National Library of Energy BETA

Sample records for advanced conservation systems

  1. Steam Conservation and Boiler Plant Efficiency Advancements 

    E-Print Network [OSTI]

    Fiorino, D. P.

    2000-01-01

    This paper examines several cost-effective steam conservation and boiler plant efficiency advancements that were implemented during a recently completed central steam boiler plant replacement project at a very large semiconductor manufacturing...

  2. The ARIES Advanced and Conservative Tokamak Power Plant Study...

    Office of Scientific and Technical Information (OSTI)

    ARIES Advanced and Conservative Tokamak Power Plant Study Kessel, C. E Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Tillak, M. S Univ. of California, San...

  3. THE ARIES ADVANCED AND CONSERVATIVE TOKAMAK POWER PLANT STUDY

    Office of Scientific and Technical Information (OSTI)

    THE ARIES ADVANCED AND CONSERVATIVE TOKAMAK POWER PLANT STUDY C. E. KESSEL, a * M. S. TILLACK, b F. NAJMABADI, b F. M. POLI, a K. GHANTOUS, a N. GORELENKOV, a X. R. WANG, b D....

  4. Advanced Reciprocating Engine Systems

    Broader source: Energy.gov [DOE]

    The Advanced Reciprocating Engine Systems (ARES) program is designed to promote separate but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the...

  5. Open Subsystems of Conservative Systems

    E-Print Network [OSTI]

    Alexander Figotin; Stephen P. Shipman

    2006-01-12

    The subject under study is an open subsystem of a larger linear and conservative system and the way in which it is coupled to the rest of system. Examples are a model of crystalline solid as a lattice of coupled oscillators with a finite piece constituting the subsystem, and an open system such as the Helmholtz resonator as a subsystem of a larger conservative oscillatory system. Taking the view of an observer accessing only the open subsystem we ask, in particular, what information about the entire system can be reconstructed having such limited access. Based on the unique minimal conservative extension of an open subsystem, we construct a canonical decomposition of the conservative system describing, in particular, its parts coupled to and completely decoupled from the open subsystem. The coupled one together with the open system constitute the unique minimal conservative extension. Combining this with an analysis of the spectral multiplicity, we show, for the lattice model in particular, that only a very small part of all possible oscillatory motion of the entire crystal, described canonically by the minimal extension, is coupled to the finite subsystem.

  6. The ARIES Advanced And Conservative Tokamak (ACT) Power Plant Study

    SciTech Connect (OSTI)

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N.; Tillack, M. S.; Najmabadi, F.; Wang, X. R.; Navaei, D.; Toudeshki, H. H.; Koehly, C.; El-Guebaly, L.; Blanchard, J. P.; Martin, C. J.; Mynsburge, L.; Humrickhouse, P.; Rensink, M. E.; Rognlien, T. D.; Yoda, M.; Abdel-Khalik, S. I.; Hageman, M. D.; Mills, B. H.; Radar, J. D.; Sadowski, D. L.; Snyder, P. B.; St. John, H.; Turnbull, A. D.; Waganer, L. M.; Malang, S.; Rowcliffe, A. F.

    2014-03-05

    Tokamak power plants are studied with advanced and conservative design philosophies in order to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding, and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared to older studies. The advanced configuration assumes a self-cooled lead lithium (SCLL) blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q95 of 4.5, a {beta}N{sup total} of 5.75, H{sub 98} of 1.65, n/nGr of 1.0, and peak divertor heat flux of 13.7 MW/m{sup 2}. The conservative configuration assumes a dual coolant lead lithium (DCLL) blanket concept with ferritic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma major radius is 9.75 m, a toroidal field of 8.75 T, a q95 of 8.0, a {beta}N{sup total} of 2.5, H{sub 98} of 1.25, n/n{sub Gr} of 1.3, and peak divertor heat flux of 10 MW/m{sup 2}. The divertor heat flux treatment with a narrow power scrape-off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range of 10-15 MW/m{sup 2}. Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Papers in this issue provide more detailed discussion of the work summarized here.

  7. The ARIES Advanced and Conservative Tokamak Power Plant Study

    SciTech Connect (OSTI)

    C.E. Kessel, et. al; Humrickhous, P.

    2014-01-01

    Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q95 of 4.5, a btotal N of 5.75, an H98 of 1.65, an n/nGr of 1.0, and a peak divertor heat flux of 13.7 MW/m2 . The conservative configuration assumes a dual-coolant lead lithium blanket concept with reducedactivation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q95 of 8.0, a btotal N of 2.5, an H98 of 1.25, an n/nGr of 1.3, and a peak divertor heat flux of 10 MW/m2 . The divertor heat flux treatment with a narrow power scrapeoff width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m2 . Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here.

  8. The ARIES Advanced and Conservative Tokamak Power Plant Study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kessel, C. E; Tillak, M. S; Najmabadi, F.; Poli, F. M.; Ghantous, K.; Gorelenkov, N.; Wang, X. R.; Navaei, D.; Toudeshki, H. H.; Koehly, C.; et al

    2015-12-22

    Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q?? of 4.5, a?total N of 5.75, an H98 of 1.65, anmore »n/nGr of 1.0, and a peak divertor heat flux of 13.7 MW/m˛ . The conservative configuration assumes a dual-coolant lead lithium blanket concept with reduced activation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q?? of 8.0, a?totalN of 2.5, an H?? of 1.25, an n/nGr of 1.3, and a peak divertor heat flux of 10 MW/m˛ . The divertor heat flux treatment with a narrow power scrape off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m˛ . Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here.« less

  9. Advanced Integrated Systems Technology Development

    E-Print Network [OSTI]

    2013-01-01

    Renewable Energy Technologies Transportation Advanced Integrated Systems Technology Development is the final report for the Advanced Integrated Systems Technology Development project (

  10. Advanced Containment System

    DOE Patents [OSTI]

    Kostelnik, Kevin M. (Idaho Falls, ID); Kawamura, Hideki (Tokyo, JP); Richardson, John G. (Idaho Falls, ID); Noda, Masaru (Tokyo, JP)

    2005-02-08

    An advanced containment system for containing buried waste and associated leachate. The advanced containment system comprises a plurality of casing sections with each casing section interlocked to an adjacent casing section. Each casing section includes a complementary interlocking structure that interlocks with the complementary interlocking structure on an adjacent casing section. A barrier filler substantially fills the casing sections and may substantially fill the spaces of the complementary interlocking structure to form a substantially impermeable barrier. Some of the casing sections may include sensors so that the casing sections and the zone of interest may be remotely monitored after the casing sections are emplaced in the ground.

  11. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

  12. Advanced drilling systems study.

    SciTech Connect (OSTI)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  13. Advanced Containment System

    DOE Patents [OSTI]

    Kostelnik, Kevin M. (Idaho Falls, ID); Kawamura, Hideki (Tokyo, JP); Richardson, John G. (Idaho Falls, ID); Noda, Masaru (Tokyo, JP)

    2005-05-24

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  14. Advanced Containment System

    DOE Patents [OSTI]

    Kostelnik, Kevin M. (Idaho Falls, ID); Kawamura, Hideki (Tokyo, JP); Richardson, John G. (Idaho Falls, ID); Noda, Masaru (Tokyo, JP)

    2004-10-12

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  15. Advanced Building Systems & Architectural Design

    E-Print Network [OSTI]

    Subramanian, Venkat

    primary research interests are whole building performance analysis, passive Advanced Building Systems & Architectural Design University with a Ph.D. in Building Performance and Diagnostics. Currently he

  16. ADVANCED WORKER PROTECTION SYSTEM

    SciTech Connect (OSTI)

    Judson Hedgehock

    2001-03-16

    From 1993 to 2000, OSS worked under a cost share contract from the Department of Energy (DOE) to develop an Advanced Worker Protection System (AWPS). The AWPS is a protective ensemble that provides the user with both breathing air and cooling for a NIOSH-rated duration of two hours. The ensemble consists of a liquid air based backpack, a Liquid Cooling Garment (LCG), and an outer protective garment. The AWPS project was divided into two phases. During Phase 1, OSS developed and tested a full-scale prototype AWPS. The testing showed that workers using the AWPS could work twice as long as workers using a standard SCBA. The testing also provided performance data on the AWPS in different environments that was used during Phase 2 to optimize the design. During Phase 1, OSS also performed a life-cycle cost analysis on a representative clean up effort. The analysis indicated that the AWPS could save the DOE millions of dollars on D and D activities and improve the health and safety of their workers. During Phase 2, OSS worked to optimize the AWPS design to increase system reliability, to improve system performance and comfort, and to reduce the backpack weight and manufacturing costs. To support this design effort, OSS developed and tested several different generations of prototype units. Two separate successful evaluations of the ensemble were performed by the International Union of Operation Engineers (IUOE). The results of these evaluations were used to drive the design. During Phase 2, OSS also pursued certifying the AWPS with the applicable government agencies. The initial intent during Phase 2 was to finalize the design and then to certify the system. OSS and Scott Health and Safety Products teamed to optimize the AWPS design and then certify the system with the National Institute of Occupational Health and Safety (NIOSH). Unfortunately, technical and programmatic difficulties prevented us from obtaining NIOSH certification. Despite the inability of NIOSH to certify the design, OSS was able to develop and successfully test, in both the lab and in the field, a prototype AWPS. They clearly demonstrated that a system which provides cooling can significantly increase worker productivity by extending the time they can function in a protective garment. They were also able to develop mature outer garment and LCG designs that provide considerable benefits over current protective equipment, such as self donning and doffing, better visibility, and machine washable. A thorough discussion of the activities performed during Phase 1 and Phase 2 is presented in the AWPS Final Report. The report also describes the current system design, outlines the steps needed to certify the AWPS, discusses the technical and programmatic issues that prevented the system from being certified, and presents conclusions and recommendations based upon the seven year effort.

  17. Advanced Integrated Traction System

    SciTech Connect (OSTI)

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.

  18. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these technologies and the corresponding early adopters are likely to be located.

  19. Advanced Microturbine Systems

    SciTech Connect (OSTI)

    Rosfjord, T; Tredway, W; Chen, A; Mulugeta, J; Bhatia, T

    2008-12-31

    In July 2000, the United Technologies Research Center (UTRC) was one of five recipients of a US Department of Energy contract under the Advanced Microturbine System (AMS) program managed by the Office of Distributed Energy (DE). The AMS program resulted from several government-industry workshops that recognized that microturbine systems could play an important role in improving customer choice and value for electrical power. That is, the group believed that electrical power could be delivered to customers more efficiently and reliably than the grid if an effective distributed energy strategy was followed. Further, the production of this distributed power would be accomplished with less undesirable pollutants of nitric oxides (NOx) unburned hydrocarbons (UHC), and carbon monoxide (CO). In 2000, the electrical grid delivered energy to US customers at a national average of approximately 32% efficiency. This value reflects a wide range of powerplants, but is dominated by older, coal burning stations that provide approximately 50% of US electrical power. The grid efficiency is also affected by transmission and distribution (T&D) line losses that can be significant during peak power usage. In some locations this loss is estimated to be 15%. Load pockets can also be so constrained that sufficient power cannot be transmitted without requiring the installation of new wires. New T&D can be very expensive and challenging as it is often required in populated regions that do not want above ground wires. While historically grid reliability has satisfied most customers, increasing electronic transactions and the computer-controlled processes of the 'digital economy' demand higher reliability. For them, power outages can be very costly because of transaction, work-in-progress, or perishable commodity losses. Powerplants that produce the grid electrical power emit significant levels of undesirable NOx, UHC, and CO pollutants. The level of emission is quoted as either a technology metric or a system-output metric. A common form for the technology metric is in the units of PPM {at} 15% O2. In this case the metric reflects the molar fraction of the pollutant in the powerplant exhaust when corrected to a standard exhaust condition as containing 15% (molar) oxygen, assuring that the PPM concentrations are not altered by subsequent air addition or dilution. Since fuel combustion consumes oxygen, the output oxygen reference is equivalent to a fuel input reference. Hence, this technology metric reflects the moles of pollutant per mole of fuel input, but not the useful output of the powerplant-i.e. the power. The system-output metric does embrace the useful output and is often termed an output-based metric. A common form for the output-based metric is in the units of lb/MWh. This is a system metric relating the pounds of pollutant to output energy (e.g., MWh) of the powerplant.

  20. Advanced Supply System Validation Workshop

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is hosting the Advanced Supply System Validation Workshop on February 3-4, 2015, in Golden, Colorado. The purpose of the workshop is to bring together a...

  1. Advanced Integrated Systems Technology Development

    E-Print Network [OSTI]

    2013-01-01

    modeling improvements in EnergyPlus were delayed due to ancomfort systems in EnergyPlus, (4) advancement of personal57 3.1.1 Improved UFAD and DV EnergyPlus

  2. Advanced Feedstock Supply System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOfficeAcqguide18pt0Department ofHigh2 DOEFactory-Built 1 |Advanced

  3. Open Systems Viewed Through Their Conservative Extensions

    E-Print Network [OSTI]

    Alexander Figotin; Stephen P. Shipman

    2006-03-13

    A typical linear open system is often defined as a component of a larger conservative one. For instance, a dielectric medium, defined by its frequency dependent electric permittivity and magnetic permeability is a part of a conservative system which includes the matter with all its atomic complexity. A finite slab of a lattice array of coupled oscillators modelling a solid is another example. Assuming that such an open system is all one wants to observe, we ask how big a part of the original conservative system (possibly very complex) is relevant to the observations, or, in other words, how big a part of it is coupled to the open system? We study here the structure of the system coupling and its coupled and decoupled components, showing, in particular, that it is only the system's unique minimal extension that is relevant to its dynamics, and this extension often is tiny part of the original conservative system. We also give a scenario explaining why certain degrees of freedom of a solid do not contribute to its specific heat.

  4. Thermal Simulation of Advanced Powertrain Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulation of Advanced Powertrain Systems Thermal Simulation of Advanced Powertrain Systems Under this project, the Volvo complete vehicle model was modified to include engine and...

  5. Advanced Membrane Systems: Recovering Wasteful and Hazardous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

  6. Advanced Conservation Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLCAdema Technologies Inc JumpAdobe

  7. Advanced synchronous luminescence system

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1997-02-04

    A method and apparatus are disclosed for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition. 14 figs.

  8. International Workshop: Advancing Conservation Planning in the Mediterranean Sea

    E-Print Network [OSTI]

    Kark, Salit

    ­ Environmental offshore oil and gas drilling guidelines 11:45 ­ 12:00 ­ Dror Zurel ­ Statutory tools for nature Mazor ­ Conservation planning in a multinational marine environment: Cost matters 10:45 ­ 11:00 ­ Marina

  9. Advanced CSP Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden DocumentationAccommodationsRegister / Vol.ConferenceAdolphusProgramCSP Systems

  10. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  11. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2000-01-01

    The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

  12. "Irregularization" of Systems of Conservation Laws

    E-Print Network [OSTI]

    Hunter Swan; Woosong Choi; Stefanos Papanikolaou; Matthew Bierbaum; Yong S. Chen; James P. Sethna

    2015-06-18

    We explore new ways of regulating defect behavior in systems of conservation laws. Contrary to usual regularization schemes (such as a vanishing viscosity limit), which attempt to control defects by making them smoother, our schemes result in defects which are \\textit{more singular}, and we thus refer to such schemes as "irregularizations". In particular, we seek to produce \\textit{delta shock} defects which satisfy a condition of \\textit{stationarity}. We are motivated to pursue such exotic defects by a physical example arising from dislocation dynamics in materials physics, which we describe.

  13. Advanced Integrated Systems Technology Development

    E-Print Network [OSTI]

    2013-01-01

    building envelope, implementing daylighting and efficient lighting control strategies, and employing advanced

  14. Advanced Reciprocating Engine Systems (ARES)

    Broader source: Energy.gov [DOE]

    Advanced Natural Gas Reciprocating Engines Increase Efficiency and Reduce Emissions for Distributed Power Generation Applications

  15. Advanced Framing Systems and Packages - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Framing Systems and Packages - Building America Top Innovation Advanced Framing Systems and Packages - Building America Top Innovation This photo shows advanced framing...

  16. Advanced Overfire Air system and design

    SciTech Connect (OSTI)

    Gene berkau

    2004-07-30

    The objective of the proposed project is to design, install and optimize a prototype advanced tangential OFA air system on two mass feed stoker boilers that can burn coal, biomass and a mixture of these fuels. The results will be used to develop a generalized methodology for retrofit designs and optimization of advanced OFA air systems. The advanced OFA system will reduce particulate and NOx emissions and improve overall efficiency by reducing carbon in the ash and excess oxygen. The advanced OFA will also provide capabilities for carrying full load and improved load following and transitional operations.

  17. Applications of the DFLU flux to systems of conservation laws

    E-Print Network [OSTI]

    Adimurthi, Adimurthi; Jaffré, Jérôme

    2009-01-01

    The DFLU numerical flux was introduced in order to solve hyperbolic scalar conservation laws with a flux function discontinuous in space. We show how this flux can be used to solve systems of conservation laws. The obtained numerical flux is very close to a Godunov flux. As an example we consider a system modeling polymer flooding in oil reservoir engineering.

  18. Energy savings potential from energy-conserving irrigation systems

    SciTech Connect (OSTI)

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  19. Cyberinfrastructure Technologies Enhancing Conservation for the 21st Century ....Advanced data acquisition, data integration, data storage, data management, data mining

    E-Print Network [OSTI]

    Stuart, Steven J.

    Cyberinfrastructure Technologies Enhancing Conservation for the 21st Century ....Advanced data acquisition, data integration, data storage, data management, data mining ....Environmental informatics and business of managing natural resources ... Paradigm shift where computing is an essential partner

  20. Advanced Vehicles Group: Center for Transportation Technologies and Systems

    SciTech Connect (OSTI)

    Not Available

    2008-08-01

    Describes R&D in advanced vehicle systems and components (e.g., batteries) by NREL's Advanced Vehicles Group.

  1. Advanced Supply System Validation Workshop Agenda

    Broader source: Energy.gov [DOE]

    List of Assumptions and Draft Workshop Agenda for the Advanced Supply System Validation Workshop, February 3-4, 2014, Golden, Colorado, from the U.S. Department of Energy's Bioenergy Technologies Office.

  2. Advanced Combustion Concepts - Enabling Systems and Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    advanced control concepts and enabling system to manage multi-modemulti-fuel combustion events and achieve an up to 30 percent fuel economy improvement deer11yilmaz.pdf...

  3. Exploiting Redundancy to Conserve Energy in Storage Systems

    E-Print Network [OSTI]

    Bianchini, Ricardo

    Exploiting Redundancy to Conserve Energy in Storage Systems Eduardo Pinheiro Rutgers University redundancy configura- tion for new energy-aware storage systems. To study Diverted Ac- cesses for realistic systems and workloads, we simulate a wide-area storage system under two file-access traces. Our modeling

  4. Advanced Reciprocating Engine System (ARES)

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONY PROJECTRecord4 Advance Patent| Department

  5. Advanced Systems of Efficient Use of Electrical Energy SURE ...

    Open Energy Info (EERE)

    Advanced Systems of Efficient Use of Electrical Energy SURE (Smart Grid Project) Jump to: navigation, search Project Name Advanced Systems of Efficient Use of Electrical Energy...

  6. Advanced Integrated Systems Technology Development

    E-Print Network [OSTI]

    2013-01-01

    systems (PCS), energy dashboards, wireless sensing, buildingCIEE)/Energy Commission PIER “Wireless Measurement Tools forWireless Hardware Device Report 2.3.1: Visualizing Energy

  7. Advanced Integrated Electric Traction System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Electric Traction System Greg S. Smith Email: gregory.3.smith@gm.com Phone: (310) 257-3812 Organization: General Motors Team members: Ames Laboratory Arnold Magnetics...

  8. PAMPA II Advanced Charting System 

    E-Print Network [OSTI]

    Inbarajan, Prabhu Anand

    2004-09-30

    Project Management is the primary key to successful software development. In 1995 Caper Jones stated that the failure or cancellation rate of large software systems was over 20% in his article on patterns of large software ...

  9. Energy Conserving Equations of Motion for Gear Systems

    E-Print Network [OSTI]

    Barber, James R.

    Energy Conserving Equations of Motion for Gear Systems Sejoong Oh Senior Engineer General Motors Engineering, The University of Michigan, Ann Arbor, MI A system of two meshing gears exhibits a stiffness by dynamic simulation, using a sys- tem of two involute spur gears as an example. It is shown that the two

  10. Advanced Energy Efficient Roof System

    SciTech Connect (OSTI)

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The options considered to date are not ideal. One approach is to insulate between the trusses at the roof plane. The construction process is time consuming and costs more than conventional attic construction. Moreover, the problems of air infiltration and thermal bridges across the insulation remain. Another approach is to use structurally insulated panels (SIPs), but conventional SIPs are unlikely to be the ultimate solution because an additional underlying support structure is required except for short spans. In addition, wood spline and metal locking joints can result in thermal bridges and gaps in the foam. This study undertook a more innovative approach to roof construction. The goal was to design and evaluate a modular energy efficient panelized roof system with the following attributes: (1) a conditioned and clear attic space for HVAC equipment and additional finished area in the attic; (2) manufactured panels that provide structure, insulation, and accommodate a variety of roofing materials; (3) panels that require support only at the ends; (4) optimal energy performance by minimizing thermal bridging and air infiltration; (5) minimal risk of moisture problems; (6) minimum 50-year life; (7) applicable to a range of house styles, climates and conditions; (8) easy erection in the field; (9) the option to incorporate factory-installed solar systems into the panel; and (10) lowest possible cost. A nationwide market study shows there is a defined market opportunity for such a panelized roof system with production and semi-custom builders in the United States. Senior personnel at top builders expressed interest in the performance attributes and indicate long-term opportunity exists if the system can deliver a clear value proposition. Specifically, builders are interested in (1) reducing construction cycle time (cost) and (2) offering increased energy efficiency to the homebuyer. Additional living space under the roof panels is another low-cost asset identified as part of the study. The market potential is enhanced through construction activity levels in target marke

  11. Energy Conservation Through Industrial Cogeneration Systems 

    E-Print Network [OSTI]

    Solt, J. C.

    1979-01-01

    This paper traces the development of cogeneration systems in industry, and discusses some early applications. The effect of changing markets and economic conditions is evaluated and specific examples are presented to illustrate the increasingly...

  12. Experience with the Development of Advanced Materials for Geothermal Systems

    SciTech Connect (OSTI)

    Sugama, T.; Butcher, T.; Ecker, L.

    2011-01-01

    This chapter contains the following sections: Introduction, Advanced Cements, Materials Research and Development in Enhanced Geothermal Systems (EGS), Advanced Coatings, and Conclusions.

  13. Advanced control and information systems `97

    SciTech Connect (OSTI)

    NONE

    1997-09-01

    Data are presented on advanced control and information systems, describing specific application, control strategy, economics, commercial installations, and licensor. Uses include alkylation, amine treating, catalytic reforming, cryogenic separation, catalytic cracking, hydrocracking, hydrogen production, LNG separation, lube oils, olefins, plant scheduling, polymers, refineries, steam reforming, and utilities.

  14. Measuring Advances in HVAC Distribution System Design

    SciTech Connect (OSTI)

    Franconi, E.

    1998-05-01

    Substantial commercial building energy savings have been achieved by improving the performance of the HV AC distribution system. The energy savings result from distribution system design improvements, advanced control capabilities, and use of variable-speed motors. Yet, much of the commercial building stock remains equipped with inefficient systems. Contributing to this is the absence of a definition for distribution system efficiency as well as the analysis methods for quantifying performance. This research investigates the application of performance indices to assess design advancements in commercial building thermal distribution systems. The index definitions are based on a first and second law of thermodynamics analysis of the system. The second law or availability analysis enables the determination of the true efficiency of the system. Availability analysis is a convenient way to make system efficiency comparisons since performance is evaluated relative to an ideal process. A TRNSYS simulation model is developed to analyze the performance of two distribution system types, a constant air volume system and a variable air volume system, that serve one floor of a large office building. Performance indices are calculated using the simulation results to compare the performance of the two systems types in several locations. Changes in index values are compared to changes in plant energy, costs, and carbon emissions to explore the ability of the indices to estimate these quantities.

  15. Advanced Seismic While Drilling System

    SciTech Connect (OSTI)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

  16. Energy Conservation in Process Chilled Water Systems 

    E-Print Network [OSTI]

    Ambs, L. L.; DiBella, R. A.

    1993-01-01

    System," ASHRAE Transactions, Vol. 93, Pt 2, 1987, pp. 1830-1852. 3. D. Murphy, "Cooling Towers Used For Free Cooling," ASHRAE Journal, June, 1991, pp. 16-26. 4. W.L. Jackson, F.C. Chen, and B.C. Hwang, "The Simulation and Perfonnance of a...ON IN PROCESS CHILLED WATER SYSTEMS Robert A. DiBella Lawrence L. Ambs, Ph.D. Projcct Engineer Associate Professor Xenergy Inc. University of MassachuseLts Burlington, MA Amherst, MA ABSTRACT The energy consumption of the chiller and cooling tower in a...

  17. Energy Conservation in the Bell System 

    E-Print Network [OSTI]

    Williamson, J. W.

    1982-01-01

    and handles in excess of 815 million calls a day. In providing telecommunications services, the System employs more than one million people, utilizes almost 30,000 buildings, and operates more than 195,000 motor vehicles (the world's largest owned and operated...

  18. Energy Conservation Studies of Existing HVAC Systems 

    E-Print Network [OSTI]

    Patterson, C. L.; Phelan, T. R.

    1985-01-01

    that projected savings can be real ized. The following examples are from an electronics manufacturing facility. Over 140 air handlers serving offices, laboratori es and clean roan manu facturing areas were investigated. The design cooling load of the central... preventive maintenance program with regular tube cleaning intervals, automated brush clean system for condensers, and proper condenser water chemical treatment would provide effective means of controlling the deterioration of fouling factors. ? Increase...

  19. Energy Conservation Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of theClimateElgin,Wind UKEnergiefeld1 Jump to:Systems Inc

  20. CONSERVATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReports from the CloudGEGR-N Goods PO 1 of 8 GE Conservation

  1. CONSERVATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReports from the CloudGEGR-N Goods PO 1 of 8 GE Conservation10

  2. Advanced Combustion Systems - Systems Analysis | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden DocumentationAccommodationsRegister /Advanced Energy Systems AdvancedAdvanced-

  3. INTERAGENCY REPORT: ASTROGEOLOGY 7 ADVANCED SYSTEMS TRAVERSE RESEARCH PROJECT REPORT

    E-Print Network [OSTI]

    Rathbun, Julie A.

    #12;INTERAGENCY REPORT: ASTROGEOLOGY 7 ADVANCED SYSTEMS TRAVERSE RESEARCH PROJECT REPORT By G. E Page 13 #12;ADVANCED SYSTEMS TRAVERSE RESEARCH PROJECT REPORT by G. E. Ulrich ABSTRACT This report

  4. The China Motor Systems Energy Conservation Program: A major national initiative to reduce motor system energy use in China

    E-Print Network [OSTI]

    Nadel, Steven; Wang, Wanxing; Liu, Peter; McKane, Aimee T.

    2001-01-01

    Motor Systems Energy Conservation Program: A Major Nationalnational program tentatively called the China Motor Systems Energy Conservation Program.a major national program to reduce motor system energy use.

  5. Industrial Advanced Turbine Systems Program overview

    SciTech Connect (OSTI)

    Esbeck, D.W.

    1995-12-31

    DOE`s ATS Program will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in the 3 to 20 MW class. Market studies were conducted for application of ATS to the dispersed/distributed electric power generation market. The technology studies have led to the design of a gas-fired, recuperated, industrial size gas turbine. The Ceramic Stationary Gas Turbine program continues. In the High Performance Steam Systems program, a 100 hour development test to prove the advanced 1500 F, 1500 psig system has been successfully completed. A market transformation will take place: the customer will be offered a choice of energy conversion technologies to meet heat and power generation needs into the next century.

  6. Systems Analyses of Advanced Brayton Cycles

    SciTech Connect (OSTI)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study how alternative process schemes and power cycles might be used and integrated to achieve higher systems efficiency. To achieve these design results, the total systems approach is taken requiring creative integration of the various process units within the plant. Advanced gas turbine based cycles for Integrated gasification Combined cycle (IGCC) applications are identified by a screening analysis and the more promising cycles recommended for detailed systems analysis. In the case of the IGFC task, the main objective is met by developing a steady-state simulation of the entire plant and then using dynamic simulations of the hybrid Solid Oxide Fuel Cell (SOFC)/Gas Turbine sub-system to investigate the turbo-machinery performance. From these investigations the desired performance characteristics and a basis for design of turbo-machinery for use in a fuel cell gas turbine power block is developed.

  7. Advanced, Energy-Efficient Hybrid Membrane System for Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced, Energy- Efficient Hybrid Membrane System for Industrial Water Reuse New Hybrid Membrane System Utilizes Industrial Waste Heat to Power Water Purification Process As...

  8. Advanced HD Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HD Engine Systems and Emissions Control Modeling and Analysis Advanced HD Engine Systems and Emissions Control Modeling and Analysis 2012 DOE Hydrogen and Fuel Cells Program and...

  9. Advanced LD Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LD Engine Systems and Emissions Control Modeling and Analysis Advanced LD Engine Systems and Emissions Control Modeling and Analysis 2012 DOE Hydrogen and Fuel Cells Program and...

  10. Advanced PHEV Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Engine Systems and Emissions Control Modeling and Analysis Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis 2011 DOE Hydrogen and Fuel Cells Program,...

  11. Advanced Methods Approach to Hybrid Powertrain Systems Optimization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methods Approach to Hybrid Powertrain Systems Optimization of a Transit Bus Application Advanced Methods Approach to Hybrid Powertrain Systems Optimization of a Transit Bus...

  12. Advanced polychromator systems for remote chemical sensing (LDRD...

    Office of Scientific and Technical Information (OSTI)

    polychromator systems for remote chemical sensing (LDRD project 52575). Citation Details In-Document Search Title: Advanced polychromator systems for remote chemical sensing (LDRD...

  13. Advanced Electric Traction System Technology Development

    SciTech Connect (OSTI)

    Anderson, Iver

    2011-01-14

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  14. Distributed Sensor Coordination for Advanced Energy Systems

    SciTech Connect (OSTI)

    Tumer, Kagan

    2013-07-31

    The ability to collect key system level information is critical to the safe, efficient and reli- able operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called “agents” from here on) to actively collect and process data, and provide key control deci- sions to significantly improve both the quality/relevance of the collected data and the as- sociating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as ad- vanced energy systems, where crucial decisions may need to be reached quickly and lo- cally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination rou- tines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shift- ing the focus towards “what to observe” rather than “how to observe” in large sensor networks, allowing the agents to actively determine both the structure of the network and the relevance of the information they are seeking to collect. In addition to providing an implicit coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Outcome Summary: All milestones associated with this project have been completed. In particular, private sensor objective functions were developed which are aligned with the global objective function, sensor effectiveness has been improved by using “sensor teams,” system efficiency has been improved by 30% using difference evaluation func- tions, we have demonstrated system reconfigurability for 20% changes in system con- ditions, we have demonstrated extreme scalability of our proposed algorithm, we have demonstrated that sensor networks can overcome disruptions of up to 20% in network conditions, and have demonstrated system reconfigurability to 20% changes in system conditions in hardware-based simulations. This final report summarizes how each of these milestones was achieved, and gives insight into future research possibilities past the work which has been completed. The following publications support these milestones [6, 8, 9, 10, 16, 18, 19].

  15. An advanced power distribution automation model system

    SciTech Connect (OSTI)

    Niwa, Shigeharu; Kanoi, Minoru; Nishijima, Kazuo; Hayami, Mitsuo

    1995-12-31

    An advanced power distribution automation (APDA) model system has been developed on the present basis of the automated distribution systems in Japan, which have been used for remote switching operations and for urgent supply restorations during faults. The increased use of electronic apparatuses sensitive to supply interruption requires very high supply reliability, and the final developed system is expected to be useful for this purpose. The developed model system adopts pole circuit breakers and remote termination units connected through 64kbps optical fibers to the computer of the automated system in the control center. Immediate switching operations for supply restorations during faults are possible through the restoration procedures, prepared beforehand, by the computer and by fast telecommunications using optical fibers. So, protection by the feeder circuit breaker in the substation can be avoided, which would otherwise cause the blackout of the whole distribution line. The test results show the effectiveness of model the system: successful fault locations and reconfiguration for supply restoration including separation of the fault sections (without blackout for the ground faults and with a short period (within 1 s) of blackout for the short-circuit faults).

  16. Advanced hybrid vehicle propulsion system study

    SciTech Connect (OSTI)

    Schwarz, R.

    1982-05-01

    Results of a study of an advanced heat engine/electric automotive hybrid propulsion system are presented. The system uses a rotary stratified charge engine and an ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system parameters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 l/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  17. Final Report Advanced Quasioptical Launcher System

    SciTech Connect (OSTI)

    Jeffrey Neilson

    2010-04-30

    This program developed an analytical design tool for designing antenna and mirror systems to convert whispering gallery RF modes to Gaussian or HE11 modes. Whispering gallery modes are generated by gyrotrons used for electron cyclotron heating of fusion plasmas in tokamaks. These modes cannot be easily transmitted and must be converted to free space or waveguide modes compatible with transmission line systems.This program improved the capability of SURF3D/LOT, which was initially developed in a previous SBIR program. This suite of codes revolutionized quasi-optical launcher design, and this code, or equivalent codes, are now used worldwide. This program added functionality to SURF3D/LOT to allow creating of more compact launcher and mirror systems and provide direct coupling to corrugated waveguide within the vacuum envelope of the gyrotron. Analysis was also extended to include full-wave analysis of mirror transmission line systems. The code includes a graphical user interface and is available for advanced design of launcher systems.

  18. ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM

    SciTech Connect (OSTI)

    Frank Macri

    2003-10-01

    Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

  19. P.G. Ioannou and L.Y. Liu Advanced Construction Technology System ACTS Advanced Construction Technology System ACTS

    E-Print Network [OSTI]

    a history of long lead-times for technology transfer (CICE B-2 1982). The productivity growth rateP.G. Ioannou and L.Y. Liu Advanced Construction Technology System ­ ACTS 1 Advanced Construction Technology System ­ ACTS By P. G. Ioannou,1 A.M. ASCE, and L. Y. Liu,2 A.M. ASCE ABSTRACT: The Advanced

  20. Conserving Energy in Real-Time Storage Systems with I/O Burstiness

    E-Print Network [OSTI]

    Qin, Xiao

    20 Conserving Energy in Real-Time Storage Systems with I/O Burstiness ADAM MANZANARES, XIAOJUN RUAN of Southern Mississippi Energy conservation has become a critical problem for real-time embedded storage, energy conservation for real-time embedded storage systems is still an open problem. In this arti- cle

  1. Advances in coiled-tubing operating systems

    SciTech Connect (OSTI)

    Sas-Jaworsky, A. II

    1997-06-01

    The expansion of coiled tubing (CT) applications into spooled flowlines, spooled completions, and CT drilling continues to grow at an accelerated rate. For many users within the oil and gas industry, the CT industry appears to be poised on the threshold of the next logical step in its evolution, the creation of a fully integrated operating system. However, for CT to evolve into such an operating system, the associated services must be robust and sufficiently reliable to support the needs of exploration, development drilling, completion, production management, and wellbore-retirement operations both technically and economically. The most critical hurdle to overcome in creating a CT-based operating system is a fundamental understanding of the operating scope and physical limitations of CT technology. The complete list of mechanisms required to advance CT into an operating system is large and complex. However, a few key issues (such as formal education, training, standardization, and increased levels of experience) can accelerate the transition. These factors are discussed.

  2. Conservation of Energy Through The Use of a Predictive Performance Simulator of Operating Cooling Water Systems 

    E-Print Network [OSTI]

    Schell, C. J.

    1981-01-01

    Conservation of energy is an important consideration in the operation of cooling water systems. Conserving energy by operating at the most effective cycles of concentration and by keeping heat exchangers clean is contingent upon having the optimum...

  3. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect (OSTI)

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  4. Advanced Stirling conversion systems for terrestrial applications

    SciTech Connect (OSTI)

    Shaltens, R.K.

    1987-01-01

    Sandia National Laboratories (SNLA) is developing heat engines for terrestrial Solar distributed Heat Receivers. SNLA has identified the Stirling to be one of the most promising candidates for the terrestrial applications. The free-piston Stirling engine (FPSE) has the potential to meet the DOE goals for both performance and cost. Free-piston Stirling activities which are directed toward a dynamic power source for the space application are being conducted. Space power system requirements include high efficiency, very long life, high reliability and low vibration. The FPSE has the potential for future high power space conversion systems, either solar or nuclear powered. Generic free-piston technology is currently being developed for use with a residential heat pump under an Interagency Agreement. Also, an overview is presented of proposed conceptual designs for the Advanced Stirling Conversion System (ASCS) using a free-piston Stirling engine and a liquid metal heat pipe receiver. Power extraction includes both a linear alternator and hydraulic output capable of delivering approximately 25 kW of electrical power to the electric utility grid. Target cost of the engine/alternator is 300 dollars per kilowatt at a manufacturing rate of 10,000 units per year. The design life of the ASCS is 60,000 h (30 y) with an engine overhaul at 40,000 h (20 y). Also discussed are the key features and characteristics of the ASCS conceptual designs.

  5. Advanced Liquid Natural Gas Onboard Storage System

    SciTech Connect (OSTI)

    Greg Harper; Charles Powars

    2003-10-31

    Cummins Westport Incorporated (CWI) has designed and developed a liquefied natural gas (LNG) vehicle fuel system that includes a reciprocating pump with the cold end submerged in LNG contained in a vacuum-jacketed tank. This system was tested and analyzed under the U.S. Department of Energy (DOE) Advanced LNG Onboard Storage System (ALOSS) program. The pumped LNG fuel system developed by CWI and tested under the ALOSS program is a high-pressure system designed for application on Class 8 trucks powered by CWI's ISX G engine, which employs high-pressure direct injection (HPDI) technology. A general ALOSS program objective was to demonstrate the feasibility and advantages of a pumped LNG fuel system relative to on-vehicle fuel systems that require the LNG to be ''conditioned'' to saturation pressures that exceeds the engine fuel pressure requirements. These advantages include the capability to store more fuel mass in given-size vehicle and station tanks, and simpler lower-cost LNG refueling stations that do not require conditioning equipment. Pumped LNG vehicle fuel systems are an alternative to conditioned LNG systems for spark-ignition natural gas and port-injection dual-fuel engines (which typically require about 100 psi), and they are required for HPDI engines (which require over 3,000 psi). The ALOSS program demonstrated the feasibility of a pumped LNG vehicle fuel system and the advantages of this design relative to systems that require conditioning the LNG to a saturation pressure exceeding the engine fuel pressure requirement. LNG tanks mounted on test carts and the CWI engineering truck were repeatedly filled with LNG saturated at 20 to 30 psig. More fuel mass was stored in the vehicle tanks as well as the station tank, and no conditioning equipment was required at the fueling station. The ALOSS program also demonstrated the general viability and specific performance of the CWI pumped LNG fuel system design. The system tested as part of this program is designed to be used on Class 8 trucks with CWI ISX G HPDI engines. Extensive test cart and engineering truck tests of the pump demonstrated good durability and the high-pressure performance needed for HPDI application. The LNG tanks manufactured by Taylor-Wharton passed SAE J2343 Recommended Practice drop tests and accelerated road-load vibration tests. NER and hold-time tests produced highly consistent results. Additional tests confirmed the design adequacy of the liquid level sensor, vaporizer, ullage volume, and other fuel system components. While the testing work performed under this program focused on a high-pressure pumped LNG fuel system design, the results also validate the feasibility of a low-pressure pumped fuel system. A low-pressure pumped fuel system could incorporate various design refinements including a simpler and lighter-weight pump, which would decrease costs somewhat relative to a high-pressure system.

  6. Development of Advanced Diesel Particulate Filtration (DPF) Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ANLCorningCaterpillar CRADA) Development of Advanced Diesel Particulate Filtration (DPF) Systems (ANLCorningCaterpillar CRADA) ace22lee.pdf More Documents & Publications...

  7. Advanced Diesel Common Rail Injection System for Future Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Injection System and Engine Strategies for Advanced Emission Standards SCR Technologies for NOx Reduction Powertrain Trends and Future...

  8. Advanced Microturbine System: Market Assessment, May 2003 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 2003 The objective of this report is to provide an integrated analysis of the economics and market potential for the advanced microturbine system (AMTS) that will provide...

  9. The advanced flame quality indicator system

    SciTech Connect (OSTI)

    Oman, R.; Rossi, M.J.; Calia, V.S.; Davis, F.L.; Rudin, A. [Insight Technologies, Inc., Bohemia, NY (United States)

    1997-09-01

    By combining oil tank monitoring, systems diagnostics and flame quality monitoring in an affordable system that communicates directly with dealers by telephone modem, Insight Technologies offers new revenue opportunities and the capability for a new order of customer relations to oil dealers. With co-sponsorship from New York State Energy Research and Development Authority, we have incorporated several valuable functions to a new product based on the original Flame Quality Indicator concept licensed from the US DOE`s Brookhaven National Laboratory. The new system is the Advanced Flame Quality Indicator, or AFQI. As before, the AFQI monitors and reports the intensity of the burner flame relative to a calibration established when the burner is set up at AFQI installation. Repairs or adjustments are summoned by late-night outgoing telephone calls when limits are exceeded in either direction, indicating an impending contamination or other malfunction. A independently, a pressure transducer for monitoring oil tank level and filter condition, safety lockout alarms and a temperature monitor; all reporting automatically at instructed intervals via an on-board modem to a central station PC computer (CSC). Firmware on each AFQI unit and Insight-supplied software on the CSC automatically interact to maintain a customer database for an oil dealer, an OEM, or a regional service contractor. In addition to ensuring continuously clean and efficient operation, the AFQI offers the oil industry a new set of immediate payoffs, among which are reduced outages and emergency service calls, shorter service calls from cleaner operation, larger oil delivery drops, the opportunity to stretch service intervals to as along as three years in some cases, new selling features to keep and attract customers, and greatly enhanced customer contact, quality and reliability.

  10. Advanced coal-fueled gas turbine systems

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    Westinghouse's Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO[sub x] emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO[sub x] levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  11. Methodological advances in computer simulation of biomolecular systems

    E-Print Network [OSTI]

    Fischer, Wolfgang

    Methodological advances in computer simulation of biomolecular systems Wilfred F. van Gunsteren Computer simulation of the dynamics of biomolecular systems by the molecular dynamics technique yields computing power. Recent advances in simulation methodology e.g. to rapidly compute many free energies from

  12. I. Course Particulars Number & Title ICS 434 ADVANCED DATABASE SYSTEMS

    E-Print Network [OSTI]

    Adam, Salah

    Description Advanced data models: object-oriented model, and object-relational model, conceptual database. Course Objectives 1. To learn advanced data modeling techniques. 2. To learn how modern database systems an automated database design tool to design complex database systems. 2. Apply object-relational data model

  13. Summary Review of Advanced Inverter Technologies for Residential PV Systems

    E-Print Network [OSTI]

    Summary Review of Advanced Inverter Technologies for Residential PV Systems This report summarizes current and emerging standards for residential PV systems and identifies the status of emerging inverter................................................................................................ 7 3. Grid-Connected PV inverters available in US

  14. Advanced Non-Distributed Operating Systems Course Yair Wiseman

    E-Print Network [OSTI]

    Wiseman, Yair

    1 Advanced Non-Distributed Operating Systems Course Yair Wiseman Computer Science Department Bar://www.cs.biu.ac.il/~wiseman wiseman@cs.huji.ac.il Keywords: Operating Systems, Graduate Course, Operating System Kernel, Non-Distributed Operating Systems. Abstract The use of Non-Distributed Operating Systems is very common and old. Many

  15. CSCE 6933/5933 Advanced Topics in VLSI Systems

    E-Print Network [OSTI]

    Mohanty, Saraju P.

    in VLSI Systems #12;High Level System Design of a Voltage Controlled Oscillator · INSTANCE parameters Locked Loop · Components of a PLL · High Level System Design · Component - wise Design and Power Optimization · Mixed-Signal System Analysis 2Advanced Topics in VLSI Systems #12;Phase Locked Loop · The first

  16. Advanced Tower Analysis and Design System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge KiosksAboutHelp &AdvancedAdvanced

  17. Advanced Process and Chemical Complex Analysis Systems Derya Ozyurtb

    E-Print Network [OSTI]

    Pike, Ralph W.

    157g Advanced Process and Chemical Complex Analysis Systems Derya Ozyurtb , Aimin Xub , Thomas, Pollution Prevention, Sustainability, Chemical Complex, Prepared for presentation at the 2002 Annual Meeting for statements or opinions contained in papers or printed in its publications. #12;Abstract: The Advanced Process

  18. Thermal Inertia: Towards An Energy Conservation Room Management System (Technical report)

    E-Print Network [OSTI]

    Wang, Dan

    increasing attention to energy conservation around the world. The heating and air-conditioning systems, many studies are working on energy efficiency for data centers [16][17][19], a top energy consumerThermal Inertia: Towards An Energy Conservation Room Management System (Technical report) Yi Yuan

  19. Advanced lubrication systems and materials. Final report

    SciTech Connect (OSTI)

    Hsu, S.

    1998-05-07

    This report described the work conducted at the National Institute of Standards and Technology under an interagency agreement signed in September 1992 between DOE and NIST for 5 years. The interagency agreement envisions continual funding from DOE to support the development of fuel efficient, low emission engine technologies in terms of lubrication, friction, and wear control encountered in the development of advanced transportation technologies. However, in 1994, the DOE office of transportation technologies was reorganized and the tribology program was dissolved. The work at NIST therefore continued at a low level without further funding from DOE. The work continued to support transportation technologies in the development of fuel efficient, low emission engine development. Under this program, significant progress has been made in advancing the state of the art of lubrication technology for advanced engine research and development. Some of the highlights are: (1) developed an advanced high temperature liquid lubricant capable of sustaining high temperatures in a prototype heat engine; (2) developed a novel liquid lubricant which potentially could lower the emission of heavy duty diesel engines; (3) developed lubricant chemistries for ceramics used in the heat engines; (4) developed application maps for ceramic lubricant chemistry combinations for design purpose; and (5) developed novel test methods to screen lubricant chemistries for automotive air-conditioning compressors lubricated by R-134a (Freon substitute). Most of these findings have been reported to the DOE program office through Argonne National Laboratory who manages the overall program. A list of those reports and a copy of the report submitted to the Argonne National Laboratory is attached in Appendix A. Additional reports have also been submitted separately to DOE program managers. These are attached in Appendix B.

  20. Advanced Turbine Systems Program industrial system concept development

    SciTech Connect (OSTI)

    Gates, S.

    1995-12-31

    Solar approached Phase II of ATS program with the goal of 50% thermal efficiency. An intercolled and recuperated gas turbine was identified as the ultimate system to meet this goal in a commercial gas turbine environment. With commercial input from detailed market studies and DOE`s ATS program, Solar redefined the company`s proposed ATS to fit both market and sponsor (DOE) requirements. Resulting optimized recuperated gas turbine will be developed in two sizes, 5 and 15 MWe. It will show a thermal efficiency of about 43%, a 23% improvement over current industrial gas turbines. Other ATS goals--emissions, RAMD (reliability, availability, maintainability, durability), cost of power--will be met or exceeded. During FY95, advanced development of key materials, combustion and component technologies proceeded to the point of acceptance for inclusion in ATS Phase III.

  1. CSCE 6933/5933 Advanced Topics in VLSI Systems

    E-Print Network [OSTI]

    Mohanty, Saraju P.

    ? Advanced Topics in VLSI Systems (1) ASIC (2) Sun UltraSparc (3) PentiumPro Core 2 Quad: (2006) 3 #12 into very thin base layer controls large currents between emitter and collector ­ Base currents limit

  2. Optical design and characterization of an advanced computational imaging system

    E-Print Network [OSTI]

    Shepard III, R. Hamilton

    We describe an advanced computational imaging system with an optical architecture that enables simultaneous and dynamic pupil-plane and image-plane coding accommodating several task-specific applications. We assess the ...

  3. Multiclass queueing systems in heavy traffic: an asymptotic approach based on distributional and conservation laws

    E-Print Network [OSTI]

    Bertsimas, Dimitris J.

    We propose a new approach to analyze multiclass queueing systems in heavy traffic based on what we consider as fundamental laws in queueing systems, namely distributional and conservation laws. Methodologically, we extend ...

  4. Advanced turbine systems phase II - conceptual design and product development. Final report, August 1993--July 1996

    SciTech Connect (OSTI)

    1996-10-01

    The National Energy Strategy (NES) calls for a balanced program of greater energy efficiency, use of alternative fuels, and the environmentally responsible development of all U.S. energy resources. Consistent with the NES, a Department of Energy (DOE) program has been created to develop Advanced Turbine Systems (ATS). The technical ATS requirements are based upon two workshops held in Greenville, SC that were sponsored by DOE and hosted by Clemson University. The objective of this 8-year program, managed jointly by DOE`s Office of Fossil Energy, and, Office of Conservation and Renewable Energy, is to develop natural-gas-fired base load power plants that will have cycle efficiencies greater than 60%, lower heating value (LHV), be environmentally superior to current technology, and also be cost competitive. The program will include work to transfer advanced technology to the coal- and biomass-fueled systems being developed in other DOE programs.

  5. Two types of conservation laws. Connection of physical fields with material systems. Peculiarities of field theories

    E-Print Network [OSTI]

    L. I. Petrova

    2008-12-02

    Historically it happen so that in branches of physics connected with field theory and of physics of material systems (continuous media) the concept of "conservation laws" has a different meaning. In field theory "conservation laws" are those that claim the existence of conservative physical quantities or objects. These are conservation laws for physical fields. In contrast to that in physics (and mechanics) of material systems the concept of "conservation laws" relates to conservation laws for energy, linear momentum, angular momentum, and mass that establish the balance between the change of physical quantities and external action. In the paper presented it is proved that there exist a connection between of conservation laws for physical fields and those for material systems. This points to the fact that physical fields are connected with material systems. Such results has an unique significance for field theories. This enables one to substantiate many basic principles of field theories, such as, for example, the unity of existing field theories and the causality. The specific feature of field theory equations, namely, their connection to the equations for material systems, is elicited. Such results have been obtained by using skew-symmetric differential forms, which reflect the properties of conservation laws.

  6. Advanced Propulsion Systems | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge KiosksAboutHelp & ReferenceAdvanced PowertrainCFM

  7. Advanced Management of Compressed Air Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how a compressed air system works and the benefits of optimal compressed air system performance. This training is designed to help end users as well as industry solution providers learn...

  8. Advanced Fluidized Bed Waste Heat Recovery Systems 

    E-Print Network [OSTI]

    Peterson, G. R.

    1988-01-01

    BED WASTE HEAT RECOVERY SYSTEMS G. R. PETERSON Project Manager U.S. Department of Energy, Idaho Operations Office Idaho Falls, Idaho ABSTRACT The U.S. Department of Energy, Office of Industri al Programs, has sponsored the development of a... Fluidized Bed Waste Heat Recovery System (FBWHRS) and a higher temperature variant, the Ceramic Tubular Distributor Plate (CTOP) Fluidized Bed Heat Exchanger (FBHX) system. Both systems recover energy from high-temperature flue gases and produce steam...

  9. Advanced Controls for Industrial Compressed Air Systems 

    E-Print Network [OSTI]

    Vold, P.; Gabel, S.; Carmichael, L.; Curtner, K.; Cirillo, N. C. Jr.

    1997-01-01

    at a Goulds Pumps manufacturing plant in Seneca Falls, New York, and is currently undergoing field testing. The compressed air system will optimize the energy efficiency of the 7 compressor system (1,850hp) at Goulds, while reducing system pressure...

  10. Advanced Membrane Systems: Recovering Wasteful and Hazardous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    while reducing fuel losses. Compact Membrane Systems, Inc. (CMS) was founded in 1993 in Wilmington, DE, with the acquisition of rights to certain DuPont polymer membrane...

  11. Advanced Membrane Systems: Recovering Wasteful and Hazardous...

    Broader source: Energy.gov (indexed) [DOE]

    Case study covering Compact Membrane Systems, Inc. and its membrane vapor processor that recovers fuel vapors from gasoline refueling. cmssbircasestudy2010.pdf More Documents &...

  12. Advanced Turbine Systems (ATS) program conceptual design and product development

    SciTech Connect (OSTI)

    1996-08-31

    Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

  13. An advanced vapor-compression desalination system 

    E-Print Network [OSTI]

    Lara Ruiz, Jorge Horacio Juan

    2006-04-12

    Currently, the two dominant desalination methods are reverse osmosis (RO) and multi-stage flash (MSF). RO requires large capital investment and maintenance, whereas MSF is too energy intensive. An innovative vapor-compression desalination system...

  14. Flooding in urban drainage systems: Coupling hyperbolic conservation laws for sewer systems and surface flow

    E-Print Network [OSTI]

    Borsche, Raul

    2014-01-01

    In this paper we propose a model for a sewer network coupled to surface flow and investigate it numerically. In particular, we present a new model for the manholes in storm sewer systems. It is derived using the balance of the total energy in the complete network. The resulting system of equations contains, aside from hyperbolic conservation laws for the sewer network and algebraic relations for the coupling conditions, a system of ODEs governing the flow in the manholes. The manholes provide natural points for the interaction of the sewer system and the run off on the urban surface modelled by shallow water equations. Finally, a numerical method for the coupled system is presented. In several numerical tests we study the influence of the manhole model on the sewer system and the coupling with 2D surface flow.

  15. Theoretical crystallography with the Advanced Visualization System

    SciTech Connect (OSTI)

    Younkin, C.R.; Thornton, E.N.; Nicholas, J.B.; Jones, D.R.; Hess, A.C.

    1993-05-01

    Space is an Application Visualization System (AVS) graphics module designed for crystallographic and molecular research. The program can handle molecules, two-dimensional periodic systems, and three-dimensional periodic systems, all referred to in the paper as models. Using several methods, the user can select atoms, groups of atoms, or entire molecules. Selections can be moved, copied, deleted, and merged. An important feature of Space is the crystallography component. The program allows the user to generate the unit cell from the asymmetric unit, manipulate the unit cell, and replicate it in three dimensions. Space includes the Buerger reduction algorithm which determines the asymmetric unit and the space group of highest symmetry of an input unit cell. Space also allows the user to display planes in the lattice based on Miller indices, and to cleave the crystal to expose the surface. The user can display important precalculated volumetric data in Space, such as electron densities and electrostatic surfaces. With a variety of methods, Space can compute the electrostatic potential of any chemical system based on input point charges.

  16. Advanced Power Systems and Controls Laboratory

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    photovoltaic generation facility. Solar panel output is in white, and the response of the XP DPR is in red Solar Power Generation Introduction The rapid growth of wind and solar power is a key driver of the development of grid-scale Battery Energy Storage Systems (BESS). A well implemented BESS co-located with solar

  17. System and method for advanced power management

    DOE Patents [OSTI]

    Atcitty, Stanley (Albuquerque, NM); Symons, Philip C. (Surprise, AZ); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM)

    2009-07-28

    A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

  18. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-08-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  19. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-01-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  20. ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report

    SciTech Connect (OSTI)

    Albrecht H. Mayer

    2000-07-15

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

  1. Northwest Energy Innovations (TRL 5 6 System)- WETNZ MtiMode Wave Energy Converter Advancement Project

    Broader source: Energy.gov [DOE]

    Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode Wave Energy Converter Advancement Project

  2. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect (OSTI)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated system that exceeds the U.S. Department of Energy (DOE) goal of 40% (HHV) efficiency at emission levels well below the DOE suggested limits; and (5) An advanced biofueled power system whose levelized cost of electricity can be competitive with other new power system alternatives.

  3. Accelerator Systems Division (ASD) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge KiosksAbout UsAbout NewAccelerator Systems

  4. Advanced Fuel Cell Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLCAdema Technologies IncFuel Cell Systems Jump to:

  5. Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living Space in Summer

    E-Print Network [OSTI]

    Miyashita, Yasushi

    Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living and total heat exchanger in terms of both energy conservation and thermal comfort in summer. 1. COP

  6. Advanced human-system interface design review guidelines

    SciTech Connect (OSTI)

    O'Hara, J.M.

    1990-01-01

    Advanced, computer-based, human-system interface designs are emerging in nuclear power plant (NPP) control rooms. These developments may have significant implications for plant safety in that they will greatly affect the ways in which operators interact with systems. At present, however, the only guidance available to the US Nuclear Regulatory Commission (NRC) for the review of control room-operator interfaces, NUREG-0700, was written prior to these technological changes and is thus not designed to address them. The objective of the project reported in this paper is to develop an Advanced Control Room Design Review Guideline for use in performing human factors reviews of advanced operator interfaces. This guideline will be implemented, in part, as a portable, computer-based, interactive document for field use. The paper describes the overall guideline development methodology, the present status of the document, and the plans for further guideline testing and development. 21 refs., 3 figs.

  7. MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS ? PROJECT SUMMARY

    SciTech Connect (OSTI)

    M. A. Alvin

    2010-06-18

    Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach ?1425-1760?C (?2600-3200?F) with pressures of ?300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require (1) durable thermal barrier coatings (TBCs), (2) high temperature creep resistant metal substrates, and (3) effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in the TBCs and aerothermal cooling. To support the advanced turbine technology development, the Office of Research and Development (ORD) at National Energy Technology Laboratory (NETL) has continued its collaborative research efforts with the University of Pittsburgh and West Virginia University, while working in conjunction with commercial material and coating suppliers. This paper presents the technical accomplishments that were made during FY09 in the initial areas of advanced materials, aerothermal heat transfer and non-destructive evaluation techniques for use in advanced land-based turbine applications in the Materials and Component Development for Advanced Turbine Systems project, and introduces three new technology areas ? high temperature overlayer coating development, diffusion barrier coating development, and oxide dispersion strengthened (ODS) alloy development that are being conducted in this effort.

  8. Rethinking energy conservation via an evaluation of the heating system: A

    E-Print Network [OSTI]

    Vellekoop, Michel

    by applying better control algorithms for the heating and cooling system. #12;Acknowledgements I would likeRethinking energy conservation via an evaluation of the heating system: A Case Study of Zilverling Intan Permatasari The purpose of this research is to study the heating system in Zilverling building

  9. Lyapunov stability of a singularly perturbed system of two conservation laws

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Lyapunov stability of a singularly perturbed system of two conservation laws Ying TANG Christophe stability of the complete system is investigated via Lyapunov techniques. A Lyapunov function for the singularly perturbed system is obtained as a weighted sum of two Lyapunov functions of the subsystems

  10. Further Study on the Conservation Laws of Energy-momentum Tensor Density for a Gravitational System

    E-Print Network [OSTI]

    Chen Fang-Pei

    2008-05-21

    The various methods to derive Einstein conservation laws and the relevant definitions of energy-momentum tensor density for gravitational fields are studied in greater detail. It is shown that these methods are all equivalent. The study on the identical and different characteristics between Lorentz and Levi-Civita conservation laws and Einstein conservation laws is thoroughly explored. Whether gravitational waves carry the energy-momentum is discussed and some new interpretations for the energy exchanges in the gravitational systems are given. The viewpoint that PSR1913 does not verify the gravitational radiation is confirmed.

  11. CSCE 6933/5933 Advanced Topics in VLSI Systems

    E-Print Network [OSTI]

    Mohanty, Saraju P.

    In 1970 , the First Analog circuit simulator named CANCER (Computer Analysis of Non-Linear Circuits device in linear circuits. It produces an output which is a product between inverting and non inverting of various Analog Circuit Simulators 2 Advanced Topics in VLSI Systems #12;Two Points to Discuss · The design

  12. CSCE 6933/5933 Advanced Topics in VLSI Systems

    E-Print Network [OSTI]

    Mohanty, Saraju P.

    · Circuit Simulation · Methods for solving linear and non linear equations Advanced Topics in VLSI Systems 2-purpose circuit simulation program for nonlinear dc, nonlinear transient, and linear ac analyses · Circuits may. The instructor does not claim any originality. #12;Lecture Outlines · About SPICE · Supported analysis by SPICE

  13. Colibri: Towards a New Generation of Advanced Planning Systems

    E-Print Network [OSTI]

    Boyer, Edmond

    forecasting consists in forecasting future sales based on past sales. In a company, one or several forecasters a company to another. However, in gen- eral, this period concerns the twelve future months. 4. Future salesColibri: Towards a New Generation of Advanced Planning Systems Fatoumata Camara Objet Direct

  14. Energy Conservation Through Utility Systems Transient Response Analysis 

    E-Print Network [OSTI]

    Sorotzkin, J.

    1981-01-01

    of operating strategies. The relationship between utility systems stability and the Complex energy efficiency is examined....

  15. Active load management with advanced window wall systems: Research and industry perspectives

    E-Print Network [OSTI]

    2002-01-01

    Building Systems Active Load Management with Advanced WindowEconomy. Active Load Management with Advanced Window WallAC03-76SF00098. Active Load Management with Advanced Window

  16. Integrated intelligent systems in advanced reactor control rooms

    SciTech Connect (OSTI)

    Beckmeyer, R.R.

    1989-01-01

    An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs., 5 figs.

  17. Energy Conservation of Air Conditioning Systems in Large Public Buildings 

    E-Print Network [OSTI]

    Liu, P.; Li, D.

    2006-01-01

    with the heating characteristics of the exterior -protected construction, the set value of the temperature of the air-conditioning, the lectotype of the Central air-conditioning system, the regulation and the modification of the transmission and distribution system...

  18. Energy Conservation Aspect of Energy Systems Technology Education Program 

    E-Print Network [OSTI]

    McBride, R. B.

    1982-01-01

    The primary purpose of this paper is to present a brief explanation of the Energy Systems Technology Education Program (ESTEP). This program is a system of continuing education that has been devised for the technical and supervisory personnel...

  19. Hot Water Heating System Operation and Energy Conservation 

    E-Print Network [OSTI]

    Shao, Z.; Chen, H.; Wei, P.

    2006-01-01

    Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

  20. A Systems Framework for Assessing Plumbing Products-Related Water Conservation

    SciTech Connect (OSTI)

    Williams, Alison; Dunham Whitehead, Camilla; Lutz, James

    2011-12-02

    Reducing the water use of plumbing products—toilets, urinals, faucets, and showerheads —has been a popular conservation measure. Improved technologies have created opportunities for additional conservation in this area. However, plumbing products do not operate in a vacuum. This paper reviews the literature related to plumbing products to determine a systems framework for evaluating future conservation measures using these products. The main framework comprises the following categories: water use efficiency, product components, product performance, source water, energy, and plumbing/sewer infrastructure. This framework for analysis provides a starting point for professionals considering future water conservation measures to evaluate the need for additional research, collaboration with other standards or codes committees, and attachment of additional metrics to water use efficiency (such as performance).

  1. -norm Lyapunov function for the stability of a singularly perturbed system of two conservation laws

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A new H2 -norm Lyapunov function for the stability of a singularly perturbed system of two are equipped with boundary conditions which may be studied to derive the exponential stability. Lyapunov. A Lyapunov function in H2 -norm for a singularly perturbed system of conservation laws is constructed

  2. Materials and Component Development for Advanced Turbine Systems

    SciTech Connect (OSTI)

    Alvin, M.A.; Pettit, F.; Meier, G.; Yanar, N.; Chyu, M.; Mazzotta, D.; Slaughter, W.; Karaivanov, V.; Kang, B.; Feng, C.; Chen, R.; Fu, T-C.

    2008-10-01

    In order to meet the 2010-2020 DOE Fossil Energy goals for Advanced Power Systems, future oxy-fuel and hydrogen-fired turbines will need to be operated at higher temperatures for extended periods of time, in environments that contain substantially higher moisture concentrations in comparison to current commercial natural gas-fired turbines. Development of modified or advanced material systems, combined with aerothermal concepts are currently being addressed in order to achieve successful operation of these land-based engines. To support the advanced turbine technology development, the National Energy Technology Laboratory (NETL) has initiated a research program effort in collaboration with the University of Pittsburgh (UPitt), and West Virginia University (WVU), working in conjunction with commercial material and coating suppliers as Howmet International and Coatings for Industry (CFI), and test facilities as Westinghouse Plasma Corporation (WPC) and Praxair, to develop advanced material and aerothermal technologies for use in future oxy-fuel and hydrogen-fired turbine applications. Our program efforts and recent results are presented.

  3. Cooperative Research and Development for Advanced Microturbines Program on Advanced Integrated Microturbine System

    SciTech Connect (OSTI)

    Michael J. Bowman

    2007-05-30

    The Advanced Integrated Microturbine Systems (AIMS) project was kicked off in October of 2000 to develop the next generation microturbine system. The overall objective of the project was to develop a design for a 40% electrical efficiency microturbine system and demonstrate many of the enabling technologies. The project was initiated as a collaborative effort between several units of GE, Elliott Energy Systems, Turbo Genset, Oak Ridge National Lab and Kyocera. Since the inception of the project the partners have changed but the overall direction of the project has stayed consistent. The project began as a systems study to identify design options to achieve the ultimate goal of 40% electrical efficiency. Once the optimized analytical design was identified for the 40% system, it was determined that a 35% efficient machine would be capable of demonstrating many of the advanced technologies within the given budget and timeframe. The items that would not be experimentally demonstrated were fully produced ceramic parts. However, to understand the requirements of these ceramics, an effort was included in the project to experimentally evaluate candidate materials in representative conditions. The results from this effort would clearly identify the challenges and improvement required of these materials for the full design. Following the analytical effort, the project was dedicated to component development and testing. Each component and subsystem was designed with the overall system requirements in mind and each tested to the fullest extent possible prior to being integrated together. This method of component development and evaluation helps to minimize the technical risk of the project. Once all of the components were completed, they were assembled into the full system and experimentally evaluated.

  4. Advanced Mud System for Microhole Coiled Tubing Drilling

    SciTech Connect (OSTI)

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  5. Advanced Boost System Developing for High EGR Applications

    SciTech Connect (OSTI)

    Sun, Harold

    2012-09-30

    To support industry efforts of clean and efficient internal combustion engine development for passenger and commercial applications • This program focuses on turbocharger improvement for medium and light duty diesel applications, from complete system optimization percepective to enable commercialization of advanced diesel combustion technologies, such as HCCI/LTC. • Improve combined turbocharger efficiency up to 10% or fuel economy by 3% on FTP cycle at Tier II Bin 5 emission level.

  6. Advanced Combustion Systems Project Information | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden DocumentationAccommodationsRegister /Advanced Energy Systems

  7. CS262: Advanced Topics in Computer Systems Advanced Topics in Computer Systems

    E-Print Network [OSTI]

    California at Berkeley, University of

    , a DBMS, or an internet service; extending one of these systems with new functionality; or measurement A History and Evaluation of System R [in the textbook] Donald D. Chamberlin, Morton A. Astrahan, Michael W

  8. Advanced Burners and Combustion Controls for Industrial Heat Recovery Systems 

    E-Print Network [OSTI]

    Ferri, J. L.

    1988-01-01

    stream_source_info ESL-IE-88-09-52.pdf.txt stream_content_type text/plain stream_size 10271 Content-Encoding ISO-8859-1 stream_name ESL-IE-88-09-52.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ADVANCED BURNERS... AND COMBUSTION CONTROLS FOR INDUSTRIAL HEAT RECOVERY SYSTEMS J.L.FERRI GTE PRODUCTS CORPORATION TOWANDA, PA ABSTRACT When recuperators are installed on indus trial furnaces, burners and ratio control systems must continue to operate reliably under a...

  9. Fluidized-Bed Waste-Heat Recovery System Advances 

    E-Print Network [OSTI]

    Patch, K. D.; Cole, W. E.

    1986-01-01

    stream_source_info ESL-IE-86-06-09.pdf.txt stream_content_type text/plain stream_size 23561 Content-Encoding ISO-8859-1 stream_name ESL-IE-86-06-09.pdf.txt Content-Type text/plain; charset=ISO-8859-1 FLUIDIZED-BED WASTE-HEAT... RECOVERY SYSTEM ADVANCES Keith D. Patch William E. Cole Thermo Electron Corporation Waltham, Massachusetts ABSTRACT The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is a combustion air preheater designed for existing unrecuperated...

  10. Advanced Integrated Systems Technology Development: Personal Comfort Systems and Radiant Slab Systems

    E-Print Network [OSTI]

    2015-01-01

    thermal mass, advanced window blinds that redirect solar energythermal mass, advanced window blinds that redirect solar energy

  11. The impact of passive safety systems on desirability of advanced light water reactors

    E-Print Network [OSTI]

    Eul, Ryan C

    2006-01-01

    This work investigates whether the advanced light water reactor designs with passive safety systems are more desirable than advanced reactor designs with active safety systems from the point of view of uncertainty in the ...

  12. Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D Initiative...

    Energy Savers [EERE]

    Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D Initiative Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D Initiative The following fact sheet outlines one of...

  13. Solar Thermochemical Advanced Reactor System, Wins R&D 100 Award...

    Energy Savers [EERE]

    Solar Thermochemical Advanced Reactor System, Wins R&D 100 Award Solar Thermochemical Advanced Reactor System, Wins R&D 100 Award October 16, 2014 - 5:24pm Addthis Developed...

  14. Recommendations of the workshop on advanced geothermal drilling systems

    SciTech Connect (OSTI)

    Glowka, D.A.

    1997-12-01

    At the request of the U.S. Department of Energy, Office of Geothermal Technologies, Sandia National Laboratories convened a group of drilling experts in Berkeley, CA, on April 15-16, 1997, to discuss advanced geothermal drilling systems. The objective of the workshop was to develop one or more conceptual designs for an advanced geothermal drilling system that meets all of the criteria necessary to drill a model geothermal well. The drilling process was divided into ten essential functions. Each function was examined, and discussions were held on the conventional methods used to accomplish each function and the problems commonly encountered. Alternative methods of performing each function were then listed and evaluated by the group. Alternative methods considered feasible or at least worth further investigation were identified, while methods considered impractical or not potentially cost-saving were eliminated from further discussion. This report summarizes the recommendations of the workshop participants. For each of the ten functions, the conventional methods, common problems, and recommended alternative technologies and methods are listed. Each recommended alternative is discussed, and a description is given of the process by which this information will be used by the U.S. DOE to develop an advanced geothermal drilling research program.

  15. Time-evolution of quantum systems via a complex nonlinear Riccati equation. I. Conservative systems with time-independent Hamiltonian

    E-Print Network [OSTI]

    Hans Cruz; Dieter Schuch; Octavio Castańos; Oscar Rosas-Ortiz

    2015-05-11

    The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.

  16. Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    SciTech Connect (OSTI)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.

    2008-03-01

    This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.

  17. Advanced Residential Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    Factsheet describing the Advanced Residential Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

  18. Advanced Commercial Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    Factsheet describing the Advanced Commercial Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

  19. On the conservation of fundamental optical quantities in non-paraxial imaging systems

    E-Print Network [OSTI]

    in applications such as optical traps, frequency conversion, high-resolution microscopy and optical data storage system, it is shown that the response in the image space can be expressed in terms of a limited set of the non-paraxial Gauss­Laguerre eigenmodes. Conservation of energy, linear momentum and angular momentum

  20. Efficient Data Migration to Conserve Energy in Streaming Media Storage Systems

    E-Print Network [OSTI]

    Qin, Xiao

    and efficient data migrations to achieve the unbalanced data layouts. Motivation. The primary problemEfficient Data Migration to Conserve Energy in Streaming Media Storage Systems Yunpeng Chai, Zhihui media computing environments due to high data migration overhead. To address this problem, we propose

  1. Specializing Cache Structures for High Performance and Energy Conservation in Embedded Systems

    E-Print Network [OSTI]

    McKee, Sally A.

    Specializing Cache Structures for High Performance and Energy Conservation in Embedded Systems University Tallahassee, FL 32306-4530 tyson@cs.fsu.edu Abstract. Increasingly tight energy design goals of smaller region caches that significantly reduces energy consump- tion with little performance impact

  2. Integrated Chemical Complex and Cogeneration Analysis System: Energy Conservation and Greenhouse Gas Management Solutions

    E-Print Network [OSTI]

    Pike, Ralph W.

    to determine the best configuration of plants in a chemical complex based the AIChE Total Cost Assessment(TCA) for economic, energy, environmental and sustainable costs and incorporates EPA Pollution Index methodology (WAR19f Integrated Chemical Complex and Cogeneration Analysis System: Energy Conservation

  3. 3MATRIX and 3MOTIF: A Protein Structure Visualization System for Conserved Sequence Bennett, Steven P.

    E-Print Network [OSTI]

    Brutlag, Doug

    Title 3MATRIX and 3MOTIF: A Protein Structure Visualization System for Conserved Sequence Motifs acids without additional study. In this work, we present 3MATRIX (http://3matrix.stanford.edu) and 3-like motif. Similarly, 3MATRIX accepts any position-specific scoring matrix, such as an eMATRIX

  4. Time Reversal Symmetry and Energy Drift in Conservative Systems L. Brugnano and D. Trigiante

    E-Print Network [OSTI]

    Brugnano, Luigi

    Time Reversal Symmetry and Energy Drift in Conservative Systems L. Brugnano and D. Trigiante effects among multiple Savonius turbines J. Renewable Sustainable Energy 4, 053107 (2012) Suppressing on.217.1.25. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions #12

  5. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is optimized for the highest level of performance. The unique feature of an H-technology combined-cycle system is the integrated heat transfer system, which combines both the steam plant reheat process and gas turbine bucket and nozzle cooling. This feature allows the power generator to operate at a higher firing temperature than current technology units, thereby resulting in dramatic improvements in fuel-efficiency. The end result is the generation of electricity at the lowest, most competitive price possible. Also, despite the higher firing temperature of the H System{trademark}, the combustion temperature is kept at levels that minimize emission production. GE has more than 3.6 million fired hours of experience in operating advanced technology gas turbines, more than three times the fired hours of competitors' units combined. The H System{trademark} design incorporates lessons learned from this experience with knowledge gleaned from operating GE aircraft engines. In addition, the 9H gas turbine is the first ever designed using ''Design for Six Sigma'' methodology, which maximizes reliability and availability throughout the entire design process. Both the 7H and 9H gas turbines will achieve the reliability levels of our F-class technology machines. GE has tested its H System{trademark} gas turbine more thoroughly than any previously introduced into commercial service. The H System{trademark} gas turbine has undergone extensive design validation and component testing. Full-speed, no-load testing of the 9H was achieved in May 1998 and pre-shipment testing was completed in November 1999. The 9H will also undergo approximately a half-year of extensive demonstration and characterization testing at the launch site. Testing of the 7H began in December 1999, and full speed, no-load testing was completed in February 2000. The 7H gas turbine will also be subjected to extensive demonstration and characterization testing at the launch site.

  6. Advanced Materials for Mercury 50 Gas Turbine Combustion System

    SciTech Connect (OSTI)

    Price, Jeffrey

    2008-09-30

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70,

  7. Development of a system model for advanced small modular reactors.

    SciTech Connect (OSTI)

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandia's concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  8. Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System

    SciTech Connect (OSTI)

    2011-12-31

    HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials’ ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, including commercial and residential buildings, data centers, and telecom facilities.

  9. Advanced Waste Retrieval System. Innovative Technology Summary Report

    SciTech Connect (OSTI)

    2001-09-01

    At West Valley, following the baseline removal operations, bulk waste retrieval methods may be augmented if required, with the deployment of the Advanced Waste Retrieval System (AWRS). The AWRS is a hydraulic boom mounted on a trolley on the Mast-Mounted Tool Delivery System. The boom is about 15 ft long with a pan and tilt mechanism at the end. On the end is a steam jet with a suction tool that can reach down around the tank internal structure and vacuum up zeolite or sludge off the bottom of the tank from a thirty-foot diameter reach. A grinder is included topside in the discharge path to pulverize the zeolite so it can be readily retrieved from the destination tank.

  10. Proceedings of the Advanced Turbine Systems annual program review meeting

    SciTech Connect (OSTI)

    1994-12-31

    Goals of the 8-year program are to develop cleaner, more efficient, and less expensive gas turbine systems for utility and industrial electric power generation, cogeneration, and mechanical drive units. During this Nov. 9-11, 1994, meeting, presentations on energy policy issues were delivered by representatives of regulatory, industry, and research institutions; program overviews and technical reviews were given by contractors; and ongoing and proposed future projects sponsored by university and industry were presented and displayed at the poster session. Panel discussions on distributed power and Advanced Gas Systems Research education provided a forum for interactive dialog and exchange of ideas. Exhibitors included US DOE, Solar Turbines, Westinghouse, Allison Engine Co., and GE.

  11. In Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, GA. Abstract Advanced mechatronic systems increasingly are

    E-Print Network [OSTI]

    In Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, GA. Abstract ­ Advanced mechatronic systems increasingly are finding application in modern to be coordinated as an aggregate mechatronic system. One important consideration in mechatronics design

  12. Indicator system for advanced nuclear plant control complex

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  13. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Unknown

    1999-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

  14. Human Factors Aspects of Advanced Process Control 

    E-Print Network [OSTI]

    Shaw, J. A.

    1986-01-01

    ASPECTS OF ADVANCED PRO?CESS CONTROL John A. Shaw Combustion Engineering Taylor Instrument Division Rochester, New York ABSTRACT Energy conservation practices, such as heat recovery and integration, require that many chemical and related... processes use advanced control systems. Many of the more advanced process control strategies and algorithms can cause operator confusion, leading to incorrect operator actions and negating the advantages of the advanced control. Ifthe operator makes a...

  15. A variational approach to the analysis of non-conservative mechatronic systems

    E-Print Network [OSTI]

    Allison, A; Abbott, D

    2012-01-01

    We develop a method for systematically constructing Lagrangian functions for dissipative mechanical, electrical and, mechatronic systems. We derive the equations of motion for some typical mechatronic systems using deterministic principles that are strictly variational. We do not use any ad hoc features that are added on after the analysis has been completed, such as the Rayleigh dissipation function. We generalise the concept of potential, and define generalised potentials for dissipative lumped system elements. Our innovation offers a unified approach to the analysis of mechatronic systems where there are energy and power terms in both the mechanical and electrical parts of the system. Using our novel technique, we can take advantage of the analytic approach from mechanics, and we can apply these pow- erful analytical methods to electrical and to mechatronic systems. We can analyse systems that include non-conservative forces. Our methodology is deterministic and does does require any special intuition, and...

  16. Cooperative Research and Development of Primary Surface Recuperator for Advanced Microturbine Systems

    SciTech Connect (OSTI)

    Escola, George

    2007-01-17

    Recuperators have been identified as key components of advanced gas turbines systems that achieve a measure of improvement in operating efficiency and lead the field in achieving very low emissions. Every gas turbine manufacturer that is studying, developing, or commercializing advanced recuperated gas turbine cycles requests that recuperators operate at higher temperature without a reduction in design life and must cost less. The Solar Cooperative Research and Development of Primary Surface Recuperator for Advanced Microturbine Systems Program is directed towards meeting the future requirements of advanced gas turbine systems by the following: (1) The development of advanced alloys that will allow recuperator inlet exhaust gas temperatures to increase without significant cost increase. (2) Further characterization of the creep and oxidation (dry and humid air) properties of nickel alloy foils (less than 0.13 mm thick) to allow the economical use of these materials. (3) Increasing the use of advanced robotic systems and advanced in-process statistical measurement systems.

  17. Advanced manufacturing by spray forming: Aluminum strip and microelectromechanical systems

    SciTech Connect (OSTI)

    McHugh, K.M.

    1994-12-31

    Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. INEL is developing a unique spray-forming method based on de Laval (converging/diverging) nozzle designs to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Properties of the spray-formed material are tailored by controlling the characteristics of the spray plume and substrate. Two examples are described: high-volume production of aluminum alloy strip, and the replication of micron-scale features in micropatterned polymers during the production of microelectromechanical systems.

  18. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    SciTech Connect (OSTI)

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  19. Advanced Techniques for Power System Identification from Measured Data

    SciTech Connect (OSTI)

    Pierre, John W.; Wies, Richard; Trudnowski, Daniel

    2008-11-25

    Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing techniques. Bootstrap techniques have been developed to estimate confidence intervals for the electromechanical modes from field measured data. Results were obtained using injected signal data provided by BPA. A new probing signal was designed that puts more strength into the signal for a given maximum peak to peak swing. Further simulations were conducted on a model based on measured data and with the modifications of the 19-machine simulation model. Montana Tech researchers participated in two primary activities: (1) continued development of the 19-machine simulation test system to include a DC line; and (2) extensive simulation analysis of the various system identification algorithms and bootstrap techniques using the 19 machine model. Researchers at the University of Alaska-Fairbanks focused on the development and testing of adaptive filter algorithms for mode estimation using data generated from simulation models and on data provided in collaboration with BPA and PNNL. There efforts consist of pre-processing field data, testing and refining adaptive filter techniques (specifically the Least Mean Squares (LMS), the Adaptive Step-size LMS (ASLMS), and Error Tracking (ET) algorithms). They also improved convergence of the adaptive algorithms by using an initial estimate from block processing AR method to initialize the weight vector for LMS. Extensive testing was performed on simulated data from the 19 machine model. This project was also extensively involved in the WECC (Western Electricity Coordinating Council) system wide tests carried out in 2005 and 2006. These tests involved injecting known probing signals into the western power grid. One of the primary goals of these tests was the reliable estimation of electromechanical mode properties from measured PMU data. Applied to the system were three types of probing inputs: (1) activation of the Chief Joseph Dynamic Brake, (2) mid-level probing at the Pacific DC Intertie (PDCI), and (3) low-level probing on the PDCI. The Chief Joseph Dynamic Brake is a 1400 MW disturbance to the system and is injected for a ha

  20. Development of an Advanced Hydraulic Fracture Mapping System

    SciTech Connect (OSTI)

    Norm Warpinski; Steve Wolhart; Larry Griffin; Eric Davis

    2007-01-31

    The project to develop an advanced hydraulic fracture mapping system consisted of both hardware and analysis components in an effort to build, field, and analyze combined data from tiltmeter and microseismic arrays. The hardware sections of the project included: (1) the building of new tiltmeter housings with feedthroughs for use in conjunction with a microseismic array, (2) the development of a means to use separate telemetry systems for the tilt and microseismic arrays, and (3) the selection and fabrication of an accelerometer sensor system to improve signal-to-noise ratios. The analysis sections of the project included a joint inversion for analysis and interpretation of combined tiltmeter and microseismic data and improved methods for extracting slippage planes and other reservoir information from the microseisms. In addition, testing was performed at various steps in the process to assess the data quality and problems/issues that arose during various parts of the project. A prototype array was successfully tested and a full array is now being fabricated for industrial use.

  1. An unconstrained Lagrangian formulation and conservation laws for the Schrödinger map system

    E-Print Network [OSTI]

    Paul Smith

    2014-04-14

    We consider energy-critical Schr\\"odinger maps from R^2 into the sphere and hyperbolic plane. Viewing such maps with respect to orthonormal frames on the pullback bundle provides a gauge field formulation of the evolution. We show that this gauge field system is the set of Euler-Lagrange equations corresponding to an action that includes a Chern-Simons term. We also introduce the stress-energy tensor and derive conservation laws. In conclusion we offer comparisons between Schr\\"odinger maps and the closely related Chern-Simons-Schr\\"odinger system.

  2. Industrial advanced turbine systems: Development and demonstration. Annual report, October 1, 1996--September 30, 1997

    SciTech Connect (OSTI)

    1997-12-31

    The US DOE has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The ATS will provide ultra-high efficiency, environmental superiority, and cost competitiveness. The ATS will foster (1) early market penetration that enhances the global competitiveness of US industry, (2) public health benefits resulting from reduced exhaust gas emissions of target pollutants, (3) reduced cost of power used in the energy-intensive industrial marketplace and (4) the retention and expansion of the skilled US technology base required for the design, development and maintenance of state-of-the-art advanced turbine products. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program. Phase 3 of the work is separated into two subphases: Phase 3A entails Component Design and Development Phase 3B will involve Integrated Subsystem Testing. Phase 4 will cover Host Site Testing. Forecasts call for completion of the program within budget as originally estimated. Scheduled completion is forecasted to be approximately 3 years late to original plan. This delay has been intentionally planned in order to better match program tasks to the anticipated availability of DOE funds. To ensure the timely realization of DOE/Solar program goals, the development schedule for the smaller system (Mercury 50) and enabling technologies has been maintained, and commissioning of the field test unit is scheduled for May of 2000. As of the end of the reporting period work on the program is 22.80% complete based upon milestones completed. This measurement is considered quite conservative as numerous drawings on the Mercury 50 are near release. Variance information is provided in Section 4.0-Program Management.

  3. A Virtual Engineering Framework for Simulating Advanced Power System

    SciTech Connect (OSTI)

    Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

    2008-06-18

    In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering. Furthermore, with little effort the modeling capabilities described in this report can be extended to support other DOE programs, such as ultra super critical boiler development, oxy-combustion boiler development or modifications to existing plants to include CO2 capture and sequestration.

  4. 2005-01-2962 Multi-scale modeling of advanced life support systems

    E-Print Network [OSTI]

    Kortenkamp, David

    hybrid (continuous/discrete) physical system modeling at the sub-system level. INTRODUCTION Advanced Life-systems that can be hierarchically refined to their underlying physical components, such as electric motors, pumps, compressors, valves, and heat exchangers. The design of advanced control architectures also depends critically

  5. Publish date: 06/27/2011 ECE 4368: Advanced Control Systems

    E-Print Network [OSTI]

    Gelfond, Michael

    Publish date: 06/27/2011 ECE 4368: Advanced Control Systems Credit / Contact hours: 3 / 3 Course coordinator: Vittal Rao Textbook(s) and/or other required material: Dorf & Bishop: Modern Control Systems of advanced control systems including optimal, nonlinear, multiple-input multiple-output, digital, fuzzy logic

  6. IMPACTS OF ADVANCE DEMAND INFORMATION IN MULTI-CLASS PRODUCTION-INVENTORY SYSTEMS

    E-Print Network [OSTI]

    Karaesmen, Fikri

    1 IMPACTS OF ADVANCE DEMAND INFORMATION IN MULTI-CLASS PRODUCTION-INVENTORY SYSTEMS Seda Tepe information. Most earlier models of production-inventory systems (Buzacott and Shanthikumar, 1994; Karaesmen with safety time in a single-stage capacitated production-inventory system with advance demand information

  7. Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems: Preprint

    SciTech Connect (OSTI)

    Ma, Z.; Turchi, C. S.

    2011-03-01

    The research will characterize and evaluate advanced S-CO2 Brayton cycle power generation with a modular power tower CSP system.

  8. Systems and Controls Analysis and Testing; Harvesting More Wind Energy with Advanced Controls Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    This fact sheet outlines the systems and controls analysis and testing that takes place at the NWTC on the Controls Advanced Research Turbines.

  9. Computer Information Systems Association for Computing Machinery (ACM) delivers resources that advance computing as a science

    E-Print Network [OSTI]

    Computer Information Systems Association for Computing Machinery (ACM) delivers resources that advance computing as a science and a profession. ACM provides the computing field's premier Digital

  10. ADVANCED ELECTRON BEAM TECHNIQUES FOR METALLIC AND CERAMIC PROTECTIVE COATING SYSTEMS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01

    Intermetallic Systems as Coatings for High TemperatureAdvanced Gas Turbine Coatings for Minimally Processed Coaland P. E. Hodge, "Thermal Barrier Coatings for Heat Engine

  11. Advanced Supply System Validation Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced Petroleum BasedAdvanced SoftAdvanced

  12. DOE Announces Webinars on Energy Systems Advances, Hydrogen Safety...

    Broader source: Energy.gov (indexed) [DOE]

    10: Live Webcast on Clean Energy Advances Webinar Sponsor: EERE's Energy Innovation Portal The Energy Department, in partnership with the Battelle Commercialization Council,...

  13. Engineering metabolic systems for production of advanced fuels

    E-Print Network [OSTI]

    Yan, Yajun; Liao, James C.

    2009-01-01

    Liao JC (2008) Metabolic engineering for advanced biofuelsorganisms using metabolic engineering techniques. Recently,Connor MR, Liao JC (2008) Engineering of an Escherichia coli

  14. Interfacial stress analysis for multi-coating systems using an advanced boundary element method

    E-Print Network [OSTI]

    Liu, Yijun

    Interfacial stress analysis for multi-coating systems using an advanced boundary element method J for multi-coating systems using an advanced boundary element method (BEM) developed earlier in [Luo JF, Liu by the analytical solution of a special multi-coating problem. Detailed in- terfacial stress analysis for a two

  15. Horizontal Class Fragmentation For Advanced Object Models in a Distributed Object Based System \\Lambda

    E-Print Network [OSTI]

    Ezeife, Christie

    Horizontal Class Fragmentation For Advanced Object Models in a Distributed Object Based System application performance on a Distributed Object Based System (DOBS) requires class fragmentation and vertical fragmentation of relations exist, but fragmentation techniques for class objects in a distributed

  16. Washington State University Vancouver Mech 442/542 Advanced Thermal Systems Mechanical Engineering Spring 2013 Syllabus

    E-Print Network [OSTI]

    the conservation laws (e.g. mass, momentum, and energy) to thermal systems under steady-state and transient and thermal management, microchannel heat transfer, energy resources, renewable energy, thermal systems. Thermal energy systems 5. Energy resources and renewable energy #12;Washington State University Vancouver

  17. Advanced Boost System Development for Diesel HCCI/LTC Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace037sun2011o.pdf More Documents & Publications Advanced Boost...

  18. Injection System and Engine Strategies for Advanced Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006deerparche.pdf More Documents & Publications Advanced...

  19. Task 2: Materials for Advanced Boiler and Oxy-combustion Systems

    SciTech Connect (OSTI)

    Holcolm, Gordon R.; McGhee, Barry

    2009-05-01

    The PowerPoint presentation provides an overview of the tasks for the project: Characterize advanced boiler (oxy-fuel combustion, biomass co-fired) gas compositions and ash deposits; Generate critical data on the effects of environmental conditions; develop a unified test method with a view to future standardization; Generate critical data for coating systems for use in advanced boiler systems; Generate critical data for flue gas recycle piping materials for oxy-fuel systems; and, Compile materials performance data from laboratory and pilot plant exposures of candidate alloys for use in advanced boiler systems.

  20. MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS

    SciTech Connect (OSTI)

    M. A. Alvin

    2009-06-12

    Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach 1425-1760şC with pressures of 300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require durable thermal barrier coatings (TBCs), high temperature creep resistant metal substrates, and effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in TBCs and aerothermal cooling. To support the advanced turbine technology development, the National Energy Technology Laboratory (NETL) at the Office of Research and Development (ORD) has initiated a research project effort in collaboration with the University of Pittsburgh (UPitt), and West Virginia University (WVU), working in conjunction with commercial material and coating suppliers, to develop advanced materials, aerothermal configurations, as well as non-destructive evaluation techniques for use in advanced land-based gas turbine applications. This paper reviews technical accomplishments recently achieved in each of these areas.

  1. Advanced Control Techniques For Efficient And Robust Operation Of Advanced Life Support Systems

    E-Print Network [OSTI]

    Sethares, William A.

    life support system constrained by mass balance equations. A novel agent-based control strategy derived and optimal control. The control systems require different amounts of knowledge about the underlying system. At one extreme is a proportional feedback control about individual system states. This is a completely

  2. Building America Top Innovations 2012: Advanced Framing Systems and Packages

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research showing advanced 2x6, 24-inch on-center framing, single top plates, open headers, and 2-stud corners reduced board feet of lumber by more than 1,000 feet, cut energy use by 13%, and cut material and labor costs by more than $1,000 on a typical home.

  3. Effectiveness of advanced coating systems for mitigating blast effects on steel components

    E-Print Network [OSTI]

    Effectiveness of advanced coating systems for mitigating blast effects on steel components C. Chen1 of this work is to study the effectiveness of an advanced coating material, polyurea, as a blast mitigation tool for steel components. The response of polyurea coated steel components under blast loading

  4. Texas A&M University Central Texas Advanced Aircraft Systems

    E-Print Network [OSTI]

    Diestel, Geoff

    :30 Additional class information will be posted on Blackboard at http://online.tarleton.edu/Dual/Dual and Balance, Engine Systems, and Fuel Systems. Unit 3: Hydraulic Systems, Electrical Systems, and Pneumatic

  5. Advanced Diesel Common Rail Injection System for Future Emission Legislation

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Robert Bosch GMBH Common Rail System Engineering for PC Diesel Systems

  6. Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems

    Broader source: Energy.gov [DOE]

    Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems

  7. Bayer Material Science (TRL 1 2 3 System)- River Devices to Recover Energy with Advanced Materials(River DREAM)

    Broader source: Energy.gov [DOE]

    Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM)

  8. Materials and Component Development for Advanced Turbine Systems

    SciTech Connect (OSTI)

    Alvin, M.A.; Pettit, F.; Meier, G.H.; Yanar, M.; Helminiak, M.; Chyu, M.; Siw, S.; Slaughter, W.S.; Karaivanov, V.; Kang, B.S.; Feng, C.; Tannebaum, J.M.; Chen, R.; Zhang, B.; Fu, T.; Richards, G.A,; Sidwell, T.G.; Straub, D.; Casleton, K.H.; Dogan, O.M.

    2008-07-01

    Hydrogen-fired and oxy-fueled land-based gas turbines currently target inlet operating temperatures of ?1425-1760°C (?2600-3200°F). In view of natural gas or syngas-fired engines, advancements in both materials, as well as aerothermal cooling configurations are anticipated prior to commercial operation. This paper reviews recent technical accomplishments resulting from NETL’s collaborative research efforts with the University of Pittsburgh and West Virginia University for future land-based gas turbine applications.

  9. Projects To Develop Novel Monitoring Networks for Advanced Power Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrderNATIONALofDefineEnergyAdministered by the Office

  10. Advanced boost system development for diesel HCCI/LTC applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced PetroleumDepartment|Department of

  11. Advanced turbine systems program conceptual design and product development. Quarterly report, February 1995--April 1995

    SciTech Connect (OSTI)

    1995-06-01

    Research continued on the design of advanced turbine systems. This report describes the design and test of critical components such as blades, materials, cooling, combustion, and optical diagnostics probes.

  12. Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    Discusses development highly capable and flexible advanced control concepts and enabling system to manage multi-mode/multi-fuel combustion events and achieve an up to 30 percent fuel economy improvement

  13. Hydrothermal spallation drilling and advanced energy conversion technologies for Engineered Geothermal Systems

    E-Print Network [OSTI]

    Augustine, Chad R

    2009-01-01

    The purpose of this research was to study the various factors affecting the economic and technical feasibility of Engineered Geothermal Systems, with a special emphasis on advanced drilling technologies. The first part of ...

  14. Vehicle Technologies Office Merit Review 2014: Advanced Climate Systems for EV Extended Range

    Broader source: Energy.gov [DOE]

    Presentation given by Halla Visteon at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced climate systems for EV...

  15. Advanced Reciprocating Engine Systems (ARES) R&D- Presentation by Argonne National Laboratory, June 2011

    Broader source: Energy.gov [DOE]

    Presentation on Technologies for Gaseous Fueled Advanced Reciprocating Engine Systems (ARES), given by Sreenath Gupta at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  16. Applied Materials Develops an Advanced Epitaxial Growth System to Bring Down LED Costs

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, Applied Materials has developed an advanced epitaxial growth system for gallium nitride (GaN) LED devices that decreases operating costs, increases internal quantum efficiency, and improves binning yields.

  17. Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems

    Broader source: Energy.gov [DOE]

    Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy.

  18. Vehicle Technologies Office Merit Review 2015: Advanced Climate Systems for EV Extended Range (ACSforEVER)

    Broader source: Energy.gov [DOE]

    Presentation given by Halla Visteon at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced climate systems for EV...

  19. Advances in Complex Systems, Vol. 14, No. 6 (2011) 817827 c World Scientific Publishing Company

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    2011-01-01

    Advances in Complex Systems, Vol. 14, No. 6 (2011) 817­827 c World Scientific Publishing Company in [28] where they identify a quadratic family of dynamic optimization models and they prove

  20. Method and system for advancement of a borehole using a high power laser

    DOE Patents [OSTI]

    Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Zediker, Mark S.

    2014-09-09

    There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.

  1. Advanced Thermal Storage System with Novel Molten Salt: December 8, 2011 - April 30, 2013

    SciTech Connect (OSTI)

    Jonemann, M.

    2013-05-01

    Final technical progress report of Halotechnics Subcontract No. NEU-2-11979-01. Halotechnics has demonstrated an advanced thermal energy storage system with a novel molten salt operating at 700 degrees C. The molten salt and storage system will enable the use of advanced power cycles such as supercritical steam and supercritical carbon dioxide in next generation CSP plants. The salt consists of low cost, earth abundant materials.

  2. A Systems Framework for Assessing Plumbing Products-Related Water Conservation

    E-Print Network [OSTI]

    Williams, Alison

    2012-01-01

    Phipps, D. (2007). Water and Energy Efficient Showers:2010. Lutz, J. (2011). Water and Energy Efficiency of Showeropportunities for both water and energy conservation and may

  3. Overview of Westinghouse`s Advanced Turbine Systems Program

    SciTech Connect (OSTI)

    Bannister, R.L.; Bevc, F.P.; Diakunchak, I.S.; Huber, D.J.

    1995-12-31

    The proposed approach is to build on Westinghouse`s successful 501 series of gas turbines. The 501F offered a combined cycle efficiency of 54%; 501G increased this efficiency to 58%; the proposed single-shaft 400 MW class ATS combined cycle will have a plant cycle efficiency greater than 60%. Westinghous`s strategy is to build upon the next evolution of advances in combustion, aerodynamics, cooling, leakage control, materials, and mechanical design. Westinhouse will base its future gas turbine product line, both 50 and 60 Hz, on ATS technology; the 501G shows early influences of ATS.

  4. Advanced HD Engine Systems and Emissions Control Modeling and Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOfficeAcqguide18pt0Department ofHigh2Energy Advanced

  5. Center for Advanced Power Systems CAPS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,Thermal Gradient Holes JumpHills WindBlackAdvanced Power

  6. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann39.1_Acquisition_of_Information_Resources_0.pdfEnablingManufacturingAdvancing Clean

  7. Proceedings of Power Systems 03: Distributed Generation and Advanced Metering 2002 Wichita State University

    E-Print Network [OSTI]

    Proceedings of Power Systems 03: Distributed Generation and Advanced Metering © 2002 Wichita State are critically dependent on the fuel quality and supply parameters for optimal power delivery and overall System Friction Losses (kW) PBearing Total System Bearing Losses (kW) PCon Electrical Conversion Losses

  8. Introducing Embedded Software and Systems Education and Advanced Learning Technology in an Engineering Curriculum

    E-Print Network [OSTI]

    Koutsoukos, Xenofon D.

    an embedded software and systems speciali- zation in the framework of the current Engineering School by the following four factors: 1. Insertion of the embedded software and systems concentration in the engineeringIntroducing Embedded Software and Systems Education and Advanced Learning Technology

  9. Cladding and Structural Materials for Advanced Nuclear Energy Systems

    SciTech Connect (OSTI)

    Was, G S; Allen, T R; Ila, D; C,; Levi,; Morgan, D; Motta, A; Wang, L; Wirth, B

    2011-06-30

    The goal of this consortium is to address key materials issues in the most promising advanced reactor concepts that have yet to be resolved or that are beyond the existing experience base of dose or burnup. The research program consists of three major thrusts: 1) high-dose radiation stability of advanced fast reactor fuel cladding alloys, 2) irradiation creep at high temperature, and 3) innovative cladding concepts embodying functionally-graded barrier materials. This NERI-Consortium final report represents the collective efforts of a large number of individuals over a period of three and a half years and included 9 PIs, 4 scientists, 3 post-docs and 12 students from the seven participating institutions and 8 partners from 5 national laboratories and 3 industrial institutions (see table). University participants met semi-annually and participants and partners met annually for meetings lasting 2-3 days and designed to disseminate and discuss results, update partners, address outstanding issues and maintain focus and direction toward achieving the objectives of the program. The participants felt that this was a highly successful program to address broader issues that can only be done by the assembly of a range of talent and capabilities at a more substantial funding level than the traditional NERI or NEUP grant. As evidence of the success, this group, collectively, has published 20 articles in archival journals and made 57 presentations at international conferences on the results of this consortium.

  10. ADVANCED WIRELESS CHARGING SYSTEM FOR PORTABLE ELECTRIC DEVICES 

    E-Print Network [OSTI]

    Liu, Jianyang

    2012-04-19

    This paper presents a wireless charging system for portable electric devices. The important impacts of wireless charging systems on the global environment are first examined, and the two basic methods for wireless charging are then explained...

  11. Conservation Regional ConservationRegional Conservation

    E-Print Network [OSTI]

    Northwest Power and Conservation Council Regional ConservationRegional Conservation Update:Update?"" #12;slide 3 Northwest Power and Conservation Council PNW Energy Efficiency AchievementsPNW Energy Since 1978 Utility & BPASince 1978 Utility & BPA Programs, Energy Codes &Programs, Energy Codes

  12. Field Testing of the Advanced Worker Protection System

    Office of Scientific and Technical Information (OSTI)

    to demonstrate the potential of the system for increasing user work times and decreasing recovery times for tasks which simulate actual decontamination activities. + to shake down...

  13. Advanced turbine systems program conceptual design and product development. Quarterly report, August--October 1995

    SciTech Connect (OSTI)

    1996-01-01

    This report describes the tasks completed for the advanced turbine systems program. The topics of the report include last row turbine blade development, single crystal blade casting development, ceramic materials development, combustion cylinder flow mapping, shroud film cooling, directional solidified valve development, shrouded blade cooling, closed-loop steam cooling, active tip clearance control, flow visualization tests, combustion noise investigation, TBC field testing, catalytic combustion development, optical diagnostics probe development, serpentine channel cooling tests, brush seal development, high efficiency compressor design, advanced air sealing development, advanced coating development, single crystal blade development, Ni-based disc forging development, and steam cooling effects on materials.

  14. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    SciTech Connect (OSTI)

    2010-01-01

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  15. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    ScienceCinema (OSTI)

    None

    2013-05-29

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  16. Advanced digital PWR plant protection system based on optimal estimation theory

    SciTech Connect (OSTI)

    Tylee, J.L.

    1981-04-01

    An advanced plant protection system for the Loss-of-Fluid Test (LOFT) reactor plant is described and evaluated. The system, based on a Kalman filter estimator, is capable of providing on-line estimates of such critical variables as fuel and cladding temperature, departure from nucleate boiling ratio, and maximum linear heat generation rate. The Kalman filter equations are presented, as is a description of the LOFT plant dynamic model inherent in the filter. Simulation results demonstrate the performance of the advanced system.

  17. Intergovernmental Advanced Stationary PEM Fuel Cell System Demonstration Final Report

    SciTech Connect (OSTI)

    Rich Chartrand

    2011-08-31

    A program to complete the design, construction and demonstration of a PEMFC system fuelled by Ethanol, LPG or NG for telecom applications was initiated in October 2007. Early in the program the economics for Ethanol were shown to be unfeasible and permission was given by DOE to focus on LPG only. The design and construction of a prototype unit was completed in Jun 2009 using commercially available PEM FC stack from Ballard Power Systems. During the course of testing, the high pressure drop of the stack was shown to be problematic in terms of control and stability of the reformer. Also, due to the power requirements for air compression the overall efficiency of the system was shown to be lower than a similar system using internally developed low pressure drop FC stack. In Q3 2009, the decision was made to change to the Plug power stack and a second prototype was built and tested. Overall net efficiency was shown to be 31.5% at 3 kW output. Total output of the system is 6 kW. Using the new stack hardware, material cost reduction of 63% was achieved over the previous Alpha design. During a November 2009 review meeting Plug Power proposed and was granted permission, to demonstrate the new, commercial version of Plug Power's telecom system at CERL. As this product was also being tested as part of a DOE Topic 7A program, this part of the program was transferred to the Topic 7A program. In Q32008, the scope of work of this program was expanded to include a National Grid demonstration project of a micro-CHP system using hightemperature PEM technology. The Gensys Blue system was cleared for unattended operation, grid connection, and power generation in Aug 2009 at Union College in NY state. The system continues to operate providing power and heat to Beuth House. The system is being continually evaluated and improvements to hardware and controls will be implemented as more is learned about the system's operation. The program is instrumental in improving the efficiency and reducing costs of PEMFC based power systems using LPG fuel and continues to makes steps towards meeting DOE's targets. Plug Power would like to thank DOE for their support of this program.

  18. Conservation Laws, Extended Polymatroids and Multi-Armed Bandit Problems; A unified Approach to Indexabel Systems

    E-Print Network [OSTI]

    Bertsimas, Dimitris J.

    We show that if performance measures in stochastic and dynamic scheduling problems satisfy generalized conservation laws, then the feasible space of achievable performance is a polyhedron called an extended polymatroid ...

  19. Development of an advanced nanocalorimetry system for rapid material characterizations 

    E-Print Network [OSTI]

    Liu, Yen-Shan

    2007-04-25

    The development of a versatile system capable of providing rapid, portable, and inexpensive detection of explosives and energetic compounds is needed critically to offer an enhanced level of protection against current and ...

  20. Advancing State-of-the-Art Concentrating Solar Power Systems...

    Energy Savers [EERE]

    uses supercritical carbon dioxide (sCO2) as its working fluid rather than molten salt or steam, on which today's state-of-the-art CSP systems rely. The Brayton Energy design...

  1. Advances in electric power systems : robustness, adaptability, and fairness

    E-Print Network [OSTI]

    Sun, Xu Andy

    2011-01-01

    The electricity industry has been experiencing fundamental changes over the past decade. Two of the arguably most significant driving forces are the integration of renewable energy resources into the electric power system ...

  2. Systems integration and analysis of advanced life support technologies 

    E-Print Network [OSTI]

    Nworie, Grace A.

    2009-06-02

    Extended missions to space have long been a goal of the National Aeronautics and Space Administration (NASA). Accomplishment of NASA's goal requires the development of systems and tools for sustaining human life for periods of several months...

  3. A Be%er Understanding of the Earth System Through Advances in CFD

    E-Print Network [OSTI]

    Wang, Zhi Jian "ZJ"

    A Be%er Understanding of the Earth System Through Advances in CFD Paul Ullrich for atmospheric models that can harness these large-scale parallel systems. Higher University of California, Davis June 22nd, 2013 #12;Part 1 Atmospheric Models and the Need for Resolution #12

  4. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan

    SciTech Connect (OSTI)

    Bruce Hallbert

    2012-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  5. Testing of an advanced thermochemical conversion reactor system

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

  6. Advanced Integrated Systems Technology Development: Personal Comfort Systems and Radiant Slab Systems

    E-Print Network [OSTI]

    2015-01-01

    Agricultural/Water End-Use Energy Efficiency Renewableof transporting thermal energy with water vs. air (about 7chilled water system, thereby saving energy. When outside

  7. Foundational Report Series: Advanced Distribution Management Systems for Grid Modernization

    SciTech Connect (OSTI)

    Wang, Jianhui

    2015-09-01

    This report describes the application functions for distribution management systems (DMS). The application functions are those surveyed by the IEEE Power and Energy Society’s Task Force on Distribution Management Systems. The description of each DMS application includes functional requirements and the key features and characteristics in current and future deployments, as well as a summary of the major benefits provided by each function to stakeholders — from customers to shareholders. Due consideration is paid to the fact that the realizable benefits of each function may differ by type of utility, whether investor-owned, cooperative, or municipal. This report is sufficient to define the functional requirements of each application for system procurement (request-for-proposal [RFP]) purposes and for developing preliminary high-level use cases for those functions. However, it should not be considered a design document that will enable a vendor or software developer to design and build actual DMS applications.

  8. Advanced Turbine Systems Program conceptual design and product development. Task 3.0, Selection of natural gas-fired Advanced Turbine System

    SciTech Connect (OSTI)

    1994-12-01

    This report presents results of Task 3 of the Westinghouse ATS Phase II program. Objective of Task 3 was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems in order to select one that would achieve all ATS program goals. About 50 cycles (5 main types) were evaluated on basis of plant efficiency, emissions, cost of electricity, reliability-availability-maintainability (RAM), and program schedule requirements. The advanced combined cycle was selected for the ATS plant; it will incorporate an advanced gas turbine engine as well as improvements in the bottoming cycle and generator. Cost and RAM analyses were carried out on 6 selected cycle configurations and compared to the baseline plant. Issues critical to the Advanced Combined Cycle are discussed; achievement of plant efficiency and cost of electricity goals will require higher firing temperatures and minimized cooling of hot end components, necessitating new aloys/materials/coatings. Studies will be required in combustion, aerodynamic design, cooling design, leakage control, etc.

  9. Advanced Control and Protection system Design Methods for Modular HTGRs

    SciTech Connect (OSTI)

    Ball, Sydney J; Wilson Jr, Thomas L; Wood, Richard Thomas

    2012-06-01

    The project supported the Nuclear Regulatory Commission (NRC) in identifying and evaluating the regulatory implications concerning the control and protection systems proposed for use in the Department of Energy's (DOE) Next-Generation Nuclear Plant (NGNP). The NGNP, using modular high-temperature gas-cooled reactor (HTGR) technology, is to provide commercial industries with electricity and high-temperature process heat for industrial processes such as hydrogen production. Process heat temperatures range from 700 to 950 C, and for the upper range of these operation temperatures, the modular HTGR is sometimes referred to as the Very High Temperature Reactor or VHTR. Initial NGNP designs are for operation in the lower temperature range. The defining safety characteristic of the modular HTGR is that its primary defense against serious accidents is to be achieved through its inherent properties of the fuel and core. Because of its strong negative temperature coefficient of reactivity and the capability of the fuel to withstand high temperatures, fast-acting active safety systems or prompt operator actions should not be required to prevent significant fuel failure and fission product release. The plant is designed such that its inherent features should provide adequate protection despite operational errors or equipment failure. Figure 1 shows an example modular HTGR layout (prismatic core version), where its inlet coolant enters the reactor vessel at the bottom, traversing up the sides to the top plenum, down-flow through an annular core, and exiting from the lower plenum (hot duct). This research provided NRC staff with (a) insights and knowledge about the control and protection systems for the NGNP and VHTR, (b) information on the technologies/approaches under consideration for use in the reactor and process heat applications, (c) guidelines for the design of highly integrated control rooms, (d) consideration for modeling of control and protection system designs for VHTR, and (e) input for developing the bases for possible new regulatory guidance to assist in the review of an NGNP license application. This NRC project also evaluated reactor and process heat application plant simulation models employed in the protection and control system designs for various plant operational modes and accidents, including providing information about the models themselves, and the appropriateness of the application of the models for control and protection system studies. A companion project for the NRC focused on the potential for new instrumentation that would be unique to modular HTGRs, as compared to light-water reactors (LWRs), due to both the higher temperature ranges and the inherent safety features.

  10. Advanced fueling system for steady-state operation of a fusion reactor

    SciTech Connect (OSTI)

    Raman, R. [Univ. of Washington, AERB 352250, Seattle, WA 98195 (United States)

    2008-07-15

    Steady-state Advanced Tokamak scenarios rely on optimized density and pressure profiles to maximize the bootstrap current fraction. Under this mode of operation, the fuelling system must deposit small amounts of fuel where it is needed, and as often as needed, so as to compensate for fuel losses, but not to adversely alter the established density and pressure profiles. A precision fuelling system has the capability for controlling the fusion burn by maintaining the required pressure profile to maximize the bootstrap current fraction. An advanced fuelling system based on Compact Toroid (CT) injection has the potential to meet these needs while simultaneously simplifying the requirements of the tritium handling systems. Simpler engineering systems would reduce reactor construction and maintenance cost through increased reliability. A CT fueling system is described together with the associated tritium handling requirements. (authors)

  11. Hydrocarbon Processing`s Advanced control and information systems `95

    SciTech Connect (OSTI)

    NONE

    1995-09-01

    This special report presents control strategies and information systems for most hydrocarbon processes and plants. Each summary (76 in all) contains information on application, control strategy, economics, commercial installations, and licensor. The processes include NGL recovery, alkylation, blending, catalytic reforming, caustic treating, cryogenic separation, delayed coking, fractionation, hydrocracking, hydrogen production, isomerization, lube oil extraction, oil transport and storage, pipeline management, information management, sulfur recovery, waste water treatments, and others.

  12. Advanced Engine/Aftertreatment System R&D

    SciTech Connect (OSTI)

    Pihl, J.; West, B.; Toops, T.; Adelman, B.; Derybowski, E.

    2011-09-30

    Navistar and ORNL established this CRADA to develop diesel engine aftertreatment configurations and control strategies that could meet emissions regulations while maintaining or improving vehicle efficiency. The early years of the project focused on reducing the fuel penalty associated with lean NOx trap (LNT, also known as NOx adsorber catalyst) regeneration and desulfation. While Navistar pursued engine-based (in-cylinder) approaches to LNT regeneration, complementary experiments at ORNL focused on in-exhaust fuel injection. ORNL developed a PC-based controller for transient electronic control of EGR valve position, intake throttle position, and actuation of fuel injectors in the exhaust system of a Navistar engine installed at Oak Ridge. Aftertreatment systems consisting of different diesel oxidation catalysts (DOCs) in conjunction with a diesel particle filter and LNT were evaluated under quasi-steady-state conditions. Hydrocarbon (HC) species were measured at multiple locations in the exhaust system with Gas chromatograph mass spectrometry (GC-MS) and Fourier transform infrared (FTIR) spectroscopy.

  13. Testing of Passive Safety System Performance for Higher Power Advanced Reactors

    SciTech Connect (OSTI)

    brian G. Woods; Jose Reyes, Jr.; John Woods; John Groome; Richard Wright

    2004-12-31

    This report describes the results of NERI research on the testing of advanced passive safety performance for the Westinghouse AP1000 design. The objectives of this research were: (a) to assess the AP1000 passive safety system core cooling performance under high decay power conditions for a spectrum of breaks located at a variety of locations, (b) to compare advanced thermal hydraulic computer code predictions to the APEX high decay power test data and (c) to develop new passive safety system concepts that could be used for Generation IV higher power reactors.

  14. Validation of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea surface temperature in the

    E-Print Network [OSTI]

    Sprintall, Janet

    Validation of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR; published 5 April 2006. [1] Satellite sea surface temperature (SST) measurements from Advanced Microwave. Sprintall, and C. Gentemann (2006), Validation of the Advanced Microwave Scanning Radiometer for the Earth

  15. Final report on LDRD project : advanced optical trigger systems.

    SciTech Connect (OSTI)

    Roose, Lars D.; Hadley, G. Ronald; Mar, Alan; Serkland, Darwin Keith; Geib, Kent Martin; Sullivan, Charles Thomas; Keeler, Gordon Arthur; Bauer, Thomas M. (LMATA Government Services, LLC., Albuquerque, NM); Peake, Gregory Merwin; Loubriel, Guillermo Manuel; Montano, Victoria A. (LMATA Government Services, LLC., Albuquerque, NM)

    2008-09-01

    Advanced optically-activated solid-state electrical switch development at Sandia has demonstrated multi-kA/kV switching and the path for scalability to even higher current/power. Realization of this potential requires development of new optical sources/switches based on key Sandia photonic device technologies: vertical-cavity surface-emitting lasers (VCSELs) and photoconductive semiconductor switch (PCSS) devices. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been used to trigger multiple filaments, but they are difficult to scale and manufacture with the required uniformity. In VCSEL arrays, adjacent lasers utilize identical semiconductor material and are lithographically patterned to the required dimensions. We have demonstrated multiple-line filament triggering using VCSEL arrays to approximate line generation. These arrays of uncoupled circular-aperture VCSELs have fill factors ranging from 2% to 30%. Using these arrays, we have developed a better understanding of the illumination requirements for stable triggering of multiple-filament PCSS devices. Photoconductive semiconductor switch (PCSS) devices offer advantages of high voltage operation (multi-kV), optical isolation, triggering with laser pulses that cannot occur accidentally in nature, low cost, high speed, small size, and radiation hardness. PCSS devices are candidates for an assortment of potential applications that require multi-kA switching of current. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been demonstrated to trigger multiple filaments, but they are difficult to scale and manufacture with the required uniformity. As a promising alternative to multiple discrete edge-emitting lasers, a single wafer of vertical-cavity surface-emitting lasers (VCSELs) can be lithographically patterned to achieve the desired layout of parallel line-shaped emitters, in which adjacent lasers utilize identical semiconductor material and thereby achieve a degree of intrinsic optical uniformity. Under this LDRD project, we have fabricated arrays of uncoupled circular-aperture VCSELs to approximate a line-shaped illumination pattern, achieving optical fill factors ranging from 2% to 30%. We have applied these VCSEL arrays to demonstrate single and dual parallel line-filament triggering of PCSS devices. Moreover, we have developed a better understanding of the illumination requirements for stable triggering of multiple-filament PCSS devices using VCSEL arrays. We have found that reliable triggering of multiple filaments requires matching of the turn-on time of adjacent VCSEL line-shaped-arrays to within approximately 1 ns. Additionally, we discovered that reliable triggering of PCSS devices at low voltages requires more optical power than we obtained with our first generation of VCSEL arrays. A second generation of higher-power VCSEL arrays was designed and fabricated at the end of this LDRD project, and testing with PCSS devices is currently underway (as of September 2008).

  16. ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION

    SciTech Connect (OSTI)

    R. C. O'Brien; S. D. Howe; J. E. Werner

    2010-09-01

    The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

  17. Production process for advanced space satellite system cables/interconnects.

    SciTech Connect (OSTI)

    Mendoza, Luis A.

    2007-12-01

    This production process was generated for the satellite system program cables/interconnects group, which in essences had no well defined production process. The driver for the development of a formalized process was based on the set backs, problem areas, challenges, and need improvements faced from within the program at Sandia National Laboratories. In addition, the formal production process was developed from the Master's program of Engineering Management for New Mexico Institute of Mining and Technology in Socorro New Mexico and submitted as a thesis to meet the institute's graduating requirements.

  18. Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems

    SciTech Connect (OSTI)

    Gleeson, Brian

    2014-09-30

    Air plasma sprayed (APS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded from the buildup of fly-ash deposits created in the power-generation process. Fly ash from an integrated gasification combined cycle (IGCC) system can result from coal-based syngas. TBCs are also exposed to harsh gas environments containing CO2, SO2, and steam. Degradation from the combined effects of fly ash and harsh gas atmospheres has the potential to severely limit TBC lifetimes. The main objective of this study was to use lab-scale testing to systematically elucidate the interplay between prototypical deposit chemistries (i.e., ash and its constituents, K2SO4, and FeS) and environmental oxidants (i.e., O2, H2O and CO2) on the degradation behavior of advanced TBC systems. Several mechanisms of early TBC failure were identified, as were the specific fly-ash constituents responsible for degradation. The reactivity of MCrAlY bondcoats used in TBC systems was also investigated. The specific roles of oxide and sulfate components were assessed, together with the complex interplay between gas composition, deposit chemistry and alloy reactivity. Bondcoat composition design strategies to mitigate corrosion were established, particularly with regard to controlling phase constitution and the amount of reactive elements the bondcoat contains in order to achieve optimal corrosion resistance.

  19. Design Optimization and Performance Evaluation of the Relaying Algorithms, Relays and Protective Systems Using Advanced Testing Tools

    E-Print Network [OSTI]

    Systems Using Advanced Testing Tools Mladen Kezunovic Bogdan Kasztenny Fellow, IEEE Senior Member, IEEE tools. Nowadays, optimization from the vendor perspective is usually performed using heuristic methods

  20. Building America Webinar: High-Performance Enclosure Strategies, Part I: Unvented Roof Systems and Innovative Advanced Framing Strategies

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the February 12, 2015, Building America webinar, High-Performance Enclosure Strategies, Part I: Unvented Roof Systems and Innovative Advanced Framing Strategies.

  1. Advanced LWR Nuclear Fuel Cladding System Development Trade-Off Study

    SciTech Connect (OSTI)

    Kristine Barrett; Shannon Bragg-Sitton

    2012-09-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system that would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.

  2. Design of radiation resistant metallic multilayers for advanced nuclear systems

    SciTech Connect (OSTI)

    Zhernenkov, Mikhail E-mail: gills@bnl.gov; Gill, Simerjeet E-mail: gills@bnl.gov; Stanic, Vesna; DiMasi, Elaine; Kisslinger, Kim; Ecker, Lynne; Baldwin, J. Kevin; Misra, Amit; Demkowicz, M. J.

    2014-06-16

    Helium implantation from transmutation reactions is a major cause of embrittlement and dimensional instability of structural components in nuclear energy systems. Development of novel materials with improved radiation resistance, which is of the utmost importance for progress in nuclear energy, requires guidelines to arrive at favorable parameters more efficiently. Here, we present a methodology that can be used for the design of radiation tolerant materials. We used synchrotron X-ray reflectivity to nondestructively study radiation effects at buried interfaces and measure swelling induced by He implantation in Cu/Nb multilayers. The results, supported by transmission electron microscopy, show a direct correlation between reduced swelling in nanoscale multilayers and increased interface area per unit volume, consistent with helium storage in Cu/Nb interfaces in forms that minimize dimensional changes. In addition, for Cu/Nb layers, a linear relationship is demonstrated between the measured depth-dependent swelling and implanted He density from simulations, making the reflectivity technique a powerful tool for heuristic material design.

  3. Advancements of the Hybrid Method UF6 Container Inspection System

    SciTech Connect (OSTI)

    Mace, Emily K.; Orton, Christopher R.; Jordan, David V.; McDonald, Benjamin S.; Smith, Leon E.

    2011-07-17

    Safeguards inspectors currently visit uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are performed with handheld high-resolution detectors on a limited number of cylinders taken to be representative of the plant’s cylinder inventory. These enrichment assay methods interrogate only a small fraction of the total cylinder volume, and are time-consuming and expensive to execute. Pacific Northwest National Laboratory (PNNL) is developing an automated UF6 cylinder verification station concept based on the combined collection of traditional enrichment-meter data (186 keV photons from 235U) and non-traditional, neutron-induced, high-energy gamma-ray signatures (3-8 MeV) with an array of collimated, medium-resolution scintillators. Previous work at PNNL (2010) demonstrated proof-of-principle that this hybrid method yields accurate, full-volume assay of the cylinder enrichment, reduces systematic errors when compared to several other enrichment assay methods, and provides simplified instrumentation and algorithms suitable for long-term, unattended operations. This system aims to increase the number of inspected cylinders at higher accuracy and with lower cost than when compared to inspectors with hand-held instruments. Several measurement campaigns of 30B cylinder populations and a refined MCNP model will be reported. The MCNP model consists of per-gram basis vectors for the different uranium isotopes and several fill geometries, enabling fast generation of any UF6 enrichment level and multiple configurations. The refined model was used to optimize collimator design and detector configuration for the hybrid method. In addition, a new field prototype based on model results was utilized in a set of field measurements.

  4. Background history and cosmic perturbations for a general system of self-conserved dynamical dark energy and matter

    E-Print Network [OSTI]

    Adria Gomez-Valent; Elahe Karimkhani; Joan Sola

    2015-09-10

    We determine the Hubble expansion and the general cosmic perturbations equations for a general system consisting of self-conserved matter and self-conserved dark energy (DE). While at the background level the two components are non-interacting, they do interact at the perturbations level. We show that the coupled system of matter and DE perturbations can be transformed into a single, third order, matter perturbation equation, which reduces to the (derivative of the) standard one in the case that the DE is just a cosmological constant. As a nontrivial application we analyze a class of dynamical models whose DE density $\\rho_D$ consists of a constant term, $C_0$, and a series of powers of the Hubble rate. These models were previously analyzed from the point of view of dynamical vacuum models, but here we treat them as self-conserved DE models with a dynamical equation of state. We fit them to the wealth of expansion history and linear structure formation data and compare the obtained fit quality with that of the concordance $\\Lambda$CDM model. Interestingly, we find that they can be phenomenologically advantageous, except for the generic models with $C_0=0$ and especially the pure linear model $\\rho_D\\sim H$ (advocated in several places in the literature), which appears strongly disfavored. The remaining models are promising dynamical DE candidates whose phenomenological performance can be highly competitive with the rigid $\\Lambda$-term inherent to the $\\Lambda$CDM.

  5. Background history and cosmic perturbations for a general system of self-conserved dynamical dark energy and matter

    E-Print Network [OSTI]

    Gomez-Valent, Adria; Sola, Joan

    2015-01-01

    We determine the Hubble expansion and the general cosmic perturbations equations for a general system consisting of self-conserved matter and self-conserved dark energy (DE). While at the background level the two components are non-interacting, they do interact at the perturbations level. We show that the coupled system of matter and DE perturbations can be transformed into a single, third order, matter perturbation equation, which reduces to the (derivative of the) standard one in the case that the DE is just a cosmological constant. As a nontrivial application we analyze a class of dynamical models whose DE density $\\rho_D$ consists of a constant term, $C_0$, and a series of powers of the Hubble rate. These models were previously analyzed from the point of view of dynamical vacuum models, but here we treat them as self-conserved DE models with a dynamical equation of state. We fit them to the wealth of expansion history and linear structure formation data and compare the obtained fit quality with that of th...

  6. Electronic Power Conversion System for an Advanced Mobile Generator Set Leon M. Tolbert1,3

    E-Print Network [OSTI]

    Tolbert, Leon M.

    . The military generator set uses an internal combustion diesel engine to drive a radial-gap permanent magnet. The variable frequency, variable voltage produced by the permanent magnet alternator is diode-rectified to dcElectronic Power Conversion System for an Advanced Mobile Generator Set Leon M. Tolbert1

  7. Fusion Engineering and Design 80 (2006) 7998 Advanced power core system for the

    E-Print Network [OSTI]

    California at San Diego, University of

    2006-01-01

    C) for high power cycle efficiency while maintaining SiCf/SiC at a substantially lower temperature studies; Power core system; Blanket and divertor design; Power cycle Corresponding author. Tel.: +1 858 magnet, high power cycle efficiency, and lower-cost advanced manufacturing techniques. Fig. 1 shows

  8. Performance Measurements of the Injection Laser System Configured for Picosecond Scale Advanced Radiographic Capability

    SciTech Connect (OSTI)

    Haefner, L C; Heebner, J E; Dawson, J W; Fochs, S N; Shverdin, M Y; Crane, J K; Kanz, K V; Halpin, J M; Phan, H H; Sigurdsson, R J; Brewer, S W; Britten, J A; Brunton, G K; Clark, W J; Messerly, M J; Nissen, J D; Shaw, B H; Hackel, R P; Hermann, M R; Tietbohl, G L; Siders, C W; Barty, C J

    2009-10-23

    We have characterized the Advanced Radiographic Capability injection laser system and demonstrated that it meets performance requirements for upcoming National Ignition Facility fusion experiments. Pulse compression was achieved with a scaled down replica of the meter-scale grating ARC compressor and sub-ps pulse duration was demonstrated at the Joule-level.

  9. c 2007 by Evan Robert Jeffrey. All rights reserved. ADVANCED QUANTUM COMMUNICATION SYSTEMS

    E-Print Network [OSTI]

    Kwiat, Paul

    c 2007 by Evan Robert Jeffrey. All rights reserved. #12;ADVANCED QUANTUM COMMUNICATION SYSTEMS of Illinois at Urbana-Champaign, 2007 Urbana, Illinois #12;Abstract Quantum communication provides several examples of communication protocols which cannot be imple- mented securely using only classical

  10. A Planning, Scheduling and Control Architecture for Advanced Life Support Systems

    E-Print Network [OSTI]

    Kortenkamp, David

    A Planning, Scheduling and Control Architecture for Advanced Life Support Systems V. Jorge Leon 77058 Abstract This paper describes an integrated planning, schedul- ing and control architecture and the requirements for plan- ning, scheduling and control architectures are pre- sented. Next, the main components

  11. International Journal of Advanced Robotic Systems Heterogeneous Context-Aware Robots

    E-Print Network [OSTI]

    Veloso, Manuela M.

    International Journal of Advanced Robotic Systems Heterogeneous Context-Aware Robots Providing Turck1 1 Department of Information Technology, Ghent University - IBBT, Ghent, Belgium 2 Robotics Group the original work is properly cited. Abstract Existing robot guides offer a tour of a building

  12. DOE Issues Funding Opportunity for Advanced Computational and Modeling Research for the Electric Power System

    Broader source: Energy.gov [DOE]

    The objective of this Funding Opportunity Announcement (FOA) is to leverage scientific advancements in mathematics and computation for application to power system models and software tools, with the long-term goal of enabling real-time protection and control based on wide-area sensor measurements.

  13. DCC Project proposal Jon Axelsson Design of embedded systems, advanced course Jakob Hgg

    E-Print Network [OSTI]

    to use switching power electronics to keep the losses small. The fact that the load is inductive makesDCC ­ Project proposal Jon Axelsson Design of embedded systems, advanced course Jakob Hägg EDA385 Per Söderberg In several power electronic applications it is elementary to control a current through

  14. CropS/Pl P 403/503 Advanced Cropping Systems Fall 2013, 3 Credits

    E-Print Network [OSTI]

    Pappu, Hanu R.

    CropS/Pl P 403/503 Advanced Cropping Systems Fall 2013, 3 Credits Time: Tu,Th 1:25-2:40; Field, whichever you prefer on your transcripts. Undergraduates generally enroll as 403 and graduates as 503 to critically interpret agronomic literature. GRADING: 403 and 503 Credit: · Five quizzes (40 points each

  15. Advanced Materials for PEM-Based Fuel Cell Systems

    SciTech Connect (OSTI)

    James E. McGrath; Donald G. Baird; Michael von Spakovsky

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 degrees C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic fillers, such as phosphotungstic acid and zirconium hydrogen phosphate. Block copolymers were also studied due to the possibility to achieve a desired combination of homopolymer properties as well as the unique morphologies that are possible with block copolymers. Bezoyl substituted poly(p-phenylene) blocks were combined with poly(arylene ether) blocks to merge the structural rigidity of the poly(p-phenylene) with the ductility and high protonic conductivity of the poly(arylene ether)s. As evidenced by our many refereed publications and preprints, the research that we have conducted over the past several years has made a valuable and significant contribution to the literature and to the state of understanding of proton exchange membranes. Our early efforts at scale-up have suggested that the directly polymerized disulfonated poly(arylene ether sulfone) copolymers are commercially viable alternatives for proton exchange membranes. A new process for bipolar plates was developed and is described. An important single domain PEMFC model was developed and is documented in herein.

  16. Advanced Materials for PEM-Based Fuel Cell Systems

    SciTech Connect (OSTI)

    James E. McGrath

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 �������������������������������°C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic fillers, such as phosphotungstic acid and zirconium hydrogen phosphate. Block copolymers were also studied due to the possibility to achieve a desired combination of homopolymer properties as well as the unique morphologies that are possible with block copolymers. Bezoyl substituted poly(p-phenylene) blocks were combined with poly(arylene ether) blocks to merge the structural rigidity of the poly(p-phenylene) with the ductility and high protonic conductivity of the poly(arylene ether)s. As evidenced by our many refereed publications and preprints, the research that we have conducted over the past several years has made a valuable and significant contribution to the literature and to the state of understanding of proton exchange membranes. Our early efforts at scale-up have suggested that the directly polymerized disulfonated poly(arylene ether sulfone) copolymers are commercially viable alternatives for proton exchange membranes. A new process for bipolar plates was developed and is described. An important single domain PEMFC model was developed and is documented in this final report.

  17. ADVANCED SOLID STATE SENSORS FOR VISION 21 SYSTEMS

    SciTech Connect (OSTI)

    C.D. Stinespring

    2005-04-28

    Silicon carbide (SiC) is a high temperature semiconductor with the potential to meet the gas and temperature sensor needs in both present and future power generation systems. These devices have been and are currently being investigated for a variety of high temperature sensing applications. These include leak detection, fire detection, environmental control, and emissions monitoring. Electronically these sensors can be very simple Schottky diode structures that rely on gas-induced changes in electrical characteristics at the metal-semiconductor interface. In these devices, thermal stability of the interfaces has been shown to be an essential requirement for improving and maintaining sensor sensitivity and lifetime. In this report, we describe device fabrication and characterization studies relevant to the development of SiC based gas and temperature sensors. Specifically, we have investigated the use of periodically stepped surfaces to improve the thermal stability of the metal semiconductor interface for simple Pd-SiC Schottky diodes. These periodically stepped surfaces have atomically flat terraces on the order of 200 nm wide separated by steps of 1.5 nm height. It should be noted that 1.5 nm is the unit cell height for the 6H-SiC (0001) substrates used in these studies. These surfaces contrast markedly with the ''standard'' SiC surfaces normally used in device fabrication. Obvious scratches and pots as well as subsurface defects characterize these standard surfaces. This research involved ultrahigh vacuum deposition and characterization studies to investigate the thermal stability of Pd-SiC Schottky diodes on both the stepped and standard surfaces, high temperature electrical characterization of these device structures, and high temperature electrical characterization of diodes under wet and dry oxidizing conditions. To our knowledge, these studies have yielded the first electrical characterization of actual sensor device structures fabricated under ultrahigh vacuum conditions. The results demonstrate that the Pd-SiC interfaces formed on the stepped surface are remarkably stable at temperatures up to 670 C and that there is a definite improvement in the electrical characteristics. This temperature, though lower than DOE target temperatures is still 100 C higher than that used in reported field studies. The Pd films studied here ranged in thickness from the monolayer level ({approx}0.4 nm) to actual device dimensions ({approx}46.5 nm) and are deposited under ultrahigh vacuum conditions at {approx}50 C. The films were characterized in-situ using Auger electron spectroscopy both before and after annealing at 670 C. The Auger lineshapes were used to provide quantitative information on the chemistry of the reaction products. Ex-situ atomic force microscopy was used to characterize changes in surface morphology. Current-voltage (I-V) measurements were made as a function of temperature to further characterize the devices. Additional studies were performed to gain an understanding of the effects of wet and dry oxidizing environments on device performance. These measurements were performed for temperatures up to 325 C, the highest temperature attainable with our current apparatus. Our results clearly show a significant benefit in thermal stability and electrical characteristics associated with the stepped surface. These results are quite promising but much development and testing work remains to be done.

  18. Annual Report: Advanced Energy Systems Fuel Cells (30 September 2013)

    SciTech Connect (OSTI)

    Gerdes, Kirk; Richards, George

    2014-04-16

    The comprehensive research plan for Fuel Cells focused on Solid State Energy Conversion Alliance (SECA) programmatic targets and included objectives in two primary and focused areas: (1) investigation of degradation modes exhibited by the anode/electrolyte/cathode (AEC), development of computational models describing the associated degradation rates, and generation of a modeling tool predicting long term AEC degradation response; and (2) generation of novel electrode materials and microstructures and implementation of the improved electrode technology to enhance performance. In these areas, the National Energy Technology Laboratory (NETL) Regional University Alliance (RUA) team has completed and reported research that is significant to the SECA program, and SECA continued to engage all SECA core and SECA industry teams. Examination of degradation in an operational solid oxide fuel cell (SOFC) requires a logical organization of research effort into activities such as fundamental data gathering, tool development, theoretical framework construction, computational modeling, and experimental data collection and validation. Discrete research activity in each of these categories was completed throughout the year and documented in quarterly reports, and researchers established a framework to assemble component research activities into a single operational modeling tool. The modeling framework describes a scheme for categorizing the component processes affecting the temporal evolution of cell performance, and provides a taxonomical structure of known degradation processes. The framework is an organizational tool that can be populated by existing studies, new research completed in conjunction with SECA, or independently obtained. The Fuel Cell Team also leveraged multiple tools to create cell performance and degradation predictions that illustrate the combined utility of the discrete modeling activity. Researchers first generated 800 continuous hours of SOFC experimental data capturing operational degradation. The data were matched by a 3D multi-physics simulation of SOFC operational performance assuming that the entire performance loss related to coarsening of the cathode triple phase boundary (3PB). The predicted 3PB coarsening was then used to tune the mobility parameters of a phase field model describing microstructural evolution of the lanthanum strontium manganate (LSM)/ yttria stabilized zirconia (YSZ) system. Once calibrated, the phase field model predicted continuous microstructural coarsening processes occurring over the operating period, which could be extrapolated to performance periods of longer duration and also used to produce 3D graphical representations. NETL researchers also completed significant electrode engineering research complimented by 3D multi-physics simulations. In one key activity researchers generated an illustration demonstrating that control of infiltrate deposition can provide cell manufacturers with significant additional operational and engineering control over the SOFC stack. Specifically, researchers demonstrated that by engineering the deposition of electrocatalyst inside the cathode, the distribution of overpotential across the cell could be controlled to either decrease the average cell overpotential value or minimize cross-cell overpotential gradient. Results imply that manufacturers can establish improved engineering control over stack operation by implementing infiltration technology in SOFC cathodes.

  19. Conservation and Renewable Energy Program: Bibliography, 1988 edition

    SciTech Connect (OSTI)

    Vaughan, K.H.

    1988-04-01

    The 831 references covering the period 1980 through Feb. 1988, are arranged under the following: analysis and evaluation, building equipment, building thermal envelope systems and materials, community systems and cogeneration, residential conservation service, retrofit, advanced heat engine ceramics, alternative fuels, microemulsion fuels, industrial chemical heat pumps, materials for waste heat utilization, energy conversion and utilization materials, tribology, emergency energy conservation,inventions, electric energy systems, thermal storage, biofuels production, biotechnology, solar technology, geothermal, and continuous chromatography in multicomponent separations. An author index is included.

  20. Engineering development of advanced coal-fired low emission boiler systems

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    Riley Stoker Corporation is leading an R&D program for the expedited development of a new generation of pulverized coal-fired boiler systems. The overall objective is to develop relatively near term technologies to produce Low-Emission coal-fired Boiler Systems (LEBS) ready for full scale commercial generating plants by the end of the decade. The specific goal is to develop a LEBS incorporating an advanced slagging system for improved ash management in addition to meeting the emission and performance goals. This Concept Selection Report documents an evaluation of subsystems and LEBS concepts. Priority was given to the evaluation of the boiler system, steam cycle, and advanced slagging combustor. Some findings are as follows: An ultra supercritical steam cycle is required to meet project efficiency goals. The cost of electricity (COE) for this cycle, at today`s fuel prices, and without externality costs, is slightly higher than a conventional subcritical cycle. The supercritical cycle includes a substantial contingency. Reduction of contingency, escalation of fuel cost, or inclusion of externalities all lead to a lower COE for the supercritical cycle compared to the subcritical cycle. The advanced cycle is selected for inclusion in the LEBS. The advanced slagging combustor (TVC), should it meet the projected performance goals, yields a lower COE than either a dry firing system or a more conventional slagger fitted with post combustion NO{sub x} controls. Verification and development of the advanced slagger performance is the primary focus of this project. A commercial slagging configuration know as U-firing is selected for parallel development and as a platform for adaptation to the TVC.

  1. An advanced economizer controller for dual-duct air-handling systems -- with a case application

    SciTech Connect (OSTI)

    Liu, M.; Claridge, D.E.; Park, B.Y.

    1997-12-31

    A heating penalty is expected when economizers are applied to dual-duct air-handling systems. The heating penalty can be even higher than the cooling savings when the hot airflow is higher than the cold airflow. To avoid the excessive heating penalty, advanced economizers are developed in this paper. The application of the advanced economizer has resulted in savings of $7,000/yr in one 95,000-ft{sup 2} (8,800-m{sup 2}) school building since 1993. The impacts of cold and hot deck settings on the energy consumption are also discussed.

  2. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 1

    SciTech Connect (OSTI)

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K. [eds.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume I contains papers presented at the following sessions: opening commentaries; changes in the market and technology drivers; advanced IGCC systems; advanced PFBC systems; advanced filter systems; desulfurization system; turbine systems; and poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  3. Technology in water conservation 

    E-Print Network [OSTI]

    Finch, Dr. Calvin

    2013-01-01

    ?? percent to ?? percent. Water reuse systems treat wastewater by various technologies including ?ltering, bioremediation and ozone exposure. ?ese technologies can involve billions of gallons of wastewater ? such as in a municipal recycling e... Column by Dr. Calvin Finch, Water Conservation and Technology Center director WAT E R CONSERVATION & TECHNOLOGY CENTER Securing Our Water Future It is not unusual for individuals to describe water conservation as a behavioral exercise and urge...

  4. Beta Test Plan for Advanced Inverters Interconnecting Distributed Resources with Electric Power Systems

    SciTech Connect (OSTI)

    Hoke, A.; Chakraborty, S.; Basso, T.; Coddington, M.

    2014-01-01

    This document provides a preliminary (beta) test plan for grid interconnection systems of advanced inverter-based DERs. It follows the format and methodology/approach established by IEEE Std 1547.1, while incorporating: 1. Upgraded tests for responses to abnormal voltage and frequency, and also including ride-through. 2. A newly developed test for voltage regulation, including dynamic response testing. 3. Modified tests for unintentional islanding, open phase, and harmonics to include testing with the advanced voltage and frequency response functions enabled. Two advanced inverters, one single-phase and one three-phase, were tested under the beta test plan. These tests confirmed the importance of including tests for inverter dynamic response, which varies widely from one inverter to the next.

  5. I-CARES PROFESSOR, ADVANCED BUILDING SYSTEMS & ARCHITECTURAL DESIGN COLLEGE OF ARCHITECTURE AND GRADUATE SCHOOL OF ARCHITECTURE & URBAN DESIGN

    E-Print Network [OSTI]

    Subramanian, Venkat

    at the rank of Associate or Full Professor with a focus on energy- efficient advanced building systems/ or a research record related to energy-efficient architectural design and building technologies, includingI-CARES PROFESSOR, ADVANCED BUILDING SYSTEMS & ARCHITECTURAL DESIGN COLLEGE OF ARCHITECTURE

  6. Advances in Fully-Kinetic PIC Simulations of a Near-Vacuum Hall Thruster and Other Plasma Systems

    E-Print Network [OSTI]

    Advances in Fully-Kinetic PIC Simulations of a Near- Vacuum Hall Thruster and Other Plasma Systems;3 Advances in Fully-Kinetic PIC Simulations of a Near- Vacuum Hall Thruster and Other Plasma Systems generation of simulations used the fully-kinetic particle-in-cell (PIC) model. Although much more

  7. Advanced turbine systems program conceptual design and product development. Annual report, August 1994--July 1995

    SciTech Connect (OSTI)

    1995-11-01

    This report summarizes the tasks completed under this project during the period from August 1, 1994 through July 31, 1994. The objective of the study is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost-competitive industrial gas turbine system to be commercialized by the year 2000. The tasks completed include a market study for the advanced turbine system; definition of an optimized recuperated gas turbine as the prime mover meeting the requirements of the market study and whose characteristics were, in turn, used for forecasting the total advanced turbine system (ATS) future demand; development of a program plan for bringing the ATS to a state of readiness for field test; and demonstration of the primary surface recuperator ability to provide the high thermal effectiveness and low pressure loss required to support the proposed ATS cycle.

  8. MnDRIVE Minnesota Discovery Research and InnoVation Economy Funding Program MnDRIVE: Advancing industry, conserving our environment

    E-Print Network [OSTI]

    Blanchette, Robert A.

    industry, conserving our environment Goal Apply research-based new technology to solve environmental impact of upcoming mining projects in northern Minnesota · Microbial bioremediation renders wastes in fracking for recovery of natural gas from shale · Microbial remediation provides solutions for currently

  9. Advanced turbine systems program -- Conceptual design and product development. Final report

    SciTech Connect (OSTI)

    1996-07-26

    This Final Technical Report presents the accomplishments on Phase 2 of the Advanced Turbine Systems (ATS). The ATS is an advanced, natural gas fired gas turbine system that will represent a major advance on currently available industrial gas turbines in the size range of 1--20 MW. This report covers a market-driven development. The Market Survey reported in Section 5 identified the customer`s performance needs. This market survey used analyses performed by Solar turbine Incorporated backed up by the analyses done by two consultants, Research Decision Consultants (RDC) and Onsite Energy Corporation (Onsite). This back-up was important because it is the belief of all parties that growth of the ATS will depend both on continued participation in Solar`s traditional oil and gas market but to a major extent on a new market. This new market is distributed electrical power generation. Difficult decisions have had to be made to meet the different demands of the two markets. Available resources, reasonable development schedules, avoidance of schedule or technology failures, probable acceptance by the marketplace, plus product cost, performance and environmental friendliness are a few of the complex factors influencing the selection of the Gas Fired Advanced Turbine System described in Section 3. Section 4 entitled ``Conversion to Coal`` was a task which addresses the possibility of a future interruption to an economic supply of natural gas. System definition and analysis is covered in Section 6. Two major objectives were met by this work. The first was identification of those critical technologies that can support overall attainment of the program goals. Separate technology or component programs were begun to identify and parameterize these technologies and are described in Section 7. The second objective was to prepare parametric analyses to assess performance sensitivity to operating variables and to select design approaches to meet the overall program goals.

  10. DEVELOPMENT OF OPERATIONAL CONCEPTS FOR ADVANCED SMRs: THE ROLE OF COGNITIVE SYSTEMS ENGINEERING

    SciTech Connect (OSTI)

    Jacques Hugo; David Gertman

    2014-04-01

    Advanced small modular reactors (AdvSMRs) will use advanced digital instrumentation and control systems, and make greater use of automation. These advances not only pose technical and operational challenges, but will inevitably have an effect on the operating and maintenance (O&M) cost of new plants. However, there is much uncertainty about the impact of AdvSMR designs on operational and human factors considerations, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. Existing human factors and systems engineering design standards and methodologies are not current in terms of human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. New models and guidance for operational concepts for complex socio-technical systems need to adopt a state-of-the-art approach such as Cognitive Systems Engineering (CSE) that gives due consideration to the role of personnel. This approach we report on helps to identify and evaluate human challenges related to non-traditional concepts of operations. A framework - defining operational strategies was developed based on the operational analysis of Argonne National Laboratory’s Experimental Breeder Reactor-II (EBR-II), a small (20MWe) sodium-cooled reactor that was successfully operated for thirty years. Insights from the application of the systematic application of the methodology and its utility are reviewed and arguments for the formal adoption of CSE as a value-added part of the Systems Engineering process are presented.

  11. The U.S. Department of Energy`s advanced turbine systems program

    SciTech Connect (OSTI)

    Layne, A.W. [Dept. of Energy, Morgantown, WV (United States). Federal Energy Technology Center; Layne, P.W. [Dept. of Energy, Washington, DC (United States)

    1998-06-01

    Advanced Turbine Systems (ATS) are poised to capture the majority of new electric power generation capacity well into the next century. US Department of Energy (DOE) programs supporting the development of ATS technology will enable gas turbine manufacturers to provide ATS systems to the commercial marketplace at the turn of the next century. A progress report on the ATS Program will he presented in this paper. The technical challenges, advanced critical technology requirements, and system configurations meeting the goals of the program will be discussed. Progress has been made in the are as of materials, heat transfer, aerodynamics, and combustion. Applied research conducted by universities, industry, and Government has resulted in advanced designs and power cycle configurations to develop an ATS which operates on natural gas, coal, and biomass fuels. Details on the ATS Program research, development, and technology validation and readiness activities will be presented. The future direction of the program and relationship to other Government programs will be discussed in this paper.

  12. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    SciTech Connect (OSTI)

    Bruno, Mike S.; Detwiler, Russell L.; Lao, Kang; Serajian, Vahid; Elkhoury, Jean; Diessl, Julia; White, Nicky

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advanced horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.

  13. Advanced turbine systems sensors and controls needs assessment study. Final report

    SciTech Connect (OSTI)

    Anderson, R.L.; Fry, D.N.; McEvers, J.A.

    1997-02-01

    The Instrumentation and Controls Division of the Oak Ridge National Laboratory performed an assessment of the sensors and controls needs for land-based advanced gas turbines being designed as a part of the Department of Energy`s (DOE`s) Advanced Turbine Systems (ATS) Program for both utility and industrial applications. The assessment included visits to five turbine manufacturers. During these visits, in-depth discussions were held with design and manufacturing staff to obtain their views regarding the need for new sensors and controls for their advanced turbine designs. The Unsteady Combustion Facilities at the Morgantown Energy Technology Center was visited to assess the need for new sensors for gas turbine combustion research. Finally, a workshop was conducted at the South Carolina Energy Research and Development Center which provided a forum for industry, laboratory, and university engineers to discuss and prioritize sensor and control needs. The assessment identified more than 50 different measurement, control, and monitoring needs for advanced turbines that cannot currently be met from commercial sources. While all the identified needs are important, some are absolutely critical to the success of the ATS Program.

  14. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    SciTech Connect (OSTI)

    Not Available

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  15. Advances in Life-Cycle Cost Analysis and Design of Civil Infrastructure Systems LIFE CYCLE COST MODEL FOR EVALUATING THE

    E-Print Network [OSTI]

    Lepech, Michael D.

    ). Cement production accounts for 5% of all global anthropogenic carbon dioxide (CO2) emissions #12;AdvancesAdvances in Life-Cycle Cost Analysis and Design of Civil Infrastructure Systems 143 LIFE CYCLE COST and cost model was developed to evaluate infrastructure sustainability, and compare alternative materials

  16. Task 3.0: Advanced power systems. Semi-annual report, April 1--June 30, 1993

    SciTech Connect (OSTI)

    McCollor, D.P.; Zygarlicke, C.J.; Mann, M.D.; Willson, W.G.; Hurley, J.P.

    1993-07-01

    A variety of activities are incorporated into the Advanced Power Systems program. Tasks included are (1) fuel utilization properties, (2) pressurized combustion, (3) catalytic gasification, and (4) hot-gas cleanup. ATRAN is stochastic and combines initial coal inorganics in a random manner in order to predict the resulting fly ash particle size and composition. ASHPERT, is an expert system yielding a first-order estimate of fly ash size and composition. Both models are designed to emulate pulverized-coal combustion. Input data required include identity, chemistry, size, quantity, and mineral-to-coal associations. The pressurized combustion task has focused on the construction of a versatile reactor system to simulate pressurized fluidized-bed combustion. Both castable and monolithic refractories have been investigated in determining slag prevention under a variety of conditions. Catalytic gasification coupled with a molten carbonate fuel cell offers an extremely efficient and environmentally sound power generating system using coal. Work with an Illinois No. 6 bituminous coal has not been successful. Continued efforts will focus on using the more reactive low-rank coals to try to achieve this goal. Hot-gas cleanup is the critical issue in many of the proposed advanced power system operations on coal. The key to successful ash removal is an understanding of the properties of the ash to be collected as well as the interactions of this material with the barrier itself. The knowledge base under development will assist in assessing many of these barrier material issues for a variety of coal ashes.

  17. Development of an integrated energetic neutral particle measurement system on experimental advanced full superconducting tokamak

    SciTech Connect (OSTI)

    Zhu, Y. B., E-mail: YubaoZ@UCI.EDU; Liu, D.; Heidbrink, W. W. [Department of Physics and Astronomy, University of California, Irvine, California 92697-4575 (United States); Zhang, J. Z.; Qi, M. Z.; Xia, S. B.; Wan, B. N.; Li, J. G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-11-15

    Full function integrated, compact silicon photodiode based solid state neutral particle analyzers (ssNPA) have been developed for energetic particle (EP) relevant studies on the Experimental Advanced Superconducting Tokamak (EAST). The ssNPAs will be mostly operated in advanced current mode with a few channels to be operated in conventional pulse-counting mode, aiming to simultaneously achieve individually proved ultra-fast temporal, spatial, and spectral resolution capabilities. The design details together with considerations on EAST specific engineering realities and physics requirements are presented. The system, including a group of single detectors on two vertical ports and two 16-channel arrays on a horizontal port, can provide both active and passive charge exchange measurements. ssNPA detectors, with variable thickness of ultra thin tungsten dominated foils directly deposited on the front surface, are specially fabricated and utilized to achieve about 22 keV energy resolution for deuterium particle detection.

  18. IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 33, NO. 1, FEBRUARY 2010 37 Novel 3-D Coaxial Interconnect System for Use

    E-Print Network [OSTI]

    LaMeres, Brock J.

    IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 33, NO. 1, FEBRUARY 2010 37 Novel 3-D Coaxial Interconnect System for Use in System-in-Package Applications Brock J. LaMeres, Senior Member, IEEE of a novel die-to-die interconnect system for deployment in system-in-package (SiP) applications

  19. Advanced Kalman Filter for Real-Time Responsiveness in Complex Systems

    SciTech Connect (OSTI)

    Welch, Gregory Francis [UNC-Chapel Hill/University of Central Florida] [UNC-Chapel Hill/University of Central Florida; Zhang, Jinghe [UNC-Chapel Hill/Virginia Tech] [UNC-Chapel Hill/Virginia Tech

    2014-06-10

    Complex engineering systems pose fundamental challenges in real-time operations and control because they are highly dynamic systems consisting of a large number of elements with severe nonlinearities and discontinuities. Today’s tools for real-time complex system operations are mostly based on steady state models, unable to capture the dynamic nature and too slow to prevent system failures. We developed advanced Kalman filtering techniques and the formulation of dynamic state estimation using Kalman filtering techniques to capture complex system dynamics in aiding real-time operations and control. In this work, we looked at complex system issues including severe nonlinearity of system equations, discontinuities caused by system controls and network switches, sparse measurements in space and time, and real-time requirements of power grid operations. We sought to bridge the disciplinary boundaries between Computer Science and Power Systems Engineering, by introducing methods that leverage both existing and new techniques. While our methods were developed in the context of electrical power systems, they should generalize to other large-scale scientific and engineering applications.

  20. Coastal Conservation

    SciTech Connect (OSTI)

    Diefenderfer, Heida L.

    2014-12-23

    Book review of Coastal Conservation Edited by Brooke Maslo and Julie L. Lockwood Cambridge University Press, Cambridge, UK, 2014, 382 pages ISBN 978-1-107-60674-6,

  1. Cyber Physical Systems: Design Challenges Edward A. Lee

    E-Print Network [OSTI]

    of California, Berkeley Berkeley, CA 94720, USA eal@eecs.berkeley.edu Abstract Cyber-Physical Systems (CPS, traffic control and safety, advanced automotive systems, process control, energy conservation

  2. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    SciTech Connect (OSTI)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  3. COP 6930 Advanced Internet Engineering Prerequisites: graduate status and basic knowledge of Internet and Web systems and

    E-Print Network [OSTI]

    Furht, Borko

    COP 6930 ­ Advanced Internet Engineering Prerequisites: graduate status and basic knowledge of Internet and Web systems and programming. For undergraduate students: permission of instructor. Course Description: Students will get familiar with current Internet and Web technologies and application trends

  4. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect (OSTI)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  5. A Systems Framework for Assessing Plumbing Products-Related Water Conservation

    E-Print Network [OSTI]

    Williams, Alison

    2012-01-01

    use, and plumbing and sewer infrastructure, in addition towater, energy, and plumbing/sewer infrastructure. Thisof the drainage and sewer system, and the sustainability of

  6. LIDAR, Camera and Inertial Sensors Based Navigation Techniques for Advanced Intelligent Transportation System Applications

    E-Print Network [OSTI]

    Huang, Lili

    2010-01-01

    planar range sensor designed for intelligent robots andSensors Based Navigation Techniques for Advanced IntelligentSensors Based Navigation Techniques for Advanced Intelligent

  7. Selection of natural Gas Fired Advanced Turbine Systems (GFATS) program - Task 3. Topical report

    SciTech Connect (OSTI)

    1994-06-01

    Research continued on natural gas-fired turbines.The objective of Task 3 was to perform initial trade studies and select one engine system (Gas-Fired Advanced Turbine System [GFATS]) that the contractor could demonstrate, at full scale, in the 1998 to 2000 time frame. This report describes the results of the selection process. This task, including Allison internal management reviews of the selected system, has been completed. Allison`s approach to ATS is to offer an engine family that is based on the newest T406 high technology engine. This selection was based on a number of parameters including return on investment (ROI), internal rate of return (IRR) market size and potential sales into that market. This base engine family continues a history at Allison of converting flight engine products to industrial use.

  8. Advanced Micro Turbine System (AMTS) -C200 Micro Turbine -Ultra-Low Emissions Micro Turbine

    SciTech Connect (OSTI)

    Capstone Turbine Corporation

    2007-12-31

    In September 2000 Capstone Turbine Corporation commenced work on a US Department of Energy contract to develop and improve advanced microturbines for power generation with high electrical efficiency and reduced pollutants. The Advanced MicroTurbine System (AMTS) program focused on: (1) The development and implementation of technology for a 200 kWe scale high efficiency microturbine system (2) The development and implementation of a 65 kWe microturbine which meets California Air Resources Board (CARB) emissions standards effective in 2007. Both of these objectives were achieved in the course of the AMTS program. At its conclusion prototype C200 Microturbines had been designed, assembled and successfully completed field demonstration. C65 Microturbines operating on natural, digester and landfill gas were also developed and successfully tested to demonstrate compliance with CARB 2007 Fossil Fuel Emissions Standards for NOx, CO and VOC emissions. The C65 Microturbine subsequently received approval from CARB under Executive Order DG-018 and was approved for sale in California. The United Technologies Research Center worked in parallel to successfully execute a RD&D program to demonstrate the viability of a low emissions AMS which integrated a high-performing microturbine with Organic Rankine Cycle systems. These results are documented in AMS Final Report DOE/CH/11060-1 dated March 26, 2007.

  9. HTGR applications program advanced systems. Semiannual report, October 1, 1982-March 31, 1983

    SciTech Connect (OSTI)

    None

    1983-05-01

    Work Breakdown Structure (WBS 41) activities emphasize the advanced HTGR modular reactor system (MRS) for reformer (R) and steam cycle/-cogeneration (SC/C) applications. This report describes progress in system performance for a 250-MW(t) MRS-R and a 300-MW(t) MRS-SC/C plant; it details the groundrules and parameters for the FY-83 nuclear core design and examines and compares fuel cycle economics. This report gives results from a study on decay heat removal transients for the MRS-R and MRS-SC/C variants. It evaluates the bypass valve system and the number and location of helium circulators, and it describes the progress on circulator component design, a prestressed concrete vessel steel closure design, and plant licensing and safety. Under the Advanced Technology Transfer Task (WBS 15), this report includes a section on a pebble bed reactor (PBR) MRS core heatup thermal model analysis. This report also gives the results of a survey on candidate reformer tube materials from GA Technologies Inc. to identify acceptable substitute materials for Inconel 617 to alleviate possible cobalt activation and carburization problems.

  10. Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

    SciTech Connect (OSTI)

    FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

    2000-02-01

    This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

  11. Probability-Based Software for Grid Optimization: Improved Power System Operations Using Advanced Stochastic Optimization

    SciTech Connect (OSTI)

    2012-02-24

    GENI Project: Sandia National Laboratories is working with several commercial and university partners to develop software for market management systems (MMSs) that enable greater use of renewable energy sources throughout the grid. MMSs are used to securely and optimally determine which energy resources should be used to service energy demand across the country. Contributions of electricity to the grid from renewable energy sources such as wind and solar are intermittent, introducing complications for MMSs, which have trouble accommodating the multiple sources of price and supply uncertainties associated with bringing these new types of energy into the grid. Sandia’s software will bring a new, probability-based formulation to account for these uncertainties. By factoring in various probability scenarios for electricity production from renewable energy sources in real time, Sandia’s formula can reduce the risk of inefficient electricity transmission, save ratepayers money, conserve power, and support the future use of renewable energy.

  12. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    SciTech Connect (OSTI)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

  13. Advanced Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal models power density cost lifetime Advanced Thermal Interface Materials Advanced Heat Transfer Technologies Air Cooling Thermal System Performance and Integration Thermal...

  14. Role of Passive Safety Systems in Severe Accidents Prevention for Advanced WWER-1000 Reactor Plants

    SciTech Connect (OSTI)

    Bukin, N.V.; Fil, N.S.; Shumsky, A.M. [EDO 'Gidropress', 21 Ordzhonikidze str., Podolsk, Moscow Region, RU-142103 (Russian Federation)

    2004-07-01

    Role of new safety systems applied in advanced WWER-1000 (passive residual heat removal system, SPOT and passive core flooding system, HA-2) in severe accident prevention is considered in the paper. The following typical beyond-design accidents (BDBAs) that essentially determine the design basis of the above passive systems are considered in the paper: - station blackout; - LB LOCA (double-ended cold leg break 850 mm diameter) with station blackout. The domestic DINAMIKA-97 and TETCH-M-97 codes developed by EDO 'Gidropress' were used for the analyses. Besides, some supporting calculations have been performed by new Russian KORSAR code and western RELAP5/MOD3.2 and ATHLET 1.2A codes. The analysis of station blackout accident without operation of new passive systems have shown the exceeding of the maximum design limit of fuel rod damage already in 2-2,5 h after initiating event. Operation of SPOT system prevents any core damage during the BDBA under consideration. The analysis have also demonstrated that operation of new passive safety systems (SPOT and HA-2) ensures the effective core cooling within required period of time. This ensures essentially decreased probability of severe core degradation. (authors)

  15. Fermilab Central Computing Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect (OSTI)

    Krstulovich, S.F.

    1986-11-12

    This report is developed as part of the Fermilab Central Computing Facility Project Title II Design Documentation Update under the provisions of DOE Document 6430.1, Chapter XIII-21, Section 14, paragraph a. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis and should be considered as a supplement to the Title I Design Report date March 1986 wherein energy related issues are discussed pertaining to building envelope and orientation as well as electrical systems design.

  16. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    SciTech Connect (OSTI)

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

    2010-09-01

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

  17. Application of Advanced Wide Area Early Warning Systems with Adaptive Protection

    SciTech Connect (OSTI)

    Blumstein, Carl; Cibulka, Lloyd; Thorp, James; Centeno, Virgilio; King, Roger; Reeves, Kari; Ashrafi, Frank; Madani, Vahid

    2014-09-30

    Recent blackouts of power systems in North America and throughout the world have shown how critical a reliable power system is to modern societies, and the enormous economic and societal damage a blackout can cause. It has been noted that unanticipated operation of protection systems can contribute to cascading phenomena and, ultimately, blackouts. This project developed and field-tested two methods of Adaptive Protection systems utilizing synchrophasor data. One method detects conditions of system stress that can lead to unintended relay operation, and initiates a supervisory signal to modify relay response in real time to avoid false trips. The second method detects the possibility of false trips of impedance relays as stable system swings “encroach” on the relays’ impedance zones, and produces an early warning so that relay engineers can re-evaluate relay settings. In addition, real-time synchrophasor data produced by this project was used to develop advanced visualization techniques for display of synchrophasor data to utility operators and engineers.

  18. Alternative Passive Decay-Heat Systems for the Advanced High-Temperature Reactor

    SciTech Connect (OSTI)

    Forsberg, Charles W.

    2006-07-01

    The Advanced High-Temperature Reactor (AHTR) is a low-pressure, liquid-salt-cooled high-temperature reactor for the production of electricity and hydrogen. The high-temperature (950 deg C) variant is defined as the liquid-salt-cooled very high-temperature reactor (LS-VHTR). The AHTR has the same safety goals and uses the same graphite-matrix coated particle fuel as do modular high-temperature gas-cooled reactors. However, the large AHTR power output [2400 to 4000 MW(t)] implies the need for a different type of passive decay-heat removal system. Because the AHTR is a low-pressure, liquid-cooled reactor like sodium-cooled reactors, similar types of decay-heat-removal systems can be used. Three classes of passive decay heat removal systems have been identified: the reactor vessel auxiliary cooling system which is similar to that proposed for the General Electric S-PRISM sodium-cooled fast reactor; the direct reactor auxiliary cooling system, which is similar to that used in the Experimental Breeder Reactor-II; and a new pool reactor auxiliary cooling system. These options are described and compared. (author)

  19. Prestressed-concrete pressure vessels and their applicability to advanced-energy-system concepts

    SciTech Connect (OSTI)

    Naus, D.J

    1983-01-01

    Prestressed concrete pressure vessels (PCPVs) are, in essence, spaced steel structures since their strength is derived from a multitude of steel elements made up of deformed reinforcing bars and prestressing tendons which are present in sufficient quantities to carry tension loads imposed on the vessel. Other major components of a PCPV include the concrete, liner and cooling system, and insulation. PCPVs exhibit a number of advantages which make them ideally suited for application to advanced energy concepts: fabricability in virtually any size and shape using available technology, improved safety, reduced capital costs, and a history of proven performance. PCPVs have many applications to both nuclear- and non-nuclear-based energy systems concepts. Several of these concepts will be discussed as well as the research and development activities conducted at ORNL in support of PCPV development.

  20. Advanced Heat Exchanger Development for Molten Salts in Nuclear and Non Nuclear Systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sabharwall, Piyush; Clark, Denis; Sridharan, Kumar; Zheng, Guiqiu; Anderson, Mark

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet materialmore »in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically « less

  1. Advanced coal-fueled gas turbine systems, Volume 1: Annual technical progress report

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    This is the first annual technical progress report for The Advanced Coal-Fueled Gas Turbine Systems Program. Two semi-annual technical progress reports were previously issued. This program was initially by the Department of Energy as an R D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular three-stage slagging combustor concept. Fuel-rich conditions inhibit NO/sub x/ formation from fuel nitrogen in the first stage; coal ash and sulfur is subsequently removed from the combustion gases by an impact separator in the second stage. Final oxidation of the fuel-rich gases and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage. 27 figs., 15 tabs.

  2. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID 1 Efficient Data Migration to Conserve Energy

    E-Print Network [OSTI]

    Bader, David A.

    and efficient data migrations to achieve the un- balanced data layouts. Motivation. The primary problemIEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID 1 Efficient Data Migration to high data migration overhead. To address this problem, we propose in this paper a new energy

  3. Can we advance macroscopic quantum systems outside the framework of complex decoherence theory?

    E-Print Network [OSTI]

    Mark E. Brezinski; Maria Rupnick

    2013-12-30

    Macroscopic quantum systems (MQS) are macroscopic systems driven by quantum rather than classical mechanics, a long studied area with minimal success till recently. Harnessing the benefits of quantum mechanics on a macroscopic level would revolutionize fields ranging from telecommunication to biology, the latter focused on here for reasons discussed. Contrary to misconceptions, there are no known physical laws that prevent the development of MQS. Instead, they are generally believed universally lost in complex systems from environmental entanglements (decoherence). But we argue success is achievable MQS with decoherence compensation developed, naturally or artificially, from top-down rather current reductionist approaches. This paper advances the MQS field by a complex systems approach to decoherence. First, why complex system decoherence approaches (top-down) are needed is discussed. Specifically, complex adaptive systems (CAS) are not amenable to reductionist models (and their master equations) because of emergent behavior, approximation failures, not accounting for quantum compensator mechanisms, ignoring path integrals, and the subentity problem. In addition, since MQS must exist within the context of the classical world, rapid decoherence and prolonged coherence are both needed. Nature has already demonstrated this for quantum subsystems such as photosynthesis and magnetoreception. Second, we perform a preliminary study that illustrates a top-down approach to potential MQS. In summary, reductionist arguments against MQS are not justifiable. It is more likely they are not easily detectable in large intact classical systems or has been destroyed by reductionist experimental set-ups. This complex systems decoherence approach, using top down investigations, is critical to paradigm shifts in MQS research both in biological and non-biological systems.

  4. Nonlinear System Modeling, Optimal Cam Design, and Advanced System Control for an Electromechanical Engine Valve Drive

    E-Print Network [OSTI]

    Qiu, Yihui

    A cam-based shear force-actuated electromechanical valve drive system offering variable valve timing in internal combustion engines was previously proposed and demonstrated. To transform this concept into a competitive ...

  5. Global search tool for the Advanced Photon Source Integrated Relational Model of Installed Systems (IRMIS) database.

    SciTech Connect (OSTI)

    Quock, D. E. R.; Cianciarulo, M. B.; APS Engineering Support Division; Purdue Univ.

    2007-01-01

    The Integrated Relational Model of Installed Systems (IRMIS) is a relational database tool that has been implemented at the Advanced Photon Source to maintain an updated account of approximately 600 control system software applications, 400,000 process variables, and 30,000 control system hardware components. To effectively display this large amount of control system information to operators and engineers, IRMIS was initially built with nine Web-based viewers: Applications Organizing Index, IOC, PLC, Component Type, Installed Components, Network, Controls Spares, Process Variables, and Cables. However, since each viewer is designed to provide details from only one major category of the control system, the necessity for a one-stop global search tool for the entire database became apparent. The user requirements for extremely fast database search time and ease of navigation through search results led to the choice of Asynchronous JavaScript and XML (AJAX) technology in the implementation of the IRMIS global search tool. Unique features of the global search tool include a two-tier level of displayed search results, and a database data integrity validation and reporting mechanism.

  6. Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

  7. Advanced High-Temperature Reactor Dynamic System Model Development: April 2012 Status

    SciTech Connect (OSTI)

    Qualls, A.L.; Cetiner, M.S.; Wilson, T.L., Jr.

    2012-04-30

    The Advanced High-Temperature Reactor (AHTR) is a large-output fluoride-salt-cooled high-temperature reactor (FHR). An early-phase preconceptual design of a 1500 MW(e) power plant was developed in 2011 [Refs. 1 and 2]. An updated version of this plant is shown as Fig. 1. FHRs feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR is designed to be a “walk away” reactor that requires no action to prevent large off-site releases following even severe reactor accidents. This report describes the development of dynamic system models used to further the AHTR design toward that goal. These models predict system response during warmup, startup, normal operation, and limited off-normal operating conditions. Severe accidents that include a loss-of-fluid inventory are not currently modeled. The scope of the models is limited to the plant power system, including the reactor, the primary and intermediate heat transport systems, the power conversion system, and safety-related or auxiliary heat removal systems. The primary coolant system, the intermediate heat transport system and the reactor building structure surrounding them are shown in Fig. 2. These systems are modeled in the most detail because the passive interaction of the primary system with the surrounding structure and heat removal systems, and ultimately the environment, protects the reactor fuel and the vessel from damage during severe reactor transients. The reactor silo also plays an important role during system warmup. The dynamic system modeling tools predict system performance and response. The goal is to accurately predict temperatures and pressures within the primary, intermediate, and power conversion systems and to study the impacts of design changes on those responses. The models are design tools and are not intended to be used in reactor qualification. The important details to capture in the primary system relate to flows within the reactor vessel during severe events and the resulting temperature profiles (temperature and duration) for major components. Critical components include the fuel, reactor vessel, primary piping, and the primary-to-intermediate heat exchangers (P-IHXs). The major AHTR power system loops are shown in Fig. 3. The intermediate heat transfer system is a group of three pumped salt loops that transports the energy produced in the primary system to the power conversion system. Two dynamic system models are used to analyze the AHTR. A Matlab/Simulink?-based model initiated in 2011 has been updated to reflect the evolving design parameters related to the heat flows associated with the reactor vessel. The Matlab model utilizes simplified flow assumptions within the vessel and incorporates an empirical representation of the Direct Reactor Auxiliary Cooling System (DRACS). A Dymola/Modelica? model incorporates a more sophisticated representation of primary coolant flow and a physics-based representation of the three-loop DRACS thermal hydraulics. This model is not currently operating in a fully integrated mode. The Matlab model serves as a prototype and provides verification for the Dymola model, and its use will be phased out as the Dymola model nears completion. The heat exchangers in the system are sized using spreadsheet-based, steady-state calculations. The detail features of the heat exchangers are programmed into the dynamic models, and the overall dimensions are used to generate realistic plant designs. For the modeling cases where the emphasis is on understanding responses within the intermediate and primary systems, the power conversion system may be modeled as a simple boundary condition at the intermediate-to-power conversion system heat exchangers.

  8. Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development

    SciTech Connect (OSTI)

    Stephenson, M.

    1994-03-01

    Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

  9. Treatise with Reasoning Proof of the First Law of Energy Conservation Forced Interactions of Material Systems and Their Structures

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Treatise with Reasoning Proof of the First Law of Energy Conservation Forced Interactions The First Law of Energy Conservation, have been traditionally accepted as axiomatic laws that cannot be proven but are never experienced otherwise. In this treatise we have focused on energy concept

  10. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary Formations

    SciTech Connect (OSTI)

    Mike Bruno; Russell L. Detwiler; Kang Lao; Vahid Serajian; Jean Elkhoury; Julia Diessl; Nicky White

    2012-09-30

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. Terralog USA, in collaboration with the University of California, Irvine (UCI), are currently investigating advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. This two-year research project, funded by the US Department of Energy, includes combined efforts for: 1) Resource characterization; 2) Small and large scale laboratory investigations; 3) Numerical simulation at both the laboratory and field scale; and 4) Engineering feasibility studies and economic evaluations. The research project is currently in its early stages. This paper summarizes our technical approach and preliminary findings related to potential resources, small-scale laboratory simulation, and supporting numerical simulation efforts.

  11. Research needs for corrosion control and prevention in energy conservation systems

    SciTech Connect (OSTI)

    Brooman, E.W.; Hurwitch, J.W.

    1985-06-01

    A group of 28 electrochemists, materials scientists and corrosion engineers was brought together to determine if the government could have a role as a focal point for corrosion R and D, discuss opportunities in fundamental research and solving corrosion problems, and develop a research agenda. Participants from government, industry and academia assembled into four technical discussion groups: localized corrosion, general corrosion, high temperature corrosion, and corrosion control and prevention. Research needs were identified, discussed, then assigned a figure of merit. Some 44 corrosion control and prevention topics were identified as having a high priority for consideration for funding. Another 35 topics were identified as having a medium priority for funding. When classified according to corrosion phenomenon, the areas which should receive the most attention are molten salt attack, crevice corrosion, stress-corrosion cracking, erosion-corrosion, pitting attack, intergranular attack and corrosion fatigue. When classified according to the sector or system involved, those which should receive the most attention are chemical processes, transportation, buildings and structures, electric power generation, and batteries and fuel cells.

  12. Thermodynamics and Kinetics of Advanced Separations Systems – FY 2010 Summary Report

    SciTech Connect (OSTI)

    Leigh R. Martin; Peter R. Zalupski

    2010-09-01

    This report presents a summary of the work performed in the area of thermodynamics and kinetics of advanced separations systems under the Fuel Cycle Research and Development (FCR&D) program during FY 2010. Thermodynamic investigations into metal extraction dependencies on lactate and HDEHP have been performed. These metal distribution studies indicate a substantial deviation from the expected behavior at conditions that are typical of TALSPEAK process operational platform. These studies also identify that no thermodynamically stable mixed complexes exist in the aqueous solutions and increasing the complexity of the organic medium appears to influence the observed deviations. Following on from this, the first calorimetric measurement of the heat of extraction of americium across a liquid-liquid boundary was performed.

  13. Advances in InGaAs/InP single-photon detector systems for quantum communication

    E-Print Network [OSTI]

    Zhang, Jun; Zbinden, Hugo; Pan, Jian-Wei

    2015-01-01

    Single-photon detectors (SPDs) are the most sensitive instruments for light detection. In the near-infrared range, SPDs based on III-V compound semiconductor avalanche photodiodes have been extensively used during the past two decades for diverse applications due to their advantages in practicality including small size, low cost and easy operation. In the past decade, the rapid developments and increasing demands in quantum information science have served as key drivers to improve the device performance of single-photon avalanche diodes and to invent new avalanche quenching techniques. This Review aims to introduce the technology advances of InGaAs/InP single-photon detector systems in the telecom wavelengths and the relevant quantum communication applications, and particularly to highlight recent emerging techniques such as high-frequency gating at GHz rates and free-running operation using negative-feedback avalanche diodes. Future perspectives of both the devices and quenching techniques are summarized.

  14. Advances in InGaAs/InP single-photon detector systems for quantum communication

    E-Print Network [OSTI]

    Jun Zhang; Mark A. Itzler; Hugo Zbinden; Jian-Wei Pan

    2015-05-09

    Single-photon detectors (SPDs) are the most sensitive instruments for light detection. In the near-infrared range, SPDs based on III-V compound semiconductor avalanche photodiodes have been extensively used during the past two decades for diverse applications due to their advantages in practicality including small size, low cost and easy operation. In the past decade, the rapid developments and increasing demands in quantum information science have served as key drivers to improve the device performance of single-photon avalanche diodes and to invent new avalanche quenching techniques. This Review aims to introduce the technology advances of InGaAs/InP single-photon detector systems in the telecom wavelengths and the relevant quantum communication applications, and particularly to highlight recent emerging techniques such as high-frequency gating at GHz rates and free-running operation using negative-feedback avalanche diodes. Future perspectives of both the devices and quenching techniques are summarized.

  15. Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks

    SciTech Connect (OSTI)

    Larry Slone; Jeffrey Birkel

    2007-10-31

    The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

  16. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 2

    SciTech Connect (OSTI)

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume II contains papers presented at the following sessions: filter technology issues; hazardous air pollutants; sorbents and solid wastes; and membranes. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  17. After Compilers and Operating Systems : The Third Advance in Application Support

    E-Print Network [OSTI]

    Burkhard D. Burow

    1999-08-03

    After compilers and operating systems, TSIAs are the third advance in application support. A compiler supports a high level application definition in a programming language. An operating system supports a high level interface to the resources used by an application execution. A Task System and Item Architecture (TSIA) provides an application with a transparent reliable, distributed, heterogeneous, adaptive, dynamic, real-time, interactive, parallel, secure or other execution. In addition to supporting the application execution, a TSIA also supports the application definition. This run-time support for the definition is complementary to the compile-time support of a compiler. For example, this allows a language similar to Fortran or C to deliver features promised by functional computing. While many TSIAs exist, they previously have not been recognized as such and have served only a particular type of application. Existing TSIAs and other projects demonstrate that TSIAs are feasible for most applications. As the next paradigm for application support, the TSIA simplifies and unifies existing computing practice and research. By solving many outstanding problems, the TSIA opens many, many new opportunities for computing.

  18. Status of the Advanced Stirling Conversion System Project for 25 kW dish Stirling applications

    SciTech Connect (OSTI)

    Shaltens, R.K.; Schreiber, J.G.

    1991-01-01

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising heat engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting technology development for Stirling convertors directed toward a dynamic power source for space applications. Space power requirements include high reliability with very long life, low vibration and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. NASA Lewis is providing management of the Advanced Stirling Conversion System (ASCS) Project through an Interagency Agreement (IAA) with the DOE. Parallel contracts continue with both Cummins Engine Company (CEC), Columbus, Indiana, and Stirling Technology Company (STC), Richland, Washington for the designs of an ASCS. Each system'' design features a solar receiver/liquid metal heat transport system, and a free-piston Stirling convertor with a means to provide nominally 25 kW of electric power to a utility grid while meeting DOE's performance and long-term'' cost goals. The Cummins free- piston Stirling convertor incorporates a linear alternator to directly provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both the Cummins and STC ASCS designs will use technology which can reasonably be expected to be available in the early 1990's. 17 refs., 7 figs., 3 tabs.

  19. Advanced Thomson scattering system for high-flux linear plasma generator

    SciTech Connect (OSTI)

    Meiden, H. J. van der; Lof, A. R.; Berg, M. A. van den; Brons, S.; Eck, H. J. N. van; Koelman, P. M. J.; Koppers, W. R.; Kruijt, O. G.; Oyevaar, T.; Prins, P. R.; Rapp, J.; Scholten, J.; Smeets, P. H. M.; Star, G. van der; Zeijlmans van Emmichoven, P. A.; Donne, A. J. H.; Schram, D. C.; Naumenko, N. N.; Tugarinov, S. N.

    2012-12-15

    An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f /3) transmission grating spectrometer equipped with an intensified charged coupled device camera. The system is able to measure electron density (n{sub e}) and temperature (T{sub e}) profiles close to the output of the plasma source and, at a distance of 1.25 m, just in front of a target. The detection system enables to measure 50 spatial channels of about 2 mm each, along a laser chord of 95 mm. By summing a total of 30 laser pulses (0.6 J, 10 Hz), an observational error of 3% in n{sub e} and 6% in T{sub e} (at n{sub e}= 9.4 Multiplication-Sign 10{sup 18} m{sup -3}) can be obtained. Single pulse Thomson scattering measurements can be performed with the same accuracy for n{sub e} > 2.8 Multiplication-Sign 10{sup 20} m{sup -3}. The minimum measurable density and temperature are n{sub e} < 1 Multiplication-Sign 10{sup 17} m{sup -3} and T{sub e} < 0.07 eV, respectively. In addition, using the Rayleigh peak, superimposed on the Thomson scattered spectrum, the neutral density (n{sub 0}) of the plasma can be measured with an accuracy of 25% (at n{sub 0}= 1 Multiplication-Sign 10{sup 20} m{sup -3}). In this report, the performance of the Thomson scattering system will be shown along with unprecedented accurate Thomson-Rayleigh scattering measurements on a low-temperature argon plasma expansion into a low-pressure background.

  20. The Poisson alignment reference system implementation at the Advanced Photon Source.

    SciTech Connect (OSTI)

    Feier, I.

    1998-09-21

    The Poisson spot was established using a collimated laser beam from a 3-mW diode laser. It was monitored on a quadrant detector and found to be very sensitive to vibration and air disturbances. Therefore, for future work we strongly recommend a sealed vacuum tube in which the Poisson line may be propagated. A digital single-axis feedback system was employed to generate an straight line reference (SLR) on the X axis. Pointing accuracy was better than 8 {+-} 2 microns at a distance of 5 m. The digital system was found to be quite slow with a maximum bandwidth of 47 {+-} 9 Hz. Slow drifts were easily corrected but any vibration over 5 Hz was not. We recommend an analog proportional-integral-derivative (PID) controller for high bandwidth and smooth operation of the kinematic mirror. Although the Poisson alignment system (PAS) at the Advanced Photon Source is still in its infancy, it already shows great promise as a possible alignment system for the low-energy undulator test line (LEUTL). Since components such as wigglers and quadruples will initially be aligned with respect to each other using conventional means and mounted on some kind of rigid rail, the goal would be to align six to ten such rails over a distance of about 30 m. The PAS could be used to align these rails by mounting a sphere at the joint between two rails. These spheres would need to be in a vacuum pipe to eliminate the refractive effects of air. Each sphere would not be attached to either rail but instead to a flange connecting the vacuum pipes of each rail. Thus the whole line would be made up of straight, rigid segments that could be aligned by moving the joints. Each sphere would have its own detector, allowing the operators to actively monitor the position of each joint and therefore the overall alignment of the system.

  1. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    SciTech Connect (OSTI)

    Kung, Steven; Rapp, Robert

    2014-08-31

    A comprehensive corrosion research project consisting of pilot-scale combustion testing and long-term laboratory corrosion study has been successfully performed. A pilot-scale combustion facility available at Brigham Young University was selected and modified to enable burning of pulverized coals under the operating conditions typical for advanced coal-fired utility boilers. Eight United States (U.S.) coals were selected for this investigation, with the test conditions for all coals set to have the same heat input to the combustor. In addition, the air/fuel stoichiometric ratio was controlled so that staged combustion was established, with the stoichiometric ratio maintained at 0.85 in the burner zone and 1.15 in the burnout zone. The burner zone represented the lower furnace of utility boilers, while the burnout zone mimicked the upper furnace areas adjacent to the superheaters and reheaters. From this staged combustion, approximately 3% excess oxygen was attained in the combustion gas at the furnace outlet. During each of the pilot-scale combustion tests, extensive online measurements of the flue gas compositions were performed. In addition, deposit samples were collected at the same location for chemical analyses. Such extensive gas and deposit analyses enabled detailed characterization of the actual combustion environments existing at the lower furnace walls under reducing conditions and those adjacent to the superheaters and reheaters under oxidizing conditions in advanced U.S. coal-fired utility boilers. The gas and deposit compositions were then carefully simulated in a series of 1000-hour laboratory corrosion tests, in which the corrosion performances of different commercial candidate alloys and weld overlays were evaluated at various temperatures for advanced boiler systems. Results of this laboratory study led to significant improvement in understanding of the corrosion mechanisms operating on the furnace walls as well as superheaters and reheaters in coal-fired boilers resulting from the coexistence of sulfur and chlorine in the fuel. A new corrosion mechanism, i.e., “Active Sulfidation Corrosion Mechanism,” has been proposed to account for the accelerated corrosion wastage observed on the furnace walls of utility boilers burning coals containing sulfur and chlorine. In addition, a second corrosion mechanism, i.e., “Active Sulfide-to-Oxide Corrosion Mechanism,” has been identified to account for the rapid corrosion attack on superheaters and reheaters. Both of the newly discovered corrosion mechanisms involve the formation of iron chloride (FeCl2) vapor from iron sulfide (FeS) and HCl, followed by the decomposition of FeCl2 via self-sustaining cycling reactions. For higher alloys containing sufficient chromium, the attack on superheaters and reheaters is dominated by Hot Corrosion in the presence of a fused salt. Furthermore, two stages of the hot corrosion mechanism have been identified and characterized in detail. The initiation of hot corrosion attack induced by molten sulfate leads to Stage 1 “acidic” fluxing and re-precipitation of the protective scale formed initially on the deposit-covered alloy surfaces. Once the protective scale is penetrated, Stage 2 Hot Corrosion is initiated, which is dominated by “basic” fluxing and re-precipitation of the scale in the fused salt. Based on the extensive corrosion information generated from this project, corrosion modeling was performed using non-linear regression analysis. As a result of the modeling efforts, two predictive equations have been formulated, one for furnace walls and the other for superheaters and reheaters. These first-of-the-kind equations can be used to estimate the corrosion rates of boiler tubes based on coal chemistry, alloy compositions, and boiler operating conditions for advanced boiler systems.

  2. Nuclear Systems Enhanced Performance Program, Maintenance Cycle Extension in Advanced Light Water Reactor Design

    SciTech Connect (OSTI)

    Professor Neill Todreas

    2001-10-01

    A renewed interest in new nuclear power generation in the US has spurred interest in developing advanced reactors with features which will address the public's concerns regarding nuclear generation. However, it is economic performance which will dictate whether any new orders for these plants will materialize. Economic performance is, to a great extent, improved by maximizing the time that the plant is on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Indeed, the strategy for the advanced light water reactor plant IRIS (International Reactor, Innovative and Secure) is to utilize an eight year operating cycle. This report describes a formalized strategy to address, during the design phase, the maintenance-related barriers to an extended operating cycle. The top-level objective of this investigation was to develop a methodology for injecting component and system maintainability issues into the reactor plant design process to overcome these barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the IRIS design. The first step in meeting the top-level objective was to determine the types of operating cycle length barriers that the IRIS design team is likely to face. Evaluation of previously identified regulatory and investment protection surveillance program barriers preventing a candidate operating PWR from achieving an extended (48 month) cycle was conducted in the context of the IRIS design. From this analysis, 54 known IRIS operating cycle length barriers were identified. The resolution methodology was applied to each of these barriers to generate design solution alternatives for consideration in the IRIS design. The methodology developed has been demonstrated to narrow the design space to feasible design solutions which enable a desired operating cycle length, yet is general enough to have broad applicability. Feedback from the IRIS design team indicates that the proposed solutions to the investigated operating cycle length barriers are both feasible and consistent with sound design practice.

  3. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden DocumentationAccommodationsRegister /Advanced Energy Systems Advanced

  4. Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems

    SciTech Connect (OSTI)

    Anbo Wang; Gary Pickrell

    2011-12-31

    This report summarizes technical progress on the program â??Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systemsâ?ť funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed jointly by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering and the Department of Materials Science and Engineering at Virginia Tech. This three-year project started on October 1, 2008. In the project, a fiber optical sensing system based on intrinsic Fabry-Perot Interferometer (IFPI) was developed for strain and temperature measurements for Ultra Supercritical boiler condition assessment. Investigations were focused on sensor design, fabrication, attachment techniques and novel materials for high temperature and strain measurements. At the start of the project, the technical requirements for the sensing technology were determined together with our industrial partner Alstom Power. As is demonstrated in Chapter 4, all the technical requirements are successfully met. The success of the technology extended beyond laboratory test; its capability was further validated through the field test at DOE NETL, in which the sensors yielded distributed temperature mapping of a testing coupon installed in the turbine test rig. The measurement results agreed well with prior results generated with thermocouples. In this project, significant improvements were made to the IFPI sensor technology by splicing condition optimization, transmission loss reduction, sensor signal demodulation and sensor system design.

  5. Advisor 2.0: A Second-Generation Advanced Vehicle Simulator for Systems Analysis

    SciTech Connect (OSTI)

    Wipke, K.; Cuddy, M.; Bharathan, D.; Burch, S.; Johnson, V.; Markel, A.; Sprik, S.

    1999-03-23

    The National Renewable Energy Laboratory has recently publicly released its second-generation advanced vehicle simulator called ADVISOR 2.0. This software program was initially developed four years ago, and after several years of in-house usage and evolution, the tool is now available to the public through a new vehicle systems analysis World Wide Web page. ADVISOR has been applied to many different systems analysis problems, such as helping to develop the SAE J1711 test procedure for hybrid vehicles and helping to evaluate new technologies as part of the Partnership for a New Generation of Vehicles (PNGV) technology selection process. The model has been and will continue to be benchmarked and validated with other models and with real vehicle test data. After two months of being available on the Web, more than 100 users have downloaded ADVISOR. ADVISOR 2.0 has many new features, including an easy-to-use graphical user interface, a detailed exhaust aftertreatment thermal model, and complete browser-based documentation. Future work will include adding to the library of components available in ADVISOR, including optimization functionality, and linking with a more detailed fuel cell model.

  6. Advanced international training course on state systems of accounting for and control of nuclear materials

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    This report incorporates all lectures and presentations at the Advanced International Training Course on State Systems of Accounting for and Control of Nuclear Material held April 27 through May 12, 1981 at Santa Fe and Los Alamos, New Mexico, and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards. Major emphasis for the 1981 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory, the Battelle Pacific Northwest Laboratory, and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at both the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, Richland, Washington.

  7. Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles

    SciTech Connect (OSTI)

    Haihua Zhao; Per F. Peterson

    2012-10-01

    Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cycles can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.

  8. Cost estimates for near-term depolyment of advanced traffic management systems. Final report

    SciTech Connect (OSTI)

    Stevens, S.S.; Chin, S.M.

    1993-02-15

    The objective of this study is to provide cost est engineering, design, installation, operation and maintenance of Advanced Traffic Management Systems (ATMS) in the largest 75 metropolitan areas in the United States. This report gives estimates for deployment costs for ATMS in the next five years, subject to the qualifications and caveats set out in following paragraphs. The report considers infrastructure components required to realize fully a functional ATMS over each of two highway networks (as discussed in the Section describing our general assumptions) under each of the four architectures identified in the MITRE Intelligent Vehicle Highway Systems (IVHS) Architecture studies. The architectures are summarized in this report in Table 2. Estimates are given for eight combinations of highway networks and architectures. We estimate that it will cost between $8.5 Billion (minimal network) and $26 Billion (augmented network) to proceed immediately with deployment of ATMS in the largest 75 metropolitan areas. Costs are given in 1992 dollars, and are not adjusted for future inflation. Our estimates are based partially on completed project costs, which have been adjusted to 1992 dollars. We assume that a particular architecture will be chosen; projected costs are broken by architecture.

  9. Advanced turbine systems (ATS) program conceptual design and product development. Quarterly report, September 1 - November 30, 1994

    SciTech Connect (OSTI)

    1994-12-31

    Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NOx, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system: the turbine inlet temperature must increase, although this will lead to increased NOx emission. Improved coating and materials along with creative combustor design can result in solutions. The program is focused on two specific products: a 70 MW class industrial gas turbine based on GE90 core technology utilizing an innovative air cooling methodology, and a 200 MW class utility gas turbine based on an advanced GE heavy duty machines utilizing advanced cooling and enhancement in component efficiency. This report reports on tasks 3-8 for the industrial ATS and the utility ATS. Some impingement heat transfer results are given.

  10. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Test Procedure Development: Hybrid System Power Rating

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle...

  11. ADVANCED ELECTRON BEAM TECHNIQUES FOR METALLIC AND CERAMIC PROTECTIVE COATING SYSTEMS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01

    W. Fairbanks, "Advanced Gas Turbine Coatings for MinimallyResistance Coatings for Gas Turbine Airfoils, 11 Final1980. (11) R. C. Krutenat, Gas Turbine Materials Conference

  12. Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioner...

    Broader source: Energy.gov (indexed) [DOE]

    recent advances in thermoelectric device fabrication and the design of novel coolingheating engines exploiting thermal storage for efficient air-conditioners in automobiles...

  13. Microhole Arrays Drilled with Advanced Abrasive Slurry Jet Technology to Efficiently Exploit Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Advance & adapt microhole & ASJ/FLASH ASJTMdrilling for EGS; optimize microhole array configurations to maximize heat removal from expanded volume of reservoir rock.

  14. Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative

    Office of Environmental Management (EM)

    is taking a focused role in supporting sensor-rich smart manufacturing, next generation electric machines, and advanced materials and process research. Application of these...

  15. ADVANCED ELECTRON BEAM TECHNIQUES FOR METALLIC AND CERAMIC PROTECTIVE COATING SYSTEMS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01

    Advanced Materials for Alternate Fuel Capable Directly Heatuse of lower grade and alternate fuels such as the coal andthe more econom- ical alternate fuel. For example, estimates

  16. ADVANCED ELECTRON BEAM TECHNIQUES FOR METALLIC AND CERAMIC PROTECTIVE COATING SYSTEMS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01

    78848, 1978, ( 3) R. Kamo, 11 Ceramics for Diesel Engines,"Proceedings of Workshop on Ceramics for Advanced HeatBEAM TECHNIQUES FOR METALLIC AND CERAMIC PROTECTIVE COATING

  17. ADVANCED ELECTRON BEAM TECHNIQUES FOR METALLIC AND CERAMIC PROTECTIVE COATING SYSTEMS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01

    W. Fairbanks, "Advanced Gas Turbine Coatings for MinimallyResistance Coatings for Gas Turbine Airfoils, 11 Finaland current production gas turbine and diesel engines in an

  18. Advanced Recovery and Integrated Extraction System (ARIES) Fiscal Year 1996 Annual Report

    SciTech Connect (OSTI)

    David Dennison; Pamela W. Massey; Timothy O. Nelson

    1998-10-01

    President Clinton issued Nonprolferation and Export Control Policy in September 1993 in response to the growing threat of nuclear proliferation. Four months later, in January 1994, President Clinton and Russia's President Yeltsin issued a Joint Statement Between the United States and Russia on Nonprollfieration of Weapons of Mass Destruction and the Means of Their Delivery. President Clinton announced on 1 March 1995, that approximately 200 metric tons of US- origin weapons-usable fissile materials had been declared surplus to US defense needs. The Advanced Recovery and Integrated Extraction System (ARIES) Demonstration Project is one part of the scientific response to President Clinton's promise to reduce the nuclear weapons stockpile. The work accomplished on the ARIES Demonstration Project during fiscal year 1996, 10ctober 1995 through 30 September 1996, is described in this report. The Department of Energy (DOE), by forming the Office of Fissile Materials Disposition (OFMD), has initiated a Fissile Materials Disposition Program. The first step is the disassembly and conversion of weapons pits. Of the 200 metric tons of US surplus fissile material, approximately 50 tons are weapons plutonium, and of these 50 tons, 2/3 is contained in pits. Weapons plutonium wili be extracted from pits, rendered to an unclassified form, and converted to oxide. The plutonium oxide will then be dispositioned either by immobilization in a ceramic matrix or blended with uranium oxide, fabricated into ceramic pellets of mixed oxide (MOX) fuel, and "burned" in a commercial light water reactor. The purpose of ARIES is to demonstrate two major activities: (1) dismantlement of nuclear weapons, and (2) conversion of weapons-grade plutonium into a form required for long-term storage or in preparation for the disposition (immobilization m MOX fuel) that allows for international inspection and verification, and in accordance with safeguards regimes. Plutonium does not have to be declassified before storage; however, declassification allows plutonium to be placed under international safeguards and provides political irreversibility of the material. The OFMD sponsors the ARIES Program. The Los Alamos National Laboratory is the lead laboratory for the ARIES Demonstration Project with support from Lawrence Livermore National Laboratory and Sandia National Laboratories, New Mexico. Also, ARIES is the lead technical activity for nationaI plutonium disposition, as well as a major effort of the Los Alamos Nuclear Materials Disposition Project. The ARIES Project Leader, Timothy O. Nelson, is a technical staff member in the Advanced Technology Group (NMT-6) who is responsible for overall project management and system implementation.

  19. U.S. Assessment of Advanced Limiter-divertor Plasma-facing Systems Design, Analysis, and R&D Needs

    E-Print Network [OSTI]

    Tillack, Mark

    Reversed Configuration (FRC). 2. Limiter/Divertor Options The idea of using liquids for plasma facingU.S. Assessment of Advanced Limiter-divertor Plasma-facing Systems (ALPS) - Design, Analysis, and R. Goodwin Ave., Urbana, IL 61801 10 Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543

  20. Automatic intrusion recovery with system-wide history B.S., Korea Advanced Institute of Science and Technology (2009)

    E-Print Network [OSTI]

    2009-01-01

    Automatic intrusion recovery with system-wide history by Taesoo Kim B.S., Korea Advanced Institute of Science and Technology (2009) S.M., Massachusetts Institute of Technology (2011) Submitted for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2014 c Massachusetts

  1. System Upgrades at the Advanced Test Reactor Help Ensure that Nuclear Energy Research Continues at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Craig Wise

    2011-12-01

    Fully operational in 1967, the Advanced Test Reactor (ATR) is a first-of-its-kind materials test reactor. Located on the Idaho National Laboratory’s desert site, this reactor remains at the forefront of nuclear science, producing extremely high neutron irradiation in a relatively short time span. The Advanced Test Reactor is also the only U.S. reactor that can replicate multiple reactor environments concurrently. The Idaho National Laboratory and the Department of Energy recently invested over 13 million dollars to replace three of ATR’s instrumentation and control systems. The new systems offer the latest software and technology advancements, ensuring the availability of the reactor for future energy research. Engineers and project managers successfully completed the four year project in March while the ATR was in a scheduled maintenance outage. “These new systems represent state-of-the-art monitoring and annunciation capabilities,” said Don Feldman, ATR Station Manager. “They are comparable to systems currently used for advanced reactor designs planned for construction in the U.S. and in operation in some foreign countries.”

  2. T H E 5 TM INTERNATIONAL CONFERENCE ON INTELLIGENT&ADVANCED SYSTEMS A Conference of WORLD ENGINEERING, SCIENCE &TECHNOLOGYCONGRESS (ESTCON)

    E-Print Network [OSTI]

    Chong, Edwin K. P.

    T H E 5 TM INTERNATIONAL CONFERENCE ON INTELLIGENT&ADVANCED SYSTEMS A Conference of WORLD Society Conference Editorial Board, and on program/ organizing committees for several conferences, including the IEEE Conference on Decision and Control (CDC), American Control Conference (ACC), IEEE

  3. Advanced Reciprocating Engine Systems (ARES): Raising the Bar on Engine Technology with Increased Efficiency and Reduced Emissions, at Attractive Costs

    SciTech Connect (OSTI)

    2009-02-01

    This is a fact sheet on the U.S. Department of Energy's (DOE) Advanced Reciprocating Engine Systems program (ARES), which is designed to promote separate, but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the United States.

  4. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    SciTech Connect (OSTI)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri, John; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Liber, Pawel; Lopez-Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-03-30

    The purpose of this project was to evaluate the ability of advanced low rank coal gasification technology to cause a significant reduction in the COE for IGCC power plants with 90% carbon capture and sequestration compared with the COE for similarly configured IGCC plants using conventional low rank coal gasification technology. GE’s advanced low rank coal gasification technology uses the Posimetric Feed System, a new dry coal feed system based on GE’s proprietary Posimetric Feeder. In order to demonstrate the performance and economic benefits of the Posimetric Feeder in lowering the cost of low rank coal-fired IGCC power with carbon capture, two case studies were completed. In the Base Case, the gasifier was fed a dilute slurry of Montana Rosebud PRB coal using GE’s conventional slurry feed system. In the Advanced Technology Case, the slurry feed system was replaced with the Posimetric Feed system. The process configurations of both cases were kept the same, to the extent possible, in order to highlight the benefit of substituting the Posimetric Feed System for the slurry feed system.

  5. Conservation feebates

    SciTech Connect (OSTI)

    Collinge, R.A.

    1996-01-01

    Municipal water rates are expected to satisfy three objectives: efficiency, revenue neutrality to the utility, and distributional equity. Unfortunately, adjusting rates to efficiently achieve use and conservation targets would ordinarily generate excessive revenues. Rather than mold one tool to the service of three masters, this article suggests combining three separate tools. The first sets the water rate to cover the utility`s costs. The second assigns customers allotments to water use. The third either charges a fee for use that exceeds the customer`s allotment or hands out rebates for consumption below that allotment. The fees pay for the rebates--thus the term feebate. The outcome is (1) revenues to the utility just sufficient to cover costs, (2) efficient water consumption by municipal water customers without conservation mandates, and (3) revenue effects that can be spread fairly across various categories of customers.

  6. Field Equations and Conservation Laws Derived from the Generalized Einstein Lagrangian Density for A Gravitational System and Their Implications to Cosmology

    E-Print Network [OSTI]

    Fang-Pei Chen

    2007-03-10

    Based on investigations of the fundamental properties of the generalized Einstein Lagrangian density for a gravitational system, the theoretical foundations of the modified Einstein field equations and the Lorentz and Levi-Civita conservation laws are systematically studied. The theory of cosmology developed on the basis of these equations and laws is analyzed in detail. Some new properties and new effects of the cosmos are deduced; these new properties and new effects could be tested via future experiments and observations.

  7. Army energy conservation programs

    SciTech Connect (OSTI)

    Hutchinson, R.L.

    1983-06-01

    The Energy Engineering Analysis Program (EEAP) has been instrumented to reduce Army energy consumption by 20 percent by FY 1985. EEAP surveys and identifies high energy users, analyzes and applies conservation technologies, and submits a study report to the Director of Engineering and Housing. The Energy Conservation Investment Program (ECIP), which retrofits existing facilities with insulation, and monitoring systems, is the foundation of EEAP. The Energy Conservation and Management Plan (ECAM) is designed to do for GOCO's (government owned, contractor operated plants) what ECIP does for army plants. A few specific conversion projects are listed. An energy awareness program includes seminars, workshops, displays, and brochures. The Facilities Energy RDTandS program insures that the Army will be able to rapidly utilize the latest state-of-the-art energy technology.

  8. Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter

    SciTech Connect (OSTI)

    Chakraborty, S.; Kroposki, B.; Kramer, W.

    2008-11-01

    Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report also analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.

  9. Review and Assessment of Neutron Cross Section and Nubar Covariances for Advanced Reactor Systems

    SciTech Connect (OSTI)

    Maslov,V.M.; Oblozinsky, P.; Herman, M.

    2008-12-01

    In January 2007, the National Nuclear Data Center (NNDC) produced a set of preliminary neutron covariance data for the international project 'Nuclear Data Needs for Advanced Reactor Systems'. The project was sponsored by the OECD Nuclear Energy Agency (NEA), Paris, under the Subgroup 26 of the International Working Party on Evaluation Cooperation (WPEC). These preliminary covariances are described in two recent BNL reports. The NNDC used a simplified version of the method developed by BNL and LANL that combines the recent Atlas of Neutron Resonances, the nuclear reaction model code EMPIRE and the Bayesian code KALMAN with the experimental data used as guidance. There are numerous issues involved in these estimates of covariances and it was decided to perform an independent review and assessment of these results so that better covariances can be produced for the revised version in future. Reviewed and assessed are uncertainties for fission, capture, elastic scattering, inelastic scattering and (n,2n) cross sections as well as prompt nubars for 15 minor actinides ({sup 233,234,236}U, {sup 237}Np, {sup 238,240,241,242}Pu, {sup 241,242m,243}Am and {sup 242,243,244,245}Cm) and 4 major actinides ({sup 232}Th, {sup 235,238}U and {sup 239}Pu). We examined available evaluations, performed comparison with experimental data, taken into account uncertainties in model parameterization and made use state-of-the-art nuclear reaction theory to produce the uncertainty assessment.

  10. Advanced coal-fueled gas turbine systems. Annual report, July 1991--June 1992

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    Westinghouse`s Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO{sub x} emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO{sub x} levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  11. An advanced hybrid reprocessing system based on UF{sub 6} volatilization and chromatographic separation

    SciTech Connect (OSTI)

    Wei, Yuezhou; Liu, Ruiqin; Wu, Yan; Zu, Jianhua; Zhao, Long; Mimura, Hitoshi; Shi, Weiqun; Chai, Zhifang; Yang, Jinling; Ding, Youqian

    2013-07-01

    To recover U, Pu, MA (Np, Am, Cm) and some specific fission products FPs (Cs, Sr, Tc, etc.) from various spent nuclear fuels (LWR/FBR: Oxide, Metal Fuels), we are studying an advanced hybrid reprocessing system based on UF6 volatilization (Pyro) and chromatographic separation (Aqueous). Spent fuels are de-cladded by means of thermal and mechanical methods and then applied to the fluorination/volatilization process, which selectively recovers the most amount of U. Then, the remained fuel components are converted to oxides and dissolved by HNO{sub 3} solution. Compared to U, since Pu, MA and FPs are significantly less abundant in spent fuels, the scale of the aqueous separation process could become reasonably small and result in less waste. For the chromatographic separation processes, we have prepared different types of porous silica-based organic/inorganic adsorbents with fast diffusion kinetics, improved chemical stability and low pressure drop in a packed column. So they are advantageously applicable to efficient separation of the actinides and FP elements from the fuel dissolved solution. In this work, adsorption and separation behavior of representative actinides and FP elements was studied. Small scale separation tests using simulated and genuine fuel dissolved solutions were carried out to verify the feasibility of the proposed process. (authors)

  12. Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Gutierrez, Marte

    2013-12-31

    This research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to; Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation; Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator; Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understand of proppant flow and transport; Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production; and Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include; A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS; Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock; Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications; and Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.

  13. Safety Design Strategy for the Advanced Test Reactor Emergency Firewater Injection System Replacement Project

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  14. Advanced Heat Exchanger Development for Molten Salts in Nuclear and Non Nuclear Systems

    SciTech Connect (OSTI)

    Sabharwall, Piyush; Clark, Denis; Sridharan, Kumar; Zheng, Guiqiu; Anderson, Mark

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.

  15. FY-2011 Status Report for Thermodynamics and Kinetics of Advanced Separations Systems

    SciTech Connect (OSTI)

    Leigh R. Martin; Peter R. Zalupski; Travis S. Grimes

    2011-09-01

    This report presents a summary of the work performed in the area of thermodynamics and kinetics of advanced separations systems under the Fuel Cycle Research and Development (FCR&D) program during FY 2011 at the INL. On the thermodynamic front, investigations of liquid-liquid distribution of lanthanides at TALSPEAK-related conditions continued in FY11. It has been determined that a classical ion-exchanging phase transfer mechanism, where three HDEHP dimers solvate the metal ion in the organic phase, dominates metal extraction for systems that contain up to 0.1 M free lactate in solution. The correct graphical interpretation of the observed data in those regions relied on incorporating corrections for non-ideal behavior of HDEHP dimer in aliphatic diluents as well as sodium extraction equilibria. When aqueous conditions enter the complex regions of high lactate concentrations, slope analysis is no longer possible. When normalized metal distribution ratios were studied along the increasing concentration of free lactate, a slope of -1 was apparent. Such dependency either indicates aqueous complexing competition from lactate, or, a more likely scenario, a participation of lactate in the extracted metal complex. This finding agrees with our initial assessment of postulated changes in the extraction mechanism as a source of the lactate-mediated loss of extraction efficiency. The observed shape in the lanthanide distribution curve in our studies of TALSPEAK systems was the same for solutions containing no lactate or 2.3 M lactate. As such we may conclude that the mechanism of phase transfer is not altered dramatically and remains similarly sensitive to effective charge density of the metal ion. In addition to these thermodynamics studies, this report also summarizes the first calorimetric determination of heat of extraction of 248Cm in a bi-phasic system. The heat of extraction measured by isothermal titration calorimetry is compared to that determined using van't Hoff calculations. Further investigations on the kinetics of extraction in TALSPEAK with macro quantities of lanthanides present in the initial aqueous phase composition have been performed. These results have been summarized and compared to previous work performed for FCR&D. In addition, the effects of HDEHP concentration in the organic phase on europium extraction have been studied.

  16. ADVANCED ELECTRON BEAM TECHNIQUES FOR METALLIC AND CERAMIC PROTECTIVE COATING SYSTEMS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01

    Gas Turbine Coatings for Minimally Processed Coal Derived Liquid Fuels," presented at the Conference on Advanced MaterialsCoatings for Gas Turbine Airfoils," AGARD LectureS es Publication, LS No. 106 Materials

  17. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01

    Average Reynolds shellside crossflow 624 °C 90.6 (W/ m 2 °C)transfer from tubes in crossflow. Advances in Heat Transfercalc-init- *-------pressure drop crossflow bundle segment

  18. Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks

    SciTech Connect (OSTI)

    Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

    2008-12-31

    The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

  19. Cooling Tower Energy Conservation Optimization 

    E-Print Network [OSTI]

    Burger, R.

    1985-01-01

    Energy conservation strategies involve more than examination of fan horsepower. Colder water and pumping head provide vast savings potentials. What is dollar value of 1°F in your process? What is dollar cost of pumping water to distribution system...

  20. Cooling Towers, Energy Conservation Machines 

    E-Print Network [OSTI]

    Burger, R.

    1980-01-01

    Cooling towers, in all too many industrial plants, are often the neglected units of the process chain which are hidden bonanzas for energy conservation and dollar savings. By lowering the entire systems temperature by the use of colder water...

  1. In-Service Design & Performance Prediction of Advanced Fusion Material Systems by Computational Modeling and Simulation

    SciTech Connect (OSTI)

    G. R. Odette; G. E. Lucas

    2005-11-15

    This final report on "In-Service Design & Performance Prediction of Advanced Fusion Material Systems by Computational Modeling and Simulation" (DE-FG03-01ER54632) consists of a series of summaries of work that has been published, or presented at meetings, or both. It briefly describes results on the following topics: 1) A Transport and Fate Model for Helium and Helium Management; 2) Atomistic Studies of Point Defect Energetics, Dynamics and Interactions; 3) Multiscale Modeling of Fracture consisting of: 3a) A Micromechanical Model of the Master Curve (MC) Universal Fracture Toughness-Temperature Curve Relation, KJc(T - To), 3b) An Embrittlement DTo Prediction Model for the Irradiation Hardening Dominated Regime, 3c) Non-hardening Irradiation Assisted Thermal and Helium Embrittlement of 8Cr Tempered Martensitic Steels: Compilation and Analysis of Existing Data, 3d) A Model for the KJc(T) of a High Strength NFA MA957, 3e) Cracked Body Size and Geometry Effects of Measured and Effective Fracture Toughness-Model Based MC and To Evaluations of F82H and Eurofer 97, 3-f) Size and Geometry Effects on the Effective Toughness of Cracked Fusion Structures; 4) Modeling the Multiscale Mechanics of Flow Localization-Ductility Loss in Irradiation Damaged BCC Alloys; and 5) A Universal Relation Between Indentation Hardness and True Stress-Strain Constitutive Behavior. Further details can be found in the cited references or presentations that generally can be accessed on the internet, or provided upon request to the authors. Finally, it is noted that this effort was integrated with our base program in fusion materials, also funded by the DOE OFES.

  2. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    SciTech Connect (OSTI)

    Cui, Z. Q.; Chen, Z. J.; Xie, X. F.; Peng, X. Y.; Hu, Z. M.; Du, T. F.; Ge, L. J.; Zhang, X.; Yuan, X.; Fan, T. S.; Chen, J. X.; Li, X. Q., E-mail: lixq2002@pku.edu.cn, E-mail: guohuizhang@pku.edu.cn; Zhang, G. H., E-mail: lixq2002@pku.edu.cn, E-mail: guohuizhang@pku.edu.cn [School of Physics, State Key Lab of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Xia, Z. W. [Southwestern Institute of Physics, Chengdu 610225 (China); Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N. [Institute of Plasma Physics, CAS, Hefei 230031 (China)

    2014-11-15

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G.

  3. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    SciTech Connect (OSTI)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri,; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-11-30

    This report describes the development of the design of an advanced dry feed system that was carried out under Task 4.0 of Cooperative Agreement DE-FE0007902 with the US DOE, “Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the use of Low- Rank Coal.” The resulting design will be used for the advanced technology IGCC case with 90% carbon capture for sequestration to be developed under Task 5.0 of the same agreement. The scope of work covered coal preparation and feeding up through the gasifier injector. Subcomponents have been broken down into feed preparation (including grinding and drying), low pressure conveyance, pressurization, high pressure conveyance, and injection. Pressurization of the coal feed is done using Posimetric1 Feeders sized for the application. In addition, a secondary feed system is described for preparing and feeding slag additive and recycle fines to the gasifier injector. This report includes information on the basis for the design, requirements for down selection of the key technologies used, the down selection methodology and the final, down selected design for the Posimetric Feed System, or PFS.

  4. Advanced turbine systems program conceptual design and product development task 5 -- market study of the gas fired ATS. Topical report

    SciTech Connect (OSTI)

    1995-05-01

    Solar Turbines Incorporated (Solar), in partnership with the Department of Energy, will develop a family of advanced gas turbine-based power systems (ATS) for widespread commercialization within the domestic and international industrial marketplace, and to the rapidly changing electric power generation industry. The objective of the jointly-funded Program is to introduce an ATS with high efficiency, and markedly reduced emissions levels, in high numbers as rapidly as possible following introduction. This Topical Report is submitted in response to the requirements outlined in Task 5 of the Department of Energy METC Contract on Advanced Combustion Systems, Contract No, DE AC21-93MC30246 (Contract), for a Market Study of the Gas Fired Advanced Turbine System. It presents a market study for the ATS proposed by Solar, and will examine both the economic and siting constraints of the ATS compared with competing systems in the various candidate markets. Also contained within this report is an examination and analysis of Solar`s ATS and its ability to compete in future utility and industrial markets, as well as factors affecting the marketability of the ATS.

  5. Conservation Cost-Effectiveness Determination Methodology

    E-Print Network [OSTI]

    . This allocation is done based on the collective savings-weighted load shape of the individual measures in each transmission and distribution systems. Second, some conservation measures, for example high efficiency clothes conservation measures or programs. In the case of conservation, the model uses two separate supply curves

  6. A. La Rosa Lecture Notes ENERGY CONSERVATION

    E-Print Network [OSTI]

    ________________________________________________________________________ ENERGY CONSERVATION The Fisrt Law of Thermodynamics and the Classical Work Kinetic-Energy (CWE) Theorem I on a system II.4.B2 Heat-transfer Q II.4.C Fundamental Energy Conservation Law Generalization of the classic work/kinetic-energy theorem III CONSERVATION of ENERGY. Case: Pure Thermodynamics The First Law

  7. Advanced Photovoltaic Inverter Functionality using 500 kW Power Hardware-in-Loop Complete System Laboratory Testing: Preprint

    SciTech Connect (OSTI)

    Mather, B. A.; Kromer, M. A.; Casey, L.

    2013-01-01

    With the increasing penetration of distribution connected photovoltaic (PV) systems, more and more PV developers and utilities are interested in easing future PV interconnection concerns by mitigating some of the impacts of PV integration using advanced PV inverter controls and functions. This paper describes the testing of a 500 kW PV inverter using Power Hardware-in-Loop (PHIL) testing techniques. The test setup is described and the results from testing the inverter in advanced functionality modes, not commonly used in currently interconnected PV systems, are presented. PV inverter operation under PHIL evaluation that emulated both the DC PV array connection and the AC distribution level grid connection are shown for constant power factor (PF) and constant reactive power (VAr) control modes. The evaluation of these modes was completed under varying degrees of modeled PV variability.

  8. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  9. Web Unit Mining Finding and Classifying Subgraphs of Centre for Advanced Information Systems

    E-Print Network [OSTI]

    Aixin, Sun

    Web Unit Mining ­ Finding and Classifying Subgraphs of Web Pages Aixin Sun Centre for Advanced Technological University Singapore, 639798 aseplim@ntu.edu.sg ABSTRACT In web classification, most researchers assume that the ob- jects to classify are individual web pages from one or more web sites. In practice

  10. EWEC 2006 Scientific Track Advanced Forecast Systems for the Grid Integration of 25 GW

    E-Print Network [OSTI]

    Heinemann, Detlev

    forecasts, smoothing effects Abstract The economic success of offshore wind farms in liberalised electricity of offshore wind farms, their electricity production must be known well in advance to allow an efficient Oldenburg, Germany Key words: Offshore wind power, grid integration, short-term prediction, regional

  11. Fusion Engineering and Design 82 (2007) 217236 Advanced power core system for the

    E-Print Network [OSTI]

    California at San Diego, University of

    2007-01-01

    -17Li at a high outlet temperature (about 1100 C) for high power cycle efficiency while maintaining- conducting magnet, high power cycle efficiency, and lower-cost advanced manufacturing techniques. Fig. 1 material. The Pb-17Li operating temperature is opti- mized to provide high power cycle efficiency while

  12. Web Unit Mining Finding and Classifying Subgraphs of Centre for Advanced Information Systems

    E-Print Network [OSTI]

    Aixin, Sun

    Web Unit Mining ­ Finding and Classifying Subgraphs of Web Pages Aixin Sun Centre for Advanced Technological University Singapore, 639798 aseplim@ntu.edu.sg ABSTRACT In web classification, most researchers assume that the ob- jects to classify are individual web pages from one or more web sites. In practice

  13. CENPES/EB-AB-G&E/AEDC Corporativo Advanced Control System Industrial

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    the specification of products, Minimize energy consumption, Minimizes the process variability which increases safety demand for high performance units Advanced Control and Optimization Technologies will play an importante of control loops with a good performance rose from 29 to nearly 70% About 50% of the control loops had tuning

  14. Abstract--Recent advances in sensors, low-power system-on-a-chip devices, and wireless communications, have prompted a

    E-Print Network [OSTI]

    Milenkovi, Aleksandar

    Abstract-- Recent advances in sensors, low-power system-on- a-chip devices, and wireless communications, have prompted a proliferation of wireless sensor networks. As these networks require advanced, and flexibility. Through the power of reconfigurability, wireless sensor network designs containing reprogrammable

  15. Advanced high-speed flywheel energy storage systems for pulsed power application 

    E-Print Network [OSTI]

    Talebi Rafsanjan, Salman

    2009-05-15

    Power systems on modern commercial transportation systems are moving to more electric based equipment, thus improving the reliability of the overall system. Electrical equipment on such systems will include some loads that require very high power...

  16. ADVANCED LIGHT SOURCE DIVISION FY2008 SELF-ASSESSMENT REPORT

    E-Print Network [OSTI]

    ADVANCED LIGHT SOURCE DIVISION FY2008 SELF-ASSESSMENT REPORT November 7, 2008 Prepared by....................................................................3 E4. Division participates in pollution prevention, energy conservation, recycling, and waste); and environmental permits and management criteria (resource conservation, pollution prevention and waste

  17. Energy Conservation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos. Inside the TA-03 Steam Plant: Replacement or reconfiguration of the 50 year old steam plant and piping system could provide significant energy savings for LANL. Meeting...

  18. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Combined Heat and Power Systems Technology Assessment

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy Headquarters Categorical| Department of Energy5: Lighting, HVAC, and6:Advanced

  19. Development of a propulsion system and component test facility for advanced radioisotope powered Mars Hopper platforms

    SciTech Connect (OSTI)

    Robert C. O'Brien; Nathan D. Jerred; Steven D. Howe

    2011-02-01

    Verification and validation of design and modeling activities for radioisotope powered Mars Hopper platforms undertaken at the Center for Space Nuclear Research is essential for proof of concept. Previous research at the center has driven the selection of advanced material combinations; some of which require specialized handling capabilities. The development of a closed and contained test facility to forward this research is discussed within this paper.

  20. Development of Advanced Wear and Corrosion Resistant Systems Through Laser Surface Alloying and Materials Simulations

    SciTech Connect (OSTI)

    R. P. Martukanitz and S. Babu

    2007-05-03

    Laser surfacing in the form of cladding, alloying, and modifications are gaining widespread use because of its ability to provide high deposition rates, low thermal distortion, and refined microstructure due to high solidification rates. Because of these advantages, laser surface alloying is considered a prime candidate for producing ultra-hard coatings through the establishment or in situ formation of composite structures. Therefore, a program was conducted by the Applied Research Laboratory, Pennsylvania State University and Oak Ridge National Laboratory to develop the scientific and engineering basis for performing laser-based surface modifications involving the addition of hard particles, such as carbides, borides, and nitrides, within a metallic matrix for improved wear, fatigue, creep, and corrosion resistance. This has involved the development of advanced laser processing and simulation techniques, along with the refinement and application of these techniques for predicting and selecting materials and processing parameters for the creation of new surfaces having improved properties over current coating technologies. This program has also resulted in the formulation of process and material simulation tools capable of examining the potential for the formation and retention of composite coatings and deposits produced using laser processing techniques, as well as positive laboratory demonstrations in producing these coatings. In conjunction with the process simulation techniques, the application of computational thermodynamic and kinetic models to design laser surface alloying materials was demonstrated and resulted in a vast improvement in the formulation of materials used for producing composite coatings. The methodology was used to identify materials and to selectively modify microstructures for increasing hardness of deposits produced by the laser surface alloying process. Computational thermodynamic calculations indicated that it was possible to induce the precipitation of titanium carbonitrides during laser surface alloying provided there was sufficient amount of dissolved titanium, carbon, and nitrogen in the liquid steel. This was confirmed experimentally by using a powder mixture of 431-martensitic steel, titanium carbide powder, and nitrogen shielding, during laser deposition to produce deposits exhibiting relatively high hardness (average surface hardness of 724 HV). The same approach was extended to direct diode laser processing and similar microstructures were attained. The above analysis was extended to develop an in-situ precipitation of Ti(CN) during laser deposition. The Ti addition was achieving by mixing the 431 martensitic steel powders with ferro-titanium. The dissolution of nitrogen was achieved by using 100% nitrogen shielding gas, which was indicated by thermodynamic analysis. Demonstrations were also conducted utilizing the tools developed during the program and resulted in several viable composite coating systems being identified. This included the use of TiC and ferro-titanium in martensitic-grade stainless steel matrix material with and without the use of active N2 shielding gas, WC hard particles in a martensitic-grade stainless steel matrix material, WC and BN in a nickel-based matrix material, and WC in highly alloyed iron-based matrix. Although these demonstrations indicated the potential of forming composite coatings, in certain instances, the intended industrial applications involved unique requirements, such as coating of internal surfaces, which hindered the full development of the improved coating technology. However, it is believed that the addition of common hard particles, such as WC or TiC, to matrix material representing martensitic grades of stainless steel offer opportunities for improved performance at relatively low material cost.

  1. Understanding the differences in the development and use of advanced traveler information systems for vehicles (ATIS/V) in the U.S., Germany, and Japan

    E-Print Network [OSTI]

    Sugawara, Yoshihiko

    2007-01-01

    Traffic congestion is becoming a serious problem. As a solution, advanced traveler information systems (ATIS) mitigate traffic congestion by providing real-time traffic information to travelers. ATIS includes various ...

  2. Advance Three Phase Power Factor Correction Schemes for Utility Interface of Power Electronic Systems 

    E-Print Network [OSTI]

    Albader, Mesaad

    2014-07-30

    Modern power electronic systems operate with different voltage and/or frequency rating such as Adjustable speed drive, Micro Grid, Uninterruptable Power Supplies (UPS) and High Voltage DC Transmission Systems. To match power electronic systems...

  3. Test of the Conserved Vector Current Hypothesis by beta-ray Angular Distribution Measurement in the Mass-8 System

    E-Print Network [OSTI]

    T. Sumikama; K. Matsuta; T. Nagatomo; M. Ogura; T. Iwakoshi; Y. Nakashima; H. Fujiwara; M. Fukuda; M. Mihara; K. Minamisono; T. Yamaguchi; T. Minamisono

    2011-05-09

    The beta-ray angular correlations for the spin alignments of 8Li and 8B have been observed in order to test the conserved vector current (CVC) hypothesis. The alignment correlation terms were combined with the known beta-alpha-angular correlation terms to determine all the matrix elements contributing to the correlation terms. The weak magnetism term, 7.5\\pm0.2, deduced from the beta-ray correlation terms was consistent with the CVC prediction 7.3\\pm0.2, deduced from the analog-gamma-decay measurement based on the CVC hypothesis. However, there was no consistent CVC prediction for the second-forbidden term associated with the weak vector current. The experimental value for the second-forbidden term was 1.0 \\pm 0.3, while the CVC prediction was 0.1 \\pm 0.4 or 2.1 \\pm 0.5.

  4. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

  5. Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Roberts About Us Rob Roberts -Ronald E. MoultonRooftopRTU

  6. Advancing State-of-the-Art Concentrating Solar Power Systems | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL AdvancedEnergy Climate ScienceEnergyof

  7. Asola Advanced and Automotive Solar Systems GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio: Energy- Transport JumpAsola Advanced and

  8. Advanced Reciprocating Engine Systems (ARES) R&D - Cross-Cutting Technologies Enable Efficient manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONY PROJECTRecord4 Advance Patent|

  9. Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioners |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONY PROJECTRecord4 AdvanceEnergyDepartment of

  10. Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs

    SciTech Connect (OSTI)

    Yoder, G.L.

    2005-10-03

    This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

  11. Advanced Characterization of Molecular Interactions in TALSPEAK-like Separations Systems

    SciTech Connect (OSTI)

    Nash, Kenneth; Guelis, Artem; Lumetta, Gregg J.; Sinkov, Sergey

    2015-10-21

    Combining unit operations in advanced aqueous reprocessing schemes brings obvious process compactness advantages, but at the same time greater complexity in process design and operation. Unraveling these interactions requires increasingly sophisticated analytical tools and unique approaches for adequate analysis and characterization that probe molecular scale interactions. Conventional slope analysis methods of solvent extraction are too indirect to provide much insight into such interactions. This project proposed the development and verification of several analytical tools based on studies of TALSPEAK-like aqueous processes. As such, the chemistry of trivalent fission product lanthanides, americium, curium, plutonium, neptunium and uranium figure prominently in these studies. As the project was executed, the primary focus fell upon the chemistry or trivalent lanthanides and actinides. The intent of the investigation was to compare and contrast the results from these various complementary techniques/studies to provide a stronger basis for predicting the performance of extractant/diluent mixtures as media for metal ion separations. As many/most of these techniques require the presence of metal ions at elevated concentrations, it was expected that these studies would take this investigation into the realm of patterns of supramolecular organization of metal complexes and extractants in concentrated aqueous/organic media. We expected to advance knowledge of the processes that enable and limit solvent extraction reactions as a result of the application of fundamental chemical principles to explaining interactions in complex media.

  12. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    SciTech Connect (OSTI)

    Monteleone, S.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  13. Conserving Farmland Supports Agritourism

    E-Print Network [OSTI]

    Virginia Tech

    Agricultural Conservation Easement Program (ACEP): Agricultural Land Easement (ALE) and Wetland Reserve

  14. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    waste heat reclamation and solar thermal energy," Energy [K Lovegrove and M Dennis, "Solar thermal energy systems inK Lovegrove and M Dennis, "Solar thermal energy systems in

  15. Technical Readiness and Gaps Analysis of Commercial Optical Materials and Measurement Systems for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Anheier, Norman C.; Suter, Jonathan D.; Qiao, Hong; Andersen, Eric S.; Berglin, Eric J.; Bliss, Mary; Cannon, Bret D.; Devanathan, Ramaswami; Mendoza, Albert; Sheen, David M.

    2013-08-06

    This report intends to support Department of Energy’s Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap and industry stakeholders by evaluating optical-based instrumentation and control (I&C) concepts for advanced small modular reactor (AdvSMR) applications. These advanced designs will require innovative thinking in terms of engineering approaches, materials integration, and I&C concepts to realize their eventual viability and deployability. The primary goals of this report include: 1. Establish preliminary I&C needs, performance requirements, and possible gaps for AdvSMR designs based on best available published design data. 2. Document commercial off-the-shelf (COTS) optical sensors, components, and materials in terms of their technical readiness to support essential AdvSMR in-vessel I&C systems. 3. Identify technology gaps by comparing the in-vessel monitoring requirements and environmental constraints to COTS optical sensor and materials performance specifications. 4. Outline a future research, development, and demonstration (RD&D) program plan that addresses these gaps and develops optical-based I&C systems that enhance the viability of future AdvSMR designs. The development of clean, affordable, safe, and proliferation-resistant nuclear power is a key goal that is documented in the Nuclear Energy Research and Development Roadmap. This roadmap outlines RD&D activities intended to overcome technical, economic, and other barriers, which currently limit advances in nuclear energy. These activities will ensure that nuclear energy remains a viable component to this nation’s energy security.

  16. Ceramic Technology for Advanced Heat Engines Project

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  17. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01

    electric heaters, jet pumps, turbines, separators, annuli, pressurizers, accumulators, and power control system components. In addition, special process models

  18. Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank

    Office of Energy Efficiency and Renewable Energy (EERE)

    Case study covering Compact Membrane Systems, Inc. and its membrane vapor processor that recovers fuel vapors from gasoline refueling.

  19. Advancing Large Scale Many-Body QMC Simulations on GPU accelerated Multicore Systems

    E-Print Network [OSTI]

    California at Davis, University of

    and superconductors. It treats these interactions exactly, but the solution of a system of N electrons must

  20. Advanced Development and Market Penetration of Desiccant-Based Air-Conditioning Systems

    SciTech Connect (OSTI)

    Vineyard, E A; Sand, J R; Linkous, R L; Baskin, E; Mason, D

    1998-01-01

    Desiccant Air Conditioning Systems can be used as alternatives for conventional air conditioning equipment in any commercial or residential building.

  1. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    low and mid temperature solar collectors," Journal of Solaranalysis of the solar collector system is presented. Results

  2. Conservation and drought management 

    E-Print Network [OSTI]

    Finch, Calvin

    2012-01-01

    Column by Dr. Calvin Finch, Water Conservation and Technology Center director Conservation and Drought Management WAT E R CONSERVATION & TECHNOLOGY CENTER Securing Our Water Future Water conservation and drought management are related..., but they are not the same. Water conservation is a long-term e?ort to reduce the amount of water it takes to manufacture goods, manage households and care for landscapes. Drought management is water-use rules initiated to deal with reduced water supply or increased...

  3. Advanced Turbine Systems program conceptual design and product development. Quarterly report, February--April 1994

    SciTech Connect (OSTI)

    1995-02-01

    Task 8.5 (active clearance control) was replaced with a test of the 2600F prototype turbine (Task 8.1T). Test 8.1B (Build/Teardown of prototype turbine) was added. Tasks 4 (conversion of gas-fired turbine to coal-fired turbine) and 5 (market study) were kicked off in February. Task 6 (conceptual design) was also initiated. Task 8.1 (advanced cooling technology) now has an approved test plan. Task 8.4 (ultra low NOx combustion technology) has completed the code development and background gathering phase. Task 8.6 (two-phase cooling of turbine vanes) is proceeding well; initial estimates indicate that nearly 2/3 of required cooling flow can be eliminated.

  4. Development of advanced drilling, completion, and stimulation systems for minimum formation damage and improved efficiency: A program overview

    SciTech Connect (OSTI)

    Layne, A.W.; Yost, A.B. II

    1994-07-01

    The Department of Energy`s (DOE) Natural Gas Resource and Extraction Program consists of industry/government co-sponsored research, development, and demonstration (RD&D) projects, which focus on gas recovery from both conventional and nonconventional resources. The Drilling, Completion, and Stimulation (DCS) Project focuses on advanced, non-damaging technology systems and equipment for improving gas recovery from conventional and nonconventional reservoirs. As operators move from development of current day economically attractive gas-field development to the lower permeability geologic regions of domestic onshore plays, increasing the emphasis on minimum formation damage DCS will permit economic development of gas reserves. The objective of the Project is to develop and demonstrate cost-effective, advanced technology to accelerate widespread use and acceptance of minimum formation damage DCS systems. The goal of this product development effort is to reduce costs and improve the overall efficiency of vertical, directional, and horizontally drilled wells in gas formations throughout the US. The current focus of the Project is on the development of underbalanced drilling technology and minimum formation damage stimulation technology concurrently with the appropriate completion hardware to improve the economics of domestic natural gas field development. Ongoing drilling technology projects to be discussed include development of an electromagnetic measurement while drilling system for directional and horizontal drilling in underbalanced drilling applications and the development of a steerable air percussion drilling system for hard formation drilling and improved penetration rates. Ongoing stimulation technology projects to be discussed include introduction of carbon dioxide/sand fracturing technology for minimal formation damage.

  5. Advanced LWR Nuclear Fuel Development

    Broader source: Energy.gov (indexed) [DOE]

    - Advanced Instrumentation, Information and Control Systems Technologies - Reactor Safety Technical Support 2 Mission & Motivation for II&C Pathway * Current...

  6. A Versatile and Powerful Simulator for Design, Advanced Control and Expert Systems 

    E-Print Network [OSTI]

    Schindler, H. E.; Leaver, E. W.; Shewchuk, C. F.

    1988-01-01

    , Ontario Canada ABSnACT The usefulness of models of plant utility systems largely depends on the capabilities of the process system simulator which uses them. SACDA has been engaged in a multi-year development of a versatile and powerful steady state... generalized simultaneous modular process simulation package for calculating the steady-state heat and mass balance for industrial processes. The system has been designed for the modelling of the operation of water-based processes such as those found...

  7. Advanced turbine systems program conceptual design and product development quarterly report, May--July 1995

    SciTech Connect (OSTI)

    1995-08-01

    Progress for the quarter is reported in the areas of system definition and analysis and design and test of critical components.

  8. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    concentrated solar thermal energy and low grade waste heatreclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"

  9. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    low and mid temperature solar collectors," Journal of SolarSA Kalogirou, "Solar thermal collectors and applications,"analysis of the solar collector system is presented. Results

  10. Forest Fire Advanced System Technology (FFAST): A Conceptual Design for Detection and Mapping

    E-Print Network [OSTI]

    is developing a data system to provide near-real-time forest fire information to fire management at the fire of the Technical Staff, Observational Systems Division. California Institute of Technology, Jet Propulsion for the scanner units were difficult to find and in some cases had to be custom built. The Fire Logistics

  11. Fermilab D-0 Experimental Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect (OSTI)

    Krstulovich, S.F.

    1987-10-31

    This report is developed as part of the Fermilab D-0 Experimental Facility Project Title II Design Documentation Update. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis.

  12. Optical layout and mechanical structure of polarimeter-interferometer system for Experimental Advanced Superconducting Tokamak

    SciTech Connect (OSTI)

    Zou, Z. Y.; Liu, H. Q. Jie, Y. X.; Wang, Z. X.; Shen, J. S.; An, Z. H.; Yang, Y.; Zeng, L.; Wei, X. C.; Li, G. S.; Zhu, X.; Ding, W. X.; Brower, D. L.; Lan, T.

    2014-11-15

    A Far-InfaRed (FIR) three-wave POlarimeter-INTerferometer (POINT) system for measurement current density profile and electron density profile is under development for the EAST tokamak. The FIR beams are transmitted from the laser room to the optical tower adjacent to EAST via ?20 m overmoded dielectric waveguide and then divided into 5 horizontal chords. The optical arrangement was designed using ZEMAX, which provides information on the beam spot size and energy distribution throughout the optical system. ZEMAX calculations used to optimize the optical layout design are combined with the mechanical design from CATIA, providing a 3D visualization of the entire POINT system.

  13. Evaluation of Advanced PSA and Oxygen Combustion System for Industrial Furnace Applications 

    E-Print Network [OSTI]

    Delano, M. A.; Lagree, D.; Kwan, Y.

    1988-01-01

    and a low NO x oxygen burner was evaluated for industrial furnace applications. The PSA system employs a two-bed vacuum cycle design with a capacity of 1.3 TPD at 90% O 2 purity. The oxygen generated from the PSA system was directly fed to a... Linde "A" Burner with a nominal capacity of 1 MMBTU/hr. The PSA system has shown an excellent reliability, a low power consumption, and good turndown characteristics. The burner produced a uniform temperature profile in a test furnace operated...

  14. Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies

    SciTech Connect (OSTI)

    Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

    2009-08-01

    The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U.S. Department of Energy (DOE). The program is operated in close collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of Nuclear Power Plants that are currently in operation. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. Advanced instruments and control (I&C) technologies are needed to support the safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear assets. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. The strategic objective of the LWRS Program Advanced Instrumentation, Information, and Control Systems Technology R&D pathway is to establish a technical basis for new technologies needed to achieve safety and reliability of operating nuclear assets and to implement new technologies in nuclear energy systems. This will be achieved by carrying out a program of R&D to develop scientific knowledge in the areas of: • Sensors, diagnostics, and prognostics to support characterization and prediction of the effects of aging and degradation phenomena effects on critical systems, structures, and components (SSCs) • Online monitoring of SSCs and active components, generation of information, and methods to analyze and employ online monitoring information • New methods for visualization, integration, and information use to enhance state awareness and leverage expertise to achieve safer, more readily available electricity generation. As an initial step in accomplishing this effort, the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies was held March 20–21, 2009, in Columbus, Ohio, to enable industry stakeholders and researchers in identification of the nuclear industry’s needs in the areas of future I&C technologies and corresponding technology gaps and research capabilities. Approaches for collaboration to bridge or fill the technology gaps were presented and R&D activities and priorities recommended. This report documents the presentations and discussions of the workshop and is intended to serve as a basis for the plan under development to achieve the goals of the I&C research pathway.

  15. A progress report on DOE`s advanced hydropower turbine systems program

    SciTech Connect (OSTI)

    Sale, M.J.; Cada, G.F.; Rinehart, B.E. [and others

    1997-06-01

    Recent hydropower research within the U.S. Department of Energy (DOE) has focused on the development of new turbine designs that can produce hydroelectricity without such adverse environmental affects as fish entrainment/impingement or degradation of water quality. In partnership with the hydropower industry, DOE`s advanced turbine program issued a Request for Proposals for conceptual designs in October 1994. Two contracts were awarded for this initial program phase, work on which will be complete this year. A technical advisory committee with representatives from industry, regulatory agencies, and natural resource agencies was also formed to guide the DOE turbine research. The lack of quantitative biological performance criteria was identified by the committee as a critical knowledge gap. To fill this need, a new literature review was completed on the mechanisms of fish mortality during turbine passage (e.g., scrape/strike, shear, press change, etc.), ways that fish behavior affects their location and orientation in turbines, and how these turbine passage stresses can be measured. Thus year, new Laboratory tests will be conducted on fish response to shear, the least-well understood mechanism of stress. Additional testing of conceptual turbine designs depends on the level of federal funding for this program.

  16. Advanced neutron irradiation system using Texas A&M University Nuclear Science Center Reactor 

    E-Print Network [OSTI]

    Jang, Si Young

    2005-11-01

    A heavily filtered fast neutron irradiation system (FNIS) was developed for a variety of applications, including the study of long-term health effects of fast neutrons by evaluating the biological mechanisms of damage in ...

  17. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    the solar power tower, the solar efficiency of the system isThe product of the solar efficiency and the power blockFig. 6.6 shows the solar efficiency, maximum power block

  18. Dynamic system characterization of an integral test facility of an advanced PWR 

    E-Print Network [OSTI]

    Smith, Simon Gregory

    1995-01-01

    leg break (AP-CL-03), to construct a mathematical model of the system. The model's constitutive equations were linearized for a selected period of the transient that is of particular importance to the safety analysis. These equations were used...

  19. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    Stine and RW Harrigan, Solar Energy System Design. New York:for power generation," Solar Energy, vol. 83, pp. 605-613,for power generation," Solar Energy, vol. 85, pp. 2710-2719,

  20. Application of Advanced Laser and Optical Diagnostics Towards Non-Thermochemical Equilibrium Systems 

    E-Print Network [OSTI]

    Hsu, Andrea G.

    2010-07-14

    The Multidisciplinary University Research Initiative (MURI) research at Texas A and M University is concerned with the experimental characterization of non-thermal and non-chemical equilibrium systems in hypersonic (Mach greater than 5) flowfields...

  1. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01

    Potential Safety Issues – Regulatory Design Criteria3-3 Regulatory design criteria for safety Table 3-4 Input3-4 Regulatory Design Criteria for safety The DRACS system

  2. Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in which heating and cooling are provided by a single piece of equipment.

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in which heating and cooling are provided by a single piece of equipment. In a Ground Coupled Heat Pump (GCHP) system a length of pipe is buried in the ground and the ground acts as a reservoir to store the heat

  3. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    SciTech Connect (OSTI)

    Schauder, C.

    2014-03-01

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  4. Advanced Building Efficiency Testbed Initiative/Intelligent Workplace Energy Supply System; ABETI/IWESS

    SciTech Connect (OSTI)

    David Archer; Frederik Betz; Yun Gu; Rong Li; Flore Marion; Sophie Masson; Ming Qu; Viraj Srivastava; Hongxi Yin; Chaoqin Zhai; Rui Zhang; Elisabeth Aslanian; Berangere Lartigue

    2008-05-31

    ABETI/IWESS is a project carried out by Carnegie Mellon's Center for Building Performance and Diagnostics, the CBPD, supported by the U.S. Department of Energy/EERE, to design, procure, install, operate, and evaluate an energy supply system, an ESS, that will provide power, cooling, heating and ventilation for CBPD's Intelligent Workplace, the IW. The energy sources for this system, the IWESS, are solar radiation and bioDiesel fuel. The components of this overall system are: (1) a solar driven cooling and heating system for the IW comprising solar receivers, an absorption chiller, heat recovery exchanger, and circulation pump; (2) a bioDiesel fueled engine generator with heat recovery exchangers, one on the exhaust to provide steam and the other on the engine coolant to provide heated water; (3) a ventilation system including an enthalpy recovery wheel, an air based heat pump, an active desiccant wheel, and an air circulation fan; and (4) various convective and radiant cooling/heating units and ventilation air diffusers distributed throughout the IW. The goal of the ABETI/IWESS project is to demonstrate an energy supply system for a building space that will provide a healthy, comfortable environment for the occupants and that will reduce the quantity of energy consumed in the operation of a building space by a factor of 2 less than that of a conventional energy supply for power, cooling, heating, and ventilation based on utility power and natural gas fuel for heating.

  5. Permitting and solid waste management issues for the Bailly Station wet limestone Advanced Flue Gas Desulfurization (AFGD) system

    SciTech Connect (OSTI)

    Bolinsky, F.T. (Pure Air, Allentown, PA (United States)); Ross, J. (Northern Indiana Public Service Co., Hammond, IN (United States)); Dennis, D.S. (United Engineers and Constructors, Inc., Denver, CO (United States). Stearns-Roger Div.); Huston, J.S. (Environmental Alternatives, Inc., Warren NJ (USA))

    1991-01-01

    Pure Air (a general partnership between Air Products and Chemicals, Inc., and Mitsubishi Heavy Industries America, Inc.). is constructing a wet limestone co-current advanced flue gas desulfurization (AFGD) system that has technological and commercial advantages over conventional FGD systems in the United States. The AFGD system is being installed at the Northern Indiana Public Service Company's Bailly Generating Station near Gary, Indiana. The AFGD system is scheduled to be operational by the Summer, 1992. The AFGD system will remove at least 90 percent of the sulfur dioxide (SO{sub 2}) in the flue gas from Boilers 7 and 8 at the Station while burning 3.2 percent sulfur coal. Also as part of testing the AFGD system, 95 percent removal of SO{sub 2} will be demonstrated on coals containing up to 4.5 percent sulfur. At the same time that SO{sub 2} is removed from the flue gas, a gypsum by-product will be produced which will be used for wallboard manufacturing. Since the AFGD system is a pollution control device, one would expect its installation to be received favorably by the public and regulatory agencies. Although the project was well received by regulatory agencies, on public group (Save the Dunes Council) was initially concerned since the project is located adjacent to the Indiana Dunes National Lakeshore. The purpose of this paper is to describe the project team's experiences in obtaining permits/approvals from regulatory agencies and in dealing with the public. 1 ref., 1 fig., 2 tabs.

  6. ISSUANCE 2015-10-15: Energy Conservation Program: Energy Conservation...

    Energy Savers [EERE]

    ISSUANCE 2015-10-15: Energy Conservation Program: Energy Conservation Standards for Residential Furnaces; Comment Period Reopening ISSUANCE 2015-10-15: Energy Conservation Program:...

  7. ISSUANCE 2015-07-30: Energy Conservation Program: Energy Conservation...

    Energy Savers [EERE]

    7-30: Energy Conservation Program: Energy Conservation Standards for Battery Chargers, Supplemental Notice of Proposed Rulemaking ISSUANCE 2015-07-30: Energy Conservation Program:...

  8. 2008 Annual Progress Report - Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program

    SciTech Connect (OSTI)

    none,

    2009-02-24

    Annual Progress Report for fiscal year 2008 for the Advanced Vehicle Technology Analysis and Evaluation (AVTAE) team activities

  9. FY2009 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program

    SciTech Connect (OSTI)

    none,

    2010-02-19

    Annual Progress Report for fiscal year 2009 for the Advanced Vehicle Technology Analysis and Evaluation (AVTAE) team activities

  10. Evaluation of thermal energy storage materials for advanced compressed air energy storage systems

    SciTech Connect (OSTI)

    Zaloudek, F.R.; Wheeler, K.R.; Marksberry, L.

    1983-03-01

    Advanced Compressed-Air Energy Storage (ACAS) plants have the near-term potential to reduce the fuel consumption of compressed-air plants from 33 to 100%, depending upon their design. Fuel is saved by storing some or all of the heat of compression as sensible heat which is subsequently used to reheat the compressed air prior to expansion in the turbine generator. The thermal storage media required for this application must be low cost and durable. The objective of this project was to screen thermal store materials based on their thermal cycle durability, particulate formation and corrosion resistant characteristics. The materials investigated were iron oxide pellets, Denstone pebbles, cast-iron balls, and Dresser basalt rock. The study specifically addressed the problems of particle formation and thermal ratcheting of the materials during thermal cycling and the chemical attack on the materials by the high temperature and moist environment in an ACAS heat storage bed. The results indicate that from the durability standpoint Denstone, cast iron containing 27% or more chromium, and crushed Dresser basalt would possibly stand up to ACAS conditions. If costs are considered in addition to durability and performance, the crushed Dresser basalt would probably be the most desirable heat storage material for adiabatic and hybrid ACAS plants, and more in-depth longer term thermal cycling and materials testing of Dresser basalt is recommended. Also recommended is the redesign and costing analysis of both the hybrid and adiabatic ACAS facilities based upon the use of Dresser basalt as the thermal store material.

  11. Biostirling({trademark}): A small biomass power conversion system using an advanced stirling engine

    SciTech Connect (OSTI)

    Johansson, L.; Ziph, B.; McKeough, W.; Houtman, W.

    1996-12-31

    Over the past decade the need for small power conversion systems to serve rural and/or remote needs has increased dramatically. The requirements for systems <100 kW are very similar, whether the need is defined as {open_quotes}rural electrification{close_quotes} in developed countries, or as {open_quotes}village power{close_quotes} in developing countries. The availability of biomass fuel resources to serve such systems is not in doubt, be they agricultural, forestry, animal or urban wastes. The main inhibiting factor has been the absence of a biomass power conversion system characterized by: reliability, cost effectiveness, low pollution, and ease of maintenance. Stirling Thermal Motors of Ann Arbor, Michigan, is recognized as the leader worldwide in the development and application of Stirling engine technology. It is currently demonstrating a {open_quotes}BioStirling({trademark}){close_quotes} Power Conversion System which combines its unique STM4-120 engine rated at 25 kW with a proven commercial gasifier. The BioStirling({trademark}) proof-of-concept demonstration is funded by DOE`s National Renewable Energy Laboratory and is to be completed in late 1996, with field demonstrations in 1997 and commercial availability 1998.

  12. Characterization and Suppression of the Electromagnetic Interference Induced Phase Shift in the JLab FEL Photo - Injector Advanced Drive Laser System

    SciTech Connect (OSTI)

    F. G. Wilson, D. Sexton, S. Zhang

    2011-09-01

    The drive laser for the photo-cathode gun used in the JLab Free Electron Laser (FEL) facility had been experiencing various phase shifts on the order of tens of degrees (>20{sup o} at 1497 MHz or >40ps) when changing the Advanced Drive Laser (ADL) [2][3][4] micro-pulse frequencies. These phase shifts introduced multiple complications when trying to setup the accelerator for operation, ultimately inhibiting the robustness and overall performance of the FEL. Through rigorous phase measurements and systematic characterizations, we determined that the phase shifts could be attributed to electromagnetic interference (EMI) coupling into the ADL phase control loop, and subsequently resolved the issue of phase shift to within tenths of a degree (<0.5{sup o} at 1497 MHz or <1ps). The diagnostic method developed and the knowledge gained through the entire process will prove to be invaluable for future designs of similar systems.

  13. Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage

    SciTech Connect (OSTI)

    van Hassel, Bart A.

    2015-09-18

    UTRC lead the development of the Simulink Framework model that enables a comparison of different hydrogen storage systems on a common basis. The Simulink Framework model was disseminated on the www.HSECoE.org website that is hosted by NREL. UTRC contributed to a better understanding of the safety aspects of the proposed hydrogen storage systems. UTRC also participated in the Failure Mode and Effect Analysis of both the chemical- and the adsorbent-based hydrogen storage system during Phase 2 of the Hydrogen Storage Engineering Center of Excellence. UTRC designed a hydrogen storage system with a reversible metal hydride material in a compacted form for light-duty vehicles with a 5.6 kg H2 storage capacity, giving it a 300 miles range. It contains a heat exchanger that enables efficient cooling of the metal hydride material during hydrogen absorption in order to meet the 3.3 minute refueling time target. It has been shown through computation that the kinetics of hydrogen absorption of Ti-catalyzed NaAlH4 was ultimately limiting the rate of hydrogen absorption to 85% of the material capacity in 3.3 minutes. An inverse analysis was performed in order to determine the material property requirements in order for a metal hydride based hydrogen storage system to meet the DOE targets. Work on metal hydride storage systems was halted after the Phase 1 to Phase 2 review due to the lack of metal hydride materials with the required material properties. UTRC contributed to the design of a chemical hydrogen storage system by developing an adsorbent for removing the impurity ammonia from the hydrogen gas, by developing a system to meter the transport of Ammonia Borane (AB) powder to a thermolysis reactor, and by developing a gas-liquid-separator (GLS) for the separation of hydrogen gas from AB slurry in silicone oil. Stripping impurities from hydrogen gas is essential for a long life of the fuel cell system on board of a vehicle. Work on solid transport of AB was halted after the Phase 1 to Phase 2 review in favor of studying the slurry-form of AB as it appeared to be difficult to transport a solid form of AB through the thermolysis reactor. UTRC demonstrated the operation of a compact GLS in the laboratory at a scale that would be required for the actual automotive application. The GLS met the targets for weight and volume. UTRC also reported about the unresolved issue associated with the high vapor pressure of fluids that could be used for making a slurry-form of AB. Work on the GLS was halted after the Phase 2 to Phase 3 review as the off-board regeneration efficiency of the spent AB was below the DOE target of 60%. UTRC contributed to the design of an adsorbent-based hydrogen storage system through measurements of the thermal conductivity of a compacted form of Metal Organic Framework (MOF) number 5 and through the development and sizing of a particulate filter. Thermal conductivity is important for the design of the modular adsorbent tank insert (MATI), as developed by Oregon State University (OSU), in order to enable a rapid refueling process. Stringent hydrogen quality requirements can only be met with an efficient particulate filtration system. UTRC developed a method to size the particulate filter by taking into account the effect of the pressure drop on the hydrogen adsorption process in the tank. UTRC raised awareness about the potential use of materials-based H2 storage systems in applications outside the traditional light-duty vehicle market segment by presenting at several conferences about niche application opportunities in Unmanned Aerial Vehicles (UAV), Autonomous Underwater Vehicles (AUV), portable power and others.

  14. Technological advances in the University of Washington accelerator mass spectrometry system

    SciTech Connect (OSTI)

    Farwell, G.W.; Grootes, P.M.; Leach, D.D.; Schmidt, F.H.

    1983-01-01

    During the past year we have continued to work toward greater stability and flexibility in nearly all elements of our accelerator mass spectrometry (AMS) system, which is based upon an FN tandem Van de Graaff accelerator, and have carried out measurements of /sup 14/C//sup 12/C and /sup 10/Be//sup 9/Be isotopic abundance ratios in natural samples. The principal recent developments and improvements in the accelerator system and in our sample preparation techniques for carbon beryllium are discussed, and the results of a study of /sup 10/Be cross-contamination of beryllium samples in the sputter ion source are presented.

  15. Status of an advanced radioisotope space power system using free-piston Stirling technology

    SciTech Connect (OSTI)

    White, M.A,; Qiu, S.; Erbeznik, R.M.; Olan, R.W.; Welty, S.C.

    1998-07-01

    This paper describes a free-piston Stirling engine technology project to demonstrate a high efficiency power system capable of being further developed for deep space missions using a radioisotope (RI) heat source. The key objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for 10 years or longer on deep space missions. Primary issues being addressed for Stirling space power systems are weight and the vibration associated with reciprocating pistons. Similar weight and vibration issues have been successfully addressed with Stirling cryocoolers, which are the accepted standard for cryogenic cooling in space. Integrated long-life Stirling engine-generator (or convertor) operation has been demonstrated by the terrestrial Radioisotope Stirling Generator (RSG) and other Stirling Technology Company (STC) programs. Extensive RSG endurance testing includes more than 40,000 maintenance-free, degradation-free hours for the complete convertor, in addition to several critical component and subsystem endurance tests. The Stirling space power convertor project is being conducted by STC under DOE Contract, and NASA SBIR Phase II contracts. The DOE contract objective is to demonstrate a two-convertor module that represents half of a nominal 150-W(e) power system. Each convertor is referred to as a Technology Demonstration Convertor (TDC). The ultimate Stirling power system would be fueled by three general purpose heat source (GPHS) modules, and is projected to produce substantially more electric power than the 150-watt target. The system is capable of full power output with one failed convertor. One NASA contract, nearing completion, uses existing 350-W(e) RG-350 convertors to evaluate interactivity of two back-to-back balanced convertors with various degrees of electrical and mechanical interaction. This effort has recently provided the first successful synchronization of two convertors by means of parallel alternator electrical connections, thereby reducing vibration levels by more than an order of magnitude. It will also demonstrate use of an artificial neural network to monitor system health without invasive instrumentation. The second NASA contract, begun in January 1998, will develop an active adaptive vibration reduction system to be integrated with the DOE-funded TDC convertors. Preliminary descriptions and specifications of the Stirling convertor design, as well as program status and plans, are included.

  16. Emerging Technology Conservation Resources Advisory

    E-Print Network [OSTI]

    possible path to zero carbon future for electricity system by 2035 Not limited by cost 2 #12;Step 1: Identify the Gap Run RPM with: No new carbon-emitting resources No cost limit on carbon-free resources Conservation (include EE>$170/MWh) Demand response Distributed PV, with achievability assumptions Utility

  17. COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL

    SciTech Connect (OSTI)

    Gutowski, William J.

    2013-02-07

    The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

  18. Advanced turbine systems program conceptual design and product development. Annual report, August 1994--July 1995

    SciTech Connect (OSTI)

    1994-10-01

    Objective of the ATS program is to develop ultra-high efficiency, environmentally superior, and cost-competitive gas turbine systems for base-load application in utility, independent power producer, and industrial markets. This report discusses the major accomplishments achieved during the second year of the ATS Phase 2 program, particularly the design and test of critical components.

  19. An Advanced Economizer Controller for Dual Duct Air Handling Systems - with a Case Application 

    E-Print Network [OSTI]

    Liu, M.; Claridge, D. E.

    1996-01-01

    Heating penalty is expected when economizers are applied to dual-duct air handling systems. The heating penalty can even be higher than the cooling savings when the hot air flow is higher than the cold air flow. To avoid the excessive heating...

  20. Requirements for an Autonomous Control Architecture for Ad-vanced Life Support Systems

    E-Print Network [OSTI]

    Kortenkamp, David

    ) a Thermal control system, (v) a Biomass production sys- tem, (vi) a Food production subsystem, and (vii goals and environmental conditions. This calls for tight integration between planning, control, diagnosis, and health moni- toring. We believe the proposed multi-level integrated planning and control

  1. Advances in Complex Systems, Vol. 11, No. 4 (2008) 597608 c World Scientific Publishing Company

    E-Print Network [OSTI]

    TAGora project

    2008-01-01

    communities; Web 2.0. 1. Introduction Information systems on the World Wide Web have been increasing in size known as collaborative tagging has been widely adopted in new Web applications designed to manage and share online resources. Users of these applications organize resources (Web pages, digital photographs

  2. Advances in the ab initio description of nuclear three-cluster systems

    E-Print Network [OSTI]

    Romero-Redondo, Carolina; Navrátil, Petr; Hupin, Guillaume

    2015-01-01

    We introduce the extension of the ab initio no-core shell model with continuum to describe three-body cluster systems. We present results for the ground state of 6He and show improvements with respect to the description obtained within the no-core shell model and the no-core shell model/resonating group methods.

  3. Intelligent Control via Wireless Sensor Networks for Advanced Coal Combustion Systems

    SciTech Connect (OSTI)

    Aman Behal; Sunil Kumar; Goodarz Ahmadi

    2007-08-05

    Numerical Modeling of Solid Gas Flow, System Identification for purposes of modeling and control, and Wireless Sensor and Actor Network design were pursued as part of this project. Time series input-output data was obtained from NETL's Morgantown CFB facility courtesy of Dr. Lawrence Shadle. It was run through a nonlinear kernel estimator and nonparametric models were obtained for the system. Linear and first-order nonlinear kernels were then utilized to obtain a state-space description of the system. Neural networks were trained that performed better at capturing the plant dynamics. It is possible to use these networks to find a plant model and the inversion of this model can be used to control the system. These models allow one to compare with physics based models whose parameters can then be determined by comparing them against the available data based model. On a parallel track, Dr. Kumar designed an energy-efficient and reliable transport protocol for wireless sensor and actor networks, where the sensors could be different types of wireless sensors used in CFB based coal combustion systems and actors are more powerful wireless nodes to set up a communication network while avoiding the data congestion. Dr. Ahmadi's group studied gas solid flow in a duct. It was seen that particle concentration clearly shows a preferential distribution. The particles strongly interact with the turbulence eddies and are concentrated in narrow bands that are evolving with time. It is believed that observed preferential concentration is due to the fact that these particles are flung out of eddies by centrifugal force.

  4. Energy Conservation Renewable Energy

    E-Print Network [OSTI]

    Delgado, Mauricio

    Energy Conservation Renewable Energy The Future at Rutgers University Facilities & Capital Planning Operations & Services Utilities Operations 6 Berrue Circle Piscataway, NJ 08854 #12;Energy Conservation Wh C ti ? R bl EWhy Conservation? Renewable Energy · Climate control reduces green house gases · Reduces

  5. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    SciTech Connect (OSTI)

    E. R. Johnson; R. E. Best

    2009-12-28

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the “UREX+3c fuel cycle” and the “Alternative Fuel Cycle” (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount of the resulting MOX. The study considered two sub-cases within each of the two fuel cycles in which the uranium and plutonium from the first generation of MOX spent fuel (i) would not be recycled to produce a second generation of MOX for use in LWRs or (ii) would be recycled to produce a second generation of MOX fuel for use in LWRs. The study also investigated the effects of recycling MOX spent fuel multiple times in LWRs. The study assumed that both fuel cycles would store and then reprocess spent MOX fuel that is not recycled to produce a next generation of LWR MOX fuel and would use the recovered products to produce FR fuel. The study further assumed that FRs would begin to be brought on-line in 2043, eleven years after recycle begins in LWRs, when products from 5-year cooled spent MOX fuel would be available. Fuel for the FRs would be made using the uranium, plutonium, and minor actinides recovered from MOX. For the cases where LWR fuel was assumed to be recycled one time, the 1st generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. For the cases where the LWR fuel was assumed to be recycled two times, the 2nd generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. The number of FRs in operation was assumed to increase in successive years until the rate that actinides were recovered from permanently discharged spent MOX fuel equaled the rate the actinides were consumed by the operating fleet of FRs. To compare the two fuel cycles, the study analyzed recycle of nuclear fuel in LWRs and FRs and determined the radiological characteristics of irradiated nuclear fuel, nuclear waste products, and recycle nuclear fuels. It also developed a model to simulate the flows of nuclear materials that could occur in the two advanced nuclear fuel cycles over 81 years beginning in 2020 and ending in 2100. Simulations projected the flows of uranium, plutonium, and minor actinides as these nuclear fuel materials were produced and consumed in a fleet of 100 1,000 MWe LWRs and in FRs. The model als

  6. Advanced alkaline water electrolysis. Task 2 summary report. Model for alkaline water electrolysis systems

    SciTech Connect (OSTI)

    Yaffe, M.R.; Murray, J.N.

    1980-04-01

    Task 2 involved the establishment of an engineering and economic model for the evaluation of various options in water electrolysis. The mode, verification of the specific coding and four case studies are described. The model was tested by evaluation of a nearly commercial technology, i.e., an 80-kW alkaline electrolyte system, operating at 60/sup 0/C, which delivers approximately 255 SLM, hydrogen for applications such as electrical generation cooling or semiconductor manufacturing. The calculated cost of hydrogen from this installed non-optimized case system with an initial cost to the customer of $87,000 was $6.99/Kg H/sub 2/ ($1.67/100 SCF) on a 20-yr levelized basis using 2.5 cents/kWh power costs. This compares favorably to a levelized average merchant hydrogen cost value of $9.11/Kg H/sub 2/ ($2.17/100 SCF) calculated using the same program.

  7. The advanced system for the electromagnetic response of high-frequency gravitational waves

    E-Print Network [OSTI]

    Jin Li; Lu Zhang; Kai Lin; Hao Wen

    2014-11-20

    Based on the electromagnetic (EM) response system of high frequency gravitational waves (HFGWs) in GHz band, we mainly discuss the EM response to the relic HFGWs, which are predicted by quintessential and ordinary inflationary models, and the braneworld HFGWs from braneworld scenarios. Both of them would generate detectable transverse perturbative photon fluxes (PPFs) thought to be the signal. Through resetting the magnetic component of Gaussian Beam to be in the standard gaussian form, the signal strength would be enhanced theoretically. Under the typical conditions, the analysis of background noise (background photon fluxes) and shot noise provides the possible transverse detection width for these HFGWs, meanwhile the standard quantum limit estimation proves our detection is possible. Finally according to the principle of maximum signal to noise ratio, we find some optimal system parameters and the relationship between effective width for energy fluxes accumulation and frequency.

  8. Advances toward a transportable antineutrino detector system for reactor monitoring and safeguards

    SciTech Connect (OSTI)

    Reyna, D.; Bernstein, A.; Lund, J.; Kiff, S.; Cabrera-Palmer, B.; Bowden, N. S.; Dazeley, S.; Keefer, G.

    2011-07-01

    Nuclear reactors have served as the neutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Our SNL/LLNL collaboration has demonstrated that such antineutrino based monitoring is feasible using a relatively small cubic meter scale liquid scintillator detector at tens of meters standoff from a commercial Pressurized Water Reactor (PWR). With little or no burden on the plant operator we have been able to remotely and automatically monitor the reactor operational status (on/off), power level, and fuel burnup. The initial detector was deployed in an underground gallery that lies directly under the containment dome of an operating PWR. The gallery is 25 meters from the reactor core center, is rarely accessed by plant personnel, and provides a muon-screening effect of some 20-30 meters of water equivalent earth and concrete overburden. Unfortunately, many reactor facilities do not contain an equivalent underground location. We have therefore attempted to construct a complete detector system which would be capable of operating in an aboveground location and could be transported to a reactor facility with relative ease. A standard 6-meter shipping container was used as our transportable laboratory - containing active and passive shielding components, the antineutrino detector and all electronics, as well as climate control systems. This aboveground system was deployed and tested at the San Onofre Nuclear Generating Station (SONGS) in southern California in 2010 and early 2011. We will first present an overview of the initial demonstrations of our below ground detector. Then we will describe the aboveground system and the technological developments of the two antineutrino detectors that were deployed. Finally, some preliminary results of our aboveground test will be shown. (authors)

  9. Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine

    E-Print Network [OSTI]

    Levi, Anthony F. J.

    to be adopted in P-HEVs and EVs. In this talk, we report several high-energy system s that offer the potential #12;2 2005 Global Human2005 Global Human--Activity Energy FlowsActivity Energy Flows Hydro 10 Geothermal 2.5 Wind 0.22 Solar 0.02 Coal 110 Natural Gas 107 Residential 50 Vehicle 39 Freight 40 Air 12

  10. Advanced CO{sub 2} Capture Technology for Low Rank Coal IGCC System

    SciTech Connect (OSTI)

    Alptekin, Gokhan

    2013-09-30

    The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO{sub 2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO{sub 2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO{sub 2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO{sub 2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO{sub 2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO{sub 2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in bituminous coal the net plant efficiency is about 2.4 percentage points higher than an Integrated Gasification Combined Cycle (IGCC) plant equipped with SelexolTM to capture CO{sub 2}. We also previously completed two successful field demonstrations: one at the National Carbon Capture Center (Southern- Wilsonville, AL) in 2011, and a second demonstration in fall of 2012 at the Wabash River IGCC plant (Terra Haute, IN). In this project, we first optimized the sorbent to catalyst ratio used in the combined WGS and CO{sub 2} capture process and confirmed the technical feasibility in bench-scale experiments. In these tests, we did not observe any CO breakthrough both during adsorption and desorption steps indicating that there is complete conversion of CO to CO{sub 2} and H{sub 2}. The overall CO conversions above 90 percent were observed. The sorbent achieved a total CO{sub 2} loading of 7.82 percent wt. of which 5.68 percent is from conversion of CO into CO{sub 2}. The results of the system analysis suggest that the TDA combined shift and high temperature PSA-based Warm Gas Clean-up technology can make a substantial improvement in the IGCC plant thermal performance for a plant designed to achieve near zero emissions (including greater than 90 percent carbon capture). The capital expenses are also expected to be lower than those of Selexol. The higher net plant efficiency and lower capital and operating costs result in substantial reduction in the COE for the IGCC plant equipped with the TDA combined shift and high temperature PSA-based carbon capture system.

  11. High temperature fuel/emitter system for advanced thermionic fuel elements

    SciTech Connect (OSTI)

    Moeller, Helen H.; Bremser, Albert H.; Gontar, Alexander; Fiviesky, Evgeny

    1997-01-10

    Specialists in space applications are currently focusing on bimodal power systems designed to provide both electric power and thermal propulsion (Kennedy, 1994 and Houts, 1995). Our work showed that thermionics is a viable technology for nuclear bimodal power systems. We demonstrated that materials for a thermionic fuel-emitter combination capable of performing at operating temperatures of 2473 K are not only possible but available. The objective of this work, funded by the US Department of Energy, Office of Space and Defense Power Systems, was to evaluate the compatibility of fuel material consisting of an uranium carbide/tantalum carbide solid solution with an emitter material consisting of a monocrystalline tungsten-niobium alloy. The uranium loading of the fuel material was 70 mole% uranium carbide. The program was successfully accomplished by a B and W/SIA LUTCH team. Its workscope was integrated with tasks being performed at both Babcock and Wilcox, Lynchburg Research Center, Lynchburg, Virginia, and SIA LUTCH, Podolsk, Russia. Samples were fabricated by LUTCH and seven thermal tests were performed in a hydrogen atmosphere. The first preliminary test was performed at 2273 K by LUTCH, and the remaining six tests were performed At B and W. Three tests were performed at 2273 K, two at 2373 K, and the final test at 2473 K. The results showed that the fuel and emitter materials were compatible in the presence of hydrogen. No evidence of liquid formation, dissolution of the uranium carbide from the uranium carbide/tantalum carbide solid solution, or diffusion of the uranium into the monocrystalline tungsten alloy was observed. Among the highlights of the program was the successful export of the fuel samples from Russia and their import into the US by commercial transport. This paper will discuss the technical aspects of this work.

  12. Development/Demonstration of an Advanced Oxy-Fuel Front-End System

    SciTech Connect (OSTI)

    Mighton, Steven, J.

    2007-08-06

    Owens Corning and other glass manufacturers have used oxy-fuel combustion technology successfully in furnaces to reduce emissions, increase throughput, reduce fuel consumption and, depending on the costs of oxygen and fuel, reduce energy costs. The front end of a fiberglass furnace is the refractory channel system that delivers glass from the melter to the forming process. After the melter, it is the second largest user of energy in a fiberglass plant. A consortium of glass companies and suppliers, led by Owens Corning, was formed to develop and demonstrate oxy/fuel combustion technology for the front end of a fiberglass melter, to demonstrate the viability of this energy saving technology to the U.S. glass industry, as a D.O.E. sponsored project. The project goals were to reduce natural gas consumption and CO2 green house gas emissions by 65 to 70% and create net cost savings after the purchase of oxygen to achieve a project payback of less than 2 years. Project results in Jackson, TN included achieving a 56% reduction in gas consumption and CO2 emissions. A subsequent installation in Guelph ON, not impacted by unrelated operational changes in Jackson, achieved a 64% reduction. Using the more accurate 64% reduction in the payback calculation yielded a 2.2 year payback in Jackson. The installation of the demonstration combustion system saves 77,000 DT/yr of natural gas or 77 trillion Btu/yr and eliminates 4500 tons/yr of CO2 emissions. This combustion system is one of several energy and green house gas reduction technologies being adopted by Owens Corning to achieve aggressive goals relating to the company’s global facility environmental footprint.

  13. Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels

    SciTech Connect (OSTI)

    Pratapas, John; Zelepouga, Serguei; Gnatenko, Vitaliy; Saveliev, Alexei; Jangale, Vilas; Li, Hailin; Getz, Timothy; Mather, Daniel

    2013-08-31

    The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

  14. Advanced Manufacturing Office, U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    materials Advanced Manufacturing Office Advanced Manufacturing Office Battery and Supercapacitors: A technology capable of transforming many industries including vehicles systems...

  15. Development and setting of a new system for advanced rheocast components

    SciTech Connect (OSTI)

    Rosso, Mario; Peter, I.; Calosso, F.

    2011-05-04

    This paper presents an overview of alternative methods of production of enhanced performance Al-based alloys components for critical areas. In particular, a new rheocasting system, suitable for the manufacturing of high performance industrial components has been considered. The aforementioned method allows obtaining component quickly and results a more convenient process, from economical point of view than other innovative processes. Two series of components have been produced with A356 and A357 alloys, then have been heat treated using T5 and T6 treatments. On polished transverse sections of samples the microstructure of the alloy has been observed. Their soundness has been previously certified by non destructive tests. Samples for tensile and three point bending tests have been machined directly from the produced components. On the fractured samples, fracture surface analysis has been performed in order to analyze and evaluate the influence of the process and of the alloy on the fracture behaviour.

  16. Microelectromechanical system assembled ion optics: An advance to miniaturization and assembly of electron and ion optics

    SciTech Connect (OSTI)

    Fox, J.; Verbeck, G. [University of North Texas, Denton, Texas 76203 (United States); Saini, R.; Tsui, K. [Zyvex, Richardson, Texas 75081 (United States)

    2009-09-15

    Deep-reactive ion etching of n-doped silicon-on-insulator is utilized to make ion optical components to aid in the miniaturization of mass analyzers. The microelectromechanical system components are bound to aluminum nitride substrates and employed three-dimensional assembly. The assembly methods are tested for breakdown (V{sub b}), durability, and alignment. Demonstration of ion manipulation is shown with a 1 mm Bradbury-Nielsen gate, 500 {mu}m Einzel lens, 500 {mu}m coaxial ring ion trap, and reflectron optics. Data are presented showing the resolution, attenuation, and performance of each of these devices. We demonstrate advantages and disadvantages of this technology and its applications to mass analysis.

  17. Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems

    SciTech Connect (OSTI)

    Yoder, JR.G.L.

    2006-03-08

    Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

  18. Experimental Advanced Superconducting Tokamak

    E-Print Network [OSTI]

    ASIPP Experimental Advanced Superconducting Tokamak (EAST) Design, Fabrication and Assembly Weng of the project is to develop an advanced superconducting tokamak · Explore and demonstrate of steady magnets Total weight 38.7 tons, Total flux swing 10 VS Magnet system Superconducting coils; CIC conductor

  19. Advanced materials for solid oxide fuel cells: Hafnium-Praseodymium-Indium Oxide System

    SciTech Connect (OSTI)

    Bates, J.L.; Griffin, C.W.; Weber, W.J.

    1988-06-01

    The HfO/sub 2/-PrO/sub 1.83/-In/sub 2/O/sub 3/ system has been studied at the Pacific Northwest Laboratory to develop alternative, highly electrically conducting oxides as electrode and interconnection materials for solid oxide fuel cells. A coprecipitation process was developed for synthesizing single-phase, mixed oxide powders necessary to fabricate powders and dense oxides. A ternary phase diagram was developed, and the phases and structures were related to electrical transport properties. Two new phases, an orthorhombic PrInO/sub 3/ and a rhombohedral Hf/sub 2/In/sub 2/O/sub 7/ phase, were identified. The highest electronic conductivity is related to the presence of a bcc, In/sub 2/O/sub 3/ solid solution (ss) containing HfO/sub 2/ and PrO/sub 1.83/. Compositions containing more than 35 mol % of the In/sub 2/O/sub 3/ ss have electrical conductivities greater than 10/sup /minus/1/ (ohm-cm)/sup /minus/1/, and the two or three phase structures that contain this phase appear to exhibit mixed electronic-ionic conduction. The high electrical conductivities and structures similar to the Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/(HfO/sub 2/) electrolyte give these oxides potential for use as cathodes in solid oxide fuel cells. 21 refs.

  20. Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

  1. Development and Utilization of mathematical Optimization in Advanced Fuel Cycle Systems Analysis

    SciTech Connect (OSTI)

    Turinsky, Paul; Hays, Ross

    2011-09-02

    Over the past sixty years, a wide variety of nuclear power technologies have been theorized, investigated and tested to various degrees. These technologies, if properly applied, could provide a stable, long-term, economical source of CO2-free electric power. However, the recycling of nuclear fuel introduces a degree of coupling between reactor systems which must be accounted for when making long term strategic plans. This work investigates the use of a simulated annealing optimization algorithm coupled together with the VISION fuel cycle simulation model in order to identify attractive strategies from economic, evironmental, non-proliferation and waste-disposal perspectives, which each have associated an objective function. The simulated annealing optimization algorithm works by perturbing the fraction of new reactor capacity allocated to each available reactor type (using a set of heuristic rules) then evaluating the resulting deployment scenario outcomes using the VISION model and the chosen objective functions. These new scenarios, which are either accepted or rejected according the the Metropolis Criterion, are then used as the basis for further perturbations. By repeating this process several thousand times, a family of near-optimal solutions are obtained. Preliminary results from this work using a two-step, Once-through LWR to Full-recycle/FRburner deployment scenario with exponentially increasing electric demand indicate that the algorithm is capable of #12;nding reactor deployment pro#12;les that reduce the long-term-heat waste disposal burden relative to an initial reference scenario. Further work is under way to re#12;ne the current results and to extend them to include the other objective functions and to examine the optimization trade-o#11;s that exist between these di#11;erent objectives.

  2. Systems Analyses of Advanced Brayton Cycles For High Efficiency Zero Emission Plants

    SciTech Connect (OSTI)

    A. D. Rao; J. Francuz; H. Liao; A. Verma; G. S. Samuelsen

    2006-11-01

    Table 1 shows that the systems efficiency, coal (HHV) to power, is 35%. Table 2 summarizes the auxiliary power consumption within the plant. Thermoflex was used to simulate the power block and Aspen Plus the balance of plant. The overall block flow diagram is presented in Figure A1.3-1 and the key unit process flow diagrams are shown in subsequent figures. Stream data are given in Table A1.3-1. Equipment function specifications are provided in Tables A1.3-2 through 17. The overall plant scheme consists of a cryogenic air separation unit supplying 95% purity O{sub 2} to GE type high pressure (HP) total quench gasifiers. The raw gas after scrubbing is treated in a sour shift unit to react the CO with H{sub 2}O to form H{sub 2} and CO{sub 2}. The gas is further treated to remove Hg in a sulfided activated carbon bed. The syngas is desulfurized and decarbonized in a Selexol acid gas removal unit and the decarbonized syngas after humidification and preheat is fired in GE 7H type steam cooled gas turbines. Intermediate pressure (IP) N{sub 2} from the ASU is also supplied to the combustors of the gas turbines as additional diluent for NOx control. A portion of the air required by the ASU is extracted from the gas turbines. The plant consists of the following major process units: (1) Air Separation Unit (ASU); (2) Gasification Unit; (3) CO Shift/Low Temperature Gas Cooling (LTGC) Unit; (4) Acid Gas Removal Unit (AGR) Unit; (5) Fuel Gas Humidification Unit; (6) Carbon Dioxide Compression/Dehydration Unit; (7) Claus Sulfur Recovery/Tail Gas Treating Unit (SRU/TGTU); and (8) Power Block.

  3. IEEE Network Special Issue on Network Systems Architecture The last two decades have been characterized by significant advances in networking. The

    E-Print Network [OSTI]

    Baldi, Mario

    IEEE Network Special Issue on Network Systems Architecture Editorial The last two decades have been the development of a wide range of high- speed networks in the wide and local area, while the advances in access. The prevalence of Internet technology has brought its services to a very large population, which has been growing

  4. Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference

    SciTech Connect (OSTI)

    Geiling, D.W.

    1993-08-01

    The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

  5. Huang and Nicol Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:9 http://www.journalofcloudcomputing.com/content/2/1/9

    E-Print Network [OSTI]

    Chen, Ing-Ray

    Huang and Nicol Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:9 http://www.journalofcloudcomputing.com/content/2/1/9 RESEARCH Open Access Trust mechanisms for cloud computing Jingwei Huang* and David M Nicol Abstract Trust is a critical factor in cloud computing; in present practice it depends largely

  6. Advanced optimization methods for power systems P. Panciatici, M.C. Campi, S. Garatti, S.H. Low, D.K. Molzahn, A.X.

    E-Print Network [OSTI]

    Ernst, Damien

    Advanced optimization methods for power systems P. Panciatici, M.C. Campi, S. Garatti, S.H. Low, D from a grid operator perspective 2 Taxonomy of optimization problems 3 Recent developments in the eld of optimization 4 Possible synergies with sister elds 5 Summary 6 References 2 / 53 #12;Context: An increasing

  7. Recent Advances in Speech Recognition System for IBM DARPA Communicator Yuqing Gao, Hakan Erdogan, Yongxin Li, Vaibhava Goel and Michael Picheny

    E-Print Network [OSTI]

    Erdogan, Hakan

    Recent Advances in Speech Recognition System for IBM DARPA Communicator Yuqing Gao, Hakan Erdogan, Yongxin Li, Vaibhava Goel and Michael Picheny IBM Thomas J. Watson Research Center PO Box 218 Yorktown Heights, NY 10598 {yuqing, erdogan, vgoel, yongxin, picheny}@us.ibm.com Abstract In this paper, we present

  8. Energy Conservation Management Can Pay For Itself 

    E-Print Network [OSTI]

    McCall, R.; Bickle, L.

    1982-01-01

    With proper management of energy conservation programs, any structure can be energy efficient. And this energy efficiency need not require great expenditures. A 'systems approach' to energy management identifies a series of activities which...

  9. Solid State AC Motor Drives - Conservation Perspectives 

    E-Print Network [OSTI]

    Mohan, N.; Ferraro, R. J.

    1982-01-01

    Variable Frequency Solid-State Inverters: can control the speed of ac motors by producing adjustable frequency ac voltage, with an enormous potential for energy conservation in pumps and air handling systems. 3. Other Variable Frequency Drives: include...

  10. Development of an Advanced Stimulation / Production Predictive Simulator for Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Pritchett, John W.

    2015-04-15

    There are several well-known obstacles to the successful deployment of EGS projects on a commercial scale, of course. EGS projects are expected to be deeper, on the average, than conventional “natural” geothermal reservoirs, and drilling costs are already a formidable barrier to conventional geothermal projects. Unlike conventional resources (which frequently announce their presence with natural manifestations such as geysers, hot springs and fumaroles), EGS prospects are likely to appear fairly undistinguished from the earth surface. And, of course, the probable necessity of fabricating a subterranean fluid circulation network to mine the heat from the rock (instead of simply relying on natural, pre-existing permeable fractures) adds a significant degree of uncertainty to the prospects for success. Accordingly, the basic motivation for the work presented herein was to try to develop a new set of tools that would be more suitable for this purpose. Several years ago, the Department of Energy’s Geothermal Technologies Office recognized this need and funded a cost-shared grant to our company (then SAIC, now Leidos) to partner with Geowatt AG of Zurich, Switzerland and undertake the development of a new reservoir simulator that would be more suitable for EGS forecasting than the existing tools. That project has now been completed and a new numerical geothermal reservoir simulator has been developed. It is named “HeatEx” (for “Heat Extraction”) and is almost completely new, although its methodology owes a great deal to other previous geothermal software development efforts, including Geowatt’s “HEX-S” code, the STAR and SPFRAC simulators developed here at SAIC/Leidos, the MINC approach originally developed at LBNL, and tracer analysis software originally formulated at INEL. Furthermore, the development effort was led by engineers with many years of experience in using reservoir simulation software to make meaningful forecasts for real geothermal projects, not just software designers. It is hoped that, as a result, HeatEx will prove useful during the early stages of the development of EGS technology. The basic objective was to design a tool that could use field data that are likely to become available during the early phases of an EGS project (that is, during initial reconnaissance and fracture stimulation operations) to guide forecasts of the longer-term behavior of the system during production and heat-mining.

  11. Advanced sensors

    SciTech Connect (OSTI)

    Elliot, T.C.

    1994-08-01

    This article examines how advances in sensor technology are beginning to close the gap with advances in other parts of the control and sensing loops; these advances are needed to more easily meet new EPA regulations and demand for more efficient power plant operation. Topics of the article include fiberoptic sensors, sensors for the air side of the plant, and water side sensors.

  12. Advanced Combustion FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The advantage of these advanced combustion systems is that the high concentration of CO2 in the flue gas reduces the cost and improves the performance of the CO2 capture...

  13. Advanced Article Article Contents

    E-Print Network [OSTI]

    O'Shea, Paul

    -reduction) WILEY ENCYCLOPEDIA OF CHEMICAL BIOLOGY 2008, John Wiley & Sons, Inc. 1 #12;Membrane PotentialsAdvanced Article Article Contents · Biological Background · Physical Chemistry Background of Biological Roles and of Tech- nologies for Measurement Membrane Potentials in Living Systems, Tools

  14. AN OPTIMIZED TWO-CAPACITY ADVANCED ELECTRIC HEAT PUMP S. E. Veyo, Manager, Heat Exchange Systems Research

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;AN OPTIMIZED TWO-CAPACITY ADVANCED ELECTRIC HEAT PUMP S. E. Veyo S. E. Veyo, Manager, Heat 15235 KEYWORDS: heat pump, air conditioner, electric, residential, energy, compressor, fan, blower, heat exchanger, comfort. #12;AN OPTIMIZED TWO-CAPACITY ADVANCED ELECTRIC HEAT PUMP S. E. Veyo* ABSTRACT A two

  15. Advanced Photon Source experimental beamline Safety Assessment Document: Addendum to the Advanced Photon Source Accelerator Systems Safety Assessment Document (APS-3.2.2.1.0)

    SciTech Connect (OSTI)

    1995-01-01

    This Safety Assessment Document (SAD) addresses commissioning and operation of the experimental beamlines at the Advanced Photon Source (APS). Purpose of this document is to identify and describe the hazards associated with commissioning and operation of these beamlines and to document the measures taken to minimize these hazards and mitigate the hazard consequences. The potential hazards associated with the commissioning and operation of the APS facility have been identified and analyzed. Physical and administrative controls mitigate identified hazards. No hazard exists in this facility that has not been previously encountered and successfully mitigated in other accelerator and synchrotron radiation research facilities. This document is an updated version of the APS Preliminary Safety Analysis Report (PSAR). During the review of the PSAR in February 1990, the APS was determined to be a Low Hazard Facility. On June 14, 1993, the Acting Director of the Office of Energy Research endorsed the designation of the APS as a Low Hazard Facility, and this Safety Assessment Document supports that designation.

  16. Advanced Recovery and Integrated Extraction System (ARIES): The United State's demonstration line for pit disassembly and conversion

    SciTech Connect (OSTI)

    Nelson, Timothy O.

    1998-03-01

    The Advanced Recovery and Integrated Extraction System (ARIES) is a pit disassembly and conversion demonstration line at Los Alamos National Laboratory's plutonium facility. Pits are the core of a nuclear weapon that contains fissile material. With the end of the cold war, the United States began a program to dispose of the fissile material contained in surplus nuclear weapons. In January of 1997, the Department of Energy's Office of Fissile Material Disposition issued a Record of Decision (ROD) on the disposition of surplus plutonium. This decision contained a hybrid option for disposition of the plutonium, immobilization and mixed oxide fuel. ARIES is the cornerstone of the United States plutonium disposition program that supplies the pit demonstration plutonium feed material for either of these disposition pathways. Additionally, information from this demonstration is being used to design the United States Pit Disassembly and Conversion Facility. AH of the ARIES technologies were recently developed and incorporate waste minimization. The technologies include pit bisection, hydride/dehydride, metal to oxide conversion process, packaging, and nondestructive assay (NDA). The current schedule for the ARIES integrated Demonstration will begin in the Spring of 1998. The ARIES project involves a number of DOE sites including Los Alamos National Laboratory as the lead laboratory, Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories. Moreover, the ARIES team is heavily involved in working with Russia in their pit disassembly and conversion activities.

  17. Energy Conservation Standards Activities

    Broader source: Energy.gov (indexed) [DOE]

    Congress August 2014 United States Department of Energy Washington, DC 20585 Energy Conservation Standards Activities Report to Congress | Page i Message from the Assistant...

  18. Conservation and Renewables Timeline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONSERVATION, RENEWABLES & RECs FY 2009 FY 2010 FY 2011 FY 2012 FY 2013 FY 2014 FY 2015 1012008 1012009 1012010 1012011 1012012 1012013 1012014 1012015 By June 1,...

  19. MTCI advanced coal technologies

    SciTech Connect (OSTI)

    Mansour, M.N.; Chandran, R.R. [Manufacturing and Technology Conversion International, Inc., Columbia, MD (United States)

    1994-12-31

    MTCI is pursuing the development and commercialization of several advanced combustion and gasification systems based on pulse combustion technology. The systems include indirectly heated thermochemical reactor, atmospheric pressure pulse combustor, pulsed atmospheric fluidized bed combustor, direct coal-fired gas turbine pulse combustor island, and advanced concept second-generation pressurized fluidized bed combustor island. Although the systems in toto are capable of processing lignite, subbituminous, bituminous, and anthracite coals in an efficient, economical and environmentally acceptable manner, each system is considered ideal for certain coal types. Brief descriptions of the systems, applications, selected test results and technology status are presented.

  20. Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems

    SciTech Connect (OSTI)

    Pickrell, Gary; Scott, Brian

    2014-06-30

    This report covers the technical progress on the program “Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems”, funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Materials Science & Engineering and Electrical & Computer Engineering Departments at Virginia Tech, and summarizes technical progress from July 1st, 2005 –June 30th, 2014. The objective of this program was to develop novel fiber materials for high temperature gas sensors based on evanescent wave absorption in optical fibers. This project focused on two primary areas: the study of a sapphire photonic crystal fiber (SPCF) for operation at high temperature and long wavelengths, and a porous glass based fiber optic sensor for gas detection. The sapphire component of the project focused on the development of a sapphire photonic crystal fiber, modeling of the new structures, fabrication of the optimal structure, development of a long wavelength interrogation system, testing of the optical properties, and gas and temperature testing of the final sensor. The fabrication of the 6 rod SPCF gap bundle (diameter of 70?m) with a hollow core was successfully constructed with lead-in and lead-out 50?m diameter fiber along with transmission and gas detection testing. Testing of the sapphire photonic crystal fiber sensor capabilities with the developed long wavelength optical system showed the ability to detect CO2 at or below 1000ppm at temperatures up to 1000°C. Work on the porous glass sensor focused on the development of a porous clad solid core optical fiber, a hollow core waveguide, gas detection capabilities at room and high temperature, simultaneous gas species detection, suitable joining technologies for the lead-in and lead-out fibers and the porous sensor, sensor system sensitivity improvement, signal processing improvement, relationship between pore structure and fiber geometry to optical properties, and the development of a sensor packaging prototype for laboratory testing. Analysis and experiments determined that a bonding technique using a CO2 laser is the most suitable joining technique. Pore morphology alteration showed that transmission improved with increasing annealing temperature (producing smaller pores), while the sensor response time increased and the mechanical strength decreased with increasing annealing temperature. Software was developed for data acquisition and signal processing to collect and interpret spectral gas absorption data. Gas detection on porous glass sensors was completed and the detection limit was evaluated using acetylene and was found to be around 1- 200ppm. A complete materials package for porous glass sensors was manufactured for testing.