Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Viscous drag reduction in boundary layers  

SciTech Connect (OSTI)

The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.

Bushnell, D.M.; Hefner, J.N.

1990-01-01T23:59:59.000Z

2

Drag reduction in coal log pipelines  

SciTech Connect (OSTI)

It is well-known that solutions of dissolved long-chain macromolecules produce lower friction or drag losses than with the solvent alone. In coal log pipeline (CLP), water is the conveying medium. Synthetic polymers such as poly(ethylene oxide) have been dissolved in water and tested for their extent of drag reduction as a function of concentration and other variables. Lab-scale experimental results for CLP indicate substantial drag reduction at low concentration levels of polymer. But, the macromolecules exhibit degradation under mechanical shear stresses. The large molecules break into smaller units. This degradation effect causes a loss of drag reduction. However, high levels of drag reduction can be maintained as follows: (1) by injecting polymer into the CLP at several locations along the pipeline, (2) by injecting polymer of different particle sizes, (3) by using more robust types of polymers, or (4) by using polymer-fiber mixtures. This report presents the value of drag-reducing agents in terms of pumping power net cost savings. In addition, this report outlines the environmental impact of drag reduction polymers, and end-of-pipeline water treatment processes. For an operating CLP, hundreds of miles in length, the use of poly(ethylene oxide) as a drag reducing agent provides significant pumping power cost savings at a minimal materials cost.

Marrero, T.R.; Liu, H. [Univ. of Missouri, Columbia, MO (United States). Capsule Pipeline Research Center

1996-12-31T23:59:59.000Z

3

E-Print Network 3.0 - aerodynamic drag reduction Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: aerodynamic drag reduction Page: << < 1 2 3 4 5 > >> 1 Australasian Fluid Mechanics Conference...

4

Turbulent drag reduction by constant near-wall forcing  

E-Print Network [OSTI]

Injection of high molecular weight polymer solutions or gas in the near-wall region of a liquid boundary layer can result in turbulent drag reduction of more than ...

JIN XU, SUCHUAN DONG, MARTIN R. MAXEY and GEORGE E. KARNIADAKIS

2007-06-07T23:59:59.000Z

5

Comparison of Global Optimization Methods for Drag Reduction in the Automotive Industry  

E-Print Network [OSTI]

Comparison of Global Optimization Methods for Drag Reduction in the Automotive Industry Laurent reduction problems in the automotive industry. All the methods consist in improving classical genetic of a GA is reduced by a factor up to 7. 1 Introduction The topic of drag reduction in the automotive

Dumas, Laurent

6

Wall-pressure and PIV analysis for microbubble drag reduction investigation  

E-Print Network [OSTI]

friction reductions were observed when the microbubbles were injected. Several measurements of wall-pressure were taken at various Reynolds numbers that ranged from 300 up to 6154. No significant drag reduction was observed for flows in the laminar range...

Dominguez Ontiveros, Elvis Efren

2005-11-01T23:59:59.000Z

7

Wavelet analysis study of microbubble drag reduction in a boundary channel flow  

E-Print Network [OSTI]

Particle Image Velocimetry (PIV) and pressure measurement techniques were performed to investigate the drag reduction due to microbubble injection in the boundary layer of a fully developed turbulent channel flow. Two-dimensional full-field velocity...

Zhen, Ling

2006-04-12T23:59:59.000Z

8

Aerodynamic Drag Reduction Apparatus For Wheeled Vehicles In Ground Effect  

DOE Patents [OSTI]

An apparatus for reducing the aerodynamic drag of a wheeled vehicle in a flowstream, the vehicle having a vehicle body and a wheel assembly supporting the vehicle body. The apparatus includes a baffle assembly adapted to be positioned upstream of the wheel assembly for deflecting airflow away from the wheel assembly so as to reduce the incident pressure on the wheel assembly.

Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA)

2005-12-13T23:59:59.000Z

9

Investigation of Tractor Base Bleeding for Heavy Vehicle Aerodynamic Drag Reduction  

SciTech Connect (OSTI)

One of the main contributors to the aerodynamic drag of a heavy vehicle is tractor-trailer gap drag, which arises when the vehicle operates within a crosswind. Under this operating condition, freestream flow is entrained into the tractor-trailer gap, imparting a momentum exchange to the vehicle and subsequently increasing the aerodynamic drag. While a number of add-on devices, including side extenders, splitter plates, vortex stabilizers, and gap sealers, have been previously tested to alleviate this source of drag, side extenders remain the primary add-on device of choice for reducing tractor-trailer gap drag. However, side extenders are not without maintenance and operational issues. When a heavy vehicle pivots sharply with respect to the trailer, as can occur during loading or unloading operations, the side extenders can become crushed against the trailer. Consequently, fleet operators are forced to incur additional costs to cover the repair or replacement of the damaged side extenders. This issue can be overcome by either shortening the side extenders or by devising an alternative drag reduction concept that can perform just as effectively as side extenders. To explore such a concept, we investigate tractor base bleeding as a means of reducing gap drag. Wind tunnel measurements are made on a 1:20 scale heavy vehicle model at a vehicle width-based Reynolds number of 420,000. The tractor bleeding flow, which is delivered through a porous material embedded within the tractor base, is introduced into the tractor-trailer gap at bleeding coefficients ranging from 0.0-0.018. To determine the performance of tractor base bleeding under more realistic operating conditions, computational fluid dynamics simulations are performed on a full-scale heavy vehicle within a crosswind for bleeding coefficients ranging from 0.0-0.13.

Ortega, J; Salari, K; Storms, B

2007-10-25T23:59:59.000Z

10

Drag Reduction by Laser-Plasma Energy Addition in Hypersonic Flow  

SciTech Connect (OSTI)

An experimental study was conducted to investigate the drag reduction by laser-plasma energy addition in a low density Mach 7 hypersonic flow. The experiments were conducted in a shock tunnel and the optical beam of a high power pulsed CO{sub 2} TEA laser operating with 7 J of energy and 30 MW peak power was focused to generate the plasma upstream of a hemispherical model installed in the tunnel test section. The non-intrusive schlieren optical technique was used to visualize the effects of the energy addition to hypersonic flow, from the plasma generation until the mitigation of the shock wave profile over the model surface. Aside the optical technique, a piezoelectric pressure transducer was used to measure the impact pressure at stagnation point of the hemispherical model and the pressure reduction could be observed.

Oliveira, A. C. [Instituto Nacional de Pesquisas Espaciais, 12630-000 Cachoeira Paulista (Brazil); Instituto de Estudos Avancados, 12228-001 Sao Jose dos Campos (Brazil); Minucci, M. A. S.; Toro, P. G. P.; Chanes, J. B. Jr [Instituto de Estudos Avancados, 12228-001 Sao Jose dos Campos (Brazil); Myrabo, L. N. [Rensselaer Polytechnic Institute, Troy, New York 12180-3590 (United States)

2008-04-28T23:59:59.000Z

11

DOE Project on Heavy Vehicle Aerodynamic Drag  

SciTech Connect (OSTI)

Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag coefficient of the vehicle. Furthermore, the evaluation of the impact of small changes in radiator or grille dimensions has revealed that the total drag is not particularly sensitive to those changes. This observation leads to two significant conclusions. First, a small increase in radiator size to accommodate heat rejection needs related to new emissions restrictions may be tolerated without significant increases in drag losses. Second, efforts to reduce drag on the tractor requires that the design of the entire tractor be treated in an integrated fashion. Simply reducing the size of the grille will not provide the desired result, but the additional contouring of the vehicle as a whole which may be enabled by the smaller radiator could have a more significant effect.

McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

2007-01-04T23:59:59.000Z

12

Aerodynamic drag reduction apparatus for gap-divided bluff bodies such as tractor-trailers  

DOE Patents [OSTI]

An apparatus for reducing the aerodynamic drag of a bluff-bodied vehicle such as a tractor-trailer in a flowstream, the bluff-bodied vehicle of a type having a leading portion, a trailing portion connected to the leading portion, and a gap between the leading and trailing portions defining a recirculation zone. The apparatus is preferably a baffle assembly, such as a vertical panel, adapted to span a width of the gap between the leading and trailing portions so as to impede cross-flow through the gap, with the span of the baffle assembly automatically adjusting for variations in the gap width when the leading and trailing portions pivot relative to each other.

Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA)

2006-07-11T23:59:59.000Z

13

Advanced configurations for leakage reduction in a labyrinth seal  

E-Print Network [OSTI]

ADVANCED CONFIGURATIONS FOR LEAKAGE REDUCTION IN A LABYRINTH SEAL A Thesis by SHARATH B. VELDANDA Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1992 Major Subject: Mechanical Engineering ADVANCED CONFIGURATION FOR LEAKAGE REDUCTION IN A LABYRINTH SEAL A Thesis by SHARATH B. VELDANDA Approved as to style and content by: David L. Rhode y~~ (Member) K. D. Korkan (Member...

Veldanda, Sharath B.

1992-01-01T23:59:59.000Z

14

X-ray Practicals Series 1 Advanced Data Reduction  

E-Print Network [OSTI]

X-ray Practicals Series 1 Advanced Data Reduction Instructor J. Reibenspies, Ph. D. Nattamai Bhuvanesh, Ph.D. Version 1.0.0 #12;X-ray Practicals Series 2 #12;X-ray Practicals Series 3 #12;X-ray is good. The y direction is shifting the most, but the shift is ok #12;X-ray Practicals Series 5 Other

Meagher, Mary

15

E-Print Network 3.0 - aerodynamic drag presentation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

presentation Search Powered by Explorit Topic List Advanced Search Sample search results for: aerodynamic drag presentation...

16

E-Print Network 3.0 - aerodynamic drag presentations Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

presentations Search Powered by Explorit Topic List Advanced Search Sample search results for: aerodynamic drag presentations...

17

Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector  

SciTech Connect (OSTI)

Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers as they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.

Bilello, D.; Katz, J.; Esterly, S.; Ogonowski, M.

2014-09-01T23:59:59.000Z

18

Drag bit construction  

DOE Patents [OSTI]

A mounting movable with respect to an adjacent hard face has a projecting drag bit adapted to engage the hard face. The drag bit is disposed for movement relative to the mounting by encounter of the drag bit with the hard face. That relative movement regulates a valve in a water passageway, preferably extending through the drag bit, to play a stream of water in the area of contact of the drag bit and the hard face and to prevent such water play when the drag bit is out of contact with the hard face. 4 figs.

Hood, M.

1986-02-11T23:59:59.000Z

19

Methods of reducing vehicle aerodynamic drag  

SciTech Connect (OSTI)

A small scale model (length 1710 mm) of General Motor SUV was built and tested in the wind tunnel for expected wind conditions and road clearance. Two passive devices, rear screen which is plate behind the car and rear fairing where the end of the car is aerodynamically extended, were incorporated in the model and tested in the wind tunnel for different wind conditions. The conclusion is that rear screen could reduce drag up to 6.5% and rear fairing can reduce the drag by 26%. There were additional tests for front edging and rear vortex generators. The results for drag reduction were mixed. It should be noted that there are aesthetic and practical considerations that may allow only partial implementation of these or any drag reduction options.

Sirenko V.; Rohatgi U.

2012-07-08T23:59:59.000Z

20

Advances in Energy Reduction in Methanol Plant Design  

E-Print Network [OSTI]

which are still under development are outlined. In particular, the paper presents Davy McKee's version of the next generation of synthesis reactor. The paper also examines the economic justification of the energy saving steps. To complement advances...

Huggins, P. J.; Griffiths, G. W.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Degradation of Vinyl Chloride and 1,2-Dichloroethane by Advanced Reduction Processes  

E-Print Network [OSTI]

A new treatment technology, called Advanced Reduction Process (ARP), was developed by combining UV irradiation with reducing reagents to produce highly reactive species that degrade contaminants rapidly. Vinyl chloride (VC) and 1,2-dichloroethane (1...

Liu, Xu

2013-07-27T23:59:59.000Z

22

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support Reductions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11forPre-Application (IIP)atReduction;'FACT|in

23

An Automatic Image Reduction Pipeline for the Advanced Camera for Surveys  

E-Print Network [OSTI]

are constructed similar to those used in STScI OPUS pipeline. Reading and manipulation of FITS images and tables and catalogs) for archiving purposes. Although Apsis was designed primarily as an automated pipeline, it canAn Automatic Image Reduction Pipeline for the Advanced Camera for Surveys John P. Blakeslee

Johns Hopkins University, Department of Physics and Astonomy, Advanced Camera for Surveys Team

24

Mercury and frame-dragging in light of the MESSENGER flybys: conflict with general relativity, poor knowledge of the physical properties of the Sun, data reduction artifact, or still insufficient observations?  

E-Print Network [OSTI]

The Lense-Thirring precession of the longitude of perihelion of Mercury, as predicted by general relativity by using the value of the Sun's angular momentum S = 190 x 10^39 kg m^2 s^-1 from helioseismology, is -2.0 milliarcseconds per century, computed in a celestial equatorial reference frame. It disagrees at 4-{\\sigma} level with the correction 0.4 +/- 0.6 milliarcseconds per century to the standard Newtonian/Einsteinian precession, provided that the latter is to be entirely attributed to frame-dragging. The supplementary precession was recently determined in a global fit with the INPOP10a ephemerides to a long planetary data record (1914-2010) including also 3 data points collected in 2008-2009 from the MESSENGER spacecraft. The INPOP10a models did not include the solar gravitomagnetic field at all, so that its signature might have partly been removed in the data reduction process. On the other hand, the Lense-Thirring precession may have been canceled to a certain extent by the competing precessions caused by small mismodeling in the quadrupole mass moment of the Sun and in the PPN parameter beta entering the Schwarzschild-like 1PN precession, both modeled in INPOP10a. On the contrary, the oblateness of Mercury itself has a negligible impact on its perihelion. The same holds for the mismodelled actions of both the largest individual asteroids and the ring of the minor asteroids. Future analysis of more observations from the currently ongoing MESSENGER mission will shed further light on such an issue which, if confirmed, might potentially challenge our present-day picture of the currently accepted laws of gravitation and/or of the physical properties of the Sun.

Lorenzo Iorio

2012-04-30T23:59:59.000Z

25

Active skin for turbulent drag reduction  

E-Print Network [OSTI]

pursued is "micro" in the sense that only micro-scale wave amplitudes (order of 30[]m) and energy inputs are sufficient to produce significant benefits. Two actuation principles are proposed and analyzed and different skin designs based on these two...

Mani, Raghavendran

2002-01-01T23:59:59.000Z

26

Dependence of viscous properties of dilute drag reducing solutions on concentration and salt  

E-Print Network [OSTI]

the frictional drag of these fluids in turbulent flow. The mechanism for drag reduction is not completely understood, but is dependent on the elastic properties of the fluids. Darby k Chang (I] have proposed a generalized correlation to predict friction...DEPENDENCE OF VISCOUS PROPERTIES OF DILUTE DRAG REDUCING SOLUTIONS ON CONCENTRATION AND SALT A Thesis by DAVID ALAN LACKEY Submitted to the Graduate College oi' Texas ASM University in partial fulfillment of the requirement for the degree...

Lackey, David Alan

2012-06-07T23:59:59.000Z

27

DEMONSTRATION OF AN ADVANCED INTEGRATED CONTROL SYSTEM FOR SIMULTANEOUS EMISSIONS REDUCTION  

SciTech Connect (OSTI)

The primary objective of the project titled ''Demonstration of an Advanced Integrated Control System for Simultaneous Emissions Reduction'' was to demonstrate at proof-of-concept scale the use of an online software package, the ''Plant Environmental and Cost Optimization System'' (PECOS), to optimize the operation of coal-fired power plants by economically controlling all emissions simultaneously. It combines physical models, neural networks, and fuzzy logic control to provide both optimal least-cost boiler setpoints to the boiler operators in the control room, as well as optimal coal blending recommendations designed to reduce fuel costs and fuel-related derates. The goal of the project was to demonstrate that use of PECOS would enable coal-fired power plants to make more economic use of U.S. coals while reducing emissions.

Suzanne Shea; Randhir Sehgal; Ilga Celmins; Andrew Maxson

2002-02-01T23:59:59.000Z

28

E-Print Network 3.0 - aerodynamic drag fy Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fy Search Powered by Explorit Topic List Advanced Search Sample search results for: aerodynamic drag fy Page: << < 1 2 3 4 5 > >> 1 Aerodynamic-Structural Design Studies of...

29

Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 National Renewable EnergyReducingReduction

30

Aerodynamic Drag and Gyroscopic Stability  

E-Print Network [OSTI]

This paper describes the effects on aerodynamic drag of rifle bullets as the gyroscopic stability is lowered from 1.3 to 1.0. It is well known that a bullet can tumble for stability less than 1.0. The Sierra Loading Manuals (4th and 5th Editions) have previously reported that ballistic coefficient decreases significantly as gyroscopic stability, Sg, is lowered below 1.3. These observations are further confirmed by the experiments reported here. Measured ballistic coefficients were compared with gyroscopic stabilities computed using the Miller Twist Rule for nearly solid metal bullets with uniform density and computed using the Courtney-Miller formula for plastic-tipped bullets. The experiments reported here also demonstrate a decrease in aerodynamic drag near Sg = 1.23 +/- 0.02. It is hypothesized that this decrease in drag over a narrow band of Sg values is due to a rapid damping of coning motions (precession and nutation). Observation of this drag decrease at a consistent value of Sg demonstrates the relati...

Courtney, Elya R

2013-01-01T23:59:59.000Z

31

Aerodynamic Drag and Gyroscopic Stability  

E-Print Network [OSTI]

This paper describes the effects on aerodynamic drag of rifle bullets as the gyroscopic stability is lowered from 1.3 to 1.0. It is well known that a bullet can tumble for stability less than 1.0. The Sierra Loading Manuals (4th and 5th Editions) have previously reported that ballistic coefficient decreases significantly as gyroscopic stability, Sg, is lowered below 1.3. These observations are further confirmed by experiments reported here. Measured ballistic coefficients were compared with gyroscopic stabilities computed using the Miller Twist Rule for nearly solid metal bullets with uniform density and computed using the Courtney-Miller formula for plastic-tipped bullets. The relationship between Sg and drag may be used to test the applicability of existing gyroscopic stability formulas for given bullet designs and to evaluate the accuracy of alternate formulas in cases where the existing stability formulas are not as accurate. The most definitive test of formulas predicting stability will always be observation of whether bullets tumble under given conditions. However, observations of drag changes provide valuable supplemental information because they suggest changes in stability as conditions change. Use of a continuous variable (drag) rather than a binary variable (tumbling) allows insight into stability over a range of conditions where the binary variable does not change.

Elya R. Courtney; Michael W. Courtney

2014-10-16T23:59:59.000Z

32

E-Print Network 3.0 - advanced emission reduction Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Institute Ministry of the Environment . Denmark Summary: 11 Agriculture 13 Pollutants summary 14 Emission reduction scenarios 15 Financial and welfare... 104 2.5.3 NMVOC...

33

Advanced Non-Krylov Subspace Model Order Reduction Techniques for Interconnect Circuits  

E-Print Network [OSTI]

decoupled into a number of MISO circuits based on the input-partitioned into many MISO systems and the traditionalcan be performed on these MISO systems. The new reduction

Yan, Boyuan

2009-01-01T23:59:59.000Z

34

Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology  

SciTech Connect (OSTI)

This project was a subtask of Energy Saving Melting and Revert Reduction Technology (�¢����Energy SMARRT�¢���) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy saving estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU�¢����s/year and 6.46 trillion BTU�¢����s/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).

Harry Littleton; John Griffin

2011-07-31T23:59:59.000Z

35

Analytical drag prediction techniques for scientific balloons  

E-Print Network [OSTI]

with Reynolds number. 50 19. Skin friction drag variation with Reynolds number. 20. Boundary layer thickness change with the different 51 conditions. 52 21. Boundary layer thickness change with Reynolds number for the three conditions. 53 22. Body... shape for the turbulent case. 78 36. Drag coefficient as a function of Reynolds number. 81 NOMENCLATURE a streching constant in the 6 direction streching constant in the n direction CD = Drag coefficient Cf = Friction coefficient Cp = Pressure...

Martinez, Jorge Lozano

2012-06-07T23:59:59.000Z

36

An Automatic Image Reduction Pipeline for the Advanced Camera for Surveys  

E-Print Network [OSTI]

We have written an automatic image processing pipeline for the Advanced Camera for Surveys (ACS) Guaranteed Time Observation (GTO) program. The pipeline, known as Apsis, supports the different cameras available on the ACS instrument and is written in Python with a flexible object-oriented design that simplifies the incorporation of new pipeline modules. The processing steps include empirical determination of image offsets and rotation, cosmic ray rejection, image combination using the drizzle routine called via the STScI Pyraf package, object detection and photometry using SExtractor, and photometric redshift estimation in the event of multiple bandpasses. The products are encapsulated in XML markup for automated ingestion into the ACS Team archive.

Blakeslee, J P; Meurer, G R; Benítez, N; Magee, D

2002-01-01T23:59:59.000Z

37

An Automatic Image Reduction Pipeline for the Advanced Camera for Surveys  

E-Print Network [OSTI]

We have written an automatic image processing pipeline for the Advanced Camera for Surveys (ACS) Guaranteed Time Observation (GTO) program. The pipeline, known as Apsis, supports the different cameras available on the ACS instrument and is written in Python with a flexible object-oriented design that simplifies the incorporation of new pipeline modules. The processing steps include empirical determination of image offsets and rotation, cosmic ray rejection, image combination using the drizzle routine called via the STScI Pyraf package, object detection and photometry using SExtractor, and photometric redshift estimation in the event of multiple bandpasses. The products are encapsulated in XML markup for automated ingestion into the ACS Team archive.

J. P. Blakeslee; K. R. Anderson; G. R. Meurer; N. Benitez; D. Magee

2002-12-16T23:59:59.000Z

38

ADVANCED BYPRODUCT RECOVERY: DIRECT CATALYTIC REDUCTION OF SO2 TO ELEMENTAL SULFUR  

SciTech Connect (OSTI)

Arthur D. Little, Inc., together with its commercialization partner, Engelhard Corporation, and its university partner Tufts, investigated a single-step process for direct, catalytic reduction of sulfur dioxide from regenerable flue gas desulfurization processes to the more valuable elemental sulfur by-product. This development built on recently demonstrated SO{sub 2}-reduction catalyst performance at Tufts University on a DOE-sponsored program and is, in principle, applicable to processing of regenerator off-gases from all regenerable SO{sub 2}-control processes. In this program, laboratory-scale catalyst optimization work at Tufts was combined with supported catalyst formulation work at Engelhard, bench-scale supported catalyst testing at Arthur D. Little and market assessments, also by Arthur D. Little. Objectives included identification and performance evaluation of a catalyst which is robust and flexible with regard to choice of reducing gas. The catalyst formulation was improved significantly over the course of this work owing to the identification of a number of underlying phenomena that tended to reduce catalyst selectivity. The most promising catalysts discovered in the bench-scale tests at Tufts were transformed into monolith-supported catalysts at Engelhard. These catalyst samples were tested at larger scale at Arthur D. Little, where the laboratory-scale results were confirmed, namely that the catalysts do effectively reduce sulfur dioxide to elemental sulfur when operated under appropriate levels of conversion and in conditions that do not contain too much water or hydrogen. Ways to overcome those limitations were suggested by the laboratory results. Nonetheless, at the end of Phase I, the catalysts did not exhibit the very stringent levels of activity or selectivity that would have permitted ready scale-up to pilot or commercial operation. Therefore, we chose not to pursue Phase II of this work which would have included further bench-scale testing, scale-up, pilot-scale (0.5 MW{sub e}) testing at conditions representative of various regenerable SO{sub 2}-control systems, preparation of a commercial process design, and development of a utility-scale demonstration plan.

Robert S. Weber

1999-05-01T23:59:59.000Z

39

Advanced and developmental technologies for treatment and volume reduction of dry active wastes  

SciTech Connect (OSTI)

The nuclear power industry processes Dry Active Wastes (DAW) to achieve cost-effective volume reduction and/or to produce a residue that is more compatible with final disposal criteria. The two principal processes currently used by the industry are compaction and incineration. Although incineration is often considered the process of choice, capital and operating cost are often high, and in some countries, public opposition and lengthy permitting processes result in expensive delays to bringing the process to operation. Therefore, alternative treatment options (mechanical, thermal, chemical, and biological) are being investigated to provide timely, cost-effective options for industry use. An overview of those developmental processes considered applicable to processing DAW is presented. In each category, {open_quotes}established{close_quotes} processes are mentioned and/or referenced, but the focus is on {open_quotes}potential{close_quotes} technologies and the status of their development. The emphasis is on processing DAW, and therefore, those developmental processes that primarily treat solids in aqueous streams and melting/sintering technologies, both of lesser applicability to nuclear utility wastes, have been omitted. Included are those developmental technologies that appear to have a potential for radioactive waste application based on development on demonstration programs.

Kohout, R. [R. Kohout & Associates, Ltd., Toronto (Canada)

1994-12-31T23:59:59.000Z

40

Thermal Casimir drag in fluctuating classical fields  

E-Print Network [OSTI]

A uniformly moving inclusion which locally suppresses the fluctuations of a classical thermally excited field is shown to experience a drag force which depends on the dynamics of the field. It is shown that in a number of cases the linear friction coefficient is dominated by short distance fluctuations and takes a very simple form. Examples where this drag can occur are for stiff objects, such as proteins, nonspecifically bound to more flexible ones such as polymers and membranes.

V. Démery; D. S. Dean

2011-04-14T23:59:59.000Z

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

An experimental investigation of sediment drag forces on offshore pipelines in large scale drag tank  

E-Print Network [OSTI]

of a Fixed Ends Horizontal Drag Test with H/D = 0. 5 . . . . . , ~ 54 30. ? The Changes in the Sediment Surface During a Pushed Down Vertical Test 56 31 ~ ? A 4. 8 Pushed Down Angle Test 32. ? A 43. 2' Pushed Down Angle Test 57 58 33. ? Initial... 86 49. ? Vertical Drag Force for H/D of 0. 0. Pushed Down Vertical Test 87 50. ? Vertical Drag Factors for Pushed Down Vertical Tests 88 51. ? Horizontal Drag Porce Curve for Shallow Angle (4. 76') Pushed Down Angle Test 90 52. ? Combined Plot...

Yin, Stanley Fuming

2012-06-07T23:59:59.000Z

42

Microbubble drag reduction phenomenon study in a channel flow  

E-Print Network [OSTI]

non-dimensional wavenumber at y/H = 0.127?????????????????????.???????. 90 49 Dimensional normal spectra versus non-dimensional wavenumber at y/H = 0.15????????????????????????????... 91 50 Dimensional E uv (k 1 ) spectra versus non...-dimensional wavenumber at y/H = 0.01????????????????????????????.... 92 51 Dimensional E uv (k 1 ) spectra versus non-dimensional wavenumber at y/H = 0.019????????????????????????????. 93 52 Dimensional E uv (k 1 ) spectra versus non-dimensional wavenumber at y/H = 0...

Jimenez Bernal, Jose Alfredo

2005-11-01T23:59:59.000Z

43

Micro-textured surfaces for omniphobicity and drag-reduction  

E-Print Network [OSTI]

When a liquid droplet contacts a surface possessing the appropriate combination of surface texture and solid surface energy, the liquid may not penetrate into the surface texture. Instead, the droplet sits partially on ...

Choi, Wonjae

2009-01-01T23:59:59.000Z

44

Advances  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScienceScripting forAdvances in

45

Form drag at Three Tree Point  

E-Print Network [OSTI]

form drag with bottom pressure sensors #12;Oscillatory dynamics tidal energy converted to internal waves, eddies and mixing no tidally averaged work done on system slack tide: background tilt flood & ebb Puget Sound, WA Point Three Tree Pressure sensors (PPODs) at Three Tree Point (TTP) PPODs #12;PPOD

Warner, Sally

46

Prediction methods for capacity of drag anchors in clayey soils  

E-Print Network [OSTI]

A drag anchor is a marine foundation element, which is penetrated into the seabed by dragging in order to generate a required capacity. The holding capacity of a drag anchor in a particular soil condition is developed by soil resistance acting...

Yoon, Yeo Hoon

2002-01-01T23:59:59.000Z

47

Market Implications of Synergism Between Low Drag Area and Electric  

E-Print Network [OSTI]

compared, Drag Area per unit vehicle mass dropped consistently from the EPRI 2001 base case vs. 3 HEVs the UDDS, Highway, and US06 Cycles. The 2001 EPRI Base Case Had a High Drag Area. Prius/Volt-like Drag Areas (EPRI Low Load & MIT) Improved 48 MPH "per Mile" Results Significantly 7 #12;Absolute Savings per

48

Advanced Aerodynamic Devices to Improve the Performance, Economics, Handling, and Safety of Heavy Vehicles  

SciTech Connect (OSTI)

Research is being conducted at the Georgia Tech Research Institute (GTRI) to develop advanced aerodynamic devices to improve the performance, economics, stability, handling and safety of operation of Heavy Vehicles by using previously-developed and flight-tested pneumatic (blown) aircraft technology. Recent wind-tunnel investigations of a generic Heavy Vehicle model with blowing slots on both the leading and trailing edges of the trailer have been conducted under contract to the DOE Office of Heavy Vehicle Technologies. These experimental results show overall aerodynamic drag reductions on the Pneumatic Heavy Vehicle of 50% using only 1 psig blowing pressure in the plenums, and over 80% drag reductions if additional blowing air were available. Additionally, an increase in drag force for braking was confirmed by blowing different slots. Lift coefficient was increased for rolling resistance reduction by blowing only the top slot, while downforce was produced for traction increase by blowing only the bottom. Also, side force and yawing moment were generated on either side of the vehicle, and directional stability was restored by blowing the appropriate side slot. These experimental results and the predicted full-scale payoffs are presented in this paper, as is a discussion of additional applications to conventional commercial autos, buses, motor homes, and Sport Utility Vehicles.

Robert J. Englar

2001-05-14T23:59:59.000Z

49

Drag forces on inclusions in classical fields with dissipative dynamics  

E-Print Network [OSTI]

We study the drag force on uniformly moving inclusions which interact linearly with dynamical free field theories commonly used to study soft condensed matter systems. Drag forces are shown to be nonlinear functions of the inclusion velocity and depend strongly on the field dynamics. The general results obtained can be used to explain drag forces in Ising systems and also predict the existence of drag forces on proteins in membranes due to couplings to various physical parameters of the membrane such as composition, phase and height fluctuations.

Vincent Demery; D. S. Dean

2010-04-01T23:59:59.000Z

50

180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect (OSTI)

ABB CE's Low NOx Bulk Furnace Staging (LNBFS) System and Low NOx Concentric Firing System (LNCFS) are demonstrated in stepwise fashion. These systems incorporate the concept of advanced overfire air (AOFA), clustered coal nozzles, and offset air. A complete description of the installed technologies is provided in the following section. The primary objective of the Plant Lansing Smith demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology are also being performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project.

Not Available

1991-01-01T23:59:59.000Z

51

500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect (OSTI)

The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO[sub x] burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulatecharacteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO[sub x] emission levels to be approximately 0.65 lb/MBtu. Flyash LOI values for the LNB configuration are approximately 8 percent at full-load. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. Abbreviated diagnostic tests for the LNB+AOFA configuration indicate that at 500 MWe, NO[sub x] emissions are approximately 0.55 lb/MBtu with corresponding flyash LOI values of approximately 11 percent. For comparison, the long-term full-load, baseline NO[sub x] emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB+AOFA configuration will be performed when the stackparticulate emissions issue is resolved. Testing of a process optimization package on Plant Hammond Unit 4 was performed during this quarter. The software was configured to minimize NO[sub x] emissions using total combustion air flow and advanced overfire air distribution as the controlled parameters. Preliminary results from this testing indicate that this package shows promise in reducing NO[sub x] emissions while maintaining or improving other boiler performance parameters.

Not Available

1992-01-01T23:59:59.000Z

52

Greenland's Pressure Drag and the Atlantic Storm Track THOMAS JUNG  

E-Print Network [OSTI]

Greenland's Pressure Drag and the Atlantic Storm Track THOMAS JUNG European Centre for Medium of Greenland on the Northern Hemisphere wintertime circulation are discussed. Inviscid pressure drag on Greenland's slopes, calculated from reanalysis data, is related to circulation patterns. Greenland lies

53

Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Fourth quarterly technical progress report  

SciTech Connect (OSTI)

The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams.

NONE

1997-01-01T23:59:59.000Z

54

Advanced product recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Third quarterly technical progress report  

SciTech Connect (OSTI)

More than 170 wet scrubber systems applied to 72,000 MW of US, coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed form the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. Arthur D. Little, Inc., together with its industry and commercialization advisor, Engelhard Corporation, and its university partner, Tufts, plans to develop and scale-up an advanced, byproduct recovery technology that is a direct, catalytic process for reducing sulfur dioxide to elemental sulfur. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, they have planned a structured program including: market/process/cost/evaluation; lab-scale catalyst preparation/optimization studies; lab-scale, bulk/supported catalyst kinetic studies; bench-scale catalyst/process studies; and utility review. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning.

NONE

1996-07-01T23:59:59.000Z

55

Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly report, April 1--June 30, 1997  

SciTech Connect (OSTI)

The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, the authors have planned a structured program including: Market/process/cost/evaluation; Lab-scale catalyst preparation/optimization studies; Lab-scale, bulk/supported catalyst kinetic studies; Bench-scale catalyst/process studies; and Utility review. Progress is reported from all three organizations.

NONE

1997-12-31T23:59:59.000Z

56

Shock tunnel measurements of hypervelocity blunted cone drag  

SciTech Connect (OSTI)

Presented here are results obtained from an investigation into the effects of nose bluntness on slender cone drag in the hypervelocity flight regime. The results indicate that, for small cone angles, the drag of a blunt cone is reasonably well predicted by the Newtonian sine-square law modified for blunt bodies. This suggests the absence of any real gas effects on the total drag. The effect of nose bluntness at the smaller bluntness ratios is relatively small. This is encouraging for the design of a hypervelocity space plane or a centerbody for an axisymmetric scramjet where a slightly blunted nose is required to reduce stagnation point heating. 7 refs.

Porter, L.M.; Paull, A.; Mee, D.J.; Simmons, J.M. [Univ. of Queensland, St. Lucia (Australia)

1994-12-01T23:59:59.000Z

57

Electromagnetically-Induced Frame-Dragging around Astrophysical Objects  

E-Print Network [OSTI]

Frame dragging (Lense-Thirring effect) is generally associated with rotating astrophysical objects. However, it can also be generated by electromagnetic fields if electric and magnetic fields are simultaneously present. In most models of astrophysical objects, macroscopic charge neutrality is assumed and the entire electromagnetic field is characterized in terms of a magnetic dipole component. Hence, the purely electromagnetic contribution to the frame dragging vanishes. However, strange stars may posses independent electric dipole and neutron stars independent electric quadrupole moments that may lead to the presence of purely electromagnetic contributions to the frame dragging. Moreover, recent observations have shown that in stars with strong electromagnetic fields, the magnetic quadrupole may have a significant contribution to the dynamics of stellar processes. As an attempt to characterized and quantify the effect of electromagnetic frame-dragging in this kind of astrophysical objects, an analytic soluti...

Ruiz, Andrés F Gutiérrez

2015-01-01T23:59:59.000Z

58

Upper bound analysis for drag anchors in soft clay  

E-Print Network [OSTI]

This study presents an upper bound plastic limit analysis for predicting drag anchor trajectory and load capacity. The shank and fluke of the anchor are idealized as simple plates. The failure mechanism involves the motion of the anchor about a...

Kim, Byoung Min

2007-04-25T23:59:59.000Z

59

Drag amplification and fatigue damage in vortex-induced vibrations  

E-Print Network [OSTI]

Fatigue damage and drag force amplification due to Vortex-Induced-Vibrations (VIV) continue to cause significant problems in the design of structures which operate in ocean current environments. These problems are magnified ...

Jhingran, Vikas Gopal

2008-01-01T23:59:59.000Z

60

Drag, turbulence, and diffusion in flow through emergent vegetation  

E-Print Network [OSTI]

Aquatic plants convert mean kinetic energy into turbulent kinetic energy at the scale of the plant stems and branches. This energy transfer, linked to wake generation, affects vegetative drag and turbulence intensity. ...

Nepf, Heidi

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Apparatus And Method For Reducing Drag Of A Bluff Body In Ground Effect Using Counter-Rotating Vortex Pairs  

DOE Patents [OSTI]

An aerodynamic base drag reduction apparatus and method for bluff bodies, such as tractor-trailer trucks, utilizing a pair of lift surfaces extending to lift surface tips and located alongside the bluff body such as on opposing left and right side surfaces. In a flowstream substantially parallel to the longitudinal centerline of the bluff body, the pair of lift surfaces generate a pair of counter-rotating trailing vortices which confluence together in the wake of the bluff body in a direction orthogonal to the flowstream. The confluence draws or otherwise turns the flowstream, such as the flowstream passing over a top surface of the bluff body, in and around behind a trailing end of the bluff body to raise the pressure on a base surface at the trailing end and thereby reduce the aerodynamic base drag.

Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA)

2005-08-09T23:59:59.000Z

62

Apparatus And Method For Reducing Drag Of A Bluff Body In Ground Effect Using Counter-Rotating Vortex Pairs  

DOE Patents [OSTI]

An aerodynamic base drag reduction apparatus and method for bluff bodies, such as tractor-trailer trucks, utilizing a pair of lift surfaces extending to lift surface tips and located alongside the bluff body such as on opposing left and right side surfaces. In a flowstream substantially parallel to the longitudinal centerline of the bluff body, the pair of lift surfaces generate a pair of counter-rotating trailing vortices which confluence together in the wake of the bluff body in a direction orthogonal to the flowstream. The confluence draws or otherwise turns the flowstream, such as the flowstream passing over a top surface of the bluff body, in and around behind a trailing end of the bluff body to raise the pressure on a base surface at the trailing end and thereby reduce the aerodynamic base drag.

Ortega, Jason M. (Pacifica, CA); Sabari, Kambiz (Livermore, CA)

2005-12-27T23:59:59.000Z

63

500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Public design report (preliminary and final)  

SciTech Connect (OSTI)

This Public Design Report presents the design criteria of a DOE Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of NO{sub x} emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. The technologies being demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NO{sub x} burner. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NO{sub x} burners, advanced overfire systems, and digital control system.

NONE

1996-07-01T23:59:59.000Z

64

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an Advanced Overfire Air (AOFA) system followed by Low NO{sub x} Burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-02-03T23:59:59.000Z

65

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1991  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an Advanced Overfire Air (AOFA) system followed by Low NO{sub x} Burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-02-03T23:59:59.000Z

66

Enchancement of heat pipes with ion-drag pumps  

E-Print Network [OSTI]

ENHANCEMENT OF HEAT PIPES WITH ION-DRAG PUMPS A Thesis by BRUCE RUSSELL BABIN Submitted to the Office of Graduate Studies of Texas AE'M I. niversity in partial fulfillment of the requirements for the degree of MASTER OF SCIEiVCE August 1991... Malor Subject: Mechanical Engineering ENHANCEMENT OF HEAT PIPES WITH ION-DRAG PUMPS A Thesis by BRUCE RUSSELL BABIN Approved as to style and content by G. P. Peterson (Charr of Committee) L. S. Fletcher (Member) . Hassan ( Member) W. L...

Babin, Bruce Russell

1991-01-01T23:59:59.000Z

67

Low-drag electrical contact arrangement for maintaining continuity between horizontally movable members  

DOE Patents [OSTI]

This invention is a low-drag electrical contact arrangement for establishing continuity between upper and lower spaced members which are subject to relative horizontal movement. In one aspect, the invention comprises an electrical commutating arrangement which includes a horizontally disposed linear electrical commutator. A horizontally movable electrically conductive pedestal is positioned below the commutator and defines a clearance therewith. The pedestal is formed with a cavity confronting the commutator. In the cavity is a bead of electrical conductive liquid, the bead being characterized by an upwardly convex meniscus portion which extends across the clearance and contacts the commutator. The surface tension of the bead is sufficient to maintain the bead intact when the commutator and pedestal are displaced horizontally at speeds from zero to at least twelve inches a minute. This arrangement provides a significant advance in highly precise machining processes, such as diamond-turning, where precision is limited by the drag imposed by conventional commutators of the carbon-brush type.

Brown, R. Jack (Clinton, TN); Gerth, Howard L. (Knoxville, TN); Robinson, Samuel C. (Clinton, TN)

1982-01-01T23:59:59.000Z

68

Low-drag electrical-contact arrangement for maintaining continuity between horizontally movable members  

DOE Patents [OSTI]

This invention is a low-drag electrical contact arrangement for establishing continuity between upper and lower spaced members which are subject to relative horizontal movement. In one aspect, the invention comprises an electrical commutating arrangement which includes a horizontally disposed linear electrical commutator. A horizontally movable electrically conductive pedestal is positioned below the commutator and defines a clearance therewith. The pedestal is formed with a cavity confronting the commutator. In the cavity is a bead of electrical conductive liquid, the bead being characterized by an upwardly convex meniscus portion which extends across the clearance and contacts the commutator. The surface tension of the bead is sufficient to maintain the bead intact when the commutator and pedestal are displaced horizontally at speeds from zero to at least twelve inches a minute. This arrangement provides a significant advance in highly precise machining processes, such as diamond-turning, where precision is limited by the drag imposed by conventional commutators of the carbon-brush type.

Brown, R.J.; Gerth, H.L.; Robinson, S.C.

1981-01-23T23:59:59.000Z

69

Stochastic modeling of lift and drag dynamics under turbulent conditions  

E-Print Network [OSTI]

measurement. The model is being developed with the aim to integrate it into a general wind energy converter dynamics, drag dynamics. 1 Introduction Wind energy converters (WECs) are permanently exposed to turbulent.peinke@forwind.de in every second, which imposes different risks. The dynamical nature of the wind has a significant impact

Peinke, Joachim

70

THE VELOCITY DEPENDENCE OF AERODYNAMIC DRAG: A PRIMER FOR MATHEMATICIANS  

E-Print Network [OSTI]

THE VELOCITY DEPENDENCE OF AERODYNAMIC DRAG: A PRIMER FOR MATHEMATICIANS LYLE N. LONG and HOWARD­entry of the space shuttle into the earth's atmosphere. Dimensional analysis is an important tool in aerodynamics­T E X 1 #12; For detailed information on the aerodynamics and fluid mechanics pertinent to this paper

71

Determination of Dusty Particle Charge Taking into Account Ion Drag  

SciTech Connect (OSTI)

This work is devoted to the experimental estimation of charge of dust particle that levitates in the stratum of dc glow discharge. Particle charge is determined on the basis of the balance between ion drag force, gravitational and electric forces. Electric force is obtained from the axial distribution of the light intensity of strata.

Ramazanov, T. S.; Dosbolayev, M. K.; Jumabekov, A. N.; Amangaliyeva, R. Zh.; Orazbayev, S. A. [al-Farabi Kazakh National University, IETP, 96a Tole Bi St., Almaty 050012 (Kazakhstan); Petrov, O. F.; Antipov, S. N. [Joint Institute for High Temperatures of RAS, 13/19 Izhorskaya, Moscow 125412 (Russian Federation)

2008-09-07T23:59:59.000Z

72

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1991  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

Not Available

1992-02-03T23:59:59.000Z

73

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

Not Available

1992-02-03T23:59:59.000Z

74

Test, Evaluation, and Demonstration of Practical Devices/Systems to Reduce Aerodynamic Drag of Tractor/Semitrailer Combination Unit Trucks  

SciTech Connect (OSTI)

Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their effect on fuel economy was determined, either through on-road testing or full-size wind tunnel testing. All of the manufacturers worked with devices and systems that offer practical solutions to reduce aerodynamic drag, accounting for functionality, durability, cost effectiveness, reliability, and maintainability. The project team members and their roles and responsibilities are shown in Figure 2-1. Figure 2-2 shows the Phase I and II project schedules for all four projects and associated management activities.

Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond

2007-04-30T23:59:59.000Z

75

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

Not Available

1992-11-25T23:59:59.000Z

76

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Fourth quarterly technical progress report, [October--December, 1992  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a U. S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NOx control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NOx concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. During this quarter, tests of the LNCFS Level III system were conducted to determine the effect that fuel fineness has on NOx emissions and unburned carbon levels. Results showed that changing the fineness of the fuel has almost no effect on NOx emissions; however, unburned carbon levels can be reduced significantly by increasing fuel fineness.

Not Available

1992-12-31T23:59:59.000Z

77

Advanced Experimental Analysis of Controls on Microbial Fe(III) Oxide Reduction - Final Report - 09/16/1996 - 03/16/2001  

SciTech Connect (OSTI)

Considering the broad influence that microbial Fe(III) oxide reduction can have on subsurface metal/organic contaminant biogeochemistry, understanding the mechanisms that control this process is critical for predicting the behavior and fate of these contaminants in anaerobic subsurface environments. Knowledge of the factors that influence the rates of growth and activity of Fe(III) oxide-reducing bacteria is critical for predicting (i.e., modeling) the long-term influence of these organisms on the fate of contaminants in the subsurface, and for effectively utilizing Fe(III) oxide reduction and associated geochemical affects for the purpose of subsurface metal/organic contamination bioremediation. This research project will refine existing models for microbiological and geochemical controls on Fe(III) oxide reduction, using laboratory reactor systems that mimic, to varying degrees, the physical and chemical conditions of the subsurface. Novel experimental methods for studying the kinetics of microbial Fe(III) oxide reduction and measuring growth rates of Fe(III) oxide-reducing bacteria will be developed. These new methodologies will be directly applicable to studies on subsurface contaminant transformations directly coupled to or influenced by microbial Fe(III) oxide reduction.

Roden, Eric E.

2001-03-16T23:59:59.000Z

78

Rural Drag: Settler Colonialism and the Queer Rhetorics of Rurality  

E-Print Network [OSTI]

; Valerie Balester and Candace Schaefer, who showed me that academia doesn?t need to be traumatic; and Alma Villanueva, who inspires me to action. My family, who nurtured both my love of learning and social justice, deserves my eternal gratitude... to focus my argument: 19th- century regulatory writing and technical communication in College Station, Texas, and the state of Texas; cultural performance and embodied practices of rural drag in College Station; and the country-western music industry...

Nichols, Garrett Wedekind

2013-07-16T23:59:59.000Z

79

Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B  

SciTech Connect (OSTI)

This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

NONE

1998-01-01T23:59:59.000Z

80

DragNDrop Directions v7 Windows Users: How do I access DragNDrop web documents to place or update them?  

E-Print Network [OSTI]

DragNDrop Directions v7 2/25/10 Windows Users: How do I access DragNDrop web documents to place or update them? If you are on the PPPL Domain: Open My Computer. Then the P drive. Find: P:\\web\

Princeton Plasma Physics Laboratory

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, first quarter 1992  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO{sub x} emissions for each day of long-term testing are presented. The average NO{sub x} emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO{sub x} combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

Not Available

1992-05-20T23:59:59.000Z

82

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO[sub x] emissions for each day of long-term testing are presented. The average NO[sub x] emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO[sub x] combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

Not Available

1992-05-20T23:59:59.000Z

83

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1992  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

Not Available

1992-11-25T23:59:59.000Z

84

Drag reduction through self-similar bending of a flexible body  

E-Print Network [OSTI]

in a stiff wind2 . The reconfiguration of bodies by fluid forces is common in nature, and can result bluff bodies, they are characterized by a thin separated boundary layer which divides the wake--from the rest of the flow field, which is fast and laminar. But unlike rigid-body flows, as the flow speed

Shelley, Michael

85

Dynamics on the Laminar-Turbulent Boundary and the Origin of the Maximum Drag Reduction Asymptote  

E-Print Network [OSTI]

Dynamical trajectories on the boundary in state space between laminar and turbulent plane channel flow—edge states—are computed for Newtonian and viscoelastic fluids. Viscoelasticity has a negligible effect on the properties ...

Graham, Michael D.

86

A Fresh Approach to Flow Turbulence Towards Reduction of Skin-friction Drag  

E-Print Network [OSTI]

a major contributor to carbon emissions. Ever-growing strain on the global oil supply chain and stringent million tonnes in CO2 emissions annually as per current projections. Similar estimates for the shipping energy expenditure sector, accounting for 30% of global consumption. Consequently, this sector is also

87

Effect of pressure gradient on the drag reduction performance of two and three dimensional riblets  

E-Print Network [OSTI]

Integral Parameters . 4. 2 Law of the Wall Profiles 4. 3 Pressure Gradient Parameters 4. 4 Preston Tube Measurements 4. 5 Roughness Function 4. 6 Growth of the Internal Layer 4. 7 Turbulence Measurements 4. 7. 1 Turbulence intensity 4. 7. 2 Third.... 4 Spectra for favorable pressure gradient 4. 8. 5 Roughness effects on the bursting process V CONCLUSION . REFERENCES APPENDIX A APPENDIX B 50 50 51 94 134 175 177 180 183 . . 185 VITA . . 210 LIST OF FIGURES Figure 1. Proportions...

Hall, Aaron Chenault

1991-01-01T23:59:59.000Z

88

Fundamental and experimental studies of ion-drag pumping  

E-Print Network [OSTI]

= permittivity [F/m] p = ion mobility [m/Vs] pp = density of the fluid [kg/m'] p, = number density of the fluid p = charge density [C/m'] po = charge density at emitter electrode [C/m'] p' = non-dimensional charge density 0 = electrical conductivity [S/m... of the electrodes become zero and the filtering effect is completely eliminated. In addition, the construction of the pump is significantly simplified with this desigf1. Power is applied to the ion-drag pump from 50kV-SmA dc power supply (Plastic Capacitors, Inc...

Castaneda, Javier Augusto

1992-01-01T23:59:59.000Z

89

An Inertial Cell Model for the Drag Force in Multi-phase Flow  

E-Print Network [OSTI]

A new model for the drag coefficient of a sphere in a concentrated system is described. It is based upon a cell-averaged model for the Stokes regime combined with a physically motivated extrapolation to arbitrary Reynolds number. It can be used as an alternative to the isolated particle drag coefficient in Euler-Lagrange modelling of solid-liquid multi-phase flow.The corresponding drag force also provides a dynamic bed equation for use in Euler-Euler modelling.

Tupper, Gary; Mainza, Aubrey

2015-01-01T23:59:59.000Z

90

An Analysis of Energy Savings Possible Through Advances in Automotive Tooling Technology  

SciTech Connect (OSTI)

The use of lightweight and highly formable advanced materials in automobile and truck manufacturing has the potential to save fuel. Advances in tooling technology would promote the use of these materials. This report describes an energy savings analysis performed to approximate the potential fuel savings and consequential carbon-emission reductions that would be possible because of advances in tooling in the manufacturing of, in particular, non-powertrain components of passenger cars and heavy trucks. Separate energy analyses are performed for cars and heavy trucks. Heavy trucks are considered to be Class 7 and 8 trucks (trucks rated over 26,000 lbs gross vehicle weight). A critical input to the analysis is a set of estimates of the percentage reductions in weight and drag that could be achieved by the implementation of advanced materials, as a consequence of improved tooling technology, which were obtained by surveying tooling industry experts who attended a DOE Workshop, Tooling Technology for Low-Volume Vehicle Production, held in Seattle and Detroit in October and November 2003. The analysis is also based on 2001 fuel consumption totals and on energy-audit component proportions of fuel use due to drag, rolling resistance, and braking. The consumption proportions are assumed constant over time, but an allowance is made for fleet growth. The savings for a particular component is then the product of total fuel consumption, the percentage reduction of the component, and the energy audit component proportion. Fuel savings estimates for trucks also account for weight-limited versus volume-limited operations. Energy savings are assumed to be of two types: (1) direct energy savings incurred through reduced forces that must be overcome to move the vehicle or to slow it down in braking. and (2) indirect energy savings through reductions in the required engine power, the production and transmission of which incur thermodynamic losses, internal friction, and other inefficiencies. Total savings for an energy use component are estimated by scaling up the direct savings with an approximate total-to-direct savings ratio. Market penetration for new technology vehicles is estimated from projections about scrappage. Retrofit savings are assumed negligible, but savings are also assumed to accrue with increases in the fleet size, based on economic growth forecasts. It is assumed that as vehicles in the current fleet are scrapped, they are replaced with advanced-technology vehicles. Saving estimates are based on proportions of new vehicles, rather than new-vehicle mileages. In practice, of course, scrapped vehicles are often replaced with used vehicles, and used vehicles are replaced with new vehicles. Because new vehicles are typically driven more than old, savings estimates based on count rather than mileage proportions tend to be biased down (i.e., conservative). Savings are expressed in terms of gallons of fuel saved, metric tons of CO2 emissions reductions, and percentages relative to 2001 levels of fuel and CO2. The sensitivity of the savings projections to inputs such as energy-audit proportions of fuel consumed for rolling resistance, drag, braking, etc. is assessed by considering different scenarios. Though based on many approximations, the estimates approximate the potential energy savings possible because of improvements in tooling. For heavy trucks, annual diesel savings of 2.4-6.8 percent, and cumulative savings on the order of 54-154 percent, of 2001 consumption could accrue by 2050. By 2050, annual gasoline savings of 2.8-12 percent, and cumulative savings on the order of 83-350 percent of 2001 consumption could accrue for cars.

Rick Schmoyer, RLS

2004-12-03T23:59:59.000Z

91

180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report second quarter, 1991  

SciTech Connect (OSTI)

ABB CE`s Low NOx Bulk Furnace Staging (LNBFS) System and Low NOx Concentric Firing System (LNCFS) are demonstrated in stepwise fashion. These systems incorporate the concept of advanced overfire air (AOFA), clustered coal nozzles, and offset air. A complete description of the installed technologies is provided in the following section. The primary objective of the Plant Lansing Smith demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology are also being performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project.

Not Available

1991-12-31T23:59:59.000Z

92

DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Experiments DOEs Effort to Reduce Truck Aerodynamic Drag through Joint Experiments Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

93

DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. vss14salari.pdf More Documents & Publications DOEs Effort to Reduce Truck Aerodynamic Drag through Joint Experiments and Computations Vehicle Technologies Office Merit...

94

DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Experiments and Computations DOEs Effort to Reduce Truck Aerodynamic Drag through Joint Experiments and Computations 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

95

500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Third quarterly progress report, 1992: Innovative Clean Coal Technology (ICCT)  

SciTech Connect (OSTI)

The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulatecharacteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO{sub x} emission levels to be approximately 0.65 lb/MBtu. Flyash LOI values for the LNB configuration are approximately 8 percent at full-load. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. Abbreviated diagnostic tests for the LNB+AOFA configuration indicate that at 500 MWe, NO{sub x} emissions are approximately 0.55 lb/MBtu with corresponding flyash LOI values of approximately 11 percent. For comparison, the long-term full-load, baseline NO{sub x} emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB+AOFA configuration will be performed when the stackparticulate emissions issue is resolved. Testing of a process optimization package on Plant Hammond Unit 4 was performed during this quarter. The software was configured to minimize NO{sub x} emissions using total combustion air flow and advanced overfire air distribution as the controlled parameters. Preliminary results from this testing indicate that this package shows promise in reducing NO{sub x} emissions while maintaining or improving other boiler performance parameters.

Not Available

1992-12-31T23:59:59.000Z

96

Growing the renewable chemicals and advanced biofuels cluster in MN  

E-Print Network [OSTI]

Growing the renewable chemicals and advanced biofuels cluster in MN #12;Renewable Chemical Value% Reduction 60% Reduction 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Gasoline Corn Ethanol Advanced Biofuel Cellulosic Biofuel Corn Ethanol 20% GHG Reduction Compared to gasoline: Advanced Biofuel 50% GHG Reduction e

Levinson, David M.

97

CAPTURE OF PLANETESIMALS BY GAS DRAG FROM CIRCUMPLANETARY DISKS  

SciTech Connect (OSTI)

Growing giant planets have circumplanetary disks around them in the late stage of their formation if their mass is sufficiently large. We examine capture of relatively large planetesimals that are decoupled from the gas inflow, due to gas drag from a circumplanetary disk of a growing giant planet. Assuming that the structure of the circumplanetary disk is axisymmetric, and solving the three-body problem including gas drag, we perform analytic and numerical calculations for capture of planetesimals. When planetesimal random velocity is small, planetesimals approaching in the retrograde direction are more easily captured, owing to their larger velocity relative to the gas. Planetesimals with large orbital inclinations interact with the disk for a short period of time and show lower capture rates. The effect of ablation on capture rates seems insignificant, although mass loss due to ablation would be significant in the case of high random velocity. We also examine the effect of non-uniform radial distribution of planetesimals in the protoplanetary disk due to gap opening by the planet. When the random velocity of planetesimals is small, the planetesimal capture rate decreases rapidly as the half width of the gap in the planetesimal disk increases from two planetary Hill radii to three planetary Hill radii; planetesimals with low random velocities cannot approach the planet in the case of a sufficiently wide gap. Our results show that the radial distribution and random velocity of planetesimals in the protoplanetary disk are essentially important for the understanding of capture of planetesimals by circumplanetary disks.

Fujita, Tetsuya; Ohtsuki, Keiji; Suetsugu, Ryo [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Tanigawa, Takayuki [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan)

2013-12-01T23:59:59.000Z

98

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Quarterly technical progress report, [July--September 1995  

SciTech Connect (OSTI)

This project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. The project provides a stepwise evaluation of the following NO{sub x} reduction technologies: Advanced overfire air (AOFA), Low NO{sub x} burners (LNB), LNB with AOFA, and advanced digital controls and optimization strategies. The project has completed the baseline, AOFA, LNB, and LNB+AOFA test segments, fulfilling all testing originally proposed to DOE. Phase 4 of the project, demonstration of advanced control/optimization methodologies for NO{sub x} abatement, is now in progress. The methodology selected for demonstration at Hammond Unit 4 is the Generic NO{sub x} Control Intelligent System (GNOCIS), which is being developed by a consortium consisting of the Electric Power Research Institute, PowerGen, Southern Company, Radian Corporation, U.K. Department of Trade and Industry, and U.S. Department of Energy. GNOCIS is a methodology that can result in improved boiler efficiency and reduced NO{sub x} emissions from fossil fuel fired boilers. Using a numerical model of the combustion process, GNOCIS applies an optimizing procedure to identify the best set points for the plant on a continuous basis. GNOCIS is in progress at Alabama Power`s Gaston Unit 4 and PowerGen`s Kingsnorth Unit 1. The first commercial demonstration of GNOCIS will be at Hammond 4.

NONE

1995-12-31T23:59:59.000Z

99

Advanced byproduct recovery: Direct catalytic reduction of SO{sub 2} to elemental sulfur. First quarterly technical progress report, [October--December 1995  

SciTech Connect (OSTI)

The team of Arthur D. Little, Tufts University and Engelhard Corporation will be conducting Phase I of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. this catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria or zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an ongoing DOE-sponsored University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicates that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. the performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams.

Benedek, K. [Little (Arthur D.), Inc., Cambridge, MA (United States); Flytzani-Stephanopoulos, M. [Tufts Univ., Medford, MA (United States)

1996-02-01T23:59:59.000Z

100

DragNDrop Directions v6 Windows Users: How do I access DragNDrop web documents to place or update them?  

E-Print Network [OSTI]

DragNDrop Directions v6 12/12/05 Windows Users: How do I access DragNDrop web documents to place or update them? If you are on the PPPL Domain: Open My Computer. Then the P drive. Find the web folder. Find to your web files contact Lena Scimeca OS/X Users: How do I access the web documents to place or update

Princeton Plasma Physics Laboratory

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

November 16, 1999 1. Drag force on non spherical particles. (25 points)  

E-Print Network [OSTI]

) Recall that the Stokes' law drag relation for a sphere in creeping flow is: FD = 6 µ R U, where µ the coefficient for a drag law analogous to the equation above for "ellipsoids". The "nominal radius" gives the correct particle volume with the formula V = 4/3 r3 . Recall that the gravitation constant is 980 g/s2

McCready, Mark J.

102

Theory of resonant photon drag in monolayer graphene M. V. Entin and L. I. Magarill  

E-Print Network [OSTI]

nonresonant photon drag effect NDE . NDE is permitted for interband transitions or in the presence is forbidden by conservation laws. Small value of the photon momentum makes NDE extremely weak. At the same no weakness of usual NDE.19­21 Resonance drag occurs when some partial kinetic property of electron gas

Shepelyansky, Dima

103

DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS  

SciTech Connect (OSTI)

The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at the Gordon Conference on Modern Development in Thermodynamics. The results obtained are very encouraging for the development of the RCSC as a commercial burner for significant reduction of NO{sub x} emissions, and highly warrants further study and development.

Noam Lior; Stuart W. Churchill

2003-10-01T23:59:59.000Z

104

Phonon drag of electrons in Ag{sub 2}S  

SciTech Connect (OSTI)

The temperature dependences of the heat-conductivity coefficient {chi} and the thermopower 6h of Ag{sub 2}S are investigated in the range of 4.2-300 K. It is found that the value of 6h sharply increases (6h {infinity} T{sup -3}) with decreasing T at T < 100 K and passes through a maximum at 16-18 K. The heat-conductivity coefficient passes through a maximum at {approx}30 K. The sharp increase in 6h is found to be caused by the effect of long-wavelength-phonon drag of electrons. It is shown that the shift of the 6h and {chi} peaks, as well as the temperature dependence of the phonon thermopower 6h{sub ph} {infinity} T{sup -3}, agrees with the Herring theory.

Aliev, S. A.; Aliev, F. F., E-mail: farzali@physics.ab.az; Gasanov, Z. S.; Abdullayev, S. M.; Selim-zade, R. I. [Academy of Sciences of Azerbaijan, Institute of Physics (Azerbaijan)

2010-06-15T23:59:59.000Z

105

Demand Reduction  

Broader source: Energy.gov [DOE]

Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

106

On the Tropospheric Response to Anomalous Stratospheric Wave Drag and Radiative Heating  

E-Print Network [OSTI]

On the Tropospheric Response to Anomalous Stratospheric Wave Drag and Radiative Heating DAVID W. J of anomalous diabatic heating in the polar stratosphere as stratospheric temperatures relax to climatology

107

Experimental aero-acoustic assessment of swirling flows for drag applications  

E-Print Network [OSTI]

The need for quiet drag technologies stems from stricter requirements for and growing demand of low-noise aircraft. The research presented in this thesis regards the use of swirling exhaust flows capable of generating ...

Mobed, Darius Darayes

2007-01-01T23:59:59.000Z

108

Drag reducing polymers as simple indicators of hemolytic potential in biomechanical devices  

E-Print Network [OSTI]

An experimental study was carried out to determine if drag reducing polymers can be simple indicators of hemolytic potential in biomechanical devices. Specifically, three different blood pumps, known as a left ventricle ...

Shieh, Sarah

2009-01-01T23:59:59.000Z

109

Two-dimensional flows of foam: drag exerted on circular obstacles and dissipation  

E-Print Network [OSTI]

A Stokes experiment for foams is proposed. It consists in a two-dimensional flow of a foam, confined between a water subphase and a top plate, around a fixed circular obstacle. We present systematic measurements of the drag exerted by the flowing foam on the obstacle, \\emph{versus} various separately controlled parameters: flow rate, bubble volume, solution viscosity, obstacle size and boundary conditions. We separate the drag into two contributions, an elastic one (yield drag) at vanishing flow rate, and a fluid one (viscous coefficient) increasing with flow rate. We quantify the influence of each control parameter on the drag. The results exhibit in particular a power-law dependence of the drag as a function of the solution viscosity and the flow rate with two different exponents. Moreover, we show that the drag decreases with bubble size, increases with obstacle size, and that the effect of boundary conditions is small. Measurements of the streamwise pressure gradient, associated to the dissipation along the flow of foam, are also presented: they show no dependence on the presence of an obstacle, and pressure gradient depends on flow rate, bubble volume and solution viscosity with three independent power laws.

Benjamin Dollet; Florence Elias; Catherine Quilliet; Arnaud Huillier; Miguel Aubouy; Francois Graner

2004-11-22T23:59:59.000Z

110

Low Temperature Combustion and Diesel Emission Reduction Research  

Broader source: Energy.gov (indexed) [DOE]

Compression ratio control Enablers: Advanced controls Variable Valve Timing Two-stage turbo-charging CoolingEGR Two stage combustion Fuel CN reduction Vaporization too slow...

111

Engine Friction Reduction Through Surface Finish and Coatings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Coatings Opportunities exist for friction reduction in piston rings and valve trains using durable, advanced material technologies, such as diamond-like carbon (DLC)...

112

Nitrate reduction  

DOE Patents [OSTI]

Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

Dziewinski, Jacek J. (Los Alamos, NM); Marczak, Stanislaw (Los Alamos, NM)

2000-01-01T23:59:59.000Z

113

Drag force of Anisotropic plasma at finite $U(1)$ chemical potential  

E-Print Network [OSTI]

We perform the calculation of drag force acting on a massive quark moving through an anisotropic ${\\cal N}=4$ SU(N) Super Yang-Mills plasma in the presence of a $U(1)$ chemical potential. We present the numerical results for any real (prolate solution) or imaginary (oblate solution) value of anisotropy and arbitrary direction of the quark velocity with respect to the direction of anisotropy. We find the effect of chemical potential or charge density will enhance the drag force for the prolate solution, and opposite to the oblate solution. On the other hand, as the anisotropy increases, the drag force is enhanced, and the effect of chemical potential strengthens the enhancement.

Long Cheng; Xian-Hui Ge; Shang-Yu Wu

2015-01-16T23:59:59.000Z

114

Variation in the aerodynamic drag coefficient due to changes in the shape of an automobile  

E-Print Network [OSTI]

VARIATION IN THE AERODXMMIC DRAG COEEEICIENT DUE TO CHANGES LN THE SHAPE OF AN AUTOMOBILE A Thesis by JOHN GILBERT MILLI%MS Su'bmitned to the Graduate College of the Texas A&M University in partial fulfillment of the requirements fo... Air Density C HAFTER I IliiTRODUCTION During the early years of the automobile, little or no effort was made to explore the problem of aerodynamic drag. This situation was the result oi' two factors. First, the passenger cars of shat time were...

Williams, John Gilbert

1968-01-01T23:59:59.000Z

115

Colloids in active fluids: Anomalous micro-rheology and negative drag  

E-Print Network [OSTI]

We simulate an experiment in which a colloidal probe is pulled through an active nematic fluid. We find that the drag on the particle is non-Stokesian (not proportional to its radius). Strikingly, a large enough particle in contractile fluid (such as an actomyosin gel) can show negative viscous drag in steady state: the particle moves in the opposite direction to the externally applied force. We explain this, and the qualitative trends seen in our simulations, in terms of the disruption of orientational order around the probe particle and the resulting modifications to the active stress.

G. Foffano; J. S. Lintuvuori; K. Stratford; M. E. Cates; D. Marenduzzo

2012-09-03T23:59:59.000Z

116

Effect of local energy supply to a hypersonic flow on the drag of bodies with different nose bluntness  

SciTech Connect (OSTI)

Parameters of the axisymmetric flow around bodies with different bluntness are compared in the case of constant energy supply to the main hypersonic flow. Flow structures, drag coefficients, and expenditure of energy on overcoming drag are analyzed with the effect of thermal energy on the flow taken into account for different bodies with equal volume.

Borzov, V.Yu.; Rybka, I.V.; Yur`ev, A.S. [A.F. Mozhaisky Military Space Engineering Academy, St. Petersburg (Russian Federation)

1995-06-01T23:59:59.000Z

117

Exact Dragging of Inertial Axes by Cosmic Energy-Currents on the Past Light-Cone  

E-Print Network [OSTI]

We prove exact rotational dragging of local inertial axes (= spin axes of gyroscopes) by arbitrary cosmic energy-currents on the past light-cone of the gyroscope for linear perturbations of Friedmann-Robertson-Walker cosmologies. Hence the principle formulated by Mach holds for arbitrary linear cosmological perturbations.

Christoph Schmid

2014-06-18T23:59:59.000Z

118

THE EFFECTS OF NET ENTANGLEMENT ON THE DRAG AND POWER OUTPUT OF  

E-Print Network [OSTI]

THE EFFECTS OF NET ENTANGLEMENT ON THE DRAG AND POWER OUTPUT OF A CALIFORNIA SEA LION, ZAWPHUS of entangled northern fur 'Scordino. J., and R. Fisher. 1983. Invelltigations on fur seal entanglement in net of plastic litter on beaches of several Alaskan islands. Using the number of net fragments found on shore

119

A source of the C-metric with perfect translational inertial dragging  

E-Print Network [OSTI]

A new source of the C-metric is described using Israel's formalism. This source is a singular accelerated shell. By construction, perfect inertial dragging is realized inside the shell. The equation of state and energy conditions for the shell are discussed.

Brynjar Arnfinnsson; Øyvind Grøn

2014-09-21T23:59:59.000Z

120

American Institute of Aeronautics and Astronautics Interference Drag Modeling and Experiments for a High  

E-Print Network [OSTI]

. Nomenclature AoA = Angle of attack BC = Boundary Condition CD = Drag coefficient 1 Graduate Research Associate rights reserved. #12;American Institute of Aeronautics and Astronautics 2 CL = Lift coefficient EFD factor Re = Reynolds number SBW = Strut Braced Wing SSV = Sliding sleeve valve TBW = Truss Braced Wing

Texas at Arlington, University of

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Vertically Loaded Anchor: Drag Coefficient, Fall Velocity, and Penetration Depth using Laboratory Measurements  

E-Print Network [OSTI]

anchor point. Values such as drag coefficient and terminal velocity are vital in predicting embedment depth to obtain the mooring capacity required by the floating facility. Two scaled models of the Mark I OMNI-Max anchor were subjected to a series...

Cenac, William

2011-08-08T23:59:59.000Z

122

Advanced Diesel Common Rail Injection System for Future Emission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Common Rail Injection System for Future Emission Legislation Advanced Diesel Common Rail Injection System for Future Emission Legislation 2004 Diesel Engine Emissions Reduction...

123

Search for Frame-Dragging-Like Signals Close to Spinning Superconductors  

E-Print Network [OSTI]

High-resolution accelerometer and laser gyroscope measurements were performed in the vicinity of spinning rings at cryogenic temperatures. After passing a critical temperature, which does not coincide with the material's superconducting temperature, the angular acceleration and angular velocity applied to the rotating ring could be seen on the sensors although they are mechanically de-coupled. A parity violation was observed for the laser gyroscope measurements such that the effect was greatly pronounced in the clockwise-direction only. The experiments seem to compare well with recent independent tests obtained by the Canterbury Ring Laser Group and the Gravity-Probe B satellite. All systematic effects analyzed so far are at least 3 orders of magnitude below the observed phenomenon. The available experimental data indicates that the fields scale similar to classical frame-dragging fields. A number of theories that predicted large frame-dragging fields around spinning superconductors can be ruled out by up to 4 orders of magnitude.

M. Tajmar; F. Plesescu; B. Seifert; R. Schnitzer; I. Vasiljevich

2008-04-22T23:59:59.000Z

124

Dynamic dielectric response of electrorheological fluids in drag and pressure flow  

E-Print Network [OSTI]

We have determined the response time of dilute electrorheological fluids (ER) in drag flow, in pressure-driven flow, and in the quiescent state from the dynamic dielectric response. The dependence of the response times on the electric field strength, the shear rate, and the flow velocity were investigated. In the case of ER fluids in drag flow, the response times were also determined from the stress response of the fluid measured simultaneously with the dielectric properties. Comparing the dielectric and rheological response times measured at the same conditions, a significant discrepancy was found, which was attributed to the different instrumental response times of the employed methods. The dielectric permittivity of the quiescent ER fluid was estimated on the basis of formulas derived from the Clausius-Mossotti equation. This simple theoretical model was extended and applied to ER fluids under shear to evaluate the experimental dielectric results.

B. Horváth; I. Szalai

2014-12-30T23:59:59.000Z

125

Phonon-drag thermopower in anisotropic AlAs quantum wells  

SciTech Connect (OSTI)

In the present work we have developed a generalized theory of phonon-drag thermopower ?{sup g} for a highly anisotropic two-dimensional electron gas. For electrons confined in AlAs quantum wells we calculate ?{sup g} as function of temperature. We show that ?{sup g} exhibits a strong anisotropic behavior depending on valley occupancy which can be tuned by well width and strain. Also a great enhancement of ?{sup g} is observed compared to GaAs quantum wells.

Lehmann, Dietmar [Institute of Theoretical Physics, Technische Universität Dresden, D-01062 Dresden (Germany); Tsaousidou, Margarita [Materials Science Department, University of Patras, Patras 26 504 (Greece); Kubakaddi, Shrishail [Department of Physics, Karnatak University, Dharwad-580 003 (India)

2013-12-04T23:59:59.000Z

126

Gravitational drag on a point mass in hypersonic motion within a Gaussian disk  

E-Print Network [OSTI]

We develop an analytical model for the accretion and gravitational drag on a point mass that moves hypersonically in the midplane of a gaseous disk with a Gaussian vertical density stratification. Such a model is of interest for studying the interaction between a planet and a protoplanetary disk, as well as the dynamical decay of massive black holes in galactic nuclei. The model considers that the flow is ballistic, and gives fully analytical expressions for both the accretion rate onto the point mass, and the gravitational drag it suffers. The expressions are further simplified by taking the limits of a thick, and of a thin disk. The results for the thick disk reduce correctly to those for a uniform density environment (Cant\\'o et al. 2011). We find that for a thin disk (small vertical scaleheight compared to the gravitational radius) the accretion rate is proportional to the mass of the moving object and to the surface density of the disk, while the drag force is independent of the velocity of the object. T...

Cantó, J; Raga, A C

2012-01-01T23:59:59.000Z

127

Gravitational drag on a point mass in hypersonic motion through a gaseous medium  

E-Print Network [OSTI]

We explore a ballistic orbit model to infer the gravitational drag force on an accreting point mass M, such as a black hole, moving at a hypersonic velocity v_{0} through a gaseous environment of density \\rho_{0}. The streamlines blend in the flow past the body and transfer momentum to it. The total drag force acting on the body, including the nonlinear contribution of those streamlines with small impact parameter that bend significantly and pass through a shock, can be calculated by imposing conservation of momentum. In this fully analytic approach, the ambiguity in the definition of the lower cut-off distance $r_{\\rm min}$ in calculations of the effect of dynamical friction is removed. It turns out that $r_{\\rm min}=\\sqrt{e}GM/2v_{0}^{2}$. Using spherical surfaces of control of different sizes, we carry out a successful comparison between the predicted drag force and the one obtained from a high resolution, axisymmetric, isothermal flow simulation. We demonstrate that ballistic models are reasonably success...

Canto, J; Esquivel, A; Sanchez-Salcedo, F J

2011-01-01T23:59:59.000Z

128

GRAVITATIONAL DRAG ON A POINT MASS IN HYPERSONIC MOTION WITHIN A GAUSSIAN DISK  

SciTech Connect (OSTI)

We develop an analytical model for the accretion and gravitational drag on a point mass that moves hypersonically in the midplane of a gaseous disk with a Gaussian vertical density stratification. Such a model is of interest for studying the interaction between a planet and a protoplanetary disk, as well as the dynamical decay of massive black holes in galactic nuclei. The model assumes that the flow is ballistic, and gives fully analytical expressions for both the accretion rate onto the point mass and the gravitational drag it suffers. The expressions are further simplified by taking the limits of a thick and of a thin disk. The results for the thick disk reduce correctly to those for a uniform density environment. We find that for a thin disk (small vertical scaleheight compared to the gravitational radius), the accretion rate is proportional to the mass of the moving object and to the surface density of the disk, while the drag force is independent of the velocity of the object. The gravitational deceleration of the hypersonic perturber in a thin disk was found to be independent of its parameters (i.e., mass or velocity) and depends only on the surface mass density of the disk. The predictions of the model are compared to the results of three-dimensional hydrodynamical simulations, with reasonable agreement.

Canto, J.; Sanchez-Salcedo, F. J. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Ap. 70-468, 04510 D.F. (Mexico)] [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Ap. 70-468, 04510 D.F. (Mexico); Esquivel, A.; Raga, A. C., E-mail: jsanchez@astro.unam.mx, E-mail: esquivel@nucleares.una.mx, E-mail: raga@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510 Mexico D.F. (Mexico)

2013-01-01T23:59:59.000Z

129

Optical Clock and Drag-Free Requirements for a Shapiro Time-Delay Mission  

E-Print Network [OSTI]

In the next decade or two, extremely accurate tests of general relativity under extreme conditions are expected from gravitational wave observations of binary black hole mergers with a wide range of mass ratios. In addition, major improvements are planned in both strong and weak equivalence principle tests; clock measurements based on the ACES program on the ISS; more accurate light-bending measurements; and other new types of tests. However, whether these tests are all consistent with general relativity or not, it still appears desirable to proceed with a much improved measurement of the Shapiro time delay. A suggested approach is based on using a high-quality optical clock in a drag-free spacecraft near the sun-earth L1 point and a smaller drag-free transponder spacecraft in a two-year period solar orbit. Laser phase travel-time measurements would be made between the two spacecraft over a period of 10 or 20 days around the time when the line of sight passes through the Sun. The requirements on the optical clock stability and on the drag-free systems will be discussed. The accuracy achievable for the time-delay appears to be better than 1 part in 100 million.

Neil Ashby; Peter L. Bender

2011-06-10T23:59:59.000Z

130

U.S.Air Force Advanced Power  

E-Print Network [OSTI]

efficiency,improved power distribution,reduced fuel dependency,reduction of noise,heat,and visual signatureU.S.Air Force Advanced Power Technology Office (APTO) U.S.Air Force Advanced Power Technology/Wind Powered Hydrogen Generation for Fuel Cell Applications · Waste-To-Energy APTO/Small Business Innovation

131

E-Print Network 3.0 - advisor model risk-reduction Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: advisor model risk-reduction Page: << < 1 2 3 4 5 > >> 1 Comparing Risk Reductions: On the...

132

Advanced Manufacture of Reflectors  

Broader source: Energy.gov [DOE]

The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

133

Strategies for In-Cylinder Reductions to Reach Bin 2 and LEV...  

Broader source: Energy.gov (indexed) [DOE]

Project Dual Loop EGR VTG Boost System Baseline: 2.0L Bin 5 Production Diesel Advanced Air Management Controls achieved: 2% reduction in fuel consumption on...

134

Drag reducing agent: A multi-use tool for liquid pipeline companies  

SciTech Connect (OSTI)

The role of Drag Reducing Agents (DRA) at Lakehead Pipe Line (LPL) has expanded considerably in recent years. It is now a multi-purpose tool that helps manage electric power usage as well as having traditional capacity increase uses. Indeed, DRA is now an important part of operating the LPL system. This paper examines the multiple uses of DRA as used by LPL. It also describes the structure of the DRA program within the company and provides a summary of lessons learned since the DRA program started at LPL in 1991. This information should be useful for anyone who is considering implementing a DRA program.

Rew, D.H.; Sandman, S.R. [Lakehead Pipe Line Co., Duluth, MN (United States)

1996-12-31T23:59:59.000Z

135

Drag force in strongly coupled, anisotropic plasma at finite chemical potential  

E-Print Network [OSTI]

We employ methods of gauge/string duality to analyze the drag force on a heavy quark moving through a strongly coupled, anisotropic \\mathcal{N}=4, SU(N) super Yang- Mills plasma in the presence of a finite U(1) chemical potential. We present numerical results valid for any value of the anisotropy parameter and the U(1) charge density and arbitrary direction of the quark velocity with respect to the direction of anisotropy. In the small anisotropy limit we are also able to furnish analytical results.

Somdeb Chakraborty; Najmul Haque

2014-10-26T23:59:59.000Z

136

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

SciTech Connect (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

137

Dynamic reduction, Version 1. 0  

SciTech Connect (OSTI)

This report describes the theoretical background of the EPRI Dynamic Reduction DYNRED V 1.0. EPRI initiated research under project RP763 to develop the original reduction program DYNEQU. This program was the first to be based on the concept of aggregating of coherent groups of synchronous generators into a single equivalent generator model. While technically advanced, DYNEQU proved difficult to use. Since then, the stability problems encountered in power system planning and operations have changed. The emphasis on first swing transient stability has been replaced by emphasis on inter-area oscillations and voltage stability. The method of identification of coherent generators used in DYNEQU is based on the comparison of rotor angle swings, in a linearized system model, following a fault. It has been shown that this method of coherency identification is good for first swing stability. For inter-area oscillation studies, this method of generator aggregation is less accurate. Far better, are identification methods based on the structure of the power system. Because of these changes in the requirements for reduced order power system models, a new dynamic reduction program (DYNRED) has been developed under EPRI project RP2447-1. It is coherency based, as is DYNEQU, but it has structurally based coherency identification methods in addition to the method used in DYNEQU. This report describes the techniques used in DYNRED, that is: Coherency Identification; Network Reduction; Method of Aggregation, Generator Aggregation, Excitation Aggregation, Primemover/Governor Aggregation. An example of the application of DYNRED to the reduction of a large interconnected power system model is also presented. DYNRED uses the special modeling and network solution techniques developed to enable systems having up to 12,000 bus to be studied. Dynamic data is completely compatible between MASS, PEALS, and the EPRI Extended Transient Midterm Stability Program (ETMSP).

Rogers, G.J.; Wong, D.Y.; Ottevangers, J.; Wang, L. (Ontario Hydro, Toronto, ON (Canada))

1993-04-01T23:59:59.000Z

138

Verification of sub-grid filtered drag models for gas-particle fluidized beds with immersed cylinder arrays  

SciTech Connect (OSTI)

The accuracy of coarse-grid multiphase CFD simulations of fluidized beds may be improved via the inclusion of filtered constitutive models. In our previous study (Sarkar et al., Chem. Eng. Sci., 104, 399-412), we developed such a set of filtered drag relationships for beds with immersed arrays of cooling tubes. Verification of these filtered drag models is addressed in this work. Predictions from coarse-grid simulations with the sub-grid filtered corrections are compared against accurate, highly-resolved simulations of full-scale turbulent and bubbling fluidized beds. The filtered drag models offer a computationally efficient yet accurate alternative for obtaining macroscopic predictions, but the spatial resolution of meso-scale clustering heterogeneities is sacrificed.

Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

2014-03-01T23:59:59.000Z

139

Yield drag in a two-dimensional foam flow around a circular obstacle: Effect of liquid fraction  

E-Print Network [OSTI]

We study the two-dimensional flow of foams around a circular obstacle within a long channel. In experiments, we confine the foam between liquid and glass surfaces. In simulations, we use a deterministic software, the Surface Evolver, for bubble details and a stochastic one, the extended Potts model, for statistics. We adopt a coherent definition of liquid fraction for all studied systems. We vary it in both experiments and simulations, and determine the yield drag of the foam, that is, the force exerted on the obstacle by the foam flowing at very low velocity. We find that the yield drag is linear over a large range of the ratio of obstacle to bubble size, and is independent of the channel width over a large range. Decreasing the liquid fraction, however, strongly increases the yield drag; we discuss and interpret this dependence.

Christophe Raufaste; B. Dollet; Simon Cox; Yi Jiang; François Graner

2007-07-09T23:59:59.000Z

140

Advanced Combustion  

SciTech Connect (OSTI)

The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

Holcomb, Gordon R. [NETL

2013-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Theory of Coulomb drag in graphene Wang-Kong Tse,1 Ben Yu-Kuang Hu,1,2 and S. Das Sarma1  

E-Print Network [OSTI]

Theory of Coulomb drag in graphene Wang-Kong Tse,1 Ben Yu-Kuang Hu,1,2 and S. Das Sarma1 1; published 6 August 2007 We study the Coulomb drag between two single graphene sheets in intrinsic and extrinsic graphene systems with no interlayer tunneling. The general expression for the nonlinear

Hu, Ben Yu-Kuang

142

Drag coefficient for the air-sea exchange: foam impact in hurricane conditions  

E-Print Network [OSTI]

A physical model is proposed for the estimation of the foam impact on the variation of the effective drag coefficient, C_d, with reference to the wind speed U10 in stormy and hurricane conditions. In the present model C_d is approximated by partitioning the sea surface into foam-covered and foam-free areas. Based on the available optical and radiometric measurements of the fractional foam coverage and the characteristic roughness of the sea-surface in the saturation limit of the foam coverage, the model yields the resulting dependence of C_d vs U10. This dependence is in fair agreement with that evaluated from field measurements of the vertical variation of the mean wind speed.

Golbraikh, Ephim

2014-01-01T23:59:59.000Z

143

Room temperature broadband coherent terahertz emission induced by dynamical photon drag in graphene  

E-Print Network [OSTI]

Nonlinear couplings between photons and electrons in new materials give rise to a wealth of interesting nonlinear phenomena. This includes frequency mixing, optical rectification or nonlinear current generation, which are of particular interest for generating radiation in spectral regions that are difficult to access, such as the terahertz gap. Owing to its specific linear dispersion and high electron mobility at room temperature, graphene is particularly attractive for realizing strong nonlinear effects. However, since graphene is a centrosymmetric material, second-order nonlinearities a priori cancel, which imposes to rely on less attractive third-order nonlinearities. It was nevertheless recently demonstrated that dc-second-order nonlinear currents as well as ultrafast ac-currents can be generated in graphene under optical excitation. The asymmetry is introduced by the excitation at oblique incidence, resulting in the transfer of photon momentum to the electron system, known as the photon drag effect. Here...

Maysonnave, J; Wang, F; Maero, S; Berger, C; de Heer, W; Norris, T B; De Vaulchier, L A; Dhillon, S; Tignon, J; Ferreira, R; Mangeney, J

2015-01-01T23:59:59.000Z

144

Inclusion of a Drag Approach in the Town Energy Balance (TEB) Scheme: Offline 1D Evaluation in a Street Canyon  

E-Print Network [OSTI]

Inclusion of a Drag Approach in the Town Energy Balance (TEB) Scheme: Offline 1D Evaluation 2008) ABSTRACT The Town Energy Balance module bridges the micro- and mesoscale and simulates local-scale urban surface energy balance for use in mesoscale meteorological models. Previous offline evaluations

Ribes, Aurélien

145

Published in the Proceedings of ASES-2001, the American Solar Energy Society A DRAG-AND-DROP ENERGY DESIGN TOOL  

E-Print Network [OSTI]

Published in the Proceedings of ASES-2001, the American Solar Energy Society A DRAG-AND-DROP ENERGY the program to more precisely predict the building's performance and the energy cost savings of the ratepayer a building's energy consumption, yet they are also the most tedious to describe. Therefore we developed

146

Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating/Cooling Systems  

E-Print Network [OSTI]

Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating solution is developed as a promising working fluid for district heating/cooling systems (DHCs). It can systems. A promising application of DR fluids is in district heating/ cooling systems (DHCs)9

Raghavan, Srinivasa

147

Yield drag in a two-dimensional foam flow around a circular obstacle: Effect of liquid fraction  

E-Print Network [OSTI]

Yield drag in a two-dimensional foam flow around a circular obstacle: Effect of liquid fraction of foams around a circular obstacle within a long channel. In experiments, we confine the foam between liquid and glass surfaces. In simulations, we use a deterministic software, the Surface Evolver

Cox, Simon

148

Advanced Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4T opAddress:AdolphusAdvanced Energy

149

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

150

Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC (Presentation)  

SciTech Connect (OSTI)

Presentation covers new content available on the Alternative Fuels and Advanced Vehicle Data Center regarding diesel vehicles, diesel exhaust fluid, and selective catalytic reduction technologies.

Brodt-Giles, D.

2008-08-05T23:59:59.000Z

151

Nuclear Waste Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Waste Reduction Pyroprocessing is a promising technology for recycling used nuclear fuel and improving the associated waste management options. The process...

152

Advanced LIGO  

E-Print Network [OSTI]

The Advanced LIGO gravitational wave detectors are second generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid- and high- frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

The LIGO Scientific Collaboration

2014-11-17T23:59:59.000Z

153

ADVANCED SULFUR CONTROL CONCEPTS  

SciTech Connect (OSTI)

Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

2003-01-01T23:59:59.000Z

154

FACT SHEET: Draft Advanced Fossil Energy Solicitation to Support...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas and Other Pollution July 2, 2013 - 12:16pm Addthis What are the key facts? This solicitation will...

155

Degradation of Selenocyanate with an Advanced Reduction Process(ARP)  

E-Print Network [OSTI]

cannot improve selenocyanate removal. However, UV light is able to degrade selenocyanate, and the reaction rate increases as pH decreases. The ARP in this system (ferrous iron and UV) cannot improve the reaction rate from that of only UV light...

Luo, Guofan

2014-08-05T23:59:59.000Z

156

Advanced Reduction Processes - A New Class of Treatment Processes  

E-Print Network [OSTI]

intensity on perchlorate and nitrate degradation were investigated. The effectiveness of the sulfite/UV-L treatment process improved with increasing pH for both perchlorate and nitrate....

Vellanki, Bhanu Prakash

2012-10-19T23:59:59.000Z

157

GENERATION OF ELECTRIC CURRENTS IN THE CHROMOSPHERE VIA NEUTRAL-ION DRAG  

SciTech Connect (OSTI)

We consider the generation of electric currents in the solar chromosphere where the ionization level is typically low. We show that ambient electrons become magnetized even for weak magnetic fields (30 G); that is, their gyrofrequency becomes larger than the collision frequency while ion motions continue to be dominated by ion-neutral collisions. Under such conditions, ions are dragged by neutrals, and the magnetic field acts as if it is frozen-in to the dynamics of the neutral gas. However, magnetized electrons drift under the action of the electric and magnetic fields induced in the reference frame of ions moving with the neutral gas. We find that this relative motion of electrons and ions results in the generation of quite intense electric currents. The dissipation of these currents leads to resistive electron heating and efficient gas ionization. Ionization by electron-neutral impact does not alter the dynamics of the heavy particles; thus, the gas turbulent motions continue even when the plasma becomes fully ionized, and resistive dissipation continues to heat electrons and ions. This heating process is so efficient that it can result in typical temperature increases with altitude as large as 0.1-0.3 eV km{sup -1}. We conclude that this process can play a major role in the heating of the chromosphere and corona.

Krasnoselskikh, V. [LPC2E, CNRS-University of Orleans, 3A Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2 (France); Vekstein, G. [School of Physics and Astronomy, University of Manchester, Alan Turing Building, Manchester M13 9PL (United Kingdom); Hudson, H. S.; Bale, S. D.; Abbett, W. P. [Space Sciences Laboratory, University of California at Berkeley, CA 94720 (United States)

2010-12-01T23:59:59.000Z

158

Frictional heating and convective cooling of polycrystalline diamond drag tools during rock cutting  

SciTech Connect (OSTI)

A numerical-analytical model is developed to predict temperatures in stud-mounted polycrystalline diamond compact (PDC) drag tools during rock cutting. Experimental measurements of the convective heat transfer coefficient for PDC cutters are used in the model to predict temperatures under typical drilling conditions with fluid flow. The analysis compares favorably with measurements of frictional temperatures in controlled cutting tests on Tennessee marble. It is shown that mean cutter wearflat temperatures can be maintained below the critical value of 750{sup 0}C only under conditions of low friction at the cutter/rock interface. This is true, regardless of the level of convective cooling. In fact, a cooling limit is established above which increases in convective cooling do not further reduce cutter temperatures. The ability of liquid drilling fluids to reduce interface friction is thus shown to be far more important in preventing excessive temperatures than their ability to provide cutter cooling. Due to the relatively high interface friction developed under typical air drilling conditions, it is doubtful that temperatures can be kept subcritical at high rotary speeds in some formations when air is employed as the drilling fluid, regardless of the level of cooling achieved.

Ortega, A.; Glowka, D.A.

1982-01-01T23:59:59.000Z

159

The effect of Poynting-Robertson drag on the triangular Lagrangian points  

E-Print Network [OSTI]

We investigate the stability of motion close to the Lagrangian equilibrium points L4 and L5 in the framework of the spatial, elliptic, restricted three- body problem, subject to the radial component of Poynting-Robertson drag. For this reason we develop a simplified resonant model, that is based on averaging theory, i.e. averaged over the mean anomaly of the perturbing planet. We find temporary stability of particles displaying a tadpole motion in the 1:1 resonance. From the linear stability study of the averaged simplified resonant model, we find that the time of temporary stability is proportional to beta a1 n1 , where beta is the ratio of the solar radiation over the gravitational force, and a1, n1 are the semi-major axis and the mean motion of the perturbing planet, respectively. We extend previous results (Murray (1994)) on the asymmetry of the stability indices of L4 and L5 to a more realistic force model. Our analytical results are supported by means of numerical simulations. We implement our study to Jupiter-like perturbing planets, that are also found in extra-solar planetary systems.

Christoph Lhotka; Alessandra Celletti

2014-12-04T23:59:59.000Z

160

Advertise Subscribe Log in Register Advanced search  

E-Print Network [OSTI]

Advertise Subscribe Log in Register Advanced search Home News Comment Special reports People power Europe does not need nuclear power to meet its future energy needs. Question of nuclear subsidies-reduction target would be better. Blowing away nuclear power Europe does not need nuclear power to meet its future

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Assessment of Demand Response and Advanced Metering  

E-Print Network [OSTI]

#12;#12;2008 Assessment of Demand Response and Advanced Metering Staff Report Federal Energy metering penetration and potential peak load reduction from demand response have increased since 2006. Significant activity to promote demand response or to remove barriers to demand response occurred at the state

Tesfatsion, Leigh

162

J. Fluid Mech. (2015), vol. 762, R3, doi:10.1017/jfm.2014.673 The other optimal Stokes drag profile  

E-Print Network [OSTI]

considerations when optimising shapes (Mohammadi & Pironneau 2004), such as minimising drag or maximising lift, shape optimisation can be used to improve the design of biomimetic artificial swimmers (Keaveny, Walker

Lauga, Eric

2015-01-01T23:59:59.000Z

163

advanced energy design: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

advanced energy design First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Advances in Energy Reduction in...

164

Chromium isotopes as indicators of hexavalent chromium reduction  

SciTech Connect (OSTI)

This is the final report for a university research project which advanced development of a new technology for identifying chemical reduction of hexavalent chromium contamination in groundwater systems. Reduction renders mobile and toxic hexavalent chromium immobile and less toxic. The new method uses stable isotope ratio measurements, which are made using multicollector ICP-mass spectrometry. The main objectives of this project were completed during the project period and two peer-reviewed articles were published to disseminate the information gained.

Johnson, Thomas M.

2012-03-20T23:59:59.000Z

165

Studies of the frictional heating of polycrystalline diamond compact drag tools during rock cutting  

SciTech Connect (OSTI)

A numerical-analytical model is developed to analyze temperatures in polycrystalline diamond compact (PDC) drag tools subject to localized frictional heating at a worn flat area and convective cooling at exposed lateral surfaces. Experimental measurements of convective heat transfer coefficients of PDC cutters in a uniform crossflow are presented and used in the model to predict temperatures under typical drilling conditions with fluid flow. The analysis compares favorably with measurements of frictional temperatures in controlled cutting tests on Tennessee marble. It is found that average temperatures at the wearflat contact zone vary directly with frictional force per unit area and are proportional to the one-half power of the cutting speed at the velocities investigated. Temperatures are found to be much more sensitive to decreases in the dynamic friction by lubrication than to increases in convective cooling rates beyond currently achievable levels with water or drilling fluids. It is shown that use of weighted drilling fluids may actually decrease cooling rates compared to those achieved with pure water. It is doubtful that tool temperatures can be kept below critical levels (750/sup 0/C) if air is employed as the drilling fluid. The degree of tool wear is found to have a major influence on the thermal response of the friction contact zone, so that for equal heating per contact area, a worn tool will run much hotter than a sharp tool. It is concluded that tool temperatures may be kept below critical levels with conventional water or mud cooling as long as the fluid provides good cutter-rock lubrication.

Ortega, A.; Glowka, D.A.

1982-06-01T23:59:59.000Z

166

REDUCTIONS WITHOUT REGRET: SUMMARY  

SciTech Connect (OSTI)

This paper briefly summarizes the series in which we consider the possibilities for losing, or compromising, key capabilities of the U.S. nuclear force in the face of modernization and reductions. The first of the three papers takes an historical perspective, considering capabilities that were eliminated in past force reductions. The second paper is our attempt to define the needed capabilities looking forward in the context of the current framework for force modernization and the current picture of the evolving challenges of deterrence and assurance. The third paper then provides an example for each of our undesirable outcomes: the creation of roach motels, box canyons, and wrong turns.

Swegle, J.; Tincher, D.

2013-09-16T23:59:59.000Z

167

Benchmark of aerodynamic cycling helmets using a refined wind tunnel test protocol for helmet drag research  

E-Print Network [OSTI]

The study of aerodynamics is very important in the world of cycling. Wind tunnel research is conducted on most of the equipment that is used by a rider and is a critical factor in the advancement of the sport. However, to ...

Sidelko, Stephanie

2007-01-01T23:59:59.000Z

168

E-Print Network 3.0 - atp reduction affects Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

affects Search Powered by Explorit Topic List Advanced Search Sample search results for: atp reduction affects Page: << < 1 2 3 4 5 > >> 1 Dynamic Sensitivity of ATP-sensitive K...

169

Economics of Grade Reduction  

E-Print Network [OSTI]

A Study of the General Principles of the Economics to Be Effected By the Reduction of Grades, the Elimination of Rise and Fall and Curvature, and the Bettering of the Other Physical Condition on the ST. Louis & San Francisco Railroad Lines....

Neff, Paul J.

1914-02-10T23:59:59.000Z

170

Global Threat Reduction Initiative  

E-Print Network [OSTI]

Global Threat Reduction Initiative ­ Conversion Program: Reduced Enrichment for Research and Test the dual application of splitting the atom, U.S. policy towards civilian use of highly enriched uranium and test reactors fueled first with low enriched uranium (LEU) and then later with HEU. By the early 1970s

Kemner, Ken

171

Advanced Hydrogen Turbine Development  

SciTech Connect (OSTI)

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

172

The influence of the magnetic field on the effect of drag of electrons by phonons in n-Cd{sub x}Hg{sub 1-x}Te  

SciTech Connect (OSTI)

Thermopower in n-Cd{sub 0.2}Hg{sub 0.8}Te (6-100 K) is studied. A large effect of drag of the charge carriers by phonons {alpha}{sub ph} is found. The influence of the magnetic field H on the drag thermopower is considered. It is established that the magnetic field exerts the effect mainly on the electron component of {alpha}{sub ph}. The data are interpreted in the context of the theory taking into account the effect of H on thermopower {alpha}{sub ph}, in which parameter A({epsilon}) proportional to the static force of the drag effect is introduced. By the experimental data {alpha}{sub ph}(T, H), T, and H dependences A({epsilon}) are determined. It is shown that, as H increases, A({epsilon}) sharply decreases. This explains a decrease in {alpha}{sub ph} in the magnetic field, power index k in dependence {alpha}{sub ph} {proportional_to} T{sup -}{kappa}, and narrowing the region of manifestation of the drag effect. It is established that at classically high fields, the drag effect in n-Cd{sub 0.2}Hg{sub 0.8}Te does not vanish.

Aliyev, S. A.; Zulfigarov, E. I.; Selim-Zade, R. I.; Agayev, Z. F., E-mail: agayevz@rambler.ru [National Academy of Sciences of Azerbaijan, Institute of Physics (Azerbaijan)

2009-09-15T23:59:59.000Z

173

Aluminum reduction cell electrode  

DOE Patents [OSTI]

The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB[sub 2], for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints. 9 figs.

Goodnow, W.H.; Payne, J.R.

1982-09-14T23:59:59.000Z

174

Carbon Reduction Analysis and Action Using the CoolClimate Version date: 12/17/2009  

E-Print Network [OSTI]

Carbon Reduction Analysis and Action Using the CoolClimate Calculator Version date: 12 of publication. Recommended citation: Cuitation: Jones, C.M. and Kammen, D.M. (2009.) Carbon Reduction Analysis research and development of advanced carbon footprint management tools for U.S. households, small

Kammen, Daniel M.

175

Advanced Critical Advanced Energy Retrofit Education and Training...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Critical Advanced Energy Retrofit Education and Training and Credentialing - 2014 BTO Peer Review Advanced Critical Advanced Energy Retrofit Education and Training and...

176

Italian Academy Advanced Studies  

E-Print Network [OSTI]

The Italian Academy for Advanced Studies in America at Columbia University Annual Report 2006­2007 The Italian Academy for Advanced Studies in America at Columbia University Annual Report 2006­2007 #12;italian academy for advanced studies in america 1161 Amsterdam Avenue New York, NY 10027 tel: (212) 854-2306 fax

Qian, Ning

177

Advanced Search Search Tips  

E-Print Network [OSTI]

Advanced Search Search Tips Advanced Search Search Tips springerlink.com SpringerLink 2,000 40,000 20,000 2010 11 Please visit 7 http://www.springerlink.com GO 1997 1997 SpringerLink Advanced Search Search Tips CONTENT DOI CITATION DOI ISSN ISBN CATEGORY AND DATE LIMITERS Journals Books Protocols

Kinosita Jr., Kazuhiko

178

Inert anodes and advanced smelting of aluminum  

SciTech Connect (OSTI)

This report provides a broad assessment of open literature and patents that exist in the area of inert anodes and their related cathode systems and cell designs, technologies that are relevant for the advanced smelting of aluminum. The report also discusses the opportunities, barriers, and issued associated with these technologies from a technical, environmental, and economic viewpoint. It discusses the outlook for the direct retrofit of advanced reduction technologies to existing aluminum smelters, and compares retrofits to ''brown field'' usage and ''green field'' adoption of the technologies. A number of observations and recommendations are offered for consideration concerning further research and development efforts that may be directed toward these advanced technologies. The opportunities are discussed in the context of incremental progress that is being made in conventional Hall-Heroult cell systems.

ASME Technical Working Group on Inert Anode Technologies

1999-07-01T23:59:59.000Z

179

Aluminum reduction cell electrode  

DOE Patents [OSTI]

The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces. 10 figs.

Payne, J.R.

1983-09-20T23:59:59.000Z

180

hal-00090531,version4-6Jul2007 Yield drag in a two-dimensional foam flow around a circular obstacle  

E-Print Network [OSTI]

hal-00090531,version4-6Jul2007 Yield drag in a two-dimensional foam flow around a circular obstacle-dimensional flow of foams around a circular obstacle within a long channel. In experiments, we confine the foam between liquid and glass surfaces. In simulations, we use a deterministic software, the Surface Evolver

Boyer, Edmond

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Economic Analysis of Commercial Idling Reduction Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies: Which idling reduction system is most economical for truck owners? Economic Analysis of Commercial Idling Reduction Technologies: Which idling reduction system...

182

Advanced Studies Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Institute Advanced Studies Institute Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff...

183

Advanced Reciprocating Engine Systems  

Broader source: Energy.gov [DOE]

The Advanced Reciprocating Engine Systems (ARES) program is designed to promote separate but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the...

184

Advanced Propulsion Technology Strategy  

Broader source: Energy.gov (indexed) [DOE]

Alternative Sources) Hydrogen Time ADVANCED PROPULSION TECHNOLOGY STRATEGY DOWNSIZED TURBO GAS ENGINE CHEVROLET CRUZE 1.4L TURBO ECOTEC Downsized SIDI Turbo Boosting HCCI -...

185

Advanced Fuel Cycle Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

186

Advanced Fuel Cycle Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

187

Advances in Physical Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hindawi Publishing Corporation Advances in Physical Chemistry Volume 2011, Article ID 907129, 18 pages doi:10.11552011907129 Review Article Contrast and Synergy between...

188

E-Print Network 3.0 - advanced oral squamous Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

19 10.11172.1200809.1327 Reading cancer-specific Summary: , and Chih-Ming Ho Advances in background-noise reduction lead to ultrasensitive protein and DNA sensors... for detecting...

189

Advanced Powerhouse Controls Save Pulp Mill $500 in Purchased Energy in First Month  

E-Print Network [OSTI]

This case study describes the application of advanced regulatory and supervisory controls to powerhouse operations at a large pulp mill in central British Columbia. Substantial reductions in mill operating costs were achieved by actively managing...

Morrison, R.; Hilder, S.

2004-01-01T23:59:59.000Z

190

Baytown Xylene Fractionation Energy Reduction using Dynamic Matrix Control (DMC)  

E-Print Network [OSTI]

Baytown Xylene Fractionation Energy Reduction using Dynamic Matrix Control (DMC) IETC 2014 New Orleans, Louisiana David Hokanson ExxonMobil Research and Engineering May 22, 2014 ESL-IE-14-05-33 Proceedings of the Thrity-Sixth Industrial Energy... Conference New Orleans, LA. May 20-23, 2014 3Baytown Chemical / Refining Complex ExxonMobil Baytown Refining & Chemical Complex • One of world’s largest integrated, most technologically advanced petroleum/petrochemical complexes, in operation since 1919...

Hokanson, D.

2014-01-01T23:59:59.000Z

191

Large Wind Property Tax Reduction  

Broader source: Energy.gov [DOE]

In 2001, North Dakota established property tax reductions for commercial wind turbines constructed before 2011. Originally, the law reduced the taxable value of centrally-assessed* wind turbines...

192

Nonlinear noise reduction for electrocardiograms  

E-Print Network [OSTI]

Nonlinear noise reduction for electrocardiograms Thomas Schreiber Physics Department, University time series. The underlying physiological process, the electrochemical excitation of cardiac tissue

Kaplan, Daniel T.

193

SCR Technologies for NOx Reduction  

Broader source: Energy.gov (indexed) [DOE]

SCR Technology for NOx Reduction Outline Necessity of NOx Exhaust Gas Aftertreatment Air-assisted Dosing Systems (HD applications) Field experience with DENOXTRONIC for MDHD...

194

Hydrogen Compression, Storage, and Dispensing Cost Reduction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Document states additional...

195

Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on...

196

Advanced Demand Responsive Lighting  

E-Print Network [OSTI]

Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

197

Kansas Advanced Semiconductor Project  

SciTech Connect (OSTI)

KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

2007-09-21T23:59:59.000Z

198

Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration  

SciTech Connect (OSTI)

Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

Choi, Jae-Soon [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Partridge Jr, William P [ORNL] [ORNL; Parks, II, James E [ORNL; Norman, Kevin M [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; Chambon, Paul H [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL

2010-01-01T23:59:59.000Z

199

Livestock Odor Reduction Demonstration Project  

E-Print Network [OSTI]

Livestock Odor Reduction Demonstration Project Objectives The 1996 and 1997 Iowa General Assembly-share basis to livestock producers and operators selected to carry out various demonstration projects. Organization The Livestock Odor Reduction Demonstration Project was administered by ISU Extension. Stewart

Lin, Zhiqun

200

Environmental Sustainability Paper Usage / Reduction  

E-Print Network [OSTI]

;carbon footprint and develop carbon reduction projects around IT and staff/student behaviour change is supported by the Environmental Sustainability Manager and is seen as a key link to the University's Carbon Management Programme (e.g. to produce a forecast of carbon reductions as required by the Carbon Trust

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Comprehensive Poverty Reduction Strategies in  

E-Print Network [OSTI]

Comprehensive Poverty Reduction Strategies in Canada: Policy or Window Dressing? Charles Plante, Upstream: Institute for a Healthy Society #12;Overview What is poverty? Current state of poverty in Saskatchewan What is a Comprehensive Poverty Reduction Strategy (CPRS)? Are CPRS effective at reducing

Peak, Derek

202

advanced ceramics advanced: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

203

Draft Advanced Nuclear Energy Projects Solicitation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Draft Advanced Nuclear Energy Projects Solicitation Draft Advanced Nuclear Energy Projects Solicitation INFORMATIONAL MATERIALS DRAFT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION...

204

Fact Sheet: Energy Storage Technology Advancement Partnership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

205

Boattail Plates With Non-Rectangular Geometries For Reducing Aerodynamic Base Drag Of A Bluff Body In Ground Effect  

DOE Patents [OSTI]

An apparatus for reducing the aerodynamic base drag of a bluff body having a leading end, a trailing end, a top surface, opposing left and right side surfaces, and a base surface at the trailing end substantially normal to a longitudinal centerline of the bluff body, with the base surface joined (1) to the left side surface at a left trailing edge, (2) to the right side surface at a right trailing edge, and (3) to the top surface at a top trailing edge. The apparatus includes left and right vertical boattail plates which are orthogonally attached to the base surface of the bluff body and inwardly offset from the left and right trailing edges, respectively. This produces left and right vertical channels which generate, in a flowstream substantially parallel to the longitudinal centerline, respective left and right vertically-aligned vortical structures, with the left and right vertical boattail plates each having a plate width defined by a rear edge of the plate spaced from the base surface. Each plate also has a peak plate width at a location between top and bottom ends of the plate corresponding to a peak vortex of the respective vertically-aligned vortical structures.

Ortega, Jason M. (Pacifica, CA); Sabari, Kambiz (Livermore, CA)

2006-03-07T23:59:59.000Z

206

Search Asia Advanced Search  

E-Print Network [OSTI]

Asia Times Search Asia Times Advanced Search Southeast Asia Malaysia tackles illegal logging:52:14 AM Search #12;Asia Times illegal logging," he said, adding that nine Malaysians had been arrested

207

Search Asia Advanced Search  

E-Print Network [OSTI]

Asia Times Search Asia Times Advanced Search Southeast Asia Indonesia looks to curb log smuggling.html (1 of 2)9/4/2007 12:59:34 PM Search #12;Asia Times No material from Asia Times Online may

208

Advanced Review Geometry optimization  

E-Print Network [OSTI]

Advanced Review Geometry optimization H. Bernhard Schlegel Geometry optimization is an important part of most quantum chemical calcu- lations. This article surveys methods for optimizing equilibrium geometries, lo- cating transition structures, and following reaction paths. The emphasis is on optimizations

Schlegel, H. Bernhard

209

Advanced Materials | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials SHARE Advanced Materials ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of...

210

Renewable Chemicals and Advanced Biofuels  

Broader source: Energy.gov [DOE]

Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Advanced Biofuels & Policy—Brett Lund, Executive Vice President, General Counsel and Secretary, Gevo Inc.

211

Nevada State Energy Reduction Plan  

Broader source: Energy.gov [DOE]

As mandated by the Nevada statutes, the Nevada Energy Office prepared a state energy reduction plan which requires state agencies, departments, and other entities in the Executive Branch to reduce...

212

Economics of Steam Pressure Reduction  

E-Print Network [OSTI]

Economics of Steam Pressure Reduction is a technical paper that addresses the operating and economic advantages associated with the program to lower the steam operating pressure. Evaluation of a testing program will be discussed. The paper...

Sylva, D. M.

213

Warm exo-Zodi from cool exo-Kuiper belts: the significance of P-R drag and the inference of intervening planets  

E-Print Network [OSTI]

Poynting-Robertson drag has been considered an ineffective mechanism for delivering dust to regions interior to the cool Kuiper belt analogues seen around other Sun-like stars. This conclusion is however based on the very large contrast in dust optical depth between the parent belt and the interior regions that results from the dominance of collisions over drag in systems with detectable cool belts. Here, we show that the levels of habitable zone dust arising from detectable Kuiper belt analogues can be tens to a few hundreds of times greater than the optical depth in the Solar Zodiacal cloud. Dust enhancements of more than a few tens of `zodi' are expected to hinder future Earth-imaging missions, but relatively few undetectable Kuiper belts result in such levels, particularly around stars older than a few Gyr. Thus, current mid to far-IR photometric surveys have already identified most of the 20-25% of nearby stars where P-R drag from outer belts could seriously impact Earth-imaging. The LBTI should easily d...

Kennedy, Grant M

2015-01-01T23:59:59.000Z

214

Advanced Modular Inverter Technology Development  

SciTech Connect (OSTI)

Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

Adam Szczepanek

2006-02-04T23:59:59.000Z

215

Advanced Hydride Laboratory  

SciTech Connect (OSTI)

Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

Motyka, T.

1989-01-01T23:59:59.000Z

216

Advanced Hydride Laboratory  

SciTech Connect (OSTI)

Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

Motyka, T.

1989-12-31T23:59:59.000Z

217

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

218

Plasma-assisted catalytic reduction system  

DOE Patents [OSTI]

Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

1998-01-27T23:59:59.000Z

219

Electrocatalytic Reactivity for Oxygen Reduction of Palladium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactivity for Oxygen Reduction of Palladium-Modified Carbon Nanotubes Synthesized in Supercritical Fluid. Electrocatalytic Reactivity for Oxygen Reduction of Palladium-Modified...

220

Facile and controllable electrochemical reduction of graphene...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and controllable electrochemical reduction of graphene oxide and its applications. Facile and controllable electrochemical reduction of graphene oxide and its applications....

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Characterizing Test Methods and Emissions Reduction Performance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Test Methods and Emissions Reduction Performance of In-Use Diesel Retrofit Technologies from the National Clean Diesel Campaign Characterizing Test Methods and Emissions Reduction...

222

Demonstrating Fuel Consumption and Emissions Reductions with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Demonstrating Fuel Consumption and Emissions Reductions with Next Generation...

223

Advanced Optical Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAbout Us >Portal AdvancedAdvanced

224

Cooperative Research and Development of Primary Surface Recuperator for Advanced Microturbine Systems  

SciTech Connect (OSTI)

Recuperators have been identified as key components of advanced gas turbines systems that achieve a measure of improvement in operating efficiency and lead the field in achieving very low emissions. Every gas turbine manufacturer that is studying, developing, or commercializing advanced recuperated gas turbine cycles requests that recuperators operate at higher temperature without a reduction in design life and must cost less. The Solar Cooperative Research and Development of Primary Surface Recuperator for Advanced Microturbine Systems Program is directed towards meeting the future requirements of advanced gas turbine systems by the following: (1) The development of advanced alloys that will allow recuperator inlet exhaust gas temperatures to increase without significant cost increase. (2) Further characterization of the creep and oxidation (dry and humid air) properties of nickel alloy foils (less than 0.13 mm thick) to allow the economical use of these materials. (3) Increasing the use of advanced robotic systems and advanced in-process statistical measurement systems.

Escola, George

2007-01-17T23:59:59.000Z

225

Microbial reduction of iron ore  

DOE Patents [OSTI]

A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

Hoffmann, Michael R. (Pasadena, CA); Arnold, Robert G. (Pasadena, CA); Stephanopoulos, Gregory (Pasadena, CA)

1989-01-01T23:59:59.000Z

226

Microbial reduction of iron ore  

DOE Patents [OSTI]

A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

1989-11-14T23:59:59.000Z

227

Advanced fuel chemistry for advanced engines.  

SciTech Connect (OSTI)

Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

2009-09-01T23:59:59.000Z

228

Forest Fuels ReductionForest Fuels Reduction Department of  

E-Print Network [OSTI]

are the soil management and watershed implications from alternative fuels reduction approaches? 3. How do and implement appropriate technologies to meet sustainable forest management objectives involving fuels Management 1. What should the size and distribution of the residual woody material be on-site from a fire

Bolding, M. Chad

229

Arnold Schwarzenegger ADVANCEMENT OF  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor ADVANCEMENT OF ELECTROCHROMIC WINDOWS Prepared For: California the time to provide insightful technical and market-related input into the direction of this R&D: Carl Mechoshade Systems, Inc. Grant Brohard Pacific Gas & Electric Company Charles Hayes SAGE Electrochromics, Inc

230

Advanced fossil energy utilization  

SciTech Connect (OSTI)

This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

2010-01-01T23:59:59.000Z

231

Standard version Advanced version  

E-Print Network [OSTI]

Minimum octane 8.5 7 4.5 To produce these products, Margaret purchases crude oil at a price of £11 per version Margaret Oil - basic (2) Before crude can be used to produce products for sale, it must version Advanced version Margaret Oil - basic (3) Crude Distill Naphtha Gasoline Distilled 1 Jet fuel

Hall, Julian

232

Advanced Test Reactor Tour  

SciTech Connect (OSTI)

The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

Miley, Don

2011-01-01T23:59:59.000Z

233

Advanced Test Reactor Tour  

ScienceCinema (OSTI)

The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

Miley, Don

2013-05-28T23:59:59.000Z

234

International for Advanced Studies  

E-Print Network [OSTI]

and Technology at the University of Ulm ICAS-Affiliations The International Center for Advanced Studies in Health in medical technology and pharma- ceutical industry. The International Advisory Panel of ICAS consists, transfer of state-of-the-art clinical technologies, and utilization of methodologies appropriate

Pfeifer, Holger

235

Advanced Biotechnology and Medicine  

E-Print Network [OSTI]

, Training and Technology Transfer 43 Lectures and Seminars 44 CABM Lecture Series 45 Annual Retreat 46 15th An Advanced Technology Center of The New Jersey Commission on Science and Technology Jointly Administered from CABM laboratories have appeared in high impact international journals including Development, Genes

236

Advanced Biotechnology and Medicine  

E-Print Network [OSTI]

Shatkin 41 Education, Training and Technology Transfer 43 Lectures and Seminars 44 CABM Lecture Series 45 An Advanced Technology Center of The New Jersey Commission on Science and Technology Jointly Administered for the improvement of human health. In 2002 peer-reviewed CABM studies were published in leading international

237

Advanced Biotechnology and Medicine  

E-Print Network [OSTI]

Vikas Nanda 63 Protein Crystallography Ann Stock 67 Education, Training and Technology Transfer 71 Report An Advanced Technology Center of the New Jersey Commission on Science and Technology Jointly, the CIPR will house the Rutgers-based Protein Data Bank (PDB), an international repository directed

238

Advanced Manufacture of Reflectors  

SciTech Connect (OSTI)

The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings • A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. • Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square – a unique capability. • The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. • A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

Angel, Roger [University of Arizona

2014-12-17T23:59:59.000Z

239

Lead reduction in ambient air  

SciTech Connect (OSTI)

The Bureau of Mines evaluated the emission control methods, including the capital investments and operating cost, necessary for further reducing lead levels in ambient air at the Glover, Herculaneum, and Buick smelter-refineries in Missouri and the East Helena, MT, smelter. This report presents theoretically achievable lead emission reductions and estimated capital and operating costs.

Smith, R.D.; Kiehn, O.A.; Wilburn, D.R.; Bowyer, R.C.

1987-01-01T23:59:59.000Z

240

Beta Reduction Constraints Manuel Bodirsky Katrin Erk  

E-Print Network [OSTI]

Beta Reduction Constraints Manuel Bodirsky Katrin Erk Alexander Koller Joachim Niehren Programming partially. In this paper, we introduce beta reduction constraints to describe beta reduction steps between partially known lambda terms. We show that beta reduction constraints can be expressed in an extension

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Adaptive Port Reduction in Static Condensation  

E-Print Network [OSTI]

Adaptive Port Reduction in Static Condensation JL Eftang DBP Huynh DJ Knezevic EM Rønquist a framework for adaptive reduction of the degrees of freedom associated with ports in static condensation (SC reduction for the interior of a component with model order reduction on the ports in order to rapidly

Rønquist, Einar M.

242

Advanced wind turbine with lift-destroying aileron for shutdown  

DOE Patents [OSTI]

An advanced aileron configuration for wind turbine rotors featuring an aileron with a bottom surface that slopes upwardly at an angle toward the nose region of the aileron. The aileron rotates about a center of rotation which is located within the envelope of the aileron, but does not protrude substantially into the air flowing past the aileron while the aileron is deflected to angles within a control range of angles. This allows for strong positive control of the rotation of the rotor. When the aileron is rotated to angles within a shutdown range of deflection angles, lift-destroying, turbulence-producing cross-flow of air through a flow gap, and turbulence created by the aileron, create sufficient drag to stop rotation of the rotor assembly. The profile of the aileron further allows the center of rotation to be located within the envelope of the aileron, at or near the centers of pressure and mass of the aileron. The location of the center of rotation optimizes aerodynamically and gyroscopically induced hinge moments and provides a fail safe configuration.

Coleman, Clint (Warren, VT); Juengst, Theresa M. (Warren, VT); Zuteck, Michael D. (Kemah, TX)

1996-06-18T23:59:59.000Z

243

Herty Advanced Materials Development Center  

Broader source: Energy.gov [DOE]

Session 1-B: Advancing Alternative Fuels for the Military and Aviation Sector Breakout Session 1: New Developments and Hot Topics Jill Stuckey, Acting Director, Herty Advanced Materials Development Center

244

Search Advanced Search Home > News  

E-Print Network [OSTI]

Search Advanced Search Home > News [-] Text [+] Email Print tweet 0 tweets RSS Feeds Newsletters with bodily tissues, "these approaches might have the potential to redefine design strategies for advanced

Rogers, John A.

245

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

246

Advanced Separation Consortium  

SciTech Connect (OSTI)

The Center for Advanced Separation Technologies (CAST) was formed in 2001 under the sponsorship of the US Department of Energy to conduct fundamental research in advanced separation and to develop technologies that can be used to produce coal and minerals in an efficient and environmentally acceptable manner. The CAST consortium consists of seven universities - Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Utah, University of Nevada-Reno, and New Mexico Tech. The consortium brings together a broad range of expertise to solve problems facing the US coal industry and the mining sector in general. At present, a total of 60 research projects are under way. The article outlines some of these, on topics including innovative dewatering technologies, removal of mercury and other impurities, and modelling of the flotation process. 1 photo.

NONE

2006-01-01T23:59:59.000Z

247

Advanced Photon Source Upgrade Project  

ScienceCinema (OSTI)

Upgrade to Advanced Photon Source announced by Department Of Energy. Read more: http://go.usa.gov/ivZ

Mitchell, John; Gibson, Murray; Young, Linda; Joachimiak, Andrzej

2013-04-19T23:59:59.000Z

248

Advanced Polymer Processing Facility  

SciTech Connect (OSTI)

Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

Muenchausen, Ross E. [Los Alamos National Laboratory

2012-07-25T23:59:59.000Z

249

ADVANCED CHEMISTRY BASINS MODEL  

SciTech Connect (OSTI)

The advanced Chemistry Basin Model project has been operative for 48 months. During this period, about half the project tasks are on projected schedule. On average the project is somewhat behind schedule (90%). Unanticipated issues are causing model integration to take longer then scheduled, delaying final debugging and manual development. It is anticipated that a short extension will be required to fulfill all contract obligations.

William Goddard III; Lawrence Cathles III; Mario Blanco; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2004-05-01T23:59:59.000Z

250

Advanced Materials Manufacturing | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal Advanced Material

251

Advanced Microturbine Systems  

SciTech Connect (OSTI)

Dept. of Energy (DOE) Cooperative Agreement DE-FC02-00-CH11061 was originally awarded to Honeywell International, Inc. â?? Honeywell Power Systems Inc. (HPSI) division located in Albuquerque, NM in October 2000 to conduct a program titled Advanced Microturbine Systems (AMS). The DOE Advanced Microturbines Systems Program was originally proposed as a five-year program to design and develop a high efficiency, low emissions, durable microturbine system. The period of performance was to be October 2000 through September 2005. Program efforts were underway, when one year into the program Honeywell sold the intellectual property of Honeywell Power Systems Inc. and HPSI ceased business operations. Honeywell made an internal decision to restructure the existing program due to the HPSI shutdown and submitted a formal request to DOE on September 24, 2001 to transfer the Cooperative Agreement to Honeywell Engines, Systems and Services (HES&S) in Phoenix, AZ in order to continue to offer support for DOE's Advanced Microturbine Program. Work continued on the descoped program under Cooperative Agreement No. DE-FC26-00-CH11061 and has been completed.

None

2005-12-31T23:59:59.000Z

252

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

253

Physics of advanced tokamaks  

SciTech Connect (OSTI)

Significant reductions in the size and cost of a fusion power plant core can be realized if simultaneous improvements in the energy replacement time, {tau}{sub E}, and the plasma pressure or beta, {beta}{sub T} = 2 {micro}{sub 0}

/B{sup 2} can be achieved in steady-state conditions with high self-driven, bootstrap current fraction. Significant recent progress has been made in experimentally achieving these high performance regimes and in developing a theoretical understanding of the underlying physics. Three operational scenarios have demonstrated potential for steady state high performance, the radiative improved (RI) mode, the high internal inductance or high {ell}{sub i} scenario, and the negative central magnetic shear, NCS (or reversed shear, RS) scenario. In a large number of tokamaks, reduced ion thermal transport to near neoclassical values, and reduced particle transport have been observed in the region of negative or very low magnetic shear: the transport reduction is consistent with stabilization of microturbulence by sheared E x B flow. There is strong temporal and spatial correlation between the increased sheared E x B flow, the reduction in the measured turbulence, and the reduction in transport. The DIII-D tokamak, the JET tokamak and the JT-60U tokamak have all observed significant increases in plasma performance in the NCS operational regime. Strong plasma shaping and broad pressure profiles, provided by the H-mode edge, allow high beta operation, consistent with theoretical predictions; and normalized beta values up to {beta}{sub T}/(I/aB) {equivalent_to} {beta}{sub N} {approximately} 4.5%-m-T/MA simultaneously with confinement enhancement over L-mode scaling, H = {tau}/{tau}{sub ITER-89P} {approximately} 4, have been achieved in the DIII-D tokamak. In the JT-60U tokamak, deuterium discharges with negative central magnetic shear, NCS, have reached equivalent break-even conditions, Q{sub DT} (equiv) = 1.

Taylor, T.S.

1997-11-01T23:59:59.000Z

254

The practical equity implications of advanced metering infrastructure  

SciTech Connect (OSTI)

Reductions in advanced metering costs and the efficiency benefits of dynamic pricing make a compelling case to adopt both, particularly for industrial and commercial facilities. Regulators should seriously consider such policies for residential households as well. Regulators can take meaningful steps to mitigate, if not entirely offset, the possibility that some low-income ratepayers may have higher electricity bills with AM and DP. (author)

Felder, Frank A.

2010-07-15T23:59:59.000Z

255

Stable reduction product of misonidazole  

SciTech Connect (OSTI)

The predominant stable product (greater than 80%) of the anaerobic radiation chemical reduction (pH 7, formate, N/sub 2/O) of misonidazole (MISO) has been identified as the cyclic guanidinium ion MISO-DDI, a 4,5-dihydro-4,5-dihydroxyimidazolium ion. This cation was prepared as its sulfate salt by the reaction of glyoxal and the appropriate N-substituted guanidinium sulfate. Its formation during MISO reduction was established by NMR spectral comparison and by derivatization as glyoxal bis-oxime, which was formed in 86% yield in fully reduced systems. The toxicity of pure MISO-DDI X sulfate was examined in vivo (C/sub 3/H mice) and in vitro (CHO cells). This product is less toxic than the parent MISO and free glyoxal. A reactive, short-lived, intermediate is suggested as the agent responsible for the toxicity of MISO under hypoxic conditions.

Panicucci, R.; McClelland, R.A.; Rauth, A.M.

1986-07-01T23:59:59.000Z

256

Wind load reduction for heliostats  

SciTech Connect (OSTI)

This report presents the results of wind-tunnel tests supported through the Solar Energy Research Institute (SERI) by the Office of Solar Thermal Technology of the US Department of Energy as part of the SERI research effort on innovative concentrators. As gravity loads on drive mechanisms are reduced through stretched-membrane technology, the wind-load contribution of the required drive capacity increases in percentage. Reduction of wind loads can provide economy in support structure and heliostat drive. Wind-tunnel tests have been directed at finding methods to reduce wind loads on heliostats. The tests investigated primarily the mean forces, moments, and the possibility of measuring fluctuating forces in anticipation of reducing those forces. A significant increase in ability to predict heliostat wind loads and their reduction within a heliostat field was achieved.

Peterka, J.A.; Hosoya, N.; Bienkiewicz, B.; Cermak, J.E.

1986-05-01T23:59:59.000Z

257

Advanced Energy Design Guides | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Energy Design Guides Advanced Energy Design Guides EERE Building Technologies Program - This fact sheet discusses the Advanced Energy Design Guides (AEDGs) and how they...

258

Emissions Reduction Impact of Renewables  

E-Print Network [OSTI]

p. 1 Energy Systems Laboratory ? 2012 EMISSIONS REDUCTION IMPACT OF RENEWABLES October 2012 Jeff Haberl, Bahman Yazdani, Charles Culp Energy Systems Laboratory Texas A&M University p. 2 Energy Systems Laboratory ? 2012... Do TCEQ: Vince Meiller, Bob Gifford ERCOT: Warren Lasher USEPA: Art Diem, Julie Rosenberg ACKNOWLEDGEMENTS p. 3 Energy Systems Laboratory ? 2012 RENEWABLES Solar PV Solar Thermal Hydro Biomass Landfill Gas Geothermal p. 4...

Haberl, J. S.; Yazdani, B.; Culp, C.

2012-01-01T23:59:59.000Z

259

Economic Benefits of Advanced Materials in Nuclear Power Systems  

SciTech Connect (OSTI)

One of the key obstacles for the commercial deployment of advanced fast reactors (for either transuranic element burning or power generation) is the capital cost. There is a perception of higher capital cost for fast reactor systems than advanced light water reactors (ALWR). However, the cost estimates for a fast reactor come with a large uncertainty due to the fact that far fewer fast reactors have been built than LWR facilities. Furthermore, the large variability of industrial cost estimates complicates accurate comparisons. For example, under the Gen IV program, the Japanese Sodium Fast Reactor (JSFR) has a capital cost estimate that is lower than current LWR s, and considerably lower than that for the PRISM design (which is arguably among the most mature of today s fast reactor designs). Further reductions in capital cost must be made in US fast reactor systems to be considered economically viable. Three key approaches for cost reduction can be pursued. These include design simplifications, new technologies that allow reduced capital costs, and simulation techniques that help optimize system design. While it is plausible that improved materials will provide opportunities for both simplified design and reduced capital cost, the economic benefit of advanced materials has not been quantitatively analyzed. The objective of this work is to examine the potential impact of advanced materials on the capital investment costs of fast nuclear reactors.

Busby, Jeremy T [ORNL

2009-01-01T23:59:59.000Z

260

Horizontal Advanced Tensiometer  

DOE Patents [OSTI]

An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

Hubbell, Joel M.; Sisson, James B.

2004-06-22T23:59:59.000Z

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced Manufacturing Office Overview  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut)41AdamEnergyAdvanced DOE Workshop:

262

Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAbout Us >Portal Advanced

263

Advanced Feedstock Supply System  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE Hydrogen andEnzymeAdvanced Feedstock

264

Advanced Simulation Capability  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout UsAdvanced Modeling &NuclearNewsletter3

265

Advanced Simulation Capability  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout UsAdvanced Modeling

266

Advanced Simulation Capability  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout UsAdvanced Modeling2 Annual Report

267

Advanced Simulation Capability for  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout UsAdvanced Modeling2 Annual Reportfor

268

Geothermal: Advanced Search  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps GeothermalAdvanced Search

269

Advanced Conversion Roadmap Workshop  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance Patent WaiverLeslie Pezzullo Office of the

270

Advanced Combustion FAQs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4T opAddress:AdolphusAdvanced

271

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home Group Members

272

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home Group

273

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home GroupISM Day -

274

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home GroupISM Day

275

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home GroupISM Day0

276

Advanced Rooftop Unit Control  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethodsServices »

277

Advanced Studies Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScience of Signatures Advanced

278

Advanced Target Effects Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScience of SignaturesAdvanced Target

279

Advanced Ultraviolet Spectroradiometer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScience ofTechnologyMoreAdvanced

280

AdvAnced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre theAdministrator Referencesalkali metalsTiO2(110). | AdvAnced

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Advanced Energy Projects FY 1996 research summaries  

SciTech Connect (OSTI)

The mission of the Advanced Energy Projects Division (AEP) is to explore the scientific feasibility of novel energy-related concepts. These concepts are typically at an early stage of scientific development and, therefore, are premature for consideration by applied research or technology development programs. The portfolio of projects is dynamic, but reflects the broad role of the Department in supporting research and development for improving the Nation`s energy posture. Topical areas presently receiving support include: alternative energy sources; innovative concepts for energy conversion and storage; alternate pathways to energy efficiency; exploring uses of new scientific discoveries; biologically-based energy concepts; renewable and biodegradable materials; novel materials for energy technology; and innovative approaches to waste treatment and reduction. Summaries of the 70 projects currently being supported are presented. Appendices contain budget information and investigator and institutional indices.

NONE

1996-09-01T23:59:59.000Z

282

Carbon Dioxide Reduction Through Urban Forestry  

E-Print Network [OSTI]

. Retrieval Terms: urban forestry, carbon dioxide, sequestration, avoided energy The Authors E. Gregory McCarbon Dioxide Reduction Through Urban Forestry: Guidelines for Professional and Volunteer Tree; Simpson, James R. 1999. Carbon dioxide reduction through urban forestry

Standiford, Richard B.

283

Extracellular Reduction of Hexavalent Chromium by Cytochromes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reduction of Hexavalent Chromium by Cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Extracellular Reduction of Hexavalent Chromium by Cytochromes MtrC and OmcA of...

284

Electricity Generation and Emissions Reduction Decisions  

E-Print Network [OSTI]

Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General analysis, and public education in global environmental change. It seeks to provide leadership;1 Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium

285

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and...

286

Advanced Battery Materials Characterization: Success stories...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Battery Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Advanced Battery Materials Characterization: Success...

287

SCR Performance Optimization Through Advancements in Aftertreatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Performance Optimization Through Advancements in Aftertreatment Packaging SCR Performance Optimization Through Advancements in Aftertreatment Packaging The impact of improved urea...

288

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

289

Development of an advanced high efficiency coal combustor for boiler retrofit  

SciTech Connect (OSTI)

The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

1990-04-01T23:59:59.000Z

290

Development of an advanced high efficiency coal combustor for boiler retrofit. Summary report  

SciTech Connect (OSTI)

The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

1990-04-01T23:59:59.000Z

291

Relative trajectory data reduction analysis  

E-Print Network [OSTI]

REDATIVE TRAJECTORY DATA RFDUCTION ANA1. YS1S A Thesis KENNE'Ill Vi. GRANT Subrnitl ed to the Gratluate College of 'J exas ASM University in pa) &ial full'illment of the reouir ament for the degree of MASTER OF SCIENCE August 1969 Major... Trajectory Data Reduction Analysis. (August 1969) Kenneth W. Grant, B. A. , University of California at Riverside Directed by: Dr. Rudolph Freund Knowledge of missile/drone intercept parameters is extremely important in the analysis of ordnance system...

Grant, Kenneth William

1969-01-01T23:59:59.000Z

292

A Compressed Air Reduction Program  

E-Print Network [OSTI]

A COMPRESSED AIR REDUCTION PROGRAM K. Dwight Hawks General Motors Corporation - Ruick-Oldsmobi1e-Cadillac Group Warren, Michigan ABSTRACT The reascn for implementing this program was to assist the plant in Quantifying some of its leaks... in the equipme~t throuqhout the plant and to provide direction as to which leaks are yenerat~ng high uti 1ity costs. The direction is very beneficial in lIlaking maintenance aware of prolill,Pls within equipment .IS \\Iell as notifying them as to whf're thei...

Hawks, K. D.

293

Understanding ammonia selective catalytic reduction kinetics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature programmed reduction (TPR), and electron paramagnetic resonance (EPR) spectroscopy. Catalytic properties are examined using NO oxidation, ammonia oxidation,...

294

Bifunctional Catalysts for the Selective Catalytic Reduction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reduction (DEER) Conference Presentation: Argonne National Laboratory 2004deermarshall.pdf More Documents & Publications Bifunctional Catalysts for the Selective Catalytic...

295

Advanced thermochemical hydrogen cycles  

SciTech Connect (OSTI)

The overall objective of this program is to contribute to the development of practical thermochemical cycles for the production of hydrogen from water. Specific goals are: investigate and evaluate the technical and economic viability of thermochemical cycles as an advanced technology for producing hydrogen from water; investigate and evaluate the engineering principles involved in interfacing individual thermochemical cycles with the different thermal energy sources (high temperature fission, solar, and fusion); and conduct a continuing research and development effort to evaluate the use of solid sulfates, oxides and other compounds as potentially advanced cycles and as alternates to H/sub 2/SO/sub 4/ based cycles. Basic thermochemistry studies have been completed for two different steps in the decomposition of bismuth sulfate. Two different bismuth sulfate cycles have been defined for different sulfuric acid strengths. The eventual best cycle will depend on energy required to form sulfuric acid at different concentrations. A solids decomposition facility has been constructed and practical studies of solid decompositions are being conducted. The facility includes a rotary kiln system and a dual-particle fluidized bed system. Evaluation of different types of cycles for coupling with different heat sources is continuing.

Hollabaugh, C.M.; Bowman, M.G.

1981-01-01T23:59:59.000Z

296

Recent advances in long-pulse high-confinement plasma operations in Experimental Advanced Superconducting Tokamak  

SciTech Connect (OSTI)

A long-pulse high confinement plasma regime known as H-mode is achieved in the Experimental Advanced Superconducting Tokamak (EAST) with a record duration over 30?s, sustained by Lower Hybrid wave Current Drive (LHCD) with advanced lithium wall conditioning and divertor pumping. This long-pulse H-mode plasma regime is characterized by the co-existence of a small Magneto-Hydrodynamic (MHD) instability, i.e., Edge Localized Modes (ELMs) and a continuous quasi-coherent MHD mode at the edge. We find that LHCD provides an intrinsic boundary control for ELMs, leading to a dramatic reduction in the transient power load on the vessel wall, compared to the standard Type I ELMs. LHCD also induces edge plasma ergodization, broadening heat deposition footprints, and the heat transport caused by ergodization can be actively controlled by regulating edge plasma conditions, thus providing a new means for stationary heat flux control. In addition, advanced tokamak scenarios have been newly developed for high-performance long-pulse plasma operations in the next EAST experimental campaign.

Guo, H. Y. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China) [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); Li, J.; Wan, B. N., E-mail: bnwan@ipp.ac.cn; Gong, X. Z.; Xu, G. S.; Zhang, X. D.; Ding, S. Y.; Gan, K. F.; Hu, J. S.; Hu, L. Q.; Liu, S. C.; Qian, J. P.; Sun, Y. W.; Wang, H. Q.; Wang, L.; Xia, T. Y.; Xiao, B. J.; Zeng, L.; Zhao, Y. P. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China)] [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); and others

2014-05-15T23:59:59.000Z

297

Advance Turbo Encoder and Turbo Decoder  

E-Print Network [OSTI]

Abstract- This paper presents the design and development of an efficient VLSI architecture for 3GPP advanced Turbo decoder by utilizing the convolutional interleaver. The high-throughput 3GPP Advance Turbo code requires turbo decoder architecture. Interleaver is known to be the main obstacle to the decoder implementation and introduces latency, due to the collisions it introduces in accesses to memory. In this paper, we propose a low-complexity Soft Input Soft Output (SISO) turbo decoder for memory architecture to enable the Turbo decoding that achieves minimum latency. Design trade-offs in terms of area and throughput efficiency are explored to find the optimal architecture. The proposed Turbo decoder has been modeled using Simulink; various test cases are used to estimate the performances. The results are analyzed and achieved 50 % reduction in computation time along with reduced BER (e-3). The hardware of the Turbo Encoder and Turbo Decoder has been modeled in Verilog, simulated in Modelsim, synthesized using TSMC 65 nm Synopsys Design compiler and physical implementation has been carried out using IC Compiler.

Manjunatha K N; Kiran B; Prasanna Kumar. C

298

Advanced energy projects FY 1994 research summaries  

SciTech Connect (OSTI)

The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation`s energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects.

Not Available

1994-09-01T23:59:59.000Z

299

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect (OSTI)

Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

Gregory Gaul

2004-04-21T23:59:59.000Z

300

Advanced Integrated Systems Technology Development  

E-Print Network [OSTI]

conditioning in buildings featuring integrated design withconditioning in buildings featuring integrated design withof a building with advanced integrated design involving one

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Fuels for Advanced Combustion Engines  

Broader source: Energy.gov (indexed) [DOE]

not finalized, AARF is considering: * 2 nd generation biofuels * Non-food sources * Jatropha * Algae * Lignocellulose * Other biomass-to-liquid * Advanced processing of edible...

302

ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect (OSTI)

A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses. The AHPC is currently being tested at the 2.7-MW scale at the Big Stone power station.

Stanley Miller; Rich Gebert; William Swanson

1999-11-01T23:59:59.000Z

303

Advanced drilling systems study.  

SciTech Connect (OSTI)

This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

1996-05-01T23:59:59.000Z

304

Advanced Containment System  

DOE Patents [OSTI]

An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

Kostelnik, Kevin M. (Idaho Falls, ID); Kawamura, Hideki (Tokyo, JP); Richardson, John G. (Idaho Falls, ID); Noda, Masaru (Tokyo, JP)

2005-05-24T23:59:59.000Z

305

Advanced Containment System  

DOE Patents [OSTI]

An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

Kostelnik, Kevin M. (Idaho Falls, ID); Kawamura, Hideki (Tokyo, JP); Richardson, John G. (Idaho Falls, ID); Noda, Masaru (Tokyo, JP)

2004-10-12T23:59:59.000Z

306

Dimensional Reduction in Quantum Gravity  

E-Print Network [OSTI]

The requirement that physical phenomena associated with gravitational collapse should be duly reconciled with the postulates of quantum mechanics implies that at a Planckian scale our world is not 3+1 dimensional. Rather, the observable degrees of freedom can best be described as if they were Boolean variables defined on a two-dimensional lattice, evolving with time. This observation, deduced from not much more than unitarity, entropy and counting arguments, implies severe restrictions on possible models of quantum gravity. Using cellular automata as an example it is argued that this dimensional reduction implies more constraints than the freedom we have in constructing models. This is the main reason why so-far no completely consistent mathematical models of quantum black holes have been found. Essay dedicated to Abdus Salam.

G. 't Hooft

2009-03-20T23:59:59.000Z

307

Greenhouse Gas Reductions: SF6  

ScienceCinema (OSTI)

Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas ? one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

Anderson, Diana

2013-04-19T23:59:59.000Z

308

Electrolyte treatment for aluminum reduction  

DOE Patents [OSTI]

A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

Brown, Craig W. (Seattle, WA); Brooks, Richard J. (Seattle, WA); Frizzle, Patrick B. (Seattle, WA); Juric, Drago D. (Bulleen, AU)

2002-01-01T23:59:59.000Z

309

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect (OSTI)

The Plains Co{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) activities have focused on developing information on deployment issues to support Task 5 activities by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) activities have focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) has included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 (Modeling and Phase II Action Plans) activities have focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Edward N. Steadman

2004-07-01T23:59:59.000Z

310

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect (OSTI)

The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

2005-01-01T23:59:59.000Z

311

Advanced Turbine Systems (ATS) program conceptual design and product development  

SciTech Connect (OSTI)

Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

NONE

1996-08-31T23:59:59.000Z

312

Water Use Reduction and Efficiency | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Water Use Reduction and Efficiency Water Use Reduction and Efficiency Water Use Reduction and Efficiency The Federal Energy Management Program (FEMP) provides agencies with...

313

Water Use Reduction and Efficiency Case Studies | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program Areas Water Use Reduction Water Use Reduction and Efficiency Case Studies Water Use Reduction and Efficiency Case Studies These case studies feature examples of water...

314

REDUCTION CAPACITY OF SALTSTONE AND SALTSTONE COMPONENTS  

SciTech Connect (OSTI)

The duration that saltstone retains its ability to immobilize some key radionuclides, such as technetium (Tc), plutonium (Pu), and neptunium (Np), depends on its capacity to maintain a low redox status (or low oxidation state). The reduction capacity is a measure of the mass of reductants present in the saltstone; the reductants are the active ingredients that immobilize Tc, Pu, and Np. Once reductants are exhausted, the saltstone loses its ability to immobilize these radionuclides. The reduction capacity values reported here are based on the Ce(IV)/Fe(II) system. The Portland cement (198 {micro}eq/g) and especially the fly ash (299 {micro}eq/g) had a measurable amount of reduction capacity, but the blast furnace slag (820 {micro}eq/g) not surprisingly accounted for most of the reduction capacity. The blast furnace slag contains ferrous iron and sulfides which are strong reducing and precipitating species for a large number of solids. Three saltstone samples containing 45% slag or one sample containing 90% slag had essentially the same reduction capacity as pure slag. There appears to be some critical concentration between 10% and 45% slag in the Saltstone formulation that is needed to create the maximum reduction capacity. Values from this work supported those previously reported, namely that the reduction capacity of SRS saltstone is about 820 {micro}eq/g; this value is recommended for estimating the longevity that the Saltstone Disposal Facility will retain its ability to immobilize radionuclides.

Roberts, K.; Kaplan, D.

2009-11-30T23:59:59.000Z

315

Advanced LBB methodology and considerations  

SciTech Connect (OSTI)

LBB applications have existed in many industries and more recently have been applied in the nuclear industry under limited circumstances. Research over the past 10 years has evolved the technology so that more advanced consideration of LBB can now be given. Some of the advanced considerations for nuclear plants subjected to seismic loading evaluations are summarized in this paper.

Olson, R.; Rahman, S.; Scott, P. [Battelle, Columbus, OH (United States)] [and others

1997-04-01T23:59:59.000Z

316

Systems Engineering Advancement Research Initiative  

E-Print Network [OSTI]

Systems Engineering Advancement Research Initiative RESEARCH PORTFOLIO Fall 2008 About SEAri http://seari.mit.edu The Systems Engineering Advancement Research Initiative brings together a set of sponsored research projects and a consortium of systems engineering leaders from industry, government, and academia. SEAri is positioned within

de Weck, Olivier L.

317

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect (OSTI)

This is the second quarterly progress report for Year-4 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between October 1, 2002 and December 30, 2002. This report presents a review of progress on the following specific tasks. (a) Design and development of an Advanced Cuttings Transport Facility Task 3: Addition of a Cuttings Injection/Separation System, Task 4: Addition of a Pipe Rotation System. (b) New research project (Task 9b): ''Development of a Foam Generator/Viscometer for Elevated Pressure and Elevated Temperature (EPET) Conditions''. (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions''. (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b). (f) New Research project (Task 13): ''Study of Cuttings Transport with Foam under Elevated Pressure and Temperature Conditions''. (g) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (h) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

2003-01-30T23:59:59.000Z

318

Advanced robot locomotion.  

SciTech Connect (OSTI)

This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

2007-01-01T23:59:59.000Z

319

ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect (OSTI)

A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and recollection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hour parametric tests and 100-hour proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency.

Stanley J. Miller; Grant L. Schelkoph; Grant E. Dunham

2000-12-01T23:59:59.000Z

320

Advanced Chemistry Basins Model  

SciTech Connect (OSTI)

The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.

William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2002-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced hybrid gasification facility  

SciTech Connect (OSTI)

The objective of this procurement is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology for electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may react with aluminosilicates in the coal ash thereby minimizing their concentration in the hot raw coal gas passing through the system to the gas turbine. This paper describes a novel, staged, airblown, fixed-bed gasifier designed to solve both through the incorporation of pyrolysis (carbonization) with gasification. It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration which occurs in a fixed-bed process when coal is gradually heated through the 400{degrees}F to 900{degrees}F range. In a pyrolyzer, the coal is rapidly heated such that coal tar is immediately vaporized. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can be chemically bound to aluminosilicates in (or added to) the ash. To reduce NOx from fuel home nitrogen, moisture is minimized to control ammonia generation, and HCN in the upper gasifier region is partially oxidized to NO which reacts with NH3/HCN to form N2.

Sadowski, R.S.; Skinner, W.H. [CRS Sirrine, Inc., Greenville, SC (United States); Johnson, S.A. [PSI Technology Co., Andover, MA (United States); Dixit, V.B. [Riley Stoker Corp., Worcester, MA (United States). Riley Research Center

1993-08-01T23:59:59.000Z

322

Advanced Byproduct Recovery: Direct Catalytic Reduction of Sulfur Dioxide to Elemental Sulfur.  

SciTech Connect (OSTI)

More than 170 wet scrubber systems applied, to 72,000 MW of U.S., coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed from the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). Due to the abundance and low cost of naturally occurring gypsum, and the costs associated with producing an industrial quality product, less than 7% of these scrubbers are configured to produce usable gypsum (and only 1% of all units actually sell the byproduct). The disposal of solid waste from each of these scrubbers requires a landfill area of approximately 200 to 400 acres. In the U.S., a total of 19 million tons of disposable FGD byproduct are produced, transported and disposed of in landfills annually. The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. In a regenerable sorbent system, the sulfur dioxide in the boiler flue gas is removed by the sorbent in an adsorber. The S0{sub 2}s subsequently released, in higher concentration, in a regenerator. All regenerable systems produce an off-gas stream from the regenerator that must be processed further in order to obtain a salable byproduct, such as elemental sulfur, sulfuric acid or liquid S0{sub 2}.

NONE

1997-06-01T23:59:59.000Z

323

Impacts of Natural Organic Matter on Perchlorate Removal by an Advanced Reduction Process  

E-Print Network [OSTI]

experiments were conducted to obtain data on the impacts of natural organic matter and light intensity on destruction of perchlorate by the ARPs that use sulfite activated by ultraviolet light produced by low-pressure mercury lamps or KrCl excimer lamps...

Duan, Yuhang

2012-10-19T23:59:59.000Z

324

E-Print Network 3.0 - advanced variance reduction Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thomas G. Dietterich 3 1 DISI... of ensemble methods. Biasvariance decomposition of the error can be used as a tool to gain insights Source: Collection: Computer Technologies and...

325

Advanced Thermal Control Enabling Cost Reduction for Automotive Power Electronics (Presentation)  

SciTech Connect (OSTI)

Describes NREL's work on next-generation vehicle cooling technologies (jets, sprays, microchannels) and novel packaging topologies to reduce costs and increase performance and reliability.

Abraham, T.; Kelly, K.; Bennion, K.; Vlahinos, A.

2008-09-01T23:59:59.000Z

326

Final Report - Energy Reduction and Advanced Water Removal via Membrane Solvent Extraction Technology  

SciTech Connect (OSTI)

3M and Archer Daniels Midland (ADM) collaborated with the U.S. Department of Energy (DOE) to develop and demonstrate a novel membrane solvent extraction (MSE) process that can substantially reduce energy and water consumption in ethanol production, and accelerate the fermentation process. A cross-flow membrane module was developed, using porous membrane manufactured by 3M. A pilot process was developed that integrates fermentation, MSE and vacuum distillation. Extended experiments of 48-72 hours each were conducted to develop the process, verify its performance and begin establishing commercial viability.

Reed, John; Fanselow, Dan; Abbas, Charles; Sammons, Rhea; Kinchin, Christopher

2014-08-06T23:59:59.000Z

327

Agricultural Industry Advanced Vehicle Technology: Benchmark Study for Reduction in Petroleum Use  

SciTech Connect (OSTI)

Diesel use on farms in the United States has remained relatively constant since 1985, decreasing slightly in 2009, which may be attributed to price increases and the economic recession. During this time, the United States’ harvested area also has remained relatively constant at roughly 300 million acres. In 2010, farm diesel use was 5.4% of the total United States diesel use. Crops accounting for an estimated 65% of United States farm diesel use include corn, soybean, wheat, hay, and alfalfa, respectively, based on harvested crop area and a recent analysis of estimated fuel use by crop. Diesel use in these cropping systems primarily is from tillage, harvest, and various other operations (e.g., planting and spraying) (Figure 3). Diesel efficiency is markedly variable due to machinery types, conditions of operation (e.g., soil type and moisture), and operator variability. Farm diesel use per acre has slightly decreased in the last two decades and diesel is now estimated to be less than 5% of farm costs per acre. This report will explore current trends in increasing diesel efficiency in the farm sector. The report combines a survey of industry representatives, a review of literature, and data analysis to identify nascent technologies for increasing diesel efficiency

Roger Hoy

2014-09-01T23:59:59.000Z

328

NOx reduction in gas turbine combustors  

E-Print Network [OSTI]

NOx REDUCTION IN GAS TURBINE COMBUSTORS A Thesis by Nak Won Sung Submitted to the Graduate College of Texas A&M University in partial fullfillment of the requirement for the degree of MASTER OF SCIENCE August 1976 Major Subject: Mechanical... Engineering NOx REDUCTION IN GAS TURBINE COMBUSTORS A Thesis by Nak Won Sung Approved as to style and content by: (Chairman of Committe (Head of Department) (Member) August 1976 "40308 (Member) 1 1. 1 ABSTRACT NOx Reduction in Gas Turbine...

Sung, Nak Won

1976-01-01T23:59:59.000Z

329

NOx reduction methods and apparatuses  

DOE Patents [OSTI]

A NO.sub.x reduction method includes treating a first gas containing NO.sub.x, producing a second gas containing NO.sub.2, reducing a portion of the NO.sub.2 in the second gas to N.sub.2, and producing a third gas containing less NO.sub.x than the first gas, substantially all of the third gas NO.sub.x being NO. The method also includes treating the third gas, producing a fourth gas containing NO.sub.2, reducing a portion of the NO.sub.2 in the fourth gas to N.sub.2, and producing a fifth gas containing less NO.sub.x than the third gas, substantially all of the fifth gas NO.sub.x being NO. Treating the first and/or third gas can include treatment with a plasma. Reducing a portion of the NO.sub.2 in the second and/or fourth gas can include reducing with a catalyst. The method can further include controlling energy consumption of the plasmas independent of each other.

Tonkyn, Russell G.; Barlow, Stephan E.; Balmer, M. Lou; Maupin, Gary D.

2004-10-26T23:59:59.000Z

330

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect (OSTI)

The Plains CO{sub 2} Reduction (PCOR) Partnership characterization work is nearing completion, and most remaining efforts are related to finalizing work products. Task 2 (Technology Deployment) has developed a Topical Report entitled ''Deployment Issues Related to Geologic CO{sub 2} Sequestration in the PCOR Partnership Region''. Task 3 (Public Outreach) has developed an informational Public Television program entitled ''Nature in the Balance'', about CO{sub 2} sequestration. The program was completed and aired on Prairie Public Television in this quarter. Task 4 (Sources, Sinks, and Infrastructure) efforts are nearing completion, and data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation are being incorporated into a series of topical reports. The expansion of the Decision Support System Geographic Information System database has continued with the development of a ''save bookmark'' feature that allows users to save a map from the system easily. A feature that allows users to develop a report that summarizes CO{sub 2} sequestration parameters was also developed. Task 5 (Modeling and Phase II Action Plans) focused on screening and qualitatively assessing sequestration options and developing economic estimates for important regional CO{sub 2} sequestration strategies.

Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Lisa S. Botnen

2005-07-01T23:59:59.000Z

331

Plasma Assisted Catalysis System for NOx Reduction  

Broader source: Energy.gov (indexed) [DOE]

SCHEMATIC Catalyst for NOx Reduction Plasma Region Exhaust Flow Solid State Pulser Power Modulator Motor Generator ENGINE Air Diesel Fuel Converter NO X + HC(Diesel) NO 2 +...

332

Pollution Prevention - Environmental Impact Reduction Checklists...  

Broader source: Energy.gov (indexed) [DOE]

provides a valuable opportunity for Federal agency NEPA309 reviewers to incorporate pollution prevention and environmental impact reduction into actions (or projects). This...

333

Enantioselective copper-catalysed reductive Michael cyclisations   

E-Print Network [OSTI]

Hydrometalation of ?,?-unsaturated carbonyl compounds provides access to reactive metal enolates, which can then be trapped by a suitable electrophile. The coppercatalysed reductive aldol reaction involves hydrometalation ...

Oswald, Claire Louise

2010-01-01T23:59:59.000Z

334

Puget Sound Clean Cities Petroleum Reduction Project  

Broader source: Energy.gov (indexed) [DOE]

3 universities, 9 private businesses Overview Puget Sound Clean Cities Coalition Petroleum Reduction Project - DE-EE0002020 Project Objectives: * Reduce petroleum use in the...

335

State Technologies Advancement Collaborative  

SciTech Connect (OSTI)

The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

David S. Terry

2012-01-30T23:59:59.000Z

336

Advanced Geothermal Turbodrill  

SciTech Connect (OSTI)

Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

W. C. Maurer

2000-05-01T23:59:59.000Z

337

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect (OSTI)

The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these technologies and the corresponding early adopters are likely to be located.

Sy Ali

2002-03-01T23:59:59.000Z

338

Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation...  

Office of Environmental Management (EM)

Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Solicitation...

339

Advanced Natural Gas Reciprocating Engine(s)  

SciTech Connect (OSTI)

Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work has consisted of both modeling and single cylinder engine experiments to quantify DIGN performance. The air handling systems of natural gas engines dissipate a percentage of available energy as a result of both flow losses and turbomachinery inefficiencies. An analytical study was initiated to increase compressor efficiency by employing a 2-stage inter-cooled compressor. Caterpillar also studied a turbo-compound system that employs a power turbine to recover energy from the exhaust gases for improved engine efficiency. Several other component and system investigations were undertaken during the final phase of the program to reach the ultimate ARES goals. An intake valve actuation system was developed and tested to improve engine efficiency, durability and load acceptance. Analytical modeling and materials testing were performed to evaluate the performance of steel pistons and compacted graphite iron cylinder head. Effort was made to improve the detonation sensing system by studying and comparing the performance of different pressure sensors. To reduce unburned hydrocarbon emissions, different camshafts were designed and built to investigate the effect of exhaust valve opening timing and value overlap. 1-D & 3-D coupled simulation was used to study intake and exhaust manifold dynamics with the goal of reducing load in-balance between cylinders. Selective catalytic reduction with on-board reductant generation to reduce NOx emissions was also engine tested. An effective mean to successfully deploy ARES technologies into the energy markets is to deploy demonstration projects in the field. In 2010, NETL and Caterpillar agreed to include a new “opportunity fuel” deliverable and two field demonstrations in the ARES program. An Organic Rankine Cycle system was designed with production intent incorporating lessons learned from the Phase II demonstration. Unfortunately, business conditions caused Caterpillar to cancel this demonstration in 2011. Nonetheless, Caterpillar partnered with a local dealer to deploy an ARES class engine using syngas from a biomass gasifier as

Kwok, Doris; Boucher, Cheryl

2009-09-30T23:59:59.000Z

340

Biogeochemical Processes Controlling Microbial Reductive Precipitation of Radionuclides  

SciTech Connect (OSTI)

This project is focused on elucidating the principal biogeochemical reactions that govern the concentrations, chemical speciation, and distribution of the redox sensitive contaminants uranium (U) and technetium (Tc) between the aqueous and solid phases. The research is designed to provide new insights into the under-explored areas of competing geochemical and microbiological oxidation-reduction reactions that govern the fate and transport of redox sensitive contaminants and to generate fundamental scientific understanding of the identity and stoichiometry of competing microbial reduction and geochemical oxidation reactions. These goals and objectives are met through a series of hypothesis-driven tasks that focus on (1) the use of well-characterized microorganisms and synthetic and natural mineral oxidants, (2) advanced spectroscopic and microscopic techniques to monitor redox transformations of U and Tc, and (3) the use of flow-through experiments to more closely approximate groundwater environments. The results are providing an improved understanding and predictive capability of the mechanisms that govern the redox dynamics of radionuclides in subsurface environments. For purposes of this poster, the results are divided into three sections: (1) influence of Ca on U(VI) bioreduction; (2) localization of biogenic UO{sub 2} and TcO{sub 2}; and (3) reactivity of Mn(III/IV) oxides.

Fredrickson, James K.; Brooks, Scott C.

2004-03-17T23:59:59.000Z

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.  

SciTech Connect (OSTI)

This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

Bull, Diana L; Ochs, Margaret Ellen

2013-09-01T23:59:59.000Z

342

Advanced Metering Implementations - A Perspective from Federal Sector  

SciTech Connect (OSTI)

Federal mandate (EPACT 2005) requires that federal buildings install advanced electrical meters-meters capable of providing data at least daily and measuring the consumption of electricity at least hourly. This work presents selected advanced metering implementations to understand some of the existing practices related to data capture and to understand how the data is being translated into information and knowledge that can be used to improve building energy and operational performance to meet federal energy reduction mandates. This study highlights case studies to represent some of the various actions that are being taken based on the data that are being collected to improve overall energy performance of these buildings. Some of these actions include- individualized tenant billing and energy forecasting, benchmarking, identifying energy conservation measures, measurement and verification.

Eaarni, Shankar

2014-08-11T23:59:59.000Z

343

Steam Load Reduction Guidance Emergency Management Program  

E-Print Network [OSTI]

Steam Load Reduction Guidance Emergency Management Program v October 2014 Steam_Load_Reduction_Guidance_DSRDSR 1.0 PurposeandScope Utilities provides steam to the campus community for space heating, hot water in the steam distribution system or the Central Energy Plant, the preservation of building infrastructure

Pawlowski, Wojtek

344

DOE - Office of Legacy Management -- Westinghouse Advanced Reactors...  

Office of Legacy Management (LM)

Advanced Reactors Div Plutonium and Advanced Fuel Labs - PA 10 FUSRAP Considered Sites Site: WESTINGHOUSE ADVANCED REACTORS DIV., PLUTONIUM FUEL LABORATORIES, AND THE ADVANCED FUEL...

345

Second Generation Advanced Reburning for High Efficiency NOx Control  

SciTech Connect (OSTI)

This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning (SGAR) which has the potential to achieve 90+% NO{sub x} control in coal-fired boilers at a significantly lower cost than SCR. The twelfth reporting period in Phase II (July 3-October 15, 2000) included design validation AR-Lean tests (Task No.2.6) in the 10 x 10{sup 6} Btu/hr Tower Furnace. The objective of tests was to determine the efficiency of AR-Lean at higher than optimum OFA/N-Agent injection temperatures in large pilot-scale combustion facility. Tests demonstrated that co-injection of urea with overfire air resulted in NO{sub x} reduction. However, observed NO{sub x} reduction was smaller than that under optimum conditions.

Roy Payne; Lary Swanson; Antonio Marquez; Ary Chang; Vladimir M. Zamansky; Pete M. Maly; Vitali V. Lissianski

2000-09-30T23:59:59.000Z

346

advanced search Economist.com  

E-Print Network [OSTI]

SEARCH advanced search » Economist.com RESEARCH TOOLS Choose a research tool... Help their movements cause? A company is paying them to do a job, so why should it not read their e-mails when

Nissenbaum, Helen

347

SERI advanced wind turbine blades  

SciTech Connect (OSTI)

The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

348

SERI advanced wind turbine blades  

SciTech Connect (OSTI)

The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

349

Ohio Advanced Energy Manufacturing Center  

SciTech Connect (OSTI)

The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

Kimberly Gibson; Mark Norfolk

2012-07-30T23:59:59.000Z

350

February 2000 Advanced Technology Program  

E-Print Network [OSTI]

OF COMMERCE Economic Assessment Office Technology Administration Advanced Technology Program National .................................................................................................6 V. IIH Focused Program Project Selection Process information infrastructure in healthcare. A discussion of the ATP "white paper" process4 notes differences

351

Advanced Policy Practice Spring 2014  

E-Print Network [OSTI]

Advanced Policy Practice Spring 2014 SW 548-001 Instructor course that focuses on the theory and evidence-based skill sets of policy analysis, development, implementation, and change. The course focuses on policy

Grissino-Mayer, Henri D.

352

Fuels for Advanced Combustion Engines  

Broader source: Energy.gov (indexed) [DOE]

2011-2015 MYPP Goals (cross-cut w Advanced Combustion Engines) - By 2015, improve the fuel economy of light-duty gasoline vehicles by 25% and of light-duty diesel vehicles by 40%...

353

Fuels for Advanced Combustion Engines  

Broader source: Energy.gov (indexed) [DOE]

2011-1015 MYPP Goals (cross-cut w Advanced Combustion Engines) - By 2015, improve the fuel economy of light-duty gasoline vehicles by 25% and of light-duty diesel vehicles by 40%...

354

SCANNING THE TECHNOLOGY Scanning Advanced  

E-Print Network [OSTI]

state of refinement. This has been made possible by advancements in a wide spec- trum of scientific economy, lower emissions and improved safety. The availability of computers on board the vehicle

355

Advancing Measurement of Family Leisure  

E-Print Network [OSTI]

This study advanced knowledge of the measurement properties of the Family Leisure Activity Profile (FLAP). The FLAP is a sixteen-item index based on the Core and Balance Model of Family Functioning. This study assessed three distinct scaling...

Melton, Karen

2014-08-06T23:59:59.000Z

356

Advanced Process Management and Implementation  

E-Print Network [OSTI]

Advanced Process Management is a method to achieve optimum process performance during the life cycle of a plant through proper design, effective automation, and adequate operator decision support. Developing a quality process model is an effective...

Robinson, J.

357

Tribal Renewable Energy Advanced Course: Project Development...  

Broader source: Energy.gov (indexed) [DOE]

Development and Financing Essentials Tribal Renewable Energy Advanced Course: Project Development and Financing Essentials Watch the DOE Office of Indian Energy advanced course...

358

Current trends in the Advanced Bioindustry  

Broader source: Energy.gov [DOE]

Afternoon Plenary Session: Current Trends in the Advanced Bioindustry State of Technology—Michael McAdams, President, Advanced Biofuels Association

359

Advancing Transportation Through Vehicle Electrification - PHEV...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Meeting arravt067vssbazzi2012o.pdf More Documents & Publications Advancing Transportation Through Vehicle Electrification - PHEV Advancing Plug In Hybrid Technology and...

360

Funding Opportunity Webinar - Advancing Solutions To Improve...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Funding Opportunity Webinar - Advancing Solutions To Improve the Energy Efficiency of US Commercial Buildings Funding Opportunity Webinar - Advancing Solutions To Improve the...

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Advanced Hybrid Water Heater using Electrochemical Compressor...  

Energy Savers [EERE]

Advanced Hybrid Water Heater using Electrochemical Compressor Advanced Hybrid Water Heater using Electrochemical Compressor Xergy is using its Electro Chemical Compression (ECC)...

362

Advanced Manufacturing Initiative Improves Turbine Blade Productivity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

363

Independent Oversight Review, Advanced Mixed Waste Treatment...  

Broader source: Energy.gov (indexed) [DOE]

Review, Advanced Mixed Waste Treatment Project - April 2013 April 2013 Review of Radiation Protection Program Implementation at the Advanced Mixed Waste Treatment Project of...

364

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

Renewable Energy and Energy Efficiency, DOE. LBNL 275-E Advanced Coal Wind Hybrid:Renewable Energy Laboratory), and Ryan Wiser ( LBNL). i Advanced Coal Wind Hybrid:

Phadke, Amol

2008-01-01T23:59:59.000Z

365

Advanced Ceramic Filter For Diesel Emission Control  

Broader source: Energy.gov (indexed) [DOE]

8 ACM Structure Overview Dow Automotive Advanced Ceramic Cordierite and Silicon carbide Advanced Ceramic Cordierite and Silicon carbide 9272004 DEER2004 9 ACM DPF Chemical...

366

A Prospective Target for Advanced Biofuel Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Prospective Target for Advanced Biofuel Production A Prospective Target for Advanced Biofuel Production Print Thursday, 02 February 2012 13:34 The sesquiterpene bisabolene was...

367

Advanced Materials for Proton Exchange Membranes | Department...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Materials for Proton Exchange Membranes Advanced Materials for Proton Exchange Membranes A presentation to the High Temperature Membranes Working Group meeting, May 19,...

368

ALS Ceramics Materials Research Advances Engine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics...

369

Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Caterpillar, Inc., June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Caterpillar,...

370

Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cummins, Inc., June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Cummins, Inc., June 2011 Presentation on Advanced Natural Gas Reciprocating Engines...

371

Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Dresser Waukesha, June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Dresser Waukesha, June 2011 Presentation on Advanced Natural Gas Reciprocating...

372

Advanced Engine Development | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Engine Development High-performance computing accelerates advanced engine development July 11, 2014 Oak Ridge National Laboratory's (ORNL's) Dean Edwards and a...

373

Measuring Advances in HVAC Distribution System Design  

E-Print Network [OSTI]

Advances in HV AC Distribution System Design Ellen FranconiAdvances in HVAC Distribution System Design Ellen Franconisavings result from distribution system design improvements,

Franconi, E.

2011-01-01T23:59:59.000Z

374

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

farms with advanced coal generation facilities and operatingfarms with advanced coal generation facilities and operatingin the stand-alone coal generation option (IGCC+CCS plant)

Phadke, Amol

2008-01-01T23:59:59.000Z

375

Advances in understanding solar energy collection materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding solar energy collection materials Advances in understanding solar energy collection materials A LANL team and collaborators have made advances in the understanding of...

376

Advanced Combustion Technologies | Department of Energy  

Energy Savers [EERE]

Science & Innovation Clean Coal Advanced Combustion Technologies Advanced Combustion Technologies Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses...

377

Advanced Technology Vehicles Manufacturing Incentive Program...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

378

Advancing Energy Systems through Integration | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advancing Energy Systems through Integration Advancing Energy Systems through Integration This presentation was given by Ever-Green Energy's Ken Smith as part of the November 20,...

379

Chemistry & Physics at Interfaces | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Chemistry and Physics at Interfaces SHARE Chemistry and Physics at Interfaces Chemical...

380

Application of advanced hydrocarbon characterization and its...  

Broader source: Energy.gov (indexed) [DOE]

advanced hydrocarbon characterization and its consequences on future fuel properties and advanced combustion research Rafal Gieleciak, Craig Fairbridge and Darcy Hager Poster...

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Application of advanced hydrocarbon characterization and its...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on future fuel properties and advanced combustion research Research on future fuels chemistry and effects on combustion in advanced internal combustion engines p-14gieleciak.pdf...

382

Optimization of Advanced Diesel Engine Combustion Strategies  

Broader source: Energy.gov (indexed) [DOE]

- UW-ERC 1 "University Research in Advanced Combustion and Emissions Control" Optimization of Advanced Diesel Engine Combustion Strategies Profs. Rolf Reitz, D. Foster, J....

383

Optimization of Advanced Diesel Engine Combustion Strategies...  

Broader source: Energy.gov (indexed) [DOE]

Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

384

Nick Wright Named Advanced Technologies Group Lead  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nick Wright Named Advanced Technologies Group Lead Nick Wright Named Advanced Technologies Group Lead February 4, 2013 Nick Nick Wright has been named head of the National Energy...

385

Particulate Emissions Control by Advanced Filtration Systems...  

Broader source: Energy.gov (indexed) [DOE]

Particulate Emissions Control by Advanced Filtration Systems or GDI Engines Particulate Emissions Control by Advanced Filtration Systems or GDI Engines 2013 DOE Hydrogen and Fuel...

386

Advanced Computational Methods for Turbulence and Combustion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Computational Methods for Turbulence and Combustion Advanced Computational Methods for Turbulence and Combustion Bell.png Key Challenges: Development and application of...

387

Advanced Diesel Engine and Aftertreatment Technology Development...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003...

388

Advanced Membrane Systems: Recovering Wasteful and Hazardous...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

389

Webinar: Systems Performance Advancement II Funding Opportunity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Webinar: Systems Performance Advancement II Funding Opportunity Announcement Webinar: Systems Performance Advancement II Funding Opportunity Announcement January 22, 2015 2:00PM to...

390

Advanced Low Temperature Absorption Chiller Module Integrated...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Low Temperature Absorption Chiller Module Integrated with a CHP System at a Distributed Data Center - Presentation by Exergy Partners Corp., June 2011 Advanced Low...

391

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

Phadke, Amol

2008-01-01T23:59:59.000Z

392

Attic or Roof? An Evaluation of Two Advanced Weatherization Packages  

SciTech Connect (OSTI)

This project examines implementation of advanced retrofit measures in the context of a large-scale weatherization program and the archetypal Chicago brick bungalow. One strategy applies best practice air sealing methods and a standard insulation method to the attic floor. The other strategy creates an unvented roof assembly using materials and methods typically available to weatherization contractors. Through implementations of the retrofit strategies in a total of eight (8) test homes, the research found that the two different strategies achieve similar reductions in air leakage measurement (55%) and predicted energy performance (18%) relative to the pre-retrofit conditions.

Neuhauser, K.

2012-06-01T23:59:59.000Z

393

Westinghouse advanced particle filter system  

SciTech Connect (OSTI)

Integrated Gasification Combined Cycles (IGCC), Pressurized Fluidized Bed Combustion (PFBC) and Advanced PFBC (APFB) are being developed and demonstrated for commercial power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC, PFBC and APFB in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of these advanced, solid fuel power generation cycles.

Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

1995-11-01T23:59:59.000Z

394

ADVANCED MIXING MODELS  

SciTech Connect (OSTI)

The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four dual-nozzle jet mixers located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The work described in this report establishes the basis for further development of the theory leading to the identified mixing indicators, the benchmark analyses demonstrating their consistency with widely accepted correlations, and the application of those indicators to SRS waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. If shorter mixing times can be shown to support Defense Waste Processing Facility (DWPF) or other feed requirements, longer pump lifetimes can be achieved with associated operational cost and schedule savings. The focus of the present work is to establish mixing criteria associated with the waste processing at SRS and to quantify the mixing time required to suspend sludge particles with the submersible jet pump. Literature results for a turbulent jet flow are reviewed briefly, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. One of the main objectives in the waste processing is to provide the DWPF a uniform slurry composition at a certain weight percentage (typically {approx}13 wt%) over an extended period of time. In preparation of the sludge for slurrying to DWPF, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition for DWPF? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination? Grenville and Tilton (1996) investigated the mixing process by giving a pulse of tracer (electrolyte) through the submersible jet nozzle and by monitoring the conductivity at three locations within the cylindrical tank. They proposed that the mixing process was controlled by the turbulent kinetic energy dissipation rate in the region far away from the jet entrance. They took the energy dissipation rates in the regions remote from the nozzle to be proportional to jet velocity and jet diameter at that location. The reduction in the jet velocity was taken to be proportional to the nozzle velocity and distance from the nozzle. Based on their analysis, a correlation was proposed. The proposed correlation was shown to be valid over a wide range of Reynolds numbers (50,000 to 300,000) with a relative standard deviation of {+-} 11.83%. An improved correlat

Lee, S; Richard Dimenna, R; David Tamburello, D

2008-11-13T23:59:59.000Z

395

REDUCTIONS WITHOUT REGRET: HISTORICAL PERSPECTIVES  

SciTech Connect (OSTI)

This is the first of three papers (in addition to an introductory summary) aimed at providing a framework for evaluating future reductions or modifications of the U.S. nuclear force, first by considering previous instances in which nuclear-force capabilities were eliminated; second by looking forward into at least the foreseeable future at the features of global and regional deterrence (recognizing that new weapon systems currently projected will have expected lifetimes stretching beyond our ability to predict the future); and third by providing examples of past or possible undesirable outcomes in the shaping of the future nuclear force, as well as some closing thoughts for the future. This paper examines the circumstances and consequences of the elimination of ? The INF-range Pershing II ballistic missile and Gryphon Ground-Launched Cruise Missile (GLCM), deployed by NATO under a dual-track strategy to counter Soviet intermediate-range missiles while pursuing negotiations to limit or eliminate all of these missiles. ? The Short-Range Attack Missile (SRAM), which was actually a family of missiles including SRAM A, SRAM B (never deployed), and SRAM II and SRAM T, these last two cancelled during an over-budget/behind-schedule development phase as part of the Presidential Nuclear Initiatives of 1991 and 1992. ? The nuclear-armed version of the Tomahawk Land-Attack Cruise Missile (TLAM/N), first limited to shore-based storage by the PNIs, and finally eliminated in deliberations surrounding the 2010 Nuclear Posture Review Report. ? The Missile-X (MX), or Peacekeeper, a heavy MIRVed ICBM, deployed in fixed silos, rather than in an originally proposed mobile mode. Peacekeeper was likely intended as a bargaining chip to facilitate elimination of Russian heavy missiles. The plan failed when START II did not enter into force, and the missiles were eliminated at the end of their intended service life. ? The Small ICBM (SICBM), or Midgetman, a road-mobile, single-warhead missile for which per-unit costs were climbing when it was eliminated under the PNIs. Although there were liabilities associated with each of these systems, there were also unique capabilities; this paper lays out the pros and cons for each. Further, we articulate the capabilities that were eliminated with these systems.

Swegle, J.; Tincher, D.

2013-09-09T23:59:59.000Z

396

Advanced Distillation Final Report  

SciTech Connect (OSTI)

The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were performed with the targeted mixture, ethane-ethylene, as well as with analogous low relative volatility systems: cyclohexane-hexane and cyclopentane-pentane. Devices and test stands were specifically designed for these efforts. Development progressed from experiments and models considering sections of a full scale device to the design, fabrication, and operation of a single-channel distillation unit with integrated heat transfer. Throughout the project, analytical and numerical models and Computational Fluid Dynamics (CFD) simulations were validated with experiments in the process of developing this platform technology. Experimental trials demonstrated steady and controllable distillation for a variety of process conditions. Values of Height-to-an-Equivalent Theoretical Plate (HETP) ranging from less than 0.5 inch to a few inches were experimentally proven, demonstrating a ten-fold performance enhancement relative to conventional distillation. This improvement, while substantial, is not sufficient for MPT distillation to displace very large scale distillation trains. Fortunately, parallel efforts in the area of business development have yielded other applications for MPT distillation, including smaller scale separations that benefit from the flowsheet flexibility offered by the technology. Talks with multiple potential partners are underway. Their outcome will also help determine the path ahead for MPT distillation.

Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

2010-03-24T23:59:59.000Z

397

Advanced Integrated Traction System  

SciTech Connect (OSTI)

The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.

Greg Smith; Charles Gough

2011-08-31T23:59:59.000Z

398

Advanced Microturbine Systems  

SciTech Connect (OSTI)

In July 2000, the United Technologies Research Center (UTRC) was one of five recipients of a US Department of Energy contract under the Advanced Microturbine System (AMS) program managed by the Office of Distributed Energy (DE). The AMS program resulted from several government-industry workshops that recognized that microturbine systems could play an important role in improving customer choice and value for electrical power. That is, the group believed that electrical power could be delivered to customers more efficiently and reliably than the grid if an effective distributed energy strategy was followed. Further, the production of this distributed power would be accomplished with less undesirable pollutants of nitric oxides (NOx) unburned hydrocarbons (UHC), and carbon monoxide (CO). In 2000, the electrical grid delivered energy to US customers at a national average of approximately 32% efficiency. This value reflects a wide range of powerplants, but is dominated by older, coal burning stations that provide approximately 50% of US electrical power. The grid efficiency is also affected by transmission and distribution (T&D) line losses that can be significant during peak power usage. In some locations this loss is estimated to be 15%. Load pockets can also be so constrained that sufficient power cannot be transmitted without requiring the installation of new wires. New T&D can be very expensive and challenging as it is often required in populated regions that do not want above ground wires. While historically grid reliability has satisfied most customers, increasing electronic transactions and the computer-controlled processes of the 'digital economy' demand higher reliability. For them, power outages can be very costly because of transaction, work-in-progress, or perishable commodity losses. Powerplants that produce the grid electrical power emit significant levels of undesirable NOx, UHC, and CO pollutants. The level of emission is quoted as either a technology metric or a system-output metric. A common form for the technology metric is in the units of PPM {at} 15% O2. In this case the metric reflects the molar fraction of the pollutant in the powerplant exhaust when corrected to a standard exhaust condition as containing 15% (molar) oxygen, assuring that the PPM concentrations are not altered by subsequent air addition or dilution. Since fuel combustion consumes oxygen, the output oxygen reference is equivalent to a fuel input reference. Hence, this technology metric reflects the moles of pollutant per mole of fuel input, but not the useful output of the powerplant-i.e. the power. The system-output metric does embrace the useful output and is often termed an output-based metric. A common form for the output-based metric is in the units of lb/MWh. This is a system metric relating the pounds of pollutant to output energy (e.g., MWh) of the powerplant.

Rosfjord, T; Tredway, W; Chen, A; Mulugeta, J; Bhatia, T

2008-12-31T23:59:59.000Z

399

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect (OSTI)

The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.

Stefan Miska; Troy Reed; Ergun Kuru

2004-09-30T23:59:59.000Z

400

ADVANCED MIXING MODELS  

SciTech Connect (OSTI)

The process of recovering and processing High Level Waste (HLW) the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four mixers (pumps) located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are typically set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The focus of the present work is to establish mixing criteria applicable to miscible fluids, with an ultimate goal of addressing waste processing in HLW tanks at SRS and quantifying the mixing time required to suspend sludge particles with the submersible jet pump. A single-phase computational fluid dynamics (CFD) approach was taken for the analysis of jet flow patterns with an emphasis on the velocity decay and the turbulent flow evolution for the farfield region from the pump. Literature results for a turbulent jet flow are reviewed, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. The work described in this report suggests a basis for further development of the theory leading to the identified mixing indicators, with benchmark analyses demonstrating their consistency with widely accepted correlations. Although the indicators are somewhat generic in nature, they are applied to Savannah River Site (SRS) waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. One of the main objectives in the waste processing is to provide feed of a uniform slurry composition at a certain weight percentage (e.g. typically {approx}13 wt% at SRS) over an extended period of time. In preparation of the sludge for slurrying, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination?

Lee, S.; Dimenna, R.; Tamburello, D.

2011-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Systems Analyses of Advanced Brayton Cycles  

SciTech Connect (OSTI)

The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study how alternative process schemes and power cycles might be used and integrated to achieve higher systems efficiency. To achieve these design results, the total systems approach is taken requiring creative integration of the various process units within the plant. Advanced gas turbine based cycles for Integrated gasification Combined cycle (IGCC) applications are identified by a screening analysis and the more promising cycles recommended for detailed systems analysis. In the case of the IGFC task, the main objective is met by developing a steady-state simulation of the entire plant and then using dynamic simulations of the hybrid Solid Oxide Fuel Cell (SOFC)/Gas Turbine sub-system to investigate the turbo-machinery performance. From these investigations the desired performance characteristics and a basis for design of turbo-machinery for use in a fuel cell gas turbine power block is developed.

A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

2008-09-30T23:59:59.000Z

402

Suspension Hydrogen Reduction of Iron Oxide Concentrates  

SciTech Connect (OSTI)

The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

H.Y. Sohn

2008-03-31T23:59:59.000Z

403

Highway noise reduction by barrier walls  

E-Print Network [OSTI]

's Variables 3. Noise Reduction and Noise Reduction Factor 4. Relationship Between Noise Attenuation and d 5. Rettinger's Variables 6. Relationship of Sound-Level Reduction and v 7. Basic Principles in Sound-Transmission Loss 8. The Mass Law Relationship... that the barrier wall is acoustically opaque (i. e. , impermeable to sound waves). Purcell (8) found that the noise transmission loss of a wall was a measure of the ratio of the acoustical energy transmitted through the wall to the acoustical energy incident...

Young, Murray F

1971-01-01T23:59:59.000Z

404

Nox reduction system utilizing pulsed hydrocarbon injection  

DOE Patents [OSTI]

Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

Brusasco, Raymond M. (Livermore, CA); Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA)

2001-01-01T23:59:59.000Z

405

CONTENTDM ADVANCED SEARCH TUTORIAL Table of Contents  

E-Print Network [OSTI]

1 CONTENTDM ADVANCED SEARCH TUTORIAL Table of Contents 1. Accessing the Advanced Search Page 1 2. Navigating the Advanced Search Page 3 3. Selecting your collection to search Advanced Search from the right navigation menu. 2 This will take you into the CONTENTdm database

O'Laughlin, Jay

406

ABPDU - Advanced Biofuels Process Demonstration Unit  

SciTech Connect (OSTI)

Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

None

2011-01-01T23:59:59.000Z

407

Meeting Summary Advanced Light Water Reactor Fuels Industry Meeting Washington DC October 27 - 28, 2011  

SciTech Connect (OSTI)

The Advanced LWR Fuel Working Group first met in November of 2010 with the objective of looking 20 years ahead to the role that advanced fuels could play in improving light water reactor technology, such as waste reduction and economics. When the group met again in March 2011, the Fukushima incident was still unfolding. After the March meeting, the focus of the program changed to determining what we could do in the near term to improve fuel accident tolerance. Any discussion of fuels with enhanced accident tolerance will likely need to consider an advanced light water reactor with enhanced accident tolerance, along with the fuel. The Advanced LWR Fuel Working Group met in Washington D.C. on October 72-18, 2011 to continue discussions on this important topic.

Not Listed

2011-11-01T23:59:59.000Z

408

Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels  

SciTech Connect (OSTI)

This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

2012-01-01T23:59:59.000Z

409

Oxygen reduction on platinum : an EIS study  

E-Print Network [OSTI]

The oxygen reduction reaction (ORR) on platinum over yttria-stabilized zirconia (YSZ) is examined via electrochemical impedance spectroscopy (EIS) for oxygen partial pressures between 10-4 and 1 atm and at temperatures ...

Golfinopoulos, Theodore

2009-01-01T23:59:59.000Z

410

Timelike reduction and T-duality  

E-Print Network [OSTI]

In the light of recent developments in Superstring Theory, it has become of interest to study Kaluza-Klein dimensional reduction of supergravities not only on spatial manifolds, but also on the time direction. We study a particularly relevant class...

Scuro, Sante Rodolfo

2012-06-07T23:59:59.000Z

411

Bifunctional Catalysts for the Selective Catalytic Reduction...  

Broader source: Energy.gov (indexed) [DOE]

in lean adsorption rich reduction cycles NO x Sorption (NO x Traps) Disadvantages Typical Usage Method Pioneering Science and Technology Office of Science U.S. Department of Energy...

412

Vehicle Technologies Office: National Idling Reduction Network...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

News. To receive NIRNN by e-mail monthly, please e-mail Patricia Weikersheimer. Search Past Newsletters The National Idling Reduction Network News is currently sent as an HTML...

413

Sharing the Burden of GHG Reductions  

E-Print Network [OSTI]

The G8 countries propose a goal of a 50% reduction in global emissions by 2050, in an effort that needs to take account of other agreements specifying that developing countries are to be provided with incentives to action ...

Jacoby, Henry D.

414

Energy Efficiency Interest Rate Reduction Program  

Broader source: Energy.gov [DOE]

The Alaska Housing Finance Corporation (AHFC) offers interest rate reductions to home buyers purchasing new and existing homes with 5 Star and 5 Star Plus energy ratings. All homes constructed on...

415

Solid Waste Reduction, Recovery, and Recycling  

Broader source: Energy.gov [DOE]

This statute expresses the strong support of the State of Wisconsin for the reduction of the amount of solid waste generated, the reuse, recycling and composting of solid waste, and resource...

416

ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS  

E-Print Network [OSTI]

Energy Efficiency Potential Study.  Technical Report Energy Efficiency  Potential Study.  Technical Report Energy Efficiency   Renewable Energy Technologies   Transportation   Assessment of Household Carbon Footprint Reduction Potentials is the final report 

Masanet, Eric

2010-01-01T23:59:59.000Z

417

Greenhouse Gas Emissions Reduction Act (Maryland)  

Broader source: Energy.gov [DOE]

The Greenhouse Gas Emissions Reduction Act requires the Department of the Environment to publish and update an inventory of statewide greenhouse gas emissions for calendar year 2006 and requires...

418

Process for producing advanced ceramics  

DOE Patents [OSTI]

A process for the synthesis of homogeneous advanced ceramics such as SiC+AlN, SiAlON, SiC+Al.sub.2 O.sub.3, and Si.sub.3 N.sub.4 +AlN from natural clays such as kaolin, halloysite and montmorillonite by an intercalation and heat treatment method. Included are the steps of refining clays, intercalating organic compounds into the layered structure of clays, drying the intercalated mixture, firing the treated atmospheres and grinding the loosely agglomerated structure. Advanced ceramics produced by this procedure have the advantages of homogeneity, cost effectiveness, simplicity of manufacture, ease of grind and a short process time. Advanced ceramics produced by this process can be used for refractory, wear part and structure ceramics.

Kwong, Kyei-Sing (Tuscaloosa, AL)

1996-01-01T23:59:59.000Z

419

Reduction of metal oxides through mechanochemical processing  

DOE Patents [OSTI]

The low temperature reduction of a metal oxide using mechanochemical processing techniques. The reduction reactions are induced mechanically by milling the reactants. In one embodiment of the invention, titanium oxide TiO.sub.2 is milled with CaH.sub.2 to produce TiH.sub.2. Low temperature heat treating, in the range of 400.degree. C. to 700.degree. C., can be used to remove the hydrogen in the titanium hydride.

Froes, Francis H. (Moscow, ID); Eranezhuth, Baburaj G. (Moscow, ID); Senkov, Oleg N. (Moscow, ID)

2000-01-01T23:59:59.000Z

420

Physical chemistry of carbothermic reduction of alumina  

SciTech Connect (OSTI)

Production of aluminium, by means of carbothermic reduction of alumina, is discussed. By employing a solvent metal bath to absorb the alumina metal, carbothermic reduction of alumina was accomplished at temperatures 300/degree/C lower than the temperatures reported in the literature. Reduction occurred without the formation of intermediate compounds and without the high volatilization of aluminum bearing species. Reduction of alumina immersed in a solvent bath appeared to be rate limited by chemical reaction control. The rates seemed to be a function of the activity of aluminum in the solvent metal bath. Reduction of alumina particles, above the surface of the bath, seemed to occur via vapor transport with carbon in the particles or in the crucible walls. Mass transport in the gas phase appeared to be rate limiting. The rates seemed to be a function of the distance separating the alumina and carbon sources. With both submerged alumina and alumina particles, increasing the surface area of the alumina increased the rate of reduction. 58 refs., 65 figs., 9 tabs.

Frank, Robert A.

1985-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

RefWorks for Business: Advanced Workshop Advanced Searching and Lookups  

E-Print Network [OSTI]

RefWorks for Business: Advanced Workshop Advanced Searching and Lookups Advanced Search There may Advanced Search is helpful. o Go to the Search menu > click Advanced Search Lookups Lookups be times when you want to do a detailed search for references stored in your RefWorks database. That's when

Haykin, Simon

422

Advanced Nuclear Fuel Cycle Options  

SciTech Connect (OSTI)

A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

2010-06-01T23:59:59.000Z

423

Advanced Materials | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal Advanced MaterialMaterialsAdvanced

424

Under consideration for publication in J. Fluid Mech. 1 Mechanisms of non-modal energy  

E-Print Network [OSTI]

countries and Japan were geared towards studies of optimal compliant coatings for drag reduction over aerial

Hoepffner, Jérôme

425

44 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 16, NO. 1, FEBRUARY 2007 Theoretical Analysis of Strong-Axis Bending  

E-Print Network [OSTI]

such as microelectromechanical systems, environ- mental monitors, drag reduction in fluid flows, compact data storage

Paris-Sud XI, Université de

426

Advanced Fuels Campaign 2012 Accomplishments  

SciTech Connect (OSTI)

The Advanced Fuels Campaign (AFC) under the Fuel Cycle Research and Development (FCRD) program is responsible for developing fuels technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year 2012 (FY 2012) accomplishments are highlighted below. Kemal Pasamehmetoglu is the National Technical Director for AFC.

Not Listed

2012-11-01T23:59:59.000Z

427

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect (OSTI)

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2002-04-01T23:59:59.000Z

428

Digital Tomosynthesis: Advanced Breast Cancer  

E-Print Network [OSTI]

creating an image. · A newer process, called full field digital mammography uses digital receptors. #12Digital Tomosynthesis: Advanced Breast Cancer Imaging Technique Max Wiedmann #12;Digital Bremsstrahlung, a process in which electrons are accelerated against an anode, causing photons to be fired off

Fygenson, Deborah Kuchnir

429

PEM Electrolyzer Incorporating an Advanced  

E-Print Network [OSTI]

PEM Electrolyzer Incorporating an Advanced Low Cost Membrane Monjid Hamdan Giner Electrochemical (Academic)­ Membrane Development Collaborations 3M Fuel Cell Components Program­ NSTF Catalyst & Membrane Entegris ­ Carbon Cell Separators Tokuyama ­ Low-Cost Membrane Prof. R. Zalosh (WPI) ­ Hydrogen Safety

430

Advances in James P. Hartnett  

E-Print Network [OSTI]

P. HARTNETT AND MILIVOJE KOSTIC* Energy Resources Center, University of Illinois at Chicago, ChicagoAdvances in HEAT TRANSFER Edited by James P. Hartnett Energy Resources Center University of Illinois at Chicago Chicago, Illinois Volume 19 0AP Thomas F. Irvine, Jr. Department of Mechanical

Kostic, Milivoje M.

431

ADVANCED DECISION ANALYSIS Winter 2011  

E-Print Network [OSTI]

ADVANCED DECISION ANALYSIS PH 444 Winter 2011 Course Instructor: Gordon Hazen, Ph.D. Professor a factored cost-effectiveness model · Construct a stochastic tree transition diagram for a medical treatment problem. · Convert a stochastic tree diagram to a discrete-time Markov chain transition diagram

Chisholm, Rex L.

432

PAMPA II Advanced Charting System  

E-Print Network [OSTI]

where the project is heading, and if needed, then look into the finer level details by drilling down to locate and correct problems. The objective of this thesis is to build an Advanced Charting System (ACS), which would act as a companion to PAMPA 2...

Inbarajan, Prabhu Anand

2004-09-30T23:59:59.000Z

433

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect (OSTI)

The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2000-01-01T23:59:59.000Z

434

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect (OSTI)

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2002-02-01T23:59:59.000Z

435

Gas fired Advanced Turbine System  

SciTech Connect (OSTI)

The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

LeCren, R.T.; White, D.J.

1993-01-01T23:59:59.000Z

436

Department of Advanced Materials Science  

E-Print Network [OSTI]

@k.u-tokyo.ac.jpe-mail 04-7136-3781T E L Environmental-friendly materials process, Metal smelting and re ning process of Advanced Materials Science masashi@issp.u-tokyo.ac.jpe-mail 04-7136-3225T E L Nuclear magnetic resonance New Materials Synthesis, Superconductivity, Quantum Spin Liquid,Topological Hall Effect takatama

Katsumoto, Shingo

437

Definitive design report: Design report project W-025, Radioactive Mixed Waste (RMW) Land Disposal Facility NON-DRAG-OFF. Revision 1, Volume 1 and 2  

SciTech Connect (OSTI)

The purpose of this report is to describe the definitive design of the Radioactive Mixed Waste (RMW) Non-Drag-Off disposal facility, Project W-025. This report presents a n of the major landfill design features and a discussion of how each of the criteria is addressed in the design. The appendices include laboratory test results, design drawings, and individual analyses that were conducted in support of the design. Revision 1 of this document incorporates design changes resulting from an increase in the required operating life of the W-025 landfill from 2 to 20 years. The rationale for these design changes is described in Golder Associates Inc. 1991a. These changes include (1) adding a 1.5-foot-thick layer of compacted admix directory-under the primary FML on the floor of the landfill to mitigate the effects of possible stress cracking in the primary flexible membrane liner (FML), and (2) increasing the operations layer thickness from two to three feet over the entire landfill area, to provide additional protection for the secondary admix layer against mechanical damage and the effects of freezing and desiccation. The design of the W-025 Landfill has also been modified in response to the results of the EPA Method 9090 chemical compatibility testing program (Golder Associates Inc. 1991b and 1991c), which was completed after the original design was prepared. This program consisted of testing geosynthetic materials and soil/bentonite admix with synthetic leachate having the composition expected during the life of the W-025 Landfill., The results of this program indicated that the polyester geotextile originally specified for the landfill might be susceptible to deterioration. On this basis, polypropylene geotextiles were substituted as a more chemically-resistant alternative. In addition, the percentage of bentonite in the admix was increased to provide sufficiently low permeability to the expected leachate.

Roscha, V.

1994-11-29T23:59:59.000Z

438

Non-Hardware ("Soft") Cost-Reduction Roadmap for Residential and Small Commercial Solar Photovoltaics, 2013-2020  

SciTech Connect (OSTI)

The objective of this analysis is to roadmap the cost reductions and innovations necessary to achieve the U.S. Department of Energy (DOE) SunShot Initiative's total soft-cost targets by 2020. The roadmap focuses on advances in four soft-cost areas: (1) customer acquisition; (2) permitting, inspection, and interconnection (PII); (3) installation labor; and (4) financing. Financing cost reductions are in terms of the weighted average cost of capital (WACC) for financing PV system installations, with real-percent targets of 3.0% (residential) and 3.4% (commercial).

Ardani, K.; Seif, D.; Margolis, R.; Morris, J.; Davidson, C.; Truitt, S.; Torbert, R.

2013-08-01T23:59:59.000Z

439

Metal melting for volume reduction and recycle  

SciTech Connect (OSTI)

This paper summarizes the experiences with melting contaminated steel materials for volume reduction and melting uranium-contaminated copper and aluminum for possible recycle. In the past there has not been an economic incentive to reduce the volume of low-level beta-gamma contaminated metallic scrap materials in the United States. With the rising cost of transportation and burial facility fees new interest in volume reduction is being generated. This new interest has been primarily focused at the Idaho National Engineering Laboratory (INEL) where the Waste Experimental Reduction Facility (WERF) was established to demonstrate both metal melting and incineration of combustible material for volume reduction. Other demonstration programs involving melting for volume reduction and recycle of aluminum and copper, as well as ferrous scrap, were related to the Cascade Improvement and Cascade Upgrade Programs (CIP/CUP) at the Paducah, Kentucky facility. While the melting demonstrations for the CIP/CUP material were not primarily based on economic incentives, several observations recorded during the programs are of interest with regard to melting of copper and aluminum. (4 refs., 8 tabs.)

Miller, R.L.

1987-03-27T23:59:59.000Z

440

Low Temperature Combustion and Diesel Emission Reduction Research...  

Broader source: Energy.gov (indexed) [DOE]

Low Temperature Combustion and Diesel Emission Reduction Research Low Temperature Combustion and Diesel Emission Reduction Research Presentation given at DEER 2006, August 20-24,...

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Fuel economy and emissions reduction of HD hybrid truck over...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

economy and emissions reduction of HD hybrid truck over transient driving cycles and interstate roads Fuel economy and emissions reduction of HD hybrid truck over transient driving...

442

Perspectives Regarding Diesel Engine Emissions Reduction in the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast 2004 Diesel Engine Emissions...

443

Idling Emissions Reduction Technology with Low Temperature Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Idling Emissions Reduction Technology with Low Temperature Combustion of DI Biodiesel and PFI n-Butanol Idling Emissions Reduction Technology with Low Temperature Combustion of DI...

444

2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report...

445

The Mechanisms of Oxygen Reduction and Evolution Reactions in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries. The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous...

446

Catalytic reduction system for oxygen-rich exhaust  

DOE Patents [OSTI]

Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

1999-04-13T23:59:59.000Z

447

Development on simultaneous reduction system of NOx and PM from...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications An Improvement of Diesel PM and NOx Reduction System An Improvement of Diesel PM and NOx Reduction System EPA Mobile Source Rule Update...

448

Density Functional Theory Study of Oxygen Reduction Activity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Study of Oxygen Reduction Activity on Ultrathin Platinum Nanotubes. Density Functional Theory Study of Oxygen Reduction Activity on Ultrathin Platinum Nanotubes. Abstract: The...

449

Waste Heat Reduction and Recovery for Improving Furnace Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and...

450

CRADA with Cummins on Characterization and Reduction of Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cummins on Characterization and Reduction of Combustion Variations CRADA with Cummins on Characterization and Reduction of Combustion Variations 2012 DOE Hydrogen and Fuel Cells...

451

Emissions Reduction Experience with Johnson Matthey EGRT on Off...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reduction Experience with Johnson Matthey EGRT on Off-Road Equipment Emissions Reduction Experience with Johnson Matthey EGRT on Off-Road Equipment Poster presentation at the 2007...

452

Selective Catalytic Reduction and Exhaust Gas Recirculation Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reduction and Exhaust Gas Recirculation Systems Optimization Selective Catalytic Reduction and Exhaust Gas Recirculation Systems Optimization A patented EGR-SCR approach was shown...

453

California Customer Load Reductions during the Electricity Crisis...  

Open Energy Info (EERE)

Reductions during the Electricity Crisis: Did They Help to Keep the Lights On? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: California Customer Load Reductions during...

454

Project Profile: High Performance Reduction/Oxidation Metal Oxides...  

Office of Environmental Management (EM)

High Performance ReductionOxidation Metal Oxides for Thermochemical Energy Storage Project Profile: High Performance ReductionOxidation Metal Oxides for Thermochemical Energy...

455

Selective reduction of NOx in oxygen rich environments with plasma...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic studies Selective reduction of NOx in oxygen rich environments...

456

Testing Oxygen Reduction Reaction Activity with the Rotating...  

Broader source: Energy.gov (indexed) [DOE]

Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique...

457

Bimetallic and Ternary Alloys for Improved Oxygen Reduction Catalysis...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bimetallic and Ternary Alloys for Improved Oxygen Reduction Catalysis . Bimetallic and Ternary Alloys for Improved Oxygen Reduction Catalysis . Abstract: The research described in...

458

Reductant Chemistry during LNT Regeneration for a Lean Gasoline...  

Broader source: Energy.gov (indexed) [DOE]

Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Poster presented at the 16th...

459

Evidence for Localization of Reaction Upon Reduction of Carbon...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Localization of Reaction Upon Reduction of Carbon Tetrachloride by Granular Iron. Evidence for Localization of Reaction Upon Reduction of Carbon Tetrachloride by Granular Iron....

460

Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and...

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program 2012 DOE Hydrogen...

462

DOE Program Resources and Tools for Petroleum Reduction in the...  

Open Energy Info (EERE)

for Petroleum Reduction in the Transportation Sector Webinar Jump to: navigation, search Tool Summary Name: DOE Program Resources and Tools for Petroleum Reduction in the...

463

Polyelectrolyte-Induced Reduction of Exfoliated Graphite Oxide...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reduction of Exfoliated Graphite Oxide: A Facile Route to Synthesis of Soluble Graphene Nanosheets. Polyelectrolyte-Induced Reduction of Exfoliated Graphite Oxide: A Facile...

464

Water World: Success Stories and Tools for Water Use Reduction...  

Energy Savers [EERE]

Water World: Success Stories and Tools for Water Use Reduction in Your Building Portfolio Water World: Success Stories and Tools for Water Use Reduction in Your Building Portfolio...

465

Carbon Emissions Reduction Potential in the US Chemicals and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999 Carbon Emissions Reduction Potential in the US...

466

Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction...  

Broader source: Energy.gov (indexed) [DOE]

Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction 2003 DEER Conference Presentation: Ford Motor...

467

Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials...  

Open Energy Info (EERE)

Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Agency...

468

Advanced Fuel Cycles Activities in IAEA  

SciTech Connect (OSTI)

Considerable scientific and technical progress in many areas of Partitioning and Transmutation (P and T) has been recognized as probable answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. These recent global developments such as Russian initiative on Global Nuclear Infrastructure-International Fuel Centre and the US initiative on Global Nuclear Energy Partnership (GNEP) have made advanced fuel cycles as one of the decisive influencing factor for the future growth of nuclear energy. International Atomic Energy Agency has initiated the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) with overall objective of bringing together technology holders and technology users to consider jointly the international and national actions required achieving desired innovations in nuclear reactors and fuel cycles. One of the interesting common features of these initiatives (INPRO, GNEP and GNI-IFC) is closed fast reactor fuel cycles and proliferation resistance. Any fuel cycle that integrate P and T into it is also known as 'Advanced Fuel Cycle' (AFC) that could achieve reduction of plutonium and Minor Actinide (MA) elements (namely Am, Np, Cm, etc.). In this regard, some Member States are also evaluating alternative concepts involving the use of thorium fuel cycle, inert-matrix fuel or coated particle fuel. Development of 'fast reactors with closed fuel cycles' would be the most essential step for implementation of P and T. The scale of realization of any AFC depends on the maturity of the development of all these elemental technologies such as recycling MA, Pu as well as reprocessed uranium. In accordance with the objectives of the Agency, the programme B entitled 'Nuclear Fuel cycle technologies and materials' initiated several activities aiming to strengthen the capabilities of interested Member States for policy making, strategic planning, technology development and implementation of safe, reliable, economically efficient, proliferation resistant, environmentally sound and secure nuclear fuel cycle programmes. The paper describes some on-going IAEA activities in the area of: MA-fuel and target, thorium fuel cycle, coated particle fuel, MA-property database, inert matrix fuels, liquid metal cooled fast reactor fuels and fuel cycles, management of reprocessed uranium and proliferation resistance in fuel cycle. (authors)

Nawada, H.P.; Ganguly, C. [Nuclear Fuel Cycle and Materials Section, Division of Nuclear Fuel Cycle and Waste Technology, Department of Nuclear Energy, International Atomic Energy Agency, Vienna (Austria)

2007-07-01T23:59:59.000Z

469

Dose reduction at nuclear power plants  

SciTech Connect (OSTI)

The collective dose equivalent at nuclear power plants increased from 1250 rem in 1969 to nearly 54,000 rem in 1980. This rise is attributable primarily to an increase in nuclear generated power from 1289 MW-y to 29,155 MW-y; and secondly, to increased average plant age. However, considerable variation in exposure occurs from plant to plant depending on plant type, refueling, maintenance, etc. In order to understand the factors influencing these differences, an investigation was initiated to study dose-reduction techniques and effectiveness of as low as reasonably achievable (ALARA) planning at light water plants. Objectives are to: identify high-dose maintenance tasks and related dose-reduction techniques; investigate utilization of high-reliability, low-maintenance equipment; recommend improved radioactive waste handling equipment and procedures; examine incentives for dose reduction; and compile an ALARA handbook.

Baum, J.W.; Dionne, B.J.

1983-01-01T23:59:59.000Z

470

Effects of Levels of Automation for Advanced Small Modular Reactors: Impacts on Performance, Workload, and Situation Awareness  

SciTech Connect (OSTI)

The Human-Automation Collaboration (HAC) research effort is a part of the Department of Energy (DOE) sponsored Advanced Small Modular Reactor (AdvSMR) program conducted at Idaho National Laboratory (INL). The DOE AdvSMR program focuses on plant design and management, reduction of capital costs as well as plant operations and maintenance costs (O&M), and factory production costs benefits.

Johanna Oxstrand; Katya Le Blanc

2014-07-01T23:59:59.000Z

471

A Comparison Between Model Reduction and Controller Reduction: Application to a PWR Nuclear Planty  

E-Print Network [OSTI]

A Comparison Between Model Reduction and Controller Reduction: Application to a PWR Nuclear Planty@csam.ucl.ac.be, Gevers@csam.ucl.ac.be 2 Electricite de France, Direction des Etudes et Recherches, 6 Quai Watier, F-78041 of a controller for the secondary circuit of a nu- clear Pressurized Water Reactor, leading to the conclu- sions

Gevers, Michel

472

Partnering with Industry to Develop Advanced Biofuels  

Broader source: Energy.gov [DOE]

Breakout Session IA—Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Partnering with Industry to Develop Advanced Biofuels David C. Carroll, President and Chief Executive Officer, Gas Technology Institute

473

Advancing Concentrating Solar Power Research (Fact Sheet)  

SciTech Connect (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

Not Available

2014-02-01T23:59:59.000Z

474

2012 Advanced Applications Research & Development Peer Review...  

Broader source: Energy.gov (indexed) [DOE]

EPG 2012 Advanced Applications R&D Peer Review - Spectral Analysis of Power Grid PMU Data - Ning Zhou, PNNL 2012 Advanced Applications R&D Peer Review - IEEE-IEC...

475

Recent advances in ordered intermetallics  

SciTech Connect (OSTI)

This paper briefly summarizes recent advances in intermetallic research and development. Ordered intermetallics based on aluminides and silicides possess attractive properties for structural applications at elevated temperatures in hostile environments; however, brittle fracture and poor fracture resistance limit their use as engineering materials in many cases. In recent years, considerable efforts have been devoted to the study of the brittle fracture behavior of intermetallic alloys; as a result, both intrinsic and extrinsic factors governing brittle fracture have been identified. Recent advances in first-principles calculations and atomistic simulations further help us in understanding atomic bonding, dislocation configuration, and alloying effects in intermetallics. The basic understanding has led to the development of nickel, iron, and titanium aluminide alloys with improved mechanical and metallurgical properties for structural use. Industrial interest in ductile intermetallic alloys is high, and several examples of industrial involvement are mentioned.

Liu, C.T.

1992-12-31T23:59:59.000Z

476

Advanced Vehicle Electrification & Transportation Sector Electrificati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

477

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

site it operates at partial load in more hours Advanced Coalthe ACWH operates more often at partial load conditions to

Phadke, Amol

2008-01-01T23:59:59.000Z

478

Vehicle Technologies Office: 2008 Advanced Power Electronics...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies An integrated approach towards efficient, scalable, and low...

479

Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories  

Office of Legacy Management (LM)

Radiological Condition of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories Cheswick, Pennsylvania -. -, -- AGENCY: Office of Operational Safety, Department...

480

Recent Theoretical Results for Advanced Thermoelectric Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials Recent Theoretical Results for Advanced Thermoelectric Materials Transport theory and first principles calculations applied to oxides, chalcogenides and...

Note: This page contains sample records for the topic "advanced drag reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Advanced Engine Trends, Challenges and Opportunities  

Broader source: Energy.gov (indexed) [DOE]

Petroleum (Conventional and Alternative Sources) Alternative Fuels (Ethanol, Biodiesel, CNG, LPG) Electricity (Conv. and Alternative Sources) Hydrogen Time ADVANCED...

482

Advanced Particulate Filter Technologies for Direct Injection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications...

483

Advanced control documentation for operators  

SciTech Connect (OSTI)

Advanced controls were implemented on Ashland Oil's Reduced Crude Conversion (RCC) and Metals Removal System (MRS) units, the RCC and MRS main fractionators and the unit gas plant. This article describes the format used for the operator documentation at Ashland. Also, a potential process unit problem is described which can be solved by good operator documentation. The situation presented in the paper is hypothetical, however,the type of unit upset described an occur if proper precautions are not taken.

Ayral, T.E. (Mobil Oil, Torrance, CA (US)); Conley, R.C. (Profimatics, Inc., Thousand Oaks, CA (US)); England, J.; Antis, K. (Ashland Oil, Ashland, KY (US))

1988-09-01T23:59:59.000Z

484

Advanced downhole periodic seismic generator  

DOE Patents [OSTI]

An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

1991-07-16T23:59:59.000Z

485

Advanced Manufacturing | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvanced Manufacturing

486

Advanced Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/Curium Vitrification ProjectAVANTI Logo: Advanced Energy

487

Advanced Reciprocating Engine System (ARES)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance PatentDepartment| Department

488

Advanced Materials | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal Advanced

489

Advanced Materials Research Highlights | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre theAdministrator ReferencesalkaliAdvanced MagneticImaging.

490

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)  

SciTech Connect (OSTI)

This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

Not Available

2013-03-01T23:59:59.000Z

491

ADVANCED FUELS CAMPAIGN 2013 ACCOMPLISHMENTS  

SciTech Connect (OSTI)

The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.

Not Listed

2013-10-01T23:59:59.000Z

492

Advanced Technology Briefing to VLT/PAC  

E-Print Network [OSTI]

Advanced Technology Briefing to VLT/PAC Mohamed Abdou VLT, San Diego December 10, 1998 #12;M. Abdou VLT/PAC Meeting, Dec. 10, 1998 Advanced Technology ­ Scope Advanced technology is concerned with the longer-term technologies for high power density fusion systems that will have the greatest impact

California at Los Angeles, University of

493

Advanced, High Power, Next Scale, Wave Energy Conversion Device...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy...

494

PIA - Advanced Test Reactor National Scientific User Facility...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor...

495

48C Qualifying Advanced Energy Project Credit Questions | Department...  

Broader source: Energy.gov (indexed) [DOE]

48C Qualifying Advanced Energy Project Credit Questions 48C Qualifying Advanced Energy Project Credit Questions 48C Qualifying Advanced Energy Project Credit Questions More...

496

Advancing Scholarship through Digital Critical Editions: Mark Twain Project Online  

E-Print Network [OSTI]

support serendipity; advanced search, which provides a meansfaceted browsing, advanced search, citations, and complexas facets, tag clouds, advanced search functionality and

Schiff, Lisa R

2008-01-01T23:59:59.000Z

497

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop and demonstrate Advanced Burner Reactors (ABRs) that...

498

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Broader source: Energy.gov (indexed) [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced...

499

2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Combustion 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced Combustion Advanced combustion research and development merit review results 2010amr04.pdf...

500

advanced configurations topical: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

recurrence satisfied by the Stirling numbers of the second kind. Abrams, Aaron; Hower, Valerie 2010-01-01 264 ADVANCE-Nebraska Advancing Women, Advancing STEM Engineering...