus AOFA configuration began in May 1993 and is scheduled to end during August 1993. As of June 30, the diagnostic, performance, chemical emissions tests segments for this configuration have been conducted and 29 days of long-term, emissions data collected. Preliminary results from the May--June 1993 tests of the LNB plus AOFA system show that the full load NO{sub x} emissions are approximately 0.42 lb/MBtu with corresponding fly ash LOI values near 8 percent. This is a substantial improvement in both NO{sub x} emissions and LOI values when compared to the results obtained during the February--March 1992 abbreviated testing of this system.

  14. Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials...

    Open Energy Info (EERE)

    Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Agency...

  15. Emissions Reduction Experience with Johnson Matthey EGRT on Off...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduction Experience with Johnson Matthey EGRT on Off-Road Equipment Emissions Reduction Experience with Johnson Matthey EGRT on Off-Road Equipment Poster presentation at the 2007...

  16. Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector

    SciTech Connect (OSTI)

    Bilello, D.; Katz, J.; Esterly, S.; Ogonowski, M.

    2014-09-01T23:59:59.000Z

    Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers as they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.

  17. Exploring Advanced Combustion Regimes for Efficiency and Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exploring Advanced Combustion Regimes for Efficiency and Emissions Exploring Advanced Combustion Regimes for Efficiency and Emissions 2003 DEER Conference Presentation: Oak Ridge...

  18. Phase 1 of the Advanced Collaborative Emissions Study (ACES)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 of the Advanced Collaborative Emissions Study (ACES): Highlights of Project Finding Phase 1 of the Advanced Collaborative Emissions Study (ACES): Highlights of Project Finding...

  19. COP 18 Side Event: Advancing Collaborative Action for Low Emissions...

    Open Energy Info (EERE)

    Event: Advancing Collaborative Action for Low Emissions Development Jump to: navigation, search Low Emission Development Strategies Global Partnership Advancing climate-resilient,...

  20. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Topical report, LNCFS Levels 1 and 3 test results

    SciTech Connect (OSTI)

    Not Available

    1993-08-17T23:59:59.000Z

    This report presents results from the third phase of an Innovative Clean Coal Technology (ICC-1) project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The purpose of this project was to study the NO{sub x} emissions characteristics of ABB Combustion Engineering`s (ABB CE) Low NO{sub x} Concentric Firing System (LNCFS) Levels I, II, and III. These technologies were installed and tested in a stepwise fashion at Gulf Power Company`s Plant Lansing Smith Unit 2. The objective of this report is to provide the results from Phase III. During that phase, Levels I and III of the ABB C-E Services Low NO{sub x} Concentric Firing System were tested. The LNCFS Level III technology includes separated overfire air, close coupled overfire air, clustered coal nozzles, flame attachment coal nozzle tips, and concentric firing. The LNCFS Level I was simulated by closing the separated overfire air nozzles of the LNCFS Level III system. Based upon long-term data, LNCFS Level HI reduced NO{sub x} emissions by 45 percent at full load. LOI levels with LNCFS Level III increased slightly, however, tests showed that LOI levels with LNCFS Level III were highly dependent upon coal fineness. After correcting for leakage air through the separated overfire air system, the simulated LNCFS Level I reduced NO{sub x} emissions by 37 percent. There was no increase in LOI with LNCFS Level I.

  1. Integrated Assessment of the Energy Savings and Emissions-Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of the Energy Savings and Emissions-Reduction Potential of CHP, June 1999 Integrated Assessment of the Energy Savings and Emissions-Reduction Potential of CHP, June 1999...

  2. Methods for reduction of charging emissions

    SciTech Connect (OSTI)

    Schuecker, F.J.; Schulte, H. [Krupp Uhde GmbH, Dortmund (Germany)

    1997-12-31T23:59:59.000Z

    One of the most critical subjects in coking plants are charging emissions. The paper reviews the systems that have been used over the years to reduce charging emissions. The advantages and disadvantages are summarized for the following systems: Double collecting main with aspiration on both oven sides; Single collecting main with/without aspiration via standpipe, and extraction and cleaning of charging gas on charging car; Single collecting main with aspiration via standpipe and pretreatment of charging gas on the charging car as well as additional stationary exhaust and cleaning of charging gas; Single collecting main with aspiration via single standpipe; and Single collecting main with simultaneous aspiration via two standpipes and a U-tube connecting the oven chamber with the neighboring oven. The paper then briefly discusses prerequisites for reduction of charging emissions.

  3. Advanced Clean Cars Zero Emission Vehicle Regulation

    E-Print Network [OSTI]

    California at Davis, University of

    Advanced Clean Cars Zero Emission Vehicle Regulation ZEV #12;Advanced Clean Cars ZEV Program 2020 2021 2022 2023 2024 2025 Current Regulation -ZEVs Current Regulation -PHEVs Projected: PHEVs 15 infrastructure, the cars won't come · Complementary Policies to support ZEV regulation ­ Clean Fuels Outlet

  4. The Advanced Collaborative Emissions Study Moving Forward with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moving Forward with Assessing the Emissions and Health Effects of New Diesel Technology The Advanced Collaborative Emissions Study Moving Forward with Assessing the Emissions and...

  5. Sequestration Offsets versus Direct Emission Reductions: Consideration of Environmental Externalities

    E-Print Network [OSTI]

    McCarl, Bruce A.

    support for allocating resources to alter the market mix of carbon sequestration and direct emission carbon sequestration practices also influence the environment by for example reducing erosion1 Sequestration Offsets versus Direct Emission Reductions: Consideration of Environmental

  6. Low Temperature Combustion and Diesel Emission Reduction Research

    Broader source: Energy.gov (indexed) [DOE]

    Compression ratio control Enablers: Advanced controls Variable Valve Timing Two-stage turbo-charging CoolingEGR Two stage combustion Fuel CN reduction Vaporization too slow...

  7. Methodology for Estimating Reductions of GHG Emissions from Mosaic...

    Open Energy Info (EERE)

    Methodology for Estimating Reductions of GHG Emissions from Mosaic Deforestation AgencyCompany Organization: World Bank Sector: Land Focus Area: Forestry Topics: Co-benefits...

  8. Advanced LD Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LD Engine Systems and Emissions Control Modeling and Analysis Advanced LD Engine Systems and Emissions Control Modeling and Analysis 2012 DOE Hydrogen and Fuel Cells Program and...

  9. Development and Deployment of Advanced Emission Controls for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market 2003 DEER Conference Presentation: Cleaire Advanced Emission Controls 2003deeredgar.pdf More Documents & Publications Emission Control Systems and Components for Retrofit...

  10. Advanced Collaborative Emissions Study (ACES): Phase 2 Status...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : Phase 2 Status Report Advanced Collaborative Emissions Study (ACES): Phase 2 Status Report Discusses status of ACES, a cooperative multi-party effort to characterize emissions...

  11. Advanced PHEV Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Engine Systems and Emissions Control Modeling and Analysis Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis 2011 DOE Hydrogen and Fuel Cells Program,...

  12. Advanced HD Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HD Engine Systems and Emissions Control Modeling and Analysis Advanced HD Engine Systems and Emissions Control Modeling and Analysis 2012 DOE Hydrogen and Fuel Cells Program and...

  13. Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity 2003 DEER Conference...

  14. CO2 Emissions Mitigation and Technological Advance: An

    E-Print Network [OSTI]

    PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Updated Analysis of Advanced/2003) #12;PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Analysis of Advanced Technology of atmospheric CO2 concentrations at 450 parts per million by volume (ppmv) and 550 ppmv in MiniCAM. Each

  15. Air Emissions Reduction Assistance Program (Iowa) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Provider Iowa Department of Natural Resources The State of Iowa may provide financial assistance in the form of loans andor grants to projects aimed at reducing air emissions...

  16. Advanced configurations for leakage reduction in a labyrinth seal

    E-Print Network [OSTI]

    Veldanda, Sharath B.

    1992-01-01T23:59:59.000Z

    ADVANCED CONFIGURATIONS FOR LEAKAGE REDUCTION IN A LABYRINTH SEAL A Thesis by SHARATH B. VELDANDA Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1992 Major Subject: Mechanical Engineering ADVANCED CONFIGURATION FOR LEAKAGE REDUCTION IN A LABYRINTH SEAL A Thesis by SHARATH B. VELDANDA Approved as to style and content by: David L. Rhode y~~ (Member) K. D. Korkan (Member...

  17. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  18. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    Energy Savings and CO2 Emissions Reduction of China’s CementEnergy Savings and CO2 Emissions Reduction of China’s Cementenergy savings and CO2 emission reduction potentials are

  19. A Review of Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01T23:59:59.000Z

    efficiency and CO2 Emission-reduction Technologies forefficiency and CO2 Emission- reduction Technologies forefficiency and CO2 Emission-reduction Technologies The

  20. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOE Patents [OSTI]

    Reitz, Rolf D. (Madison, WI); Thiel, Matthew P. (Madison, WI)

    2003-01-01T23:59:59.000Z

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  1. Advanced Diesel Common Rail Injection System for Future Emission...

    Broader source: Energy.gov (indexed) [DOE]

    all rights of disposal such as copying and passing on to third parties. 1 Advanced Diesel Common Rail Injection System for Future Emission Legislation Roger Busch Common Rail...

  2. Assessing the potential visibility benefits of Clean Air Act Title IV emission reductions

    SciTech Connect (OSTI)

    Trexler, E.C. Jr. [USDOE, Washington, DC (United States); Shannon, J.D. [Argonne National Lab., IL (United States)

    1995-06-01T23:59:59.000Z

    Assessments are made of the benefits of the 1990 Clean Air Act Title IV (COVE), Phase 2, SO2 and NOX reduction provisions, to the visibility in typical eastern and western Class 1 areas. Probable bands of visibility impairment distribution curves are developed for Shenandoah National Park, Smoky Mountain National Park and the Grand Canyon National Park, based on the existing emissions, ``Base Case``, and for the COVE emission reductions, ``CAAA Case``. Emission projections for 2010 are developed with improved versions of the National Acid Precipitation Assessment Program emission projection models. Source-receptor transfer matrices created with the Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model are used with existing emission inventories and with the emission projections to calculate atmospheric concentrations of sulfate and nitrate at the receptors of interest for existing and projected emission scenarios. The Visibility Assessment Scoping Model (VASM) is then used to develop distributions of visibility impairment. VASM combines statistics of observed concentrations of particulate species and relative humidity with ASTRAP calculations of the relative changes in atmospheric sulfate and nitrate particulate concentrations in a Monte Carlo approach to produce expected distributions of hourly particulate concentrations and RH. Light extinction relationships developed in theoretical and field studies are then used to calculate the resulting distribution of visibility impairment. Successive Monte Carlo studies are carried out to develop sets of visibility impairment distributions with and without the COVE emission reductions to gain insight into the detectability of expected visibility improvements.

  3. CO2 Emissions Mitigation and Technological Advance: An

    E-Print Network [OSTI]

    PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Updated Analysis of Advanced/2003) #12;PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Analysis of Advanced Technology electricity 16.9 29.0 44.7 65.7 89.2 114.3 145.2 174.8 EJ/yr building trad biomass 23.5 29.9 32.1 27.9 22.9 17

  4. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    Improvement and CO2 Emission Reduction Potentials in theElectricity Saving and CO2 Emission Reduction in the Iron

  5. EE/RE Impacts on Emission Reductions 

    E-Print Network [OSTI]

    Haberl, J. S.

    2013-01-01T23:59:59.000Z

    2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 WIND PROJECTS IN TEXAS Completed, Announced, and Retired Wind Projects in Texas, as of December 2012 84 Wind Projects Completed 28 Wind Projects Announced 1 Wind... Project Retired 12 Weather Normalization Analysis for Indian M s Annual Ozone Season Day For Non-OSP Model For OSP Model NOx EMISSIONS R DUCTIONS FROM WIND ESL-KT-13-12-02 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec...

  6. EE/RE Impacts on Emission Reductions

    E-Print Network [OSTI]

    Haberl, J. S.

    2013-01-01T23:59:59.000Z

    Efficiency Conference, San Antonio, Texas Dec. 16-18 ACKNOWLEDGEMENTS Faculty/Staff: Juan-Carlos Baltazar, Gali Zilbershtein, Vic Reid, Shirley Ellis, Jaya Mukhopadhyay, Stephen O’Neal, Tammy Persky, Larry Degelman, Ed Dryden,Tom Fitzpatrick, Patrick Parker..., Warren Lasher USEPA: James Yarborough, Art Diem, Julie Rosenberg 1 ESL-KT-13-12-02 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Legislation to reduce energy/emissions 2001 to Present Senate Bill 5 (77th...

  7. CHP Emissions Reduction Estimator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen Energy Information BurkinaButylCERTEL JumpCHP Emissions

  8. Adaptive engine injection for emissions reduction

    DOE Patents [OSTI]

    Reitz, Rolf D. (Madison, WI): Sun, Yong (Madison, WI)

    2008-12-16T23:59:59.000Z

    NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

  9. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    2050 China Energy and CO2 Emissions Report. Science Press,Energy Savings and CO2 Emissions Reduction of China’s CementEnergy Savings and CO2 Emissions Reduction of China’s Cement

  10. NOx Emission Reduction by Oscillating combustion

    SciTech Connect (OSTI)

    Institute of Gas Technology

    2004-01-30T23:59:59.000Z

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.

  11. NOx Emission Reduction by Oscillating Combustion

    SciTech Connect (OSTI)

    John C. Wagner

    2004-03-31T23:59:59.000Z

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.

  12. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  13. Towards Zero Emissions CO2-Reduction in Mediterranean Social Housing

    E-Print Network [OSTI]

    Sabate, J.; Peters, C.; Cuchi, A.; Lopez, F.; Sagrera, A.; Wadel, G.; Vidal, J.; Cantos, S.

    to be responsible for half of the building’s life-cycle emissions. A 72% energy reduction compared to conventional housing projects is expected by implementation of centralised HVAC and DHW systems, based on ground source heat pumps and solar thermal energy...

  14. Barnsley Biomass Working towards carbon emissions reduction in Yorkshire

    E-Print Network [OSTI]

    Barnsley Biomass Working towards carbon emissions reduction in Yorkshire objectives Fifteen years Yorkshire town are being replaced by a cleaner, green alternative: biomass. Barnsley's Communal Biomass on to residents. · To increase energy efficiency. · To develop biomass usage in new and refurbished public

  15. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect (OSTI)

    Wang, M. Q.

    1998-12-16T23:59:59.000Z

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  16. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01T23:59:59.000Z

    Model Inputs Emissions Factors CO2 Emission factor for grid tonne CO2/MWh)  CO2 Emission factor for fuel  (tonne CO2/TJ)Improvements and CO2 Emission Reduction Potentials in the

  17. Greenidge multi-pollutant project achieves emissions reduction goals

    SciTech Connect (OSTI)

    NONE

    2008-07-01T23:59:59.000Z

    Performance testing at the Greenridge Multi-Pollutant Project has met or exceeded project goals, indicating that deep emission reduciton sin small, difficult-to-retrofit power plants can be achieved. The technology fitted at the 107 MWe AES Greenridge Unit 4 includes a hybrid selective non-catalytic reduction/selective catalytic reduction system for NOx control (NOxOUT CASCADE) and a Turbosorp circulating fluidized bed dry scrubber system for SO{sub 2}, mercury, SO{sub 3} HC and Hf control. 2 figs.

  18. Will Monetized Carbon Emission Reductions Buy Enhanced Building Operations?

    E-Print Network [OSTI]

    Millhone, J.

    2007-01-01T23:59:59.000Z

    Role in Climate Change #0;z Estimates Vary Depending on Definitions #0;z IPCC WG-3 Latest Estimate (2007) ? Buildings Lead in Emission Reduction Potential ? Buildings Lead in the Certainty of Benefits #0;z Collateral Benefits ? Reduced Industrial..., 2012 ? Enforceable Target: Reduce State’s Kyoto GHG Emissions to 1990 Levels by 2020 ? Advisors Recommend Allocation-Based C&T with 4 Options—EU ETS Type to Broad Coverage ? Advisors Recommend Offsets, e.g. CDMs and JIs #0;z Regional Greenhouse Gas...

  19. Particulate Emissions Control by Advanced Filtration Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Filtration Systems for GDI Engines (ANLCorningHyundai CRADA) June 19, 2014 DOE Annual Merit Review & Peer Evaluation Meeting PI: Kyeong Lee Co-investigators: Seung Choi,...

  20. Particulate Emissions Control by Advanced Filtration Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Filtration Systems for GDI Engines (ANLCorningHyundai CRADA) May 15, 2013 DOE Annual Merit Review & Peer Evaluation Meeting PI: Kyeong Lee Postdocs: Seung Choi, Heeje...

  1. Advanced Ceramic Filter For Diesel Emission Control

    Broader source: Energy.gov (indexed) [DOE]

    Diesel Emission Control Frank Mao, Cheng G. Li, Ravi Ramanathan Dow Automotive 3900 Automation Ave. Auburn Hills, MI 48326 9272004 DEER2004 2 Outline of Presentation Dow...

  2. Emissions and Performance Tradeoffs for Advanced Marine Diesel Propulsion

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    is designed that reduces smoke generation on an experimental marine Diesel engine equipped with a variable and emission generation in marine diesel propulsion. In comparison to the MIMO controller we considerEmissions and Performance Tradeoffs for Advanced Marine Diesel Propulsion Anna Stefanopoulouy

  3. Reduction of NOx Emissions in Alamo Area Council of Government Projects

    E-Print Network [OSTI]

    Haberl, J. S.; Zhu, Y.; Im, P.

    2004-01-01T23:59:59.000Z

    This reports summarizes the electricity, natural gas and NOx emissions reductions from retrofit measures reported as part of the AACOG emissions reduction effort. The electricity and natural gas savings were collected by the Brooks Energy...

  4. Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology

    SciTech Connect (OSTI)

    McGill, R.N.

    1998-08-04T23:59:59.000Z

    Lean-burn engines offer the potential for significant fuel economy improvements in cars and trucks, perhaps the next great breakthrough in automotive technology that will enable greater savings in imported petroleum. The development of lean-burn engines, however, has been an elusive goal among automakers because of the emissions challenges associated with lead-burn engine technology. Presently, cars operate with sophisticated emissions control systems that require the engine's air-fuel ratio to be carefully controlled around the stoichiometric point (chemically correct mixture). Catalysts in these systems are called "three-way" catalysts because they can reduce hydrocarbon, carbon monoxide, and nitrogen oxide emissions simultaneously, but only because of the tight control of the air-fuel ratio. The purpose of this cooperative effort is to develop advanced catalyst systems, materials, and necessary engine control algorithms for reducing NOX emissions in oxygen-rich automotive exhaust (as with lean-burn engine technology) to meet current and near-future mandated Clean Air Act standards. These developments will represent a breakthrough in both emission control technology and automobile efficiency. The total project is a joint effort among five national laboratories, together with US CAR. The role of Lockheed-Martin Energy Systems in the total project is two fold: characterization of catalyst performance through laboratory evaluations from bench-scale flow reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

  5. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    energy saving and CO2 emission reduction potential of theTWh and annual CO2 emissions reduction would be 35% lowerwould result in a CO2 emissions reduction of over 9.1

  6. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Iron and Steel Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01T23:59:59.000Z

    Improvement and CO2 Emission Reduction Potentials in theUS $/GJ- saved) CO2 Emissions Reduction (Mt CO 2 ) CCF RankUS$/GJ- saved) CO2 Emissions Reduction (Mt CO 2 ) * The

  7. Optimal Deployment Plan of Emission Reduction Technologies for TxDOT's Construction Equipment 

    E-Print Network [OSTI]

    Bari, Muhammad Ehsanul

    2010-10-12T23:59:59.000Z

    ................................................ 13 Emission Reduction Options .......................................................... 15 Exhaust Gas Aftertreatment Technologies for Emissions Reductions... Page Figure 15 Total NOx Reduction at the First Stage at Different Budget Amounts (Case 2A) ........................................................................... 66 Figure 16 Total NOx Reduction at the First and Second Stage...

  8. Texas Air Quality Status and the Texas Emission Reduction Plan

    E-Print Network [OSTI]

    Hildebrand, S.

    2012-01-01T23:59:59.000Z

    Through Energy Efficiency Conference ? Galveston, Texas ? October 10, 2012 0.0 1.3 2.7 4.0 5.3 6.7 8.0 60 90 120 150 180 210 240 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011...Texas Air Quality Status and the Texas Emission Reduction Plan Susana M. Hildebrand, P.E., Chief Engineer Texas Commission on Environmental Quality Clean Air Through Energy Efficiency Conference ? Galveston, Texas ? October 10, 2012...

  9. Wind Energy and Air Emission Reduction Benefits: A Primer

    SciTech Connect (OSTI)

    Jacobson, D.; High, C.

    2008-02-01T23:59:59.000Z

    This document provides a summary of the impact of wind energy development on various air pollutants for a general audience. The core document addresses the key facts relating to the analysis of emission reductions from wind energy development. It is intended for use by a wide variety of parties with an interest in this issue, ranging from state environmental officials to renewable energy stakeholders. The appendices provide basic background information for the general reader, as well as detailed information for those seeking a more in-depth discussion of various topics.

  10. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    Factors CO2 Emission factor for grid electricity (tonnePotential for Electricity Saving and CO2 Emission Reduction

  11. Innovative clean coal technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1991-09-13T23:59:59.000Z

    The major objectives of the project are to: (1) demonstrate the performance of three combustion NO{sub x} control technologies; (2) determine the short-term NO{sub x} emission trends for each of the operating configurations; (3) determine the dynamic long-term NO{sub x} emission characteristics for each of the operating configurations using sophisticated statistical techniques; (4) evaluate progressive cost-effectiveness (i.e., dollars per ton of NO{sub x} removed) of the low NO{sub x} combustion technologies tested; and (5) determine the effects on other combustion parameters (e.g., CO production, carbon carry-over, particulate characteristics) of applying the low NO{sub x} combustion technologies. (VC)

  12. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The primary objective of the project is to investigate the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NOx emissions and boiler performance on Unit 2 at Gulf Power Company's Plant Lansing Smith located near Lynn Haven, Florida. The project will characterize emissions and performance of a tangentially-fired boiler operating in the following configurations: Baseline as-found'' configuration: Phase 1; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 2 and simulated low NO{sub x} bulk furnace staging (LNBFS): Phase 2; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 3, Phase 3a and simulated LNCFS Level 1, Phase 3b.

  13. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Phase 1, Baseline tests

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The primary objective of the project is to investigate the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NOx emissions and boiler performance on Unit 2 at Gulf Power Company`s Plant Lansing Smith located near Lynn Haven, Florida. The project will characterize emissions and performance of a tangentially-fired boiler operating in the following configurations: Baseline ``as-found`` configuration: Phase 1; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 2 and simulated low NO{sub x} bulk furnace staging (LNBFS): Phase 2; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 3, Phase 3a and simulated LNCFS Level 1, Phase 3b.

  14. EMISSIONS REDUCTIONS USING HYDROGEN FROM PLASMATRON FUEL CONVERTERS

    SciTech Connect (OSTI)

    Bromberg, L

    2000-08-20T23:59:59.000Z

    Substantial progress in engine emission control is needed in order to meet present and proposed regulations for both spark ignition and diesel engines. Tightening regulations throughout the world reflect the ongoing concern with vehicle emissions. Recently developed compact plasmatron fuel converters have features that are suitable for onboard production of hydrogen for both fuel pretreatment and for exhaust aftertreatment applications. Systems that make use of these devices in conjunction with aftertreatment catalysts have the potential to improve significantly prospects for reduction of diesel engine emissions. Plasmatron fuel converters can provide a rapid response compact means to transform efficiently a wide range of hydrocarbon fuels into hydrogen rich gas. They have been used to reform natural gas [Bromberg1], gasoline [Green], diesel [Bromberg2] and hard-to-reform biofuels [Cohn1] into hydrogen rich gas (H2 + CO). The development of these devices has been pursued for the purpose of reducing engine exhaust pollutants by providing hydrogen rich gas for combustion in spark ignition and possibly diesel engines, as shown in Figure 1 [Cohn2]. Recent developments in compact plasmatron reformer design at MIT have resulted in substantial decreases in electrical power requirements. These new developments also increase the lifetime of the electrodes.

  15. Development of a Web-based Emissions Reduction Calculator for Solar Thermal and Solar Photovoltaic Installations 

    E-Print Network [OSTI]

    Baltazar-Cervantes, J. C.; Gilman, D.; Haberl, J. S.; Culp, C.

    2005-01-01T23:59:59.000Z

    DEVELOPMENT OF A WEB-BASED EMISSIONS REDUCTION CALCULATOR FOR SOLAR THERMAL AND SOLAR PHOTOVOLTAIC INSTALLATIONS Juan-Carlos Baltazar Research Associate Jeff S. Haberl, Ph.D., P.E. Professor/Associate Director Don R. Gilman, P.E. Senior... the potential emission reductions due to the electricity savings from the application of some of the most common solar thermal and solar photovoltaic systems. The methodology to estimate the potential NOx emission reduction integrates legacy analysis tools...

  16. Energy Efficiency/ Renewable Energy Impact in The Texas Emissions Reduction Plan (TERP): Volume I- Summary Report 

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Lewis, C.; Liu, Z.; Baltazar, J. C.; Mukhopadhyay, J..; Degelman, L.; McKelvey, K.; Clardige, D.; Ellis, S.; Kim, H.; Zilbershtein. G.; Gilman, D.

    2012-01-01T23:59:59.000Z

    this sixth annual report, Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan (Preliminary Report) to the Texas Commission on Environmental Quality. In this preliminary report, the NOx emissions savings from the energy...

  17. Energy Efficiency/ Renewable Energy Impact in The Texas Emissions Reduction Plan (TERP): Volume I- Summary Report

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Lewis, C.; Liu, Z.; Baltazar, J. C.; Mukhopadhyay, J..; Degelman, L.; McKelvey, K.; Clardige, D.; Ellis, S.; Kim, H.; Zilbershtein. G.; Gilman, D.

    2012-01-01T23:59:59.000Z

    this sixth annual report, Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan (Preliminary Report) to the Texas Commission on Environmental Quality. In this preliminary report, the NOx emissions savings from the energy...

  18. Low Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation - A Progress Report Low Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation - A Progress Report 2003...

  19. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    Efficiency Improvement and CO2 Emission Reduction Potentialsand Its Impact on CO2 Emission," Iron & Steel, 2010, 45(5):Emissions Factors CO2 Emission factor for grid electricity (

  20. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Iron and Steel Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01T23:59:59.000Z

    Efficiency Improvement and CO2 Emission Reduction PotentialsModel Inputs Emissions Factors CO2 Emission factor for grid electricity (tonne CO2/MWh)  CO2 Emission factor for fuel (

  1. THE ECONOMIC PAYOFF FOR GLOBAL WARMING EMISSIONS REDUCTION

    E-Print Network [OSTI]

    Dr. Sam; V. Shelton; Laura A. Schaefer

    efficiency technology, such as residential electric heat pump water heaters, can cause carbon reduction to

  2. become more important as countries agree to emission reduction targets

    E-Print Network [OSTI]

    Constable, Steve

    : immediate stabilization of carbon dioxide emissions, regulation of air pollution that balances removal

  3. Texas Emissions Reductions Program (TERP) Energy Efficiency/Renewable Energy (EE/RE) Update 

    E-Print Network [OSTI]

    Haberl, J. S.; Yazdani, B.; Culp, C.

    2012-01-01T23:59:59.000Z

    TEXAS EMISSIONS REDUCTIONS PROGRAM (TERP) ENERGY EFFICIENCY/RENEWABLE ENERGY (EE/RE) UPDATE October 2012 Jeff Haberl, Bahman Yazdani, Charles Culp Energy Systems Laboratory Texas A&M University p. 2 Energy Systems Laboratory... Energy Systems Laboratory ? 2012 Legislation to reduce energy/emissions 2001 to Present Senate Bill 5 (77th Legislature, 2001) Ch. 386. Texas Emissions Reduction Plan Sec. 386.205. Evaluation Of State Energy Efficiency Programs (with PUC) Ch...

  4. Sharing global CO2 emission reductions among one billion high emitters

    E-Print Network [OSTI]

    Sharing global CO2 emission reductions among one billion high emitters Shoibal Chakravartya of a country to estimate how its fossil fuel CO2 emissions are distributed among its citizens, from which we distributions. For example, re- ducing projected global emissions in 2030 by 13 GtCO2 would require

  5. Going Mobile: Emissions Trading Gets a Boost from Mobile Source Emission Reduction Credits

    E-Print Network [OSTI]

    Goldschein, Perry S.

    1995-01-01T23:59:59.000Z

    Going Mobile: Emissions Trading Gets a Boost From Mobilehave tested various emissions trading policies to supplementAn Analysis of EPA's Emissions Trading Program, 6 YALE J. ON

  6. assessing emission reduction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reduction by means Multidisciplinary Databases and Resources Websites Summary: and Plasma Research Department, Ris), Helge Egsgaard (Biosystems Department, Ris), Per G....

  7. South Africa-Quantifying Emission Reduction Opportunities in...

    Open Energy Info (EERE)

    AgencyCompany Organization Ecofys Sector Energy Topics Background analysis, GHG inventory, Low emission development planning, Pathways analysis Website http:www.ecofys.com...

  8. Scope for Future CO2 Emission Reductions from Electricity Generation through the Deployment of Carbon Capture and Storage Technologies

    E-Print Network [OSTI]

    Haszeldine, Stuart

    Scope for Future CO2 Emission Reductions from Electricity Generation through the Deployment, it is therefore possible that large (~45%) reductions in CO2 emissions from UK electricity generation couldC/year. If required, however, a reduction in CO2 emissions of 15 MtC/year in the electricity generation sector by 2020

  9. LowCostGHG ReductionCARB 3/03 Low-Cost and Near-Term Greenhouse Gas Emission Reduction

    E-Print Network [OSTI]

    Edwards, Paul N.

    LowCostGHG ReductionCARB 3/03 1 Low-Cost and Near-Term Greenhouse Gas Emission Reduction Marc Ross for Light Duty Vehicles Critical to the Pavley bill's goal to reduce greenhouse gas (GHG) emissions from trucks (large symbols). The emissions from midsize and smaller cars, emit about half as much. Question

  10. Emissions Reductions as a Result of Automobile Improvement

    E-Print Network [OSTI]

    Denver, University of

    continually less polluting independent of measurement location. Improving emissions control technology spurred by federal regulations is thought to have brought about these trends. Introduction The U.S. Environmental Protection Agency (EPA) estimates on-road motor vehicle emissions to be the single largest contributor

  11. Energy Efficiency/ Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) Volume I - Summary Report 

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Zilbershtein, G.; Baltazar, J. C.; Mukhopadhyay, J.; Clardige, D.; Parker, P.; Ellis, S.; Kim, H.; Gilman, D.; Degelman, L.

    2013-01-01T23:59:59.000Z

    ninth annual report, Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan (TERP) to the Texas Commission on Environmental Quality. The report is organized in three volumes. Volume I - Summary Report - provides...

  12. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP): Volume I 

    E-Print Network [OSTI]

    Haberl, Jeff; Culp, Charles; Yazdani, Bahman; Gilman, Don; Fitzpatrick, Tom; Muns, Shirley; Liu, Zi; Baltazar, Juan Carlos; Mukhopadhyay, Jaya; Degelman, Larry; Claridge, David

    2008-01-01T23:59:59.000Z

    fifth annual report, Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan to the Texas Commission on Environmental Quality. The report is organized in three volumes. Volume I – Summary Report – provides an executive...

  13. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    absence of CCS, there is diminishing potential for process-potential is rapidly declining. Second, carbon capture and storage (CCS)CCS is not taken into consideration. Significant energy savings and CO2 emissions reduction potential

  14. Energy Efficiency/ Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) Volume I - Summary Report

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Zilbershtein, G.; Baltazar, J. C.; Mukhopadhyay, J.; Clardige, D.; Parker, P.; Ellis, S.; Kim, H.; Gilman, D.; Degelman, L.

    2013-01-01T23:59:59.000Z

    ninth annual report, Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan (TERP) to the Texas Commission on Environmental Quality. The report is organized in three volumes. Volume I - Summary Report - provides...

  15. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect (OSTI)

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01T23:59:59.000Z

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  16. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    2050 China Energy and CO2 Emissions Report (in Chinese) (the energy saving and CO2 emission reduction potential of9503 TWh, and annual CO2 emissions would be 16% lower than

  17. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) 

    E-Print Network [OSTI]

    Haberl, J. S.; Yazdani, B.; Culp, C.

    2007-01-01T23:59:59.000Z

    1 Energy Systems Laboratory p. 1 Energy Systems Laboratory Texas Engineering Experiment Station Texas A&M University System Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) September 2001 ? December... 2007 Energy Systems Laboratory p. 2 41 Counties in Texas designated non-attainment or affected. Senate Bill 5 (77th Legislature, 2001) Ch. 386. Texas Emissions Reduction Plan Sec. 386.205. Evaluation Of State Energy Efficiency Programs (with PUC...

  18. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)

    E-Print Network [OSTI]

    Haberl, J. S.; Yazdani, B.; Culp, C.

    1 Energy Systems Laboratory p. 1 Energy Systems Laboratory Texas Engineering Experiment Station Texas A&M University System Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) September 2001 ? December... 2007 Energy Systems Laboratory p. 2 41 Counties in Texas designated non-attainment or affected. Senate Bill 5 (77th Legislature, 2001) Ch. 386. Texas Emissions Reduction Plan Sec. 386.205. Evaluation Of State Energy Efficiency Programs (with PUC...

  19. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP): Volume I

    E-Print Network [OSTI]

    Haberl, Jeff; Culp, Charles; Yazdani, Bahman; Gilman, Don; Fitzpatrick, Tom; Muns, Shirley; Liu, Zi; Baltazar, Juan Carlos; Mukhopadhyay, Jaya; Degelman, Larry; Claridge, David

    ESL-TR-08-12-01 ENERGY EFFICIENCY/RENEWABLE ENERGY IMPACT IN THE TEXAS EMISSIONS REDUCTION PLAN (TERP) VOLUME I ? SUMMARY REPORT Annual Report to the Texas Commission on Environmental Quality January 2007 ? December 2007..., ?Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP),? as required under Texas Health and Safety Code Ann. ? 388.003 (e), Vernon Supp. 2002 (Senate Bill 5, 77R as amended 78 R & 78S). The Laboratory is required...

  20. Optimization of an Advanced Passive/Active Diesel Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Diesel Particulate Filters and NO2 Emission Limits Active Diesel Emission Control Technology for Transport Refrigeration Units Active Diesel Emission Control Systems...

  1. Ris-R-1545(EN) Emission reduction by means

    E-Print Network [OSTI]

    and Plasma Research Department, Risø), Helge Egsgaard (Biosystems Department, Risø), Per G. Kristensen reduction by means of low temperature plasma. Summary Department: Optics and Plasma Research Department Risø

  2. Estimation and Reduction Methodologies for Fugitive Emissions from Equipment

    E-Print Network [OSTI]

    Scataglia, A.

    .0214 Compressor Seals Gas/Vapor 0.228 Pressure Relief Seals Gas/Vapor 0.104 Flanges All 0.00083 Open-Ended Lines All 0.0017 Sampling Connections All 0.0150 Table 1. Average Emission Factors for Fugitive Emissions (kg/hr/source). The product of the emission...Tssion Factor Emission Factor Val ves Gas a LLb HL c 0.0451 0.0852 0.00023 d 0.00048 0.00171 0.00023 Pump Sea Is LL HL 0.437 0.3885 0.0120 0.0135 Compressor Seal se Pressure ReI ief Valves Flanges Open -Ended Lines Gas Gas All All 1...

  3. Quantifying emissions reductions from New England offshore wind energy resources

    E-Print Network [OSTI]

    Berlinski, Michael Peter

    2006-01-01T23:59:59.000Z

    Access to straightforward yet robust tools to quantify the impact of renewable energy resources on air emissions from fossil fuel power plants is important to governments aiming to improve air quality and reduce greenhouse ...

  4. Optimal Deployment Plan of Emission Reduction Technologies for TxDOT's Construction Equipment

    E-Print Network [OSTI]

    Bari, Muhammad Ehsanul

    2010-10-12T23:59:59.000Z

    to trees, crops, plants, lakes, and animals. Therefore, air pollution is indeed a big concern for the environment (EPA 2008a). Impacts of Emissions Air pollution has significant health, environmental, and economic impacts. Inhaling polluted air... ............................................. 22 Fuel Technologies for Emissions Reductions ......................... 23 Low-Sulfur Diesel (LSD) and Ultra Low Sulfur Diesel (ULSD) ............................................................................. 23 Natural...

  5. ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION

    SciTech Connect (OSTI)

    Fabienne Chatel-Pelage

    2003-10-01T23:59:59.000Z

    This document reviews the work performed during the quarter July--September 2003. Significant progress has been made in Task 1 (Site Preparation), Task 2 (Test performance) and Task 3 (Techno-Economic Study) of the project: the site preparation has been completed, two weeks of tests have been performed and the power generating units to be compared from an economical standpoint have been selected and accurately described. In the experimental part of this effort (task1), the partners in this project demonstrated the feasibility of 100% air replacement with O{sub 2}-enriched flue gas on 1.5MW coal-fired boiler. The air infiltration have been reduced to approximately 5% of the stoichiometry, enabling to reach around 70% of CO{sub 2} in the flue gases. Higher air in-leakage reduction is expected using alternative boiler operating procedure in order to achieve higher CO{sub 2} concentration in flue gas for further sequestration or reuse. The NO{sub x} emissions have been shown considerably lower in O{sub 2}-fired conditions than in air-baseline, the reduction rate averaging 70%. An additional week of tests is scheduled mid October 2003 for combustion parameter optimization, and some more days of operation will be dedicated to mercury emission measurement and heat transfer characterization. Out of the $485k already allocated in this project, $300k has been spent and reported to date, mainly in site preparation ({approx}$215k) and test performance ({approx}$85k). In addition to DOE allocated funds, to date approximately $240k has been cost-shared by the participants, bringing the total project cost up to $540k as on September 30, 2003.

  6. Reduction of CO2 emissions and utilization of slag

    E-Print Network [OSTI]

    Zevenhoven, Ron

    emissions is 314 #12;CO2 sequestration by mineral carbonation. Con- crete and steel manufacturers produce from carbonate-free slag products (Slag2PCC Plus) Hiilidioksidipäästöjen vähentäminen ja Email: ron.zevenhoven@abo.fi Abstract By producing precipitated calcium carbonate (PCC) from a carbonate

  7. REDUCTION OF INHERENT MERCURY EMISSIONS IN PC COMBUSTION

    SciTech Connect (OSTI)

    John C. Kramlich; Rebecca N. Sliger; David J. Going

    1999-08-06T23:59:59.000Z

    Mercury emission compliance presents one of the major potential challenges raised by the 1990 Clean Air Act Amendments. Simple ways of controlling emissions have not been identified. The variability in the field data suggest that inherent mercury emissions may be reduced if the source of this inherent capture can be identified and controlled. The key mechanisms appear to involve the oxidation of mercury to Hg{sup 2}, generally producing the more reactive HgCl{sub 2}, followed by its capture by certain components of the fly ash or char, or in the air pollution control equipment. This research focuses on identifying the rate-limiting steps associated with the oxidation step. Work in this reporting period focused on the refinement of the rate constants used in the kinetic mechanism for mercury oxidation. The possible reactions leading to mercury oxidation are reviewed. Rate constants for these reactions are discussed, using both literature sources and detailed estimates. The resulting mechanism represents the best present picture of the overall chlorine homogeneous oxidation chemistry. Application of this mechanism to the data will be explored in the subsequent reporting period. Work conducted under the present grant has been the subject of two meeting papers presented during the reporting period (Sliger et al., 1998a,b).

  8. REDUCTION OF INHERENT MERCURY EMISSIONS IN PC COMBUSTION

    SciTech Connect (OSTI)

    John C. Kramlich; Rebecca N. Sliger; David J. Going

    1999-08-06T23:59:59.000Z

    Mercury emission compliance presents one of the major potential challenges raised by the 1990 Clean Air Act Amendments. Simple ways of controlling emissions have not been identified. The variability in the field data suggest that inherent mercury emissions may be reduced if the source of this inherent capture can be identified and controlled. The key mechanisms appear to involve the oxidation of mercury to Hg{sup 2}, generally producing the more reactive HgCl{sub 2}, followed by its capture by certain components of the fly ash or char, or in the air pollution control equipment. This research focuses on identifying the rate-limiting steps associated with the oxidation step. Work in this reporting period focused on testing of the kinetic mechanism reported in the previous semiannual report, and the interpretation of data (both ours and literature). This model yields good qualitative agreement with the data and indicates that mercury oxidation occurs during the thermal quench of the combustion gases. The model also suggests that atomic chlorine is the key oxidizing species. The oxidation is limited to a temperature window between 700-400 C that is defined by the overlap of (1) a region of significant superequilibrium Cl concentration, and (2) a region where oxidized mercury is favored by equilibrium. Above 700 C reverse reactions effectively limit oxidized mercury concentrations. Below 400 C, atomic chlorine concentrations are too low to support further oxidation. The implication of these results are that homogeneous oxidation is governed primarily by (1) HCl concentration, (2) quench rate, and (3) background gas composition. Work conducted under the present grant has been the subject of one journal paper that was accepted for publication during the reporting period (Sliger et al., 1999).

  9. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    SciTech Connect (OSTI)

    Harry Littleton; John Griffin

    2011-07-31T23:59:59.000Z

    This project was a subtask of Energy Saving Melting and Revert Reduction Technology (�¢����Energy SMARRT�¢���) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy saving estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU�¢����s/year and 6.46 trillion BTU�¢����s/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).

  10. An integrated assessment of the energy savings and emissions-reduction potential of combined heat and power

    SciTech Connect (OSTI)

    Kaarsberg, T.M.; Elliott, R.N.; Spurr, M.

    1999-07-01T23:59:59.000Z

    Combined Heat and Power (CHP) systems, or cogeneration systems, generated electrical/mechanical and thermal energy simultaneously, recovering much of the energy normally lost in separate generation. This recovered energy can be used for heating or cooling purposes, eliminating the need for a separate boiler. Significant reductions in energy, criteria pollutants, and carbon emissions can be achieved from the improved efficiency of fuel use. Generating electricity on or near the point of use also avoids transmission and distribution losses and defers expansion of the electricity transmission grid. Several recent developments make dramatic expansion of CHP a cost-effective possibility over the next decade. First, advances in technologies such as combustion turbines, steam turbines, reciprocating engines, fuel cells. and heat-recovery equipment have decreased the cost and improved the performance of CHP systems. Second, a significant portion of the nation's boiler stock will need to be replaced in the next decade, creating an opportunity to upgrade this equipment with clean and efficient CHP systems. Third, environmental policies, including addressing concerns about greenhouse gas emissions, have created pressures to find cleaner and more efficient means of using energy. Finally, electric power market restructuring is creating new opportunities for innovations in power generation and smaller-scale distributed systems such as CHP. The integrated analysis suggests that there is enormous potential for the installation of cost-effective CHP in the industrial, district energy, and buildings sectors. The projected additional capacity by 2010 is 73 GW with corresponding energy savings of 2.6 quadrillion Btus, carbon emissions reductions of 74 million metric tons, 1.4 million tons of avoided SO{sub 2} emissions, and 0.6 million tons of avoided NO{sub x} emissions. The authors estimate that this new CHP would require cumulative capital investments of roughly $47 billion over ten years.

  11. A probabilistic production costing analysis of SO sub 2 emissions reduction strategies for Ohio: Emissions, cost, and employment tradeoffs

    SciTech Connect (OSTI)

    Heslin, J.S.; Hobbs, B.F. (Case Western Reserve Univ., Cleveland, OH (United States))

    1991-08-01T23:59:59.000Z

    A new approach for state- and utility-level analysis of the cost and regional economic impacts of strategies for reducing utility SO{sub 2} emissions is summarized and applied to Ohio. The methodology is based upon probabilistic production costing and economic input-output analysis. It is an improvement over previous approaches because it: accurately models random outages of generating units, must-run constraints on unit output, and the distribution of power demands; and runs quickly on a microcomputer and yet considers the entire range of potential control strategies from a systems perspective. The input-output analysis considers not only the economic effects of utility fuel use and capital investment, but also those of increased electric rates. Two distinct strategies are found to be most attractive for Ohio. The first, more flexible one, consists of emissions dispatching (ED) alone to meet short run emissions reduction targets. A 75 percent reduction can then be achieved by the turn of the century by combining ED and fuel switching (FS) with flue gas desulfurization, limestone injection multistage burners, and physical coal cleaning at selected plants. The second is a scrubber-based strategy which includes ED. By the year 2000, energy conservation becomes a cost effective component of these strategies. In order to minimize compliance costs, acid rain legislation which facilitates emissions trading and places regional tonnage limits on emissions is desirable.

  12. Texas Emissions Reductions Program (TERP) Energy Efficiency/Renewable Energy (EE/RE) Update

    E-Print Network [OSTI]

    Haberl, J. S.; Yazdani, B.; Culp, C.

    2012-01-01T23:59:59.000Z

    Systems Laboratory ? 2012 IC3: REGISTRY OF USAGE Sep. 2011 to Date: 18,023 Certificates Total to Date : 38,376 Certificates Top 10 Counties for last 3 years Average SEER Across Counties p. 17 Energy Systems Laboratory ? 2012 p. 18... - By county - By SIP area OSD emissions reductions: - By program - By county - By SIP area INTEGRATED NOx SAVINGS p. 49 Energy Systems Laboratory ? 2012 2011 Integrated Emissions Savings ESL Code...

  13. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)

    E-Print Network [OSTI]

    Baltazar-Cervantes, J. C.; Haberl, J. S.; Ramirez, E. J.; Champeau, K.

    : solar photovoltaic, solar thermal, hydroelectric, geothermal, and landfill gas-fired power plants. However, information on wind energy farms has been omitted in this report due to the fact that a more complete ESL report on this subject has already...-based Emissions Reduction Calculator. This program is able to calculate weather-normalized NOx emissions estimates for energy efficiency and renewable sources projects, such as solar photovoltaic, solar thermal, and wind. Annual energy savings from renewable...

  14. Validating the role of AFVs in voluntary mobile source emission reduction programs.

    SciTech Connect (OSTI)

    Santini, D. J.; Saricks, C. L.

    1999-03-17T23:59:59.000Z

    Late in 1997, EPA announced new allowances for voluntary emission control programs. As a result, the US Department of Energy's (DOE) Clean Cities and other metro areas that have made an ongoing commitment to increasing participation by alternative fuel vehicles (AFVs) in local fleets have the opportunity to estimate the magnitude and obtain emission reduction credit for following through on that commitment. Unexpectedly large reductions in key ozone precursor emissions in key locations and times of the day can be achieved per vehicle-mile by selecting specific light duty AFV offerings from original equipment manufacturers (OEMs) in lieu of their gasoline-fueled counterparts. Additional benefit accrues from the fact that evaporative emissions of non-methane hydrocarbons (generated in the case of CNG, LNG, and LPG by closed fuel-system AFV technology) can be essentially negligible. Upstream emissions from fuel storage and distribution with the airshed of interest are also reduced. This paper provides a justification and outlines a method for including AFVs in the mix of strategies to achieve local and regional improvements in ozone air quality, and for quantifying emission reduction credits. At the time of submission of this paper, the method was still under review by the US EPA Office of Mobile Sources, pending mutually satisfactory resolution of several of its key points. Some of these issues are discussed in the paper.

  15. Emerging Energy-efficiency and CO{sub 2} Emission-reduction Technologies for Cement and Concrete Production

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Price, Lynn; Lin, Elina

    2012-04-06T23:59:59.000Z

    Globally, the cement industry accounts for approximately 5 percent of current anthropogenic carbon dioxide (CO{sub 2}) emissions. World cement demand and production are increasing significantly, leading to an increase in this industry's absolute energy use and CO{sub 2} emissions. Development of new energy-efficiency and CO{sub 2} emission-reduction technologies and their deployment in the market will be key for the cement industry's mid- and long-term climate change mitigation strategies. This report is an initial effort to compile available information on process description, energy savings, environmental and other benefits, costs, commercialization status, and references for emerging technologies to reduce the cement industry's energy use and CO{sub 2} emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies for the cement industry that have already been commercialized, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on nineteen emerging technologies for the cement industry, with the goal of providing engineers, researchers, investors, cement companies, policy makers, and other interested parties with easy access to a well-structured database of information on these technologies.

  16. 9th Diesel Engine Emissions Reduction (DEER) Workshop 2003

    SciTech Connect (OSTI)

    Kukla, P; Wright, J; Harris, G; Ball, A; Gu, F

    2003-08-24T23:59:59.000Z

    The PowerTrap{trademark} is a non-exhaust temperature dependent system that cannot become blocked and features a controlled regeneration process independent of the vehicle's drive cycle. The system has a low direct-current power source requirement available in both 12-volt and 24-volt configurations. The system is fully programmable, fully automated and includes Euro IV requirements of operation verification. The system has gained European component-type approval and has been tested with both on- road and off-road diesel fuel up to 2000 parts per million. The device is fail-safe: in the event of a device malfunction, it cannot affect the engine's performance. Accumulated mileage testing is in excess of 640,000 miles to date. Vehicles include London-type taxicabs (Euro 1 and 2), emergency service fire engines (Euro 1, 2, and 3), inner city buses, and light-duty locomotives. Independent test results by Shell Global Solutions have consistently demonstrated 85-99 percent reduction of ultrafines across the 7-35 nanometer size range using a scanning mobility particle sizer with both ultra-low sulfur diesel and off-road high-sulfur fuel.

  17. An Automatic Image Reduction Pipeline for the Advanced Camera for Surveys

    E-Print Network [OSTI]

    Johns Hopkins University, Department of Physics and Astonomy, Advanced Camera for Surveys Team

    are constructed similar to those used in STScI OPUS pipeline. Reading and manipulation of FITS images and tables and catalogs) for archiving purposes. Although Apsis was designed primarily as an automated pipeline, it canAn Automatic Image Reduction Pipeline for the Advanced Camera for Surveys John P. Blakeslee

  18. Solar-thermal hybridization of Advanced Zero Emissions Power Plants

    E-Print Network [OSTI]

    El Khaja, Ragheb Mohamad Fawaz

    2012-01-01T23:59:59.000Z

    Carbon Dioxide emissions from power production are believed to have significant contributions to the greenhouse effect and global warming. Alternative energy resources, such as solar radiation, may help abate emissions but ...

  19. Analysis of Emissions Calculators for a National Center of Excellence on Displaced Emissions Reductions (CEDER) 

    E-Print Network [OSTI]

    Im, P.; Haberl, J. S.; Culp, C.; Yazdani, B.

    2008-07-18T23:59:59.000Z

    In August 2004, the Environmental Protection Agency (EPA) issued guidance on quantifying the air emissions benefits from electric sector energy efficiency and renewable energy. Because there was no clear best strategy, the EPA’s guidance provided a...

  20. Economic Potential of Greenhouse Gas Emission Reductions: Comparative Role for Soil Sequestration in Agriculture and Forestry

    E-Print Network [OSTI]

    McCarl, Bruce A.

    for presentation at DOE First National Conference on Carbon Sequestration, May 14-17, 2001, Washington D.C. #12 sequestration generally refers to the absorption of carbon dioxide from the atmosphere through photosyntheticEconomic Potential of Greenhouse Gas Emission Reductions: Comparative Role for Soil Sequestration

  1. Reduction in Vehicle Idling Emissions Using RFID Parking Permits Dawson, Pakes-Ahlman, Graham, Gutierrez, Vilasdaechanont

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    1 Reduction in Vehicle Idling Emissions Using RFID Parking Permits 9/20/13 Dawson, Pakes Frequency Identification permits (RFID) allow drivers to remain in their vehicles without coming this conversion to RFID equates to shorter vehicle queues, lower idling time and, ultimately, lower fuel

  2. A fuel cycle framework for evaluating greenhouse gas emission reduction technology

    SciTech Connect (OSTI)

    Ashton, W.B.; Barns, D.W. (Pacific Northwest Lab., Richland, WA (USA)); Bradley, R.A. (USDOE Office of Policy, Planning and Analysis, Washington, DC (USA). Office of Environmental Analysis)

    1990-05-01T23:59:59.000Z

    Energy-related greenhouse gas (GHG) emissions arise from a number of fossil fuels, processes and equipment types throughout the full cycle from primary fuel production to end-use. Many technology alternatives are available for reducing emissions based on efficiency improvements, fuel switching to low-emission fuels, GHG removal, and changes in end-use demand. To conduct systematic analysis of how new technologies can be used to alter current emission levels, a conceptual framework helps develop a comprehensive picture of both the primary and secondary impacts of a new technology. This paper describes a broad generic fuel cycle framework which is useful for this purpose. The framework is used for cataloging emission source technologies and for evaluating technology solutions to reduce GHG emissions. It is important to evaluate fuel mix tradeoffs when investigating various technology strategies for emission reductions. For instance, while substituting natural gas for coal or oil in end-use applications to reduce CO{sub 2} emissions, natural gas emissions of methane in the production phase of the fuel cycle may increase. Example uses of the framework are given.

  3. The 5th International Symposium of Advanced Energy Science Contribution to Zero-Emission Energy

    E-Print Network [OSTI]

    Takada, Shoji

    The 5th International Symposium of Advanced Energy Science Contribution to Zero-Emission Energy of Yangon 11251150 Hiroyuki HAMA Tohoku University 11501220 Kyu-Sun CHUNG Hanyang University 12201235 Group

  4. The Impact of Advanced Biofuels on Aviation Emissions and Operations in the U.S.

    E-Print Network [OSTI]

    Winchester, N.

    We analyze the economic and emissions impacts on U.S. commercial aviation of the Federal Aviation Administration’s renewable jet fuel goal when met using advanced fermentation (AF) fuel from perennial grasses. These fuels ...

  5. Energy Department Announces $10 Million to Advance Zero-Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicles and infrastructure will reduce petroleum use, carbon emissions, and air pollution at transportation hubs, such as ports. The Energy Department seeks...

  6. Advanced PHEV Engine Systems and Emissions Control Modeling and...

    Broader source: Energy.gov (indexed) [DOE]

    PHEV Engine Systems and Emissions Control Modeling and Analysis Stuart Daw (PI), Zhiming Gao, Kalyan Chakravarthy Oak Ridge National Laboratory 2011 U.S. DOE Hydrogen and Vehicle...

  7. The sources of emission reductions : evidence from U.S. SO? emissions from 1985-2002

    E-Print Network [OSTI]

    Ellerman, A. Denny

    2004-01-01T23:59:59.000Z

    An enduring issue in environmental regulation is whether to clean up existing "old" plants or in some manner to bring in new ?clean? plants to replace the old. In this paper, a unit-level data base of emissions by nearly ...

  8. Estimating the benefits of greenhouse gas emission reduction from agricultural policy reform

    SciTech Connect (OSTI)

    Adger, W.N. (Univ. of East Anglia, Norwich (United Kingdom). Centre for Social and Economic Research on the Global Environment); Moran, D.C. (Univ. College, London (United Kingdom). Centre for Social and Economic Research on the Global Environment)

    1993-09-01T23:59:59.000Z

    Land use and agricultural activities contribute directly to the increased concentrations of atmospheric greenhouse gases. Economic support in industrialized countries generally increases agriculture's contribution to global greenhouse gas concentrations through fluxes associated with land use change and other sources. Changes in economic support offers opportunities to reduce net emissions, through this so far has gone unaccounted. Estimates are presented here of emissions of methane from livestock in the UK and show that, in monetary terms, when compared to the costs of reducing support, greenhouse gases are a significant factor. As signatory parties to the Climate Change Convection are required to stabilize emissions of all greenhouse gases, options for reduction of emissions of methane and other trace gases from the agricultural sector should form part of these strategies.

  9. MEASUREMENTS OF ABSORPTION, EMISSIVITY REDUCTION, AND LOCAL SUPPRESSION OF SOLAR ACOUSTIC WAVES IN SUNSPOTS

    SciTech Connect (OSTI)

    Chou, D.-Y.; Liang, Z.-C.; Yang, M.-H.; Zhao Hui [Physics Department, National Tsing Hua University, Hsinchu, Taiwan (China); Sun, M.-T. [Department of Mechanical Engineering, Chang-Gung University, Kwei-San, Taiwan (China)], E-mail: chou@phys.nthu.edu.tw

    2009-05-01T23:59:59.000Z

    The power of solar acoustic waves in magnetic regions is lower relative to the quiet Sun. Absorption, emissivity reduction, and local suppression of acoustic waves contribute to the observed power reduction in magnetic regions. We propose a model for the energy budget of acoustic waves propagating through a sunspot in terms of the coefficients of absorption, emissivity reduction, and local suppression of the sunspot. Using the property that the waves emitted along the wave path between two points have no correlation with the signal at the starting point, we can separate the effects of these three mechanisms. Applying this method to helioseismic data filtered with direction and phase-velocity filters, we measure the fraction of the contribution of each mechanism to the power deficit in the umbra of the leading sunspot of NOAA 9057. The contribution from absorption is 23.3 {+-} 1.3%, emissivity reduction 8.2 {+-} 1.4%, and local suppression 68.5 {+-} 1.5%, for a wave packet corresponding to a phase velocity of 6.98 x 10{sup -5} rad s{sup -1}.

  10. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Mark Scotto

    2010-05-30T23:59:59.000Z

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  11. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Mark V. Scotto; Mark A. Perna

    2010-05-30T23:59:59.000Z

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  12. Evaluation of Corona Reactors of Several Geometries for a Plasma Assisted Nitrogen Oxide Emission Reduction Device

    SciTech Connect (OSTI)

    Herling, Darrell R.; Smith, Monty R.; Hemingway, Mark D.; Goulette, David; Silvis, Thomas W.

    2000-08-09T23:59:59.000Z

    Proposed vehicle emissions regulations for the near future have prompted automotive manufactures and component suppliers to focus heavily on developing more efficient exhaust aftertreatment devices to lower emissions from spark and compression ignition engines. One of the primary pollutants from lean-burn engines, especially from diesels, are oxides of nitrogen (NOx). Current three-way catalytic converters will not have adequate performance to meet future emission reduction requirements. Therefore, there is a need for researchers and engineers to develop efficient exhaust aftertreatment devices that will reduce NOx emissions from lean-burn engines. These devices must have very high conversion of NOx gases, be unaffected by exhaust-gas impurity such as sulfur, and have minimal impact on vehicle operations and fuel economy. An effective technology for NOx control that is currently receiving a lot of attention is a non-thermal plasma system. This system is comprised of a two-stage corona generation device (plasma reactor) and reduction catalyst that reduces nitric oxide and nitrogen dioxide emissions to nitrogen.

  13. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    SciTech Connect (OSTI)

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01T23:59:59.000Z

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

  14. Advanced LD Engine Systems and Emissions Control Modeling and...

    Broader source: Energy.gov (indexed) [DOE]

    Light-Duty Engine Systems and Emissions Control Modeling and Analysis Zhiming Gao (PI) C. Stuart Daw (Co-PI, Presenter) Oak Ridge National Laboratory This presentation does not...

  15. Injection System and Engine Strategies for Advanced Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emission Standards Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century...

  16. China's Pathways to Achieving 40% ~ 45% Reduction in CO{sub 2} Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential

    SciTech Connect (OSTI)

    Zheng, Nina; Fridley, David; Zhou, Nan; Levine, Mark; Price, Lynn; Ke, Jing

    2011-09-30T23:59:59.000Z

    Achieving China’s goal of reducing its carbon intensity (CO{sub 2} per unit of GDP) by 40% to 45% percent below 2005 levels by 2020 will require the strengthening and expansion of energy efficiency policies across the buildings, industries and transport sectors. This study uses a bottom-up, end-use model and two scenarios -- an enhanced energy efficiency (E3) scenario and an alternative maximum technically feasible energy efficiency improvement (Max Tech) scenario – to evaluate what policies and technical improvements are needed to achieve the 2020 carbon intensity reduction target. The findings from this study show that a determined approach by China can lead to the achievement of its 2020 goal. In particular, with full success in deepening its energy efficiency policies and programs but following the same general approach used during the 11th Five Year Plan, it is possible to achieve 49% reduction in CO{sub 2} emissions per unit of GDP (CO{sub 2} emissions intensity) in 2020 from 2005 levels (E3 case). Under the more optimistic but feasible assumptions of development and penetration of advanced energy efficiency technology (Max Tech case), China could achieve a 56% reduction in CO{sub 2} emissions intensity in 2020 relative to 2005 with cumulative reduction of energy use by 2700 Mtce and of CO{sub 2} emissions of 8107 Mt CO{sub 2} between 2010 and 2020. Energy savings and CO{sub 2} mitigation potential varies by sector but most of the energy savings potential is found in energy-intensive industry. At the same time, electricity savings and the associated emissions reduction are magnified by increasing renewable generation and improving coal generation efficiency, underscoring the dual importance of end-use efficiency improvements and power sector decarbonization.

  17. Sources of Emission Reductions: Evidence for US SO2 Emissions 1985-2002

    E-Print Network [OSTI]

    Ellerman, A Denny; Dubroeucq, Florence

    2004-06-16T23:59:59.000Z

    -gas-fired, combined cycle units have displaced conventional generation that would have emitted about 800,000 tons of SO2; however, the effect has not been to reduce total SO2 emissions since the 9.0 million ton cap is unchanged, but to reduce the quantity... content of the fuel used to generate electricity (either by switching or retrofitting scrubbers) or by shifting generation to lower emitting units including new units. However, Title IV did not replace the source- specific limits and technology mandates...

  18. Development of a Web-based Emissions Reduction Calculator for Street Light and Traffic Light Retrofits

    E-Print Network [OSTI]

    Liu, Z.; Gilman, D.; Haberl, J. S.; Culp, C.

    2005-01-01T23:59:59.000Z

    , street lights and traffic lights represent one of the largest categories of electricity used by a city. By retrofitting the street lights with energy efficient lamps such as high pressure sodium and metal halide and traffic lights with light-emitting... diode (LED) traffic signals, a city 1 In the 2003 and 2005 Texas State legislative sessions, the emissions reductions legislation in Senate Bill 5 was modified by House bill 3235, and House bill 1365...

  19. China's Pathways to Achieving 40percent 45percent Reduction in CO2 Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential

    E-Print Network [OSTI]

    Zheng, Nina

    2013-01-01T23:59:59.000Z

    CO2 Emissions (Mt CO2) % of Installed Capacity Decarbonization (Fuel Switching) & Coal Tech Switching Demand Reduction

  20. Advanced Characterization of Particles and Particle-Cell Interactions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization of Particles and Particle-Cell Interactions Advanced Characterization of Particles and Particle-Cell Interactions 2004 Diesel Engine Emissions Reduction (DEER)...

  1. Methodology to Calculate NOx Emissions Reductions from the Implementation of the 2000 IECC/IRC Conservation Code in Texas

    E-Print Network [OSTI]

    Haberl, J. S.; Im, P.; Culp, C.

    2004-01-01T23:59:59.000Z

    severe sanctions if attainment is not reached by 2007. Four additional areas in the state are also approaching national ozone limits (i.e., affected areas). In 2001, the Texas State Legislature formulated and passed the Texas Emissions Reduction Plan...

  2. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Volume III--Technical Appendix 

    E-Print Network [OSTI]

    Haberl, Jeff; Culp, Charles; Yazdani, Bahman; Gilman, Don; Muns, Shirley; Liu, Zi; Baltazar-Cervantes, Juan-Carlos; Mukhopadhyay, Jaya; Degelman, Larry; Claridge, David

    2009-01-01T23:59:59.000Z

    seventh annual report, Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan to the Texas Commission on Environmental Quality. The report is organized in three volumes: Volume I – Summary Report – provides an executive...

  3. Calculation of Integrated Nox Emissions Reductions from Energy Efficiency Renewable Energy (EE/RE) Programs across State Agencies in Texas

    E-Print Network [OSTI]

    Hberl, J.; Yazdani, B.; Baltazar, J. C.; Kim, H.; Mukhopadhyay, J.; Zilbershtein, G.; Ellis, S.; Parker, P.

    2013-01-01T23:59:59.000Z

    This paper presents an update of the integrated NOx emissions reductions calculations developed by the Energy Systems Laboratory (ESL) for the State of Texas to satisfy the reporting requirements for Senate Bill 5 of the Texas State Legislature...

  4. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Vol. II - Technical Report

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Gilman, D.; Fitzpatrick, T.; Muns, S.; Verdict, M.; Ahmed, M.; Liu, Z.; Baltazar-Cervantes, J. C.; Degelman, L. O.; Turner, W. D.

    2006-11-01T23:59:59.000Z

    insight about improvement to the Emissions Reduction Calculator. Numerous additional individuals at the Laboratory contributed significantly to this report, including: Dr. David Claridge, Ms. Sherrie Hughes, Mr. Kelly Milligan, Mr. Jim Sweeney, Mr...

  5. Review of the Texas Emissions Reduction Plan (TERP) Program for Political Subdivisions, Institutions of Higher Education and State Agencies 

    E-Print Network [OSTI]

    Claridge, D. E.; Haberl, J. S.; Yazdani, B. L.; Zilbershtein, G.

    2013-01-01T23:59:59.000Z

    This report provides a concise review of the Energy Systems Laboratory's experience in evaluating the Texas Emissions Reduction Plan (TERP) Program for Political Subdivisions, Institutions of Higher Education & State Agencies (Texas Health...

  6. Development of a Web-Based, Emissions Reduction Calculator for Storm Water/Infiltration Sanitary Sewage Separation 

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J. S.; Brumbelow, K.; Culp, C.; Gilman, D.; Yazdani, B.

    2006-01-01T23:59:59.000Z

    ICEBO2006, Shenzhen, China Building Commissioning for Energy Efficiency and Comfort, Vol.VI-10-2 Development of a Web-Based, Emissions Reduction Calculator for Storm Water/Infiltration Sanitary Sewage Separation Zi Liu, Ph... guidance on how political subdivisions can assist the TCEQ in taking credit for emissions reductions from energy efficiency measures implemented at the political subdivision level. According to this TCEQ guidance energy efficiency, renewable energy...

  7. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Vol. I - Summary Report

    E-Print Network [OSTI]

    Degelman, L. O.; Gilman, D.; Ahmed, M.; Yazdani, B.; Liu, Z.; Verdict, M.; Muns, S.; Baltazar-Cervantes, J. C.; Turner, W. D.; Haberl, J. S.; Culp, C.

    2006-10-30T23:59:59.000Z

    ESL-TR-06-06-07 ENERGY EFFICIENCY/RENEWABLE ENERGY IMPACT IN THE TEXAS EMISSIONS REDUCTION PLAN (TERP) VOLUME I ? SUMMARY REPORT Annual Report to the Texas Commission on Environmental Quality September 2004 ? December 2005... report, ?Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP),? as required under Texas Health and Safety Code Ann. ? 388.003 (e), Vernon Supp. 2002 (Senate Bill 5, 77R as amended 78 R & 78S). The ESL is required...

  8. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced

    SciTech Connect (OSTI)

    Kara G. Cafferty; Erin M. Searcy; Long Nguyen; Sabrina Spatari

    2014-11-01T23:59:59.000Z

    To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels and access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver on-spec biomass feedstocks at preprocessing “depots”, which densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The harvesting, preprocessing, and logistics (HPL) of biomass commodity supply chains thus could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logisticsHPL within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. Monte Carlo simulation was used to estimate the spatial uncertainty in the HPL gate-to-gate sequence. The results show that the transport of densified biomass introduces the highest variability and contribution to the carbon footprint of the logistics HPL supply chain (0.2-13 g CO2e/MJ). Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics HPL processes can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 to 41 g CO2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this range can be minimized through optimizing the siting of preprocessing depots where ample rail infrastructure exists to supply biomass commodity to a regional biorefinery supply system

  9. Energy Efficiency/ Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) Volume II - Technical Report 

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Zilbershtein, G.; Baltazar, J. C.; Mukhopadhyay, J.; Clardige, D.; Parker, P.; Ellis, S.; Kim, H.; Gilman, D.; Degelman, L.

    2013-01-01T23:59:59.000Z

    &M University System Figure 1: OSD NOx Emissions Reduction Projections through 2020 (Base Year 2008) In 2012, (Table 1) the total integrated annual savings from all programs is 16,413,917 MWh/year. The integrated annual electricity savings... from all the different programs is: ? Savings from code-compliant residential and commercial construction is 498,883 MWh/year (3.0% of the total electricity savings), ? Savings from the PUC’s Senate Bill 7 program is 1,831,318 MWh/year (11...

  10. ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION

    SciTech Connect (OSTI)

    Ovidiu Marin; Fabienne Chatel-Pelage

    2003-04-01T23:59:59.000Z

    This document reviews the work performed during the quarter January-March 2003. The main objectives of the project are: To demonstrate the feasibility of the full-oxy combustion with flue gas recirculation on Babcock & Wilcox's 1.5MW pilot boiler, To measure its performances in terms of emissions and boiler efficiency while selecting the right oxygen injection strategies, To perform an economical feasibility study, comparing this solution with alternate technologies, and To design a new generation, full oxy-fired boiler. The main objective of this quarter was to initiate the project, primarily the experimental tasks. The contractor and its subcontractors have defined a working plan, and the first tasks have been started. Task 1 (Site Preparation) is now in progress, defining the modifications to be implemented to the boiler and oxygen delivery system. The changes are required in order to overcome some current limitations of the existing system. As part of a previous project carried out in 2002, several changes have already been made on the pilot boiler, including the enrichment of the secondary and tertiary air with oxygen or the replacement of these streams with oxygen-enriched recycled flue gas. A notable modification for the current project involves the replacement of the primary air with oxygen-enriched flue gas. Consequently, the current oxygen supply and flue gas recycle system is being modified to meet this new requirement. Task 2 (Combustion and Emissions Performance Optimization) has been initiated with a preliminary selection of four series of tests to be performed. So far, the project schedule is on-track: site preparation (Task 1) should be completed by August 1st, 2003 and the tests (Task 2) are planned for September-October 2003. The Techno-Economic Study (Task 3) will be initiated in the following quarter.

  11. ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION

    SciTech Connect (OSTI)

    Ovidiu Marin; Fabienne Chatel-Pelage

    2003-07-01T23:59:59.000Z

    This document reviews the work performed during the quarter April-June 2003. The main focus of this quarter has been the site preparation (task 1) for the test campaign scheduled in September/October 2003. Task 3 (Techno-economical assessment) has also been initiated while selecting the methodology to be used in the economics analysis and specifying the plants to be compared: In Task 1 (Site Preparation), the process definition and design activities have been completed, the equipment and instruments required have been identified, and the fabrication and installation activities have been initiated, to implement the required modifications on the pilot boiler. As of today, the schedule calls for completion of construction by late-July. System check-down is scheduled for the first two weeks of August. In Task 2 (Combustion and Emissions Performance Optimization), four weeks of testing are planned, two weeks starting second half of August and two weeks starting at the end of September. In Task 3 (Techno-Economic Study), the plants to be evaluated have been specified, including baseline cases (air fired PC boilers with or without CO{sub 2} capture), O{sub 2}-fired cases (with or without flue gas recirculation) and IGCC cases. Power plants ranging from 50 to 500MW have been selected and the methodology to be used has been described, both for performance evaluation and cost assessment. The first calculations will be performed soon and the first trends will be reported in the next quarter. As part of Task 5 (Project Management & Reporting), the subcontract between Babcock&Wilcox and American Air Liquide has been finalized. The subcontract between ISGS and American Air Liquide is in the final stages of completion.

  12. ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION

    SciTech Connect (OSTI)

    Fabienne Chatel-Pelage

    2004-01-01T23:59:59.000Z

    This document reviews the work performed during the quarter October-December 2003. Task 1 (Site Preparation) had been completed in the previous reporting period. In this reporting period, one week of combustion parameters optimization has been performed in Task 2 (experimental test performance) of the project. Under full-oxy conditions (100% air replacement with O{sub 2}-enriched flue gas) in 1.5MW{sub th} coal-fired boiler, the following parameters have been varied and their impact on combustion characteristics measured: the recirculated flue gas flow rate has been varied from 80% to 95% of total flue gas flow, and the total oxygen flow rate into the primary air zone of the boiler has been set to levels ranging from 15% to 25% of the total oxygen consumption in the overall combustion. In current reporting period, significant progress has also been made in Task 3 (Techno-Economic Study) of the project: mass and energy balance calculations and cost assessment have been completed on plant capacity of 533MW{sub e} gross output while applying the methodology described in previous reporting periods. Air-fired PC Boiler and proposed Oxygen-fired PC Boiler have been assessed, both for retrofit application and new unit. The current work schedule is to review in more details the experimental data collected so far as well as the economics results obtained on the 533MWe cases, and to develop a work scope for the remainder of the project. Approximately one week of pilot testing is expected during the first quarter of 2004, including mercury emission measurement and heat transfer characterization. The project was on hold from mid-November through December 2003 due to non-availability of funds. Out of the {approx}$785k allocated DOE funds in this project, $497k have been spent to date ($480 reported so far), mainly in site preparation, test performance and economics assessment. In addition to DOE allocated funds, to date approximately $330k has been cost-shared by the participants, bringing the total project cost up to $827k ($810k reported so far) as on December 31st, 2003.

  13. Advanced, Low/Zero Emission Boiler Design and Operation

    SciTech Connect (OSTI)

    Babcock/Wilcox; Illinois State Geological; Worley Parsons; Parsons Infrastructure/Technology Group

    2007-06-30T23:59:59.000Z

    In partnership with the U.S. Department of Energy's National Energy Technology Laboratory, B&W and Air Liquide are developing and optimizing the oxy-combustion process for retrofitting existing boilers as well as new plants. The main objectives of the project is to: (1) demonstrate the feasibility of the oxy-combustion technology with flue gas recycle in a 5-million Btu/hr coal-fired pilot boiler, (2) measure its performances in terms of emissions and boiler efficiency while selecting the right oxygen injection and flue gas recycle strategies, and (3) perform technical and economic feasibility studies for application of the technology in demonstration and commercial scale boilers. This document summarizes the work performed during the period of performance of the project (Oct 2002 to June 2007). Detailed technical results are reported in corresponding topical reports that are attached as an appendix to this report. Task 1 (Site Preparation) has been completed in 2003. The experimental pilot-scale O{sub 2}/CO{sub 2} combustion tests of Task 2 (experimental test performance) has been completed in Q2 2004. Process simulation and cost assessment of Task 3 (Techno-Economic Study) has been completed in Q1 2005. The topical report on Task 3 has been finalized and submitted to DOE in Q3 2005. The calculations of Task 4 (Retrofit Recommendation and Preliminary Design of a New Generation Boiler) has been completed in 2004. In Task 6 (engineering study on retrofit applications), the engineering study on 25MW{sub e} unit has been completed in Q2, 2008 along with the corresponding cost assessment. In Task 7 (evaluation of new oxy-fuel power plants concepts), based on the design basis document prepared in 2005, the design and cost estimate of the Air Separation Units, the boiler islands and the CO{sub 2} compression and trains have been completed, for both super and ultra-supercritical case study. Final report of Task-7 is published by DOE in Oct 2007.

  14. A Comparative Evaluation of Greenhouse Gas Emission Reduction Strategies for the Maritime Shipping and Aviation Sectors

    E-Print Network [OSTI]

    Hansen, Mark; Smirti, Megan; Zou, Bo

    2008-01-01T23:59:59.000Z

    2001) The impact of CO 2 emissions trading on the EuropeanJ. D. et al. (2007) Emissions Trading for internationalinvestigating an open emission trading system for aviation

  15. Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles

    E-Print Network [OSTI]

    Burke, A.F.; Miller, M.

    1997-01-01T23:59:59.000Z

    are for total full fuel cycle emissions. References l.Light Duty Vehicle Full Fuel Cycle Emissions Analysis,AND FUEL ECONOMY FULL FUEL CYCLE EMISSIONS REGULATORY

  16. Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2008-01-01T23:59:59.000Z

    of U.S. Croplands for Biofuels Increases Greenhouse GasesGHG Emissions from Biofuels . in STEPS Research Symposium .NRDC, Growing Energy: How Biofuels Can Help End America's

  17. Analysis of Emissions Calculators for the National Center of Excellence on Displaced Emission Reductions (CEDER)- 2008 Annual Report to the United States Environmental Protection Agency

    E-Print Network [OSTI]

    Yazdani, B.; Culp, C.; Haberl, J.; Baltazar, J. C.; Do, S. L.

    .edu/activities/ozonecapstone/noxcalculator.htm ESA?21 Yes 9 Residential?Calculator?&?Business?Calculator http://www.10percentchallenge.org/rezcalculator.php Earthlogic,?Inc. Yes 10 Climate?Change?Calculator? http://www.americanforests.org/resources/ccc/index.php ?AMERICAN?FORESTS Yes 11...,325 Elec.?Only?(Annual?10,979? kwh) 3.2 3.2?Emission?Reductions?Calculator Leonardo?Academy Texas 12000?kWh/Year N/A 10 10 17,208 The?value?in?SOx?section? represents?SO2 4 AirHead?Emissions?Calculator AirHead Result?is?aggregate?emissions 5 Carbon...

  18. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Vol. II - Technical Report 

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Gilman, D.; Fitzpatrick, T.; Muns, S.; Verdict, M.; Ahmed, M.; Liu, Z.; Baltazar-Cervantes, J. C.; Degelman, L. O.; Turner, W. D.

    2006-11-01T23:59:59.000Z

    , the following results were determined for energy-code compliant new residential single- and multi-family construction in non-attainment and affected counties built in 2004: ? The annual savings in 2005 amounted to 348,794 megawatt hours (MWh... would have been 1,799 MWh/day and 1,210 million Btu (MBtu) of natural gas, resulting in peak-OSD NOx emissions reductions of 1.26 tons (2007 eGRID). ? Beginning in 2005, the Laboratory worked with the TCEQ to integrate NOx emissions reductions (i...

  19. Contribution of cooperative sector recycling to greenhouse gas emissions reduction: A case study of Ribeirăo Pires, Brazil

    SciTech Connect (OSTI)

    King, Megan F., E-mail: mfking@uvic.ca [The Community-Based Research Laboratory, Department of Geography, University of Victoria, PO Box 3060 STN CSC, Victoria, BC V8W 3R4 (Canada); Gutberlet, Jutta, E-mail: gutber@uvic.ca [Department of Geography, University of Victoria, PO Box 3060 STN CSC, Victoria, BC V8W 3R4 (Canada)

    2013-12-15T23:59:59.000Z

    Highlights: • Cooperative recycling achieves environmental, economic and social objectives. • We calculate GHG emissions reduction for a recycling cooperative in Săo Paulo, Brazil. • The cooperative merits consideration as a Clean Development Mechanism (CDM) project. • A CDM project would enhance the achievements of the recycling cooperative. • National and local waste management policies support the recycling cooperative. - Abstract: Solid waste, including municipal waste and its management, is a major challenge for most cities and among the key contributors to climate change. Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solid waste stream. In Săo Paulo, Brazil, recycling cooperatives play a crucial role in providing recycling services including collection, separation, cleaning, stocking, and sale of recyclable resources. The present research attempts to measure the greenhouse gas emission reductions achieved by the recycling cooperative Cooperpires, as well as highlight its socioeconomic benefits. Methods include participant observation, structured interviews, questionnaire application, and greenhouse gas accounting of recycling using a Clean Development Mechanism methodology. The results show that recycling cooperatives can achieve important energy savings and reductions in greenhouse gas emissions, and suggest there is an opportunity for Cooperpires and other similar recycling groups to participate in the carbon credit market. Based on these findings, the authors created a simple greenhouse gas accounting calculator for recyclers to estimate their emissions reductions.

  20. Alternative SO sub 2 and NO sub x emission reduction technologies for stationary sources: A comparative analysis

    SciTech Connect (OSTI)

    Emmel, T.E. (Radian Corp., Austin, TX (USA)); South, D.W. (Argonne National Lab., IL (USA))

    1990-01-01T23:59:59.000Z

    Emission control of acid rain precursors is currently the subject of intense debate on Capitol Hill. Numerous bills have been introduced which call for substantial reduction in sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emissions from operating utility and industrial boilers. The primary focus of the debates is on the cost, applicability and potential market impacts of emissions control options available to achieve the desired reductions. These topics are also the focus of a report in preparation for the 1990 Assessment of the National Acid Precipitation Assessment Program (NAPAP). This paper summarizes some of the abatement technology information for utility boilers contained in the NAPAP report. First the major provisions in the proposed acid rain legislation are summarized and the emission reduction options potentially applicable to the utility boiler population discussed. This is followed by discussion of the retrofit issues for utility boilers and a synopsis of the applicability and cost of retrofit emission control options. Since the focus of the current proposed legislation is on near-term reduction requirements for utility boilers, this paper emphasizes retrofit control options. 1 ref., 12 figs., 3 tabs.

  1. Development of a Web-Based, Emissions Reduction Calculator for Storm Water/Infiltration Sanitary Sewage Separation 

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J. S.; Brumbelow, K.; Culp, C.; Gilman, D.; Yazdani, B.

    2006-01-01T23:59:59.000Z

    ICEBO2006, Shenzhen, China 1 DEVELOPMENT OF A WEB-BASED, EMISSIONS REDUCTION CALCULATOR FOR STORM WATER/INFILTRATION SANITARY SEWAGE SEPARATION Zi Liu, Ph.D. Research Engineer Energy Systems Laboratory Charles Culp, Ph.D., P.../Renewable Energy (EE/RE) projects into the Environmental Protection Agency (EPA) mandated State Implementation Plan (SIP): A Guide for Local Entities?, which provides guidance on how political subdivisions can assist the TCEQ in taking credit for emissions...

  2. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India

    SciTech Connect (OSTI)

    Chaney, L.; Thundiyil, K.; Andersen, S.; Chidambaram, S.; Abbi, Y. P.

    2007-01-01T23:59:59.000Z

    Up to 19.4% of vehicle fuel consumption in India is devoted to air conditioning (A/C). Indian A/C fuel consumption is almost four times the fuel penalty in the United States and close to six times that in the European Union because India's temperature and humidity are higher and because road congestion forces vehicles to operate inefficiently. Car A/C efficiency in India is an issue worthy of national attention considering the rate of increase of A/C penetration into the new car market, India's hot climatic conditions and high fuel costs. Car A/C systems originally posed an ozone layer depletion concern. Now that industrialized and many developing countries have moved away from ozone-depleting substances per Montreal Protocol obligations, car A/C impact on climate has captured the attention of policy makers and corporate leaders. Car A/C systems have a climate impact from potent global warming potential gas emissions and from fuel used to power the car A/Cs. This paper focuses on car A/C fuel consumption in the context of the rapidly expanding Indian car market and how new technological improvements can result in significant fuel savings and consequently, emission reductions. A 19.4% fuel penalty is associated with A/C use in the typical Indian passenger car. Car A/C fuel use and associated tailpipe emissions are strong functions of vehicle design, vehicle use, and climate conditions. Several techniques: reducing thermal load, improving vehicle design, improving occupants thermal comfort design, improving equipment, educating consumers on impacts of driver behaviour on MAC fuel use, and others - can lead to reduced A/C fuel consumption.

  3. Advanced Micro Turbine System (AMTS) -C200 Micro Turbine -Ultra-Low Emissions Micro Turbine

    SciTech Connect (OSTI)

    Capstone Turbine Corporation

    2007-12-31T23:59:59.000Z

    In September 2000 Capstone Turbine Corporation commenced work on a US Department of Energy contract to develop and improve advanced microturbines for power generation with high electrical efficiency and reduced pollutants. The Advanced MicroTurbine System (AMTS) program focused on: (1) The development and implementation of technology for a 200 kWe scale high efficiency microturbine system (2) The development and implementation of a 65 kWe microturbine which meets California Air Resources Board (CARB) emissions standards effective in 2007. Both of these objectives were achieved in the course of the AMTS program. At its conclusion prototype C200 Microturbines had been designed, assembled and successfully completed field demonstration. C65 Microturbines operating on natural, digester and landfill gas were also developed and successfully tested to demonstrate compliance with CARB 2007 Fossil Fuel Emissions Standards for NOx, CO and VOC emissions. The C65 Microturbine subsequently received approval from CARB under Executive Order DG-018 and was approved for sale in California. The United Technologies Research Center worked in parallel to successfully execute a RD&D program to demonstrate the viability of a low emissions AMS which integrated a high-performing microturbine with Organic Rankine Cycle systems. These results are documented in AMS Final Report DOE/CH/11060-1 dated March 26, 2007.

  4. Voluntary Agreements for Energy Efficiency or GHG EmissionsReduction in Industry: An Assessment of Programs Around the World

    SciTech Connect (OSTI)

    Price, Lynn

    2005-06-01T23:59:59.000Z

    Voluntary agreements for energy efficiency improvement and reduction of energy-related greenhouse gas (GHG) emissions have been a popular policy instrument for the industrial sector in industrialized countries since the 1990s. A number of these national-level voluntary agreement programs are now being modified and strengthened, while additional countries--including some recently industrialized and developing countries--are adopting these type of agreements in an effort to increase the energy efficiency of their industrial sectors.Voluntary agreement programs can be roughly divided into three broad categories: (1) programs that are completely voluntary, (2) programs that use the threat of future regulations or energy/GHG emissions taxes as a motivation for participation, and (3) programs that are implemented in conjunction with an existing energy/GHG emissions tax policy or with strict regulations. A variety of government-provided incentives as well as penalties are associated with these programs. This paper reviews 23 energy efficiency or GHG emissions reduction voluntary agreement programs in 18 countries, including countries in Europe, the U.S., Canada, Australia, New Zealand, Japan, South Korea, and Chinese Taipei (Taiwan) and discusses preliminary lessons learned regarding program design and effectiveness. The paper notes that such agreement programs, in which companies inventory and manage their energy use and GHG emissions to meet specific reduction targets, are an essential first step towards GHG emissions trading programs.

  5. Non-Incineration Treatment to Reduce Benzene and VOC Emissions from Green Sand Molding Systems

    SciTech Connect (OSTI)

    Fred S. Cannon; Robert C. Voigt

    2002-06-28T23:59:59.000Z

    Final report describing laboratory, pilot scale and production scale evaluation of advanced oxidation systems for emissions and cost reduction in metal casting green sand systems.

  6. Advanced emissions control development project. Phase I, Final report, November 1, 1993--February 19, 1996

    SciTech Connect (OSTI)

    NONE

    1996-02-29T23:59:59.000Z

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESP`s), fabric filters (baghouse), and wet flue gas desulfurization. B&W`s Clean Environment Development Facility (CEDF) and the AECDP equipment combined to form a state-of-the-art facility for integrated evaluation of combustion and post-combustion emissions control options. Phase 1 activities were primarily aimed at providing a reliable, representative test facility for conducting air toxic emissions control development work later in the project. This report summarizes the AECDP Phase I activities which consisted of the design, installation, shakedown, verification, and air toxics benchmarking of the AECDP facility. All verification and air toxic tests were conducted with a high sulfur, bituminous Ohio coal.

  7. Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube-Oil-Consumption Control

    E-Print Network [OSTI]

    Brown, Alan

    1 Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube the effectiveness of reducing engine lube-oil consumption as a means to reduce particulate pollutants. In this study-lube-oil-consumption designs, for example, could be an option with existing engines. AIR POLLUTION FROM SHIPS The motivation

  8. Energy use and emissions of idling-reduction options for heavy-duty diesel truacks a comparison.

    SciTech Connect (OSTI)

    Gaines, L. L.; Hartman, C. J. B.; Solomon, M. J.; Energy Systems; James Madison Univ.; Northeast States for Coordinated Air Use Management

    2009-01-01T23:59:59.000Z

    Pollution and energy analyses of different idling-reduction (IR) technologies have been limited to localized vehicle emissions and have neglected upstream energy use and regional emissions. In light of increasing regulation and government incentives for IR, this research analyzed the full fuel cycle effects of contemporary approaches. It compared emissions, energy use, and proximity to urban populations for nine alternatives, including idling, electrified parking spaces, auxiliary power units, and several combinations of these. It also compared effects for the United States and seven states: California, Florida, Illinois, New York, Texas, Virginia, and West Virginia. U.S. average emissions impacts from all onboard IR options were found to be lower than those from a 2007-compliant idling truck. Total particulate emissions from electrified parking spaces were found to be greater than those from a 2007 truck, but such emissions generally occurred in areas with low population density. The lowest energy use, carbon dioxide emissions, and nitrogen oxide emissions are seen with a direct-fired heater combined with electrified parking spaces for cooling, and the lowest particulate-matter emissions were found with a direct-fired heater combined with an onboard device for cooling. As expected, state-to-state variations in the climate and grid fuel mix influence the impacts of the full fuel cycle from IR technologies, and the most effective choice for one location may be less effective elsewhere.

  9. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01T23:59:59.000Z

    Factors CO2 Emission factor for grid electricity  (tonne CO2 Savings Figure 6. 2010-2030 Electricity and Electricity-Base CO 2 Emissions

  10. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    The CO2 emissions from external production of electricityCO2) emissions from fossil fuel combustion, as well as the consumption of large amount of electricity,

  11. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    dioxide (CO2) emissions from fossil fuel combustion, as wellCO2 emissions (including cement process and fossil fuel combustion

  12. Reduction of soot emissions by iron pentacarbonyl in isooctane diffusion flames

    SciTech Connect (OSTI)

    Kim, K.B.; Masiello, K.A.; Hahn, D.W. [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2008-07-15T23:59:59.000Z

    Light-scattering measurements, in situ laser-induced fluorescence, and thermophoretic sampling with transmission electron microscopy (TEM) analysis, were performed in laboratory isooctane diffusion flames seeded with 4000 ppm iron pentacarbonyl. These measurements allowed the determination of the evolution of the size, number density, and volume fraction of soot particles through the flame. Comparison to unseeded flame data provided a detailed assessment of the effects of iron addition on soot particle inception, growth, and oxidation processes. Iron was found to produce a minor soot-enhancing effect at early residence times, while subsequent soot particle growth was largely unaffected. It is concluded that primarily elemental iron is incorporated within the soot particles during particle inception and growth. However, iron addition was found to enhance the rate of soot oxidation during the soot burnout regime, yielding a two-thirds reduction in overall soot emissions. In situ spectroscopic measurements probed the transient nature of elemental iron throughout the flame, revealing significant loss of elemental iron, presumably to iron oxides, with increasing flame residence, suggesting catalysis of soot oxidation via iron oxide species. (author)

  13. Reduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead of ContractingofReducing WasteReduction

  14. Reduction of ruminant methane emissions - a win-win-win opportunity for business, development, and the environment

    SciTech Connect (OSTI)

    Livingston, R. [Appropriate Technology International, Washington, DC (United States)

    1997-12-31T23:59:59.000Z

    This paper describes research efforts of The Global Livestock Producers Program (GLPP) in establishing self-sustaining enterprises for cost-effective technologies (i.e., animal nutrition and genetic improvement) and global methane emissions reductions in developing world nations. The US Environmental Protection Agency has funded several studies to examine the possibilities of reducing ruminant methane emissions in India, Tanzania, Bangladesh, and Brazil. The results of the studies showed that: (1) many developing countries` production systems are inefficient, and (2) great potential exists for decreasing global methane emissions through increasing animal productivity. From this effort, the GLPP established livestock development projects in India, Zimbabwe, and Tanzania, and is developing projects for Bangladesh, Nepal, and Brazil. The GLPP has developed a proven methodology for assessing ruminant methane and incorporating methane emissions monitoring into viable projects.

  15. Analysis of Emissions Calculators for the National Center of Excellence on Displaced Emission Reductions (CEDER): Annual Report 

    E-Print Network [OSTI]

    Yazdani, Bahman; Culp, Charles; Haberl, Jeff; Baltazar, Juan-Carlos; Do, Sung Lok

    2010-01-01T23:59:59.000Z

    In August 2004, the USEPA issued guidance on quantifying the air emission benefits from electric sector energy efficiency and renewable energy. Because there was no clear best strategy, the EPA’s guidance provided a framework ...

  16. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    to install flue-gas desulphurization, NOx reduction, and aefficiency flue gas desulphurization and de-NO x to meet

  17. Development of a Web-based Emissions Reduction Calculator for Green Power Purchases from Texas Wind Energy Providers

    E-Print Network [OSTI]

    Liu, Z.; Baltazar-Cervantes, J. C.; Gilman, D.; Haberl, J.; Culp, C.

    2005-01-01T23:59:59.000Z

    that have been developed to calculate the emissions reductions from electricity provided by wind energy providers in the Texas ERCOT region, including an analysis of actual hourly wind power generated from a wind turbine in Randall County, Texas... development here. The capacity of installed wind turbines totals 1,407 MW as of April 2005 and the planned capacity for new projects 4 rises to 3,700 1 In the 2003 Texas State legislative session...

  18. Calculation of NOx Emission Reduction from Implementation of the 2000 IECC/IRC Conservation Code in Texas

    E-Print Network [OSTI]

    Turner, W. D.; Yazdani, B.; Im, P.; Verdict, M.; Bryant, J.; Fitzpatrick, T.; Haberl, J. S.; Culp, C.

    2003-01-01T23:59:59.000Z

    for Texas ARI (2002). Average furnace efficiencies and domestic water heater efficiencies were assumed to meet the Federal Standards of 80% and 76%, respectively. The 2001 IECC code- 10.... Division (East and West Texas): From NAHB survey data. 17. AFUE (%),SEER and Water Heater Efficiency for 1999 standard and IECC 2000 house are 80%, 11 and 76%, respectively. Table 1: 2002 NOx emissions reductions from implementation of the 2000 IECC...

  19. Evaluation of KDOT's Vehicle Fleet's CO2 Emissions and Possible Energy Reductions

    E-Print Network [OSTI]

    Nielsen, Eric

    2012-12-31T23:59:59.000Z

    their net CO2 emissions when a full life cycle analysis is considered, although some fuel system problems may arise with higher biofuel blends especially in cold weather....

  20. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

    2010-05-21T23:59:59.000Z

    The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

  1. DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program

    SciTech Connect (OSTI)

    Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

    2012-10-26T23:59:59.000Z

    The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

  2. Estimation of Annual Reductions of NOx Emissions in ERCOT for the HB3693 Electricity Savings Goals 

    E-Print Network [OSTI]

    Diem, Art; Mulholland, Denise; Yarbrough, James; Baltazar, Juan Carlos; Im, Piljae; Haberl, Jeff

    2008-01-01T23:59:59.000Z

    avoided emission rate is approximately 0.51 pounds (lb) of NOx reduced per MWh of electricity savings. While House Bill 3693 is an Act related to energy and does not target emissions levels, the energy efficiency improvements would achieve air pollution...

  3. Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers

    E-Print Network [OSTI]

    Li, Ying

    's studies have determined that mercury emissions from coal-fired power plants pose significant hazards to public health and must be reduced. Coal-fired power plants represent a significant fraction and reduce Hg emissions from coal-fired power plants. EPA is proposing two alternatives that include

  4. Advanced Non-Krylov Subspace Model Order Reduction Techniques for Interconnect Circuits

    E-Print Network [OSTI]

    Yan, Boyuan

    2009-01-01T23:59:59.000Z

    decoupled into a number of MISO circuits based on the input-partitioned into many MISO systems and the traditionalcan be performed on these MISO systems. The new reduction

  5. Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of How the Refinery Industry is Capitalizing on ENERGY STAR

    E-Print Network [OSTI]

    Patrick, K.

    2008-01-01T23:59:59.000Z

    Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of how the Refinery Industry is Capitalizing on ENERGY STAR Kelly Patrick U.S. Environmental Protection Agency kelly...

  6. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    SciTech Connect (OSTI)

    Zhou, Nan; Fridley, David; McNeil, Michael; Zheng, Nina; Letschert, Virginie; Ke, Jing

    2011-04-01T23:59:59.000Z

    China has implemented a series of minimum energy performance standards (MEPS) for over 30 appliances, voluntary energy efficiency label for 40 products and a mandatory energy information label that covers 19 products to date. However, the impact of these programs and their savings potential has not been evaluated on a consistent basis. This paper uses modeling to estimate the energy saving and CO{sub 2} emission reduction potential of the appliances standard and labeling program for products for which standards are currently in place, under development or those proposed for development in 2010 under three scenarios that differ in the pace and stringency of MEPS development. In addition to a baseline 'Frozen Efficiency' scenario at 2009 MEPS level, the 'Continued Improvement Scenario' (CIS) reflects the likely pace of post-2009 MEPS revisions, and the likely improvement at each revision step. The 'Best Practice Scenario' (BPS) examined the potential of an achievement of international best practice efficiency in broad commercial use today in 2014. This paper concludes that under 'CIS', cumulative electricity consumption could be reduced by 9503 TWh, and annual CO{sub 2} emissions of energy used for all 37 products would be 16% lower than in the frozen efficiency scenario. Under a 'BPS' scenario for a subset of products, cumulative electricity savings would be 5450 TWh and annual CO{sub 2} emissions reduction of energy used for 11 appliances would be 35% lower.

  7. Procedure to Calculate NOx Reductions Using the Emissions & Generation Resource Integrated Database (E-Grid) Spreadsheet

    E-Print Network [OSTI]

    Haberl, J. S.; Im, P.; Culp, C.; Yazdani, B.; Fitzpatrick, T.; Verdict, M.; Turner, W. D.

    2003-01-01T23:59:59.000Z

    and Renewable Energy projects (EE/RE) implemented in each Power Control Area (PCA) in the ERCOT region E-GRID is a comprehensive database of environmental attributes of electric power systems. E-GRID is based on available plant-specific data for all U... in Figure 9 that three counties (i.e., Ward, McLennan, and Mitchell) rise significantly in NOx reductions during peak days when compared to annual NOx reductions (Figure 5). Table 1. EPA's EGRID table: County-wide NOx Reductions in pounds per MWh for EE/RE...

  8. Calibration and performance of a selective catalytic reduction (SCR) bench rig for NOx? emissions control

    E-Print Network [OSTI]

    Castro Galnares, Sebastián (Castro Galnares Wright Paz)

    2008-01-01T23:59:59.000Z

    A laboratory test rig was designed and built to easily test SCR (Selective Catalytic Reduction) technology. Equipped with three 6 kW heaters, connections for liquid N2 and an assortment of test gases, and a connection with ...

  9. Calculation of NOx Emissions Reductions From Energy Efficient Residential Building Construction in Texas

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Gilman, D.; Yazdani, B.; Fitzpatrick, T.; Muns, S.

    2006-05-23T23:59:59.000Z

    . These areas face severe sanctions if attainment is not reached by 2007. This paper provides an overview of the procedures that have been developed and used to calculate the electricity savings and NOx reductions from code-compliant residential construction...

  10. Electricity generation and emissions reduction decisions under uncertainty : a general equilibrium analysis

    E-Print Network [OSTI]

    Morris, Jennifer F. (Jennifer Faye)

    2013-01-01T23:59:59.000Z

    The electric power sector, which accounts for approximately 40% of U.S. carbon dioxide emissions, will be a critical component of any policy the U.S. government pursues to confront climate change. In the context of uncertainty ...

  11. Reductions in ozone concentrations due to controls on variability in industrial flare emissions in Houston, Texas

    E-Print Network [OSTI]

    Nam, Junsang

    2007-01-01T23:59:59.000Z

    High concentrations of ozone in the Houston/Galveston area are associated with industrial plumes of highly reactive hydrocarbons, mixed with NOx. The emissions leading to these plumes can have significant temporal variability, ...

  12. Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium Analysis

    E-Print Network [OSTI]

    Morris, J.

    The electric power sector, which accounts for approximately 40% of U.S. carbon dioxide emissions, will be a critical component of any policy the U.S. government pursues to confront climate change. In the context of uncertainty ...

  13. Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions 

    E-Print Network [OSTI]

    Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

    1985-01-01T23:59:59.000Z

    Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NOx emissions while also generating electricity at an attractive heat rate. Design considerations and system costs are presented....

  14. A Comparative Evaluation of Greenhouse Gas Emission Reduction Strategies for the Maritime Shipping and Aviation Sectors

    E-Print Network [OSTI]

    Hansen, Mark; Smirti, Megan; Zou, Bo

    2008-01-01T23:59:59.000Z

    fuels in place of Heavy Fuel Oil (HFO). A replacement of HFOGHG Emissions Change from Heavy Fuel Oil Marine Diesel Oil AEmissions Change from Heavy Fuel Oil At worst be CO 2

  15. Forecasting and Capturing Emission Reductions Using Industrial Energy Management and Reporting Systems

    E-Print Network [OSTI]

    Robinson, J.

    2010-01-01T23:59:59.000Z

    The Mandatory 2010 Green House Gas (GHG) Reporting Regulations and pending climate change legislation has increased interest in Energy Management and Reporting Systems (EMRS) as a means of both reducing and reporting GHG emissions. This paper...

  16. A study of cooling time reduction of interferometric cryogenic gravitational wave detectors using a high-emissivity coating

    SciTech Connect (OSTI)

    Sakakibara, Y.; Yamamoto, K.; Chen, D.; Tokoku, C.; Uchiyama, T.; Ohashi, M.; Kuroda, K. [Institute for Cosmic Ray Research (ICRR), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Kimura, N.; Suzuki, T.; Koike, S. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-01-29T23:59:59.000Z

    In interferometric cryogenic gravitational wave detectors, there are plans to cool mirrors and their suspension systems (payloads) in order to reduce thermal noise, that is, one of the fundamental noise sources. Because of the large payload masses (several hundred kg in total) and their thermal isolation, a cooling time of several months is required. Our calculation shows that a high-emissivity coating (e.g. a diamond-like carbon (DLC) coating) can reduce the cooling time effectively by enhancing radiation heat transfer. Here, we have experimentally verified the effect of the DLC coating on the reduction of the cooling time.

  17. A Study of Cooling Time Reduction of Interferometric Cryogenic Gravitational Wave Detectors Using a High-Emissivity Coating

    E-Print Network [OSTI]

    Sakakibara, Y; Suzuki, T; Yamamoto, K; Chen, D; Koike, S; Tokoku, C; Uchiyama, T; Ohashi, M; Kuroda, K

    2013-01-01T23:59:59.000Z

    In interferometric cryogenic gravitational wave detectors, there are plans to cool mirrors and their suspension systems (payloads) in order to reduce thermal noise, that is, one of the fundamental noise sources. Because of the large payload masses (several hundred kg in total) and their thermal isolation, a cooling time of several months is required. Our calculation shows that a high-emissivity coating (e.g. a diamond-like carbon (DLC) coating) can reduce the cooling time effectively by enhancing radiation heat transfer. Here, we have experimentally verified the effect of the DLC coating on the reduction of the cooling time.

  18. A Study of Cooling Time Reduction of Interferometric Cryogenic Gravitational Wave Detectors Using a High-Emissivity Coating

    E-Print Network [OSTI]

    Y. Sakakibara; N. Kimura; T. Suzuki; K. Yamamoto; D. Chen; S. Koike; C. Tokoku; T. Uchiyama; M. Ohashi; K. Kuroda

    2013-09-19T23:59:59.000Z

    In interferometric cryogenic gravitational wave detectors, there are plans to cool mirrors and their suspension systems (payloads) in order to reduce thermal noise, that is, one of the fundamental noise sources. Because of the large payload masses (several hundred kg in total) and their thermal isolation, a cooling time of several months is required. Our calculation shows that a high-emissivity coating (e.g. a diamond-like carbon (DLC) coating) can reduce the cooling time effectively by enhancing radiation heat transfer. Here, we have experimentally verified the effect of the DLC coating on the reduction of the cooling time.

  19. Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies

    SciTech Connect (OSTI)

    Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

    1999-07-01T23:59:59.000Z

    The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications.

  20. A fair compromise to break the climate impasse. A major economies forum approach to emissions reductions budgeting

    SciTech Connect (OSTI)

    Grasso, Marco [Univ. of Milan-Bicocca (Italy). International Environmental Policy; J. Roberts, Timmons [Brown Univ., Providence, RI (United States). Environmental Studies and Sociology; The Brookings Institution, Washington, DC (United States)

    2013-04-15T23:59:59.000Z

    Key messages of the study are: Given the stalemate in U.N. climate negotiations, the best arena to strike a workable deal is among the members the Major Economies Forum on Energy and Climate (MEF); The 13 MEF members—including the EU-27 (but not double-counting the four EU countries that are also individual members of the MEF)—account for 81.3 percent of all global emissions; This proposal devises a fair compromise to break the impasse to develop a science-based approach for fairly sharing the carbon budget in order to have a 75 percent chance of avoiding dangerous climate change; To increase the likelihood of a future climate agreement, carbon accounting must shift from production-based inventories to consumption-based ones; The shares of a carbon budget to stay below 2 deg C through 2050 are calculated by cumulative emissions since 1990, i.e. according to a short-horizon polluter pays principle, and national capability (income), and allocated to MEF members through emission rights. This proposed fair compromise addresses key concerns of major emitters; According to this accounting, no countries have negative carbon budgets, there is substantial time for greening major developing economies, and some developed countries need to institute very rapid reductions in emissions; and, To provide a 'green ladder' to developing countries and to ensure a fair global deal, it will be crucial to agree how to extend sufficient and predictable financial support and the rapid transfer of technology.

  1. Carbon emissions reduction strategies in Africa from improved waste management: A review

    SciTech Connect (OSTI)

    Couth, R. [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.z [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa)

    2010-11-15T23:59:59.000Z

    The paper summarises a literature review into waste management practices across Africa as part of a study to assess methods to reduce carbon emissions. Research shows that the average organic content for urban Municipal Solid Waste in Africa is around 56% and its degradation is a major contributor to greenhouse gas emissions. The paper concludes that the most practical and economic way to manage waste in the majority of urban communities in Africa and therefore reduce carbon emissions is to separate waste at collection points to remove dry recyclables by door to door collection, compost the remaining biogenic carbon waste in windrows, using the maturated compost as a substitute fertilizer and dispose the remaining fossil carbon waste in controlled landfills.

  2. Application of Non-Thermal Plasma Assisted Catalyst Technology for Diesel Engine Emission Reduction

    SciTech Connect (OSTI)

    Herling, Darrell R.; Smith, Monty R.; Baskaran, Suresh; Kupe, J.

    2000-12-31T23:59:59.000Z

    This paper presents an overview of a non-thermal plasma assisted catalyst system as applied to a small displacement diesel powered vehicle. In addition to effectively reducing NOx emissions, it has been found that a non-thermal plasma can also destroy a portion of the particulate matter (PM) that is emitted from diesel engines. Delphi Automotive Systems in conjunction with Pacific Northwest National Laboratories has been developing such an exhaust aftertreatment system to reduce emissions form diesel vehicles. The results of testing and system evaluation will be discussed in general, and the effectiveness on reducing oxides of nitrogen and particulate matter emissions from diesel vehicles. Published in Future Engines-SP1559, SAW, Warrendale, PA

  3. advanced coal-fired low-emission: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  4. Reduction of NO[sub x] emissions coke oven gas combustion process

    SciTech Connect (OSTI)

    Terza, R.R. (USS Clairton Works, PA (United States)); Sardesai, U.V. (Westfield Engineering and Services, Inc., Houston, TX (United States))

    1993-01-01T23:59:59.000Z

    The paper describes by-product processing at Clairton Works which uses a unique cryogenic technology. Modifications to the desulfurization facility, nitrogen oxide formation in combustion processes (both thermal and fuel NO[sub x]), and the boilers plants are described. Boilers were used to study the contribution of fuel NO[sub x] formation during the combustion of coke oven gas. Results are summarized. The modifications made to the desulfurization facility resulted in the overall H[sub 2]S emission being reduced by 2-4 grains/100scf and the NO[sub x] emission being reduced by 21-42% in the boiler stacks.

  5. Procedure to Calculate NOx Reductions Using the Emissions & Generation Resource Integrated Database (E-Grid) Spreadsheet 

    E-Print Network [OSTI]

    Haberl, J. S.; Im, P.; Culp, C.; Yazdani, B.; Fitzpatrick, T.; Verdict, M.; Turner, W. D.

    2003-01-01T23:59:59.000Z

    and Generation Resource Integrated Database (E-GRID) is presented. This procedure is proposed for calculating county-wide NOx reductions in pounds per MWh for Energy Efficiency and Renewable Energy projects (EE/RE) implemented in each Power Control Area (PCA...

  6. [Engineering development of advanced coal-fired low-emission boiler systems]. Technical progress report, October--December 1995

    SciTech Connect (OSTI)

    Wesnor, J.D.; Bakke, E. [ABB Environmental Systems, Birmingham, AL (United States); Bender, D.J.; Kaminski, R.S. [Raytheon Engineers and Constructors, Inc., Philadelphia, PA (United States)

    1995-12-31T23:59:59.000Z

    The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emisssion boiler systems. The primary objectives are: NO{sub x} emissions, lb/million Btu; SO{sub 2} emissions, lb/million Btu; particulate emissions, lb/million Btu; and net plant efficiency, not less than 42%. The secondary objectives are: improved ash disposability; reduced waste generation; and reduced air toxics emissions. Accomplishments to date are summarized for the following tasks: task 1, project planning and management; task 7, component development and optimization; task 8, preliminary POC test facility design; task 9, subsystem test design and plan; task 10, subsystem test unit construction; and task 11, subsystem test operation and evaluation.

  7. Reduction of green house gas emission by clean power Jinxu Ding and Arun Somani

    E-Print Network [OSTI]

    trading method can help reduce CO2 emission and realize balance. Keywords: Clean power trading, CO2 to stimulate clean power development in the regions with rich renewable sources, such as wind energy energy, the strategy should be 1 #12;able to maintain the balance of power demand and supply of a region

  8. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    SciTech Connect (OSTI)

    Zhou, Nan; Fridley, David; McNeill, Michael; Zheng, Nina; Letschert, Virginie; Ke, Jing; Saheb, Yamina

    2010-06-07T23:59:59.000Z

    China is now the world's largest producer and consumer of household appliances and commercial equipment. To address the growth of electricity use of the appliances, China has implemented a series of minimum energy performance standards (MEPS) for 30 appliances, and voluntary energy efficiency label for 40 products. Further, in 2005, China started a mandatory energy information label that covers 19 products to date. However, the impact of these standard and labeling programs and their savings potential has not been evaluated on a consistent basis. This research involved modeling to estimate the energy saving and CO{sub 2} emission reduction potential of the appliances standard and labeling program for products for which standards are currently in place, or under development and those proposed for development in 2010. Two scenarios that have been developed differ primarily in the pace and stringency of MEPS development. The 'Continued Improvement Scenario' (CIS) reflects the likely pace of post-2009 MEPS revisions, and the likely improvement at each revision step considering the technical limitation of the technology. The 'Best Practice Scenario' (BPS) examined the potential of an achievement of international best practice MEPS in 2014. This paper concludes that under the 'CIS' of regularly scheduled MEPS revisions to 2030, cumulative electricity consumption could be reduced by 9503 TWh, and annual CO{sub 2} emissions would be 16% lower than in the frozen efficiency scenario. Under a 'BPS' scenario for a subset of products, cumulative electricity savings would be 5450 TWh and annual CO{sub 2} emissions reduction would be 35% lower than in the frozen scenario.

  9. Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01T23:59:59.000Z

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  10. Emission reduction strategies for countries in transition and small countries as a basis for internationally harmonized energy policy

    SciTech Connect (OSTI)

    Lueth, O.A.; Jattke, A.; Rentz, O.

    1995-12-31T23:59:59.000Z

    Results from energy-environment models, such as national emission reduction strategies and related costs, not only have an influence on national policy but are also used as a basis for international commitments with the objective of emission limitation. In recent years, there has been a great interest in a growing number of countries, for instance of ex-Yugoslavia or of the former Soviet Union, in models and methodologies that are internationally accepted. But, whereas the general methodologies can be transferred easily, modifications are necessary to take into account the specific situation of countries with economies in transition and small countries in particular. In this paper, improvements of the internationally accepted energy-emission model EFOM-ENV are described that make it possible to consider issues like a limited availability of hard currency and liquid capital as well as the uncertainty about the future economic development. For small countries, a mixed integer approach is pursued which permits to consider: (1) political trends, for instance striving for more independence from energy imports; (2) economical effects like economies of scale; and (3) technical aspects such as the impossibility of decreasing or increasing the capacity of an existing plant by any small quantity.

  11. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    DEFRA), 2005a. UK Emissions Trading Scheme. London: DEFRA.Energy/GHG Tax Emissions trading Target Setting Penaltiesthe European Union Emissions Trading Scheme and a lack of

  12. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    Others* Air Conditioner Frozen Scenario Total CO2 EmissionsCO2 Emissions (million tonnes CO2)Improvement Scenario Total CO2 Emissions *Others include:

  13. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) 

    E-Print Network [OSTI]

    Degelman, Larry; Mukhopadhyay, Jaya; McKelvey, Kathy; Montgomery, Cynthia; Baltazar-Cervantes, Juan-Carlos; Liu, Zi; Gilman, Don; Yazdani, Bahman; Culp, Charles; Haberl, Jeff

    2009-01-01T23:59:59.000Z

    GRID database, which had been specially prepared for this purpose. In 2008, the cumulative total annual electricity savings from all programs is 20,380,240 MWh/year (12, 727 tons-NOx/year). The total cumulative OSD electricity savings from all programs... is 48,602 MWh/day, which would be a 2,025 MW average hourly load reduction during the OSD period (31.38 tons-NOx/day). By 2013, the total cumulative annual electricity savings from will be 32,736,151 MWh/year (20,395 tons-NOx/year). The total...

  14. Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions

    E-Print Network [OSTI]

    Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

    25 273 950 4 38 34 328 780 TABLE 5: Turbine Cost (F.O.B. USA) $/kW k~J Efficiency, % Garret 1M831 483 518 21 Allison 501KB5 404 3700 29 N.P. 1002 281 4500 25 GE LM2500-20 469 12,800 34 GE LM2500-33* 326 21,500 36 * same Frame... Plant Emissions; paper presented at the' EPA/EPRI Joint Symposium Stationery Combustion:NO Control, Denver Colorado, October 6-9, 1980. I x 12. William F. Kenney. Combustion Air preheat Saves Energy in Olefins Production at Ethylene: Plants; Oil...

  15. ADVANCED BYPRODUCT RECOVERY: DIRECT CATALYTIC REDUCTION OF SO2 TO ELEMENTAL SULFUR

    SciTech Connect (OSTI)

    Robert S. Weber

    1999-05-01T23:59:59.000Z

    Arthur D. Little, Inc., together with its commercialization partner, Engelhard Corporation, and its university partner Tufts, investigated a single-step process for direct, catalytic reduction of sulfur dioxide from regenerable flue gas desulfurization processes to the more valuable elemental sulfur by-product. This development built on recently demonstrated SO{sub 2}-reduction catalyst performance at Tufts University on a DOE-sponsored program and is, in principle, applicable to processing of regenerator off-gases from all regenerable SO{sub 2}-control processes. In this program, laboratory-scale catalyst optimization work at Tufts was combined with supported catalyst formulation work at Engelhard, bench-scale supported catalyst testing at Arthur D. Little and market assessments, also by Arthur D. Little. Objectives included identification and performance evaluation of a catalyst which is robust and flexible with regard to choice of reducing gas. The catalyst formulation was improved significantly over the course of this work owing to the identification of a number of underlying phenomena that tended to reduce catalyst selectivity. The most promising catalysts discovered in the bench-scale tests at Tufts were transformed into monolith-supported catalysts at Engelhard. These catalyst samples were tested at larger scale at Arthur D. Little, where the laboratory-scale results were confirmed, namely that the catalysts do effectively reduce sulfur dioxide to elemental sulfur when operated under appropriate levels of conversion and in conditions that do not contain too much water or hydrogen. Ways to overcome those limitations were suggested by the laboratory results. Nonetheless, at the end of Phase I, the catalysts did not exhibit the very stringent levels of activity or selectivity that would have permitted ready scale-up to pilot or commercial operation. Therefore, we chose not to pursue Phase II of this work which would have included further bench-scale testing, scale-up, pilot-scale (0.5 MW{sub e}) testing at conditions representative of various regenerable SO{sub 2}-control systems, preparation of a commercial process design, and development of a utility-scale demonstration plan.

  16. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect (OSTI)

    Digby D. Macdonald; Brian M. Marx; Sejin Ahn; Julio de Ruiz; Balaji Soundararaja; Morgan Smith; and Wendy Coulson

    2008-01-15T23:59:59.000Z

    Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO{sub 3}, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair. The different tasks that are being carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA) which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The Point Defect Model (PDM) is directly applied as the theoretical assessment method for describing the passive film formed on iron/steels. The PDM is used to describe general corrosion in the passive region of iron. In addition, previous work suggests that pit formation is due to the coalescence of cation vacancies at the metal/film interface which would make it possible to use the PDM parameters to predict the onset of pitting. This previous work suggests that once the critical vacancy density is reached, the film ruptures to form a pit. Based upon the kinetic parameters derived for the general corrosion case, two parameters relating to the cation vacancy formation and annihilation can be calculated. These two parameters can then be applied to predict the transition from general to pitting corrosion for iron/mild steels. If cation vacancy coalescence is shown to lead to pitting, it can have a profound effect on the direction of future studies involving the onset of pitting corrosion. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture events in stress corrosion cracking, and the determination of kinetic parameters for the generation and annihilation of point defects in the passive film on iron. The existence of coupling between the internal crack environment and the external cathodic environment, as predicted by the coupled environment fracture model (CEFM), has also been indisputably established for the AISI 4340/NaOH system. It is evident from the studies that analysis of coupling current noise is a very sensitive tool f

  17. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect (OSTI)

    Digby Macdonald; Brian Marx; Balaji Soundararajan; Morgan Smith

    2005-07-28T23:59:59.000Z

    The different tasks that have been carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA), which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals, and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture events in stress corrosion cracking, and the determination of kinetic parameters for the generation and annihilation of point defects in the passive film on iron. The existence of coupling between the internal crack environment and the external cathodic environment, as predicted by the coupled environment fracture model (CEFM), has also been indisputably established for the AISI 4340/NaOH system. It is evident from the studies that analysis of coupling current noise is a very sensitive tool for studying the crack tip processes in relation to the chemical, mechanical, electrochemical, and microstructural properties of the system. Experiments are currently being carried out to explore these crack tip processes by simultaneous measurement of the acoustic activity at the crack tip in an effort to validate the coupling current data. These latter data are now being used to deterministically predict the accumulation of general and localized corrosion damage on carbon in prototypical DOE liquid waste storage tanks. Computer simulation of the cathodic and anodic activity on the steel surfaces is also being carried out in an effort to simulate the actual corrosion process. Wavelet analysis of the coupling current data promises to be a useful tool to differentiate between the different corrosion mechanisms. Hence, wavelet analysis of the coupling current data from the DOE waste containers is also being carried out to extract data pertaining to general, pitting and stress corrosion processes, from the overall data which is bound to contain noise fluctuations due to any or all of the above mentioned processes.

  18. Advanced and developmental technologies for treatment and volume reduction of dry active wastes

    SciTech Connect (OSTI)

    Kohout, R. [R. Kohout & Associates, Ltd., Toronto (Canada)

    1994-12-31T23:59:59.000Z

    The nuclear power industry processes Dry Active Wastes (DAW) to achieve cost-effective volume reduction and/or to produce a residue that is more compatible with final disposal criteria. The two principal processes currently used by the industry are compaction and incineration. Although incineration is often considered the process of choice, capital and operating cost are often high, and in some countries, public opposition and lengthy permitting processes result in expensive delays to bringing the process to operation. Therefore, alternative treatment options (mechanical, thermal, chemical, and biological) are being investigated to provide timely, cost-effective options for industry use. An overview of those developmental processes considered applicable to processing DAW is presented. In each category, {open_quotes}established{close_quotes} processes are mentioned and/or referenced, but the focus is on {open_quotes}potential{close_quotes} technologies and the status of their development. The emphasis is on processing DAW, and therefore, those developmental processes that primarily treat solids in aqueous streams and melting/sintering technologies, both of lesser applicability to nuclear utility wastes, have been omitted. Included are those developmental technologies that appear to have a potential for radioactive waste application based on development on demonstration programs.

  19. Regulation of GHG emissions from transportation fuels: Emission quota versus emission intensity standard

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01T23:59:59.000Z

    Derivation of average cost of emission reduction by blending?) and ? respectively. GHG emissions per unit of blend is, ?+ ?? i Reduction in GHG emissions with respect to unblended

  20. A Methodology for Calculating Emissions Reductions from Renewable Energy Programs and its Application to the Wind Farms in the Texas ERCOT Region 

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Baltazar, J. C.; Subbarao, K.; Culp, C.; Yazdani, B.

    2007-01-01T23:59:59.000Z

    -weather normalization procedure. The uncertainty analysis showed that the daily regression models are sufficiently reliable to allow for their use in projecting wind production into other weather base years. Energy Systems Laboratory 23 SUMMARYEMISSIONS REDUCTION...1 Energy Systems Laboratory 1 A METHODOLOGY FOR CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION Zi Liu, Jeff Haberl, Juan-Carlos Baltazar, Kris Subbarao, Charles...

  1. E-Print Network 3.0 - advanced emission controls Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Collection: Engineering ; Energy Storage, Conversion and Utilization 20 7Emissions Trading Workshop Summary Report Discussion Synthesis Summary: traditional command and...

  2. E-Print Network 3.0 - advanced emissions control Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Collection: Engineering ; Energy Storage, Conversion and Utilization 20 7Emissions Trading Workshop Summary Report Discussion Synthesis Summary: traditional command and...

  3. Reduction of Non-CO2 Gas Emissions Through The In Situ Bioconversion of Methane

    SciTech Connect (OSTI)

    Scott, A R; Mukhopadhyay, B; Balin, D F

    2012-09-06T23:59:59.000Z

    The primary objectives of this research were to seek previously unidentified anaerobic methanotrophs and other microorganisms to be collected from methane seeps associated with coal outcrops. Subsurface application of these microbes into anaerobic environments has the potential to reduce methane seepage along coal outcrop belts and in coal mines, thereby preventing hazardous explosions. Depending upon the types and characteristics of the methanotrophs identified, it may be possible to apply the microbes to other sources of methane emissions, which include landfills, rice cultivation, and industrial sources where methane can accumulate under buildings. Finally, the microbes collected and identified during this research also had the potential for useful applications in the chemical industry, as well as in a variety of microbial processes. Sample collection focused on the South Fork of Texas Creek located approximately 15 miles east of Durango, Colorado. The creek is located near the subsurface contact between the coal-bearing Fruitland Formation and the underlying Pictured Cliffs Sandstone. The methane seeps occur within the creek and in areas adjacent to the creek where faulting may allow fluids and gases to migrate to the surface. These seeps appear to have been there prior to coalbed methane development as extensive microbial soils have developed. Our investigations screened more than 500 enrichments but were unable to convince us that anaerobic methane oxidation (AMO) was occurring and that anaerobic methanotrophs may not have been present in the samples collected. In all cases, visual and microscopic observations noted that the early stage enrichments contained viable microbial cells. However, as the levels of the readily substrates that were present in the environmental samples were progressively lowered through serial transfers, the numbers of cells in the enrichments sharply dropped and were eliminated. While the results were disappointing we acknowledge that anaerobic methane oxidizing (AOM) microorganisms are predominantly found in marine habitats and grow poorly under most laboratory conditions. One path for future research would be to use a small rotary rig to collect samples from deeper soil horizons, possibly adjacent to the coal-bearing horizons that may be more anaerobic.

  4. Energy Policy, Volume 39, Issue 4, April 2011, Pages 2165-2178 Assessment of China's Energy-Saving and Emission-Reduction

    E-Print Network [OSTI]

    throughout China, energy-efficiency education and training, and research, development, and demonstrationEnergy Policy, Volume 39, Issue 4, April 2011, Pages 2165-2178 1 Assessment of China's Energy-Saving and Emission-Reduction Accomplishments and Opportunities During the 11th Five Year Plan Lynn Price, Mark D

  5. International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs

    E-Print Network [OSTI]

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-01-01T23:59:59.000Z

    Affairs (DEFRA), 2005. UK Emissions Trading Scheme. http://targets through the UK Emissions Trading Scheme. 6 Table 1is to be adjusted for emissions trading. The reports must be

  6. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01T23:59:59.000Z

    sulfur dioxide smelting reduction smelting reduction iron three-dimensional tonne top-gas recycling blast furnace tonnes per day ultra-low-

  7. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    GW coal-fired power plants, and annual CO 2 emissions wouldGW coal-fired power plants, and annual CO 2 emissions would

  8. Magnitude and value of electric vehicle emissions reductions for six driving cycles in four US cities with varying air quality problems

    SciTech Connect (OSTI)

    Wang, Q. (California Univ., Davis, CA (United States)); Santini, D.L. (Argonne National Lab., IL (United States))

    1992-01-01T23:59:59.000Z

    The emissions of logically competing mid-1990 gasoline vehicles (GVs) and electric vehicles (EVs) are estimated as if the vehicles were driven in the same pattern of driving. Six different driving cycles are evaluated, ranging in speed from 7 to 49 miles per hour (mph). These steps are repeated using specifics of fuel composition, electric power mix, and environmental conditions applicable to Chicago, Denver, Los Angeles, and New York in the month of July. The year 2000 emissions differences for each of four regulated pollutants - HC, CO, NO[sub x,] SO[sub x] - are estimated. CO[sub 2] emissions are also estimated. With use of EVs, HC and CO emissions are consistently lowered by 98% or more. CO[sub 2] emissions reductions are uniformly large at low speed, but variable at high speed. It is found that initially introduced EVs could achieve 100% emission reductions in Chicago by using off-peak power from nuclear power plants for EV electricity generation. Emissions reductions occur for all combinations in Los Angeles, and for most combinations in New York, excepting SO[sub x]. NO[sub x] emissions are reduced in all four cities. An avoided cost'' value for each regulated pollutant is estimated for each of the cities. The values for each city depend on severity of air quality violations. It is estimated that the emissions reduction value of EVs driven an average of one and one half hours per day in Los Angeles ranges from $1050 to $3,900; $590 to $2100 in New York; $270 to $1200 in Chicago, and $330 to $1250 in Denver (1989$). Assuming a range of about 100 miles in congested conditions with speeds of 10 mph or less, the estimates range from $3600 to $13300 for Los Angeles; $2004 to $7200 for New York; $930 to $2930 for Chicago; and $1120 to $4290 for Denver. Low estimates are obtained using EPA's draft Mobile5 model for GV emissions, high values by using California's EMFAC7EP-SCF1 model. The dollar value benefit estimates include no economic value.

  9. Magnitude and value of electric vehicle emissions reductions for six driving cycles in four US cities with varying air quality problems

    SciTech Connect (OSTI)

    Wang, Q. [California Univ., Davis, CA (United States); Santini, D.L. [Argonne National Lab., IL (United States)

    1992-12-31T23:59:59.000Z

    The emissions of logically competing mid-1990 gasoline vehicles (GVs) and electric vehicles (EVs) are estimated as if the vehicles were driven in the same pattern of driving. Six different driving cycles are evaluated, ranging in speed from 7 to 49 miles per hour (mph). These steps are repeated using specifics of fuel composition, electric power mix, and environmental conditions applicable to Chicago, Denver, Los Angeles, and New York in the month of July. The year 2000 emissions differences for each of four regulated pollutants - HC, CO, NO{sub x,} SO{sub x} - are estimated. CO{sub 2} emissions are also estimated. With use of EVs, HC and CO emissions are consistently lowered by 98% or more. CO{sub 2} emissions reductions are uniformly large at low speed, but variable at high speed. It is found that initially introduced EVs could achieve 100% emission reductions in Chicago by using off-peak power from nuclear power plants for EV electricity generation. Emissions reductions occur for all combinations in Los Angeles, and for most combinations in New York, excepting SO{sub x}. NO{sub x} emissions are reduced in all four cities. An ``avoided cost`` value for each regulated pollutant is estimated for each of the cities. The values for each city depend on severity of air quality violations. It is estimated that the emissions reduction value of EVs driven an average of one and one half hours per day in Los Angeles ranges from $1050 to $3,900; $590 to $2100 in New York; $270 to $1200 in Chicago, and $330 to $1250 in Denver (1989$). Assuming a range of about 100 miles in congested conditions with speeds of 10 mph or less, the estimates range from $3600 to $13300 for Los Angeles; $2004 to $7200 for New York; $930 to $2930 for Chicago; and $1120 to $4290 for Denver. Low estimates are obtained using EPA`s draft Mobile5 model for GV emissions, high values by using California`s EMFAC7EP-SCF1 model. The dollar value benefit estimates include no economic value.

  10. Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect (OSTI)

    NONE

    2005-05-01T23:59:59.000Z

    The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

  11. International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms

    SciTech Connect (OSTI)

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-02-02T23:59:59.000Z

    Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

  12. International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs

    E-Print Network [OSTI]

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-01-01T23:59:59.000Z

    electric trains, low emission vehicles, energy-efficient textile manufacturing equipment, solar power systems,

  13. CARBON DIOXIDE EMISSION REDUCTION

    E-Print Network [OSTI]

    Delaware, University of

    ........................................................................................... 3 2.3 Energy Efficiency Technologies and Measures with gas turbine at Cascades Inc. ............................................... 34 3.5 Boiler blowdown Efficiency Technologies and Measures in Steel Industry .......................5 Table 2.3 Energy Efficiency

  14. Advanced emissions control development program: Phase 2 final report, February 29, 1996--August 31, 1997. Revision 1

    SciTech Connect (OSTI)

    Evans, A.P.; Holmes, M.J.; Redinger, K.E.

    1998-04-01T23:59:59.000Z

    The objective of the advanced emissions control development program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPs), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals [antimony, arsenic, barium, cadmium, chromium, cobalt, lead, manganese, nickel, and selenium], fine particulate and hydrogen chloride. Some general comments that can be made about the control of air toxics while burning a high-sulfur bituminous coal are as follows: (1) particulate control devices such as ESP`s and baghouses do a good job of removing non-volatile trace metals; (2) mercury goes through particulate control devices almost entirely uncontrolled; (3) wet scrubbing can effectively remove hydrogen chloride; and (4) wet scrubbers show good potential for the removal of mercury when operated under certain conditions, however additional work is needed to understand the relationship between the wet scrubber`s operating conditions and mercury capture.

  15. Reduction in the intensity of solar X-ray emission in the 2- to 15-keV photon energy range and heating of the solar corona

    SciTech Connect (OSTI)

    Mirzoeva, I. K., E-mail: colombo2006@mail.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2013-04-15T23:59:59.000Z

    The time profiles of the energy spectra of low-intensity flares and the structure of the thermal background of the soft X-ray component of solar corona emission over the period of January-February, 2003, are investigated using the data of the RHESSI project. A reduction in the intensity of X-ray emission of the solar flares and the corona thermal background in the 2- to 15-keV photon energy range is revealed. The RHESSI data are compared with the data from the Interball-Geotail project. A new mechanism of solar corona heating is proposed on the basis of the results obtained.

  16. A Methodology for Calculating Emissions Reductions from Renewable Energy Programs and Its Application to the Wind Farms in the Texas ERCOT Region

    E-Print Network [OSTI]

    Culp, C.; Haberl, J. S.; Liu, Z.; Subbarao, K.; Baltazar-Cervantes, J. C.; Yazdani, B.

    ’s SIP credits. In the proposed method, the ASHRAE Inverse Model Toolkit (Kissock et al. 2003; Haberl et al. 2003) is used for weather normalization of the daily wind power generation to the base year selected by TCEQ (i.e., 1999). The US EPA...’s Emissions and Generations Resource Integrated Database (eGRID) is used for calculating annual and Ozone Season Day’s NOx emissions reductions from the wind energy programs 2 . METHODOLOGY To determine the performance of a wind farm in the 1999 base...

  17. Evaluation of air toxic emissions from advanced and conventional coal-fired power plants

    SciTech Connect (OSTI)

    Chu, P.; Epstein, M. [Electric Power Research Institute, Palo Alto, CA (United States); Gould, L. [Department of Energy, Pittsburgh, PA (United States); Botros, P. [Department of Energy, Morgantown, WV (United States)

    1995-12-31T23:59:59.000Z

    This paper evaluates the air toxics measurements at three advanced power systems and a base case conventional fossil fuel power plant. The four plants tested include a pressurized fluidized bed combustor, integrated gasification combined cycle, circulating fluidized bed combustor, and a conventional coal-fired plant.

  18. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    electricity savings would be 5450 TWh and CO2 emissions inelectricity savings would be 5450 TWh and annual CO2 emissionselectricity consumption could be reduced by 9503 TWh, and CO2 emissions

  19. Advances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14Scripting for Advanced Workflows Jack

  20. Analysis of Emissions Calculators for the National Center of Excellence on Displaced Emission Reductions (CEDER)- 2008 Annual Report to the United States Environmental Protection Agency 

    E-Print Network [OSTI]

    Yazdani, B.; Culp, C.; Haberl, J.; Baltazar, J. C.; Do, S. L.

    2009-01-01T23:59:59.000Z

    In August 2004, the USEPA issued guidance on quantifying the air emission benefits from electric sector energy efficiency and renewable energy. Because there was no clear best strategy, the EPA’s guidance provided a framework and the basic...

  1. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    Fuels used in the refinery sector were also collected fromof the emissions from the refinery sector are included incommitment of 44% and the refinery and food sectors

  2. Future Sulfur Dioxide Emissions

    SciTech Connect (OSTI)

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01T23:59:59.000Z

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  3. Effects of a Zeolite-Selective Catalytic Reduction System on Comprehensive Emissions from a Heavy-Duty Diesel Engine

    E-Print Network [OSTI]

    Wu, Mingshen

    -Duty Diesel Engine Z. Gerald Liu and Devin R. Berg Cummins Emission Solutions, Stoughton, WI James J. Schauer spec- trum of chemical species from diesel engine emissions were investigated in this study with established procedures and com- pared between the measurements taken from a baseline heavy-duty diesel engine

  4. Effects of Advanced Combustion Technologies on Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Technologies on Particulate Matter Emissions Characteristics Effects of Advanced Combustion Technologies on Particulate Matter Emissions Characteristics...

  5. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Volume I – Summary Report, Annual Report to the Texas Commission on Environmental Quality September 2002 – August 2003

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Fitzpatrick, T.; Bryant, J.; Turner, W. D.

    2003-01-01T23:59:59.000Z

    The Energy Systems Laboratory (Laboratory) is pleased to provide our second annual report, Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan to the Texas Council on Environmental Quality (TCEQ) in fulfillment of its...

  6. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) Volume I-Summary Report, Annual Report to the Texas Commission on Environmental Quality, January 2009-December 2009 

    E-Print Network [OSTI]

    Haberl, J.; Culp, C.; Yazdani, B.; Lewis, C.; Liu, Z.; Baltazar-Cervantes, J. C.; Mukhopadhyay, J.; Gilman, D.; Degelman, L.; McKelvey, K.; Claridge, D.

    2010-01-01T23:59:59.000Z

    report, 'Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan' to the Texas Commission on Environmental Quality. This report is organized in three volumes: Volume I - Summary Report - provides an executive summary...

  7. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Volume I--Summary Report, Annual Report to the Texas Commission on Environmental Quality, January 2008-December 2008 

    E-Print Network [OSTI]

    Baltazar, Juan-Carlos; Claridge, David; Yazdani, Bahman; Mukhopadhyay, Jaya; Liu, Zi; Muns, Shirley; Gilman, Don; Degelman, Larry; Haberl, Jeff; Culp, Charles

    2009-01-01T23:59:59.000Z

    report, 'Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan' to the Texas Commission on Environmental Quality. This report is organized in three volumes: Volume I - Summary Report - provides an executive summary...

  8. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Volume I - Summary Report, Annual Report to the Texas Commission on Environmental Quality, January 2006 - June 2007 

    E-Print Network [OSTI]

    Verdict, M.; Baltazar-Cervantes, J. C.; Yazdani, B.; Ahmed, M.; Degelman, L.; Muns, S.; Fitzpatrick, T.; Gilman, D.; Liu, Z.; Mukhopadhyay, J.; McKelvey, K.; Montgomery, C.; Haberl, J. S.; Culp, C.

    2008-01-23T23:59:59.000Z

    report, 'Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan' to the Texas Commission on Environmental Quality. This report is organized in three volumes: Volume I - Summary Report - provides an executive summary...

  9. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) Volume I-Summary Report, Annual Report to the Texas Commission on Environmental Quality, January 2009-December 2009

    E-Print Network [OSTI]

    Haberl, J.; Culp, C.; Yazdani, B.; Lewis, C.; Liu, Z.; Baltazar-Cervantes, J. C.; Mukhopadhyay, J.; Gilman, D.; Degelman, L.; McKelvey, K.; Claridge, D.

    report, 'Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan' to the Texas Commission on Environmental Quality. This report is organized in three volumes: Volume I - Summary Report - provides an executive summary...

  10. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Volume I - Summary Report, Annual Report to the Texas Commission on Environmental Quality, January 2006 - June 2007

    E-Print Network [OSTI]

    Verdict, M.; Baltazar-Cervantes, J. C.; Yazdani, B.; Ahmed, M.; Degelman, L.; Muns, S.; Fitzpatrick, T.; Gilman, D.; Liu, Z.; Mukhopadhyay, J.; McKelvey, K.; Montgomery, C.; Haberl, J. S.; Culp, C.

    2008-01-23T23:59:59.000Z

    report, 'Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan' to the Texas Commission on Environmental Quality. This report is organized in three volumes: Volume I - Summary Report - provides an executive summary...

  11. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Volume I--Summary Report, Annual Report to the Texas Commission on Environmental Quality, January 2008-December 2008

    E-Print Network [OSTI]

    Baltazar, Juan-Carlos; Claridge, David; Yazdani, Bahman; Mukhopadhyay, Jaya; Liu, Zi; Muns, Shirley; Gilman, Don; Degelman, Larry; Haberl, Jeff; Culp, Charles

    report, 'Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan' to the Texas Commission on Environmental Quality. This report is organized in three volumes: Volume I - Summary Report - provides an executive summary...

  12. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Volume II – Technical Report, Annual Report to the Texas Commission on Environmental Quality September 2002 – August 2003

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Fitzpatrick, T.; Bryant, J.; Turner, W. D.

    2003-01-01T23:59:59.000Z

    The Energy Systems Laboratory (Laboratory) is pleased to provide our second annual report, Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan to the Texas Council on Environmental Quality (TCEQ) in fulfillment of its...

  13. Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Elgowainy, Mr. Amgad [Argonne National Laboratory (ANL); Rousseau, Mr. Aymeric [Argonne National Laboratory (ANL); Wang, Mr. Michael [Argonne National Laboratory (ANL); Ruth, Mr. Mark [National Renewable Energy Laboratory (NREL); Andress, Mr. David [David Andress & Associates, Inc.; Ward, Jacob [U.S. Department of Energy; Joseck, Fred [U.S. Department of Energy; Nguyen, Tien [U.S. Department of Energy; Das, Sujit [ORNL

    2013-01-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

  14. Comprehensive Community NOx Emission Reduction Methodology: Overview and Results from the Application to a Case Study Community

    E-Print Network [OSTI]

    Sung, Y. H.; Haberl, J. S.

    and efficiency programs on air pollution reduction, which will help local governments and their residents understand how to reduce pollution and mange the information collection needed to accomplish this. This paper presents a broad overview of a community...

  15. Planning for future uncertainties in electric power generation : an analysis of transitional strategies for reduction of carbon and sulfur emissions

    E-Print Network [OSTI]

    Tabors, Richard D.

    1991-01-01T23:59:59.000Z

    The object of this paper is to identify strategies for the U.S. electric utility industry for reduction of both acid rain producing and global warming gases. The research used the EPRI Electric Generation Expansion Analysis ...

  16. Statewide Emissions Reduction, Electricity and Demand Savings from the Implementation of Building-Energy-Codes in Texas

    E-Print Network [OSTI]

    Yazdani, B.; Haberl, J.; Kim, H.; Baltazar, J.C.; Zilbershtein, G.

    2012-01-01T23:59:59.000Z

    This paper focuses on the estimate of electricity reduction and electric demand savings from the adoption energy codes for single-family residences in Texas, 2002-2009, corresponding increase in cnstruction costs and estimates of the statewide...

  17. Marginal Abatement Costs and Marginal Welfare Costs for Greenhouse Gas Emissions Reductions: Results from the EPPA Model

    E-Print Network [OSTI]

    Morris, Jennifer

    Marginal abatement cost (MAC) curves, relationships between tons of emissions abated and the CO2 (or GHG) price, have been widely used as pedagogic devices to illustrate simple economic concepts such as the benefits of ...

  18. Adaptive PI control of NOx? emissions in a Urea Selective Catalytic Reduction System using system identification models

    E-Print Network [OSTI]

    Ong, Chun Yang

    2009-01-01T23:59:59.000Z

    The Urea SCR System has shown great potential for implementation on diesel vehicles wanting to meet the upcoming emission regulations by the EPA. The objective of this thesis is to develop an adaptive controller that is ...

  19. Calculation of Integrated Nox Emissions Reductions from Energy Efficiency Renewable Energy (EE/RE) Programs across State Agencies in Texas 

    E-Print Network [OSTI]

    Hberl, J.; Yazdani, B.; Baltazar, J. C.; Kim, H.; Mukhopadhyay, J.; Zilbershtein, G.; Ellis, S.; Parker, P.

    2013-01-01T23:59:59.000Z

    counties through 2011 were obtained from the SECO. The integrated savings also include MWh and NOx emissions savings from the currently installed green power generation (wind) capacity in west Texas for 2001 through 2011. Projections through 2012... was assumed for PUC programs, SECO, and SEER 13 entries. Figure 1 shows the overall information flow that was used to calculate the NOx emissions savings from the annual and OSD electricity savings (MWh) from all programs. For the Laboratory?s single...

  20. Energy Efficiency/ Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Preliminary Report: Intergrated Nox Emissions Savings from EE/RE Programs Statewide 

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Lewis, C.; Liu, Z.; Baltazar, J. C.; Mukhopadhyay, J..; Degelman, L.; McKelvey, K.; Clardige, D.; Ellis, S.; Kim, H.; Zilbershtein. G.

    2012-01-01T23:59:59.000Z

    , the integrated total electricity savings from all programs are: ? Annual electricity savings is 13,354,918 MWh/year (3,723 tons-NOx/year) and ? OSD electricity savings is 36,079 MWh/day, which would be a 1,503 MW average hourly load reduction during the OSD... period (9.89 tons-NOx/day). By 2013, the integrated total electricity savings from all programs are: ? Annual electricity savings will be 15,391,293 MWh/year (4,296 tons-NOx/year) and ? OSD electricity savings will be 41,691 MWh/day, which would be a...

  1. Energy Efficiency/ Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) Preliminary Report: Integrated Nox Emissions Savings from EE/RE Programs Statewide 

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Zilbershtein, G.; Baltazar, J. C.; Mukhopadhyay, J.; Clardige, D.; Parker, P.; Ellis, S.; Kim, H.

    2013-01-01T23:59:59.000Z

    for this purpose. In 2012, the integrated total electricity savings from all programs are: ? Annual electricity savings is 16,413,917 MWh/year (4,609 tons-NOx/year) and ? OSD electricity savings is 44,366 MWh/day, which would be a 1,849 MW average hourly... load reduction during the OSD period (12.35 tons-NOx/day). By 2013, the integrated total electricity savings from all programs are: ? Annual electricity savings will be 17,661,268 MWh/year (4,959 tons-NOx/year) and ? OSD electricity savings...

  2. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) Preliminary Report: Integrated NOx Emissions Savings from EE/RE Programs Statewide 

    E-Print Network [OSTI]

    Haberl, J.; Culp, C.; Yazdani, B.; Gilman, D.; Baltazar, J. C.; Lewis, C.; McKelvey, K.; Mukhopadhyay, J.; Degelman, L.; Liu, Z.

    2010-01-01T23:59:59.000Z

    specially prepared for this purpose. In 2009, the cumulative total annual electricity savings from all programs is 25,585,081 MWh/year (15,327 tons-NOx/year). The total cumulative OSD electricity savings from all programs is 70,442 MWh/day, which would... be a 2,935 MW average hourly load reduction during the OSD period (40.72 tons-NOx/day). By 2013, the total cumulative annual electricity savings from will be 31,979,929 MWh/year (19,314 tons-NOx/year). The total cumulative OSD electricity savings...

  3. A new challenge for the energy efficiency evaluation community: energy savings and emissions reductions from urban transportation policies

    E-Print Network [OSTI]

    Boyer, Edmond

    programs for industries, residential and commercial sectors. But now the largest share of the energyA new challenge for the energy efficiency evaluation community: energy savings and emissions de Nantes, France Abstract The energy efficiency evaluation community has a large experience about

  4. China Energy and Emissions Paths to 2030

    E-Print Network [OSTI]

    Fridley, David

    2012-01-01T23:59:59.000Z

    Potential for Electricity Saving and CO2 Emission ReductionPotential for Electricity Saving and CO2 Emission ReductionPotential for Electricity Saving and CO2 Emission Reduction

  5. Reducing Greenhouse Emissions and Fuel Consumption

    E-Print Network [OSTI]

    Shaheen, Susan; Lipman, Timothy

    2007-01-01T23:59:59.000Z

    estimated to produce CO2 emission reductions ranging frombetween low CO2 emissions and the reductions in the auto usea 16 percent reduction in CO2 traffic emissions within the

  6. China Energy and Emissions Paths to 2030

    E-Print Network [OSTI]

    Fridley, David

    2012-01-01T23:59:59.000Z

    Electricity Saving and CO2 Emission Reduction in the Cementfor Fuel Saving and CO2 Emission Reduction in the Iron andElectricity Saving and CO2 Emission Reduction in the Iron

  7. NOx Emissions Reduction from Continuous Commissioning(R) Measures for the Dallas-Fort Worth International Airport

    E-Print Network [OSTI]

    Yazdani, B.; Haberl, J. S.; Baltazar-Cervantes, J. C.

    Total NOx Reductions (lbs/day) Total NOx Reductions (Tons/day) TOT EQ ELECTRICITY (MWh) (Electricity and Chilled water) 4,761 7,278.7 3.6393 24.2 36.7 0.0184 HOT WATER (MCF) 8,358 1,170.2 0.5851 41.0 5.7 0.0029 Total 8,448.9 4.2244 42.5 0....0212 NOTES: 1) Assuming 7% for T&D losses and a Discount factor of 25%. Corresponding factors to integrated savings presented to the TCEQ. 2) A factor of 0.140 lb of NOx/MCF of Natural Gas (Controlled - Low NOx burners 140 A...

  8. Energy Savings and NOx Emissions Reduction Potential from the 2012 Federal Legislation to Phase Out Incandescent Lamps in Texas

    E-Print Network [OSTI]

    Liu, Zi; Baltazar, Juan Carlos; Haberl, Jeff; Soman, Rohit

    296042501.6 100% Page 9 Table 5: Annual NOX Emissions A r ea Co u n t y A meri ca n E lec t r ic P o w er - W es t ( E RCO T ) /P CA NO x Redu ctio n s ( lbs) A u stin E n er g y /P CA NO x Redu ctio n s ( lbs) Brow n sv ille P u b... ort h E a s t T e x a s A re a Page 10 Table 6: Ozone Production Period NOx Emissions A r ea Co u n t y A meri ca n E lec t r ic P o w er - W es t ( E RCO T ) /P CA NO x Redu ctio n s ( lbs) A u stin E n er g y /P CA NO x Redu...

  9. Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst

    SciTech Connect (OSTI)

    Sobolevskiy, Anatoly (Orlando, FL); Rossin, Joseph A. (Columbus, OH); Knapke, Michael J. (Columbus, OH)

    2011-07-12T23:59:59.000Z

    A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H.sub.2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.

  10. Development of a Web-based Emissions Reduction Calculator for Green Power Purchases from Texas Wind Energy Providers 

    E-Print Network [OSTI]

    Liu, Z.; Baltazar-Cervantes, J. C.; Gilman, D.; Haberl, J.; Culp, C.

    2005-01-01T23:59:59.000Z

    . Figure 1. The Enertech Wind Turbine Installed in Randall County, Texas 5 Data for this site was provided by Alternative Energy Institute from West Texas A&M University. The wind turbine operated... for the electric utility provider associated with the user. The user input screens for wind energy projects begin with the project input screen, as shown in the first screen of Figure 14. When the user submits this type of project to the emissions calculator...

  11. Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction

    SciTech Connect (OSTI)

    Malikopoulos, Andreas [ORNL

    2013-01-01T23:59:59.000Z

    Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

  12. Engineering development of advanced coal-fired low emission boil systems. Quarterly technical progress report, October 1993--December 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    The first test run of the Toroidal Vortex Combustor (TVC) was completed on December 6. Riley was unable to witness or set up independent sampling equipment for NO{sub x} and precursor measurement for this run. A second run which we witnessed, but did not sample, was completed December 17. This was conducted almost entirely near SR = 1.0 while Textron investigated temperature-load relationships to address concerns from Run 1. A third run was completed over the December holiday break on Dorchester coal to address concerns Textron had about the Illinois test coal. All subsequent tests will use the Illinois coal. Boiler, firing system design. Elevation drawings were developed for dry wall-fired, conventional U-fired slagging, and TVC fired slagging units. We are investigating the feasibility of modifying a conventional U-fired design for low-NOx operation as an alternative to the TVC. The approach taken to I date for NOx reduction in existing U-fired units is to retrofit with delayed-mixing burners with staging air at various places, similar to the approach with dry fired units. The concept of staged fuel addition or reburning for the U-fired system is being examined as a potential combustion NOx control approach. This concept has high potential due to the high temperature and long residence time available in the stagger. Some field trials with coke oven gas reburn produced very low NOx results. Modeling of this concept was identified as a priority task. The model development will include matching field data for air staging on slagging units to the predictions. Emissions control. Selection of an SO2 control process continues to be a high priority task. Sargent & Lundy completed a cost comparison of several regenerable processes, most of which have NOx control potential as well: Active coke, NOXSO, copper oxide, SNOX, ammonia (for SO only, ammonium sulfate byproduct), and a limestone scrubber for comparison.

  13. Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 11, April 1995--June 1995

    SciTech Connect (OSTI)

    NONE

    1995-08-30T23:59:59.000Z

    The Pittsburgh Energy Technology Center of the U.S. Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the {open_quotes}Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems{close_quotes} Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis and Phases II and III on a cost-share basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: (1) NO{sub x} emissions not greater than one-third NSPS. (2) SO{sub x} emissions not greater than one-third NSPS. (3) Particulate emissions not greater than one-half NSPS. The specific secondary objectives are: (1) Improved ash disposability and reduced waste generation. (2) Reduced air toxics emissions. (3) Increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a Commercial Generation Unit. The work in Phase I covered a 24-month period and included system analysis, RD&T Plan formulation, component definition, and preliminary Commercial Generating Unit (CGU) design. Phase II will cover a 15-month period and will include preliminary Proof-of-Concept Test Facility (POCTF) design and subsystem testing. Phase III will cover a 9-month period and will produce a revised CGU design and a revised POCTF design, cost estimate and a test plan. Phase IV, the final Phase, will cover a 36-month period and will include POCTF detailed design, construction, testing, and evaluation.

  14. Assessment of China's Energy-Saving and Emission-Reduction Accomplishments and Opportunities During the 11th Five Year Plan

    SciTech Connect (OSTI)

    Levine, Mark D.; Price, Lynn; Zhou, Nan; Fridley, David; Aden, Nathaniel; Lu, Hongyou; McNeil, Michael; Zheng, Nina; Yining, Qin; Yowargana, Ping

    2010-04-28T23:59:59.000Z

    During the period 1980 to 2002, China experienced a 5% average annual reduction in energy consumption per unit of gross domestic product (GDP). The period 2002-2005 saw a dramatic reversal of the historic relationship between energy use and GDP growth: energy use per unit of GDP increased an average of 3.8% per year during this period (NBS, various years). China's 11th Five Year Plan (FYP), which covers the period 2006-2010, required all government divisions at different levels to reduce energy intensity by 20% in five years in order to regain the relationship between energy and GDP growth experienced during the 1980s and 1990s. This report provides an assessment of selected policies and programs that China has instituted in its quest to fulfill the national goal of a 20% reduction in energy intensity by 2010. The report finds that China has made substantial progress toward its goal of achieving 20% energy intensity reduction from 2006 to 2010 and that many of the energy-efficiency programs implemented during the 11th FYP in support of China's 20% energy/GDP reduction goal appear to be on track to meet - or in some cases even exceed - their energy-saving targets. It appears that most of the Ten Key Projects, the Top-1000 Program, and the Small Plant Closure Program are on track to meet or surpass the 11th FYP savings goals. China's appliance standards and labeling program, which was established prior to the 11th FYP, has become very robust during the 11th FYP period. China has greatly enhanced its enforcement of new building energy standards but energy-efficiency programs for buildings retrofits, as well as the goal of adjusting China's economic structure to reduce the share of energy consumed by industry, do not appear to be on track to meet the stated goals. With the implementation of the 11th FYP now bearing fruit, it is important to maintain and strengthen the existing energy-saving policies and programs that are successful while revising programs or adding new policy mechanisms to improve the programs that are not on track to achieve the stated goals.

  15. Measurement and Characterization of Unregulated Emissions from...

    Broader source: Energy.gov (indexed) [DOE]

    from Advanced Technologies Effects of Advanced Combustion Technologies on Particulate Matter Emissions Characteristics Efficient Emissions Control for Multi-Mode Lean DI Engines...

  16. Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State

    SciTech Connect (OSTI)

    Krishna, C.R.; McDonald, R.

    2009-05-01T23:59:59.000Z

    There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in the foreseeable future more expensive than residual fuel. So, another task was to explore potential alternative biofuels that might confer emission benefits similar to those of biodiesel, while being potentially significantly cheaper. Of course, for power plant use, availability in the required quantities is also a significant criterion. A subsidiary study to determine the effect of the temperature of the filter used to collect and measure the PM 2.5 emissions was conducted. This was done for reasons of accuracy in a residential boiler using distillate fuel blends. The present report details the results obtained in these tests with the baseline ASTM No. 6 fuel and blends of biodiesel with it as well as the results of the filter temperature study. The search for the alternative 'cheaper' biofuel identified a potential candidate, but difficulties encountered with the equipment during the testing prevented testing of the alternative biofuel.

  17. Measurement and Characterization of Unregulated Emissions from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Measurement and Characterization of Unregulated Emissions from Advanced Technologies...

  18. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in West Virginia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01T23:59:59.000Z

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in West Virginia. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in West Virginia to be $1.0 billion, annual CO2 reductions are estimated at 3.3 million tons, and annual water savings are 1,763 million gallons.

  19. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Pennsylvania (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01T23:59:59.000Z

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Pennsylvania. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Pennsylvania to be $1.2 billion, annual CO2 reductions are estimated at 3.4 million tons, and annual water savings are 1,837 million gallons.

  20. Ultra-low Sulfur Reduction Emission Control Device/Development of an On-board Fuel Sulfur Trap

    SciTech Connect (OSTI)

    Rohrbach, Ron; Barron, Ann

    2008-07-31T23:59:59.000Z

    Honeywell has completed working on a multiyear program to develop and demonstrate proof-of-concept for an 'on-vehicle' desulfurization fuel filter for both light duty and heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NOx adsorbers. The NOx adsorber may be required to meet the proposed new EPA Tier II and '2007-Rule' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters was also examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. In the second phase of the program a light duty diesel engine test was also demonstrated. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consisted of four phases. Phase I focused on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II concentrated on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III studied life cycle and regeneration options for the spent filter. Phase IV focused on efficacy and benefits in the desulfation steps of a NOx adsorber on both a heavy and light duty engine. The project team included a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer (Johnson Matthey), a CIDI engine manufacturer (Navistar Inc. (formerly International Truck & Engine Corporation) and Mack Trucks Inc.), and filter recycler (American Wastes Industries).

  1. ULTRA-LOW SULFUR REDUCTION EMISSION CONTROL DEVICE/DEVELOPMENT OF AN ON-BOARD FUEL SULFUR TRAP

    SciTech Connect (OSTI)

    Ron Rohrbach; Gary Zulauf; Tim Gavin

    2003-04-01T23:59:59.000Z

    Honeywell is actively working on a 3-year program to develop and demonstrate proof-of-concept for an ''on-vehicle'' desulfurization fuel filter for heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NO{sub x} adsorbers. The NO{sub x} adsorber may be required to meet the proposed new EPA Tier II and ''2007-Rule'' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters will also be examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. It is anticipated that the technology developed for heavy-duty applications will be applicable to light-duty as well. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consists of four phases. Phase I will focus on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II we will concentrate on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III will study life cycle and regeneration options for the spent filter. Phase IV will focus on efficacy and life testing and component integration. The project team will include a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer (Johnson Matthey), a CIDI engine manufacturer (Mack Trucks Inc.), a filter recycler (American Wastes Industries), and a low-sulfur fuel supplier (Equilon, a joint venture between Shell and Texaco).

  2. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Fourth quarterly technical progress report

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams.

  3. LEDS Global Partnership in Action: Advancing Climate-Resilient Low Emission Development Around the World (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01T23:59:59.000Z

    Many countries around the globe are designing and implementing low emission development strategies (LEDS). These LEDS seek to achieve social, economic, and environmental development goals while reducing long-term greenhouse gas (GHG) emissions and increasing resiliency to climate change impacts. The LEDS Global Partnership (LEDS GP) harnesses the collective knowledge and resources of more than 120 countries and international donor and technical organizations to strengthen climate-resilient low emission development efforts around the world.

  4. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    E-Print Network [OSTI]

    Rapp, VH

    2014-01-01T23:59:59.000Z

    Emissions from Residential Water Heaters Table of Contents46 Table 10. Storage water heaters evaluated experimentally50 Table 11. Published information for water heater

  5. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    E-Print Network [OSTI]

    Rapp, VH

    2014-01-01T23:59:59.000Z

    testing storage water heaters, water was drawn either prioris located behind the water heater and samples before thelocated behind the water heater and sample emissions prior

  6. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly report, April 1--June 30, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, the authors have planned a structured program including: Market/process/cost/evaluation; Lab-scale catalyst preparation/optimization studies; Lab-scale, bulk/supported catalyst kinetic studies; Bench-scale catalyst/process studies; and Utility review. Progress is reported from all three organizations.

  7. Advanced Petroleum Based Fuels Research at NREL

    Broader source: Energy.gov (indexed) [DOE]

    emerging engines - Fuel impacts on toxicunregulated emissions (w NPBF) - Impact of biodiesel on advanced emission control systems (NPBF) - Lube oil impact on PM emissions...

  8. Engineering development of advanced coal-fired low-emissions boiler system. Phase II subsystem test design and plan - an addendum to the Phase II RD & T Plan

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    Shortly after the year 2000 it is expected that new generating plants will be needed to meet the growing demand for electricity and to replace the aging plants that are nearing the end of their useful service life. The plants of the future will need to be extremely clean, highly efficient and economical. Continuing concerns over acid rain, air toxics, global climate changes, ozone depletion and solid waste disposal are expected to further then regulations. In the late 1980`s it was commonly believed that coal-fired power plants of the future would incorporate either some form of Integrated Gasification Combined Cycle (IGCC) or first generation Pressurized Fluidized Bed Combustion (PFBS) technologies. However, recent advances In emission control techniques at reduced costs and auxiliary power requirements coupled with significant improvements In steam turbine and cycle design have clearly indicated that pulverized coal technology can continue to be competitive In both cost and performance. In recognition of the competitive potential for advanced pulverized coal-fired systems with other emerging advanced coal-fired technologies, DOE`s Pittsburgh Energy Technology Center (PETC) began a research and development initiative In late 1990 named, Combustion 2000, with the intention of preserving and expanding coal as a principal fuel In the Generation of electrical power. The project was designed for two stages of commercialization, the nearer-term Low Emission Boiler System (LEBS) program, and for the future, the High Performance Power System (HIPPS) program. B&W is participating In the LEBS program.

  9. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    SciTech Connect (OSTI)

    Not Available

    2007-03-01T23:59:59.000Z

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  10. Energy Efficiency / Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Vol. I – Summary ReportAnnual Report to the Texas Commission on Environmental Quality, Sept. 2003 to Aug. 2004 

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Gilman, D.; Fitzpatrick, T.; Muns, S.; Verdict, M.; Ahmad, M.; Liu, Z.; Baltazar-Cervantes, J. C.; Bryant, J.; Degelman, L. O.; Turner, W. D.

    2004-01-01T23:59:59.000Z

    -family construction in both non-attainment and affected counties built in 2004: ? The annual savings in 2004 amounted to 233,806 megawatt hours (MWh) of electricity and 667,945 million Btus of natural gas. The resultant annual NOx reductions were 346 tons.... ? On the peak day (August 19, 1999, baseline in the historical air quality model), the savings would have been 1,317 MWh/day and 1,148 million Btus of natural gas, resulting in peak-day NOx emissions reductions of 1.89 tons. ? Cumulative NOx reductions...

  11. China's Pathways to Achieving 40percent 45percent Reduction in CO2 Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential

    E-Print Network [OSTI]

    Zheng, Nina

    2013-01-01T23:59:59.000Z

    heater Residential CO2 Emissions (Mt CO2) 2020 ResidentialEnergy Industrial Sector CO2 Emissions (Mt CO2) IndustrialFigure 5. Power Sector CO2 Emissions by Scenario E3 Max Tech

  12. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report

    SciTech Connect (OSTI)

    Not Available

    2006-06-01T23:59:59.000Z

    This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

  13. Advanced emission-speciation methodologies for the Auto/Oil Air Quality Improvement Research Program. 1. Hydrocarbons and ethers

    SciTech Connect (OSTI)

    Jensen, T.E.; Siegl, W.O.; Lipari, F.; Loo, J.F.; Sigsby, J.E.

    1992-01-01T23:59:59.000Z

    An analytical method for the determination of hydrocarbon and ether emissions from gasoline-, methanol-, and flexible-fueled vehicles is described. This method was used in Phase I of the Auto/Oil Air Quality Improvement Research Program to provide emissions data for various vehicles using individual reformulated gasolines and alternate fuels. These data would then be used for air modeling studies. Emission samples for tailpipe, evaporative, and running loss were collected in Tedlar bags. Gas chromatographic analysis of the emissions samples included 140 components (hydrocarbons, ethers, alcohols and aldehydes) between C1 and C12 in a single analysis of 54-minutes duration. Standardization, quality control procedures, and inter-laboratory comparisons developed and completed as part of this program are also described. (Copyright (c) 1992 Society of Automotive Engineers, Inc.).

  14. Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

    2010-04-30T23:59:59.000Z

    Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

  15. Advances in Lung Volume

    E-Print Network [OSTI]

    Jones, Michelle

    Advances in Lung Volume Reduction Surgery The Ohio University Medical Center Lung Volume Reduction LungVolumeReductionSurgery Spring 2010 © 2010 The Ohio State University Medical Center ­ 04 Consult Ohio State's #12;The Ohio State University Medical Center Lung Volume Reduction Surgery Patient

  16. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    SciTech Connect (OSTI)

    Rapp, VH; Singer, BC

    2014-03-01T23:59:59.000Z

    The research summarized in this report is part of a larger effort to evaluate the potential air quality impacts of using liquefied natural gas in California. A difference of potential importance between many liquefied natural gas blends and the natural gas blends that have been distributed in California in recent years is the higher Wobbe number of liquefied natural gas. Wobbe number is a measure of the energy delivery rate for appliances that use orifice- or pressure-based fuel metering. The effect of Wobbe number on pollutant emissions from residential water heaters was evaluated in controlled experiments. Experiments were conducted on eight storage water heaters, including five with “ultra low-NO{sub X}” burners, and four on-demand (tankless) water heaters, all of which featured ultra low-NO{sub X} burners. Pollutant emissions were quantified as air-free concentrations in the appliance flue and fuel-based emission factors in units of nanogram of pollutant emitter per joule of fuel energy consumed. Emissions were measured for carbon monoxide (CO), nitrogen oxides (NO{sub X}), nitrogen oxide (NO), formaldehyde and acetaldehyde as the water heaters were operated through defined operating cycles using fuels with varying Wobbe number. The reference fuel was Northern California line gas with Wobbe number ranging from 1344 to 1365. Test fuels had Wobbe numbers of 1360, 1390 and 1420. The most prominent finding was an increase in NO{sub X} emissions with increasing Wobbe number: all five of the ultra low-NO{sub X} storage water heaters and two of the four ultra low-NO{sub X} on-demand water heaters had statistically discernible (p<0.10) increases in NO{sub X} with fuel Wobbe number. The largest percentage increases occurred for the ultra low-NO{sub X} water heaters. There was a discernible change in CO emissions with Wobbe number for all four of the on-demand devices tested. The on-demand water heater with the highest CO emissions also had the largest CO increase with increasing fuel Wobbe number.

  17. China's Energy and Carbon Emissions Outlook to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    Figure 62 Transport CO2 Emission Reduction under AIS by Fuel57 Figure 67 AIS Power Sector CO2 Emissions Reduction by67 AIS Power Sector CO2 Emissions Reduction by Source Energy

  18. Estimation of CO2 Emissions from China's Cement Production: Methodologies and Uncertainties

    E-Print Network [OSTI]

    Ke, Jing

    2014-01-01T23:59:59.000Z

    L. , 2006. Discussion of CO2 emission reduction in ChineseFurther discussion of CO2 emission reduction in Chinesecalculation method of CO2 emissions of cement production.

  19. The Role of Lubricant Additives in Fuel Efficiency and Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricant Additives in Fuel Efficiency and Emission Reductions: Viscosity Effects The Role of Lubricant Additives in Fuel Efficiency and Emission Reductions: Viscosity Effects...

  20. Applying Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) spectral indices for geological mapping and mineral identification on the Tibetan Plateau

    E-Print Network [OSTI]

    Corrie, Robert; Aitchison, Jonathan

    2011-01-01T23:59:59.000Z

    The Tibetan Plateau holds clues to understanding the dynamics and mechanisms associated with continental growth. Part of the region is characterized by zones of ophiolitic melange believed to represent the remnants of ancient oceanic crust and underlying upper mantle emplaced during oceanic closures. However, due to the remoteness of the region and the inhospitable terrain many areas have not received detailed investigation. Increased spatial and spectral resolution of satellite sensors have made it possible to map in greater detail the mineralogy and lithology than in the past. Recent work by Yoshiki Ninomiya of the Geological Survey of Japan has pioneered the use of several spectral indices for the mapping of quartzose, carbonate, and silicate rocks using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared (TIR) data. In this study, ASTER TIR indices have been applied to a region in western-central Tibet for the purposes of assessing their effectiveness for differentiatin...

  1. Comparing Emissions Benefits from Regulating Heavy Vehicle Idling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Regulating Heavy Vehicle Idling Comparing Emissions Benefits from Regulating Heavy Vehicle Idling 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  2. EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas

    Broader source: Energy.gov [DOE]

    The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflower’s Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas. The Holcomb Station would be modified in three distinct phases to demonstrate the synergistic effect of layering NOx control technologies.

  3. Development of advanced, dry, SO{sub x}/NO{sub x} emission control technologies for high-sulfur coal. Final report, April 1, 1993--December 31, 1994

    SciTech Connect (OSTI)

    Amrhein, G.T.

    1994-12-23T23:59:59.000Z

    Dry Scrubbing is a common commercial process that has been limited to low- and medium-sulfur coal applications because high-sulfur coal requires more reagent than can be efficiently injected into the process. Babcock & Wilcox has made several advances that extend dry scrubbing technologies to higher sulfur coals by allowing deposit-free operation at low scrubber exit temperatures. This not only increases the amount of reagent that can be injected into the scrubber, but also increases SO{sub 2} removal efficiency and sorbent utilization. The objectives of this project were to demonstrate, at pilot scale, that advanced, dry-scrubbing-based technologies can attain the performance levels specified by the 1990 Clean Air Act Amendments for SO{sub 2} and NO{sub x} emissions while burning high-sulfur coal, and that these technologies are economically competitive with wet scrubber systems. The use of these technologies by utilities in and around Ohio, on new or retrofit applications, will ensure the future of markets for high-sulfur coal by creating cost effective options to coal switching.

  4. 8th i-CIPEC8th International Conference/Exhibition on Combustion, Incineration/Pyrolysis, Emission and Climate Change

    E-Print Network [OSTI]

    Shepard, Kenneth

    Anaerobic Digestion and Biogas ·Emission Control Advanced Emission Control for NOx, SOx, HCL, VOCs et al

  5. Retrofit Diesel Emissions Control System Providing 50% NOxControl...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  6. Optimization of Advanced Diesel Engine Combustion Strategies

    Broader source: Energy.gov (indexed) [DOE]

    - UW-ERC 1 "University Research in Advanced Combustion and Emissions Control" Optimization of Advanced Diesel Engine Combustion Strategies Profs. Rolf Reitz, D. Foster, J....

  7. Advanced Diesel Engine and Aftertreatment Technology Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Aftertreatment Technology Development for Tier 2 Emissions Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003 DEER Conference...

  8. Advanced quadrupole ion trap instrumentation for low level vehicle emissions measurements. CRADA final report for number ORNL93-0238

    SciTech Connect (OSTI)

    McLuckey, S.A.; Buchanan, M.V.; Asano, K.G.; Hart, K.J.; Goeringer, D.E. [Oak Ridge National Lab., TN (United States); Dearth, M.A. [Ford Motor Co., Dearborn, MI (United States). Environmental Research Consortium

    1997-09-01T23:59:59.000Z

    Quadrupole ion trap mass spectrometry has been evaluated for its potential use in vehicle emissions measurements in vehicle test facilities as an analyzer for the top 15 compounds contributing to smog generation. A variety of ionization methods were explored including ion trap in situ chemical ionization, atmospheric sampling glow discharge ionization, and nitric oxide chemical ionization in a glow discharge ionization source coupled with anion trap mass spectrometer. Emphasis was placed on the determination of hydrocarbons and oxygenated hydrocarbons at parts per million to parts per billion levels. Ion trap in situ water chemical ionization and atmospheric sampling glow discharge ionization were both shown to be amenable to the analysis of arenes, alcohols, aldehydes and, to some degree, alkenes. Atmospheric sampling glow discharge also generated molecular ions of methyl-t-butyl ether (MTBE). Neither of these ionization methods, however, were found to generate diagnostic ions for the alkanes. Nitric oxide chemical ionization, on the other hand, was found to yield diagnostic ions for alkanes, alkenes, arenes, alcohols, aldehydes, and MTBE. The ability to measure a variety of hydrocarbons present at roughly 15 parts per billion at measurement rates of 3 Hz was demonstrated. These results have demonstrated that the ion trap has an excellent combination of sensitivity, specificity, speed, and flexibility with respect to the technical requirements of the top 15 analyzer.

  9. Clean Cities Tools: Tools to Help You Drive Smarter, Use Less Petroleum, and Reduce Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01T23:59:59.000Z

    Clean Cities' Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.

  10. Clean Cities Tools: Tools to Help You Save Money, Use Less Petroleum, and Reduce Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    Clean Cities Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.

  11. Advanced Experimental Analysis of Controls on Microbial Fe(III) Oxide Reduction - Final Report - 09/16/1996 - 03/16/2001

    SciTech Connect (OSTI)

    Roden, Eric E.

    2001-03-16T23:59:59.000Z

    Considering the broad influence that microbial Fe(III) oxide reduction can have on subsurface metal/organic contaminant biogeochemistry, understanding the mechanisms that control this process is critical for predicting the behavior and fate of these contaminants in anaerobic subsurface environments. Knowledge of the factors that influence the rates of growth and activity of Fe(III) oxide-reducing bacteria is critical for predicting (i.e., modeling) the long-term influence of these organisms on the fate of contaminants in the subsurface, and for effectively utilizing Fe(III) oxide reduction and associated geochemical affects for the purpose of subsurface metal/organic contamination bioremediation. This research project will refine existing models for microbiological and geochemical controls on Fe(III) oxide reduction, using laboratory reactor systems that mimic, to varying degrees, the physical and chemical conditions of the subsurface. Novel experimental methods for studying the kinetics of microbial Fe(III) oxide reduction and measuring growth rates of Fe(III) oxide-reducing bacteria will be developed. These new methodologies will be directly applicable to studies on subsurface contaminant transformations directly coupled to or influenced by microbial Fe(III) oxide reduction.

  12. Reductant Chemistry during LNT Regeneration for a Lean Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Emissions Control for Lean Gasoline Engines Emissions Control for Lean Gasoline...

  13. Cooperative Research and Development of Primary Surface Recuperator for Advanced Microturbine Systems

    SciTech Connect (OSTI)

    Escola, George

    2007-01-17T23:59:59.000Z

    Recuperators have been identified as key components of advanced gas turbines systems that achieve a measure of improvement in operating efficiency and lead the field in achieving very low emissions. Every gas turbine manufacturer that is studying, developing, or commercializing advanced recuperated gas turbine cycles requests that recuperators operate at higher temperature without a reduction in design life and must cost less. The Solar Cooperative Research and Development of Primary Surface Recuperator for Advanced Microturbine Systems Program is directed towards meeting the future requirements of advanced gas turbine systems by the following: (1) The development of advanced alloys that will allow recuperator inlet exhaust gas temperatures to increase without significant cost increase. (2) Further characterization of the creep and oxidation (dry and humid air) properties of nickel alloy foils (less than 0.13 mm thick) to allow the economical use of these materials. (3) Increasing the use of advanced robotic systems and advanced in-process statistical measurement systems.

  14. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, VOL. ???, XXXX, DOI:10.1029/, Low cloud reduction in a greenhouse-warmed1

    E-Print Network [OSTI]

    Bretherton, Chris

    -30 son is that the global radiative effect of boundary-layer clouds is an aggregate over many31 large cloud reduction, and they com-11 bine to weaken shortwave cloud radiative effect by over 50%. Large-scale circulation regimes, but the `dynamic' effect of circulation shifts on clouds32 largely cancel out on global

  15. Development of an advanced high efficiency coal combustor for boiler retrofit

    SciTech Connect (OSTI)

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

    1990-04-01T23:59:59.000Z

    The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

  16. Development of an advanced high efficiency coal combustor for boiler retrofit. Summary report

    SciTech Connect (OSTI)

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

    1990-04-01T23:59:59.000Z

    The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

  17. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO[sub 2] per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO[sub 2] emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  18. Centre on Innovation and Energy Demand The UK's climate goals are ambitious and challenging. Achieving an 80% reduction in GHG emissions

    E-Print Network [OSTI]

    Jensen, Max

    Centre on Innovation and Energy Demand The UK's climate goals are ambitious and challenging demand. While many low-energy innovations represent relatively incremental changes to existing on energy demand and carbon emissions; and to provide practical recommendations for UK energy and climate

  19. NOx Reduction through Efficiency Gain 

    E-Print Network [OSTI]

    Benz, R.; Thompson, R.; Staedter, M.

    2007-01-01T23:59:59.000Z

    with a novel control design to deliver a comprehensive boiler controls retrofit that provides reductions in emissions as well as substantial cost savings. Combining mechanical engineering expertise with substantial experience in control engineering...

  20. Advanced Collaborative Emissions Study (ACES)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6

    E-Print Network [OSTI]

    Schipper, Lee

    2008-01-01T23:59:59.000Z

    s Commitment on CO2 Emission Reductions from Passenger Cars.is a small extra reduction in CO2 emissions per km due to a

  2. Development of a Web-based Emissions Reduction Calculator for Code-Compliant Single-Family and Multi-Family Construction

    E-Print Network [OSTI]

    Ahmad, M.; Gilman, D.; Mukhopadhyay, J.; Haberl, J. S.; Culp, C.

    2005-01-01T23:59:59.000Z

    . An important part of this legislation is the State’s energy efficiency program, which includes reductions in energy use and demand that are associated with the adoption of the 2000 International Energy Conservation Code (IECC), which represents one..., and implementation of the International Energy Conservation Code (IECC), published in 2000 as amended by the 2001 Supplement (IECC 2000; 2001). In 2001 thirty-eight counties in Texas were designated by the EPA as either non-attainment or affected areas 2...

  3. A Methodology For Calculating Integrated NOx Emissions Reductions from Energy Efficiency and Renewable Energy (EE/RE) Programs Across State Agencies in Texas

    E-Print Network [OSTI]

    Haberl, J. S.; Liu, Z.; Baltazar, J. C.; Mukopadhyay. J; Marshall, K.; Gilman, D.; Culp, C.; Yazdani, B.; Montgomery, C.; McKelvy, K.; Reid, V.

    2010-01-01T23:59:59.000Z

    . Analysis of Texas Code Adoption Analysis: Lighting Requirment, Pacific Northwest National Laboratory (PNNL), U.S.D.O.E., Washington, D.C. Bryant, J., Degelman, L., Turner, D. 2004. ?Energy Efficiency/Renewable Energy Impact in the Texas Emissions... of Texas Code Adoption Analysis: Lighting Requirment, Pacific Northwest National Laboratory (PNNL), U.S.D.O.E., Washington, D.C. ESL-IC-10-10-58 Proceedings of the Tenth International Conference for Enhanced Building Operations, Kuwait, October 26...

  4. Growing the renewable chemicals and advanced biofuels cluster in MN

    E-Print Network [OSTI]

    Levinson, David M.

    Growing the renewable chemicals and advanced biofuels cluster in MN #12;Renewable Chemical Value% Reduction 60% Reduction 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Gasoline Corn Ethanol Advanced Biofuel Cellulosic Biofuel Corn Ethanol 20% GHG Reduction Compared to gasoline: Advanced Biofuel 50% GHG Reduction e

  5. Lead reduction in ambient air

    SciTech Connect (OSTI)

    Smith, R.D.; Kiehn, O.A.; Wilburn, D.R.; Bowyer, R.C.

    1987-01-01T23:59:59.000Z

    The Bureau of Mines evaluated the emission control methods, including the capital investments and operating cost, necessary for further reducing lead levels in ambient air at the Glover, Herculaneum, and Buick smelter-refineries in Missouri and the East Helena, MT, smelter. This report presents theoretically achievable lead emission reductions and estimated capital and operating costs.

  6. Greenhouse Gas Emissions (Minnesota)

    Broader source: Energy.gov [DOE]

    This statute sets goals for the reduction of statewide greenhouse gas emissions by at least 15 percent by 2015, 30 percent by 2025, and 80 percent by 2050, calculated relative to 2005 levels. These...

  7. Advanced byproduct recovery: Direct catalytic reduction of SO{sub 2} to elemental sulfur. First quarterly technical progress report, [October--December 1995

    SciTech Connect (OSTI)

    Benedek, K. [Little (Arthur D.), Inc., Cambridge, MA (United States); Flytzani-Stephanopoulos, M. [Tufts Univ., Medford, MA (United States)

    1996-02-01T23:59:59.000Z

    The team of Arthur D. Little, Tufts University and Engelhard Corporation will be conducting Phase I of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. this catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria or zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an ongoing DOE-sponsored University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicates that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. the performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams.

  8. Unintended Impacts of Increased Truck Loads on Pavement Supply-Chain Emissions

    E-Print Network [OSTI]

    Sathaye, Nakul; Horvath, Arpad; Madanat, Samer

    2009-01-01T23:59:59.000Z

    Restrictions: Impacts on Truck  Emissions and Performance reduction in truck tailpipe emissions (McKinnon,  2005).   to estimate tailpipe  emissions from trucks transporting 

  9. Diesel Passenger Car Technology for Low Emissions and CO2 Compliance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Passenger Car Technology for Low Emissions and CO2 Compliance Diesel Passenger Car Technology for Low Emissions and CO2 Compliance Cost effective reduction of legislated emissions...

  10. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Truck Engine: 2007 Emissions with Excellent Fuel Economy Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy 2004 Diesel Engine Emissions Reduction (DEER)...

  11. Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Nanolubricants for Improved Energy Efficiency and Reduced Emissions in Engines Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants for Improved Energy...

  12. Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion with Low Hydrocarbon and Carbon Monoxide Emissions Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide Emissions Poster presented at the 16th Directions...

  13. Alternative Fuel and Advanced Technology Vehicles Pilot Program...

    Open Energy Info (EERE)

    Program Emissions Benefit Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool...

  14. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor, Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuel performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

  15. Use of fluidized bed coal combustion techniques to study efficiency, emission reduction, boiler effects, and waste utilization. Annual report, January 1-June 30, 1985

    SciTech Connect (OSTI)

    Hesketh, H.E.; Rajan, S.

    1985-09-01T23:59:59.000Z

    The acquisition of thermodynamic and operating data on a wide variety of waste coals in a laboratory-scale atmospheric fluidized bed combustor (AFBC) unit is reported. The coals tested include: (1) low and medium heating value gob pile wastes, with ash content as high as 60%; (2) pelletized gob waste fines; (3) various cuts taken from beneficiation plant rejects with low heating values and high ash content; and (4) a partially devolatilized char produced from a caking Illinois coal. These waste coals could be successfully burned in the bench-scale unit with the exception of the high ash content beneficiation plant reject with a low heating value of 1700 Btu/lb. Some of the waste coals exhibited better combustion characteristics than others. The results obtained and the recommendations for improving the combustion and emission characteristics of the waste coals are discussed. Shakedown tests have been completed with the 1-ft diameter, 1 MBtu/h pilot-scale AFBC unit, and the results are reported. 1 ref., 15 figs., 8 tabs.

  16. Demonstration of natural gas reburn for NO{sub x} emissions reduction at Ohio Edison Company`s cyclone-fired Niles Plant Unit Number 1

    SciTech Connect (OSTI)

    Borio, R.W.; Lewis, R.D.; Koucky, R.W. [ABB Power Plant Labs., Windsor, CT (United States)] [ABB Power Plant Labs., Windsor, CT (United States); Lookman, A.A. [Energy Systems Associates, Pittsburgh, PA (United States)] [Energy Systems Associates, Pittsburgh, PA (United States); Manos, M.G.; Corfman, D.W.; Waddingham, A.L. [Ohio Edison, Akron, OH (United States)] [Ohio Edison, Akron, OH (United States); Johnson, S.A. [Quinapoxet Engineering Solutions, Inc., Windham, NH (United States)] [Quinapoxet Engineering Solutions, Inc., Windham, NH (United States)

    1996-04-01T23:59:59.000Z

    Electric utility power plants account for about one-third of the NO{sub x} and two-thirds of the SO{sub 2} emissions in the US cyclone-fired boilers, while representing about 9% of the US coal-fired generating capacity, emit about 14% of the NO{sub x} produced by coal-fired utility boilers. Given this background, the Environmental Protection Agency, the Gas Research Institute, the Electric Power Research Institute, the Pittsburgh Energy Technology Center, and the Ohio Coal Development Office sponsored a program led by ABB Combustion Engineering, Inc. (ABB-CE) to demonstrate reburning on a cyclone-fired boiler. Ohio Edison provided Unit No. 1 at their Niles Station for the reburn demonstration along with financial assistance. The Niles Unit No. 1 reburn system was started up in September 1990. This reburn program was the first full-scale reburn system demonstration in the US. This report describes work performed during the program. The work included a review of reburn technology, aerodynamic flow model testing of reburn system design concepts, design and construction of the reburn system, parametric performance testing, long-term load dispatch testing, and boiler tube wall thickness monitoring. The report also contains a description of the Niles No. 1 host unit, a discussion of conclusions and recommendations derived from the program, tabulation of data from parametric and long-term tests, and appendices which contain additional tabulated test results.

  17. Update on Diesel Exhaust Emission Control Technology and Regulations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Technology and Regulations Update on Diesel Exhaust Emission Control Technology and Regulations 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation:...

  18. Performance of Johnson Matthey EGRT? Emission Control System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Performance of Johnson Matthey EGRT Emission Control System for NOx and PM Emission Reduction in Retrofit Applications Part 1 2002 DEER Conference Presentation: Johnson Matthey...

  19. Performance of Johnson Matthey EGRT? Emission Control System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Performance of Johnson Matthey EGRT Emission Control System for NOx and PM Emission Reduction in Retrofit Applications Part 2 2002 DEER Conference Presentation: Johnson Matthey...

  20. China's Energy and Carbon Emissions Outlook to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    Coal Generation Shares Demand Reduction from EE CIS Emissions Powercoal and electricity in demand sectors, and the decarbonization of the power sector. Under AIS, annual emissions

  1. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Energy Savers [EERE]

    Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop The Advanced Manufacturing Office...

  2. Demand Reduction

    Broader source: Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  3. Advanced Turbine Systems (ATS) program conceptual design and product development

    SciTech Connect (OSTI)

    NONE

    1996-08-31T23:59:59.000Z

    Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

  4. China Energy and Emissions Paths to 2030

    SciTech Connect (OSTI)

    Fridley, David; Zheng, Nina; Zhou, Nan; Ke, Jing; Hasanbeigi, Ali; Morrow, Bill; Price, Lynn

    2011-01-14T23:59:59.000Z

    After over two decades of staggering economic growth and soaring energy demand, China has started taking serious actions to reduce its economic energy and carbon intensity by setting short and medium-term intensity reduction targets, renewable generation targets and various supporting policies and programs. In better understanding how further policies and actions can be taken to shape China's future energy and emissions trajectory, it is important to first identify where the largest opportunities for efficiency gains and emission reduction lie from sectoral and end-use perspectives. Besides contextualizing China's progress towards reaching the highest possible efficiency levels through the adoption of the most advanced technologies from a bottom-up perspective, the actual economic costs and benefits of adopting efficiency measures are also assessed in this study. This study presents two modeling methodologies that evaluate both the technical and economic potential of raising China's efficiency levels to the technical maximum across sectors and the subsequent carbon and energy emission implications through 2030. The technical savings potential by efficiency measure and remaining gap for improvements are identified by comparing a reference scenario in which China continues the current pace of with a Max Tech scenario in which the highest technically feasible efficiencies and advanced technologies are adopted irrespective of costs. In addition, from an economic perspective, a cost analysis of selected measures in the key industries of cement and iron and steel help quantify the actual costs and benefits of achieving the highest efficiency levels through the development of cost of conserved energy curves for the sectors. The results of this study show that total annual energy savings potential of over one billion tonne of coal equivalent exists beyond the expected reference pathway under Max Tech pathway in 2030. CO2 emissions will also peak earlier under Max Tech, though the 2020s is a likely turning point for both emission trajectories. Both emission pathways must meet all announced and planned policies, targets and non-fossil generation targets, or an even wider efficiency gap will exist. The savings potential under Max Tech varies by sector, but the industrial sector appears to hold the largest energy savings and emission reduction potential. The primary source of savings is from electricity rather than fuel, and electricity savings are magnified by power sector decarbonization through increasing renewable generation and coal generation efficiency improvement. In order to achieve the maximum energy savings and emission reduction potential, efficiency improvements and technology switching must be undertaken across demand sectors as well as in the growing power sector. From an economic perspective, the cost of conserved energy analysis indicates that nearly all measures for the iron and steel and cement industry are cost-effective. All 23 efficiency measures analyzed for the cement industry are cost-effective, with combined CO2 emission reduction potential of 448 Mt CO2. All of the electricity savings measures in the iron and steel industry are cost-effective, but the cost-effective savings potential for fuel savings measures is slightly lower than total technical savings potential. The total potential savings from these measures confirm the magnitude of savings in the scenario models, and illustrate the remaining efficiency gap in the cement and iron and steel industries.

  5. SCENARIOS FOR DEEP CARBON EMISSION REDUCTIONS FROM ELECTRICITY BY 2050 IN WESTERN NORTH AMERICA USING THE SWITCH ELECTRIC POWER SECTOR PLANNING MODEL California's Carbon Challenge Phase II Volume II

    SciTech Connect (OSTI)

    Collaboration / University of California, Berkeley; Nelson, James; Mileva, Ana; Johnston, Josiah; Kammen, Daniel; Wei, Max; Greenblatt, Jeffrey

    2014-01-01T23:59:59.000Z

    This study used a state-of-the-art planning model called SWITCH for the electric power system to investigate the evolution of the power systems of California and western North America from present-day to 2050 in the context of deep decarbonization of the economy. Researchers concluded that drastic power system carbon emission reductions were feasible by 2050 under a wide range of possible futures. The average cost of power in 2050 would range between $149 to $232 per megawatt hour across scenarios, a 21 to 88 percent increase relative to a business-as-usual scenario, and a 38 to 115 percent increase relative to the present-day cost of power. The power system would need to undergo sweeping change to rapidly decarbonize. Between present-day and 2030 the evolution of the Western Electricity Coordinating Council power system was dominated by implementing aggressive energy efficiency measures, installing renewable energy and gas-fired generation facilities and retiring coal-fired generation. Deploying wind, solar and geothermal power in the 2040 timeframe reduced power system emissions by displacing gas-fired generation. This trend continued for wind and solar in the 2050 timeframe but was accompanied by large amounts of new storage and long-distance high-voltage transmission capacity. Electricity storage was used primarily to move solar energy from the daytime into the night to charge electric vehicles and meet demand from electrified heating. Transmission capacity over the California border increased by 40 - 220 percent by 2050, implying that transmission siting, permitting, and regional cooperation will become increasingly important. California remained a net electricity importer in all scenarios investigated. Wind and solar power were key elements in power system decarbonization in 2050 if no new nuclear capacity was built. The amount of installed gas capacity remained relatively constant between present-day and 2050, although carbon capture and sequestration was installed on some gas plants by 2050.

  6. Why are allowance prices so low? : an analysis of the SO2 emissions trading program

    E-Print Network [OSTI]

    Ellerman, A. Denny

    1996-01-01T23:59:59.000Z

    This paper presents an analysis of the reduction in SO2 emissions by electric utilities between 1985 and 1993. We find that emissions have been reduced for reasons largely unrelated to the emission reduction mandate ...

  7. Advanced Combustion Systems for Next Generation Gas Turbines

    SciTech Connect (OSTI)

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01T23:59:59.000Z

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program. Emissions measurements were obtained over a variety of operating conditions. A kinetics model is formulated to describe the emissions performance. The model is a tool for determining the conditions for low emission performance. The flow field was also modeled using CFD. A first prototype was developed for low emission performance on natural gas. The design utilized the tools anchored to the atmospheric prototype performance. The 1/6 scale combustor was designed for low emission performance in GE's FA+e gas turbine. A second prototype was developed to evaluate changes in the design approach. The prototype was developed at a 1/10 scale for low emission performance in GE's FA+e gas turbine. The performance of the first two prototypes gave a strong indication of the best design approach. Review of the emission results led to the development of a 3rd prototype to further reduce the combustor emissions. The original plan to produce a scaled-up prototype was pushed out beyond the scope of the current program. The 3rd prototype was designed at 1/10 scale and targeted further reductions in the full-speed full-load emissions.

  8. E-Print Network 3.0 - achieving deep reductions Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: of policies focused on emissions reductions, most notably its Emissions Trading Scheme and Clean Development... Mechanism. But it has become apparent that such...

  9. Improved Solvers for Advanced Engine Combustion Simulation

    Broader source: Energy.gov [DOE]

    Document:  ace076_mcnenly_2013_o.pdfTechnology Area: Advanced Combustion; Combustion and Emissions ControlPresenter: Matthew McNenlyPresenting Organization: Lawrence Livermore National Laboratory ...

  10. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis...

  11. Advanced Materials Development through Computational Design ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development through Computational Design Advanced Materials Development through Computational Design Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research...

  12. Advanced Powertrain Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy consumption and emissions output. The APRF is capable of testing conventional, hybrid and advanced electrical propulsion systems using a variety of standard and renewable...

  13. Advanced Hydrogen Turbine Development

    SciTech Connect (OSTI)

    Joesph Fadok

    2008-01-01T23:59:59.000Z

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

  14. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 16, July 1, 1992--September 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  15. 6, 57735796, 2006 Vehicular emissions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    be partly responsible for lower CO2 and higher CO and NO emission factors. Also, a fast reduction the emission (in g/km) of key and non-regulated pollutants, such as CO2, CO, NO, SO2, NH3, HCHO, NMHC, dur-10 of pollutants, even from a super ultra-low emission vehicle (SULEV). The emissions of HC's, NOx, CO20 and CO2

  16. Degradation of Trichloroethylene Using Advanced Reduction Processes

    E-Print Network [OSTI]

    Farzaneh, Hajar

    2014-10-27T23:59:59.000Z

    , photolysis, and photocatalysis. According to their results, the 10 degradation rate decreased by increasing TCE initial concentration whereas, it was increased by increasing the amount of NZLc to a certain value and the rate did not increase further...

  17. Engineering development of advanced coal-fired low-emission boiler systems. Quarterly technical progress report, January 1--March 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-04-28T23:59:59.000Z

    This project is concerned with the development of an a coal-fired low-emission boiler system. During march, separate kick-off meetings were held with PSI Powerserve, Raytheon and B&W`s Environmental Equipment Division to begin work on Phase I Task 5, the Commercial Plant Design. In addition, a meeting was held with MIT to discuss and review work completed and schedule work remaining on the project.

  18. Emissions Trading: A Feasible Analysis for UBC

    E-Print Network [OSTI]

    Emissions Trading: A Feasible Analysis for UBC Vivian Hoffman, J Chisholm I. Introduction The GVRD environmental objectives are achieved. Emissions reduction credit trading (or emissions trading) is an example Valley (LFV). Section III describes the market-based instruments of emissions trading and facility

  19. Measurement and Characterization of Unregulated Emissions from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 18-22, 2009 -- Washington D.C. ace30storey.pdf More Documents & Publications Measurement and Characterization of Unregulated Emissions from Advanced Technologies...

  20. Purdue Climate Change Research Center Emissions Trading Workshop

    E-Print Network [OSTI]

    Purdue Climate Change Research Center Emissions Trading Workshop Introduction and Overview manner. Workshop rather than conference. #12;What is Emissions Trading? (or "Cap and Trade") · Cap & Enforcement · Measurement, Reporting, and Verification (MRV) mechanisms for reductions #12;Five Emissions

  1. China's Energy and Carbon Emissions Outlook to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    43 International trends in CO2 emissions and GDP per capita,53 Figure 62 Transport CO2 Emission Reduction under AIS by54 Figure 63 AIS EV Change in CO2 Emissions Relative to

  2. Development of an Optimum Tracer Set for Apportioning Emissions of Individual Power Plants Using Highly Time-Resolved Measurements and Advanced Receptor Modeling

    SciTech Connect (OSTI)

    John Ondov; Gregory Beachley

    2007-07-05T23:59:59.000Z

    In previous studies, 11 elements (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) were determined in 30-minute aerosol samples collected with the University of Maryland Semicontinuous Elements in Aerosol Sampler (SEAS; Kidwell and Ondov, 2001, 2004; SEAS-II) in several locations in which air quality is influenced by emissions from coal- or oil-fired power plants. At this time resolution, plumes from stationary high temperature combustion sources are readily detected as large excursions in ambient concentrations of elements emitted by these sources (Pancras et al. ). Moreover, the time-series data contain intrinsic information on the lateral diffusion of the plume (e.g., {sigma}{sub y}), which Park et al. (2005 and 2006) have exploited in their Pseudo-Deterministic Receptor Model (PDRM), to calculate emission rates of SO{sub 2} and 11 elements (mentioned above) from four individual coal- and oil-fired power plants in the Tampa Bay area. In the current project, we proposed that the resolving power of source apportionment methods might be improved by expanding the set of maker species and that there exist some optimum set of marker species that could be used. The ultimate goal was to determine the utility of using additional elements to better identify and isolate contributions of individual power plants to ambient levels of PM and its constituents. And, having achieved better resolution, achieve, also, better emission rate estimates. In this study, we optimized sample preparation and instrumental protocols for simultaneous analysis of 28 elements in dilute slurry samples collected with the SEAS with a new state-of-the-art Thermo-Systems, Inc., X-series II, Inductively Coupled Plasma Mass Spectroscopy (ICP-MS), and reanalyzed the samples previously collected in Tampa during the modeling period studied by Park et al. (2005) in which emission rates from four coal- and oil-fired power plants affected air quality at the sampling site. In the original model, Park et al. (2005), included 6 sources. Herein, we reassessed the number of contributing sources in light of the new data. A comprehensive list of sources was prepared and both our Gaussian Plume model and PMF were used to identify and predict the relative strengths of source contributions at the receptor sites. Additionally, PDRM was modified to apply National Inventory Emissions, Toxic Release Inventory, and Chemical Mass Balance source profile data to further constrain solutions. Both the original Tampa data set (SO{sub 2} plus 11 elements) and the new expanded data set (SO{sub 2} plus 23 elements) were used to resolve the contributions of particle constituents and PM to sources using Positive Matrix Factorization (PMF) and PDRM.

  3. Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment

    Broader source: Energy.gov [DOE]

    As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels.

  4. Sandia National Laboratories: greenhouse gas emission reduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    emergency backup systems, and light-duty trucks, to name a few. Providing auxiliary power to ships in berth may be added to that list soon. Joe Pratt (Energy Systems...

  5. Milestone Project Demonstrates Innovative Mercury Emissions Reduction

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National 93-4 AcquisitionO 231.1BDomestic Natural

  6. Petroleum Reduction Strategies to Reduce Vehicle Miles Traveled

    Broader source: Energy.gov [DOE]

    For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to reduce vehicle miles traveled, as well as guidance and best practices for each strategy.

  7. Waste Heat Reduction and Recovery for Improving Furnace Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and...

  8. Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency

    Broader source: Energy.gov [DOE]

    For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to improve vehicle fuel efficiency, as well as guidance and best practices for each strategy.

  9. The Net Environmental Effects of Carbon Dioxide Reduction Policies

    E-Print Network [OSTI]

    of policy measures have been proposed to reduce the emissions of carbon dioxide (CO2). However, policies which reduce CO2 emissions will also decrease the emissions of greenhouse-relevant gases methane are overlooked the net effect of CO2 reduction policies on global warming is understated. Thus, emissions of all

  10. Sharing the Burden of GHG Reductions

    E-Print Network [OSTI]

    Jacoby, Henry D.

    The G8 countries propose a goal of a 50% reduction in global emissions by 2050, in an effort that needs to take account of other agreements specifying that developing countries are to be provided with incentives to action ...

  11. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Draft final report

    SciTech Connect (OSTI)

    NONE

    1996-06-14T23:59:59.000Z

    The primary goal of this project was to demonstrate the use of Selective Catalytic Reduction (SCR) to reduce NO{sub x} emissions from pulverized-coal utility boilers using medium- to high-sulfur US coal. The prototype SCR facility, built in and around the ductwork of Plant Crist Unit 5, consisted of three large SCR reactor units (Reactors A, B, and C), each with a design capacity of 5,000 standard cubic feet per minute (scfm) of flue gas, and six smaller reactors (Reactors D through J), each with a design capacity of 400 scfm of flue gas. The three large reactors contained commercially available SCR catalysts as offered by SCR catalyst suppliers. These reactors were coupled with small-scale air preheaters to evaluate (1) the long-term effects of SCR reaction chemistry on air preheater deposit formation and (2) the impact of these deposits on the performance of air preheaters. The small reactors were used to test additional varieties of commercially available catalysts. The demonstration project was organized into three phases: (1) Permitting, Environmental Monitoring Plan (EMP) Preparation, and Preliminary Engineering; (2) Detail Design Engineering and Construction; and (3) Operation, Testing, Disposition, and Final Report Preparation. Section 2 discusses the planned and actual EMP monitoring for gaseous, aqueous, and solid streams over the course of the SCR demonstration project; Section 3 summarizes sampling and analytical methods and discusses exceptions from the methods specified in the EMP; Section 4 presents and discusses the gas stream monitoring results; Section 5 presents and discusses the aqueous stream monitoring results; Section 6 presents and discusses the solid stream monitoring results; Section 7 discusses EMP-related quality assurance/quality control activities performed during the demonstration project; Section 8 summarizes compliance monitoring reporting activities; and Section 9 presents conclusions based on the EMP monitoring results.

  12. FUEL ECONOMY AND CO2 EMISSIONS STANDARDS, MANUFACTURER PRICING STRATEGIES, AND FEEBATES

    SciTech Connect (OSTI)

    Liu, Changzheng [ORNL] [ORNL; Greene, David L [ORNL] [ORNL; Bunch, Dr David S. [University of California, Davis] [University of California, Davis

    2012-01-01T23:59:59.000Z

    Corporate Average Fuel Economy (CAFE) standards and CO2 emissions standards for 2012 to 2016 have significantly increased the stringency of requirements for new light-duty vehicle fuel efficiency. This study investigates the role of technology adoption and pricing strategies in meeting new standards, as well as the impact of feebate policies. The analysis is carried out by means of a dynamic optimization model that simulates manufacturer decisions with the objective of maximizing social surplus while simultaneously considering consumer response and meeting CAFE and emissions standards. The results indicate that technology adoption plays the major role and that the provision of compliance flexibility and the availability of cost-effective advanced technologies help manufacturers reduce the need for pricing to induce changes in the mix of vehicles sold. Feebates, when implemented along with fuel economy and emissions standards, can bring additional fuel economy improvement and emissions reduction, but the benefit diminishes with the increasing stringency of the standards.

  13. Emission Abatement System

    DOE Patents [OSTI]

    Bromberg, Leslie (Sharon, MA); Cohn, Daniel R. (Chestnut Hill, MA); Rabinovich, Alexander (Swampscott, MA)

    2003-05-13T23:59:59.000Z

    Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.

  14. Near Zero Emissions at 50 Percent Thermal Efficiency

    SciTech Connect (OSTI)

    None

    2012-12-31T23:59:59.000Z

    Detroit Diesel Corporation (DDC) has successfully completed a 10 year DOE sponsored heavy-duty truck engine program, hereafter referred to as the NZ-50 program. This program was split into two major phases. The first phase was called â??Near-Zero Emission at 50 Percent Thermal Efficiency,â?ť and was completed in 2007. The second phase was initiated in 2006, and this phase was named â??Advancements in Engine Combustion Systems to Enable High-Efficiency Clean Combustion for Heavy-Duty Engines.â?ť This phase was completed in September, 2010. The key objectives of the NZ-50 program for this first phase were to: â?˘ Quantify thermal efficiency degradation associated with reduction of engine-out NOx emissions to the 2007 regulated level of ~1.1 g/hp-hr. â?˘ Implement an integrated analytical/experimental development plan for improving subsystem and component capabilities in support of emerging engine technologies for emissions and thermal efficiency goals of the program. â?˘ Test prototype subsystem hardware featuring technology enhancements and demonstrate effective application on a multi-cylinder, production feasible heavy-duty engine test-bed. â?˘ Optimize subsystem components and engine controls (calibration) to demonstrate thermal efficiency that is in compliance with the DOE 2005 Joule milestone, meaning greater than 45% thermal efficiency at 2007 emission levels. â?˘ Develop technology roadmap for meeting emission regulations of 2010 and beyond while mitigating the associated degradation in engine fuel consumption. Ultimately, develop technical prime-path for meeting the overall goal of the NZ-50 program, i.e., 50% thermal efficiency at 2010 regulated emissions. These objectives were successfully met during the course of the NZ-50 program. The most noteworthy achievements in this program are summarized as follows: â?˘ Demonstrated technologies through advanced integrated experiments and analysis to achieve the technical objectives of the NZ-50 program with 50.2% equivalent thermal efficiency under EPA 2010 emissions regulations. â?˘ Experimentally demonstrate brake efficiency of 48.5% at EPA 2010 emission level at single steady-state point. â?˘ Analytically demonstrated additional brake efficiency benefits using advanced aftertreatment configuration concept and air system enhancement including, but not limited to, turbo-compound, variable valve actuator system, and new cylinder head redesign, thus helping to achieve the final program goals. â?˘ Experimentally demonstrated EPA 2010 emissions over FTP cycles using advanced integrated engine and aftertreatment system. These aggressive thermal efficiency and emissions results were achieved by applying a robust systems technology development methodology. It used integrated analytical and experimental tools for subsystem component optimization encompassing advanced fuel injection system, increased EGR cooling capacity, combustion process optimization, and advanced aftertreatment technologies. Model based controls employing multiple input and output techniques enabled efficient integration of the various subsystems and ensured optimal performance of each system within the total engine package. . The key objective of the NZ-50 program for the second phase was to explore advancements in engine combustion systems using high-efficiency clean combustion (HECC) techniques to minimize cylinder-out emissions, targeting a 10% efficiency improvement. The most noteworthy achievements in this phase of the program are summarized as follows: â?˘ Experimentally and analytically evaluated numerous air system improvements related to the turbocharger and variable valve actuation. Some of the items tested proved to be very successful and modifications to the turbine discovered in this program have since been incorporated into production hardware. â?˘ The combustion system development continued with evaluation of various designs of the 2-step piston bowl. Significant improvemen

  15. High Efficiency, Ultra-Low Emission, Integrated Process Heater System

    SciTech Connect (OSTI)

    Mason, Howard; Boral, Anindya; Chhotray, San; Martin, Matthew

    2006-06-19T23:59:59.000Z

    The team of TIAX LLC, ExxonMobil Research and Engineering Company, and Callidus Technologies, LLC conducted a six-year program to develop an ultra-low emission process heater burner and an advanced high efficiency heater design. This project addresses the critical need of process heater operators for reliable, economical emission reduction technologies to comply with stringent emission regulations, and for heater design alternatives that reduce process heater energy requirements without significant cost increase. The key project targets were NOx emissions of 10 ppm (@ 3% O2), and a heater thermal efficiency of 95 percent. The ultra low NOx burner was developed through a series of pilot-scale and field tests combined with computational fluid dynamic modeling to arrive at simultaneous low emissions and suitable flame shape and stability. Pilot scale tests were run at TIAX, at the 2 MMBtu/hr scale, and at Callidus at 8 MMBtu/hr. The full scale burner was installed on a 14 burner atmospheric pipestill furnace at an ExxonMobil refinery. A variety of burner configurations, gas tips and flame stabilizers were tested to determine the lowest emissions with acceptable flame shape and stability. The resulting NOx emissions were 22 ppm on average. Starting in 2001, Callidus commercialized the original ultra low NOx burner and made subsequent design improvements in a series of commercial burners evolving from the original concept and/or development. Emissions in the field with the ultra low-NOx burner over a broad spectrum of heater applications have varied from 5 ppm to 30 ppm depending on heater geometry, heater service, fuel and firing capacity. To date, 1550 of the original burners, and 2500 of subsequent generation burners have been sold by Callidus. The advanced heater design was developed by parametric evaluations of a variety of furnace and combustion air preheater configurations and technologies for enhancing convective and radiative heat transfer. The design evolution relied heavily on computational fluid dynamic predictions of design alternatives. The final design features modular separate radiant cells, each with one and two-side fired vertical tubes. The convection section configuration is vertical tube banks enclosed in the radiant channels. Commercial modular plate air preheaters are used. The predicted performance for the integrated advanced heater and Callidus burner is 95 percent efficiency with 9 ppm NOx emissions firing natural gas, and 12 ppm firing refinery gas. The total erected cost is less than a conventional heater with combustion air preheat.

  16. Advanced gas engine cogeneration technology for special applications

    SciTech Connect (OSTI)

    Plohberger, D.C.; Fessl, T.; Gruber, F.; Herdin, G.R. [Jenbacher Energiesystem AG, Jenbach (Austria)

    1995-10-01T23:59:59.000Z

    In recent years gas Otto-cycle engines have become common for various applications in the field of power and heat generation. Gas engines are chosen sometimes even to replace diesel engines, because of their clean exhaust emission characteristics and the ample availability of natural gas in the world. The Austrian Jenbacher Energie Systeme AG has been producing gas engines in the range of 300 to 1,600 kW since 1960. The product program covers state-of-the-art natural gas engines as well as advanced applications for a wide range of alterative gas fuels with emission levels comparable to Low Emission (LEV) and Ultra Low Emission Vehicle (ULEV) standards. In recent times the demand for special cogeneration applications is rising. For example, a turnkey cogeneration power plant for a total 14.4 MW electric power and heat output consisting of four JMS616-GSNLC/B spark-fired gas engines specially tuned for high altitude operation has been delivered to the well-known European ski resort of Sestriere. Sestriere is situated in the Italian Alps at an altitude of more than 2,000 m above sea level. The engines feature a turbocharging system tuned to an ambient air pressure of only 80 kPa to provide an output and efficiency of each 1.6 MW and up to 40% {at} 1,500 rpm, respectively. The ever-increasing demand for lower pollutant emissions in the US and some European countries initiates developments in new exhaust aftertreatment technologies. Thermal reactor and Selective Catalytic Reduction (SCR) systems are used to reduce tailpipe CO and NO{sub x} emissions of engines. Both SCR and thermal reactor technology will shift the engine tuning to achieve maximum efficiency and power output. Development results are presented, featuring the ultra low emission potential of biogas and natural gas engines with exhaust aftertreatment.

  17. advanced spaceborne thermal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from and is used to measure volcanic thermal radiance. ASTER provides relatively high spatial resolution (90 m Wright, Robert 6 Advanced nanofabrication of thermal emission...

  18. Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual...

    Energy Savers [EERE]

    the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions...

  19. Gasoline-Like Fuel Effects on Advanced Combustion Regimes

    Broader source: Energy.gov (indexed) [DOE]

    tools to assess fuel property effects on advanced combustion, emissions, and engine optimization Relevance: Determine the effects of fuel properties and chemistries on...

  20. Non-Petroleum-Based Fuel Effects on Advanced Combustion

    Broader source: Energy.gov (indexed) [DOE]

    tools to assess fuel property effects on advanced combustion, emissions, and engine optimization Our role: Determine the effects of non-petroleum based fuel properties and...

  1. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect (OSTI)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30T23:59:59.000Z

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work has consisted of both modeling and single cylinder engine experiments to quantify DIGN performance. The air handling systems of natural gas engines dissipate a percentage of available energy as a result of both flow losses and turbomachinery inefficiencies. An analytical study was initiated to increase compressor efficiency by employing a 2-stage inter-cooled compressor. Caterpillar also studied a turbo-compound system that employs a power turbine to recover energy from the exhaust gases for improved engine efficiency. Several other component and system investigations were undertaken during the final phase of the program to reach the ultimate ARES goals. An intake valve actuation system was developed and tested to improve engine efficiency, durability and load acceptance. Analytical modeling and materials testing were performed to evaluate the performance of steel pistons and compacted graphite iron cylinder head. Effort was made to improve the detonation sensing system by studying and comparing the performance of different pressure sensors. To reduce unburned hydrocarbon emissions, different camshafts were designed and built to investigate the effect of exhaust valve opening timing and value overlap. 1-D & 3-D coupled simulation was used to study intake and exhaust manifold dynamics with the goal of reducing load in-balance between cylinders. Selective catalytic reduction with on-board reductant generation to reduce NOx emissions was also engine tested. An effective mean to successfully deploy ARES technologies into the energy markets is to deploy demonstration projects in the field. In 2010, NETL and Caterpillar agreed to include a new “opportunity fuel” deliverable and two field demonstrations in the ARES program. An Organic Rankine Cycle system was designed with production intent incorporating lessons learned from the Phase II demonstration. Unfortunately, business conditions caused Caterpillar to cancel this demonstration in 2011. Nonetheless, Caterpillar partnered with a local dealer to deploy an ARES class engine using syngas from a biomass gasifier as

  2. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    SciTech Connect (OSTI)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01T23:59:59.000Z

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are represented, in addition to the extensive data compiled from recent studies on bottom-up representation of efficiency measures for the sector. We also defined various mitigation scenarios including long-term production trends to project country-specific production, energy use, trading, carbon emissions, and costs of mitigation. Such analyses can provide useful information to assist policy-makers when considering and shaping future emissions mitigation strategies and policies. The technical objective is to analyze the costs of production and CO{sub 2} emission reduction in the U.S, China, and India’s iron and steel sectors under different emission reduction scenarios, using the ISEEM-IS as a cost optimization model. The scenarios included in this project correspond to various CO{sub 2} emission reduction targets for the iron and steel sector under different strategies such as simple CO{sub 2} emission caps (e.g., specific reduction goals), emission reduction via commodity trading, and emission reduction via carbon trading.

  3. Design of Integrated Laboratory and Heavy-Duty Emissions Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emission Reductions Bench-Top Engine System for Fast Screening of Alternative Fuels and Fuel Additives Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions...

  4. Experience curves for power plant emission control technologies

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A

    2007-01-01T23:59:59.000Z

    reduction in NO x emissions from coal-fired power plants tocombustion of coal, emissions from coal-fired power plantsemission control technologies now required on all new coal-fired power

  5. Gas Turbine Emissions

    E-Print Network [OSTI]

    Frederick, J. D.

    technology developers and electric utilities will share emissions reductions in the coming era of pollution allowance trading is becoming prominent on the agendas of strategic planners at technology vendors and the electric power industry ??? ? (1...., "Authority to Construct for Badger Creek Limited," Kern County Air Pollution Control District, Bakersfield.. Ca., June 20, 1989. 3) Wark, K. and Warner, C. F., Air Pollution - Its Origin and Control, Harper and Row, New York, New York, 1976, pp. 453...

  6. Operability and Emissions from a Medium-Duty Fleet Operating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyzed DPFs 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Shell Global Solutions (US) Inc. 2004deercherrillo.pdf More Documents & Publications...

  7. Thermal Efficiency Improvement While Meeting Emissions of 2007...

    Broader source: Energy.gov (indexed) [DOE]

    2005 Detroit Diesel Corporation. All Rights Reserved. 11th Annual Diesel Engine Emission Reduction (DEER) Conference, Aug. 21st - 25th, 2005 Thermal Efficiency Improvement While...

  8. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Model-Based Transient Calibration Optimization for Next Generation Diesel Engines Demonstrating Fuel Consumption and Emissions Reductions with...

  9. Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

    SciTech Connect (OSTI)

    Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C. (Cummins, Inc.); Howden, Kenneth C.; Chalk, Steven (U.S. Dept. of Energy)

    2002-06-01T23:59:59.000Z

    Due to their excellent fuel efficiency, reliability, and durability, compression ignition direct injection (CIDI) engines have been used extensively to power almost all highway trucks, urban buses, off-road vehicles, marine carriers, and industrial equipment. CIDI engines burn 35 to 50% less fuel than gasoline engines of comparable size, and they emit far less greenhouse gases (Carbon Dioxides), which have been implicated in global warming. Although the emissions of CIDI engines have been reduced significantly over the last decade, there remains concern with the Nitrogen Oxides (NOX) and Particulate Matter (PM) emission levels. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulations. Meeting the Tier II standards requires NOX and PM emissions to be reduced dramatically. Achieving such low emissions while minimizing fuel economy penalty cannot be done through engine development and fuel reformulation alone, and requires application of NOX and PM aftertreatment control devices. A joint effort was made between Cummins Inc. and the Department of Energy to develop the generic aftertreatment subsystem technologies applicable for Light-Duty Vehicle (LDV) and Light-Duty Truck (LDT) engines. This paper provides an update on the progress of this joint development program. Three NOX reduction technologies including plasmaassisted catalytic NOX reduction (PACR), active lean NOX catalyst (LNC), and adsorber catalyst (AC) technology using intermittent rich conditions for NOX reduction were investigated in parallel in an attempt to select the best NOX control approach for light-duty aftertreatment subsystem integration and development. Investigations included system design and analysis, critical lab/engine experiments, and ranking then selection of NOX control technologies against reliability, up-front cost, fuel economy, service interval/serviceability, and size/weight. The results of the investigations indicate that the best NOX control approach for LDV and LDT applications is a NOX adsorber system. A greater than 83% NOX reduction efficiency is required to achieve 0.07g/mile NOX Tier II vehicle-out emissions. Both active lean NOX and PACR technology are currently not capable of achieving the high conversion efficiency required for Tier II, Bin 5 emissions standards. In this paper, the NOX technology assessment and selection is first reviewed and discussed. Development of the selected NOX technology (NOX adsorber) and PM control are then discussed in more detail. Discussion includes exhaust sulfur management, further adsorber formulation development, reductant screening, diesel particulate filter development & active regeneration, and preliminary test results on the selected integrated SOX trap, NOX adsorber, and diesel particulate filter system over an FTP-75 emissions cycle, and its impact on fuel economy. Finally, the direction of future work for continued advanced aftertreatment technology development is discussed. (SAE Paper SAE-2002-01-1867 © 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  10. The Clean Development Mechanism and CER Price Formation in the Carbon Emission

    E-Print Network [OSTI]

    Carmona, Rene

    to earn Certified Emission Reduction (CER) credits, each equiva- lent to one ton of CO2. These CERs can is to reduce CO2 emissions from these installations by 10% by 2018. However, the European Union Emission House Gas (GHG) emission reduction targets set Partially supported by NSF: DMS-0806591. The second named

  11. Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions

    E-Print Network [OSTI]

    Millstein, Dev

    2009-01-01T23:59:59.000Z

    Heavy-Duty Diesel Truck Emissions. Environ. Sci. Technol. ,for heavy-duty diesel truck emissions. J. Air Waste Manage.on-road diesel truck emissions, large weekend reductions in

  12. Diesel Engines: What Role Can They Play in an Emissions-Constrained...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What Role Can They Play in an Emissions-Constrained World? Diesel Engines: What Role Can They Play in an Emissions-Constrained World? 2004 Diesel Engine Emissions Reduction (DEER)...

  13. Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6

    E-Print Network [OSTI]

    Schipper, Lee

    2008-01-01T23:59:59.000Z

    Energy Savings and CO2 Emissions Implications. J. ofcommitment to reduce CO2 emissions from new passenger carsACEA’s Commitment on CO2 Emission Reductions from Passenger

  14. Advanced Collaborative Emissions Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment of Energyeffort toACES is2Study

  15. Comparing the greenhouse gas emissions from three alternative waste combustion concepts

    SciTech Connect (OSTI)

    Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Tsupari, Eemeli; Sipilae, Kai [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Piispankatu 8, FIN 20500 Turku (Finland)

    2012-03-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

  16. Non-Reacting Flow Characteristics and Emissions Reduction on Blends of Coal and Dairy Biomass in 30 kW_(t) Low NO_(x) Down-Fired Furnace

    E-Print Network [OSTI]

    Tiyawongsakul, Tiyawut

    2014-08-07T23:59:59.000Z

    recently the required CO_(2) reduction of 30% by 2030. Clean coal technology must be continuously developed in order to prevent people from losing their jobs and to decrease the negative impacts of firing coal on environment. The present research focuses...

  17. Non-Reacting Flow Characteristics and Emissions Reduction on Blends of Coal and Dairy Biomass in 30 kW_(t) Low NO_(x) Down-Fired Furnace 

    E-Print Network [OSTI]

    Tiyawongsakul, Tiyawut

    2014-08-07T23:59:59.000Z

    , coal-fired power plants that do not want to invest in new technologies could buy NOx credits from other plants. NOx price for emissions trading was about $15.89 per short ton in 2011 although it was as high as $776.04 per short ton in 2007 (U.S. EIA...

  18. Energy Efficiency / Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Vol. I – Summary ReportAnnual Report to the Texas Commission on Environmental Quality, Sept. 2003 to Aug. 2004

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Gilman, D.; Fitzpatrick, T.; Muns, S.; Verdict, M.; Ahmad, M.; Liu, Z.; Baltazar-Cervantes, J. C.; Bryant, J.; Degelman, L. O.; Turner, W. D.

    2004-01-01T23:59:59.000Z

    The Energy Systems Laboratory, in fulfillment of its responsibilities under Texas Health and Safety Code Ann. § 388.003 (e), Vernon Supp. 2002, submits its third annual report, Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions...

  19. Mitigating greenhouse gas emissions: Voluntary reporting

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  20. The Value of Advanced Technologies in the U.S. Buildings Sector in Climate Change Mitigation

    SciTech Connect (OSTI)

    Kyle, G. Page; Clarke, Leon E.; Smith, Steven J.

    2008-05-01T23:59:59.000Z

    There is a wide body of research focused on the potential of advanced technologies to reduce energy consumption in buildings. How such improvements relate to global climate change, however, is less clear, due to the complexity of the climate change issue, and the implications for the energy system as a whole that need to be considered. This study uses MiniCAM, an integrated assessment model, to examine the contributions of several suites of advanced buildings technologies in meeting national carbon emissions reduction targets, as part of a global policy to mitigate climate change by stabilizing atmospheric CO2 concentrations at 450 ppmv. Focal technology areas include building shells, heat pumps for HVAC and water heating applications, solid-state lighting, and miscellaneous electric equipment. We find that advanced heat pumps and energy-efficient miscellaneous electric equipment show the greatest potential to reduce aggregate building sector future energy consumption and policy costs, but that all focal areas are important for reducing energy consumption. Because of assumed availability of low-cost, emissions-reduced electricity generation technologies in these scenarios, heat pumps are especially important for facilitating fuel-switching towards electricity. Buildings sector energy consumption is reduced by 28% and policy costs are reduced by 17% in a scenario with advanced technologies in all focal areas.

  1. Suspension Hydrogen Reduction of Iron Oxide Concentrates

    SciTech Connect (OSTI)

    H.Y. Sohn

    2008-03-31T23:59:59.000Z

    The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  2. Nox reduction system utilizing pulsed hydrocarbon injection

    DOE Patents [OSTI]

    Brusasco, Raymond M. (Livermore, CA); Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

  3. Selective catalyst reduction light-off strategy

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-10-18T23:59:59.000Z

    An emissions control system includes a temperature determination module and an emissions control module. The temperature determination module determines a first temperature of a heater element of a diesel particulate filter (DPF) assembly in an exhaust system and determines a second temperature of a catalyst of the DPF assembly. The emissions control module selectively activates the heater element, selectively initiates a predefined combustion process in an engine based upon the first temperature, and selectively starts a reductant injection process based upon the second temperature.

  4. Development of DOD Process Energy and Pollution Reduction (PERP) Analysis Tool

    E-Print Network [OSTI]

    Lin, M. C. J.; Northrup, J.; Lorand, R.; Fraser, M.

    and emission reduction opportunities were identified and collected by reviewing the literature for new technologies and previous energy studies. Energy requirements and emissions were quantified for the alternate technologies and used to estimate total energy...

  5. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    Darrow, K et al. (2009), “CHP Market Assessment” Integratedwith combined heat and power (CHP) capability deployment ingas emissions (GHG) reductions. CHP applications at large

  6. Greenhouse Gas Reductions: SF6

    ScienceCinema (OSTI)

    Anderson, Diana

    2013-04-19T23:59:59.000Z

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas ? one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

  7. Greenhouse Gas Reductions: SF6

    SciTech Connect (OSTI)

    Anderson, Diana

    2012-01-01T23:59:59.000Z

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas — one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

  8. Oxidation of advanced steam turbine alloys

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

    2006-03-01T23:59:59.000Z

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  9. Advances in process intensification through multifunctional reactor engineering

    SciTech Connect (OSTI)

    O'Hern, T. J.

    2012-03-01T23:59:59.000Z

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes critical to process intensification and implementation in commercial applications. Physics of the heat and mass transfer and chemical kinetics and how these processes are ultimately scaled were investigated. Specifically, we progressed the knowledge and tools required to scale a multifunctional reactor for acid-catalyzed C4 paraffin/olefin alkylation to industrial dimensions. Understanding such process intensification strategies is crucial to improving the energy efficiency and profitability of multifunctional reactors, resulting in a projected energy savings of 100 trillion BTU/yr by 2020 and a substantial reduction in the accompanying emissions.

  10. Energy Efficiency / Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Vol. III – AppendixAnnual Report to the Texas Commission on Environmental Quality, Sept. 2003 to Aug. 2004 

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Gilman, D.; Fitzpatrick, T.; Muns, S.; Verdict, M.; Ahmad, M.; Liu, Z.; Baltazar-Cervantes, J. C.; Bryant, J.; Degelman, L. O.; Turner, W. D.

    2004-01-01T23:59:59.000Z

    , the following results were determined for energy-code compliant new residential single and multi-family construction in both non-attainment and affected counties built in 2004. ? The annual savings in 2004 amounted to 233,806 megawatt hours (MWh...) of electricity and 667,945 million Btus of natural gas. The resultant annual NOx reductions were 346 tons. ? On the peak day (August 19, 1999, baseline in the historical air quality model), the savings would have been 1,317 MWh/day and 1,148 million Btus...

  11. Advanced Manufacture of Reflectors

    Broader source: Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  12. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect (OSTI)

    Keith Hohn; Sarah R. Nuss-Warren

    2011-08-31T23:59:59.000Z

    This final report describes a project intended to identify, develop, test, and commercialize emissions control and monitoring technologies that can be implemented by E&P operators to significantly lower their cost of environmental compliance and expedite project permitting. Technologies were installed and tested in controlled laboratory situations and then installed and tested on field engines based on the recommendations of an industry-based steering committee, analysis of installed horsepower, analysis of available emissions control and monitoring technologies, and review of technology and market gaps. The industry-recognized solution for lean-burn engines, a low-emissions-retrofit including increased airflow and pre-combustion chambers, was found to successfully control engine emissions of oxides of nitrogen (NO{sub X}) and carbon monoxide (CO). However, the standard non-selective catalytic reduction (NSCR) system recognized by the industry was found to be unable to consistently control both NO{sub X} and CO emissions. The standard NSCR system was observed to produce emissions levels that changed dramatically on a day-to-day or even hour-to-hour basis. Because difficulties with this system seemed to be the result of exhaust gas oxygen (EGO) sensors that produced identical output for very different exhaust gas conditions, models were developed to describe the behavior of the EGO sensor and an alternative, the universal exhaust gas oxygen (UEGO) sensor. Meanwhile, an integrated NSCR system using an advanced, signal-conditioned UEGO sensor was tested and found to control both NO{sub X} and CO emissions. In conjunction with this project, advanced monitoring technologies, such as Ion Sense, and improved sensors for emissions control, such as the AFM1000+ have been developed and commercialized.

  13. Advanced fuel chemistry for advanced engines.

    SciTech Connect (OSTI)

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01T23:59:59.000Z

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  14. Dynamic reduction, Version 1. 0

    SciTech Connect (OSTI)

    Rogers, G.J.; Wong, D.Y.; Ottevangers, J.; Wang, L. (Ontario Hydro, Toronto, ON (Canada))

    1993-04-01T23:59:59.000Z

    This report describes the theoretical background of the EPRI Dynamic Reduction DYNRED V 1.0. EPRI initiated research under project RP763 to develop the original reduction program DYNEQU. This program was the first to be based on the concept of aggregating of coherent groups of synchronous generators into a single equivalent generator model. While technically advanced, DYNEQU proved difficult to use. Since then, the stability problems encountered in power system planning and operations have changed. The emphasis on first swing transient stability has been replaced by emphasis on inter-area oscillations and voltage stability. The method of identification of coherent generators used in DYNEQU is based on the comparison of rotor angle swings, in a linearized system model, following a fault. It has been shown that this method of coherency identification is good for first swing stability. For inter-area oscillation studies, this method of generator aggregation is less accurate. Far better, are identification methods based on the structure of the power system. Because of these changes in the requirements for reduced order power system models, a new dynamic reduction program (DYNRED) has been developed under EPRI project RP2447-1. It is coherency based, as is DYNEQU, but it has structurally based coherency identification methods in addition to the method used in DYNEQU. This report describes the techniques used in DYNRED, that is: Coherency Identification; Network Reduction; Method of Aggregation, Generator Aggregation, Excitation Aggregation, Primemover/Governor Aggregation. An example of the application of DYNRED to the reduction of a large interconnected power system model is also presented. DYNRED uses the special modeling and network solution techniques developed to enable systems having up to 12,000 bus to be studied. Dynamic data is completely compatible between MASS, PEALS, and the EPRI Extended Transient Midterm Stability Program (ETMSP).

  15. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect (OSTI)

    Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

    2012-01-01T23:59:59.000Z

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  16. A Decade of On-road Emissions Measurements

    E-Print Network [OSTI]

    Denver, University of

    A Decade of On-road Emissions Measurements G A R Y A . B I S H O P * A N D D O N A L D H . S T E D. A multiyear, on-road emission measurement program carried outinthecitiesofChicago,Illinois;Denver,Colorado;LosAngeles (LA), California; and Phoenix, Arizona shows large, fuel- specific tailpipe emissions reductions

  17. Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Fourth quarterly progress report

    SciTech Connect (OSTI)

    NONE

    1992-12-31T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

  18. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 4, April--June 1991

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor, Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuel performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

  19. Advanced Microturbine Systems

    SciTech Connect (OSTI)

    None

    2005-12-31T23:59:59.000Z

    Dept. of Energy (DOE) Cooperative Agreement DE-FC02-00-CH11061 was originally awarded to Honeywell International, Inc. â?? Honeywell Power Systems Inc. (HPSI) division located in Albuquerque, NM in October 2000 to conduct a program titled Advanced Microturbine Systems (AMS). The DOE Advanced Microturbines Systems Program was originally proposed as a five-year program to design and develop a high efficiency, low emissions, durable microturbine system. The period of performance was to be October 2000 through September 2005. Program efforts were underway, when one year into the program Honeywell sold the intellectual property of Honeywell Power Systems Inc. and HPSI ceased business operations. Honeywell made an internal decision to restructure the existing program due to the HPSI shutdown and submitted a formal request to DOE on September 24, 2001 to transfer the Cooperative Agreement to Honeywell Engines, Systems and Services (HES&S) in Phoenix, AZ in order to continue to offer support for DOE's Advanced Microturbine Program. Work continued on the descoped program under Cooperative Agreement No. DE-FC26-00-CH11061 and has been completed.

  20. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction technology for the control of nitrogen oxide emissions from high-sulfur coal-fired boilers. First and second quarterly technical progress reports, [January--June 1995]. Final report

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia (NH{sub 3}) into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor containing a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW nameplate capacity) near Pensacola, Florida. The project is funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

  1. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Third quarterly technical progress report 1992

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur, coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3} and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high-sulfur US coal. The demonstration will be performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida.

  2. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO[sub x]) emissions from high-sulfur coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO[sub x]) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO[sub x] to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur, coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO[sub 2] and SO[sub 3] and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high-sulfur US coal. The demonstration will be performed at Gulf Power Company's Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida.

  3. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.

  4. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, first and second quarters 1994

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involve injecting ammonia into the flue gas generated from coal combustion in a boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The project is being conducted in the following three phases: permitting, environmental monitoring plan and preliminary engineering; detailed design engineering and construction; and operation, testing, disposition and final report. The project was in the operation and testing phase during this reporting period. Accomplishments for this period are described.

  5. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    SciTech Connect (OSTI)

    David Lyons

    2008-03-31T23:59:59.000Z

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also quantified during selected studies. A laboratory was established at WVU to provide for studies which supported and augmented the Translab research, and to provide for development of superior emissions measurement systems. This laboratory research focused on engine control and fuel sulfur issues. In recent years, as engine and aftertreatment technologies advanced, emissions levels were reduced such that they were at or below the Translab detectable limits, and in the same time frame the US Environmental Protection Agency required improved measurement methodologies for engine emissions certification. To remain current and relevant, the researchers designed a new Translab analytic system, housed in a container which can be transported on a semi-trailer. The new system's dilution tunnel flow was designed to use a subsonic venturi with closed loop control of blower speed, and the secondary dilution and particulate matter filter capture were designed to follow new EPA engine certification procedures. A further contribution of the program has been the development of techniques for creating heavy-duty vehicle test schedules, and the creation of schedules to mimic a variety of truck and bus vocations.

  6. Systems Analyses of Advanced Brayton Cycles

    SciTech Connect (OSTI)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30T23:59:59.000Z

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study how alternative process schemes and power cycles might be used and integrated to achieve higher systems efficiency. To achieve these design results, the total systems approach is taken requiring creative integration of the various process units within the plant. Advanced gas turbine based cycles for Integrated gasification Combined cycle (IGCC) applications are identified by a screening analysis and the more promising cycles recommended for detailed systems analysis. In the case of the IGFC task, the main objective is met by developing a steady-state simulation of the entire plant and then using dynamic simulations of the hybrid Solid Oxide Fuel Cell (SOFC)/Gas Turbine sub-system to investigate the turbo-machinery performance. From these investigations the desired performance characteristics and a basis for design of turbo-machinery for use in a fuel cell gas turbine power block is developed.

  7. Cars on a diet : the material and energy impacts of passenger vehicle weight reduction in the U.S.

    E-Print Network [OSTI]

    Cheah, Lynette W. (Lynette Wan Ting)

    2010-01-01T23:59:59.000Z

    Vehicle weight reduction is a known strategy to address growing concerns about greenhouse gas emissions and fuel use by passenger vehicles. We find that every 10% reduction in vehicle weight can cut fuel consumption by ...

  8. Engineering development of advanced coal-fired low-emissions boiler systems. Quarterly report, October 1994--December 1994; January 1995--March 1995; April 1995--June 1995; July 1995--September 1995; October 1995--December 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This report covers five quarters of work on the engineering development of a coal-fired low -emissions boiler systems. Contents include summaries of activities and key accomplishments for the following: project management; NO{sub x} subsystem; SO{sub 2}/particulate/air toxics/solid by-product subsystems; controls and sensors subsystems; boiler subsystem; and balance of plant subsystem.

  9. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2008-08-05T23:59:59.000Z

    Presentation covers new content available on the Alternative Fuels and Advanced Vehicle Data Center regarding diesel vehicles, diesel exhaust fluid, and selective catalytic reduction technologies.

  10. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A...

    Energy Savers [EERE]

    Well-to-Wheels Analysis of Advanced FuelVehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions Well-to-Wheels Analysis...

  11. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R. [NETL

    2013-03-11T23:59:59.000Z

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  12. Condition monitoring through advanced sensor and computational technology : final report (January 2002 to May 2005).

    SciTech Connect (OSTI)

    Kim, Jung-Taek (Korea Atomic Energy Research Institute, Daejon, Korea); Luk, Vincent K.

    2005-05-01T23:59:59.000Z

    The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties.

  13. Bibliography of greenhouse-gas reduction strategies

    SciTech Connect (OSTI)

    Tompkins, M.M.; Mintz, M.M.

    1995-03-01T23:59:59.000Z

    A bibliography of greenhouse-gas reduction strategies has been compiled to assist the Climate change Action Plan Task Force in their consideration of strategies to reduce greenhouse-gas emissions from personal motor vehicles. The document contains a summary of the literature, including it major directions and implications; and annotated listing of 32 recent pertinent documents; and a listing of a larger group of related reports.

  14. Un-reduction

    E-Print Network [OSTI]

    Martins Bruveris; David C. P. Ellis; Francois Gay-Balmaz; Darryl D. Holm

    2015-04-08T23:59:59.000Z

    This paper provides a full geometric development of a new technique called un-reduction, for dealing with dynamics and optimal control problems posed on spaces that are unwieldy for numerical implementation. The technique, which was originally concieved for an application to image dynamics, uses Lagrangian reduction by symmetry in reverse. A deeper understanding of un-reduction leads to new developments in image matching which serve to illustrate the mathematical power of the technique.

  15. Advanced Turbine Systems (ATS): Phase 1 system scoping and feasibility studies

    SciTech Connect (OSTI)

    White, D.J.

    1993-04-15T23:59:59.000Z

    As part of this involvement Solar intends to design and commercialize a unique gas turbine system that promises high cycle efficiencies and low exhaust emissions. This engine of approximately 12-MW will be targeted for the dispersed power markets both urban and rural. Goals of 50% thermal efficiency and 8 parts-per-million by volume (ppmv) nitrogen oxide emissions were established. Reliability, availability, and maintainability (RAM) will continue to be the most important factors in the competitive marketplace. The other major goal adopted was one of reducing the cost of power produced by 10%. This reduction is based on the cost of power (COP) associated with today`s engines that lie in the same horsepower range as that targeted in this study. An advanced cycle based on an approximation of the Ericsson Cycle was adopted after careful studies of a number of different cycles. This advanced intercooled, recuperated engine when fired at 2450{degree}F will be capable of meeting the 50% efficiency goal if the cooling air requirements do not exceed 7% of the total air flow rate. This latter qualification will probably dictate the use of ceramic parts for both the nozzle guide vanes and the turbine blades. Cooling of these parts will probably be required and the 7% cooling flow allowance is thought to be adequate for such materials. Analyses of the cost of power and RAM goals show that the installed cost of this advanced engine can be approximately 50% above today`s costs. This cost is based on $4.00 per million Btu fuel and a COP reduction of 10% while maintaining the same RAM as today`s engines.

  16. Gas fired Advanced Turbine System

    SciTech Connect (OSTI)

    LeCren, R.T.; White, D.J.

    1993-01-01T23:59:59.000Z

    The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

  17. Global Carbon Emissions in the Coming Decades: The Case of China

    E-Print Network [OSTI]

    Levine, Mark D.

    2008-01-01T23:59:59.000Z

    forecasts, carbon intensity, energy policy, emissions reductions Abstract China’China Surpassing American Energy-Related Carbon Emissions (1, 2) ForecastChina’s energy demand grew faster than any of the forecasts –

  18. Modeled and observed ozone sensitivity to mobile-source emissions in Mexico City

    E-Print Network [OSTI]

    Zavala, M.

    The emission characteristics of mobile sources in the Mexico City Metropolitan Area (MCMA) have changed significantly over the past few decades in response to emission control policies, advancements in vehicle technologies ...

  19. Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2002deeraardahl.pdf More Documents & Publications Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Selective reduction of NOx in...

  20. The Potential of GTL Diesel to Meet Future Exhaust Emission Limits

    Broader source: Energy.gov (indexed) [DOE]

    volumetric fuel consumption Vehicle: MB E220 CDI GTL diesel fuel offers high emission reduction potential for non-adapted engines. These benefits can be utilized in existing...

  1. Leaf isoprene emission rate as a function of atmospheric CO2 concentration

    E-Print Network [OSTI]

    Jackson, Robert B.

    Leaf isoprene emission rate as a function of atmospheric CO2 concentration M I C H A E L J . W I L not show an increase in isoprene emission at the lowest CO2 concentration. However, isoprene emission rates exhibited a 30­40% reduction in isoprene emission rate when grown at 800 ppmv CO2, compared with 400 ppmv CO

  2. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power and TransmissionAdolphusAdvanced Energy

  3. Saving Fuel, Reducing Emissions

    E-Print Network [OSTI]

    Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

    2009-01-01T23:59:59.000Z

    lower greenhouse gas emissions from electricity productionAssessment of Greenhouse Gas Emissions from Plug-in Hybridof national greenhouse gas emissions. Both motor vehicle

  4. Develop & Demonstrate an Advanced Low Temp Heat Recovery Absorption...

    Broader source: Energy.gov (indexed) [DOE]

    million tons of CO 2e reduction per year. The Advanced Low Temperature Heat Recovery Absorption Chiller Module will provide the next level of performance and economics that could...

  5. advance molecular imaging: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in molecular such as the use of 18 F-deox- yglucose in positron-emission tomography (PET) ima- ging. Molecular imaging McKenzie, Rick 6 New Thermal Imaging Camera Advances UNL...

  6. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect (OSTI)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01T23:59:59.000Z

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  7. Abstract--Historic data shows an increase in carbon dioxide (CO2) emissions at airports caused by an increase

    E-Print Network [OSTI]

    design alternatives provides reduction of CO2 emission levels such that the CO2 emissions for 2050 meet Abstract-- Historic data shows an increase in carbon dioxide (CO2) emissions at airports caused regulations at airports through reduction of CO2 for all components of flight operations. The purpose

  8. Advances in Energy Reduction in Methanol Plant Design

    E-Print Network [OSTI]

    Huggins, P. J.; Griffiths, G. W.

    1982-01-01T23:59:59.000Z

    process us s a patented type of quench reactor where the r se in temperature caused by the exothermic syntheis reactions is controlled by injection of col~ gas, from the circulation compressor discharge, .t various levels within the catalyst bed. i i... synthesis,lis controlled or 'quenched' at the exit of eac! bed by the introduction of cold fresh feed. Th split of circulation gas to the reactor between c ld quench gas and hot feed gas (which has to b heated to reaction temperatures) was about ffiO/40...

  9. Degradation of Selenocyanate with an Advanced Reduction Process(ARP)

    E-Print Network [OSTI]

    Luo, Guofan

    2014-08-05T23:59:59.000Z

    Selenocyanate (SeCN^(-)) is a common form of selenium contamination in refinery and mining wastewater generated from processing oil or minerals from seleniferous formations such as marine shales. Humans who drink water containing selenium over...

  10. Advanced Reduction Processes - A New Class of Treatment Processes

    E-Print Network [OSTI]

    Vellanki, Bhanu Prakash

    2012-10-19T23:59:59.000Z

    .86. ......................................................... 39 Figure 3-7: Sulfite (0.0159 M) absorption spectra at different pH. ................................. 40 Figure 3-8: Perchlorate degradation by sulfite/UV-L at various pH (8 mW/cm2, 11 mM sulfite concentration, without air circulation, T=38o... C). .................. 47 Figure 3-9: Perchlorate degradation by sulfite/UV-L at various pH (7 mW/cm2, 11 mM sulfite concentration, with air circulation, T? 28o C). ...................... 48 Figure 3-10: First-order rate constants...

  11. FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt |Exelon GenerationExtraction Utility792 206FISCALin

  12. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Gregory Gaul

    2004-04-21T23:59:59.000Z

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

  13. Market-based approach for improving ship air emissions

    E-Print Network [OSTI]

    Donatelli, Matthew (Matthew Alfred)

    2009-01-01T23:59:59.000Z

    This study considered how appropriate different market-based approaches are for the reduction of ship air emissions, particularly CO2. Furthermore, the study also considered which types of market-based tools may be available ...

  14. Department of Energy Announces 22 New Projects to Enable Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    Media Contact 202 586 4940 Department of Energy Announces 22 New Projects to Enable Emissions Reductions and Improve Energy Efficiency ARPA-E Invests 60 Million to Detect and...

  15. Effect of GTL Diesel Fuels on Emissions and Engine Performance

    Broader source: Energy.gov (indexed) [DOE]

    50 % GTL in EU-Diesel shows almost the same properties as neat GTL: a large reduction in soot emission and a higher EGR tolerance 19 DaimlerChrysler, RT, R. R. Maly,...

  16. Saving Fuel, Reducing Emissions

    E-Print Network [OSTI]

    Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

    2009-01-01T23:59:59.000Z

    COMPACT EMISSIONS HEV PHEV marginal power plant is a coalpower uses relatively little coal, but in other cases emissions

  17. Chromium isotopes as indicators of hexavalent chromium reduction

    SciTech Connect (OSTI)

    Johnson, Thomas M.

    2012-03-20T23:59:59.000Z

    This is the final report for a university research project which advanced development of a new technology for identifying chemical reduction of hexavalent chromium contamination in groundwater systems. Reduction renders mobile and toxic hexavalent chromium immobile and less toxic. The new method uses stable isotope ratio measurements, which are made using multicollector ICP-mass spectrometry. The main objectives of this project were completed during the project period and two peer-reviewed articles were published to disseminate the information gained.

  18. Advertise Subscribe Log in Register Advanced search

    E-Print Network [OSTI]

    Advertise Subscribe Log in Register Advanced search Home News Comment Special reports People power Europe does not need nuclear power to meet its future energy needs. Question of nuclear subsidies-reduction target would be better. Blowing away nuclear power Europe does not need nuclear power to meet its future

  19. Assessment of Demand Response and Advanced Metering

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    #12;#12;2008 Assessment of Demand Response and Advanced Metering Staff Report Federal Energy metering penetration and potential peak load reduction from demand response have increased since 2006. Significant activity to promote demand response or to remove barriers to demand response occurred at the state

  20. The development of Comprehensive Community NOx Emissions Reduction Toolkit (CCNERT)

    E-Print Network [OSTI]

    Sung, Yong Hoon

    2004-11-15T23:59:59.000Z

    from the Texas Comptroller of Public Accounts Database ........................ 75 Figure 4-14: Procedure for Cross-Checking the Industrial Sector?s Energy Use Estimation with the Actual Energy Use..................................................................................................................... 152 Figure 5-12: The Commercial Sector?s Energy Use.................................................................... 155 Figure 5-13: Comparison of Baseline Model with Actual Consumption in the Commercial Sector...

  1. REDUCTION OF INHERENT MERCURY EMISSIONS IN PC COMBUSTION

    SciTech Connect (OSTI)

    John C. Kramlich; Rebecca N. Sliger

    2000-08-26T23:59:59.000Z

    Oxidized mercury has been shown to be more easily removed from power plant flue gas by existing air pollution control equipment (e.g., wet scrubbers) than elemental mercury. The factors that determine how mercury is converted to the oxidized form in practical systems are, however, unknown. The present research focuses on developing an elementary, homogeneous mechanism that describes the oxidation of mercury by chlorine species as it occurs in practical furnaces. The goal is to use this mechanism (1) as a component in an overall homogeneous/heterogeneous mechanism that describes mercury behavior, and (2) to suggest low cost/low impact means of promoting mercury oxidation in furnaces. The results suggest an important role for Hg+Cl {r_arrow} HgCl and HgCl + Cl {r_arrow} HgCl{sub 2}. Here, the Cl is derived by radical attack on HCl in the high-temperature environment. The results suggest that the oxidation occurs during the time that the gases cool to room temperature. The high Cl concentrations from the flame persist into the quench region and provide for the oxidation of Hg to HgCl{sub 2} under lower temperatures where the products are stable. Under this mechanism, no significant HgCl{sub 2} is actually present at the higher temperatures where oxidized mercury is often reported in the literature (e.g., 900 C). Instead, all oxidation occurs as these gases are quenched. The results suggest that means of promoting Cl concentrations in the furnace will increase oxidation.

  2. South Africa - Greenhouse Gas Emission Baselines and Reduction...

    Open Energy Info (EERE)

    from Buildings AgencyCompany Organization United Nations Environment Programme Sector Energy Focus Area Buildings Topics Baseline projection, GHG inventory, Pathways analysis,...

  3. The Projected Impacts of Carbon Dioxide Emissions Reduction Legislation on

    E-Print Network [OSTI]

    of wind and natural gas generation, retirement of older coal- fired units that have not been retrofitted by 2025. Due to the state's heavy reliance on coal as a fuel source for electricity generation, Indiana allowances and offsets, shifting production technology from coal-fired baseload resources to a combination

  4. Ris-I-2380(EN) Emission reduction by means

    E-Print Network [OSTI]

    Fateev*, Yukihiro Kusano*, Frank Leipold*, Bjarne Stenum* (*Optics and Plasma Research Department, Risø Department: Optics and Plasma Research Risø-I-2380(EN) August 2005 Contract no.: PSO project no. FU3401

  5. Diesel emission reduction using internal exhaust gas recirculation

    DOE Patents [OSTI]

    He, Xin (Denver, CO); Durrett, Russell P. (Bloomfield Hills, MI)

    2012-01-24T23:59:59.000Z

    A method for controlling combustion in a direct-injection diesel engine includes monitoring a crankshaft rotational position of a cylinder of the engine, monitoring an engine load, determining an intake stroke within the cylinder based upon the crankshaft rotational position, and when the engine load is less than a threshold engine load, opening an exhaust valve for the cylinder during a portion of the intake stroke.

  6. Introduction The reduction of nitrogen oxide emissions is

    E-Print Network [OSTI]

    Sandoghdar, Vahid

    the effects of turbulence on the catalytic process in CST, which is relevant for large gas-turbines. Approach: Gas turbine with catalytic combustor. Fig 2: Measured and predicted (using the 2-D steady elliptic for gas-turbine catalytic burners) without heterogeneous reactions and with a fixed wall temperature have

  7. Fumigant emission reductions with TIF warrant regulatory changes

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    good strategy, to date, appears to be the adop- tion of low-permeability tarps, collectively agricultural practices (

  8. Estimating the environmental benefits of aviation fuel and emissions reductions

    E-Print Network [OSTI]

    Dorbian, Christopher S. (Christopher Salvatore)

    2010-01-01T23:59:59.000Z

    With commercial aviation continuing to grow and environmental policymaking activity intensifying, it is becoming increasingly necessary to assess the environmental impact of measures that result in changes in aviation fuel ...

  9. Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project

    SciTech Connect (OSTI)

    Bigelow, Erik

    2012-10-30T23:59:59.000Z

    The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-­?based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­?hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-­?based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-­?hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries to utilize energy recycling technology to lower domestic energy use and see higher net energy efficiency. The prototype system and results will be used to seek additional resources to carry out full deployment of a system. Ultimately, this innovative technology is expected to be transferable to other testing applications involving energy-­?based cycling within the company as well as throughout the industry.

  10. Energy Efficiency and Renewable Energy Impacts on Emission Reductions

    E-Print Network [OSTI]

    Haberl,J; Bahman,Y.

    2014-01-01T23:59:59.000Z

    RENEWABLES Wind Papalote Creek Wind Farm near Taft, TX. ESL-KT-14-11-43 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 p. 67 Completed, Announced, and Retired Wind Projects in Texas, as of Dec. 2013 WIND PROJECTS IN TEXAS (2013...) ESL-KT-14-11-43 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 p. 68 Completed, Announced, and Retired Wind Projects in Texas, as of Dec. 2013 WIND PROJECTS IN TEXAS (2013) Wind Farms in ERCOT ERCOT: Electric Reliability...

  11. Greenhouse Gas Emissions Reduction Benefits of Workplace Charging |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment of aLoggingsubscriber to the GreenOneSave

  12. CDM Emission Reductions Calculation Sheet Series | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility

  13. 2002 Diesel Engine Emissions Reduction (DEER) Conference Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, so are1703 Process Letter 1703Electricity

  14. 2003 Diesel Engine Emissions Reduction (DEER) Conference Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, so are1703 Process LetterDepartment of Energy 3

  15. 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, so are1703 Process LetterDepartment of

  16. 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, so are1703 Process LetterDepartmentDepartment of

  17. Creating Mobile Emission Reduction Credits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,Crafty Gifts for the Energy Conscious Crafty Gifts

  18. Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 TermoelectricaPavingPerry Luksin About Us

  19. PPPL Celebrates Earth Day with Reduction in Greenhouse Gas Emissions |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and4/26/11:Tel.:162 PreparedExpert Organization Contact

  20. Indonesia-GTZ Emissions Reductions in Urban Transport | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open Energy Information Indonesia UN