National Library of Energy BETA

Sample records for advanced economies recovery

  1. Recent Trends in Car Usage in Advanced Economies - Slower Growth...

    Open Energy Info (EERE)

    Trends in Car Usage in Advanced Economies - Slower Growth Ahead? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Recent Trends in Car Usage in Advanced Economies -...

  2. Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_crane.pdf (549.96 KB) More Documents & Publications Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency Gains in Vehicle Applications Automotive Waste Heat Conversion to Electric Power using Skutterudites, TAGS,

  3. Gills Onions Advanced Energy Recovery System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LEARNING FOR LOCAL LEADERS GILLS ONIONS ADVANCED ENERGY RECOVERY SYSTEM MAY 17, 2011 * INDUSTRIAL * FOODSERVICE * RETAIL * GENERATED UP TO 300,000 LBS OF ONION WASTE PER DAY (TOP, TAIL AND PEEL) * WASTE BECAME UNMANAGEABLE AND COST-PROHIBITIVE * CREATED ODOR PROBLEMS, POTENTIAL GROUND WATER CONTAMINATION SOLUTION ONION WASTE TO ENERGY ADVANCED ENERGY RECOVERY SYSTEM (AERS) * CONVERTS ONION WASTE TO RENEWABLE ENERGY, ULTRA-CLEAN BIOGAS AND CATTLE FEED * MEETS OUR GOALS FOR AIR QUALITY, ZERO WASTE

  4. How Advanced Batteries Are Energizing the Economy

    Broader source: Energy.gov [DOE]

    Earlier today, President Obama visited Johnson Controls in Holland, Michigan to highlight how this once shuttered factory is helping rev up the advanced battery industry in the United States. This...

  5. Gills Onions Advanced Energy Recovery System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gills Onions Advanced Energy Recovery System Turning a Waste Liability into a Renewable Resource Waste to Energy Using Fuel Cells Workshop Washington, DC J 13 2011 January 13, 2011 Dave Reardon, , PE National Director - Water Sustainability HDR Engineering, Inc., Folsom, CA t Gills Onions Backg ground ● 3 rd largest onion p producer in the nation ● 100,000 square-foot processing facility in Oxnard, CA ● 800,000 lbs of onions processed every day ● Prepackaged diced, sliced, whole, pureed,

  6. Recovery Act. Development and Validation of an Advanced Stimulation...

    Office of Scientific and Technical Information (OSTI)

    Geothermal Systems Citation Details In-Document Search Title: Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal ...

  7. Gills Onions Advanced Energy Recovery System | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gills Onions Advanced Energy Recovery System The Business Case for Fuel Cells 2010: Why Top Companies are Purchasing Fuel Cells Today Fuel Cell Power Plants Biofuel Case Study - ...

  8. Advanced Research Projects Agency - Energy Program Specific Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Research Projects Agency - Energy Program Specific Recovery Plan PDF icon Microsoft Word - 44F1801D.doc More Documents & Publications Microsoft Word - PSRP Updates ...

  9. Gills Onions Advanced Energy Recovery System | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Gills Onions Advanced Energy Recovery System Report of the DOD-DOE Workshop on Converting Waste to Energy Using Fuel Cells: Workshop Summary and ...

  10. Advanced Membrane Separation Technologies for Energy Recovery

    SciTech Connect (OSTI)

    2009-05-01

    This factsheet describes a research project whose goal is to develop novel materials for use in membrane separation technologies for the recovery of waste energy and water from industrial process streams.

  11. Recovery Act funds advance cleanup efforts at Cold War site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cleanup efforts at Cold War site Recovery Act funds advance cleanup efforts at Cold War site A local small business, ARSEC Environmental, LLC, of White Rock, NM, won a 2 million ...

  12. Microbial enhancement of oil recovery: Recent advances

    SciTech Connect (OSTI)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J.

    1992-01-01

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between research'' and field applications.'' In addition, several modeling and state-of-the-art'' presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  13. Department of Energy Releases New Report on Economic Impact of Recovery Act Advanced Vehicle Investments

    Broader source: Energy.gov [DOE]

    Report Finds Recovery Act Advanced Vehicle Projects Are Creating Jobs, Spurring Private Capital Investment and Cutting Electric Vehicle Cost

  14. Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

  15. "Recovery Act: Advanced Energy Efficient BuildingTechnologies" |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy "Recovery Act: Advanced Energy Efficient BuildingTechnologies" "Recovery Act: Advanced Energy Efficient BuildingTechnologies" Description of a FOA funding oppourtunity with funds appropriated by the American Recovery and Reinvestment Act of 2009. "Recovery Act: Advanced Energy Efficient BuildingTechnologies" (715.41 KB) More Documents & Publications Microsoft Word - FOA cover sheet.doc Building Technologies Program Planning Summary

  16. Recovery Act funds advance cleanup efforts at Cold War site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cleanup efforts at Cold War site Recovery Act funds advance cleanup efforts at Cold War site A local small business, ARSEC Environmental, LLC, of White Rock, NM, won a $2 million task order in April to perform this work. June 29, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

  17. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    SciTech Connect (OSTI)

    Baxter, VAN

    2003-05-19

    With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case has its own

  18. An evaluation of known remaining oil resources in the United States. Appendix, Project on Advanced Oil Recovery and the States

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This volume contains appendices for the following: Overview of improved oil recovery methods (enhanced oil recovery methods and advanced secondary recovery methods); Benefits of improved oil recovery, selected data for the analyzed states; and List of TORIS fields and reservoirs.

  19. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect (OSTI)

    Mark B. Murphy

    2002-12-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  20. Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing

    SciTech Connect (OSTI)

    Fletcher, James H.; Cox, Philip; Harrington, William J; Campbell, Joseph L

    2013-09-03

    ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focused on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel

  1. Battleground Energy Recovery Project- Presentation by the Houston Advanced Research Center, June 2011

    Broader source: Energy.gov [DOE]

    Presentation on the Battleground Energy Recovery Project, given by Dan Bullock of the Houston Advanced Research Center, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  2. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect (OSTI)

    Murphy, M.B.

    1999-02-01

    Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

  3. Microbial enhancement of oil recovery: Recent advances. Proceedings

    SciTech Connect (OSTI)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J.

    1992-12-31

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between ``research`` and ``field applications.`` In addition, several modeling and ``state-of-the-art`` presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  4. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Waste Heat Recovery Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Systems Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Waste Heat Recovery Systems is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6

  5. Recovery Act

    Broader source: Energy.gov [DOE]

    Recovery Act and Energy Department programs were designed to stimulate the economy while creating new power sources, conserving resources and aligning the nation to once again lead the global energy economy.

  6. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    SciTech Connect (OSTI)

    Caille, Gary

    2013-12-13

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

  7. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect (OSTI)

    Murphy, Mark B.

    2002-01-16

    The overall objective of this project was to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  8. Recovery Act. Advanced Load Identification and Management for Buildings

    SciTech Connect (OSTI)

    Yang, Yi; Casey, Patrick; Du, Liang; He, Dawei

    2014-02-12

    , in particular, advanced power strips (APSs) was studied. The project evaluated the market potential for Smart Power Strips (SPSs) with load identification and the likely impact of a load identification feature on APS adoption and effectiveness. The project also identified other success factors required for widespread APS adoption and market acceptance. Even though the developed technology is applicable for both residential and commercial buildings, this project is focused on effective plug-in load control and management for commercial buildings, accomplished through effective load identification. The project has completed Smart Receptacle (SR) prototype development with integration of Load ID, Control/Management, WiFi communication, and Web Service. Twenty SR units were built, tested, and demonstrated in the Eaton lab; eight SR units were tested in the National Renewable Energy Lab (NREL) for one-month of field testing. Load ID algorithm testing for extended load sets was conducted within the Eaton facility and at local university campuses. This report is to summarize the major achievements, activities, and outcomes under the execution of the project.

  9. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    SciTech Connect (OSTI)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  10. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect (OSTI)

    Mark B. Murphy

    2005-09-30

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced

  11. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    SciTech Connect (OSTI)

    Swindeman, R.W.; Ren, W.

    1996-06-01

    The objective of the research is to provide databases and design criteria to assist in the selection of optimum alloys for construction of components needed to contain process streams in advanced heat recovery and hot-gas cleanup systems. Typical components include: steam line piping and superheater tubing for low emission boilers (600 to 700{degrees}C), heat exchanger tubing for advanced steam cycles and topping cycle systems (650 to 800{degrees}C), foil materials for recuperators, on advanced turbine systems (700 to 750{degrees}C), and tubesheets for barrier filters, liners for piping, cyclones, and blowback system tubing for hot-gas cleanup systems (850 to 1000{degrees}C). The materials being examined fall into several classes, depending on which of the advanced heat recovery concepts is of concern. These classes include martensitic steels for service to 650{degrees}C, lean stainless steels and modified 25Cr-30Ni steels for service to 700{degrees}C, modified 25Cr-20Ni steels for service to 900{degrees}C, and high Ni-Cr-Fe or Ni-Cr-Co-Fe alloys for service to 1000{degrees}C.

  12. Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project

    SciTech Connect (OSTI)

    Martin, F.D.; Kendall, R.P.; Whitney, E.M.

    1997-08-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

  13. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    SciTech Connect (OSTI)

    Bruno, Mike S.; Detwiler, Russell L.; Lao, Kang; Serajian, Vahid; Elkhoury, Jean; Diessl, Julia; White, Nicky

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advanced horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.

  14. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect (OSTI)

    Mark B. Murphy

    2001-10-31

    The Nash Draw Brushy Canyon Pool (NDP) in southeast New Mexico is one of the nine projects selected in 1995 by the U.S. Department of Energy (DOE) for participation in the Class III Reservoir Field Demonstration Program. The goals of the DOE cost-shared Class Program are to: (1) extend economic production, (2) increase ultimate recovery, and (3) broaden information exchange and technology application. Reservoirs in the Class III Program are focused on slope basin and deep-basin clastic depositional types. Production at the NDP is from the Brushy Canyon formation, a low-permeability turbidite reservoir in the Delaware Mountain Group of Permian, Guadalupian age. A major challenge in this marginal-quality reservoir is to distinguish oil-productive pay intervals from water-saturated non-pay intervals. Because initial reservoir pressure is only slightly above bubble-point pressure, rapid oil decline rates and high gas/oil ratios are typically observed in the first year of primary production. Limited surface access, caused by the proximity of underground potash mining and surface playa lakes, prohibits development with conventional drilling. Reservoir characterization results obtained to date at the NDP show that a proposed pilot injection area appears to be compartmentalized. Because reservoir discontinuities will reduce effectiveness of a pressure maintenance project, the pilot area will be reconsidered in a more continuous part of the reservoir if such areas have sufficient reservoir pressure. Most importantly, the advanced characterization results are being used to design extended reach/horizontal wells to tap into predicted ''sweet spots'' that are inaccessible with conventional vertical wells. The activity at the NDP during the past year has included the completion of the NDP Well No.36 deviated/horizontal well and the completion of additional zones in three wells, the design of the NDP No.33 directional/horizontal well, The planning and regulatory approval for the

  15. Assessment and development of an advanced heat pump for recovery of volatile organic compounds

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    This report documents Phase 1 of a project conducted by Mechanical Technology Incorporated (MTI) for the assessment and development of an advanced heat pump for recovery of VOC solvents from process gas streams. In Phase 1, MTI has evaluated solvent recovery applications within New York State (NYS), identified host sites willing to implement their application, and conducted a preliminary design of the equipment required. The design and applications were evaluated for technical and economic feasibility. The solvent recovery heat pump system concept resulting from the Phase 1 work is one of a mobile unit that would service multiple stationary adsorbers. A large percentage of solvent recovery applications within the state can be serviced by on-site carbon bed adsorbers that are desorbed at frequencies ranging from once per to once per month. In this way, many users can effectively share'' the substantial capital investment associated with the system's reverse Brayton hardware, providing it can be packaged as a mobile unit. In a typical operating scenario, a carbon adsorption module will be located permanently at the industrial site. The SLA will be ducted through the adsorber and the solvents removed, thus eliminating an air emission problem. Prior to VOC breakthrough, by schedule or by request, the mobile unit would arrive at the site to recover the concentrated solvent. An engine driven, natural gas fueled system, the mobile unit utilizes conditioned engine exhaust gases as the inert gas for desorption. Hot inert gas is directed through the carbon bed, heating it and volatilizing the adsorbed solvent. Using a revere Brayton-cycle refrigeration system to create low temperatures, the solvent vapors are condensed and collected from the inert gas stream. The solvent can then be recycled to the production process or sold for other uses and the adsorber returned to service.

  16. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    SciTech Connect (OSTI)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer

  17. Investigation of austenitic alloys for advanced heat recovery and hot-gas cleanup systems

    SciTech Connect (OSTI)

    Swindeman, R.W.

    1997-12-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, and modified alloy 800. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700 C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925 C with good weldability and ductility.

  18. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary Formations

    SciTech Connect (OSTI)

    Mike Bruno; Russell L. Detwiler; Kang Lao; Vahid Serajian; Jean Elkhoury; Julia Diessl; Nicky White

    2012-09-30

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. Terralog USA, in collaboration with the University of California, Irvine (UCI), are currently investigating advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. This two-year research project, funded by the US Department of Energy, includes combined efforts for: 1) Resource characterization; 2) Small and large scale laboratory investigations; 3) Numerical simulation at both the laboratory and field scale; and 4) Engineering feasibility studies and economic evaluations. The research project is currently in its early stages. This paper summarizes our technical approach and preliminary findings related to potential resources, small-scale laboratory simulation, and supporting numerical simulation efforts.

  19. EERE Success Story- Chrysler and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain

    Broader source: Energy.gov [DOE]

    Internal combustion engines have the potential to become substantially more efficient, with laboratory tests indicating that new technologies could increase passenger vehicle fuel economy by more...

  20. Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop

    SciTech Connect (OSTI)

    Donna Post Guillen

    2012-11-01

    This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

  1. Advanced Recovery and Integrated Extraction System (ARIES) Fiscal Year 1996 Annual Report

    SciTech Connect (OSTI)

    David Dennison; Pamela W. Massey; Timothy O. Nelson

    1998-10-01

    President Clinton issued Nonprolferation and Export Control Policy in September 1993 in response to the growing threat of nuclear proliferation. Four months later, in January 1994, President Clinton and Russia's President Yeltsin issued a Joint Statement Between the United States and Russia on Nonprollfieration of Weapons of Mass Destruction and the Means of Their Delivery. President Clinton announced on 1 March 1995, that approximately 200 metric tons of US- origin weapons-usable fissile materials had been declared surplus to US defense needs. The Advanced Recovery and Integrated Extraction System (ARIES) Demonstration Project is one part of the scientific response to President Clinton's promise to reduce the nuclear weapons stockpile. The work accomplished on the ARIES Demonstration Project during fiscal year 1996, 10ctober 1995 through 30 September 1996, is described in this report. The Department of Energy (DOE), by forming the Office of Fissile Materials Disposition (OFMD), has initiated a Fissile Materials Disposition Program. The first step is the disassembly and conversion of weapons pits. Of the 200 metric tons of US surplus fissile material, approximately 50 tons are weapons plutonium, and of these 50 tons, 2/3 is contained in pits. Weapons plutonium wili be extracted from pits, rendered to an unclassified form, and converted to oxide. The plutonium oxide will then be dispositioned either by immobilization in a ceramic matrix or blended with uranium oxide, fabricated into ceramic pellets of mixed oxide (MOX) fuel, and "burned" in a commercial light water reactor. The purpose of ARIES is to demonstrate two major activities: (1) dismantlement of nuclear weapons, and (2) conversion of weapons-grade plutonium into a form required for long-term storage or in preparation for the disposition (immobilization m MOX fuel) that allows for international inspection and verification, and in accordance with safeguards regimes. Plutonium does not have to be declassified

  2. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions.

  3. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, October 1--December 31, 1995

    SciTech Connect (OSTI)

    1996-01-22

    Objective is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery and to transfer this technology to oil and gas producers in the Permian Basin. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced management methods. Specific goals are (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced technologies to oil and gas producers in the Permian Basin and elswhere in the US oil and gas industry. This is the first quarterly progress report on the project; results to date are summarized.

  4. Recovery of Information from the Fast Flux Test Facility for the Advanced Fuel Cycle Initiative

    SciTech Connect (OSTI)

    Nielsen, Deborah L.; Makenas, Bruce J.; Wootan, David W.; Butner, R. Scott; Omberg, Ronald P.

    2009-09-30

    The Fast Flux Test Facility is the most recent Liquid Metal Reactor to operate in the United States. Information from the design, construction, and operation of this reactor was at risk as the facilities associated with the reactor are being shut down. The Advanced Fuel Cycle Initiative is a program managed by the Office of Nuclear Energy of the U.S. Department of Energy with a mission to develop new fuel cycle technologies to support both current and advanced reactors. Securing and preserving the knowledge gained from operation and testing in the Fast Flux Test Facility is an important part of the Knowledge Preservation activity in this program.

  5. Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams

    SciTech Connect (OSTI)

    Keiser, J. R.; Wang, D.; Bischoff, B.; Ciora,; Radhakrishnan, B.; Gorti, S. B.

    2013-01-14

    Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina

  6. Synchrophasor Technology Advancement in ARRA Projects: Final Report from the American Recovery and Reinvestment Act Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancement of Synchrophasor Technology in ARRA Projects │ ii ACKNOWLEDGMENTS This report was sponsored by the U.S. Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE) and prepared by the Oak Ridge National Laboratory (ORNL). The effort was directed and supported by DOE Senior Advisor Joseph Paladino and DOE Program Managers Philip N. Overholt and Deborah Haught. The authors of this report were Jose R. Gracia (ORNL), Marcus A. Young, II, Ph.D. (ORNL), D. Tom

  7. Watts nickel and rinse water recovery via an advanced reverse osmosis system

    SciTech Connect (OSTI)

    Schmidt, C.; White, I.E.; Ludwig, R.

    1993-08-01

    The report summarizes the results of an eight month test program conducted at the Hewlett Packard Printed Circuit Board Production Plant, Sunnyvale, CA (H.P.) to assess the effectiveness of an advanced reverse osmosis system (AROS). The AROS unit, manufactured by Water Technologies, Inc. (WTI) of Minneapolis, MN, incorporates membrane materials and system components designed to treat metal plating rinse water and produce two product streams; (1) a concentrated metal solution suitable for the plating bath, and (2) rinse water suitable for reuse as final rinse. Waste water discharge can be virtually eliminated and significant reductions realized in the need for new plating bath solution and rinse water.

  8. Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Gutierrez, Marte

    2013-12-31

    This research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to; Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation; Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator; Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understand of proppant flow and transport; Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production; and Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include; A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS; Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock; Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications; and Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.

  9. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman; James J. Justice

    2001-06-16

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  10. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman; James J. Justice

    2001-12-11

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  11. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman

    2003-01-17

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  12. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico. Annual report, September 25, 1995--September 24, 1996

    SciTech Connect (OSTI)

    Murphy, M.B.

    1997-08-01

    The basic driver for this project is the low recovery observed in Delaware reservoirs, such as the Nash Draw Pool (NDP). This low recovery is caused by low reservoir energy, less than optimum permeabilities and porosities, and inadequate reservoir characterization and reservoir management strategies which are typical of projects operated by independent producers. Rapid oil decline rates and high gas/oil ratios are typically observed in the first year of primary production. Based on the production characteristics that have been observed in similar Delaware fields, pressure maintenance is a likely requirement at the Nash Pool. Three basic constraints to producing the Nash Draw Brushy Canyon Reservoir are: (1) limited areal and interwell geologic knowledge, (2) lack of an engineering tool to evaluate the various producing strategies, and (3) limited surface access prohibiting development with conventional drilling. The limited surface access is caused by the proximity of underground potash mining and surface playa lakes. The objectives of this project are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers, especially in the Permian Basin.

  13. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect (OSTI)

    Morea, Michael F.

    1999-11-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  14. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of C02 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect (OSTI)

    Michael F. Morea.

    1998-04-23

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  15. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect (OSTI)

    Morea, Michael F.

    1999-11-08

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  16. Energy Economy

    U.S. Energy Information Administration (EIA) Indexed Site

    Adam Sieminski (202) 662-1624 April 2010 Energy and the Economy US EIA & JHU SAIS 2010 Energy Conference April 6, 2010 All prices are those current at the end of the previous trading session unless otherwise indicated. Prices are sourced from local exchanges via Reuters, Bloomberg and other vendors. Data is sourced from Deutsche Bank and subject companies. DISCLOSURES AND ANALYST CERTIFICATIONS ARE LOCATED IN APPENDIX 1. Adam Sieminski, CFA Chief Energy Economist adam.sieminski@db.com +1 202

  17. Advanced secondary recovery demonstration for the Sooner unit. Quarterly technical report, October 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    Sippel, M.A.; Cammon, T.J.

    1995-12-31

    The Sooner {open_quotes}D{close_quotes} Sand Unit is located about 100 miles northeast from Denver. The Cretaceous {open_quotes}D{close_quotes} Sand has good primary recovery but disappointing waterflood performance. The nearest ten waterflood projects in the area of the Sooner Unit produced only an average of 2 percent incremental oil from waterflooding after an average primary recovery of 16 percent OOIP. Poor waterflood recovery is attributed to reservoir heterogeneity, poor reservoir management practices and lack of infill drilling. Three-dimensional (3-D) seismic had not been used in the D-J Basin for exploration or development of {open_quotes}D{close_quotes} Sand reservoirs prior to this project.

  18. An evaluation of known remaining oil resources in the state of California. Volume 2, Project on Advanced Oil Recovery and the States

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As a part of this larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of California. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). Overall, well abandonments and more stringent environmental regulations could limit economic access to California`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technology, clearly point to a need for more aggressive transfer of currently available technologies to oil producers. Development and application of advanced oil recovery technologies could have even greater benefits to the state and the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, California oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, and energy security will benefit both the state of California and the nation as a whole.

  19. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales, Class III

    SciTech Connect (OSTI)

    Perri, Pasquale R.; Cooney, John; Fong, Bill; Julander, Dale; Marasigan, Aleks; Morea, Mike; Piceno, Deborah; Stone, Bill; Emanuele, Mark; Sheffield, Jon; Wells, Jeff; Westbrook, Bill; Karnes, Karl; Pearson, Matt; Heisler, Stuart

    2000-04-24

    The primary objective of this project was to conduct advanced reservoir characterization and modeling studies in the Antelope Shale of the Bureau Vista Hills Field. Work was subdivided into two phases or budget periods. The first phase of the project focused on a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work would then be used to evaluate how the reservoir would respond to enhanced oil recovery (EOR) processes such as of CO2 flooding. The second phase of the project would be to implement and evaluate a CO2 in the Buena Vista Hills Field. A successful project would demonstrate the economic viability and widespread applicability of CO2 flooding in siliceous shale reservoirs of the San Joaquin Valley.

  20. Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Act - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  1. Battleground Energy Recovery Project - Presentation by the Houston...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battleground Energy Recovery Project - Presentation by the Houston Advanced Research Center, June 2011 Battleground Energy Recovery Project - Presentation by the Houston Advanced ...

  2. An evaluation of known remaining oil resources in the state of California: Project on advanced oil recovery and the states. Volume 2

    SciTech Connect (OSTI)

    1993-11-01

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of California. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. Several major technical insights for state and Federal policymakers and regulators can be reached from this analysis. Overall, well abandonments and more stringent environmental regulations could limit economic access to the nation`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, California oil production could be maximized. The resulting increase and improvement in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit both the state of California and the nation as a whole.

  3. Fueling the Economy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fueling the Economy Argonne helps make the United States a front-runner in the production of materials for advanced lithium-ion batteries used in plug-in hybrid electric vehicles...

  4. Northeast States Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast States' Hydrogen Economy U.S. Department of Energy Fuel Cell Technologies Office December 1 st , 2015 Presenter: Joel Rinebold - Connecticut Center for Advanced Technology, Inc. DOE Host: Peter Devlin- DOE Fuel Cell Technologies Office Question and Answer * Please type your questions into the question box 2 Northeast States' Hydrogen Economy Economic Development, Environmental Performance, Energy Reliability Joel M. Rinebold Connecticut Center for Advanced Technology, Inc. December 1,

  5. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy ... Engineering and Materials for Automotive Thermoelectric Applications Electrical and ...

  6. Battleground Energy Recovery Project

    SciTech Connect (OSTI)

    Daniel Bullock

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ? Create a Showcase Waste Heat Recovery Demonstration Project.

  7. ASSESSING AND FORECASTING, BY PLAY, NATURAL GAS ULTIMATE RECOVERY GROWTH AND QUANTIFYING THE ROLE OF TECHNOLOGY ADVANCEMENTS IN THE TEXAS GULF COAST BASIN AND EAST TEXAS

    SciTech Connect (OSTI)

    William L. Fisher; Eugene M. Kim

    2000-12-01

    A detailed natural gas ultimate recovery growth (URG) analysis of the Texas Gulf Coast Basin and East Texas has been undertaken. The key to such analysis was determined to be the disaggregation of the resource base to the play level. A play is defined as a conceptual geologic unit having one or more reservoirs that can be genetically related on the basis of depositional origin of the reservoir, structural or trap style, source rocks and hydrocarbon generation, migration mechanism, seals for entrapment, and type of hydrocarbon produced. Plays are the geologically homogeneous subdivision of the universe of petroleum pools within a basin. Therefore, individual plays have unique geological features that can be used as a conceptual model that incorporates geologic processes and depositional environments to explain the distribution of petroleum. Play disaggregation revealed important URG trends for the major natural gas fields in the Texas Gulf Coast Basin and East Texas. Although significant growth and future potential were observed for the major fields, important URG trends were masked by total, aggregated analysis based on a broad geological province. When disaggregated by plays, significant growth and future potential were displayed for plays that were associated with relatively recently discovered fields, deeper reservoir depths, high structural complexities due to fault compartmentalization, reservoirs designated as tight gas/low-permeability, and high initial reservoir pressures. Continued technology applications and advancements are crucial in achieving URG potential in these plays.

  8. Biomass Program Recovery Act Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    The Biomass Program has awarded about $718 million in American Recovery and Reinvestment Act (Recovery Act) funds. The projects the Program is supporting are intended to: Accelerate advanced biofuels research, development, and demonstration; Speed the deployment and commercialization of advanced biofuels and bioproducts; Further the U.S. bioindustry through market transformation and creating or saving a range of jobs.

  9. Decision Point 2 of Statement of Project Objectives (SOPO) “Recovery Act: Development of ITM Oxygen Technology for Integration with Advanced Industrial Systems”

    SciTech Connect (OSTI)

    Armstrong, Phillip

    2011-08-01

    Air Products is carrying out a scope of work under Phase 5 of the ITM Oxygen Cooperative Agreement to design, build, and operate a ceramic membrane fabrication facility (the “CerFab”) to enable production of membrane modules to supply a conceptual 2000 ton per day (TPD) ITM Oxygen facility (the “ITM Oxygen Development Facility”), and to perform supporting development tasks in materials development an engineering development toward industrial, carbon capture and sequestration applications. Air Products is executing this project under the American Recovery and Reinvestment Act (ARRA) with the objective to accelerate the adoption of ITM Oxygen technology to help meet the country’s goals for deploying clean power plants. The objective of this Topical Report is to address the requirements of Decision Point 2, which pertains to progress in Materials Development, Engineering Development, and construction of the CerFab, with an emphasis on establishing the environmental permitting required prior to the next Decision Point. In the area of Materials Development, Air Products has specified a high pressure dilatometer system which will enable measurements of material expansion of ITM ceramic compounds at very high oxygen partial pressures consistent with CCS applications. Also in this area, Ceramatec has made significant progress in developing Advanced Architecture wafers and modules by advancing in parallel with two production methods of the Advanced Architecture components and determining the appropriate equipment required to make these components at high volume in the CerFab. Work in this area continues to refine the CerFab requirements. Under Engineering Development, Air Products has developed various concepts around use of ITM in industrial applications to reduce carbon footprint though process integrations that result in less fuel requirement. Air Products also developed notions around hybrid cryogenic air separation plants with ITM Oxygen plants for scale

  10. Decision Point 3 of Statement of Project Objectives (SOPO) “Recovery Act: Development of ITM Oxygen Technology for Integration with Advanced Industrial Systems”

    SciTech Connect (OSTI)

    Armstrong, Phillip

    2012-03-01

    Air Products is carrying out a scope of work under Phase 5 of the ITM Oxygen Cooperative Agreement to design, build, and operate a ceramic membrane fabrication facility (the -CerFabII) to enable production of membrane modules to supply a conceptual 2000 ton per day (TPD) ITM Oxygen facility (the -ITM Oxygen Development FacilityII), and to perform supporting development tasks in materials development and engineering development toward industrial, carbon capture and sequestration applications. Air Products is executing this project under the American Recovery and Reinvestment Act (ARRA) with the objective to accelerate the adoption of ITM Oxygen technology to help meet the country’s goals for deploying clean power plants. The objective of this Topical Report is to address the requirements of Decision Point 3 (DP3), which pertains to the status of all Tasks within Phase 5 and most notably the project status of the CerFab (Task 30) prior to authorization of funds for equipment purchase and construction of the facility. The intent of the DP3 is to provide the opportunity for DOE-NETL to review the status of these tasks and to make recommendations on forward project direction, including a recommendation to pass into Budget Period 8. In the area of Materials Development, Air Products has specified a high pressure dilatometer system which will enable measurements of material expansion of ITM ceramic compounds at very high oxygen partial pressures consistent with CCS applications. Under Task 28.2, subcontractor Ceramatec has made significant progress since DP2 in materials selection and process development and improvement for advanced architecture module fabrication. Ceramatec has determined a materials specification, and has selected a process for making the material. Ceramatec has further developed and selected the process for applying the membrane to unsintered advanced architecture wafers with a Two Step process. Ceramatec has built submodules meeting leak rate

  11. Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety

    SciTech Connect (OSTI)

    Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

    2007-06-11

    The public, automakers, and policymakers have long worried about trade-offs between increased fuel economy in motor vehicles and reduced safety. The conclusion of a broad group of experts on safety and fuel economy in the auto sector is that no trade-off is required. There are a wide variety of technologies and approaches available to advance vehicle fuel economy that have no effect on vehicle safety. Conversely, there are many technologies and approaches available to advance vehicle safety that are not detrimental to vehicle fuel economy. Congress is considering new policies to increase the fuel economy of new automobiles in order to reduce oil dependence and reduce greenhouse gas emissions. The findings reported here offer reassurance on an important dimension of that work: It is possible to significantly increase the fuel economy of motor vehicles without compromising their safety. Automobiles on the road today demonstrate that higher fuel economy and greater safety can co-exist. Some of the safest vehicles have higher fuel economy, while some of the least safe vehicles driven today--heavy, large trucks and SUVs--have the lowest fuel economy. At an October 3, 2006 workshop, leading researchers from national laboratories, academia, auto manufacturers, insurance research industry, consumer and environmental groups, material supply industries, and the federal government agreed that vehicles could be designed to simultaneously improve safety and fuel economy. The real question is not whether we can realize this goal, but the best path to get there. The experts' studies reveal important new conclusions about fuel economy and safety, including: (1) Vehicle fuel economy can be increased without affecting safety, and vice versa; (2) Reducing the weight and height of the heaviest SUVs and pickup trucks will simultaneously increase both their fuel economy and overall safety; and (3) Advanced materials can decouple size from mass, creating important new possibilities for

  12. The Booming App Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is tapping into the App Economy -- offering cash prizes to the developers of the best energy-focused applications.

  13. NREL: Transportation Research - Emissions and Fuel Economy Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emissions and Fuel Economy Analysis Photo of a man hooking up test instruments to an engine mounted on an engine dynamometer. An NREL engineer maintains an engine fuel economy and emissions test stand at the ReFUEL Laboratory. Photo by Dennis Schroeder, NREL NREL's emissions and fuel economy testing and analysis projects help address greenhouse gas and pollutant emissions by advancing the development of new fuels and engines that deliver both high efficiency and reduced emissions. Emissions that

  14. Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The US | Department of Energy Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged SIDI is the most promising advanced gasoline technology; combines existing & proven technologies in a synergistic manner, offers double digit fuel economy benefits, much lower cost than diesel or hybrid. deer09_whitaker.pdf (488.25 KB) More Documents & Publications E85 Optimized

  15. The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks

    SciTech Connect (OSTI)

    Gao, Zhiming; Smith, David E.; Daw, C. Stuart; Edwards, Kevin Dean; Kaul, Brian C.; Domingo, Norberto; Parks, II, James E.; Jones, Perry T.

    2015-12-01

    We present fuel savings estimates resulting from the combined implementation of multiple advanced energy management technologies in both conventional and parallel hybrid class 8 diesel trucks. The energy management technologies considered here have been specifically targeted by the 21st Century Truck Partnership (21 CTP) between the U.S. Department of Energy and U.S. industry and include advanced combustion engines, waste heat recovery, and reductions in auxiliary loads, rolling resistance, aerodynamic drag, and gross vehicle weight. Furthermore, we estimated that combined use of all these technologies in hybrid trucks has the potential to improve fuel economy by more than 60% compared to current conventional trucks, but this requires careful system integration to avoid non-optimal interactions. Major factors to be considered in system integration are discussed.

  16. The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Zhiming; Smith, David E.; Daw, C. Stuart; Edwards, Kevin Dean; Kaul, Brian C.; Domingo, Norberto; Parks, II, James E.; Jones, Perry T.

    2015-12-01

    We present fuel savings estimates resulting from the combined implementation of multiple advanced energy management technologies in both conventional and parallel hybrid class 8 diesel trucks. The energy management technologies considered here have been specifically targeted by the 21st Century Truck Partnership (21 CTP) between the U.S. Department of Energy and U.S. industry and include advanced combustion engines, waste heat recovery, and reductions in auxiliary loads, rolling resistance, aerodynamic drag, and gross vehicle weight. Furthermore, we estimated that combined use of all these technologies in hybrid trucks has the potential to improve fuel economy by more than 60% compared tomore » current conventional trucks, but this requires careful system integration to avoid non-optimal interactions. Major factors to be considered in system integration are discussed.« less

  17. Advanced Aerodynamic Technologies for Improving Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Such non-engine losses can account for about a 45% decrease in efficiency. The need for technologies to reduce these parasitic losses has gained significant attention as fuel costs ...

  18. Property:AdvancedEconomy | Open Energy Information

    Open Energy Info (EERE)

    false + Albania + false + Algeria + false + American Samoa + false + Andorra + false + Angola + false + Anguilla + false + Antigua and Barbuda + false + Argentina + false + Armenia...

  19. American Recovery and Reinvestment Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act President Obama signed the American Recovery and Reinvestment Act of 2009 (Recovery Act) into law on February 17, 2009. The Recovery Act provided DOE several billion dollars in funds to accelerate research, development, demonstration, and deployment activities that support jumpstarting our economy, promoting green jobs, and focusing on addressing long-neglected challenges so our country can thrive in the twenty-first

  20. Fuel economy and emissions reduction of HD hybrid truck over...

    Broader source: Energy.gov (indexed) [DOE]

    Compares simulated fuel economy and emissions fro conventional and hybrid Class 8 heavy trucks p-12gao.pdf (345.05 KB) More Documents & Publications Advanced HD Engine Systems and ...

  1. Predicting Individual Fuel Economy

    SciTech Connect (OSTI)

    Lin, Zhenhong; Greene, David L

    2011-01-01

    To make informed decisions about travel and vehicle purchase, consumers need unbiased and accurate information of the fuel economy they will actually obtain. In the past, the EPA fuel economy estimates based on its 1984 rules have been widely criticized for overestimating on-road fuel economy. In 2008, EPA adopted a new estimation rule. This study compares the usefulness of the EPA's 1984 and 2008 estimates based on their prediction bias and accuracy and attempts to improve the prediction of on-road fuel economies based on consumer and vehicle attributes. We examine the usefulness of the EPA fuel economy estimates using a large sample of self-reported on-road fuel economy data and develop an Individualized Model for more accurately predicting an individual driver's on-road fuel economy based on easily determined vehicle and driver attributes. Accuracy rather than bias appears to have limited the usefulness of the EPA 1984 estimates in predicting on-road MPG. The EPA 2008 estimates appear to be equally inaccurate and substantially more biased relative to the self-reported data. Furthermore, the 2008 estimates exhibit an underestimation bias that increases with increasing fuel economy, suggesting that the new numbers will tend to underestimate the real-world benefits of fuel economy and emissions standards. By including several simple driver and vehicle attributes, the Individualized Model reduces the unexplained variance by over 55% and the standard error by 33% based on an independent test sample. The additional explanatory variables can be easily provided by the individuals.

  2. The First Recovery Act Funded Waste Shipment depart from the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The First Recovery Act Funded Waste Shipment departs from the Advanced Mixed Waste Treatment Facility A shipment of mixed low-level waste left DOEs Advanced Mixed Waste ...

  3. Application of reservoir characterization and advanced technologies to improve recovery and economics in a lower quality shallow shelf Sand Andreas Reservoir: Quarterly technical report, January 1, 1997--March 31, 1997

    SciTech Connect (OSTI)

    Taylor, A.R., Hickman, T.S., Justice, J.J.

    1997-04-30

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: l.Advanced petrophysics 1547 2.Three-dimensional (3-D) seismic 3.Cross-well bore tomography 4.Advanced reservoir simulation 5.Carbon dioxide (CO{sub 2}) stimulation treatments 6.Hydraulic fracturing design and monitoring 7. Mobility control agents SUMMARY OF TECHNICAL PROGRESS West Welch Unit is one of four large waterflood units in the Welch Field in the northwestern portion of Dawson County, Texas. The Welch Field was discovered in the early 1940`s and produces oil under a solution gas drive mechanism from the San Andres formation at approximately 4800 ft. The field has been under waterflood for 30 years and a significant portion has been infill-drilled on 20-ac density. A 1982- 86 Pilot C0{sub 2} injection project in the offsetting South Welch Unit yielded positive results. Recent installation of a C0{sub 2} pipeline near the field allowed the phased development of a miscible CO injection project at the South Welch Unit.

  4. Vice President Biden Releases Report on Recovery Act Impact on Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Releases Report on Recovery Act Impact on Innovation Vice President Biden Releases Report on Recovery Act Impact on Innovation August 24, 2010 - 12:00am Addthis WASHINGTON - Vice President Joe Biden today unveiled a new report, "The Recovery Act: Transforming the American Economy through Innovation," which finds that the Recovery Act's $100 billion investment in innovation is not only transforming the economy and creating new jobs, but helping accelerate

  5. emergency recovery

    National Nuclear Security Administration (NNSA)

    basis.

    Recovery includes the evaluation of the incident to identify lessons learned and development of initiatives to mitigate the effects of future...

  6. Video: Recovery Act by the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Video: Recovery Act by the Numbers Video: Recovery Act by the Numbers February 17, 2016 - 11:30am Addthis Watch this video to learn how the Recovery Act helped jumpstart America's clean energy economy. | Video by Simon Edelman and graphics by Carly Wilkins, Energy Department. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs Simon Edelman Simon Edelman Chief Creative Officer Carly Wilkins Carly Wilkins Multimedia Designer MORE ON THE RECOVERY ACT MAP: Learn about the

  7. Development of Thermoelectric Technology for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement. deer08_gundlach.pdf (1 MB) More Documents & Publications Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry Develop Thermoelectric

  8. EM Recovery Act Top Line Messages | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top Line Messages EM Recovery Act Top Line Messages The latest Recovery Act performance related information and metrics. EM Recovery Act Top Line Messages - April, 2013 (1.96 MB) More Documents & Publications Workers at Hanford Site Achieve Recovery Act Legacy Cleanup Goals Ahead of Schedule Audit Report: IG-0426 Testimony of Mark Whitney Principal Deputy Assistant Secretary for Environmental Management Before the Subcommittee on Environment and the Economy House Energy and Commerce

  9. Advanced Research Projects Agency - Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    recovery act Advanced Research Projects Agency - Energy More Documents & Publications Advanced Research Projects Agency -EnergyDepartment A presentation by the Advanced Research...

  10. Successes of the Recovery Act - January 2012 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    investments and tax incentives to lay the foundation for the clean energy economy of the future. These Recovery Act investments are putting Americans back to work making our homes ...

  11. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir, Class II

    SciTech Connect (OSTI)

    Hickman, T. Scott; Justice, James J.; Egg, Rebecca

    2001-08-07

    The Oxy operated Class 2 Project at West Welch Project is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO2 injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir demonstration characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO2 flood design based on the reservoir characterization.

  12. Energy Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Energy Economy The clean energy economy continues to grow, creating new job opportunities for tens of thousands of Americans along the way. <a href="/node/385315">Learn more</a> about the growth of America's clean energy economy. | Infographic by Sarah Gerrity, Energy Department. The clean energy economy continues to grow, creating new job opportunities for tens of thousands of Americans along the way. Learn more about the growth of America's clean energy economy. |

  13. Recovery Act Energy Jobs Bring New Era of Opportunity

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hundreds of thousands of people found work in the past few years thanks to Recovery Act and Energy Department programs designed to stimulate the economy while creating new power sources, conserving resources and aligning the nation to once again lead the global energy economy.

  14. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect (OSTI)

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  15. Exhaust Gas Energy Recovery Technology Applications

    SciTech Connect (OSTI)

    Wagner, Robert M; Szybist, James P

    2014-01-01

    Exhaust waste heat recovery systems have the potential to significantly improve vehicle fuel economy for conventional and hybrid electric powertrains spanning passenger to heavy truck applications. This chapter discusses thermodynamic considerations and three classes of energy recovery technologies which are under development for vehicle applications. More specifically, this chapter describes the state-of-the-art in exhaust WHR as well as challenges and opportunities for thermodynamic power cycles, thermoelectric devices, and turbo-compounding systems.

  16. Clean Economy Network Foundation | Open Energy Information

    Open Energy Info (EERE)

    Clean Economy Network Foundation Jump to: navigation, search Logo: Clean Economy Network Foundation Name: Clean Economy Network Foundation Address: 1301 Pennsylvania Ave NW, Suite...

  17. IMPROVED OIL RECOVERY FROM UPPER JURASSIC SMACKOVER CARBONATES THROUGH THE APPLICATION OF ADVANCED TECHNOLOGIES AT WOMACK HILL OIL FIELD, CHOCTAW AND CLARKE COUNTIES, EASTERN GULF COASTAL PLAIN

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-05-20

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates are undertaking a focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling and an integrated field demonstration project at Womack Hill Oil Field Unit, Choctaw and Clarke Counties, Alabama, Eastern Gulf Coastal Plain. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The principal research efforts for Year 3 of the project have been recovery technology analysis and recovery technology evaluation. The research focus has primarily been on well test analysis, 3-D reservoir simulation, microbial core experiments, and the decision to acquire new seismic data for the Womack Hill Field area. Although Geoscientific Reservoir Characterization and 3-D Geologic Modeling have been completed and Petrophysical and Engineering Characterization and Microbial Characterization are essentially on schedule, a no-cost extension until September 30, 2003, has been granted by DOE so that new seismic data for the Womack Hill Field can be acquired and interpreted to assist in the determination as to whether Phase II of the project should be implemented.

  18. EERE Success Story-FCA and Partners Achieve 25% Fuel Economy Improvement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Light-Duty Advanced Technology Powertrain | Department of Energy FCA and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain EERE Success Story-FCA and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain March 7, 2016 - 10:57am Addthis EERE Success Story—FCA and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain EERE Success Story—FCA and Partners Achieve 25%

  19. Recovery from chemical, biological, and radiological incidents :

    SciTech Connect (OSTI)

    Franco, David Oliver; Yang, Lynn I.; Hammer, Ann E.

    2012-06-01

    To restore regional lifeline services and economic activity as quickly as possible after a chemical, biological or radiological incident, emergency planners and managers will need to prioritize critical infrastructure across many sectors for restoration. In parallel, state and local governments will need to identify and implement measures to promote reoccupation and economy recovery in the region. This document provides guidance on predisaster planning for two of the National Disaster Recovery Framework Recovery Support Functions: Infrastructure Systems and Economic Recovery. It identifies key considerations for infrastructure restoration, outlines a process for prioritizing critical infrastructure for restoration, and identifies critical considerations for promoting regional economic recovery following a widearea disaster. Its goal is to equip members of the emergency preparedness community to systematically prioritize critical infrastructure for restoration, and to develop effective economic recovery plans in preparation for a widearea CBR disaster.

  20. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO{sub 2} Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect (OSTI)

    Michael F. Morea

    1997-03-14

    The Buena Vista Hills field is located about 25 miles southwest of Bakersfield, in Kern County, California, about two miles north of the city of Taft, and five miles south of the Elk Hills field. The Antelope Shale zone was discovered at the Buena Vista Hills field in 1952, and has since been under primary production. Little research was done to improve the completion techniques during the development phase in the 1950s, so most of the wells are completed with about 1000 ft of slotted liner. The proposed pilot consists of four existing producers on 20 acre spacing with a new 10 acre infill well drilled as the pilot CO{sub 2} injector. Most of the reservoir characterization of the first phase of the project will be performed using data collected in the pilot pattern wells. This is the first annual report of the project. It covers the period February 12, 1996 to February 11, 1997. During this period the Chevron Murvale 653Z-26B well was drilled in Section 26-T31S/R23E in the Buena Vista Hills field, Kern County, California. The Monterey Formation equivalent Brown and Antelope Shales were continuously cored, the zone was logged with several different kinds of wireline logs, and the well was cased to a total depth of 4907 ft. Core recovery was 99.5%. Core analyses that have been performed include Dean Stark porosity, permeability and fluid saturations, field wettability, anelastic strain recovery, spectral core gamma, profile permeametry, and photographic imaging. Wireline log analysis includes mineral-based error minimization (ELAN), NMR T2 processing, and dipole shear wave anisotropy. A shear wave vertical seismic profile was acquired after casing was set and processing is nearly complete.

  1. Developing a Regional Recovery Framework

    SciTech Connect (OSTI)

    Lesperance, Ann M.; Olson, Jarrod; Stein, Steven L.; Clark, Rebecca; Kelly, Heather; Sheline, Jim; Tietje, Grant; Williamson, Mark; Woodcock, Jody

    2011-09-01

    Abstract A biological attack would present an unprecedented challenge for local, state, and federal agencies; the military; the private sector; and individuals on many fronts ranging from vaccination and treatment to prioritization of cleanup actions to waste disposal. To prepare the Seattle region to recover from a biological attack, the Seattle Urban Area Security Initiative (UASI) partners collaborated with military and federal agencies to develop a Regional Recovery Framework for a Biological Attack in the Seattle Urban Area. The goal was to reduce the time and resources required to recover and restore wide urban areas, military installations, and other critical infrastructure following a biological incident by providing a coordinated systems approach. Based on discussions in small workshops, tabletop exercises, and interviews with emergency response agency staff, the partners identified concepts of operation for various areas to address critical issues the region will face as recovery progresses. Key to this recovery is the recovery of the economy. Although the Framework is specific to a catastrophic, wide-area biological attack using anthrax, it was designed to be flexible and scalable so it could also serve as the recovery framework for an all-hazards approach. The Framework also served to coalesce policy questions that must be addressed for long-term recovery. These questions cover such areas as safety and health, security, financial management, waste management, legal issues, and economic development.

  2. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-12-31

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance

  3. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Costal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2006-05-31

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance

  4. Advanced research and technology, direct utilization: recovery of minerals from coal fly ash. Fossil energy program. Technical progress report, 1 October 1980-31 December 1980

    SciTech Connect (OSTI)

    Burnet, G.; Weiss, S.J.; Murtha, M.J.

    1981-02-01

    The purpose of this research is to develop methods to process fly ash for the separation and use of an iron-rich fraction, for the recovery of metals, primarily Al and Ti, and for use of the process residues. Research during this report period of the HiChlor process for the extraction of alumina and titania by high-temperature chlorination of a fly ash-reductant mixture included investigation of the simulation of the reactions as a design tool, the assembly of a unit to measure reaction kinetic rates and particle specific surface areas and porosities, and the design of equipment to measure necessary chloride product separation data. A pretreatment chlorination reaction using CO and Cl/sub 2/ was found to be capable of removing 80% of the iron with only minimal alumina and silica reaction. Development of the lime-soda sinter process includes the collection of data on the phenomenon of auto-disintegration of lime-fly ash sinters. Results indicate that it is the presence of minor constituents having +5 pr +6 valence cations of a size that can enter the lattice of the calcium silicate which prevent sinter auto-disintegration.

  5. The Methanol Economy Project

    SciTech Connect (OSTI)

    Olah, George; Prakash, G. K.

    2014-02-01

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO2 capture using supported amines, co-electrolysis of CO2 and water to formate and syngas, decomposition of formate to CO2 and H2, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields.

  6. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    Tom Beebe

    2003-05-05

    The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the seventh annual reporting period (8/3/00-8/2/01) covered by this report, work continued on interpretation of the interwell seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted and the acquired data processed and interpretation started. Only limited well work and facility construction were conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and six wells had experienced gas (CO{sub 2}) breakthrough.

  7. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman; James J. Justice

    2002-01-09

    The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the fifth and sixth annual reporting periods (8/3/98-8/2/00) covered by this report, work continued on interpretation of the cross well seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted, the acquired data processed and interpretation started. Only limited well work and facility construction was conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and ten wells had experienced gas (CO{sub 2}) breakthrough.

  8. Supporting a Hawaii Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporting a Hawaii Hydrogen Economy Pete Devlin U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov Supporting a Hawaii Hydrogen Economy Mitch Ewan Hawaii Natural Energy Institute University of Hawaii at Manoa 29 July 2014 CHALLENGES Hawaii is Most Petroleum-Dependent State in US Highest/Most Volatile Electricity Rates in US Import 90% of Energy $11Billion leaves Hawaii economy* * Based

  9. Fuel economy and emissions reduction of HD hybrid truck over transient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    driving cycles and interstate roads | Department of Energy economy and emissions reduction of HD hybrid truck over transient driving cycles and interstate roads Fuel economy and emissions reduction of HD hybrid truck over transient driving cycles and interstate roads Compares simulated fuel economy and emissions fro conventional and hybrid Class 8 heavy trucks p-12_gao.pdf (345.05 KB) More Documents & Publications Advanced HD Engine Systems and Emissions Control Modeling and Analysis

  10. Evaluating Energy Efficiency Policies with Energy-Economy Models

    SciTech Connect (OSTI)

    Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

    2010-08-01

    The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

  11. International Partnerships for the Hydrogen Economy Fact Sheet | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy The U.S. has committed $1.7 billion to implement collaborative and cooperative efforts to advance research, development and deployment of hydrogen production, storage, transport and distribution, fuel cell technologies, common codes and standards for hydrogen fuel utilization, and coordination of international efforts to develop a global hydrogen economy.

  12. Advanced Materials and Devices for Stationary Electrical Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials and Devices for Stationary Electrical Energy Storage Applications Advanced Materials ... the U.S. economy, and electrical energy storage is an integral element in this system. ...

  13. Special Report "The American Recovery and Reinvestment Act and the Department of Energy"

    SciTech Connect (OSTI)

    2009-03-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) was signed into law on February 17, 2009, as a way to jumpstart the U.S. economy, create or save millions of jobs, spur technological advances in science and health, and invest in the Nation's energy future. This national effort will require an unprecedented level of transparency and accountability to ensure that U.S. citizens know where their tax dollars are going and how they are being spent. As part of the Recovery Act, the Department of Energy will receive more than $38 billion to support a number of science, energy, and environmental initiatives. Additionally, the Department's authority to make or guarantee energy-related loans has increased to about $127 billion. The Department plans to disburse the vast majority of the funds it receives through grants, cooperative agreements, contracts, and other financial instruments. The supplemental funding provided to the Department of Energy under the Recovery Act dwarfs the Department's annual budget of about $27 billion. The infusion of these funds and the corresponding increase in effort required to ensure that they are properly controlled and disbursed in a timely manner will, without doubt, strain existing resources. It will also have an equally challenging impact on the inherent risks associated with operating the Department's sizable portfolio of missions and activities and, this is complicated by the fact that, in many respects, the Recovery Act requirements represent a fundamental transformation of the Department's mission. If these challenges are to be met successfully, all levels of the Department's structure and its many constituents, including the existing contractor community; the national laboratory system; state and local governments; community action groups and literally thousands of other contract, grant, loan and cooperative agreement recipients throughout the Nation will have to strengthen existing or design new controls to safeguard

  14. Economy Through Product Diversity: Integrated Biorefineries ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Through Product Diversity: Integrated Biorefineries Economy Through Product Diversity: Integrated Biorefineries Achieving national energy and climate goals will require an...

  15. Green Economy Toolbox | Open Energy Information

    Open Energy Info (EERE)

    Economy Toolbox Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Green Economy Toolbox AgencyCompany Organization: United Nations Economic Commission for Europe Sector:...

  16. Where's the Hydrogen Economy? | Open Energy Information

    Open Energy Info (EERE)

    Where's the Hydrogen Economy? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Where's the Hydrogen Economy? AgencyCompany Organization: Canada Library of Parliament...

  17. Fuel Economy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Fuel Economy Ltd. Place: United Kingdom Product: Fuel Economy Ltd is perhaps better known by their core product 'Savastat', the highly...

  18. Economic Impact of Recovery Act Investments in the Smart Grid Report (April

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013) | Department of Energy Impact of Recovery Act Investments in the Smart Grid Report (April 2013) Economic Impact of Recovery Act Investments in the Smart Grid Report (April 2013) The Economic Impact of Recovery Act Investments in the Smart Grid report analyzes the economy-wide impacts of the Recovery Act funding for smart grid project deployment in the United States, administered by Office of Electricity Delivery and Energy Reliability. Key findings include: ARRA funding and matching

  19. Webinar: Northeast States’ Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar titled "Northeast States’ Hydrogen Economy" on Tuesday, December 1, from 12:00 to 1:00 p.m. Eastern Standard Time (EST).

  20. Vehicle Technologies Office: 2008 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles Advanced Soft Switching Inverter for Reducing Switching and Power Losses

  1. Exhaust Energy Recovery

    Broader source: Energy.gov [DOE]

    Application of organic Rankine cycle to achieve 10% fuel economy improvement in heavy-duty diesel engine

  2. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO2 enhanced oil recovery in California`s Monterey Formation siliceous shales. Annual report, February 7, 1997--February 6, 1998

    SciTech Connect (OSTI)

    Morea, M.F.

    1998-06-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the antelope Shale in Buena Vista Hills Field. The proposed pilot consists of four existing producers on 20 acre spacing with a new 10 acre infill well drilled as the pilot CO{sub 2} injector. Most of the reservoir characterization during Phase 1 of the project will be performed using data collected in the pilot pattern wells. During this period the following tasks have been completed: laboratory wettability; specific permeability; mercury porosimetry; acoustic anisotropy; rock mechanics analysis; core description; fracture analysis; digital image analysis; mineralogical analysis; hydraulic flow unit analysis; petrographic and confocal thin section analysis; oil geochemical fingerprinting; production logging; carbon/oxygen logging; complex lithologic log analysis; NMR T2 processing; dipole shear wave anisotropy logging; shear wave vertical seismic profile processing; structural mapping; and regional tectonic synthesis. Noteworthy technological successes for this reporting period include: (1) first (ever) high resolution, crosswell reflection images of SJV sediments; (2) first successful application of the TomoSeis acquisition system in siliceous shales; (3) first detailed reservoir characterization of SJV siliceous shales; (4) first mineral based saturation algorithm for SJV siliceous shales, and (5) first CO{sub 2} coreflood experiments for siliceous shale. Preliminary results from the CO{sub 2} coreflood experiments (2,500 psi) suggest that significant oil is being produced from the siliceous shale.

  3. American Recovery and Reinvestment Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act The Geothermal Technologies Office received $368.2 million through the American Recovery and Reinvestment Act (ARRA) of 2009. We awarded funding for projects based on their potential to advance geothermal technology, to lower costs and barriers to market entry, and to foster economic growth by creating jobs. The 148 awards spanned 38 states and the District of Columbia. The advancements made by these projects will

  4. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recovery Act More Documents & Publications Overview of Recovery Act FAR Clauses Map Data: Recovery Act Funding DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage

  5. Recovery Act: Enhancing State Energy Assurance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhancing State Energy Assurance Recovery Act: Enhancing State Energy Assurance States are using these funds to plan for energy supply disruption risks and vulnerabilities to lessen the devastating impact that such incidents can have on the economy and the health and safety of the public. Each state is required to track energy emergencies to assess the restoration and recovery times of any supply disruptions; to train appropriate personnel on energy infrastructure and supply systems; and conduct

  6. Office of Electricity Delivery and Energy Reliability Recovery Program Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Electricity Delivery and Energy Reliability Recovery Program Plan Office of Electricity Delivery and Energy Reliability Recovery Program Plan Microsoft Word - OE PSRP June 5 2009 _OE_ Final.doc (105.88 KB) More Documents & Publications Microsoft Word - PSRP Updates 6-25-10_v2 Update to the 2008 EAC Report: "Smart Grid: Enabler of the New Energy Economy Report Recommendations" EAC Presentation: How DOE is Organized to Provide Leadership on Electricity

  7. Vehicle Technologies Office: Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficiency & Emissions » Vehicle Technologies Office: Waste Heat Recovery Vehicle Technologies Office: Waste Heat Recovery Along with high efficiency engine technologies and emission control, the Vehicle Technologies Office (VTO) is supporting research and development to increase vehicle fuel economy by recovering energy from engine waste heat. In current gasoline vehicles, only about 25 percent of the fuel's energy is used to drive the wheels; in contrast, more than 70 percent is lost

  8. Model Year 2012 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2011-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  9. Model Year 2013 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2012-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  10. Model Year 2011 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2010-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  11. Waste Heat Recovery

    Office of Environmental Management (EM)

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  12. Energy Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Energy Economy May 6, 2016 <div class="field field-name-field-map-byline field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item odd">This GIF shows how CO2 emissions vary across the United States. Each bar represents a 50x50 kilometer grid. Bar height is proportional to total CO2 emissions and bar color represents the type of CO2 emissions. Red bars represent proportionately more CO2 emissions from

  13. Advanced Combustion Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Advanced Battery Manufacturing Making Strides in Oregon Advanced Battery Manufacturing Making Strides in Oregon February 16, 2012 - 12:09pm Addthis EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program What are the key facts? Through the Recovery Act, the Department has

  14. Energy By The Numbers: Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Energy By The Numbers: Recovery Act Addthis America is now a world leader in clean energy. But how did we get there? One key reason is the Recovery Act of 2009, a historic investment to revitalize the economy during the worst financial crisis since the Great Depression. This investment created millions of jobs -- including thousands of clean energy jobs in sectors that never even existed before. For example, in 2009 there was not a single utility-scale photovoltaic solar farm in the

  15. Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines

    Broader source: Energy.gov [DOE]

    Multi-mode RCCI (Reactivity-Controlled Compression Ignition), a promising advanced combustion process, has the potential to improve fuel economy of passenger cars by at least 15%, according to a...

  16. Model Year 2015 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2014-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  17. Model Year 2014 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2013-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  18. Model Year 2016 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2015-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  19. Model Year 2007 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2007-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  20. Model Year 2010 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2009-10-14

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  1. Model Year 2009 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2008-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  2. Model Year 2005 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2004-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  3. Model Year 2008 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2007-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  4. Model Year 2006 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2005-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  5. Fuel Economy Valentines | Department of Energy

    Energy Savers [EERE]

    Valentines Fuel Economy Valentines February 14, 2012 - 10:05am Addthis Amanda McAlpin ... Anytime spent on the road can be a great time to track your vehicle's fuel economy, and ...

  6. DOE Announces Webinars on H-Prize Safety Guidelines, Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources, and More | Department of Energy H-Prize Safety Guidelines, Fuel Economy Resources, and More DOE Announces Webinars on H-Prize Safety Guidelines, Fuel Economy Resources, and More August 6, 2015 - 8:30am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch

  7. Small Businesses Helping Drive Economy: Clean Energy, Clean Sites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Businesses Helping Drive Economy: Clean Energy, Clean Sites Small Businesses Helping Drive Economy: Clean Energy, Clean Sites A memo on small businesses helping drive the economy: ...

  8. Azerbaijan-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    Azerbaijan-UNEP Green Economy Advisory Services Jump to: navigation, search Logo: Azerbaijan-UNEP Green Economy Advisory Services Name Azerbaijan-UNEP Green Economy Advisory...

  9. China-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    UNEP Green Economy Advisory Services Jump to: navigation, search Logo: China-UNEP Green Economy Advisory Services Name China-UNEP Green Economy Advisory Services AgencyCompany...

  10. Bioenergy Demand in a Market Driven Forest Economy (U.S. South) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Demand in a Market Driven Forest Economy (U.S. South) Bioenergy Demand in a Market Driven Forest Economy (U.S. South) Breakout Session 1A: Biomass Feedstocks for the Bioeconomy Bioenergy Demand in a Market Driven Forest Economy (U.S. South) Robert C. Abt, Professor of Natural Resource Economics and Management, North Carolina State University abt_bioenergy_2015.pdf (2.18 MB) More Documents & Publications 2016 Billion-Ton Report: Advancing Domestic Resources for a

  11. Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0: July 5, 2010 Fuel Economy vs. Weight and Performance Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance From 1980 to 2009, there have been significant gains made in automotive technology, but those advancements have been applied toward improved performance and safety rather than fuel economy. Horsepower has more than doubled, top speed has climbed from 107 miles per hour to 139 miles per hour, and "0-to-60" times have dropped from 14.3 seconds

  12. Constructing a Cleaner Economy Info Graphic

    Broader source: Energy.gov [DOE]

    An overview of the impact that the clean energy economy is having on the U.S. construction industry.

  13. 2009 Fuel Economy Guide and FuelEconomy.gov | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009 Fuel Economy Guide and FuelEconomy.gov 2009 Fuel Economy Guide and FuelEconomy.gov October 24, 2008 - 4:00am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With energy costs looming as winter approaches, saving money is on everyone's minds these days. Fortunately, improving your vehicle's fuel economy is both economically and environmentally smart. In the winter, one of the easiest ways to decrease gasoline consumption is to warm up your engine for no more than

  14. Recovery Act Milestones

    ScienceCinema (OSTI)

    Rogers, Matt

    2013-05-29

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  15. WIPP Recovery Information

    Broader source: Energy.gov [DOE]

    At the March 26, 2014 Board meeting J. R. Stroble CBFO, Provided Information on Locations to Access WIPP Recovery Information.

  16. Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1. Introduction to Waste Heat Recovery .......................................................................................... 2 5 1.2. Challenges and Barriers for Waste Heat Recovery ..................................................................... 13 6 1.3. Public

  17. American Recovery and Reinvestment Act of 2009: Bioenergy Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office Investments | Department of Energy Recovery and Reinvestment Act of 2009: Bioenergy Technologies Office Investments American Recovery and Reinvestment Act of 2009: Bioenergy Technologies Office Investments The Bioenergy Technologies Office rewarded about $178 million in American Recovery and Reinvestment Act of 2009 funds; the projects accelerate advanced biofuels RD&D, speed the deployment of commercialization of biofuels, and further the U.S. bioindustry through market

  18. Department of Energy Recovery Act Investment in Biomass Technologies

    SciTech Connect (OSTI)

    2010-11-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

  19. Department of Energy Recovery Act Investment in Biomass Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

  20. Enhanced oil recovery

    SciTech Connect (OSTI)

    Fisher, W.G.

    1982-01-01

    The principal enhanced recovery technique is waterflooding, because water generally is inexpensive to obtain and inject into the reservoir and it works. With the shortage of conventional oil in Canada there is greater emphasis being placed on other recovery schemes in addition to or in place of waterflooding. Tertiary recovery is applicable to many of the existing projects and engineers must recognize those fields that are candidates for tertiary recovery applications. The application of tertiary recovery techniques to a specific reservoir requires consideration of all methods developed to select the one most suitable. A thorough understanding of waterflooding and the factors that affect recovery is necessary before a tertiary process is considered. Factors that affect oil recovery under waterflooding are areal and vertical sweep efficiency, contact factor and displacement efficiency.

  1. Share Your Clean Energy Economy Story

    Broader source: Energy.gov [DOE]

    How did you get involved in the Clean Energy Economy? Help other people learn the opportunities available in the clean energy sector by sharing your own story below.

  2. Clean Economy Network | Open Energy Information

    Open Energy Info (EERE)

    Network Jump to: navigation, search Name: Clean Economy Network Place: Washington, Washington, DC Zip: 20004 Product: Washingt (DC-based advocacy group focused on clean energy and...

  3. An Advanced Fracture Characterization and Well Path Navigation System for Effective Re-Development and Enhancement of Ultimate Recovery from the Complex Monterey Reservoir of South Ellwood Field, Offshore California

    SciTech Connect (OSTI)

    Steve Horner

    2006-01-31

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the

  4. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect (OSTI)

    Steve Horner

    2005-08-01

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the

  5. Economic Impact of Recovery Act Investments in the Smart Grid Report Now

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Available | Department of Energy Economic Impact of Recovery Act Investments in the Smart Grid Report Now Available Economic Impact of Recovery Act Investments in the Smart Grid Report Now Available April 25, 2013 - 1:04pm Addthis A report on the Economic Impact of Recovery Act Investments in the Smart Grid is now available. This study analyzes the economy-wide impacts of the Recovery Act funding for smart grid project deployment in the United States, administered by Office of Electricity

  6. Summary - Caustic Recovery Technology

    Office of Environmental Management (EM)

    Caustic Recovery Technology ETR Report Date: July 2007 ETR-7 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Caustic Recovery Technology Why DOE-EM Did This Review The Department of Energy (DOE) Environmental Management Office (EM-21) has been developing caustic recovery technology for application to the Hanford Waste Treatment Plant (WTP) to reduce the amount of Low Activity Waste (LAW) vitrified. Recycle of sodium hydroxide with an

  7. ARM - Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... In other Recovery Act news, the remote balloon launcher was ... new aerosols observation systems passed acceptance testing ... By moving to the fast-switching dual polarization technology...

  8. WIPP Recovery Progress

    Broader source: Energy.gov [DOE]

    At the March 25, 2015 Board meeting J. R. Stroble CBFO, Provided Information on the Status of the Recovery Effort at the WIPP Site.

  9. EM Recovery Act Performance

    Broader source: Energy.gov [DOE]

    The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40...

  10. Recovery Act Open House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light snacks for those attending. DOE ID Manager Rick Provencher discusses the non-cleanup work that was accomplished with Recovery Act funding. Editorial Date November 15, 2010...

  11. Chapter 7: Advancing Systems and Technologies to Produce Cleaner...

    Broader source: Energy.gov (indexed) [DOE]

    Oil and Gas Technologies Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels Oil and Gas in the Energy Economy of the United States Fossil fuel resources account ...

  12. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review emrgtech06_reedy_040213.pdf (403.24 KB) More Documents & Publications Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review Buildings Performance Database - 2013 BTO Peer Review Department of Energy

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy

  13. DNA damage checkpoint recovery and cancer development

    SciTech Connect (OSTI)

    Wang, Haiyong; Zhang, Xiaoshan; Teng, Lisong; Legerski, Randy J.

    2015-06-10

    Cell cycle checkpoints were initially presumed to function as a regulator of cell cycle machinery in response to different genotoxic stresses, and later found to play an important role in the process of tumorigenesis by acting as a guard against DNA over-replication. As a counterpart of checkpoint activation, the checkpoint recovery machinery is working in opposition, aiming to reverse the checkpoint activation and resume the normal cell cycle. The DNA damage response (DDR) and oncogene induced senescence (OIS) are frequently found in precancerous lesions, and believed to constitute a barrier to tumorigenesis, however, the DDR and OIS have been observed to be diminished in advanced cancers of most tissue origins. These findings suggest that when progressing from pre-neoplastic lesions to cancer, DNA damage checkpoint barriers are overridden. How the DDR checkpoint is bypassed in this process remains largely unknown. Activated cytokine and growth factor-signaling pathways were very recently shown to suppress the DDR and to promote uncontrolled cell proliferation in the context of oncovirus infection. In recent decades, data from cell line and tumor models showed that a group of checkpoint recovery proteins function in promoting tumor progression; data from patient samples also showed overexpression of checkpoint recovery proteins in human cancer tissues and a correlation with patients' poor prognosis. In this review, the known cell cycle checkpoint recovery proteins and their roles in DNA damage checkpoint recovery are reviewed, as well as their implications in cancer development. This review also provides insight into the mechanism by which the DDR suppresses oncogene-driven tumorigenesis and tumor progression. - Highlights: • DNA damage checkpoint works as a barrier to cancer initiation. • DDR machinary response to genotoxic and oncogenic stress in similar way. • Checkpoint recovery pathways provide active signaling in cell cycle control. • Checkpoint

  14. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO{sub 2} enhanced oil recovery in California`s Monterey Formation siliceous shales. Annual report, February 12, 1996--February 11, 1997

    SciTech Connect (OSTI)

    Toronyi, R.M.

    1997-12-01

    The Buena Vista Hills field is located about 25 miles southwest of Bakersfield, in Kern County, California, about two miles north of the city of Taft, and five miles south of the Elk Hills field. The Antelope Shale zone was discovered at the Buena Vista Hills field in 1952, and has since been under primary production. Little research was done to improve the completion techniques during the development phase in the 1950s, so most of the wells are completed with about 1000 ft of slotted liner. The proposed pilot consists of four existing producers on 20 acre spacing with a new 10 acre infill well drilled as the pilot CO{sub 2} injector. Most of the reservoir characterization of the first phase of the project will be performed using data collected in the pilot pattern wells. This is the first annual report of the project. It covers the period February 12, 1996 to February 11, 1997. During this period the Chevron Murvale 653Z-26B well was drilled in Section 26-T31S/R23E in the Buena Vista Hills field, Kern County, California. The Monterey Formation equivalent Brown and Antelope Shales were continuously cored, the zone was logged with several different kinds of wireline logs, and the well was cased to a total depth of 4907 ft. Core recovery was 99.5%. Core analyses that have been performed include Dean Stark porosity, permeability and fluid saturations, field wettability, anelastic strain recovery, spectral core gamma, profile permeametry, and photographic imaging. Wireline log analysis includes mineral-based error minimization (ELAN), NMR T2 processing, and dipole shear wave anisotropy. A shear wave vertical seismic profile was acquired after casing was set and processing is nearly complete.

  15. FY 2014 Research Projects on CO2 Storage in Enhanced Oil Recovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Research Projects on CO2 Storage in Enhanced Oil Recovery FY 2014 Research Projects on CO2 Storage in Enhanced Oil Recovery In FY 2014, the U.S. Department of Energy selected five projects focused on advancing the state of knowledge and developing and validating technologies that would allow for more effective storage of carbon dioxide (CO2) in enhanced oil recovery (EOR) operations while also promoting additional oil recovery. Valued at more than $14 million, these

  16. Waste Heat Recovery. Technology and Opportunities in U.S. Industry

    SciTech Connect (OSTI)

    Johnson, Ilona; Choate, William T.; Davidson, Amber

    2008-03-01

    This study was initiated in order to evaluate RD&D needs for improving waste heat recovery technologies. A bottomup approach is used to evaluate waste heat quantity, quality, recovery practices, and technology barriers in some of the largest energyconsuming units in U.S. manufacturing. The results from this investigation serve as a basis for understanding the state of waste heat recovery and providing recommendations for RD&D to advance waste heat recovery technologies.

  17. Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs ArcelorMittal Indiana Harbor Energy Recovery & Reuse 504 Boiler constructed and installed with DOE Recovery Act Funding The Advanced Manufacturing Office (AMO) at the U.S. Department of Energy provided $31.6 million in American Recovery & Reinvestment Act (ARRA) funding to construct and install an energy-efficient boiler and upgrade ArcelorMittal Indiana Harbor steelmaking complex facilities. One of

  18. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect (OSTI)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  19. Solvent recycle/recovery

    SciTech Connect (OSTI)

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  20. SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY...

    Office of Environmental Management (EM)

    SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY Based on the finding of a growing potential ...

  1. DOE and Japanese Ministry of Economy, Trade, and Industry Sign...

    Energy Savers [EERE]

    DOE and Japanese Ministry of Economy, Trade, and Industry Sign Memorandum of Cooperation DOE and Japanese Ministry of Economy, Trade, and Industry Sign Memorandum of Cooperation ...

  2. Low Carbon Economy Index 2010 | Open Energy Information

    Open Energy Info (EERE)

    Economy Index 2010 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Economy Index 2010 AgencyCompany Organization: PricewaterhouseCoopers Sector: Energy,...

  3. Turbocharged Spark Ignited Direct Injection - A Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged SIDI ...

  4. 2016 American Council for an Energy-Efficient Economy (ACEEE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2016 American Council for an Energy-Efficient Economy (ACEEE) Energy Efficiency Finance Forum 2016 American Council for an Energy-Efficient Economy (ACEEE) Energy Efficiency ...

  5. Before the Subcommittee on Environment and the Economy -- House...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environment and the Economy -- House Energy and Commerce Committee Before the Subcommittee on Environment and the Economy -- House Energy and Commerce Committee Testimony of Peter ...

  6. EPA-Fuel Economy Guide | Open Energy Information

    Open Energy Info (EERE)

    EPA-Fuel Economy Guide Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Economy Guide AgencyCompany Organization: United States Environmental Protection Agency...

  7. Promoting a Green Economy through Clean Transportation Alternatives...

    Broader source: Energy.gov (indexed) [DOE]

    KB) More Documents & Publications Promoting a Green Economy through Clean Transportation Alternatives Promoting a Green Economy through Clean Transportation Alternatives EV ...

  8. Promoting a Green Economy through Clean Transportation Alternatives...

    Broader source: Energy.gov (indexed) [DOE]

    Promoting a Green Economy through Clean Transportation Alternatives Promoting a Green Economy through Clean Transportation Alternatives Town of Hempstead: Project Energy, From ...

  9. Fact #589: September 21, 2009 Proposed Fuel Economy and Greenhouse...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    21, 2009 Proposed Fuel Economy and Greenhouse Gas Emissions Standards Fact 589: September 21, 2009 Proposed Fuel Economy and Greenhouse Gas Emissions Standards On September ...

  10. China and a Sustainable Future: Towards a Low Carbon Economy...

    Open Energy Info (EERE)

    Carbon Economy and Society Jump to: navigation, search Tool Summary LAUNCH TOOL Name: China and a Sustainable Future: Towards a Low Carbon Economy and Society AgencyCompany...

  11. Hunan Yongzhou Hengli Economy Trade Investment Co Ltd | Open...

    Open Energy Info (EERE)

    Yongzhou Hengli Economy Trade Investment Co Ltd Jump to: navigation, search Name: Hunan Yongzhou Hengli Economy&Trade Investment Co.,Ltd Place: Yongzhou, Hunan Province, China Zip:...

  12. Supporting a Hawaii Hydrogen Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporting a Hawaii Hydrogen Economy Supporting a Hawaii Hydrogen Economy Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Supporting a Hawaii...

  13. Clean Economy Network-Rockies | Open Energy Information

    Open Energy Info (EERE)

    Economy Network-Rockies Jump to: navigation, search Name: Clean Economy Network-Rockies Place: Denver, CO Region: Rockies Area Website: rockies.cleaneconomynetwork.or Coordinates:...

  14. Farming First-Agriculture and the Green Economy | Open Energy...

    Open Energy Info (EERE)

    Farming First-Agriculture and the Green Economy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Farming First-Agriculture and the Green Economy AgencyCompany...

  15. Ohio Business Council for a Clean Energy Economy | Open Energy...

    Open Energy Info (EERE)

    Business Council for a Clean Energy Economy Jump to: navigation, search Name: Ohio Business Council for a Clean Energy Economy Place: Ohio Website: www.ohiocleaneconomy.biz...

  16. Fuel Economy.gov - Mobile | Open Energy Information

    Open Energy Info (EERE)

    Economy.gov - Mobile Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Economy.gov - Mobile AgencyCompany Organization: United States Department of Energy Sector:...

  17. material recovery | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    recovery Material Management and Minimization The Office of Material Management and Minimization (M3) presents an integrated approach to addressing the persistent threat posed by nuclear materials through a full cycle of materials management and minimization efforts. Consistent with the President's highly enriched uranium (HEU) and... Nonproliferation Working in close collaboration with DOE laboratories, DNN develops and tests new technologies to advance U.S. capabilities to monitor

  18. Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Class 4 Parcel Delivery Vehicle | Department of Energy Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a Class 4 Parcel Delivery Vehicle Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a Class 4 Parcel Delivery Vehicle The goal of this project is to provide data to help bridge the gap between R&D and the commercial availability of advanced vehicle technologies that reduce petroleum use in the U.S. and improve air quality. p-13_thornton.pdf (476.67

  19. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    With the passage of the American Recovery and Reinvestment Act of 2009 (Recovery Act), the Department of Energy (Department) will have new responsibilities and receive ...

  20. American Recovery and Reinvestment Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act LANL was able to accelerate demolition and cleanup thanks to a 212 million award from the American...

  1. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, west Texas (Delaware Basin). Annual progress report, March 31, 1995--March 31, 1996

    SciTech Connect (OSTI)

    Dutton, S.P.; Hovorka, S.D.; Cole, A.G.

    1996-08-01

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based field development. Reservoirs in the Delaware Mountain Group have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Detailed correlations of the Ramsey sandstone reservoirs in Geraldine Ford field suggest that lateral sandstone continuity is less than interpreted by previous studies. The degree of lateral heterogeneity in the reservoir sandstones suggests that they were deposited by eolian-derived turbidites. According to the eolian-derived turbidite model, sand dunes migrated across the exposed shelf to the shelf break during sea-level lowstands and provided well sorted sand for turbidity currents or grain flows into the deep basin.

  2. Tribes and the New Energy Economy Conference

    Broader source: Energy.gov [DOE]

    Hosted by the COTA Holdings, this two-day conference brings tribes, government, and industry together to discuss the new energy economy. Attendees will hear speakers from the U.S. Department of...

  3. Webinar: Supporting a Hawaii Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar titled "Supporting a Hawaii Hydrogen Economy" on Tuesday, July 29, from 3:00 p.m. to 4:00 p.m. Eastern Daylight Time (EDT). The webinar will...

  4. Technological trends for improving automobile fuel economy

    SciTech Connect (OSTI)

    Katoh, K.

    1984-01-01

    Since the first oil embargo in 1973, energy conservation has been receiving greater attention. In the field of automobiles, the last decade has seen significant improvement in vehicle fuel economy attained by inter-industries comprehensive efforts. Today the theme of ''Age of Unlimited Fuel Economy Competition'' or ''Age of Unlimited MPG Competition'' is often heard and the development of super fuel economy vehicles is being pursued actively. For example, it should be noted that the VW experimental vehicle with a direct-injection diesel engine has already exceeded 80 mpg in the U.S. test cycle. This paper will discuss the recent technological approach, especially from the standpoint of engine design, to achieve further improvements in vehicle fuel economy and its impacts on the properties of fuel and lubricants.

  5. Enhanced Oil Recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery As much as two-thirds of conventional crude oil discovered in U.S. fields remains unproduced, left behind due to the physics of fluid flow. In addition, ...

  6. Recovery Act Milestones

    Broader source: Energy.gov [DOE]

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to...

  7. Exhaust Energy Recovery

    Broader source: Energy.gov [DOE]

    Exhaust energy recovery proposed to achieve 10% fuel efficiency improvement and reduce or eliminate the need for increased heat rejectioncapacity for future heavy duty engines in Class 8 Tractors

  8. 3 Reasons Why Advanced Manufacturing Institutes Matter | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Why Advanced Manufacturing Institutes Matter 3 Reasons Why Advanced Manufacturing Institutes Matter February 1, 2016 - 3:06pm Addthis Watch how manufacturing Institutes like the Institute for Advanced Composites Manufacturing Innovation are revolutionizing America's clean energy economy. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs KEY FACTS National Network for Manufacturing Innovation aims to drive down the cost of advanced manufacturing technologies.

  9. Advanced Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design » Design for Efficiency » Advanced House Framing Advanced House Framing Two-story home using advanced framing techniques. Two-story home using advanced framing techniques. Advanced house framing, sometimes called optimum value engineering (OVE), refers to framing techniques designed to reduce the amount of lumber used and waste generated in the construction of a wood-framed house. These techniques boost energy efficiency by replacing lumber with insulation material while maintaining the

  10. Advanced Powertrain Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Powertrain Research Facility Argonne's Advanced Powertrain Research Facility (APRF) enables researchers to conduct vehicle benchmarking and testing activities that provide data critical to the development and commercialization of next-generation vehicles. APRF engineers use the facility's two-wheel drive (2WD) and four-wheel drive (4WD) dynamometers and state-of-the-art instrumentation to reveal important information on performance, fuel economy, energy consumption and emissions output.

  11. Partnering with Industry to Develop Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnering with Industry to Develop Advanced Biofuels > David C. Carroll GTI President and CEO Biomass 2014 July 29, 2014 2 Advanced Biofuels Tenets > Converting indigenous resources is good for the economy > Abundant non-food biomass is available > Drop-in, infrastructure-compatible fuels have vast markets > Seek commercial competitiveness without subsidy > Scale of supply requires innovation for process efficiency > Policy needs to ensure access to markets > Funds are

  12. Veterans Advancing Clean Energy and Climate

    SciTech Connect (OSTI)

    Kopser, Joseph; Marr, Andrea; Perez-Halperin, Elizabeth; Eckstein, Robin; Moniz, Ernest

    2013-11-11

    The Champions of Change series highlights ordinary Americans who are doing extraordinary things in their communities to out-innovate, out-educate and out-build the rest of the world. On November 5, 2013, the White House honored 12 veterans and leaders who are using the skills they learned in the armed services to advance the clean energy economy.

  13. Veterans Advancing Clean Energy and Climate

    ScienceCinema (OSTI)

    Kopser, Joseph; Marr, Andrea; Perez-Halperin, Elizabeth; Eckstein, Robin; Moniz, Ernest

    2014-01-07

    The Champions of Change series highlights ordinary Americans who are doing extraordinary things in their communities to out-innovate, out-educate and out-build the rest of the world. On November 5, 2013, the White House honored 12 veterans and leaders who are using the skills they learned in the armed services to advance the clean energy economy.

  14. Vermont Manufacturing Plant Opens with Support from the Recovery Act |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vermont Manufacturing Plant Opens with Support from the Recovery Act Vermont Manufacturing Plant Opens with Support from the Recovery Act December 6, 2010 - 12:00am Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Steven Chu issued a statement highlighting today's ribbon cutting event at SBE, Inc.'s new production plant in Barre, Vermont .The plant will manufacture electric vehicle direct current bus capacitors, components for next generation advanced vehicles. The

  15. 2004 FUEL ECONOMY GUIDE BEST IN CLASS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 FUEL ECONOMY GUIDE BEST IN CLASS 2004 FUEL ECONOMY GUIDE BEST IN CLASS A chart describing the 2004 fuel economy best in class vehicles. 2004 FUEL ECONOMY GUIDE BEST IN CLASS (65.53 KB) More Documents & Publications Microsoft Word - Document1 2010 Vehicle Technologies Market Report EPA Mobile Source Rule Update

  16. Nanostructured carbide catalysts for the hydrogen economy

    SciTech Connect (OSTI)

    Ram Seshadri, Susannah Scott, Juergen Eckert

    2008-07-21

    The above quote, taken from the executive summary of the Report from the US DOE Basic Energy Sciences Workshop held August 6–8, 2007,[1] places in context the research carried out at the University of California, Santa Barbara, which is reported in this document. The enormous impact of heterogeneous catalysis is exemplified by the Haber process for the synthesis of ammonia, which consumes a few % of the world’s energy supply and natural gas, and feeds as many as a third of the world’s population. While there have been numerous advances in understanding the process,[2] culminating in the awarding of the Nobel Prize to Gerhard Ertl in 2007, it is interesting to note that the catalysts themselves have changed very little since they were discovered heuristically in the the early part of the 20th century. The thesis of this report is that modern materials chemistry, with all the empirical knowledge of solid state chemistry, combined with cutting edge structural tools, can help develop and better heterogeneous catalysis. The first part of this report describes research in the area of early transition metal carbides (notably of Mo and W), potentially useful catalysts for water gas shift (WGS) and related reactions of use to the hydrogen economy. Although these carbides have been known to be catalytically useful since the 1970s,[3] further use of these relatively inexpensive materials have been plagued by issues of low surface areas and ill-defined, and often unreactive surfaces, in conjunction with deactivation. We have employed for the first time, a combination of constant-wavelength and time-of-flight neutron scattering, including a total scattering analysis of the latter data, to better understand what happens in these materials, in a manner that for the first time, reveals surface graphitic carbon in these materials in a quantitative manner. Problems of preparation, surface stability, and irreversible reactivity have become manifest in this class of materials

  17. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Recovery Act Center Map PERFORMANCE The Department estimates the $6 billion Recovery Act investment will allow us to complete work now that would cost approximately $13 billion in future years, saving $7 billion. As Recovery Act work is completed through the cleanup of contaminated sites, facilities, and material disposition, these areas will becoming available for potential reuse by other entities. Recovery Act funding is helping the Department reach our cleanup goals faster.

  18. Economic analysis of vertical wells for coalbed methane recovery

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    Previous economic studies of the recovery and utilization of methane from coalbeds using vertical wells were based on drainage in advance of mining where a single seam is drained with well spacing designed for rapid predrainage. This study extends the earlier work and shows that methane recovery costs can be reduced significantly by increasing well spacing and draining multiple coalbeds. A favorable return on investment can be realized in many geologic settings using this method. Sensitivity of recovery economics to certain development costs and parametric variations are also examined as are the economics of three methane utilization options.

  19. Framework for the International Partnership for the Hydrogen Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Framework for the International Partnership for the Hydrogen Economy Framework for the International Partnership for the Hydrogen Economy Framework for the International Partnership for the Hydrogen Economy iphe_framework_final.pdf (113.5 KB) More Documents & Publications International Partnerships for the Hydrogen Economy Fact Sheet International Partnerships for the Hydrogen Economy Fact Sheet Terms of Reference for the International Partnership for the Hydrogen

  20. Solvent recovery targeting

    SciTech Connect (OSTI)

    Ahmad, B.S.; Barton, P.I.

    1999-02-01

    One of the environmental challenges faced by the pharmaceutical and specialty chemical industries is the widespread use of organic solvents. With a solvent-based chemistry, the solvent necessarily has to be separated from the product. Chemical species in waste-solvent streams typically form multicomponent azeotropic mixtures, and this often complicates separation and, hence, recovery of solvents. A design approach is presented whereby process modifications proposed by the engineer to reduce the formation of waste-solvent streams can be evaluated systematically. This approach, called solvent recovery targeting, exploits a recently developed algorithm for elucidating the separation alternatives achievable when applying batch distillation to homogeneous multicomponent mixtures. The approach places the composition of the waste-solvent mixture correctly in the relevant residue curve map and computes the maximum amount of pure material that can be recovered via batch distillation. Solvent recovery targeting is applied to two case studies derived from real industrial processes.

  1. "Advancement of Synchrophasor Technology in Projects Funded by the American

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery and Reinvestment Act of 2009" Report | Department of Energy "Advancement of Synchrophasor Technology in Projects Funded by the American Recovery and Reinvestment Act of 2009" Report "Advancement of Synchrophasor Technology in Projects Funded by the American Recovery and Reinvestment Act of 2009" Report The American Recovery and Reinvestment Act of 2009 provided $4.5 billion to the Office of Electricity Delivery and Energy Reliability to modernize the U.S.

  2. Macroeconomic consequences of energy supply shocks in Ukraine. Studies of Economies in Transformation 12

    SciTech Connect (OSTI)

    Chu, H.Q.; Grais, W.

    1994-08-01

    Analyzes the macroeconomic implications of the economic shock the Ukraine has experienced in its transition to a market economy. This study analyzes the short-term macroeconomic implications of the energy crisis for Ukraine, the largest energy-dependent successor state of the former Soviet Union. The framework assumes, for the sake of analysis, that Ukraine`s economy is already at the second stage of reform, in which ownership and contract enforcement are an increasingly minor issue. The authors point out that the synergy between economic liberalization and adjustment to the shock allows a recovery of activity. They conclude that Ukraine should clarify as rapidly as possible ownership and contract enforcement issues, liberalize nonenergy prices, and adjust domestic energy prices to reflect the opportunity cost of using these resources elsewhere.

  3. Recovery of EUVL substrates

    SciTech Connect (OSTI)

    Vernon, S.P.; Baker, S.L.

    1995-01-19

    Mo/Si multilayers, were removed from superpolished zerodur and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates.

  4. Terms of Reference for the International Partnership for the Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TERMS OF REFERENCE FOR THE INTERNATIONAL PARTNERSHIP FOR THE HYDROGEN ECONOMY Introduction A growing number of countries have made commitments to accelerate the development and commercial use of hydrogen energy technologies in order to improve their energy, economic, and environmental security. These commitments demonstrate that many countries share a common interest in advanced research and development needed to enable the demonstration and commercial use of hydrogen and fuel cell technologies.

  5. Recovery Act: State Assistance for Recovery Act Related Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policies | Department of Energy Act: State Assistance for Recovery Act Related Electricity Policies Recovery Act: State Assistance for Recovery Act Related Electricity Policies $44 Million for State Public Utility Commissions State public utility commissions (PUCs), which regulate and oversee electricity projects in their states, will be receiving more than $44.2 million in Recovery Act funding to hire new staff and retrain existing employees to ensure they have the capacity to quickly and

  6. US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing

    SciTech Connect (OSTI)

    Donald Karner; J.E. Francfort

    2005-09-01

    The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

  7. Inherently Safe In-Situ Uranium Recovery - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Inherently Safe In-Situ Uranium Recovery Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (1,140 KB) Technology Marketing SummaryAs uranium mining continues to grow in the United States, so does the concerns over its environmental impact. An approach that may alleviate some of these problems may be in situ

  8. Geothermal Energy Production With Innovative Methods Of Geothermal Heat Recovery

    SciTech Connect (OSTI)

    Swenson, Allen; Darlow, Rick; Sanchez, Angel; Pierce, Michael; Sellers, Blake

    2014-12-19

    The ThermalDrive™ Power System (“TDPS”) offers one of the most exciting technological advances in the geothermal power generation industry in the last 30 years. Using innovations in subsurface heat recovery methods, revolutionary advances in downhole pumping technology and a distributed approach to surface power production, GeoTek Energy, LLC’s TDPS offers an opportunity to change the geothermal power industry dynamics.

  9. Webinar December 1: Northeast States’ Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar titled "Northeast States’ Hydrogen Economy" on Tuesday, December 1, from 12:00 to 1:00 p.m. EST. The webinar will focus on state efforts to support the regional development of hydrogen infrastructure for the deployment of fuel cell electric vehicles in the Northeast United States.

  10. New York Recovery Act Snapshot

    Broader source: Energy.gov [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New York are supporting a...

  11. Secretary Bodman, Johanns Announce Memorandum of Understanding to Advance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Development from Biomass | Department of Energy Bodman, Johanns Announce Memorandum of Understanding to Advance Hydrogen Development from Biomass Secretary Bodman, Johanns Announce Memorandum of Understanding to Advance Hydrogen Development from Biomass May 25, 2005 - 12:56pm Addthis Biomass Investment Furthers President Bush's Hydrogen Initiative WASHINGTON, DC - In an initiative to further advance President George W. Bush's vision for a hydrogen economy, Secretary of Energy Samuel

  12. Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Fuels play a critical role throughout our economy. In 2013, fuels directly supplied about 99% of the energy needed by our national transportation system, 66% of that needed to generate our electricity, 68% of that needed by our industry, and 27% of that needed by our

  13. DOE Recovery Act Field Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Field Projects DOE Recovery Act Field Projects DOE Recovery Act Field Projects

  14. [Waste water heat recovery system

    SciTech Connect (OSTI)

    Not Available

    1993-04-28

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  15. Recovery Act State Memos Tennessee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memos Tennessee For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  16. Recovery Act State Memos Alabama

    Broader source: Energy.gov (indexed) [DOE]

    Updated July 2010 | Department of Energy Chart listing projects selected for Smart Grid Investment Grants under American Recovery and Reinvestment Act. There is a November 2011 Update to the "Recovery Act Selections for Smart Grid Investment Grant Awards - By Category" file. Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category (461.59 KB) More Documents & Publications FINAL Combined SGIG Selections - By Category for Press -AOv10.xls Recovery Act Selections

  17. American Recovery and Reinvestment Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act LANL was able to accelerate demolition and cleanup thanks to a $212 million award from the American Recovery and Reinvestment Act. August 1, 2013 Excavation trench and enclosure at TA-21. To protect air quality, MDA B is excavated under a dome. By September 2011, all projects were complete. In 2010 and 2011, LANL received $212 million in funding from the American Recovery and Reinvestment Act to complete three

  18. Recovery Act State Memos Illinois

    Broader source: Energy.gov (indexed) [DOE]

    ......... 13 RECOVERY ACT SUCCESS STORIES - ENERGY EMPOWERS * Retooled machines bring new green jobs to Illinois ......15 * County partners ...

  19. Advanced Gasificatioin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Gasification Research Team Members Key Contacts Advanced Gasification Carbon feedstock gasification is a promising pathway for high-efficiency, low-pollutant power generation and chemical production. The inability, however, to meet a number of operational goals could create roadblocks to widespread acceptance and commercialization of advanced gasification technologies. We must, for example, achieve gasifier online availability of 85-95 percent in utility applications, and 95 percent for

  20. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  1. Metal recovery from porous materials (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Metal recovery from porous materials Title: Metal recovery from porous materials The present invention relates to recovery of metals. More specifically, the present invention ...

  2. Transforming the American Economy Through Innovation

    Broader source: Energy.gov [DOE]

    Secretary Chu joins Vice President Joe Biden as he details the role the Recovery Act has played in funding innovation that will help build a foundation for a more robust and competitive American...

  3. The American Recovery and Reinvestment Act Includes $4.5 billion for the Office of Electricity Delivery and Energy Reliability

    Broader source: Energy.gov [DOE]

    President Barack Obama signed into law the American Recovery and Reinvestment Act of 2009 (P.L.111-5). The $787 billion economic recovery package represents the largest and most ambitious effort to stimulate the economy in United States history. The Department of Energy (DOE) will be responsible for implementing over $38 billion of the $787 billion package. Of the DOE total, $4.5 Billion is allotted to the Office of Electricity Delivery and Energy Reliability.

  4. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  5. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Stevenson, J.W.; Werkema, R.G.

    1959-07-28

    The recovery of uranium from magnesium fluoride slag obtained as a by- product in the production of uranium metal by the bomb reduction prccess is presented. Generally the recovery is accomplished by finely grinding the slag, roasting ihe ground slag air, and leaching the roasted slag with a hot, aqueous solution containing an excess of the sodium bicarbonate stoichiometrically required to form soluble uranium carbonate complex. The roasting is preferably carried out at between 425 and 485 deg C for about three hours. The leaching is preferably done at 70 to 90 deg C and under pressure. After leaching and filtration the uranium may be recovered from the clear leach liquor by any desired method.

  6. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria; Hu, Zhicheng

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  7. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to ... development of large-scale Ni-based superalloy castings for power plant applications. ...

  8. Process for LPG recovery

    SciTech Connect (OSTI)

    Khan, Sh. A.; Haliburton, J.

    1985-03-26

    An improved process is described for the separation and recovery of substantially all the propane and heavier hydrocarbon components in a hydrocarbon gaseous feedstream. In this process, the vapor stream from a deethanizer is cooled to liquefaction and contacted with a vapor phase from the hydrocarbon gaseous feedstream. The contact takes place within a direct heat exchanger, and the resulting vapor fraction, which is essentially ethane and methane, is the gaseous product of the process.

  9. The American Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Recovery and Reinvestment Act Smart Grid Highlights Jumpstarting a Modern Grid October 2014 2 The Office of Electricity Delivery and Energy Reliability (OE) provides national leadership to ensure that the nation's energy delivery system is secure, resilient, and reliable. OE works to develop new technologies to improve the infrastructure that brings electricity into our homes, offices, and factories in partnership with industry, other federal agencies, and state and local governments.

  10. Methane recovery from animal manures: A current opportunities casebook

    SciTech Connect (OSTI)

    1995-08-01

    This Casebook examines some of the current opportunities for the recovery of methane from the anaerobic digestion of animal manures US livestock operations currently employ four types of anaerobic digester technology: Slurry, plug flow, complete mix, and covered lagoon. An introduction to the engineering economies of these technologies is provided, and possible end-use applications for the methane gas generated by the digestion process are discussed. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Regression models, which can be used to estimate digester cost and internal rate of return, are developed from the evaluations.

  11. Enhanced oil recovery projects data base

    SciTech Connect (OSTI)

    Pautz, J.F.; Sellers, C.A.; Nautiyal, C.; Allison, E.

    1992-04-01

    A comprehensive enhanced oil recovery (EOR) project data base is maintained and updated at the Bartlesville Project Office of the Department of Energy. This data base provides an information resource that is used to analyze the advancement and application of EOR technology. The data base has extensive information on 1,388 EOR projects in 569 different oil fields from 1949 until the present, and over 90% of that information is contained in tables and graphs of this report. The projects are presented by EOR process, and an index by location is provided.

  12. Fuel Economy Fact and Fiction | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    than ever, there's a lot of information-true and false-floating around about fuel economy. ... Just the facts... The best device for improving your fuel economy is a tire gauge. There ...

  13. SEP Success Story: Fueling South Carolina's Clean Energy Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling South Carolina's Clean Energy Economy SEP Success Story: Fueling South Carolina's Clean Energy Economy June 6, 2012 - 2:47pm Addthis Pure Power, LLC makes products that ...

  14. Improving Fuel Economy When the Weather's Cold | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy When the Weather's Cold Improving Fuel Economy When the Weather's Cold February 25, 2014 - 9:49am Addthis Make sure your car is ready for spring snowstorms. | Photo...

  15. Improving Fuel Economy When the Weather's Cold | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Fuel Economy When the Weather's Cold Improving Fuel Economy When the Weather's Cold February 25, 2014 - 9:49am Addthis Make sure your car is ready for spring snowstorms....

  16. #YearofAction: Growing the Clean Energy Economy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    YearofAction: Growing the Clean Energy Economy YearofAction: Growing the Clean Energy Economy January 29, 2014 - 6:03pm Addthis During the State of the Union address, President ...

  17. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 - Dataset Fact 870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 - Dataset Excel file and ...

  18. A National Vision of America's Transition to a Hydrogen Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Vision of America's Transition to a Hydrogen Economy--To 2030 and Beyond A National Vision of America's Transition to a Hydrogen Economy--To 2030 and Beyond The summary ...

  19. Manufacturing R&D for the Hydrogen Economy Roadmap Workshop ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Workshop Manufacturing R&D for the Hydrogen Economy Roadmap Workshop Agenda for the 2005 Manufactuirng R&D for the Hydrogen Economy Roadmap Workshop mfgwkshpagenda.pdf ...

  20. Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    Discusses development highly capable and flexible advanced control concepts and enabling system to manage multi-mode/multi-fuel combustion events and achieve an up to 30 percent fuel economy improvement

  1. Microbial enhanced oil recovery: Entering the log phase

    SciTech Connect (OSTI)

    Bryant, R.S.

    1995-12-31

    Microbial enhanced oil recovery (MEOR) technology has advanced internationally since 1980 from a laboratory-based evaluation of microbial processes to field applications. In order to adequately support the decline in oil production in certain areas, research on cost-effective technologies such as microbial enhanced oil recovery processes must focus on both near-term and long-term applications. Many marginal wells are desperately in need of an inexpensive improved oil recovery technology today that can assist producers in order to prevent their abandonment. Microbial enhanced waterflooding technology has also been shown to be an economically feasible technology in the United States. Complementary environmental research and development will also be required to address any potential environmental impacts of microbial processes. In 1995 at this conference, the goal is to further document and promote microbial processes for improved oil recovery and related technology for solving environmental problems.

  2. Global Fuel Economy Initiative: 50by50 Prospects and Progress...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentglobal-fuel-economy-initiative-50by50 Language: English Policies: Regulations Regulations: "Fuel Efficiency Standards,Mandates...

  3. Northeast States' Hydrogen Economy Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast States' Hydrogen Economy Webinar Northeast States' Hydrogen Economy Webinar Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Northeast States' Hydrogen Economy" held on December 1, 2015. Northeast States' Hydrogen Economy Webinar Slides (4.34 MB) More Documents & Publications Connecticut Fuel Cell Activities: Markets, Programs, and Models 2009 DOE Hydrogen Program Review Presentation Transportation and Stationary

  4. Supporting a Hawaii Hydrogen Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporting a Hawaii Hydrogen Economy Supporting a Hawaii Hydrogen Economy Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Supporting a Hawaii Hydrogen Economy" held on July 29, 2014. Supporting a Hawaii Hydrogen Economy Webinar Slides (2.12 MB) More Documents & Publications 2010 Smart Grid Peer Review Day One Morning Presentations 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update Hawaii Hydrogen Energy Park

  5. South Africa-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    Peru, Philippines, Russian Federation, Rwanda, Senegal, Serbia, South Africa and Ukraine." References "UNEP Green Economy Advisory Services" Retrieved from "http:...

  6. American Recovery and Reinvestment Act of 2009: Bioenergy Technologies Office Investments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office has awarded about $718 million in American Recovery and Reinvestment Act of 2009 (Recovery Act) funds. 1 The projects the Office is supporting are intended to * Accelerate advanced biofuels research, development, and demonstration * Speed the deployment and commercialization of advanced biofuels and bioproducts * Further the U.S. bioindustry through market transformation and by creating or saving a range of jobs. $509 Million for Pilot- and Demonstration-Scale

  7. International Partnership for a Hydrogen Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership for a Hydrogen Economy International Partnership for a Hydrogen Economy "Presentation summarizing the vision, mission, goals and plans for DOE's International Partnership for a Hydrogen Economy " iphe_overview.pdf (637.95 KB) More Documents & Publications Hydrogen Program Goal-Setting Methodologies Report to Congress The Non-Petroleum Based Fuel Initiative - NPBF The Pathway to Energy Security

  8. Use of DRACS to Enhance HTGRs Passive Safety and Economy

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Ling Zou

    2011-06-01

    This paper discusses the use of DRACS to Enhance HTGRs Passive Safety and Economy. One of the important requirements for Gen. IV High Temperature Gas Cooled Reactors (HTGR) is passive safety. Currently all the HTGR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. [1] The decay heat first is transferred to core barrel by conduction and radiation, and then to reactor vessel by thermal radiation and convection; finally the decay heat is transferred to natural circulated air or water systems. RVACS can be characterized as a surface based decay heat removal system. Similar concepts have been widely used in sodium cooled fast reactor (SFR) designs, advanced light water reactors like AP1000. The RVACS is especially suitable for smaller power reactors since small systems have relatively larger surface area. RVACS tends to be less expensive. However, it limits the largest achievable power level for modular HTGRs due to the mismatch between the reactor power (proportional to volume) and decay heat removal capability (proportional to surface). When the relative decay heat removal capability is reduced, the peak fuel temperature increases, even close to the design limit. Annual designs with internal reflector can mitigate this effect therefore further increase the power. Another way to increase power is to increase power density. However, it is also limited by the decay heat removal capability. Besides safety, HTGRs also need to be economical in order to compete with other reactor designs. The limit of decay heat removal capability set by using RVACS has affected the economy of HTGRs. Forsberg [2] pointed out other disadvantages of using RVACS such as conflicting functional requirements for the reactor vessel and scaling distortion for integral effect test of the system performance. A potential alternative solution is to use a volume based passive decay removal system, call Direct Reactor Auxiliary Cooling Systems (DRACS), to remove

  9. International Partnership for a Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Partnership for the Hydrogen Economy (IPHE) U.S. Department of Energy Why Hydrogen? It's abundant, clean, efficient, and can be derived from diverse domestic resources. . Distributed Generation Transportation Biomass Hydro Wind Solar Geothermal Coal Nuclear Natural Gas Oil With Carbon Sequestration HIGH EFFICIENCY & RELIABILITY ZERO/NEAR ZERO EMISSIONS 3 President Bush Launches the Hydrogen Fuel Initiative "Tonight I am proposing $1.2 billion in research funding ....

  10. Funding Opportunity Announcement: Recovery Act ? Energy Efficiency...

    Office of Environmental Management (EM)

    Funding Opportunity Announcement: Recovery Act Energy Efficiency and Conversation Block Grants Formula Grants Funding Opportunity Announcement: Recovery Act Energy...

  11. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for ...

  12. Incorporating Energy Efficiency into Disaster Recovery Efforts...

    Energy Savers [EERE]

    Disaster Recovery Efforts Incorporating Energy Efficiency into Disaster Recovery Efforts Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: ...

  13. Idaho Site Advances Recovery Act Cleanup after Inventing Effective Treatment

    Broader source: Energy.gov [DOE]

    For the first time in history, workers at the Idaho site achieved success in the initial cleanup of potentially dangerous sodium in a decommissioned nuclear reactor using an innovative treatment...

  14. US Recovery Act Smart Grid Projects - Advanced Metering Infrastructure...

    Open Energy Info (EERE)

    Municipal Light Department Smart Grid Project Marblehead Massachusetts 1,346,175 2,692,350 Navajo Tribal Utility Association Smart Grid Project Ft. Defiance Arizona...

  15. Idaho Site Advances Recovery Act Cleanup after Inventing Effective...

    Office of Environmental Management (EM)

    workers at the Idaho site achieved success in the initial cleanup of potentially dangerous sodium in a de- commissioned nuclear reactor using an innovative treatment process. ...

  16. Recovery Act. Development and Validation of an Advanced Stimulation...

    Office of Scientific and Technical Information (OSTI)

    hydro-thermal fracturing simulator that is particularly suited for EGS ... results to test and validate the 3D simulator. 3) Perform discrete elementparticulate ...

  17. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Golden, CO); Eggeman, Timothy J. (Lakewood, CO)

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  18. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  19. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Menlo Park, CA); Eggeman, Timothy J. (Lakewood, CO)

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  20. Heat recovery casebook

    SciTech Connect (OSTI)

    Lawn, J.

    1980-10-01

    Plants and factories could apply a great variety of sources and uses for valuable waste heat. Applications may be evaluated on the basis of real use for a specific waste heat, high-enough temperature and quality of work, and feasibility of mechanical heat transfer method. Classification may be by temperature, application, heat-transfer equipment, etc. Many buildings and industrial processes lend themselves well to heat-recovery strategies. Five case histories describe successful systems used by the Continental Corporation Data Center; Nabisco, Inc.; Kasper Foundry Company; Seven Up Bottling Company of Indiana; and Lehr Precision Tool company. (DCK)

  1. Pyrolysis with staged recovery

    DOE Patents [OSTI]

    Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.; Winter, Bruce L.

    1979-03-20

    In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source fed over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue.

  2. Sulfur recovery process

    SciTech Connect (OSTI)

    Hise, R.E.; Cook, W.J.

    1991-06-04

    This paper describes a method for recovering sulfur from a process feed stream mixture of gases comprising sulfur-containing compounds including hydrogen sulfide using the Claus reaction to convert sulfur-containing compounds to elemental sulfur and crystallization to separate sulfur-containing compounds from a tail gas of the Claus reaction for further processing as a recycle stream. It comprises: providing a Claus feed stream containing a stoichiometric excess of hydrogen sulfide, the Claus feed stream including the process feed stream and the recycles stream; introducing the Claus feed stream and an oxidizing agent into a sulfur recovery unit for converting sulfur-containing compounds in the Claus feed stream to elemental sulfur; withdrawing the tail gas from the sulfur recovery unit; separating water from the tail gas to producing a dehydrated tail gas; separating sulfur-containing compounds including carbonyl sulfide from the dehydrated tail gas as an excluded material by crystallization and withdrawing an excluded material-enriched output from the crystallization to produce the recycle stream; and combining the recycle stream with the process feed stream to produce the Claus feed stream.

  3. Resource Recovery Opportunities at America's Water Resource Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at America's Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL williamsbiomass2014.pdf (1.26 MB) More ...

  4. Global Fuel Economy Initiative | Open Energy Information

    Open Energy Info (EERE)

    & North America, Europe, Latin America & Caribbean, Africa & Middle East Related Tools Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences Turn Down the...

  5. Economy Through Product Diversity: Integrated Biorefineries

    Energy Savers [EERE]

    broad range of biomass feedstocks into affordable biofuels, biopower, and other products. ... produce 21 billion gallons of advanced biofuels in 2022. This target creates an urgent ...

  6. Recovery Act State Memos Alaska

    Broader source: Energy.gov (indexed) [DOE]

    Alaska For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  7. Recovery Act State Memos Arizona

    Broader source: Energy.gov (indexed) [DOE]

    Arizona For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  8. Recovery Act State Memos Arkansas

    Broader source: Energy.gov (indexed) [DOE]

    Arkansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  9. Recovery Act State Memos California

    Broader source: Energy.gov (indexed) [DOE]

    California For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  10. Recovery Act State Memos Colorado

    Broader source: Energy.gov (indexed) [DOE]

    Colorado For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  11. Recovery Act State Memos Connecticut

    Broader source: Energy.gov (indexed) [DOE]

    Connecticut For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  12. Recovery Act State Memos Delaware

    Broader source: Energy.gov (indexed) [DOE]

    Delaware For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  13. Recovery Act State Memos Florida

    Broader source: Energy.gov (indexed) [DOE]

    Florida For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. Recovery Act State Memos Georgia

    Broader source: Energy.gov (indexed) [DOE]

    Georgia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. Recovery Act State Memos Guam

    Broader source: Energy.gov (indexed) [DOE]

    Guam For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  16. Recovery Act State Memos Hawaii

    Broader source: Energy.gov (indexed) [DOE]

    Hawaii For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  17. Recovery Act State Memos Idaho

    Broader source: Energy.gov (indexed) [DOE]

    Idaho For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  18. Recovery Act State Memos Indiana

    Broader source: Energy.gov (indexed) [DOE]

    Indiana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  19. Recovery Act State Memos Iowa

    Broader source: Energy.gov (indexed) [DOE]

    Iowa For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  20. Recovery Act State Memos Kansas

    Broader source: Energy.gov (indexed) [DOE]

    Kansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  1. Recovery Act State Memos Kentucky

    Broader source: Energy.gov (indexed) [DOE]

    Kentucky For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  2. Recovery Act State Memos Louisiana

    Broader source: Energy.gov (indexed) [DOE]

    Louisiana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  3. Recovery Act State Memos Maine

    Broader source: Energy.gov (indexed) [DOE]

    Maine For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  4. Recovery Act State Memos Maryland

    Broader source: Energy.gov (indexed) [DOE]

    Maryland For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  5. Recovery Act State Memos Massachusetts

    Broader source: Energy.gov (indexed) [DOE]

    Massachusetts For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  6. Recovery Act State Memos Michigan

    Broader source: Energy.gov (indexed) [DOE]

    Michigan For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  7. Recovery Act State Memos Minnesota

    Broader source: Energy.gov (indexed) [DOE]

    Minnesota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  8. Recovery Act State Memos Mississippi

    Broader source: Energy.gov (indexed) [DOE]

    Mississippi For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  9. Recovery Act State Memos Montana

    Broader source: Energy.gov (indexed) [DOE]

    Montana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  10. Recovery Act State Memos Nebraska

    Broader source: Energy.gov (indexed) [DOE]

    Nebraska For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  11. Recovery Act State Memos Ohio

    Broader source: Energy.gov (indexed) [DOE]

    Ohio For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  12. Recovery Act State Memos Oklahoma

    Broader source: Energy.gov (indexed) [DOE]

    Oklahoma For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  13. Recovery Act State Memos Oregon

    Broader source: Energy.gov (indexed) [DOE]

    Oregon For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. Recovery Act State Memos Texas

    Broader source: Energy.gov (indexed) [DOE]

    Tennessee For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. Recovery Act State Memos Utah

    Broader source: Energy.gov (indexed) [DOE]

    Utah For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  16. Recovery Act State Memos Vermont

    Broader source: Energy.gov (indexed) [DOE]

    Vermont For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  17. Recovery Act State Memos Virginia

    Broader source: Energy.gov (indexed) [DOE]

    Virginia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  18. Recovery Act State Memos Washington

    Broader source: Energy.gov (indexed) [DOE]

    Washington For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  19. Recovery Act State Memos Wyoming

    Broader source: Energy.gov (indexed) [DOE]

    Wyoming For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  20. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financial Opportunities » Past Opportunities » Recovery Act Recovery Act Pie chart diagram shows the breakdown of how cost-sharing funds relatedto the American Recovery and Reinvestment Act from industry participants,totaling $54 million (for a grand total of $96 million), are allocatedwithin the Fuel Cell Technologies Office, updated September 2010. Thediagram shows that $18.5 million is allocated to backup power, $9.7million is allocated to lift truck, $7.6 million is allocated to

  1. Recovery Newsletters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Newsletters Recovery Newsletters RSS October 1, 2011 2011 ARRA Newsletters December 1, 2010 2010 ARRA Newsletters November 1, 2009 2009 ARRA Newsletters

  2. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to increase our supply of clean, renewable energy. July 11, 2013 Demand Response: Lessons Learned with an Eye to the Future Under the Recovery Act, the Energy Department...

  3. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RECIPIENTS Smart Grid Investment Grant 3,482,831,000 99 ... Transmission Planning 80,000,000 6 State Assistance for Recovery Act Related Electricity Policies ...

  4. Register file soft error recovery

    DOE Patents [OSTI]

    Fleischer, Bruce M.; Fox, Thomas W.; Wait, Charles D.; Muff, Adam J.; Watson, III, Alfred T.

    2013-10-15

    Register file soft error recovery including a system that includes a first register file and a second register file that mirrors the first register file. The system also includes an arithmetic pipeline for receiving data read from the first register file, and error detection circuitry to detect whether the data read from the first register file includes corrupted data. The system further includes error recovery circuitry to insert an error recovery instruction into the arithmetic pipeline in response to detecting the corrupted data. The inserted error recovery instruction replaces the corrupted data in the first register file with a copy of the data from the second register file.

  5. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: Electric Vehicle Benefits Recovery Act Plug-in electric vehicles (also known as electric cars or EVs) are connected, fun, and practical. They can reduce emissions, ...

  6. Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Scientific Computing Research Advanced Scientific Computing Research Discovering, ... The DOE Office of Science's Advanced Scientific Computing Research (ASCR) program ...

  7. Energy recovery system

    DOE Patents [OSTI]

    Moore, Albert S.; Verhoff, Francis H.

    1980-01-01

    The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

  8. Speech recovery device

    DOE Patents [OSTI]

    Frankle, Christen M.

    2004-04-20

    There is provided an apparatus and method for assisting speech recovery in people with inability to speak due to aphasia, apraxia or another condition with similar effect. A hollow, rigid, thin-walled tube with semi-circular or semi-elliptical cut out shapes at each open end is positioned such that one end mates with the throat/voice box area of the neck of the assistor and the other end mates with the throat/voice box area of the assisted. The speaking person (assistor) makes sounds that produce standing wave vibrations at the same frequency in the vocal cords of the assisted person. Driving the assisted person's vocal cords with the assisted person being able to hear the correct tone enables the assisted person to speak by simply amplifying the vibration of membranes in their throat.

  9. Enhanced oil recovery system

    DOE Patents [OSTI]

    Goldsberry, Fred L.

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  10. Feasibility of Thermoelectrics for Waste Heat Recovery in Hybrid Vehicles: Preprint

    SciTech Connect (OSTI)

    Smith, K.; Thornton, M.

    2007-12-01

    Using advanced materials, thermoelectric conversion of efficiencies on the order of 20% may be possible in the near future. Thermoelectric generators offer potential to increase vehicle fuel economy by recapturing a portion of the waste heat from the engine exhaust and generating electricity to power vehicle accessory or traction loads.

  11. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1991-01-01

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  12. Feebates and Fuel Economy Standards: Impacts on Fuel Use in Light-Duty Vehicles and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Greene, David L

    2011-01-01

    This study evaluates the potential impacts of a national feebate system, a market-based policy that consists of graduated fees on low-fuel-economy (or high-emitting) vehicles and rebates for high-fuel-economy (or lowemitting) vehicles. In their simplest form, feebate systems operate under three conditions: a benchmark divides all vehicles into two categories-those charged fees and those eligible for rebates; the sizes of the fees and rebates are a function of a vehicle's deviation from its benchmark; and placement of the benchmark ensures revenue neutrality or a desired level of subsidy or revenue. A model developed by the University of California for the California Air Resources Board was revised and used to estimate the effects of six feebate structures on fuel economy and sales of new light-duty vehicles, given existing and anticipated future fuel economy and emission standards. These estimates for new vehicles were then entered into a vehicle stock model that simulated the evolution of the entire vehicle stock. The results indicate that feebates could produce large, additional reductions in emissions and fuel consumption, in large part by encouraging market acceptance of technologies with advanced fuel economy, such as hybrid electric vehicles.

  13. Increasing Access to Materials Critical to the Clean Energy Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Access to Materials Critical to the Clean Energy Economy Increasing Access to Materials Critical to the Clean Energy Economy January 9, 2013 - 12:30pm Addthis Europium, a rare earth element that has the same relative hardness of lead, is used to create fluorescent lightbulbs. With no proven substitutes, europium is considered critical to the clean energy economy. | Photo courtesy of the Ames Laboratory. Europium, a rare earth element that has the same relative hardness

  14. International Partnership for Hydrogen and Fuel Cells in the Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Partnership for Hydrogen and Fuel Cells in the Economy International Partnership for Hydrogen and Fuel Cells in the Economy The United States is a founding member of the International Partnership for Hydrogen and Fuel Cells in the Economy (IPHE), which was created in 2003 to foster international cooperation on hydrogen and fuel cell R&D, common codes and standards, and information sharing on infrastructure development. The IPHE's 17 partners organize, evaluate, and

  15. Special Report on The Department of Energy's Acquisition Workforce and its Impact on Implementation of the American Recovery and Reinvestment Act of 2009

    SciTech Connect (OSTI)

    2009-03-01

    Signed by the President on February 17, 2009, the American Recovery and Reinvestment Act of 2009 (Recovery Act) seeks to strengthen the U.S. economy through the creation of new jobs, aiding State and local governments with budget shortfalls, and investing in the long-term health of the Nation's economic prosperity. Under the Recovery Act, the Department of Energy will receive approximately $40 billion for various energy, environmental, and science programs and initiatives. To have an immediate stimulative impact on the U.S. economy, the Department's stated goal is to ensure that these funds are spent as expeditiously as possible, without risking transparency and accountability. Given the Department's almost total reliance on the acquisition process (contracts, grants, cooperative agreements, etc.) to carry out its mission, enhanced focus on contract administration and, specifically, the work performed by Federal acquisition officials is of vital importance as the unprecedented flow of funds begins under the Recovery Act.

  16. Advanced Combustion Technology to Enable High Efficiency Clean Combustion |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research at Cummins to explore strategies for fuel economy improvements (PCCI and HECC) and redced engine-out NOx emissions. deer08_stanton.pdf (1.23 MB) More Documents & Publications Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions with Improved Thermal Efficiency Development of Enabling

  17. Energy Department Launches New Research Program to Advance Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Launches New Research Program to Advance Solar Technologies Energy Department Launches New Research Program to Advance Solar Technologies February 23, 2012 - 3:51pm Addthis As part of the Obama Administration's blueprint for an American economy built to last, Energy Secretary Steven Chu today announced $3 million available this year to support research to significantly lower the cost of solar energy. The funding will enable collaborative research teams

  18. 2012 Annual Merit Review Results Report - Advanced Combustion Engine Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -1 4. Advanced Combustion Engine Technologies The Advanced Combustion Engine R&D subprogram of the U.S. Department of Energy's Vehicle Technologies Program (VTP) is improving the fuel economy of passenger vehicles (cars and light trucks) and commercial vehicles (medium-duty and commercial trucks) by increasing the efficiency of the engines that power them. Work is done in collaboration with industry, national laboratories, and universities, as well as in conjunction with the U.S. DRIVE

  19. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Hyman, H.H.; Dreher, J.L.

    1959-07-01

    The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

  20. Energy recovery ventilator

    SciTech Connect (OSTI)

    Benoit, Jeffrey T.; Dobbs, Gregory M.; Lemcoff, Norberto O.

    2015-06-23

    An energy recovery heat exchanger (100) includes a housing (102). The housing has a first flowpath (144) from a first inlet (104) to a first outlet (106). The housing has a second flowpath (146) from a second inlet (108) to a second outlet (110). Either of two cores may be in an operative position in the housing. Each core has a number of first passageways having open first and second ends and closed first and second sides. Each core has a number of second such passageways interspersed with the first passageways. The ends of the second passageways are aligned with the sides of the first passageways and vice versa. A number of heat transfer member sections separate adjacent ones of the first and second passageways. An actuator is coupled to the carrier to shift the cores between first and second conditions. In the first condition, the first core (20) is in the operative position and the second core (220) is not. In the second condition, the second core is in the operative position and the first core is not. When a core is in the operative position, its first passageways are along the first flowpath and the second passageways are along the second flowpath.

  1. Refrigerant recovery system

    SciTech Connect (OSTI)

    Abraham, A.W.

    1991-08-20

    This patent describes improvement in a refrigerant recovery apparatus of the type having inlet means for connecting to a refrigerant air system to withdraw refrigerant from the system, expansion means for converting refrigerant received from the system in liquid phase to a gaseous refrigerant, a compressor having a suction chamber with a suction inlet for receiving and pressurizing the gaseous refrigerant, the compressor having a housing containing oil for lubricating the compressor, a condenser for receiving the pressurized gaseous refrigerant and condensing it to liquid refrigerant, and a storage chamber for storing the liquid refrigerant. The improvement comprises in combination: oil separator means mounted exterior of the housing to one end of an inlet line, which has another end connected to the suction inlet of the compressor for receiving the flow of refrigerant from the refrigerated air system for separating out oil mixed with the refrigerant being received from the refrigerated air system prior to the refrigerant entering the suction inlet of the compressor; and the oil separator means being mounted at a lower elevation than the suction inlet of the compressor, the inlet line being unrestricted for allowing refrigerant flow to the compressor and oil from the compressor for draining oil in the housing of the compressor above the suction inlet back through the inlet line into the oil separator means when the compressor is not operating.

  2. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-09-01

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  3. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, James W.

    1992-01-01

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  4. Before the Subcommittee on Environment and the Economy - House...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    House Energy and Commerce Committee Before the Subcommittee on Environment and the Economy - House Energy and Commerce Committee Testimony of Ernest Moniz, Secretary of Energy...

  5. National Labs Work to Settle PHEV Fuel Economy Conundrum - News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Labs Work to Settle PHEV Fuel Economy Conundrum NREL-developed methodology shows ... joined forces with researchers from Idaho National Laboratory (INL) and Argonne ...

  6. 2011 Fuel Economy Guide Now Available | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Agency (EPA) released the 2011 Fuel Economy Guide. This annual guide provides consumers with information about estimated mileage and fuel costs for model year 2011 vehicles. ...

  7. Enhancing low-carbon development by greening the economy: policy...

    Open Energy Info (EERE)

    low-carbon development by greening the economy: policy dialogue, advisory services, benchmarking Jump to: navigation, search Name Enhancing low-carbon development by greening the...

  8. Promoting a Green Economy through Clean Transportation Alternatives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- ... Economy through Clean Transportation Alternatives EA-1816: Final Environmental Assessment

  9. Darleane C. 29 ENERGY PLANNING, POLICY AND ECONOMY; SCIENTIFIC...

    Office of Scientific and Technical Information (OSTI)

    contributions of Glenn T. Seaborg on nuclear science Hoffman, Darleane C. 29 ENERGY PLANNING, POLICY AND ECONOMY; SCIENTIFIC PERSONNEL; TECHNOLOGY IMPACTS; CHEMISTRY; EDUCATION;...

  10. Burkina Faso-Partnership for Action on Green Economy (PAGE) ...

    Open Energy Info (EERE)

    Want, which recognizes the green economy as a vehicle for sustainable development and poverty eradication. PAGE will support 30 countries over the next seven years in building...

  11. Senegal-Partnership for Action on Green Economy (PAGE) | Open...

    Open Energy Info (EERE)

    Want, which recognizes the green economy as a vehicle for sustainable development and poverty eradication. PAGE will support 30 countries over the next seven years in building...

  12. Mauritius-Partnership for Action on Green Economy (PAGE) | Open...

    Open Energy Info (EERE)

    Want, which recognizes the green economy as a vehicle for sustainable development and poverty eradication. PAGE will support 30 countries over the next seven years in building...

  13. Green Economy: Developing Country Success Stories | Open Energy...

    Open Energy Info (EERE)

    Solar, Buildings, Forestry, Agriculture Topics: Background analysis Resource Type: Lessons learnedbest practices Website: www.unep.orgpdfGreenEconomySuccessStories.pdf...

  14. New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Fuel Economy Standards Will Continue to Inspire Innovation New Vehicle Fuel ... President Obama announced a landmark agreement with automakers that sets aggressive new ...

  15. Supporting New Mexico's economy LOS ALAMOS, New Mexico, April...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab awards 753 million in contracts April 16, 2009 Supporting New Mexico's economy LOS ALAMOS, New Mexico, April 16, 2009- Los Alamos National Security, LLC recently awarded...

  16. Carbon Geography: The Political Economy of Congressional Support...

    Office of Scientific and Technical Information (OSTI)

    to who votes in favor of mitigating greenhouse gas emissions. This paper presents a political economy analysis of the determinants of -pro-green votes on such legislation. ...

  17. Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet ...

    Open Energy Info (EERE)

    Efficiency ToolSet Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet AgencyCompany Organization: FIA...

  18. ENERGY PLANNING, POLICY AND ECONOMY; 02 PETROLEUM; 01 COAL, LIGNITE...

    Office of Scientific and Technical Information (OSTI)

    Philippines: Asia Pacific energy series: Country report Hoffman, S. 29 ENERGY PLANNING, POLICY AND ECONOMY; 02 PETROLEUM; 01 COAL, LIGNITE, AND PEAT; PHILIPPINES; ECONOMIC...

  19. 15 GEOTHERMAL ENERGY; 29 ENERGY PLANNING, POLICY AND ECONOMY...

    Office of Scientific and Technical Information (OSTI)

    of district heating systems McDonald, C.L. 15 GEOTHERMAL ENERGY; 29 ENERGY PLANNING, POLICY AND ECONOMY; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; DISTRICT...

  20. DOE and EPA Release 2011 Annual Fuel Economy Guide | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EPA and DOE will provide additional fuel economy information online as more 2011 vehicles, including electric and plug-in hybrid cars, become available. In addition to being ...

  1. Sustainable Energy Economy: The Next Challenge for Systems Engineers; Preprint

    SciTech Connect (OSTI)

    Snyder, N.

    2008-06-01

    This paper discusses large, past projects that may provide insights into how systems engineers can help in the transition to a sustainable energy economy.

  2. Natural Gas Pathways and Fuel Economy Guide Comparison

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I presentation slides: Natural Gas pathways and Fuel economy Guide Comparison Bob Wimmer, Toyota Natural Gas Pathways Toyota estimation Vehicle Total Fuel efficiency Range ...

  3. Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower

    Broader source: Energy.gov (indexed) [DOE]

    07-01-3994 Fuel Economy and Emissions of the Ethanol- Optimized Saab 9-5 Biopower Brian H. West, Alberto J. López, Timothy J. Theiss, Ronald L. Graves, John M. Storey and Samuel A. Lewis Oak Ridge National Laboratory ABSTRACT Saab Automobile recently released the BioPower engines, advertised to use increased turbocharger boost and spark advance on ethanol fuel to enhance performance. Specifications for the 2.0 liter turbocharged engine in the Saab 9-5 Biopower 2.0t report 150 hp (112 kW) on

  4. INFORMATION: Special Report on "Selected Department of Energy Program Efforts to Implement the American Recovery and Reinvestment Act"

    SciTech Connect (OSTI)

    2009-12-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) was enacted on February 17, 2009, to jumpstart the economy by creating or saving millions of jobs, spurring technological advances in health and science, and investing in the Nation's energy future. The Department of Energy received over $32.7 billion in Recovery Act funding for various science, energy, and environmental programs and initiatives. As of November 2009, the Department had obligated $18.3 billion of the Recovery Act funding, but only $1.4 billion had been spent. The Department's Offices of Energy Efficiency and Renewable Energy, Fossil Energy, Environmental Management, Science, and Electricity Delivery and Energy Reliability received the majority of funding allocated to the Department, about $32.3 billion. Obligating these funds by the end of Fiscal Year 2010, as required by the Recovery Act, and overseeing their effective use in succeeding years, represents a massive workload increase for the Department's programs. The effort to date has strained existing resources. As has been widely acknowledged, any effort to disburse massive additional funding and to expeditiously initiate and complete projects increases the risk of fraud, waste and abuse. It is, therefore, important for the Department's program offices to assess and mitigate these risks to the maximum extent practicable. In this light, we initiated this review as an initial step in the Office of Inspector General's charge to determine whether the Department's major program offices had developed an effective approach for identifying and mitigating risks related to achieving the goals and objectives of the Recovery Act. The Department's program offices included in our review identified risks and planned mitigation strategies that, if successfully implemented and executed, should help achieve the goals and objectives of the Recovery Act. While each office identified risks unique to its respective areas of responsibility, there were a

  5. Recovery Act: State Assistance for Recovery Act Related Electricity Policies

    Broader source: Energy.gov [DOE]

    State public utility commissions (PUCs), which regulate and oversee electricity projects in their states, will be receiving more than $44.2 million in Recovery Act funding to hire new staff and retrain existing employees to ensure they have the capacity to quickly and effectively review proposed electricity projects. The funds will help the individual state PUCs accelerate reviews of the large number of electric utility requests that are expected under the Recovery Act.

  6. EA-1769: Battleground Energy Recovery Project, Harris County, Texas

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide $1.94 million in cost-shared funding to the Houston Advanced Research Center for the Battleground Energy Recovery Project, which would produce 8 megawatts of electricity from high pressure steam generated by capturing heat that is currently lost at the Clean Harbors Deer Park facility. The proposed project was selected by the DOE's Office of Energy Efficiency and Renewable Energy to advance research and demonstration of energy efficiency and renewable energy technologies.

  7. advanced manufacutring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manufacutring - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  8. Advanced Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Manufacturing Office 13 Selectees Announced for High Performance Computing for Manufacturing Program 13 Selectees Announced for High Performance Computing for Manufacturing Program EERE, in partnership with Lawrence Livermore National Laboratory (LLNL), announced the second round of selections for the High Performance Computing for Manufacturing ("HPC4Mfg") Program. Thirteen projects were selected to receive nearly $3.8 million for manufacturers to use high-performance

  9. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  10. Hanford Information Related to the American Recovery and Reinvestment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Font Size Recovery.gov Banner Recovery Work Updates Recovery Act Jobs Recovery.gov Prime Contractor plus Subcontractor Jobs 1 Lives Touched2 DOE Richland Operations Office...

  11. Energy Recovery Linacs for Light Source Applications

    SciTech Connect (OSTI)

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  12. Welcome | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    short time frames. The knowledge our users gain here promises to have real and positive impact on our technologies, our health, our economy, and our fundamental understanding of...

  13. Enhanced Oil Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Oil Recovery Enhanced Oil Recovery Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory over the past 30 years, ...

  14. Gas Recovery Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Jump to: navigation, search Name: Gas Recovery Systems Place: California Zip: 94550 Product: Turnkey landfill gas (LFG) energy extraction systems. References: Gas Recovery...

  15. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  16. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Positive Water Resource Recovery Workshop Presentations Energy Positive Water Resource Recovery Workshop Presentations Presentations: Keynote 1: Energy-Positive Water ...

  17. Energy Recovery Inc | Open Energy Information

    Open Energy Info (EERE)

    global developer and manufacturer of energy recovery devices utilized in the water desalination industry. References: Energy Recovery Inc1 This article is a stub. You can help...

  18. Energy Recovery Linacs for Commercial Radioisotope Production...

    Office of Scientific and Technical Information (OSTI)

    Energy Recovery Linacs for Commercial Radioisotope Production Citation Details In-Document Search Title: Energy Recovery Linacs for Commercial Radioisotope Production Photonuclear ...

  19. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  20. Recovery Act Recipient Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) Smart Grid Investment ...

  1. COLORADO RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Colorado are ...

  2. DELAWARE RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Delaware are ...

  3. IOWA RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Iowa are ...

  4. ARKANSAS RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arkansas are ...

  5. GUAM RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Guam are ...

  6. CONNECTICUT RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Connecticut are ...

  7. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate ...

  8. Enhancing Heat Recovery for Thermoelectric Devices | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Recovery for Thermoelectric Devices Enhancing Heat Recovery for Thermoelectric Devices Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research ...

  9. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Environmental Management (EM)

    Energy Positive Water Resource Recovery Workshop Presentations Energy Positive Water Resource Recovery Workshop Presentations Presentations: Keynote 1: Energy-Positive Water...

  10. Bonneville Power Administration Program Specific Recovery Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bonneville Power Administration Program Specific Recovery Plan Bonneville Power Administration Program Specific Recovery Plan PDF icon Microsoft Word - PSRP May 15 2009 BPA ...

  11. Western Area Power Administration Borrowing Authority, Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Western Area Power Administration Borrowing Authority, Recovery Act Western Area Power Administration Borrowing Authority, Recovery Act PDF icon Microsoft Word - PSRP May 15 2009 ...

  12. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries

  13. Monitoring EERE's Recovery Act Portfolio

    SciTech Connect (OSTI)

    2011-01-01

    Performance monitoring of Recovery Act projects within EERE has been an ongoing effort. Project recipients have been reporting technical and financial progress to project officers on a quarterly basis.

  14. One Woman's Road to Recovery

    Broader source: Energy.gov [DOE]

    Rebecca Bivens applied at Argonne and was hired in April 2009, four months after she lost her second job. She now works in safety and procurement. Her job is funded by the American Recovery and Reinvestment Act.

  15. Recovery Act Funding Opportunities Webcast

    Broader source: Energy.gov [DOE]

    As a result of the 2009 American Reinvestment and Recovery Act, the Geothermal Technologies Office (GTO) has four open Funding Opportunity Announcements (FOAs) totaling $484 million for cost-shared...

  16. Olefin recovery via chemical absorption

    SciTech Connect (OSTI)

    Barchas, R.

    1998-06-01

    The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

  17. Recovery and purification of ethylene

    SciTech Connect (OSTI)

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung; Eng, Wayne W. Y.; Sinclair, Iain; Lodgson, Jeffery S.

    2008-10-21

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  18. Secretary Chu Announces Nearly $80 Million Investment for Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Fueling Infrastructure | Department of Energy Million Investment for Advanced Biofuels Research and Fueling Infrastructure Secretary Chu Announces Nearly $80 Million Investment for Advanced Biofuels Research and Fueling Infrastructure January 13, 2010 - 12:00am Addthis Washington, DC - U.S. Department of Energy Secretary Steven Chu today announced the investment of nearly $80 million under the American Recovery and Reinvestment Act for advanced biofuels research and fueling

  19. LANL exceeds Early Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exceeds Early Recovery Act recycling goals March 8, 2010 More than 136 tons of metal saved from demolished buildings LOS ALAMOS, New Mexico, March 9, 2009-Los Alamos National Laboratory announced today that Lab demolition projects under the American Recovery and Reinvestment Act have recovered more than 136 tons of recyclable metal since work began last year, largely due to the skill of heavy equipment operators and efforts to gut the buildings before they come down. Some 106 tons of metal came

  20. Next generation processes for NGL/LPG recovery

    SciTech Connect (OSTI)

    Pitman, R.N.; Hudson, H.M.; Wilkinson, J.D.; Cuellar, K.T.

    1998-12-31

    Up to now, Ortloff`s Gas Subcooled Process (GSP) and OverHead Recycle Process (OHR) have been the state-of-the-art for efficient NGL/LPG recovery from natural gas, particularly for those gases containing significant concentrations of carbon dioxide (CO{sub 2}). Ortloff has recently developed new NGL recovery processes that advance the start-of-the-art by offering higher recovery levels, improved efficiency, and even better CO{sub 2} tolerance. The simplicity of the new process designs and the significantly lower gas compression requirements of the new processes reduce the investment and operating costs for gas processing plants. For gas streams containing significant amounts of carbon dioxide, the CO{sub 2} removal equipment upstream of the NGL recovery plant can be smaller or eliminated entirely, reducing both the investment cost and the operating cost for gas processing companies. In addition, the new liquids extraction processes can be designed to efficiently recover or reject ethane, allowing the gas processor to respond quickly to changing market conditions. This next generation of NGL/LPG recovery processes is now being applied to natural gas processing here in the US and abroad. Two of the new plants currently under construction provide practical examples of the benefits of the new processes.

  1. Effects of a Transition to a Hydrogen Economy on Employment in the United States

    SciTech Connect (OSTI)

    Tolley, George S.; Jones, Donald W. Mintz, Marianne M.; Smith, Barton A.; Carlson, Eric; Unnasch, Stefan; Lawrence, Michael; Chmelynski, Harry

    2008-07-01

    The U.S. Department of Energy report, Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress, estimates the effects on employment of a U.S. economy transformation to hydrogen between 2020 and 2050. The report includes study results on employment impacts from hydrogen market expansion in the transportation, stationary, and portable power sectors and highlights possible skill and education needs. This study is in response to Section 1820 of the Energy Policy Act of 2005 (Public Law 109-58) (EPACT). Section 1820, “Overall Employment in a Hydrogen Economy,” requires the Secretary of Energy to carry out a study of the effects of a transition to a hydrogen economy on several employment [types] in the United States. As required by Section 1820, the present report considers: • Replacement effects of new goods and services • International competition • Workforce training requirements • Multiple possible fuel cycles, including usage of raw materials • Rates of market penetration of technologies • Regional variations based on geography • Specific recommendations of the study Both the Administration’s National Energy Policy and the Department’s Strategic Plan call for reducing U.S. reliance on imported oil and reducing greenhouse gas emissions. The National Energy Policy also acknowledges the need to increase energy supplies and use more energy-efficient technologies and practices. President Bush proposed in his January 2003 State of the Union Address to advance research on hydrogen so that it has the potential to play a major role in America’s future energy system. Consistent with these aims, EPACT 2005 authorizes a research, development, and demonstration program for hydrogen and fuel cell technology. Projected results for the national employment impacts, projections of the job creation and job replacement underlying the total employment changes, training implications, regional employment impacts and the

  2. Carbon dioxide recovery from cogeneration and energy projects: A technically, environmentally, and economically feasible option

    SciTech Connect (OSTI)

    Rushing, S.A.

    1997-12-31

    In this paper, the topics of carbon dioxide recovery from cogeneration projects and related industrial usage of carbon dioxide will be covered from North American and international perspectives. The CO{sub 2} recovery discussion will largely focus on one particular technology, namely the application of proprietary monoethanolamine (MEA) solvents, which have a very satisfactory record of performance in the cogeneration and power production industries. The US Federal Energy Act, the impetus behind the development of such projects, will be discussed along with its impacts on the feasibility of U.S. projects. This subject would be reviewed for other developed countries and developing economies as well. Moreover, capital and operating costs and requirements will be summarized for such plants, plus existing CO{sub 2} recovery (from cogeneration) projects will be identified.

  3. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect (OSTI)

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  4. Fuel vaporization improves fuel economy of alcohol-burning Sl engines

    SciTech Connect (OSTI)

    Hardenberg, H.O.; Metsch, H.I.; Schaefer, A.J.

    1982-10-01

    Fuel vaporization and combustion of the thereby achieved homogeneous mixtures improve the overall efficiency of SI engines in comparison to operation with liquid fuels. The improvements result from a recovery of waste heat and the thus achieved greater usable energy of the fuel, which is increased by the heat of vaporization over the lower calorific value of the liquid fuel, and from the fact that very lean mixtures can be burnt without misfiring. The favorable fuel economy of the air/fuel-vapor mixture-aspirating engine is explained with the aid of engine cycle computation which also enables comparison of different combustion processes. Consideration of common substances shows that methanol is the fuel best suited for this type of SI engine.

  5. Animal Spirits: How Human Psychology Drives the Economy, and Why it Matters for Global Capitalism

    SciTech Connect (OSTI)

    Shiller, Robert J.

    2010-03-02

    In his lecture, Shiller will discuss the premise of his 2009 book, coauthored with the Nobel Prize-winning economist George A. Akerlof. Winner of the getAbstract International Book Award and the 2009 TIAA-CREF Paul A. Samuelson Award for Outstanding Scholarly Writing on Lifelong Financial Security, the book, which has the same title as Shiller's lecture, discusses how "animal spirits," or human emotions such as confidence, fear, and a concern for fairness, drive financial events, including today's global financial crisis. John Maynard Keynes coined the phrase "animal spirits" to describe the changing psychology that led to the Great Depression and the recovery from it. Like Keynes, Shiller and Akerlof believe that government intervention is necessary to overcome the adverse effects on the economy brought about by unruly and irrational human emotions. In his talk, Shiller will explain how "animal spirits" lead to adverse economic effects, and he will outline his insights on how the global economy can recover from its recent setbacks.

  6. Caustic Recovery Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caustic Recovery Technology Caustic Recovery Technology Full Document and Summary Versions are available for download Caustic Recovery Technology (416.33 KB) Summary - Caustic Recovery Technology (53.85 KB) More Documents & Publications System Planning for Low-Activity Waste at Hanford 2013 Peer Review Presentations-Heat-Power and Biodeisel CX-003496: Categorical Exclusion Determination

  7. Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    SciTech Connect (OSTI)

    Gregory Meisner

    2011-08-31

    We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem, and

  8. Roadmap on Manufacturing R&D for the Hydrogen Economy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Manufacturing R&D for the Hydrogen Economy Roadmap on Manufacturing R&D for the Hydrogen Economy Draft Roadmap on Manufacturing R&D for the Hydrogen Economy prepared for public ...

  9. Fact #629: June 28, 2010 Top Ten Misconceptions about Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about Fuel Economy The Fuel Economy Guide Web site, sponsored by the U. S. Department of ... fuel economy on the www.fueleconomy.gov Web site, Find a Car. 3. It takes more fuel to ...

  10. Cummins Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Cummins Waste Heat Recovery Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_nelson.pdf (295.89 KB) More Documents & Publications Exhaust Energy Recovery Exhaust Energy Recovery Exhaust Energy Recovery

  11. Fueling South Carolina's Clean Energy Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    South Carolina's Clean Energy Economy Fueling South Carolina's Clean Energy Economy June 6, 2012 - 4:15pm Addthis Pure Power, LLC makes products that allow truck engines to reduce emissions and improve fuel economy. The company has increased their energy efficiency and hired new employees. | Photo courtesy of <a href="http://www.flickr.com/photos/clatiek/47587765/">Flickr user ClatieK</a>. Pure Power, LLC makes products that allow truck engines to reduce emissions and

  12. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1978-2014 - Dataset | Department of Energy 0: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 - Dataset Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 - Dataset Excel file and dataset for Corporate Average Fuel Economy Progress, 1978-2014 fotw#870_web.xlsx (17.92 KB) More Documents & Publications Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2

  13. Method of predicting a change in an economy

    DOE Patents [OSTI]

    Pryor, Richard J; Basu, Nipa

    2006-01-10

    An economy whose activity is to be predicted comprises a plurality of decision makers. Decision makers include, for example, households, government, industry, and banks. The decision makers are represented by agents, where an agent can represent one or more decision makers. Each agent has decision rules that determine the agent's actions. Each agent can affect the economy by affecting variable conditions characteristic of the economy or the internal state of other agents. Agents can communicate actions through messages. On a multiprocessor computer, the agents can be assigned to processing elements.

  14. Secondary recovery development in Ecuador

    SciTech Connect (OSTI)

    Arteaga, L.; Endara, J.; Alduja, F.

    1981-03-01

    The oil activity in Ecuador goes back to 1920 when the oil-bearing structures were discovered in the Peninsula of Santa Elena in the Ecuatorian coast. Since that time 2,700 oil wells have been drilled; at the present time, only 650 wells are still producing. Oil production has been decreasing in spite of artificial producing systems (sucker rod pumping, and gas lift). During the period of 1966 to 1969 a total of 8 pilot projects was performed to evaluate the possibility of using secondary recovery methods (waterflooding) in 3 different oil-bearing formations from 5 areas, and utilizing different injection patterns. The results from numerical simulation and pilot projects showed the convenience and easibility of the implmentation of secondary recovery systems (waterflooding) in the Shushufindi-Aguarico field. A detailed description is presented of the development of the secondary recovery methods in Ecuador - antecedents, pilot projects, results, etc.

  15. Moving to a Clean Energy Economy:Opportunities for North Carolina...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moving to a Clean Energy Economy:Opportunities for North Carolina Moving to a Clean Energy Economy:Opportunities for North Carolina A report detailling the economic opportunities ...

  16. Roadmap Workshop on Manufacturing R&D for the Hydrogen Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop on Manufacturing R&D for the Hydrogen Economy Roadmap Workshop on Manufacturing ... R&D for the Hydrogen Economy Roadmap Workshop Hydrogen Program Goal-Setting ...

  17. Road to Recovery: Bringing Recovery to Small Town America

    ScienceCinema (OSTI)

    Nettamo, Paivi

    2012-06-14

    The Recovery Act hits the road to reach out to surrounding towns of the Savannah River Site that are struggling with soaring unemployment rates. This project helps recruit thousands of people to new jobs in environmental cleanup at the Savannah River Site.

  18. ARM and the Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updates/Announcements Thu, 01 Sep 2011 00:00:00 +0000 http://www.arm.gov en September 2011 Thu, 01 Sep 2011 00:00:00 +0000 aa3f1e269969d96bd7b30dd7a408d745 &#60;/p&#62; &#60;p&#62;&#60;strong&#62;Final Recovery Act Milestone Complete! &#60;/strong&#62; This month, ARM celebrates the delivery of the last few instruments for its Recovery Act investment and reports its final FY11 milestone - &#34;Infrastructure Enhancements Complete.&#34; This closes out the

  19. The Effect of Driving Intensity and Incomplete Charging on the Fuel Economy of a Hymotion Prius PHEV

    SciTech Connect (OSTI)

    Richard Barney Carlson

    2009-10-01

    On-road testing was conducted on a Hymotion Prius plug-in hybrid electric vehicle (PHEV) at the Electric Transportation Engineering Corporation in Phoenix, Arizona. The tests were comprised of on-road urban and highway driving during charge-depleting and charge-sustaining operation. Determining real-world effectiveness of PHEVs at reducing petroleum consumption in real world driving was the main focus of the study. Throughout testing, several factors that affect fuel consumption of PHEVs were identified. This report discusses two of these factors: driving intensity (i.e., driving aggressiveness) and battery charging completeness. These two factors are unrelated, yet both significantly impact the vehicles fuel economy. Driving intensity was shown to decrease fuel economy by up to half. Charging completeness, which was affected by human factors and ambient temperature conditions, also showed to have great impact on fuel economy for the Hymotion Prius. These tests were performed for the U.S. Department of Energys Advanced Vehicle Testing Activity. The Advanced Vehicle Testing Activity, part of the U.S. Department of Energys Vehicle Technology Program, is conducted by the Idaho National Laboratory and the Electric Transportation Engineering Corporation.

  20. Biomass Fueling America’s Growing Clean Energy Economy

    Broader source: Energy.gov [DOE]

    Biomass is the most abundant biological material on the planet. It is renewable; it grows almost everywhere; and it provides fuel, power, chemicals, and many other products. Find out how biomass is helping grow America's clean energy economy.

  1. Fuel Economy on the Fly | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FuelEconomy.gov has a mobile version of its popular Find and Compare Cars tool that allows you to search anytime, anywhere. The mobile tool works just like the one on the ...

  2. 2016 American Council for an Energy-Efficient Economy (ACEEE...

    Energy Savers [EERE]

    American Council for an Energy-Efficient Economy (ACEEE) Intelligent Efficiency Conference December 4, 2016 9:00AM EST to December 6, 2016 5:00PM EST Hilton Austin Austin, Texas

  3. "Table 11. Fuel Economy, Selected Survey Years (Miles Per Gallon...

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Economy, Selected Survey Years (Miles Per Gallon)" ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",15.1,16.1,18.3,19.3,19.8,20.2 "Household Characteristics" "Census...

  4. Assessment of California reformulated gasoline impact on vehicle fuel economy

    SciTech Connect (OSTI)

    Aceves, S., LLNL

    1997-01-01

    Fuel economy data contained in the 1996 California Air Resources Board (CARB) report with respect to the introduction of California Reformulated Gasoline (CaRFG) has been examined and reanalyzed by two additional statistical methodologies. Additional data has also been analyzed by these two statistical approaches. Within the assumptions of the analysis, point estimates for the reduction in fuel economy using CaRFG as compared to conventional, non-reformulated gasoline were 2-4%, with a 95% upper confidence bound of 6%. Substantial variations in fuel economy are routine and inevitable due to additional factors which affect mileage, even if there is no change in fuel reformulation. This additional analysis confirms the conclusion reached by CARB with respect to the impact of CaRFG on fuel economy.

  5. Solar Field Gives Tennessee Economy a Boost | Department of Energy

    Office of Environmental Management (EM)

    Solar Field Gives Tennessee Economy a Boost September 14, 2010 - 6:24pm Addthis Efficient Energy of Tennessee installs ... 30 percent of the base costs with a Renewable Energy ...

  6. 2012 Fuel Economy of New Vehicles Sets Record High: EPA

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) reported that model year 2012 vehicles achieved an all-time high fuel economy average of 23.6 miles per gallon.

  7. DOE and EPA Release 2012 Annual Fuel Economy Guide

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. - The Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) are releasing the 2012 Fuel Economy Guide, providing consumers with information that can help...

  8. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The final rule for the Corporate Average Fuel Economy (CAFE) Standards was published in ... The CAFE levels that must be met by the fleet of each manufacturer will be determined by ...

  9. Category:Clean Energy Economy Regions | Open Energy Information

    Open Energy Info (EERE)

    Economy Regions" The following 7 pages are in this category, out of 7 total. B Bay Area G Greater Boston Area N Northeast - NY NJ CT PA Area P Pacific Northwest Area R Rockies...

  10. New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sets aggressive new fuel-economy standards for cars and light-duty trucks. A number of Energy Department projects and investments are unleashing innovation that will create jobs...

  11. Manufacturing R&D for the Hydrogen Economy Roadmap Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Roadmap Workshop In his 2003 State of the Union Address, President Bush announced ... laying the foundation for developing a roadmap to guide and coordinate R&D efforts on ...

  12. 2010 Annual Fuel Economy Guide Now Available | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    "It's an easy, accessible resource for everyone, and helps us cut harmful pollution from the air, and save money for American drivers." "Fuel economy is about both saving energy ...

  13. Natural Gas Pathways and Fuel Economy Guide Comparison | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Pathways and Fuel Economy Guide Comparison Natural Gas Pathways and Fuel Economy Guide Comparison Presentation by Bob Wimmer, Toyota, at the Natural Gas and Hydrogen Infrastructure Opportunities Workshop held October 18-19, 2011, in Lemont, Illinois. oct11_infrastructure_wimmer.pdf (398.09 KB) More Documents & Publications Vehicle Technologies Office: Transitioning the Transportation Sector - Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles Natural Gas and

  14. Kansas wind program stimulates rural economy | Department of Energy

    Energy Savers [EERE]

    Kansas wind program stimulates rural economy Kansas wind program stimulates rural economy December 9, 2009 - 11:38am Addthis Joshua DeLung What will the project do? Students in the Wind for Schools program gain not only practical knowledge in wind turbine technologies, but also they get hands-on experience installing turbines statewide. During an economic downturn, it's always a struggle for recent college graduates to find jobs and a place to put down roots amid a tightening workforce.

  15. Research Shows Ventilated Auto Seats Improve Fuel Economy, Comfort - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Research Shows Ventilated Auto Seats Improve Fuel Economy, Comfort March 2, 2006 Golden, Colo. - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has demonstrated that ventilated automotive seats not only can improve passenger comfort but also a vehicle's fuel economy. That's because ventilated seats keep drivers and passengers cooler, so they need less air conditioning to be comfortable. NREL's Vehicle Ancillary Loads Reduction team has been

  16. Iowa's Clean Energy Economy is Working | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iowa's Clean Energy Economy is Working Iowa's Clean Energy Economy is Working July 30, 2012 - 1:52pm Addthis Under Secretary Sandalow tours Keystone Electrical Manufacturing Company with employees at the plant. | Photo courtesy of Keystone Manufacturing Co. Under Secretary Sandalow tours Keystone Electrical Manufacturing Company with employees at the plant. | Photo courtesy of Keystone Manufacturing Co. David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant

  17. Lab's Impact on Colorado's Economy Triples - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab's Impact on Colorado's Economy Triples NREL expands workforce, campus and contracts over three years February 11, 2011 The presence of the U.S. Department of Energy's National Renewable Energy Laboratory in Colorado is a $714 million annual boost to the state's economy, according to data compiled in a soon to be released analysis by the University of Colorado. That's more than three times what it was just three years ago, when the economic impact was $192 million. NREL is the nation's

  18. Generating Bioenergy Solutions for the Clean Energy Economy of Tomorrow |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Generating Bioenergy Solutions for the Clean Energy Economy of Tomorrow Generating Bioenergy Solutions for the Clean Energy Economy of Tomorrow June 10, 2014 - 2:50pm Addthis Imagine Tomorrow participants Pavan Kumar (from left), Isaak Nanneman, Ethan Perrin, Andrew Wang and Oisin Doherty were selected by the Bioenergy Technologies Office to present their idea at the Biomass 2014 conference next month. The student team from Redmond, Washington, was chosen for their idea

  19. CODES & STANDARDS FOR THE HYDROGEN ECONOMY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CODES & STANDARDS FOR THE HYDROGEN ECONOMY CODES & STANDARDS FOR THE HYDROGEN ECONOMY 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. scsp_01_nakarado.pdf (806.45 KB) More Documents & Publications CSA International Certification Discussion Hydrogen Technology Workshop Fueling Components Testing and Certification US DRIVE Hydrogen Codes and Standards Technical Team Roadmap

  20. Building an American Economy to Last: American Competiveness in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing | Department of Energy an American Economy to Last: American Competiveness in Manufacturing Building an American Economy to Last: American Competiveness in Manufacturing August 16, 2012 - 9:20am Addthis Saving Energy and Resources 1 of 4 Saving Energy and Resources Thanks to additive manufacturing technology, Oak Ridge National Laboratory was able to fabricate a robotic hand with less energy use and material waste. The novel, lightweight, low-cost fluid powered hand was

  1. Biosurfactant and enhanced oil recovery

    DOE Patents [OSTI]

    McInerney, Michael J.; Jenneman, Gary E.; Knapp, Roy M.; Menzie, Donald E.

    1985-06-11

    A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

  2. Promising Technology: Energy Recovery Ventilation

    Broader source: Energy.gov [DOE]

    Energy recovery ventilation (ERV) systems exchange heat between outgoing exhaust air and the incoming outdoor air. Using exhaust air to pre-condition supply air can reduce the capacity of the heating and cooling system and save heating and cooling energy consumption.

  3. Technology status and project development risks of advanced coal power generation technologies in APEC developing economies

    SciTech Connect (OSTI)

    Lusica, N.; Xie, T.; Lu, T.

    2008-10-15

    The report reviews the current status of IGCC and supercritical/ultrasupercritical pulverized-coal power plants and summarizes risks associated with project development, construction and operation. The report includes an economic analysis using three case studies of Chinese projects; a supercritical PC, an ultrasupercritical PC, and an IGCC plant. The analysis discusses barriers to clean coal technologies and ways to encourage their adoption for new power plants. 25 figs., 25 tabs.

  4. QER- Comment of Advanced Energy Economy on behalf of State Energy Advisory Board

    Broader source: Energy.gov [DOE]

    Karen G. Wayland, Ph.D. Deputy Director for State, Local and Tribal Cooperation Energy Policy and Systems Analysis

  5. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect (OSTI)

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in

  6. DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage U.S. Department of Energy ("DOE") policy regarding use of the Recovery Act logo by Recovery Act recipients and subgrantees. DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage (51.58 KB) More Documents & Publications Better Buildings Neighborhood Program Grant Recipient Management Handbook EV

  7. 48C Phase II Advanced Energy Manufacturing Tax Credit Program Fact Sheet

    Broader source: Energy.gov [DOE]

    The 48C Advanced Energy Manufacturing Tax Credit program was initiated under the American Recovery and Reinvestment Act of 2009 to support investments in projects that establish, expand or re-equip...

  8. ARM - ARM Recovery Act Project FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plan, contact Jimmy Voyles, ARM's Recovery Act Project Manager, at jimmy-dot-voyles-at-pnl-dot-gov. Public Q&A If you have a question about our Recovery Act efforts, send it to...

  9. Z-Bed Recovery Water Disposal

    Office of Environmental Management (EM)

    Z-Bed Recovery Water Disposal Tritium Programs Engineering Louis Boone Josh Segura ... detailed explanation of the plan to capture and dispose of Z-Bed Recovery (ZR) water. ...

  10. American Recovery & Reinvestment Act Newsletter - Issue 16

    Office of Environmental Management (EM)

    ... Sub-Project Director Jhon Carilli. As of the end of July 2010, more than 1.8 million cubic feet of Recovery Act waste has been accepted at NNSS. The Recovery Act forecast calls ...

  11. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NOX and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustion whenmore » speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less

  12. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    SciTech Connect (OSTI)

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NOX and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustion when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.

  13. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  14. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  15. Settlers Hill Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Settlers Hill Gas Recovery Biomass Facility Jump to: navigation, search Name Settlers Hill Gas Recovery Biomass Facility Facility Settlers Hill Gas Recovery Sector Biomass Facility...

  16. DFW Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    DFW Gas Recovery Biomass Facility Jump to: navigation, search Name DFW Gas Recovery Biomass Facility Facility DFW Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  17. Lake Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook...

  18. Prairie View Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    View Gas Recovery Biomass Facility Jump to: navigation, search Name Prairie View Gas Recovery Biomass Facility Facility Prairie View Gas Recovery Sector Biomass Facility Type...

  19. Woodland Landfill Gas Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass...

  20. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Valley Gas Recovery Biomass Facility Jump to: navigation, search Name Greene Valley Gas Recovery Biomass Facility Facility Greene Valley Gas Recovery Sector Biomass Facility Type...

  1. CID Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CID Gas Recovery Biomass Facility Jump to: navigation, search Name CID Gas Recovery Biomass Facility Facility CID Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  2. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant...

  3. Recovery Act: Smart Grid Investment Grants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Center Recovery Act Recovery Act: Smart Grid Investment Grants Recovery Act: Smart Grid Investment Grants Smart Grid Investment Grant Awards Recipients by State ...

  4. CSL Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CSL Gas Recovery Biomass Facility Jump to: navigation, search Name CSL Gas Recovery Biomass Facility Facility CSL Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  5. BJ Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    BJ Gas Recovery Biomass Facility Jump to: navigation, search Name BJ Gas Recovery Biomass Facility Facility BJ Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  6. Southeast Resource Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Resource Recovery Biomass Facility Jump to: navigation, search Name Southeast Resource Recovery Biomass Facility Facility Southeast Resource Recovery Sector Biomass Facility Type...

  7. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  8. Penobscot Energy Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Recovery Biomass Facility Jump to: navigation, search Name Penobscot Energy Recovery Biomass Facility Facility Penobscot Energy Recovery Sector Biomass Facility Type...

  9. Puente Hills Energy Recovery Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Puente Hills Energy Recovery Biomass Facility Jump to: navigation, search Name Puente Hills Energy Recovery Biomass Facility Facility Puente Hills Energy Recovery Sector Biomass...

  10. Microsoft Word - Attachment 3 Recovery Act notification | Department...

    Energy Savers [EERE]

    Microsoft Word - Attachment 3 Recovery Act notification Microsoft Word - Attachment 3 Recovery Act notification More Documents & Publications Microsoft Word - Attachment 3 Recovery...

  11. Recovery Act Investment Moves EM Past Milestone of 100 Project...

    Office of Environmental Management (EM)

    in place quickly to accomplish the Recovery Act Program goals." Recovery Act Investment Moves EM Past Milestone of 100 Project Completions Below: Recovery Act workers...

  12. Michigan Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Michigan Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery ...

  13. Delaware Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Delaware Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery ...

  14. Vermont Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Vermont Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery ...

  15. Ohio Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Ohio Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act ...

  16. Advanced Gasoline Turbocharged Direction Injection (GTDI) Engine Development

    SciTech Connect (OSTI)

    Wagner, Terrance

    2015-12-31

    This program was undertaken in response to US Department of Energy Solicitation DE-FOA-0000079, resulting in a cooperative agreement with Ford and MTU to demonstrate improvement of fuel efficiency in a vehicle equipped with an advanced GTDI engine. Ford Motor Company has invested significantly in GTDI engine technology as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost technology. Ford envisions additional fuel economy improvement in the medium and long term by further advancing EcoBoost technology. The approach for the project was to engineer a comprehensive suite of gasoline engine systems technologies to achieve the project objectives, and to progressively demonstrate the objectives via concept analysis / computer modeling, single-cylinder and multi-cylinder engine testing on engine dynamometer, and vehicle level testing on chassis rolls.

  17. State Agency Recovery Act Funding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agency Recovery Act Funding .Alabama Alabama Public Service Commission $868,824 .Alaska Regulatory Commission of Alaska $767,493 .Arizona Arizona Corporation Commission $915,679 .Arkansas Arkansas Public Service Commission $822,779 .California California Public Utilities Commission $1,686,869 .Colorado The Public Utilities Commission of the State of Colorado $875,899 .Connecticut Connecticut Department of Public Utility Control $839,241 .Delaware Delaware Public Service Commission $772,254

  18. Overpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, Emanuel M.

    1989-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  19. Counterpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, Emanuel M.

    1986-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  20. Anelastic Strain Recovery Analysis Code

    Energy Science and Technology Software Center (OSTI)

    1995-04-05

    ASR4 is a nonlinear least-squares regression of Anelastic Strain Recovery (ASR) data for the purpose of determining in situ stress orientations and magnitudes. ASR4 fits the viscoelastic model of Warpinski and Teufel to measure ASR data, calculates the stress orientations directly, and stress magnitudes if sufficient input data are available. The code also calculates the stress orientation using strain-rosette equations, and it calculates stress magnitudes using Blanton''s approach, assuming sufficient input data are available.

  1. Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bryant, Henry L.; Campiche, Jody L.; Richardson, James W.

    2010-03-09

    Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenuemore » from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. Thus in the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.« less

  2. Technological options of Taiwan to mitigate global warming: Perspectives of a newly industrialized economy

    SciTech Connect (OSTI)

    Young, R.T.; Fang, L.J.

    1996-12-31

    While there is no shortage of studies on whether and how OECD countries can stabilize their CO{sub 2} emissions, the situation in developing countries has been subjected to much less scrutiny. Although current emission levels in developing countries are low, they can vastly increase in the future due to higher economic growth rates. Of particular interest are newly industrializing economies; they are positioned to be the first group of countries to catch up with OECD emission levels. In this paper, the authors examine the CO{sub 2} emission scenarios in Taiwan, whose economy is still growing at more than 6% after years of impressive performance. A dynamic, multi-period optimization model was constructed to evaluate various energy system development paths. Both currently utilized technologies and advanced technologies that may become available are considered. The model meets externally specified final energy sectoral demands while keeping the objective function minimal. For devising a practical program to control greenhouse gases emissions, relative advantages of the conventional regulation approach with incentive-based approaches are compared. The comparison is made by running the model using different objective functions.

  3. Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy

    SciTech Connect (OSTI)

    Bryant, Henry L.; Campiche, Jody L.; Richardson, James W.

    2010-03-09

    Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenue from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. Thus in the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.

  4. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program ...

  5. Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Machinery R&D Annual Progress Report | Department of Energy Power Electronics and Electric Machinery R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress Report 2008_apeem_report.pdf (6.95 MB) More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices

  6. Voices of Experience | Insights into Advanced Distribution Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems (February 2015) | Department of Energy Experience | Insights into Advanced Distribution Management Systems (February 2015) Voices of Experience | Insights into Advanced Distribution Management Systems (February 2015) The American Recovery and Reinvestment Act (ARRA) of 2009 spurred investments in smart grid technology and programs at utilities across the country. The Smart Grid Investment Grant program and Smart Grid Demonstration projects that it funded provided unprecedented

  7. Advanced Battery Manufacturing Making Strides in Oregon | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Battery Manufacturing Making Strides in Oregon Advanced Battery Manufacturing Making Strides in Oregon February 16, 2012 - 12:09pm Addthis EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program What are the key facts? Through the Recovery Act, the Department has

  8. DOE Awards $63 Million to Advance Clean Energy Commercialization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 63 Million to Advance Clean Energy Commercialization DOE Awards $63 Million to Advance Clean Energy Commercialization September 22, 2010 - 11:00am Addthis DOE announced on September 15 its award of more than $63 million to support the commercialization of clean energy technologies, including $57 million for small businesses and $5.3 million for universities. The awards to small businesses include nearly $11 million provided through the American Recovery and Reinvestment

  9. Advanced development of rotary stratified charge 750 and 1500 HP military multi-fuel engines at Curtiss-Wright

    SciTech Connect (OSTI)

    Jones, C.

    1984-01-01

    During the period from 1977 to 1982, two and four rotor naturally aspirated Stratified Charge Rotary Combustion engines were under development for the U.S. Marine Corps. These engines are described and highlights of work conducted under the government ''Advanced Development'' contracts are discussed. The basic direct injected and spark ignited stratified charge technology was defined during 1973-1976 for automotive engine applications. It was then demonstrated that the unthrottled naturally aspirated Rotary could match indirect injected diesel fuel consumption, without regard to fuel cetane or octane rating. This same technology was scaled from the 60''/sup 3//rotor automotive engine module to the 350''/sup 3//rotor military engine size. In addition, parallel company-sponsored research efforts were undertaken to explore growth directions. Tests showed significant thermal efficiency improvement at lean air-fuel ratios. When turbocharged, high exhaust energy recovery of this ported engine provided induction airflow sufficient for increased output plus excess for operation at the lean mixture strengths of best combustion efficiency. With additive improvements in mechanical efficiency accruing to higher BMEP operation, the potential for fuel economy in the same range as direct injected diesels was demonstrated. These lightweight, compact, multi-fuel engines are believed to open new possiblities for lightweight, reliable, highly mobile and agile military fighting vehicles of the future.

  10. Advanced Materials and Devices for Stationary Electrical Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Materials and Devices for Stationary Electrical Energy Storage Applications Advanced Materials and Devices for Stationary Electrical Energy Storage Applications Reliable access to cost-effective electricity is the backbone of the U.S. economy, and electrical energy storage is an integral element in this system. Without significant investments in stationary electrical energy storage, the current electric grid infrastructure will increasingly struggle to

  11. Advanced Boost System Developing for High EGR Applications

    SciTech Connect (OSTI)

    Sun, Harold

    2012-09-30

    To support industry efforts of clean and efficient internal combustion engine development for passenger and commercial applications • This program focuses on turbocharger improvement for medium and light duty diesel applications, from complete system optimization percepective to enable commercialization of advanced diesel combustion technologies, such as HCCI/LTC. • Improve combined turbocharger efficiency up to 10% or fuel economy by 3% on FTP cycle at Tier II Bin 5 emission level.

  12. Engineering-economic analyses of automotive fuel economy potential in the United States

    SciTech Connect (OSTI)

    Greene, D.L.; DeCicco, J.

    2000-02-01

    Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

  13. Sandia Energy - Advanced Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Research & Development Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Advanced Research & Development Advanced Research & DevelopmentCoryne...

  14. Fuel economy and emissions evaluation of BMW hydrogen 7 mono-fuel demonstration vehicles.

    SciTech Connect (OSTI)

    Wallner, T.; Lohse-Busch, H.; Gurski, S.; Duoba, M.; Thiel, W.; Martin, D.; Korn, T.; Energy Systems; BMW Group Munich Germany; BMW Group Oxnard USA

    2008-12-01

    This article summarizes the testing of two BMW Hydrogen 7 Mono-Fuel demonstration vehicles at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF). The BMW Hydrogen 7 Mono-Fuel demonstration vehicles are derived from the BMW Hydrogen 7 bi-fuel vehicles and based on a BMW 760iL. The mono-fuel as well as the bi-fuel vehicle(s) is equipped with cryogenic hydrogen on-board storage and a gaseous hydrogen port fuel injection system. The BMW Hydrogen 7 Mono-Fuel demonstration vehicles were tested for fuel economy as well as emissions on the Federal Test Procedure FTP-75 cold-start test as well as the highway test. The results show that these vehicles achieve emissions levels that are only a fraction of the Super Ultra Low Emissions Vehicle (SULEV) standard for nitric oxide (NO{sub x}) and carbon monoxide (CO) emissions. For non-methane hydrocarbon (NMHC) emissions the cycle-averaged emissions are actually 0 g/mile, which require the car to actively reduce emissions compared to the ambient concentration. The fuel economy numbers on the FTP-75 test were 3.7 kg of hydrogen per 100 km, which, on an energy basis, is equivalent to a gasoline fuel consumption of 17 miles per gallon (mpg). Fuel economy numbers for the highway cycle were determined to be 2.1 kg of hydrogen per 100 km or 30 miles per gallon of gasoline equivalent (GGE). In addition to cycle-averaged emissions and fuel economy numbers, time-resolved (modal) emissions as well as air/fuel ratio data is analyzed to further investigate the root causes of the remaining emissions traces. The BMW Hydrogen 7 vehicles employ a switching strategy with lean engine operation at low engine loads and stoichiometric operation at high engine loads that avoids the NO{sub x} emissions critical operating regime with relative air/fuel ratios between 1 < {lambda} < 2. The switching between these operating modes was found to be a major source of the remaining NO{sub x} emissions. The emissions results collected

  15. AVTA: ChargePoint America Recovery Act Charging Infrastructure Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe results of data collected through the Chargepoint America project, which deployed 4,600 public and home charging stations throughout the U.S. This research was conducted by Idaho National Laboratory.

  16. Drain-Water Heat Recovery | Department of Energy

    Energy Savers [EERE]

    Heat & Cool Water Heating Drain-Water Heat Recovery Drain-Water Heat Recovery Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. ...

  17. Advanced integrated solvent extraction systems

    SciTech Connect (OSTI)

    Horwitz, E.P.; Dietz, M.L.; Leonard, R.A.

    1997-10-01

    Advanced integrated solvent extraction systems are a series of novel solvent extraction (SX) processes that will remove and recover all of the major radioisotopes from acidic-dissolved sludge or other acidic high-level wastes. The major focus of this effort during the last 2 years has been the development of a combined cesium-strontium extraction/recovery process, the Combined CSEX-SREX Process. The Combined CSEX-SREX Process relies on a mixture of a strontium-selective macrocyclic polyether and a novel cesium-selective extractant based on dibenzo 18-crown-6. The process offers several potential advantages over possible alternatives in a chemical processing scheme for high-level waste treatment. First, if the process is applied as the first step in chemical pretreatment, the radiation level for all subsequent processing steps (e.g., transuranic extraction/recovery, or TRUEX) will be significantly reduced. Thus, less costly shielding would be required. The second advantage of the Combined CSEX-SREX Process is that the recovered Cs-Sr fraction is non-transuranic, and therefore will decay to low-level waste after only a few hundred years. Finally, combining individual processes into a single process will reduce the amount of equipment required to pretreat the waste and therefore reduce the size and cost of the waste processing facility. In an ongoing collaboration with Lockheed Martin Idaho Technology Company (LMITCO), the authors have successfully tested various segments of the Advanced Integrated Solvent Extraction Systems. Eichrom Industries, Inc. (Darien, IL) synthesizes and markets the Sr extractant and can supply the Cs extractant on a limited basis. Plans are under way to perform a test of the Combined CSEX-SREX Process with real waste at LMITCO in the near future.

  18. Toward Local Failure Local Recovery (LFLR) Resilience Model Using...

    Office of Scientific and Technical Information (OSTI)

    Motivation for Local Failure-Local Recovery (LFLR) Architecture for LFLR Application Recovery Results Discussion Conclusions Sandia Motivation for ...

  19. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  20. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound ...