Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

U.S. Department of Energy Scientific Discovery through Advanced Computing SciDAC 2010  

E-Print Network (OSTI)

U.S. Department of Energy Scientific Discovery through Advanced Computing SciDAC 2010 Dream beams. Introduction 261 #12;U.S. Department of Energy Scientific Discovery through Advanced Computing SciDAC 2010 Figure 1. 262 #12;U.S. Department of Energy Scientific Discovery through Advanced Computing SciDAC 2010 2

Geddes, Cameron Guy Robinson

2

Scientific Discovery through Advanced Computing (SciDAC) | U.S. DOE Office  

Office of Science (SC) Website

Scientific Scientific Discovery through Advanced Computing (SciDAC) Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Co-Design SciDAC Institutes Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » Research Scientific Discovery through Advanced Computing (SciDAC)

3

The FES Scientific Discovery through Advanced Computing (SciDAC) Program  

E-Print Network (OSTI)

and researchers are expected to be leaders in the efficient and productive use of High Performance Computing

4

SciDAC Conferences  

Office of Science (SC) Website

Conferences Conferences Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Co-Design SciDAC Institutes Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » Scientific Discovery through Advanced Computing (SciDAC) SciDAC Conferences Print Text Size: A A A

5

SCIDAC-PSI.WIRTH.130319.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

by the U.S. Department of Energy, Office of Fusion Energy Sciences and Advanced Scientific Computing Research (ASCR) through the SciDAC-3 program. SciDAC-PSI project description...

6

SciDAC Institutes | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Institutes Institutes Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Co-Design SciDAC Institutes Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » Scientific Discovery through Advanced Computing (SciDAC) SciDAC Institutes Print Text Size: A A A

7

Stellar Evolution/Supernova Research Data Archives from the SciDAC Computational Astrophysics Consortium  

DOE Data Explorer (OSTI)

Theoretical high-energy astrophysics studies the most violent explosions in the universe - supernovae (the massive explosions of dying stars) and gamma ray bursts (mysterious blasts of intense radiation). The evolution of massive stars and their explosion as supernovae and/or gamma ray bursts describes how the "heavy" elements needed for life, such as oxygen and iron, are forged (nucleosynthesis) and ejected to later form new stars and planets. The Computational Astrophysics Consortium's project includes a Science Application Partnership on Adaptive Algorithms that develops software involved. The principal science topics are - in order of priority - 1) models for Type Ia supernovae, 2) radiation transport, spectrum formation, and nucleosynthesis in model supernovae of all types; 3) the observational implications of these results for experiments in which DOE has an interest, especially the Joint Dark Energy Mission, Supernova/Acceleration Probe (SNAP) satellite observatory, the Large Synoptic Survey Telescope (LSST), and ground based supernova searches; 4) core collapse supernovae; 5) gamma-ray bursts; 6) hypernovae from Population III stars; and 7) x-ray bursts. Models of these phenomena share a common need for nuclear reactions and radiation transport coupled to multi-dimensional fluid flow. The team has developed and used supernovae simulation codes to study Type 1A and core-collapse supernovae. (Taken from http://www.scidac.gov/physics/grb.html) The Stellar Evolution Data Archives contains more than 225 Pre-SN models that can be freely accessed.

Woosley, Stan [University of California, Santa Cruz

8

SciDAC Advances and Applications in Computational Beam Dynamics  

E-Print Network (OSTI)

have been used to model the SNS, LCLS, and ALS. Examplesthe Fermilab booster, and the SNS ring under construction),

2005-01-01T23:59:59.000Z

9

SciDAC Advances and Applications in Computational Beam Dynamics  

E-Print Network (OSTI)

codes have been used to model the SNS, LCLS, and ALS.Examples related to the LCLS injector and to the designan ultrafast streak camera for LCLS are shown in Figure 4.

2005-01-01T23:59:59.000Z

10

Unsolicited Projects in 2012: Research in Computer Architecture...  

Office of Science (SC) Website

Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC)...

11

Scidac1  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne National Laboratory Biological sciences are undergoing a revolution. High-performance computing has accelerated the transition from hypothesis-driven to design-driven...

12

SciDAC Fusiongrid Project--A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion  

SciTech Connect

This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large portion of national program efforts are organized around coordinated efforts to develop promising operational scenarios. Substantial efforts to develop integrated plasma modeling codes are also underway in the U.S., Europe and Japan. As a result of the highly collaborative nature of FES research, the community is facing new and unique challenges. While FES has a significant track record for developing and exploiting remote collaborations, with such large investments at stake, there is a clear need to improve the integration and reach of available tools. The NFC Project was initiated to address these challenges by creating and deploying collaborative software tools. The original objective of the NFC project was to develop and deploy a national FES 'Grid' (FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP) provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

SCHISSEL, D.P.; ABLA, G.; BURRUSS, J.R.; FEIBUSH, E.; FREDIAN, T.W.; GOODE, M.M.; GREENWALD, M.J.; KEAHEY, K.; LEGGETT, T.; LI, K.; McCUNE, D.C.; PAPKA, M.E.; RANDERSON, L.; SANDERSON, A.; STILLERMAN, J.; THOMPSON, M.R.; URAM, T.; WALLACE, G.

2006-08-31T23:59:59.000Z

13

SciDAC Fusiongrid Project--A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion  

SciTech Connect

This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large portion of national program efforts are organized around coordinated efforts to develop promising operational scenarios. Substantial efforts to develop integrated plasma modeling codes are also underway in the U.S., Europe and Japan. As a result of the highly collaborative nature of FES research, the community is facing new and unique challenges. While FES has a significant track record for developing and exploiting remote collaborations, with such large investments at stake, there is a clear need to improve the integration and reach of available tools. The NFC Project was initiated to address these challenges by creating and deploying collaborative software tools. The original objective of the NFC project was to develop and deploy a national FES 'Grid' (FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP) provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

SCHISSEL, D.P.; ABLA, G.; BURRUSS, J.R.; FEIBUSH, E.; FREDIAN, T.W.; GOODE, M.M.; GREENWALD, M.J.; KEAHEY, K.; LEGGETT, T.; LI, K.; McCUNE, D.C.; PAPKA, M.E.; RANDERSON, L.; SANDERSON, A.; STILLERMAN, J.; THOMPSON, M.R.; URAM, T.; WALLACE, G.

2006-08-31T23:59:59.000Z

14

ASCR NEWS SciDAC 2 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

SciDAC 2 Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources ASCR Discovery Monthly News Roundup News Archives ASCR Program Documents ASCR Workshops and Conferences ASCR Presentations 100Gbps Science Network Related Links Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » News & Resources SciDAC 2 Print Text Size: A A A RSS Feeds FeedbackShare Page DOE Announces $60 Million in Projects to Accelerate Scientific Discovery

15

National Computational Infrastructure for LatticeGauge Theory SciDAC-2 Closeout Report  

SciTech Connect

As part of the reliability project work, researchers from Vanderbilt University, Fermi National Laboratory and Illinois Institute of technology developed a real-time cluster fault-tolerant cluster monitoring framework. The goal for the scientific workflow project is to investigate and develop domain-specific workflow tools for LQCD to help effectively orchestrate, in parallel, computational campaigns consisting of many loosely-coupled batch processing jobs. Major requirements for an LQCD workflow system include: a system to manage input metadata, e.g. physics parameters such as masses, a system to manage and permit the reuse of templates describing workflows, a system to capture data provenance information, a systems to manage produced data, a means of monitoring workflow progress and status, a means of resuming or extending a stopped workflow, fault tolerance features to enhance the reliability of running workflows. In summary, these achievements are reported: Implemented a software system to manage parameters. This includes a parameter set language based on a superset of the JSON data-interchange format, parsers in multiple languages (C++, Python, Ruby), and a web-based interface tool. It also includes a templating system that can produce input text for LQCD applications like MILC. Implemented a monitoring sensor framework in software that is in production on the Fermilab USQCD facility. This includes equipment health, process accounting, MPI/QMP process tracking, and batch system (Torque) job monitoring. All sensor data are available from databases, and various query tools can be used to extract common data patterns and perform ad hoc searches. Common batch system queries such as job status are available in command line tools and are used in actual workflow-based production by a subset of Fermilab users. Developed a formal state machine model for scientific workflow and reliability systems. This includes the use of Vanderbilts Generic Modeling Envirnment (GME) tool for code generation for the production of user APIs, code stubs, testing harnesses, and model correctness verification. It is used for creating wrappers around LQCD applications so that they can be integrated into existing workflow systems such as Kepler. Implemented a database system for tracking the state of nodes and jobs managed by the Torque batch systems used at Fermilab. This robust system and various canned queuries are used for many tasks, including monitoring the health of the clusters, managing allocated projects, producing accounting reports, and troubleshooting nodes and jobs.

Bapty, Theodore; Dubey, Abhishek

2013-07-18T23:59:59.000Z

16

Energy Department Requests Proposals for Advanced Scientific Computing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requests Proposals for Advanced Scientific Requests Proposals for Advanced Scientific Computing Research Energy Department Requests Proposals for Advanced Scientific Computing Research December 27, 2005 - 4:55pm Addthis WASHINGTON, DC - The Department of Energy's Office of Science and the National Nuclear Security Administration (NNSA) have issued a joint Request for Proposals for advanced scientific computing research. DOE expects to fund $67 million annually for three years to five years under its Scientific Discovery through Advanced Computing (SciDAC) research program. Scientific computing, including modeling and simulation, has become crucial for research problems that are insoluble by traditional theoretical and experimental approaches, hazardous to study in the laboratory, or time-consuming or expensive to solve by traditional means.

17

Energy Department Requests Proposals for Advanced Scientific Computing  

Office of Science (SC) Website

Energy Energy Department Requests Proposals for Advanced Scientific Computing Research News Featured Articles Science Headlines 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 12.27.05 Energy Department Requests Proposals for Advanced Scientific Computing Research Print Text Size: A A A Subscribe FeedbackShare Page WASHINGTON, DC - The Department of Energy's Office of Science and the National Nuclear Security Administration (NNSA) have issued a joint Request for Proposals for advanced scientific computing research. DOE expects to fund $67 million annually for three years to five years under its Scientific Discovery through Advanced Computing (SciDAC) research program.'

18

Advanced Simulation and Computing  

National Nuclear Security Administration (NNSA)

NA-ASC-117R-09-Vol.1-Rev.0 NA-ASC-117R-09-Vol.1-Rev.0 Advanced Simulation and Computing PROGRAM PLAN FY09 October 2008 ASC Focal Point Robert Meisner, Director DOE/NNSA NA-121.2 202-586-0908 Program Plan Focal Point for NA-121.2 Njema Frazier DOE/NNSA NA-121.2 202-586-5789 A Publication of the Office of Advanced Simulation & Computing, NNSA Defense Programs i Contents Executive Summary ----------------------------------------------------------------------------------------------- 1 I. Introduction -------------------------------------------------------------------------------------------------------- 2 Realizing the Vision ------------------------------------------------------------------------------------------------- 2 The Future of the Nuclear Weapons Complex ---------------------------------------------------------------- 2

19

UNEDF: Advanced Scienti?c Computing Collaboration Transforms the Low-Energy Nuclear Many-Body Problem  

Science Conference Proceedings (OSTI)

With diverse scienti?c backgrounds, the UNEDF SciDAC collaboration of nuclear theorists, applied mathematicians, and computer scientists is developing a comprehensive description of nuclei and their reactions that delivers maximum predictive power with quanti?ed uncertainties. This paper describes the UNEDF collaboration and identi?es attributes that classify UNEDF as a successful computational collaboration. We illustrate signi?cant milestones accomplished by UNEDF through integrative solutions using the most reliable theoretical approaches, the most advanced algorithms, and leadership class computational resources.

Nam, Hai A.; Stoitsov, M.; Nazarewicz, Witold; Bulgac, Aurel; Hagen, Gaute; Kortelainene, Markus; Maris, P.; Pei, Junchen; Roche, Kenneth J.; Schunck, Nicolas; Thompson, Ian; Vary, James; Wild, Stefan

2012-11-03T23:59:59.000Z

20

Computational photography: advanced topics  

Science Conference Proceedings (OSTI)

Computational photography combines plentiful computing, digital sensors, modern optics, many varieties of actuators, probes and smart lights to escape the limitations of traditional film cameras and enables novel imaging applications. Unbounded dynamic ...

Paul Debevec; Ramesh Raskar; Jack Tumblin

2008-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Computational Methods for Turbulence and Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Computational Methods for Turbulence and Combustion Advanced Computational Methods for Turbulence and Combustion Bell.png Key Challenges: Development and application of...

22

Collaboration to advance high-performance computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaboration to advance high-performance computing Collaboration to advance high-performance computing LANL and EMC will enhance, design, build, test, and deploy new cutting-edge...

23

Advanced Scientific Computing Research Jobs  

Office of Science (SC) Website

about/jobs/ Below is a list of currently about/jobs/ Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the links to the formal position announcements on USAJOBS.gov for more information. en {D1C7BEC4-D6F9-4FB7-A95E-142A6B699F6B}https://www.usajobs.gov/GetJob/ViewDetails/358465200 Computer Scientist Computer Science Research & Partnerships Division Job Title: Computer Scientist Computer Science Research & Partnerships DivisionOffice: Advanced Scientific Computing ResearchURL: USAjobs listingVacancy Number: 14-DE-SC-HQ-005Location:

24

Unsolicited Projects in 2012: Research in Computer Architecture, Modeling,  

Office of Science (SC) Website

2: Research in Computer Architecture, 2: Research in Computer Architecture, Modeling, and Evolving MPI for Exascale Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301)

25

Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies  

SciTech Connect

The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

2011-11-14T23:59:59.000Z

26

Computational Science Graduate Fellowship (CSGF) | U.S. DOE Office of  

Office of Science (SC) Website

Computational Computational Science Graduate Fellowship (CSGF) Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » Research Computational Science Graduate Fellowship (CSGF) Print Text Size: A A A RSS Feeds

27

Computer Science Program | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Computer Science Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information »

28

Advanced Computing Tech Team | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and promulgate a collection of applications for advanced architecture and high performance computing (HPC) systems. Technical engagement will occur both in the scientific...

29

FastMath SciDAC Institute | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

FastMath SciDAC Institute FastMath SciDAC Institute FastMath SciDAC Institute The FASTMath SciDAC Institute is developing and deploying scalable mathematical algorithms and software tools for reliable simulation of complex physical phenomena and collaborating with U.S. Department of Energy (DOE)domain scientists to ensure the usefulness and applicability of our work. The focus of ourwork is strongly driven by the requirements of DOE application scientists who work extensively with mesh-based, continuum-level models or particle-based techniques. Project Contact Lois Curfman McInnes Barry Smith Todd Munson Mihai Anitescu People Involved Jed Brown Tim Tautges Other Contributors Ann Almgren (LBNL) Phil Colella Mark Shephard (RPI) Daniel Reynolds (SMU) Related Group(s) Applied Mathematics Website URL

30

Advancing manufacturing through computational chemistry  

SciTech Connect

The capabilities of nanotechnology and computational chemistry are reaching a point of convergence. New computer hardware and novel computational methods have created opportunities to test proposed nanometer-scale devices, investigate molecular manufacturing and model and predict properties of new materials. Experimental methods are also beginning to provide new capabilities that make the possibility of manufacturing various devices with atomic precision tangible. In this paper, we will discuss some of the novel computational methods we have used in molecular dynamics simulations of polymer processes, neural network predictions of new materials, and simulations of proposed nano-bearings and fluid dynamics in nano- sized devices.

Noid, D.W.; Sumpter, B.G.; Tuzun, R.E.

1995-12-31T23:59:59.000Z

31

NETL: Advanced Research - Computation Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Energy Sciences > APECS Computational Energy Sciences > APECS Advanced Research Computational Energy Sciences APECS APECS Virtual Plant APECS (Advanced Process Engineering Co-Simulator) is the first simulation software to combine the disciplines of process simulation and computational fluid dynamics (CFD). This unique combination makes it possible for engineers to create "virtual plants" and to follow complex thermal and fluid flow phenomena from unit to unit across the plant. Advanced visualization software tools aid in analysis and optimization of the entire plant's performance. This tool can significantly reduce the cost of power plant design and optimization with an emphasis on multiphase flows critical to advanced power cycles. A government-industry-university collaboration (including DOE, NETL, Ansys/

32

Barbara Helland Advanced Scientific Computing Research NERSC...  

NLE Websites -- All DOE Office Websites (Extended Search)

7-28, 2012 Barbara Helland Advanced Scientific Computing Research NERSC-HEP Requirements Review 1 Science C ase S tudies d rive d iscussions Program R equirements R eviews ...

33

DOE Issues Funding Opportunity for Advanced Computational and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding Opportunity for Advanced Computational and Modeling Research for the Electric Power System DOE Issues Funding Opportunity for Advanced Computational and Modeling Research...

34

Computational Modeling and Simulation of Advanced Materials for ...  

Science Conference Proceedings (OSTI)

Symposium, Computational Modeling and Simulation of Advanced Materials for Energy Applications. Sponsorship, TMS/ASM: Computational Materials Science...

35

NETL: Advanced Research - Computation Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Energy Sciences Computational Energy Sciences Advanced Research Computational Energy Sciences Virtual Plant Simulating the complex processes occurring inside a coal gasifier, or across an entire chemical or power plant, is an incredible tool made possible by today's supercomputers and advanced simulation software. The Computational Energy Sciences (CES) Focus Area provides such tools to the Fossil Energy program at NETL. The goal is to help scientists and engineers to better understand the fundamental steps in a complex process so they can optimize the design of the equipment needed to run it. Not only is this less costly than performing a long series of experiments under varying conditions to try to isolate important variables, but it also provides more information than such experiments can provide. Of course, the data is

36

Large Scale Computing and Storage Requirements for Advanced Scientific...  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2014 ASCRFrontcover.png Large Scale Computing and Storage Requirements for...

37

Sandia National Laboratories: Advanced Simulation and Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Facebook Facebook Twitter YouTube Flickr RSS Advanced Simulation and Computing Advanced Simulation and Computing Taking on the World's Complex Challenges Advancing Science Frontiers Our research is producing new scientific insights about the world in which we live and assists in certifying the safety and reliability of the nation's nuclear weapons stockpile. Technology Provides the Tools Growth in data and the software and hardware demands needed for physics-based answers and predictive capabilities are driving technology improvements. We could not achieve the breakthroughs we're making without these important tools. Partnerships Accelerate Innovation Partnerships leverage talent and multiply the effectiveness of our research efforts. Impacting Global Issues ASC software and hardware tools solve global issues ranging from nuclear

38

Computational Biology, Advanced Scientific Computing, and Emerging Computational Architectures  

SciTech Connect

This CRADA was established at the start of FY02 with $200 K from IBM and matching funds from DOE to support post-doctoral fellows in collaborative research between International Business Machines and Oak Ridge National Laboratory to explore effective use of emerging petascale computational architectures for the solution of computational biology problems. 'No cost' extensions of the CRADA were negotiated with IBM for FY03 and FY04.

None

2007-06-27T23:59:59.000Z

39

Computational Advances in Applied Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advances in Applied Energy Computational Advances in Applied Energy Friedmann-LLNL-SEAB.10.11.pdf More Documents & Publications Director's Perspective by George Miller...

40

NEAMS ToolKit: advanced computational tools for modeling & simulation...  

NLE Websites -- All DOE Office Websites (Extended Search)

NEAMS ToolKit: advanced computational tools for modeling & simulation of advanced reactor systems Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures &...

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Extraordinary Tools for Extraordinary Science: The Impact of SciDAC on Accelerator Science & Technology  

E-Print Network (OSTI)

the Office of Advanced Scientific Computing Research (ASCR).the Office of Advanced Scientific Computing Research (ASCR),

Ryne, Robert D.

2006-01-01T23:59:59.000Z

42

Commnity Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies  

SciTech Connect

The design and performance optimization of particle accelerators is essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC1 Accelerator Science and Technology project, the SciDAC2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modeling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multi-physics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

2008-07-01T23:59:59.000Z

43

Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies  

SciTech Connect

The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

2011-10-21T23:59:59.000Z

44

ATCA for Machines-- Advanced Telecommunications Computing Architecture  

Science Conference Proceedings (OSTI)

The Advanced Telecommunications Computing Architecture is a new industry open standard for electronics instrument modules and shelves being evaluated for the International Linear Collider (ILC). It is the first industrial standard designed for High Availability (HA). ILC availability simulations have shown clearly that the capabilities of ATCA are needed in order to achieve acceptable integrated luminosity. The ATCA architecture looks attractive for beam instruments and detector applications as well. This paper provides an overview of ongoing R&D including application of HA principles to power electronics systems.

Larsen, R.S.; /SLAC

2008-04-22T23:59:59.000Z

45

NETL: Advanced Research - Computation Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

MFIX MFIX Advanced Research Computational Energy Sciences MFIX MFIX (Multiphase Flow with Interphase eXchanges) is a general-purpose computer code developed at the National Energy Technology Laboratory (NETL) for describing the hydrodynamics, heat transfer and chemical reactions in fluid-solids systems. It has been used for describing bubbling and circulating fluidized beds and spouted beds. MFIX calculations give transient data on the three-dimensional distribution of pressure, velocity, temperature, and species mass fractions. MFIX code is based on a generally accepted set of multiphase flow equations. The code is used as a "test-stand" for testing and developing multiphase flow constitutive equations. MFIX Virtual Plant Consider a fluidized bed coal gasification reactor, in which pulverized

46

National facility for advanced computational science: A sustainable path to scientific discovery  

E-Print Network (OSTI)

Office of Advanced Scientific Computing Research of the U.S.Office of Advanced Scientific Computing Research (OASCR) andOASCR Office of Advanced Scientific Computing Research (DOE

2004-01-01T23:59:59.000Z

47

SciDAC's Earth System Grid Center for Enabling Technologies Semiannual Progress Report October 1, 2010 through March 31, 2011  

SciTech Connect

This report summarizes work carried out by the Earth System Grid Center for Enabling Technologies (ESG-CET) from October 1, 2010 through March 31, 2011. It discusses ESG-CET highlights for the reporting period, overall progress, period goals, and collaborations, and lists papers and presentations. To learn more about our project and to find previous reports, please visit the ESG-CET Web sites: http://esg-pcmdi.llnl.gov/ and/or https://wiki.ucar.edu/display/esgcet/Home. This report will be forwarded to managers in the Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) program and the Office of Biological and Environmental Research (OBER), as well as national and international collaborators and stakeholders (e.g., those involved in the Coupled Model Intercomparison Project, phase 5 (CMIP5) for the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5); the Community Earth System Model (CESM); the Climate Science Computational End Station (CCES); SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science; the North American Regional Climate Change Assessment Program (NARCCAP); the Atmospheric Radiation Measurement (ARM) program; the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA)), and also to researchers working on a variety of other climate model and observation evaluation activities. The ESG-CET executive committee consists of Dean N. Williams, Lawrence Livermore National Laboratory (LLNL); Ian Foster, Argonne National Laboratory (ANL); and Don Middleton, National Center for Atmospheric Research (NCAR). The ESG-CET team is a group of researchers and scientists with diverse domain knowledge, whose home institutions include eight laboratories and two universities: ANL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), LLNL, NASA/Jet Propulsion Laboratory (JPL), NCAR, Oak Ridge National Laboratory (ORNL), Pacific Marine Environmental Laboratory (PMEL)/NOAA, Rensselaer Polytechnic Institute (RPI), and University of Southern California, Information Sciences Institute (USC/ISI). All ESG-CET work is accomplished under DOE open-source guidelines and in close collaboration with the project's stakeholders, domain researchers, and scientists. Through the ESG project, the ESG-CET team has developed and delivered a production environment for climate data from multiple climate model sources (e.g., CMIP (IPCC), CESM, ocean model data (e.g., Parallel Ocean Program), observation data (e.g., Atmospheric Infrared Sounder, Microwave Limb Sounder), and analysis and visualization tools) that serves a worldwide climate research community. Data holdings are distributed across multiple sites including LANL, LBNL, LLNL, NCAR, and ORNL as well as unfunded partners sites such as the Australian National University (ANU) National Computational Infrastructure (NCI), the British Atmospheric Data Center (BADC), the Geophysical Fluid Dynamics Laboratory/NOAA, the Max Planck Institute for Meteorology (MPI-M), the German Climate Computing Centre (DKRZ), and NASA/JPL. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users who want to understand it, process it, extract value from it, visualize it, and/or communicate it to others. This ongoing effort is extremely large and complex, but it will be incredibly valuable for building 'science gateways' to critical climate resources (such as CESM, CMIP5, ARM, NARCCAP, Atmospheric Infrared Sounder (AIRS), etc.) for processing the next IPCC assessment report. Continued ESG progress will result in a production-scale system that will empower scientists to attempt new and exciting data exchanges, which could ultimately lead to breakthrough climate science discoveries.

Williams, D N

2011-04-02T23:59:59.000Z

48

Advanced Computer Graphics CSCI 6631 Section 001  

E-Print Network (OSTI)

Shaders · Animation · Color, Visual Realism · Advanced Texture Mapping (Bump, Environment Mapping) · Scene

Summa, Christopher M.

49

'Slow light' advance could speed optical computing, telecommunications  

NLE Websites -- All DOE Office Websites (Extended Search)

"Slow light" and specialized metamaterials 'Slow light' advance could speed optical computing, telecommunications Researchers have made the first demonstration of rapidly switching...

50

SciDAC's Earth System Grid Center for Enabling Technologies Semi-Annual Progress Report for the Period October 1, 2009 through March 31, 2010  

Science Conference Proceedings (OSTI)

This report summarizes work carried out by the ESG-CET during the period October 1, 2009 through March 31, 2009. It includes discussion of highlights, overall progress, period goals, collaborations, papers, and presentations. To learn more about our project, and to find previous reports, please visit the Earth System Grid Center for Enabling Technologies (ESG-CET) website. This report will be forwarded to the DOE SciDAC program management, the Office of Biological and Environmental Research (OBER) program management, national and international collaborators and stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), the SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science, the North American Regional Climate Change Assessment Program (NARCCAP), and other wide-ranging climate model evaluation activities).

Williams, D N; Foster, I T; Middleton, D E; Ananthakrishnan, R; Siebenlist, F; Shoshani, A; Sim, A; Bell, G; Drach, R; Ahrens, J; Jones, P; Brown, D; Chastang, J; Cinquini, L; Fox, P; Harper, D; Hook, N; Nienhouse, E; Strand, G; West, P; Wilcox, H; Wilhelmi, N; Zednik, S; Hankin, S; Schweitzer, R; Bernholdt, D; Chen, M; Miller, R; Shipman, G; Wang, F; Bharathi, S; Chervenak, A; Schuler, R; Su, M

2010-04-21T23:59:59.000Z

51

Community petascale project for accelerator science and simulation: Advancing computational science for future accelerators and accelerator technologies  

E-Print Network (OSTI)

and Office of Advanced Scientific Computing Research. Theand Office of Advanced Scientific Computing Research. The

Spentzouris, Panagiotis

2008-01-01T23:59:59.000Z

52

BNL | SciDAC-3 Scientific Computation Application Partnership...  

NLE Websites -- All DOE Office Websites (Extended Search)

Savage University of Washington John Negele Massachusetts Institute of Technology Rob Fowler University of North Carolina Andreas Stathopoulos College of William and Mary A...

53

About the ASCR Computer Science Program | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

About the ASCR Computer Science Program About the ASCR Computer Science Program Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information »

54

Advanced Environments and Tools for High Performance Computing  

E-Print Network (OSTI)

Advanced Environments and Tools for High Performance Computing Problem-Solving Environments Environments and Tools for High Performance Computing. The conference was chaired by Professor D. W. Walker and managing distributed high performance comput- ing resources is important for a PSE to meet the requirements

Walker, David W.

55

Sandia National Laboratories: Advanced Simulation and Computing...  

NLE Websites -- All DOE Office Websites (Extended Search)

computing related services to Defense Program customers located across the Nuclear Weapons Complex. Sandia has developed a robust User Support capability which provides various...

56

Sandia National Laboratories: Advanced Simulation and Computing...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Computing at Extreme Scale (ACES) is a partnership between Sandia and Los Alamos national laboratories. The objective of the ACES Architecture Office is to define...

57

Probabilistic neural computing with advanced nanoscale MOSFETs  

Science Conference Proceedings (OSTI)

The use of intrinsic nanoscale MOSFET noise for probabilistic computation is explored, using the continuous restricted Boltzmann machine (CRBM), a probabilistic neural model, as the exemplar architecture. The CRBM is modified by localising noise in its ... Keywords: Nanoscale MOSFET noise, Neuromorphic VLSI systems, Probabilistic computing

Nor Hisham Hamid; Tong Boon Tang; Alan F. Murray

2011-02-01T23:59:59.000Z

58

DOE Issues Funding Opportunity for Advanced Computational and Modeling  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding Opportunity for Advanced Computational and Funding Opportunity for Advanced Computational and Modeling Research for the Electric Power System DOE Issues Funding Opportunity for Advanced Computational and Modeling Research for the Electric Power System May 23, 2012 - 8:36am Addthis The objective of this Funding Opportunity Announcement (FOA) is to leverage scientific advancements in mathematics and computation for application to power system models and software tools, with the long-term goal of enabling real-time protection and control based on wide-area sensor measurements. Specifically, this FOA focuses on two foundational research challenges: 1) handling of large data sets to improve suitability for operational (and/or planning) models and analysis; and 2) "faster than real-time" simulations that improve understanding of

59

Advanced resource connector middleware for lightweight computational Grids  

Science Conference Proceedings (OSTI)

As computational Grids move away from the prototyping state, reliability, performance and ease of use and maintenance become focus areas of their adoption. In this paper, we describe ARC (Advanced Resource Connector) Grid middleware, where these issues ... Keywords: cluster, distributed computing, globus, grid, linux, middleware, scheduling

M. Ellert; M. Grnager; A. Konstantinov; B. Knya; J. Lindemann; I. Livenson; J. L. Nielsen; M. Niinimki; O. Smirnova; A. Wnnen

2007-02-01T23:59:59.000Z

60

NERSC Role in Advanced Scientific Computing Research Katherine Yelick  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Advanced Scientific Computing Research Katherine Yelick NERSC Director Requirements Workshop NERSC Mission The mission of the National Energy Research Scientific Computing Center (NERSC) is to accelerate the pace of scientific discovery by providing high performance computing, information, data, and communications services for all DOE Office of Science (SC) research. Sample Scientific Accomplishments at NERSC 3 Award-winning software uses massively-parallel supercomputing to map hydrocarbon reservoirs at unprecedented levels of detail. (Greg Newman, LBNL) . Combustion Adaptive Mesh Refinement allows simulation of a fuel- flexible low-swirl burner that is orders of magnitude larger & more detailed than traditional reacting flow simulations allow.

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Final Technical Report - SciDAC Cooperative Agreement: Center for Wave Interactions with Magnetohydrodynamics  

SciTech Connect

Final technical report for research performed by Dr. Thomas G. Jenkins in collaboration with Professor Dalton D. Schnack on SciDAC Cooperative Agreement: Center for Wave Interactions with Magnetohydrodyanics, DE-FC02-06ER54899, for the period of 8/15/06 - 8/14/11. This report centers on the Slow MHD physics campaign work performed by Dr. Jenkins while at UW-Madison and then at Tech-X Corporation. To make progress on the problem of RF induced currents affect magnetic island evolution in toroidal plasmas, a set of research approaches are outlined. Three approaches can be addressed in parallel. These are: (1) Analytically prescribed additional term in Ohm's law to model the effect of localized ECCD current drive; (2) Introduce an additional evolution equation for the Ohm's law source term. Establish a RF source 'box' where information from the RF code couples to the fluid evolution; and (3) Carry out a more rigorous analytic calculation treating the additional RF terms in a closure problem. These approaches rely on the necessity of reinvigorating the computation modeling efforts of resistive and neoclassical tearing modes with present day versions of the numerical tools. For the RF community, the relevant action item is - RF ray tracing codes need to be modified so that general three-dimensional spatial information can be obtained. Further, interface efforts between the two codes require work as well as an assessment as to the numerical stability properties of the procedures to be used.

Schnack, Dalton D.

2012-07-01T23:59:59.000Z

62

Supercomputing and Advanced Computing at the National Labs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy.gov » Supercomputing and Advanced Computing at the National Energy.gov » Supercomputing and Advanced Computing at the National Labs Supercomputing and Advanced Computing at the National Labs RSS September 30, 2013 Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research Learn how a new supercomputer at the National Energy Technology Laboratory will accelerate research into the next generation of fossil fuel systems. September 26, 2013 Infographic by Sarah Gerrity, Energy Department. INFOGRAPHIC: Everything You Need to Know About Supercomputers In our newest infographic, we explain some of the complex terms associated with the speed, storage and processing on supercomputers; the game changing work being done with them; and the top 8 supercomputers that call the

63

Multimedia for The Visualization of High Performance ...  

Science Conference Proceedings (OSTI)

... Office of Science, the SciDAC (Scientific Discovery through Advanced Computing) program brings together computational scientists, applied ...

2012-03-05T23:59:59.000Z

64

SciDAC Partnerships FOA | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

SciDAC Partnerships FOA SciDAC Partnerships FOA Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search Peer Review Policies EFRCs FOA Applications from Universities and Other Research Institutions Construction Review EPSCoR DOE Office of Science Graduate Fellowship (DOE SCGF) External link Early Career Research Program Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » Funding Opportunities SciDAC Partnerships FOA

65

Final Report for DOE Project: Portal Web Services: Support of DOE SciDAC Collaboratories  

SciTech Connect

Grid portals provide the scientific community with familiar and simplified interfaces to the Grid and Grid services, and it is important to deploy grid portals onto the SciDAC grids and collaboratories. The goal of this project is the research, development and deployment of interoperable portal and web services that can be used on SciDAC National Collaboratory grids. This project has four primary task areas: development of portal systems; management of data collections; DOE science application integration; and development of web and grid services in support of the above activities.

Mary Thomas, PI; Geoffrey Fox, Co-PI; Gannon, D; Pierce, M; Moore, R; Schissel, D; Boisseau, J

2007-10-01T23:59:59.000Z

66

Advanced Computer Methods for Grounding Analysis Ignasi Colominas1  

E-Print Network (OSTI)

of grounding grids of large electrical substations in practical cases present some difficulties mainly dueAdvanced Computer Methods for Grounding Analysis Ignasi Colominas1 , Jos´e Par´is1 , Xes present the foundations of a nu- merical formulation based on the Boundary Element Method for grounding

Colominas, Ignasi

67

Center for Technology for Advanced Scientific Component Software (TASCS) Consolidated Progress Report July 2006 - March 2009  

SciTech Connect

A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

Bernholdt, D E; McInnes, L C; Govindaraju, M; Bramley, R; Epperly, T; Kohl, J A; Nieplocha, J; Armstrong, R; Shasharina, S; Sussman, A L; Sottile, M; Damevski, K

2009-04-14T23:59:59.000Z

68

Advanced computational research in materials processing for design and manufacturing  

DOE Green Energy (OSTI)

The computational requirements for design and manufacture of automotive components have seen dramatic increases for producing automobiles with three times the mileage. Automotive component design systems are becoming increasingly reliant on structural analysis requiring both overall larger analysis and more complex analyses, more three-dimensional analyses, larger model sizes, and routine consideration of transient and non-linear effects. Such analyses must be performed rapidly to minimize delays in the design and development process, which drives the need for parallel computing. This paper briefly describes advanced computational research in superplastic forming and automotive crash worthiness.

Zacharia, T. [Oak Ridge National Lab., TN (United States). Metals and Ceramics

1994-12-31T23:59:59.000Z

69

Advanced Scientific Computing Advisory Committee (ASCAC) Homepage | U.S.  

Office of Science (SC) Website

ASCAC Home ASCAC Home Advanced Scientific Computing Advisory Committee (ASCAC) ASCAC Home Meetings Members Charges/Reports Charter .pdf file (38KB) ASCR Committees of Visitors ASCR Home Exascale Advisory Committee Report .pdf file (2.1MB) The Opportunities and Challenges of Exascale Computing The Exascale initiative will be significant and transformative for Department of Energy missions. The ASCAC Subcommitte report is available to revew.Read More .pdf file (2.1MB) Exascale picture 1 of 2 Print Text Size: A A A RSS Feeds FeedbackShare Page ADDITIONAL INFORMATION About ASCAC Contact ASCAC Email: ascr@science.doe.gov Phone: 301-903-7486 ASCAC DFO: Mrs. Christine Chalk COMMITTEE MANAGERS: Mrs. Melea Baker Dr. Lucy Nowell COMMITTEE CHAIR Dr. Roscoe C. Giles ASCR AD J. Steve Binkley The Advanced Scientific Computing Advisory Committee (ASCAC), established

70

Hybrid approach to failure prediction for advanced computing systems |  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid approach to failure prediction for advanced computing systems Hybrid approach to failure prediction for advanced computing systems January 8, 2014 Tweet EmailPrint "Fault tolerance is no longer an option but a necessity," states Franck Cappello, project manager of research on resilience at the extreme scale at Argonne National Laboratory. "And the ability to reliably predict failures can significantly reduce the overhead of fault-tolerance strategies and the recovery cost." In a special issue article in the International Journal of High Performance Computing Applications, Cappello and his colleagues at Argonne and the University of Illinois at Urbana-Champaign (UIUC) discuss issues in failure prediction and present a new hybrid approach to overcome the limitations of current models. One popular way of building prediction models is to analyze log files,

71

New classes of magnetoelectric materials promise advances in computing  

NLE Websites -- All DOE Office Websites (Extended Search)

New classes of magnetoelectric materials promise advances in computing New classes of magnetoelectric materials promise advances in computing technology By Jared Sagoff * February 7, 2013 Tweet EmailPrint ARGONNE, Ill. - Although scientists have been aware that magnetism and electricity are two sides of the same proverbial coin for almost 150 years, researchers are still trying to find new ways to use a material's electric behavior to influence its magnetic behavior, or vice versa. Thanks to new research by an international team of researchers led by the U.S. Department of Energy's Argonne National Laboratory, physicists have developed new methods for controlling magnetic order in a particular class of materials known as "magnetoelectrics." Magnetoelectrics get their name from the fact that their magnetic and electric properties are coupled to each other. Because this physical link

72

Feb. 11, 2008 Advanced Fault Tolerance Solutions for High Performance Computing 1/47 Advanced Fault Tolerance Solutions  

E-Print Network (OSTI)

Feb. 11, 2008 Advanced Fault Tolerance Solutions for High Performance Computing 1/47 RAS RAS Advanced Fault Tolerance Solutions for High Performance Computing Christian Engelmann Oak Ridge National Solutions for High Performance Computing 2/47 · Nation's largest energy laboratory · Nation's largest

Engelmann, Christian

73

The advanced computational testing and simulation toolkit (ACTS)  

DOE Green Energy (OSTI)

During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts, and tool maturity. This paper presents a brief introduction to the functionality available in ACTS.

Drummond, L.A.; Marques, O.

2002-05-21T23:59:59.000Z

74

A NATIONAL COLLABORATORY TO ADVANCE THE SCIENCE OF HIGH TEMPERATURE PLASMA PHYSICS FOR MAGNETIC FUSION  

SciTech Connect

This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create visualizations and perform analysis of their simulation data from either the MDSplus data storage environment or from locally stored HDF5 files. More advanced tools for visualization and analysis also were created in collaboration with the SciDAC Center for Extended MHD Modeling. Versions of SCIRun with the FusionViewer have been made available to fusion scientists on the Mac OS X, Linux, and other Unix based platforms and have been downloaded 1163 times. SCIRun has been used with NIMROD, M3D, BOUT fusion simulation data as well as simulation data from other SciDAC application areas (e.g., Astrophysics). The subsequent visualization results - including animations - have been incorporated into invited talks at multiple APS/DPP meetings as well as peer reviewed journal articles. As an example, SCIRun was used for the visualization and analysis of a NIMROD simulation of a disruption that occurred in a DIII-D experiment. The resulting animations and stills were presented as part of invited talks at APS/DPP meetings and the SC04 conference in addition to being highlighted in the NIH/NSF Visualization Research Challenges Report. By achieving its technical goals, the University of Utah played a key role in the successful development of a persistent infrastructure to enable scientific collaboration for magnetic fusion research. Many of the visualization tools developed as part of the NFC continue to be used by Fusion and other SciDAC application scientists and are currently being supported and expanded through follow-on up on SciDAC projects (Visualization and Analytics Center for Enabling Technology, and the Visualization and Analysis in Support of Fusion SAP).

Allen R. Sanderson; Christopher R. Johnson

2006-08-01T23:59:59.000Z

75

SciDAC Visualization and Analytics Center for EnablingTechnology  

SciTech Connect

The SciDAC2 Visualization and Analytics Center for EnablingTechnologies (VACET) began operation on 10/1/2006. This document, dated11/27/2006, is the first version of the VACET project management plan. Itwas requested by and delivered to ASCR/DOE. It outlines the Center'saccomplishments in the first six weeks of operation along with broadobjectives for the upcoming future (12-24 months).

Bethel, E. Wes; Johnson, Chris; Joy, Ken; Ahern, Sean; Pascucci,Valerio; Childs, Hank; Cohen, Jonathan; Duchaineau, Mark; Hamann, Bernd; Hansen, Charles; Laney, Dan; Lindstrom, Peter; Meredith, Jeremy; Ostrouchov, George; Parker, Steven; Silva, Claudio; Sanderson, Allen; Tricoche, Xavier

2006-11-28T23:59:59.000Z

76

Editorial for Advanced Theory and Practice for High Performance Computing and Communications Geoffrey Fox  

E-Print Network (OSTI)

Editorial for Advanced Theory and Practice for High Performance Computing and Communications Theory and Practice for High Performance Computing and Communications. I would like to thank Omer Rana International Conference on High Performance Computing and Communications (HPCC-09) http

77

June 8, 2007 Advanced Fault Tolerance Solutions for High Performance Computing  

E-Print Network (OSTI)

June 8, 2007 Advanced Fault Tolerance Solutions for High Performance Computing Workshop on Trends Tolerance Solutions for High Performance Computing Christian Engelmann Oak Ridge National Laboratory, Oak for High Performance Computing Workshop on Trends, Technologies and Collaborative Opportunities in High

Engelmann, Christian

78

June 4, 2007 Advanced Fault Tolerance Solutions for High Performance Computing  

E-Print Network (OSTI)

June 4, 2007 Advanced Fault Tolerance Solutions for High Performance Computing Workshop on Trends Tolerance Solutions for High Performance Computing Christian Engelmann Oak Ridge National Laboratory, Oak Solutions for High Performance Computing Workshop on Trends, Technologies and Collaborative Opportunities

Engelmann, Christian

79

Sandia National Laboratories: Advanced Simulation Computing: Verification &  

NLE Websites -- All DOE Office Websites (Extended Search)

Verification & Validation Verification & Validation high-fidelity simulations The Verification and Validation (V&V) program conducts two major activities at Sandia. The first is to perform assessments and studies that quantify confidence in Advanced Simulation and Computing (ASC) calculation results. The second activity develops and improves V&V and uncertainty quantification methods, metrics, and standards. Assessments This project area conducts studies and assessments for Sandia's engineering simulation focus areas (outlined below). These assessments quantify the prediction uncertainty of the engineering codes as they apply to applications in the four focus areas. Safety and Security This area focuses on engineering codes as they apply to nuclear weapon. External load prediction capability includes mechanical (impact, pressure,)

80

SciDAC Visualization and Analytics Center for Enabling Technology  

E-Print Network (OSTI)

Center 2.2.7 Resources LBNL/NERSC and ORNL/LCF 2.2.8 Otherti?c Computing Center ( NERSC) at Lawrence Berkeley Nationalsuccesses. Resources LBNL/NERSC and ORNL/LCF As one of

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing  

SciTech Connect

ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOEs R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focused on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNFs novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel containment. PROJECT OVERVIEW The University of North Florida (UNF), with project partner the University of Florida, recently completed the Department of Energy (DOE) project entitled Advanced Direct Methanol Fuel Cell for Mobile Computing. The primary objective of the project was to advance portable fuel cell system technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a 20-watt, direct methanol fuel cell (DMFC), portable power supply based on the UNF innovative passive water recovery MEA. Extensive component, sub-system, and system development and testing was undertaken to meet the rigorous demands of the consumer electronic application. Numerous brassboard (nonpackaged) systems were developed to optimize the integration process and facilitating control algorithm development. The culmination of the development effort was a fully-integrated, DMFC, power supply (referred to as DP4). The project goals were 40 W/kg for specific power, 55 W/l for power density, and 575 Whr/l for energy density. It should be noted that the specific power and power density were for the power section only, and did not include the hybrid battery. The energy density is based on three, 200 ml, fuel cartridges, and also did not include the hybrid battery. The results show that the DP4 system configured without the methanol concentration sensor exceeded all performance goals, achieving 41.5 W/kg for specific power, 55.3 W/l for power density, and 623 Whr/l for energy density. During the project, the DOE revised its technical targets, and the definition of many of these targets, for the portable power application. With this revision, specific power, power density, specific energy (Whr/kg), and energy density are based on the total system, including fuel tank, fuel, and hybridization battery. Fuel capacity is not defined, but the same value is required for all calculations. Test data showed that the DP4 exceeded all 2011 Technical Status values; for example, the DP4 energy density was 373 Whr/l versus the DOE 2011 status of 200 Whr/l. For the

Fletcher, James H. [University of North Florida; Cox, Philip [University of North Florida; Harrington, William J [University of North Florida; Campbell, Joseph L [University of North Florida

2013-09-03T23:59:59.000Z

82

Present and Future Computing Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

for Computational Cosmology for Computational Cosmology DES LSST Presenter: Salman Habib Argonne National Laboratory Jim Ahrens (LANL) Scott Dodelson (FNAL) Katrin Heitmann (ANL) Peter Nugent (LBNL) Anze Slosar (BNL) Risa Wechsler (SLAC) 1 Cosmic Frontier Computing Collaboration Computational Cosmology SciDAC-3 Project Ann Almgren (LBNL) Nick Gnedin (FNAL) Dave Higdon (LANL) Rob Ross (ANL) Martin White (UC Berkeley/ LBNL) Large Scale Production Computing and Storage Requirements for High Energy Physics Research A DOE Technical Program Review November 27-28, 2012

83

Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Approaches Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping Background The United States Department of Energy (DOE) National Energy Technology Laboratory (NETL) develops affordable and clean energy from coal and other fossil fuels to secure a sustainable energy economy. To further this mission, NETL funds research and development of advanced control technologies, including chemical looping (CL)

84

Editorial message: special track on computer-aided law and advanced technologies  

Science Conference Proceedings (OSTI)

Computer-aided Law and Advanced Technology is focussed on law and advanced technologies for representing a broad and diverse forum for the discussion of research in computer-aided law, one that can provide synergies when aligned with other areas within ...

Giovanni Sartor; Alessandra Villecco

2006-04-01T23:59:59.000Z

85

Sandia National Laboratories: Advanced Simulation Computing: Research &  

NLE Websites -- All DOE Office Websites (Extended Search)

Research & Collaboration Research & Collaboration Partnerships among the national laboratories, industry, and academia leverage a broad spectrum of talent and multiply the effectiveness of our research efforts. These collaborations help solve the challenges of developing computing platforms and simulation tools across a number of disciplines. Computer Science Research Institute The Computer Science Research Institute brings university faculty and students to Sandia for focused collaborative research on DOE computer and computational science problems. Organized under the DOE Stockpile Computing Program, participants conduct leading-edge research, interact with scientists and engineers at the Laboratories, and help transfer the results of their research to programs at the Labs.

86

Advanced Institute for Computational Science (AICS): Japanese National High-Performance Computing Research Institute and its 10-petaflops supercomputer "K"  

Science Conference Proceedings (OSTI)

Advanced Institute for Computational Science (AICS) was created in July 2010 at RIKEN under the supervision of Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT) in order to establish the national center of excellence (COE) ... Keywords: AICS, K computer, center of excellence, supercomputer

Akinori Yonezawa; Tadashi Watanabe; Mitsuo Yokokawa; Mitsuhisa Sato; Kimihiko Hirao

2011-11-01T23:59:59.000Z

87

Computer science principles: analysis of a proposed advanced placement course  

Science Conference Proceedings (OSTI)

In this paper we analyze the CS Principles project, a proposed Advanced Placement course, by focusing on the second pilot that took place in 2011-2012. In a previous publication the first pilot of the course was explained, but not in a context related ... Keywords: advanced placement, national pilot, portfolio assessment

Andrea Arpaci-Dusseau; Owen Astrachan; Dwight Barnett; Matthew Bauer; Marilyn Carrell; Rebecca Dovi; Baker Franke; Christina Gardner; Jeff Gray; Jean Griffin; Richard Kick; Andy Kuemmel; Ralph Morelli; Deepa Muralidhar; R Brook Osborne; Chinma Uche

2013-03-01T23:59:59.000Z

88

Open grid computing environments: advanced gateway support activities  

Science Conference Proceedings (OSTI)

We describe three case studies for providing advanced support for TeraGrid Science Gateways as part of our participation in the Advanced User Support (AUS) team. These case studies include providing workflow support, robust job management, and mass job ... Keywords: ASTA, OGCE software, science gateways workflow suite

Marlon Pierce; Suresh Marru; Raminder Singh; Archit Kulshrestha; Karthik Muthuraman

2010-08-01T23:59:59.000Z

89

SciDAC advances in beam dynamics simulation: from light sources to colliders  

E-Print Network (OSTI)

simulations of next generation light sources and of high-RF linac for a next generation FEL light source at LBNL. Ain light sources The next generation of accelerator based

Qiang, Ji

2009-01-01T23:59:59.000Z

90

SciDAC advances in beam dynamics simulation: from light sources to colliders  

E-Print Network (OSTI)

simulations of next generation light sources and of high-RF linac for a next generation FEL light source at LBNL. Ain light sources The next generation of accelerator based

Qiang, J.

2008-01-01T23:59:59.000Z

91

SciDAC advances in beam dynamics simulation: from light sources to colliders  

E-Print Network (OSTI)

accelerator facilities, e.g. LCLS, RHIC, Tevatron, LHC,generation and transport in the LCLS photoinjector. Figure 2vertical offsets through the LCLS photoinjector. With such a

Qiang, J.

2008-01-01T23:59:59.000Z

92

SciDAC advances in beam dynamics simulation: from light sources to colliders  

E-Print Network (OSTI)

accelerator facilities, e.g. LCLS, RHIC, Tevatron, LHC,generation and transport in the LCLS photoinjector. Figure 2vertical offsets through the LCLS photoinjector. With such a

Qiang, Ji

2009-01-01T23:59:59.000Z

93

Office of Advanced Simulation and Computing and Institutional R&D Programs  

National Nuclear Security Administration (NNSA)

Advanced Simulation and Computing and Institutional R&D Programs Advanced Simulation and Computing and Institutional R&D Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog ASC Office of Advanced Simulation and Computing and Institutional R&D Programs Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and ...

94

Advanced Scientific Computing Research (ASCR) Homepage | U.S. DOE Office of  

Office of Science (SC) Website

ASCR Home ASCR Home Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » ASCR Advisory Committee Exascale Report Synergistic Challenges in Data-Intensive Science and Exascale Computing ASCAC Subcommittee Summary Report. This new report discusses the natural synergies among the challenges facing data-intensive science and exascale computing, including the need for a new scientific workflow.

95

High Performance Computing: From Grids and Clouds to Exascale Volume 20 Advances in Parallel Computing  

Science Conference Proceedings (OSTI)

In the last decade, parallel computing technologies have transformed highperformance computing. Two trends have emerged: massively parallel computing leading to exascale on the one hand and moderately parallel applications, which have opened up highperformance ...

I. Foster; W. Gentzsch; L. Grandinetti; G. R. Joubert

2011-09-01T23:59:59.000Z

96

Programming Challenges Presentations | U.S. DOE Office of Science...  

Office of Science (SC) Website

Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR ASCR Facilities ASCR Science...

97

Notices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scientific Discovery Through Advanced Computing (SciDAC) Recompetition ASCR High Performance Computing Facilities and Testbeds ASCR High Performance Networks and Associated...

98

Advanced Computational Thermal Studies and their Assessment for Supercritical-Pressure Reactors (SCRs)  

Science Conference Proceedings (OSTI)

The goal of this laboratory / university collaboration of coupled computational and experimental studies is the improvement of predictive methods for supercritical-pressure reactors. The general objective is to develop supporting knowledge needed of advanced computational techniques for the technology development of the concepts and their safety systems.

D. M. McEligot; J. Y. Yoo; J. S. Lee; S. T. Ro; E. Lurien; S. O. Park; R. H. Pletcher; B. L. Smith; P. Vukoslavcevic; J. M. Wallace

2009-04-01T23:59:59.000Z

99

A Computationally Based Approach to Homogenizing Advanced Alloys  

SciTech Connect

We have developed a computationally based approach to optimizing the homogenization heat treatment of complex alloys. The Scheil module within the Thermo-Calc software is used to predict the as-cast segregation present within alloys, and DICTRA (Diffusion Controlled TRAnsformations) is used to model the homogenization kinetics as a function of time, temperature and microstructural scale. We will discuss this approach as it is applied to both Ni based superalloys as well as the more complex (computationally) case of alloys that solidify with more than one matrix phase as a result of segregation. Such is the case typically observed in martensitic steels. With these alloys it is doubly important to homogenize them correctly, especially at the laboratory scale, since they are austenitic at high temperature and thus constituent elements will diffuse slowly. The computationally designed heat treatment and the subsequent verification real castings are presented.

Jablonski, P D; Cowen, C J

2011-02-27T23:59:59.000Z

100

National facility for advanced computational science: A sustainable path to scientific discovery  

Science Conference Proceedings (OSTI)

Lawrence Berkeley National Laboratory (Berkeley Lab) proposes to create a National Facility for Advanced Computational Science (NFACS) and to establish a new partnership between the American computer industry and a national consortium of laboratories, universities, and computing facilities. NFACS will provide leadership-class scientific computing capability to scientists and engineers nationwide, independent of their institutional affiliation or source of funding. This partnership will bring into existence a new class of computational capability in the United States that is optimal for science and will create a sustainable path towards petaflops performance.

Simon, Horst; Kramer, William; Saphir, William; Shalf, John; Bailey, David; Oliker, Leonid; Banda, Michael; McCurdy, C. William; Hules, John; Canning, Andrew; Day, Marc; Colella, Philip; Serafini, David; Wehner, Michael; Nugent, Peter

2004-04-02T23:59:59.000Z

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Advanced Data Processing and Computing Technologies at Control Centers  

Science Conference Proceedings (OSTI)

Control center operation is becoming more complex as new and often-conflicting reliability, economics, and public policy issues emerge. To manage the complexity, control center operators need prompt, comprehensive information about their own systems and neighboring systems. Computer simulations analyze system data and what-if-scenarios to derive succinct information for operators to make more informed decisions. This report reviews the applicability of new technologies and some solution methods for addre...

2011-12-05T23:59:59.000Z

102

COMPUTATIONAL STEERING: TOWARDS ADVANCED INTERACTIVE HIGH PERFORMANCE COMPUTING IN ENGINEERING SCIENCES  

E-Print Network (OSTI)

Key-words: Computational steering, high-performance computing, interactive simulation, virtual reality, CFD Computational Science and Engineering faces a continuous increase of speed of computers and availability of very fast networks. Yet, it seems that some opportunities offered by these ongoing developments are only used to a fraction for numerical simulation. Moreover, despite new possibilities from computer visualization, virtual or augmented reality and collaboration models, most available engineering software still follows the classical way of a strict separation of preprocessing, computing and postprocessing. This paper will first identify some of the major obstructions of an interactive computation for complex simulation tasks in engineering sciences. These are especially found in traditional software structures, in the definition of geometric models and boundary conditions and in the often still very tedious work of generating computational meshes. It then presents a generic approach for collaborative computational steering, where pre- and postprocessing is integrated with high

Ernst Rank; Andr Borrmann; Er Dster; Christoph Van Treeck; Petra Wenisch

2008-01-01T23:59:59.000Z

103

SciDAC's Earth System Grid Center for Enabling Technologies Semi-Annual Progress Report for the Period April 1, 2009 through September 30, 2009  

Science Conference Proceedings (OSTI)

This report summarizes work carried out by the ESG-CET during the period April 1, 2009 through September 30, 2009. It includes discussion of highlights, overall progress, period goals, collaborations, papers, and presentations. To learn more about our project, and to find previous reports, please visit the Earth System Grid Center for Enabling Technologies (ESG-CET) website. This report will be forwarded to the DOE SciDAC program management, the Office of Biological and Environmental Research (OBER) program management, national and international collaborators and stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), the SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science, the North American Regional Climate Change Assessment Program (NARCCAP), and other wide-ranging climate model evaluation activities). During this semi-annual reporting period, the ESG-CET team continued its efforts to complete software components needed for the ESG Gateway and Data Node. These components include: Data Versioning, Data Replication, DataMover-Lite (DML) and Bulk Data Mover (BDM), Metrics, Product Services, and Security, all joining together to form ESG-CET's first beta release. The launch of the beta release is scheduled for late October with the installation of ESG Gateways at NCAR and LLNL/PCMDI. Using the developed ESG Data Publisher, the ESG II CMIP3 (IPCC AR4) data holdings - approximately 35 TB - will be among the first datasets to be published into the new ESG enterprise system. In addition, the NCAR's ESG II data holdings will also be published into the new system - approximately 200 TB. This period also saw the testing of the ESG Data Node at various collaboration sites, including: the British Atmospheric Data Center (BADC), the Max-Planck-Institute for Meteorology, the University of Tokyo Center for Climate System Research, and the Australian National University. This period, a total of 14 national and international sites installed an ESG Data Node for testing. During this period, we also continued to provide production-level services to the community, providing researchers worldwide with access to CMIP3 (IPCC AR4), CCES, and CCSM, Parallel Climate Model (PCM), Parallel Ocean Program (POP), and Cloud Feedback Model Intercomparison Project (CFMIP), and NARCCAP data.

Williams, D N; Foster, I T; Middleton, D E

2009-10-15T23:59:59.000Z

104

COMPUTATIONAL SCIENCE CENTER  

SciTech Connect

Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together researchers in these areas and to provide a focal point for the development of computational expertise at the Laboratory. These efforts will connect to and support the Department of Energy's long range plans to provide Leadership class computing to researchers throughout the Nation. Recruitment for six new positions at Stony Brook to strengthen its computational science programs is underway. We expect some of these to be held jointly with BNL.

DAVENPORT, J.

2006-11-01T23:59:59.000Z

105

Advanced wellbore thermal simulator GEOTEMP2. Appendix. Computer program listing  

DOE Green Energy (OSTI)

This appendix gives the program listing of GEOTEMP2 with comments and discussion to make the program organization more understandable. This appendix is divided into an introduction and four main blocks of code: main program, program initiation, wellbore flow, and wellbore heat transfer. The purpose and use of each subprogram is discussed and the program listing is given. Flowcharts will be included to clarify code organization when needed. GEOTEMP2 was written in FORTRAN IV. Efforts have been made to keep the programing as conventional as possible so that GEOTEMP2 will run without modification on most computers.

Mitchell, R.F.

1982-02-01T23:59:59.000Z

106

Computational Efforts in Support of Advanced Coal Research  

DOE Green Energy (OSTI)

The focus in this project was to employ first principles computational methods to study the underlying molecular elementary processes that govern hydrogen diffusion through Pd membranes as well as the elementary processes that govern the CO- and S-poisoning of these membranes. Our computational methodology integrated a multiscale hierarchical modeling approach, wherein a molecular understanding of the interactions between various species is gained from ab-initio quantum chemical Density Functional Theory (DFT) calculations, while a mesoscopic statistical mechanical model like Kinetic Monte Carlo is employed to predict the key macroscopic membrane properties such as permeability. The key developments are: (1) We have coupled systematically the ab initio calculations with Kinetic Monte Carlo (KMC) simulations to model hydrogen diffusion through the Pd based-membranes. The predicted tracer diffusivity of hydrogen atoms through the bulk of Pd lattice from KMC simulations are in excellent agreement with experiments. (2) The KMC simulations of dissociative adsorption of H{sub 2} over Pd(111) surface indicates that for thin membranes (less than 10{micro} thick), the diffusion of hydrogen from surface to the first subsurface layer is rate limiting. (3) Sulfur poisons the Pd surface by altering the electronic structure of the Pd atoms in the vicinity of the S atom. The KMC simulations indicate that increasing sulfur coverage drastically reduces the hydrogen coverage on the Pd surface and hence the driving force for diffusion through the membrane.

Suljo Linic

2006-08-17T23:59:59.000Z

107

PMEL contributions to the collaboration: SCALING THE EARTH SYSTEM GRID TO PETASCALE DATA for the DOE SciDACs Earth System Grid Center for Enabling Technologies  

SciTech Connect

Drawing to a close after five years of funding from DOE's ASCR and BER program offices, the SciDAC-2 project called the Earth System Grid (ESG) Center for Enabling Technologies has successfully established a new capability for serving data from distributed centers. The system enables users to access, analyze, and visualize data using a globally federated collection of networks, computers and software. The ESG software??now known as the Earth System Grid Federation (ESGF)??has attracted a broad developer base and has been widely adopted so that it is now being utilized in serving the most comprehensive multi-model climate data sets in the world. The system is used to support international climate model intercomparison activities as well as high profile U.S. DOE, NOAA, NASA, and NSF projects. It currently provides more than 25,000 users access to more than half a petabyte of climate data (from models and from observations) and has enabled over a 1,000 scientific publications.

Hankin, Steve

2012-06-01T23:59:59.000Z

108

National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology  

Science Conference Proceedings (OSTI)

National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

Hules, J. [ed.

1996-11-01T23:59:59.000Z

109

The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report  

SciTech Connect

In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

2009-10-12T23:59:59.000Z

110

ADVANCED METHODS FOR THE COMPUTATION OF PARTICLE BEAM TRANSPORT AND THE COMPUTATION OF ELECTROMAGNETIC FIELDS AND MULTIPARTICLE PHENOMENA  

Science Conference Proceedings (OSTI)

Since 1980, under the grant DEFG02-96ER40949, the Department of Energy has supported the educational and research work of the University of Maryland Dynamical Systems and Accelerator Theory (DSAT) Group. The primary focus of this educational/research group has been on the computation and analysis of charged-particle beam transport using Lie algebraic methods, and on advanced methods for the computation of electromagnetic fields and multiparticle phenomena. This Final Report summarizes the accomplishments of the DSAT Group from its inception in 1980 through its end in 2011.

Alex J. Dragt

2012-08-31T23:59:59.000Z

111

Development of Computation Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Computation Capabilities Computation Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems Background Staged combustion is a method of reducing nitrogen oxide (NO x ) emissions in boilers by controlling the combustion mixture of air and fuel. Its process conditions are particularly corrosive to lower furnace walls. Superheaters and/or reheaters are often employed in the upper furnace to reuse hot combustion gasses to further raise the

112

From detonation to diapers: Los Alamos computer codes at core of advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

From detonation to diapers From detonation to diapers Los Alamos computer codes at core of advanced manufacturing tools The computer codes used for predictive fluid modeling are part of the Los Alamos Computational Fluid Dynamics Library. July 27, 2011 This simulation of a droplet of liquid falling into a pool of liquid was modeled using Los Alamos National Laboratory's Computational Fluid Dynamics Library This simulation of a droplet of liquid falling into a pool of liquid was modeled using Los Alamos National Laboratory's Computational Fluid Dynamics Library (CFDLib), which was also used by Procter and Gamble to simulate a manufacturing process. The computer code is now available to help American industries become more competitive. Contact James Rickman Communicatons Office (505) 665-9203

113

Building an advanced climate model: Program plan for the CHAMMP (Computer Hardware, Advanced Mathematics, and Model Physics) Climate Modeling Program  

SciTech Connect

The issue of global warming and related climatic changes from increasing concentrations of greenhouse gases in the atmosphere has received prominent attention during the past few years. The Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP) Climate Modeling Program is designed to contribute directly to this rapid improvement. The goal of the CHAMMP Climate Modeling Program is to develop, verify, and apply a new generation of climate models within a coordinated framework that incorporates the best available scientific and numerical approaches to represent physical, biogeochemical, and ecological processes, that fully utilizes the hardware and software capabilities of new computer architectures, that probes the limits of climate predictability, and finally that can be used to address the challenging problem of understanding the greenhouse climate issue through the ability of the models to simulate time-dependent climatic changes over extended times and with regional resolution.

1990-12-01T23:59:59.000Z

114

Proceedings of the 7th International Conference on Advances in Mobile Computing and Multimedia  

Science Conference Proceedings (OSTI)

This volume consists of the Proceedings of The 7th International Conference on Advances in Mobile Computing & Multimedia (MoMM2009) held in Kuala Lumpur, Malaysia, in December 14-16, 2009. MoMM2009 is held in conjunction with iiWAS2009 conference, and ...

Gabriele Kotsis; David Taniar; Eric Pardede

2009-12-01T23:59:59.000Z

115

SciDAC Visualization and Analytics Center for EnablingTechnologies  

SciTech Connect

The Visualization and Analytics Center for EnablingTechnologies (VACET) focuses on leveraging scientific visualization andanalytics software technology as an enabling technology for increasingscientific productivity and insight. Advances in computational technologyhave resulted in an 'information big bang,' which in turn has created asignificant data understanding challenge. This challenge is widelyacknowledged to be one of the primary bottlenecks in contemporaryscience. The vision of VACET is to adapt, extend, create when necessary,and deploy visual data analysis solutions that are responsive to theneeds of DOE'scomputational and experimental scientists. Our center isengineered to be directly responsive to those needs and to deliversolutions for use in DOE's large open computing facilities. The researchand development directly target data understanding problems provided byour scientific application stakeholders. VACET draws from a diverse setof visualization technology ranging from production quality applicationsand application frameworks to state-of-the-art algorithms forvisualization, analysis, analytics, data manipulation, and datamanagement.

Bethel, E. Wes; Johnson, Chris; Joy, Ken; Ahern, Sean; Pascucci,Valerio; Childs, Hank; Cohen, Jonathan; Duchaineau, Mark; Hamann, Bernd; Hansen, Charles; Laney, Dan; Lindstrom, Peter; Meredith, Jermey; Ostrouchov, George; Parker, Steven; Silva, Claudio; Sanderson, Allen; Tricoche, Xavier.

2007-06-30T23:59:59.000Z

116

PETSc: Misc: Funding  

NLE Websites -- All DOE Office Websites (Extended Search)

by the United States Department of Energy, Office of Science, by the Advanced Scientific Computing Research (ASCR) Applied Mathematics Research and SciDAC programs. Specific and...

117

VACET: Proposed SciDAC2 Visualization and Analytics Center for Enabling Technologies  

E-Print Network (OSTI)

A CCA framework for high performance computing. April 2004.Journal of High Performance Computing Applications, 2003. [

2008-01-01T23:59:59.000Z

118

Condition monitoring through advanced sensor and computational technology : final report (January 2002 to May 2005).  

SciTech Connect

The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties.

Kim, Jung-Taek (Korea Atomic Energy Research Institute, Daejon, Korea); Luk, Vincent K.

2005-05-01T23:59:59.000Z

119

Advanced Simulation and Computing FY10-FY11 Implementation Plan Volume 2, Rev. 0.5  

SciTech Connect

The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: (1) Robust Tools - Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements; (2) Prediction through Simulation - Deliver validated physics and engineering tools to enable simulations of nuclear weapons performance in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile; and (3) Balanced Operational Infrastructure - Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

Meisner, R; Peery, J; McCoy, M; Hopson, J

2009-09-08T23:59:59.000Z

120

Advanced Simulation and Computing Fiscal Year 2011-2012 Implementation Plan, Revision 0  

SciTech Connect

The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: Objective 1 - Robust Tools. Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements. Objective 2 - Prediction through Simulation. Deliver validated physics and engineering tools to enable simulations of nuclear weapons performance in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile. Objective 3 - Balanced Operational Infrastructure. Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

McCoy, M; Phillips, J; Hpson, J; Meisner, R

2010-04-22T23:59:59.000Z

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Advanced Simulation and Computing FY08-09 Implementation Plan, Volume 2, Revision 0.5  

Science Conference Proceedings (OSTI)

The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: Objective 1. Robust Tools--Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements. Objective 2--Prediction through Simulation. Deliver validated physics and engineering tools to enable simulations of nuclear-weapons performances in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile. Objective 3. Balanced Operational Infrastructure--Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

Kusnezov, D; Bickel, T; McCoy, M; Hopson, J

2007-09-13T23:59:59.000Z

122

Advanced Simulation and Computing FY10-11 Implementation Plan Volume 2, Rev. 0  

SciTech Connect

The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: Objective 1 Robust Tools--Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements. Objective 2 Prediction through Simulation--Deliver validated physics and engineering tools to enable simulations of nuclear weapons performance in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile. Objective 3 Balanced Operational Infrastructure--Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

Carnes, B

2009-06-08T23:59:59.000Z

123

Advanced Simulation & Computing FY09-FY10 Implementation Plan Volume 2, Rev. 0  

Science Conference Proceedings (OSTI)

The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future nonnuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: Objective 1. Robust Tools--Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements. Objective 2--Prediction through Simulation. Deliver validated physics and engineering tools to enable simulations of nuclear-weapons performances in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile. Objective 3--Balanced Operational Infrastructure. Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

Meisner, R; Perry, J; McCoy, M; Hopson, J

2008-04-30T23:59:59.000Z

124

Advanced Simulation and Computing FY09-FY10 Implementation Plan, Volume 2, Revision 0.5  

Science Conference Proceedings (OSTI)

The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: Objective 1. Robust Tools--Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements. Objective 2. Prediction through Simulation--Deliver validated physics and engineering tools to enable simulations of nuclear weapons performance in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile. Objective 3. Balanced Operational Infrastructure--Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

Meisner, R; Hopson, J; Peery, J; McCoy, M

2008-10-07T23:59:59.000Z

125

Advanced Simulation and Computing FY09-FY10 Implementation Plan Volume 2, Rev. 1  

Science Conference Proceedings (OSTI)

The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: (1) Robust Tools - Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements; (2) Prediction through Simulation - Deliver validated physics and engineering tools to enable simulations of nuclear weapons performance in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile; and (3) Balanced Operational Infrastructure - Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

Kissel, L

2009-04-01T23:59:59.000Z

126

Further advancements for large area-detector based computed tomography system  

SciTech Connect

We present advancements made to a large area-detector based system for industrial x-ray computed tomography. Past performance improvements in data acquisition speeds were made by use of high-resolution large area, flat-panel amorphous-silicon (a-Si) detectors. The detectors have proven, over several years, to be a robust alternative to CCD-optics and image intensifier CT systems. These detectors also provide the advantage of area detection as compared with the single slice geometry of linear array systems. New advancements in this system include parallel processing of sinogram reconstructions, improved visualization software and migration to frame-rate a-Si detectors. Parallel processing provides significant speed improvements for data reconstruction, and is implemented for parallel-beam, fan-beam and Feldkamp cone-beam reconstruction algorithms. Reconstruction times are reduced by an order of magnitude by use of a cluster of ten or more equal-speed computers. Advancements in data visualization are made through interactive software, which allows interrogation of the full three-dimensional dataset. Inspection examples presented in this paper include an electromechanical device, a nonliving biological specimen and a press-cast plastic specimen. We also present a commonplace item for the benefit of the layperson.

Davis, A. W. (Anthony W.); Keating, S. C. (Scott C.); Claytor, T. N. (Thomas N.)

2001-01-01T23:59:59.000Z

127

An expanded framework for the advanced computational testing and simulation toolkit  

Science Conference Proceedings (OSTI)

The Advanced Computational Testing and Simulation (ACTS) Toolkit is a set of computational tools developed primarily at DOE laboratories and is aimed at simplifying the solution of common and important computational problems. The use of the tools reduces the development time for new codes and the tools provide functionality that might not otherwise be available. This document outlines an agenda for expanding the scope of the ACTS Project based on lessons learned from current activities. Highlights of this agenda include peer-reviewed certification of new tools; finding tools to solve problems that are not currently addressed by the Toolkit; working in collaboration with other software initiatives and DOE computer facilities; expanding outreach efforts; promoting interoperability, further development of the tools; and improving functionality of the ACTS Information Center, among other tasks. The ultimate goal is to make the ACTS tools more widely used and more effective in solving DOE's and the nation's scientific problems through the creation of a reliable software infrastructure for scientific computing.

Marques, Osni A.; Drummond, Leroy A.

2003-11-09T23:59:59.000Z

128

Third Year Status SciDAC Center for Gyrokinetic Particle Simulation  

E-Print Network (OSTI)

for zonal flows and perturbed potentials · GTC -- Adiabatic electron version for high performance computing

129

An Overview of the Advanced CompuTational Software (ACTS) Collection  

E-Print Network (OSTI)

Meeting on High Performance Computing for ComputationalSciences, High Performance Computing 1. MOTIVATION ANDto state-of-the-art high performance computing environments.

Drummond, Leroy A.; Marques, Osni A.

2005-01-01T23:59:59.000Z

130

Advances in the operation of the DIII-D neutral beam computer systems  

SciTech Connect

The DIII-D neutral beam system routinely provides up to 20 MW of deuterium neutral beam heating in support of experiments on the DIII-D tokamak, and is a critical part of the DIII-D physics experimental program. The four computer systems previously used to control neutral beam operation and data acquisition were designed and implemented in the late 1970`s and used on DIII and DIII-D from 1981--1996. By comparison to modern standards, they had become expensive to maintain, slow and cumbersome, making it difficult to implement improvements. Most critical of all, they were not networked computers. During the 1997 experimental campaign, these systems were replaced with new Unix compliant hardware and, for the most part, commercially available software. This paper describes operational experience with the new neutral beam computer systems, and new advances made possible by using features not previously available. These include retention and access to historical data, an asynchronously fired ``rules`` base, and a relatively straightforward programming interface. Methods and principles for extending the availability of data beyond the scope of the operator consoles will be discussed.

Phillips, J.C.; Busath, J.L.; Penaflor, B.G.; Piglowski, D.; Kellman, D.H.; Chiu, H.K.; Hong, R.M.

1998-02-01T23:59:59.000Z

131

Application of Advanced Data Processing, Mathematical Techniques and Computing Technologies in Control Centers: Enhancing Speed and Robustness of Power Flow Computation  

Science Conference Proceedings (OSTI)

To combat added complexity, a system operators job can be facilitated by deploying advanced computing technologies, with new software and hardware, that can potentially accelerate and improve data analysis and computer simulation tasks. The overall goal of this project is apply new technologies and techniques, within a few years, to address the current limitations of tools that we identified in the 2011 project. The goal of the 2012 research effort focuses on improving two aspects of the ...

2012-12-31T23:59:59.000Z

132

Optimization of a petroleum producing assets portfolio: development of an advanced computer model  

E-Print Network (OSTI)

Portfolios of contemporary integrated petroleum companies consist of a few dozen Exploration and Production (E&P) projects that are usually spread all over the world. Therefore, it is important not only to manage individual projects by themselves, but to also take into account different interactions between projects in order to manage whole portfolios. This study is the step-by-step representation of the method of optimizing portfolios of risky petroleum E&P projects, an illustrated method based on Markowitzs Portfolio Theory. This method uses the covariance matrix between projects expected return in order to optimize their portfolio. The developed computer model consists of four major modules. The first module generates petroleum price forecasts. In our implementation we used the price forecasting method based on Sequential Gaussian Simulation. The second module, Monte Carlo, simulates distribution of reserves and a set of expected production profiles. The third module calculates expected after tax net cash flows and estimates performance indicators for each realization, thus yielding distribution of return for each project. The fourth module estimates covariance between return distributions of individual projects and compiles them into portfolios. Using results of the fourth module, analysts can make their portfolio selection decisions. Thus, an advanced computer model for optimization of the portfolio of petroleum assets has been developed. The model is implemented in a MATLAB computational environment and allows optimization of the portfolio using three different return measures (NPV, GRR, PI). The model has been successfully applied to the set of synthesized projects yielding reasonable solutions in all three return planes. Analysis of obtained solutions has shown that the given computer model is robust and flexible in terms of input data and output results. Its modular architecture allows further inclusion of complementary blocks that may solve optimization problems utilizing different measures (than considered) of risk and return as well as different input data formats.

Aibassov, Gizatulla

2007-12-01T23:59:59.000Z

133

DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report  

SciTech Connect

The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate data sets. Its specific goals are to (1) provide an easy-to-use and secure web-based data access environment for data sets; (2) add value to individual data sets by presenting them in the context of other data sets and tools for comparative analysis; (3) address the specific requirements of participating organizations with respect to bandwidth, access restrictions, and replication; (4) ensure that the data are readily accessible through the analysis and visualization tools used by the climate research community; and (5) transfer infrastructure advances to other domain areas. For the ESGF, the U.S. Department of Energy's (DOE's) Earth System Grid Center for Enabling Technologies (ESG-CET) team has led international development and delivered a production environment for managing and accessing ultra-scale climate data. This production environment includes multiple national and international climate projects (such as the Community Earth System Model and the Coupled Model Intercomparison Project), ocean model data (such as the Parallel Ocean Program), observation data (Atmospheric Radiation Measurement Best Estimate, Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, etc.), and analysis and visualization tools, all serving a diverse user community. These data holdings and services are distributed across multiple ESG-CET sites (such as ANL, LANL, LBNL/NERSC, LLNL/PCMDI, NCAR, and ORNL) and at unfunded partner sites, such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing Centre, the National Aeronautics and Space Administration Jet Propulsion Laboratory, and the National Oceanic and Atmospheric Administration. The ESGF software is distinguished from other collaborative knowledge systems in the climate community by its widespread adoption, federation capabilities, and broad developer base. It is the leading source for present climate data holdings, including the most important and largest data sets in the global-climate community, and - assuming its development continues - we expect it to be the leading source for future climate data holdings as well. Recently, ESG-CET extended its services beyond data-file access and delivery to include more detailed information products (scientific graphics, animations, etc.), secure binary data-access services (based upon the OPeNDAP protocol), and server-side analysis. The latter capabilities allow users to request data subsets transformed through commonly used analysis and intercomparison procedures. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users seeking to understand, process, extract value from, visualize, and/or communicate it to others. This ongoing effort, though daunting in scope and complexity, will greatly magnify the value of numerical climate model outputs and climate observations for future national and international climate-assessment reports. The ESG-CET team also faces substantial technical challenges due to the rapidly increasing scale of climate simulation and observational data, which will grow, for example, from less than 50 terabytes for the last Intergovernmental Panel on Climate Change (IPCC) assessment to multiple Petabytes for the next IPCC assessment. In a world of exponential technological change and rapidly growing sophistication in climate data analysis, an infrastructure such as ESGF must constantly evolve if it is to remain relevant and useful. Regretfully, we submit our final report at the end of project funding. To continue to serve the climate-science community, we are

Williams, D N

2011-09-27T23:59:59.000Z

134

DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report  

Science Conference Proceedings (OSTI)

The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate data sets. Its specific goals are to (1) provide an easy-to-use and secure web-based data access environment for data sets; (2) add value to individual data sets by presenting them in the context of other data sets and tools for comparative analysis; (3) address the specific requirements of participating organizations with respect to bandwidth, access restrictions, and replication; (4) ensure that the data are readily accessible through the analysis and visualization tools used by the climate research community; and (5) transfer infrastructure advances to other domain areas. For the ESGF, the U.S. Department of Energy's (DOE's) Earth System Grid Center for Enabling Technologies (ESG-CET) team has led international development and delivered a production environment for managing and accessing ultra-scale climate data. This production environment includes multiple national and international climate projects (such as the Community Earth System Model and the Coupled Model Intercomparison Project), ocean model data (such as the Parallel Ocean Program), observation data (Atmospheric Radiation Measurement Best Estimate, Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, etc.), and analysis and visualization tools, all serving a diverse user community. These data holdings and services are distributed across multiple ESG-CET sites (such as ANL, LANL, LBNL/NERSC, LLNL/PCMDI, NCAR, and ORNL) and at unfunded partner sites, such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing Centre, the National Aeronautics and Space Administration Jet Propulsion Laboratory, and the National Oceanic and Atmospheric Administration. The ESGF software is distinguished from other collaborative knowledge systems in the climate community by its widespread adoption, federation capabilities, and broad developer base. It is the leading source for present climate data holdings, including the most important and largest data sets in the global-climate community, and - assuming its development continues - we expect it to be the leading source for future climate data holdings as well. Recently, ESG-CET extended its services beyond data-file access and delivery to include more detailed information products (scientific graphics, animations, etc.), secure binary data-access services (based upon the OPeNDAP protocol), and server-side analysis. The latter capabilities allow users to request data subsets transformed through commonly used analysis and intercomparison procedures. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users seeking to understand, process, extract value from, visualize, and/or communicate it to others. This ongoing effort, though daunting in scope and complexity, will greatly magnify the value of numerical climate model outputs and climate observations for future national and international climate-assessment reports. The ESG-CET team also faces substantial technical challenges due to the rapidly increasing scale of climate simulation and observational data, which will grow, for example, from less than 50 terabytes for the last Intergovernmental Panel on Climate Change (IPCC) assessment to multiple Petabytes for the next IPCC assessment. In a world of exponential technological change and rapidly growing sophistication in climate data analysis, an infrastructure such as ESGF must constantly evolve if it is to remain relevant and useful. Regretfully, we submit our final report at the end of project funding. To continue to serve the climate-science community, we are

Williams, D N

2011-09-27T23:59:59.000Z

135

Advanced Scientific Computing Research User Facilities | U.S. DOE Office of  

Office of Science (SC) Website

ASCR User Facilities ASCR User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 ASCR User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The Advanced Scientific Computing Research program supports the operation of the following national scientific user facilities: Energy Sciences Network (ESnet): External link The Energy Sciences Network, or ESnet External link , is the Department of Energy's high-speed network that provides the high-bandwidth, reliable connections that link scientists at national laboratories, universities and

136

Final Report- "An Algorithmic and Software Framework for Applied Partial Differential Equations (APDEC): A DOE SciDAC Integrated Software Infrastructure Center (ISIC)  

Science Conference Proceedings (OSTI)

All of the work conducted under the auspices of DE-FC02-01ER25473 was characterized by exceptionally close collaboration with researchers at the Lawrence Berkeley National Laboratory (LBNL). This included having one of my graduate students - Sarah Williams - spend the summer working with Dr. Ann Almgren a staff scientist in the Center for Computational Sciences and Engineering (CCSE) which is a part of the National Energy Research Supercomputer Center (NERSC) at LBNL. As a result of this visit Sarah decided to work on a problem suggested by Dr. John Bell the head of CCSE for her PhD thesis, which she finished in June 2007. Writing a PhD thesis while working at one of the University of California (UC) managed DOE laboratories is a long established tradition at the University of California and I have always encouraged my students to consider doing this. For example, in 2000 one of my graduate students - Matthew Williams - finished his PhD thesis while working with Dr. Douglas Kothe at the Los Alamos National Laboratory (LANL). Matt is now a staff scientist in the Diagnostic Applications Group in the Applied Physics Division at LANL. Another one of my graduate students - Christopher Algieri - who was partially supported with funds from DE-FC02-01ER25473 wrote am MS Thesis that analyzed and extended work published by Dr. Phil Colella and his colleagues in 1998. Dr. Colella is the head of the Applied Numerical Algorithms Group (ANAG) in the National Energy Research Supercomputer Center at LBNL and is the lead PI for the APDEC ISIC which was comprised of several National Laboratory research groups and at least five University PI's at five different universities. Chris Algieri is now employed as a staff member in Dr. Bill Collins' research group at LBNL developing computational models for climate change research. Bill Collins was recently hired at LBNL to start and be the Head of the Climate Science Department in the Earth Sciences Division at LBNL. Prior to this he had been a Deputy Section Head at the National Center for Atmospheric Research in Colorado. My understanding is that Chris Algieri is the first person that Bill hired after coming to LBNL. The plan is that Chris Algieri will finish his PhD thesis while employed as a staff scientist in Bill's group. Both Sarah and Chris were supported in part with funds from DE-FC02-01ER25473. In Sarah's case she received support both while at U.C. Davis (UCD) taking classes and writing an MS thesis and during some of the time she was living in Berkeley, working at LBNL and finishing her PhD thesis. In Chris' case he was at U.C. Davis during the entire time he received support from DE-FC02-01ER25473. More specific details of their work are included in the report below. Finally my own research conducted under the auspices of DE-FC02-01ER25473 either involved direct collaboration with researchers at LBNL - Phil Colella and Peter Schwartz who is a member of Phil's Applied Numerical Algorithms Group - or was on problems that are closely related to research that has been and continues to be conducted by researchers at LBNL. Specific details of this work can be found below. Finally, I would like to note that the work conducted by my students and me under the auspices of this contract is closely related to work that I have performed with funding from my DOE MICS contract DE-FC02-03ER25579 'Development of High-Order Accurate Interface Tracking Algorithms and Improved Constitutive Models for Problems in Continuum Mechanics with Applications to Jetting' and with my CoPI on that grant Professor Greg Miller of the Department of Applied Science at UCD. In theory I tried to use funds from the SciDAC grant DE-FC02-01ER25473 to support work that directly involved implementing algorithms developed by my research group at U.C. Davis in software that was developed and is maintained by my SciDAC CoPI's at LBNL.

Elbridge Gerry Puckett

2008-05-13T23:59:59.000Z

137

Nucleosome positioning and energetics: Recent advances in genomic and computational studies  

E-Print Network (OSTI)

Chromatin is a complex of DNA, RNA and proteins whose primary function is to package genomic DNA into the tight confines of a cell nucleus. A fundamental repeating unit of chromatin is the nucleosome, an octamer of histone proteins around which 147 base pairs of DNA are wound in almost two turns of a left-handed superhelix. Chromatin is a dynamic structure which exerts profound influence on regulation of gene expression and other cellular functions. These chromatin-directed processes are facilitated by optimizing nucleosome positions throughout the genome and by remodeling nucleosomes in response to various external and internal signals such as environmental perturbations. Here we discuss large-scale maps of nucleosome positions made available through recent advances in parallel high-throughput sequencing and microarray technologies. We show that these maps reveal common features of nucleosome organization in eukaryotic genomes. We also survey computational models designed to predict nucleosome formation scores or energies, and demonstrate how these predictions can be used to position multiple nucleosome on the genome without steric overlap.

Denis Tolkunov; Alexandre V. Morozov

2009-12-20T23:59:59.000Z

138

IMPROVED COMPUTATIONAL NEUTRONICS METHODS AND VALIDATION PROTOCOLS FOR THE ADVANCED TEST REACTOR  

SciTech Connect

The Idaho National Laboratory (INL) is in the process of modernizing the various reactor physics modeling and simulation tools used to support operation and safety assurance of the Advanced Test Reactor (ATR). Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (HELIOS, KENO6/SCALE, NEWT/SCALE, ATTILA, and an extended implementation of MCNP5) has been installed at the INL. Corresponding models of the ATR and ATRC are now operational with all five codes, demonstrating the basic feasibility of the new code packages for their intended purpose. Of particular importance, a set of as-run core depletion HELIOS calculations for all ATR cycles since August 2009 was successfully completed during 2011. This demonstration supported a decision late in the year to proceed with the phased incorporation of the HELIOS methodology into the ATR fuel cycle management process beginning in 2012. On the experimental side of the project, new hardware was fabricated, measurement protocols were finalized, and the first four of six planned physics code validation experiments based on neutron activation spectrometry were conducted at the ATRC facility. Data analysis for the first three experiments, focused on characterization of the neutron spectrum in one of the ATR flux traps, has been completed. The six experiments will ultimately form the basis for a flexible, easily-repeatable ATR physics code validation protocol that is consistent with applicable ASTM standards.

David W. Nigg; Joseph W. Nielsen; Benjamin M. Chase; Ronnie K. Murray; Kevin A. Steuhm

2012-04-01T23:59:59.000Z

139

Improved computational neutronics methods and validation protocols for the advanced test reactor  

SciTech Connect

The Idaho National Laboratory (INL) is in the process of updating the various reactor physics modeling and simulation tools used to support operation and safety assurance of the Advanced Test Reactor (ATR). Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (HELIOS, KENO6/SCALE, NEWT/SCALE, ATTILA, and an extended implementation of MCNP5) has been installed at the INL. Corresponding models of the ATR and ATRC are now operational with all five codes, demonstrating the basic feasibility of the new code packages for their intended purposes. On the experimental side of the project, new hardware was fabricated, measurement protocols were finalized, and the first four of six planned physics code validation experiments based on neutron activation spectrometry have been conducted at the ATRC facility. Data analysis for the first three experiments, focused on characterization of the neutron spectrum in one of the ATR flux traps, has been completed. The six experiments will ultimately form the basis for flexible and repeatable ATR physics code validation protocols that are consistent with applicable national standards. (authors)

Nigg, D. W.; Nielsen, J. W.; Chase, B. M.; Murray, R. K.; Steuhm, K. A.; Unruh, T. [Idaho National Laboratory, 2525 Fremont Street, Idaho Falls, ID 83415-3870 (United States)

2012-07-01T23:59:59.000Z

140

Exascale Challenges | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Scientific Scientific Discovery through Advanced Computing (SciDAC) » Exascale Challenges Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Co-Design SciDAC Institutes Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » Scientific Discovery through Advanced Computing (SciDAC)

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Mobile and Stationary Computer Vision based Traffic Surveillance Techniques for Advanced ITS Applications  

E-Print Network (OSTI)

more robust and reliable computer vision techniques areIEEE International Conference on Computer Vision and PatternProc. 3 rd Eur.Conf. Computer Vision, 1994 [32] H.

Cao, Meng

2009-01-01T23:59:59.000Z

142

ENHANCING THE ATOMIC-LEVEL UNDERSTANDING OF CO2 MINERAL SEQUESTRATION MECHANISMS VIA ADVANCED COMPUTATIONAL MODELING  

SciTech Connect

Fossil fuels currently provide 85% of the world's energy needs, with the majority coming from coal, due to its low cost, wide availability, and high energy content. The extensive use of coal-fired power assumes that the resulting CO{sub 2} emissions can be vented to the atmosphere. However, exponentially increasing atmospheric CO{sub 2} levels have brought this assumption under critical review. Over the last decade, this discussion has evolved from whether exponentially increasing anthropogenic CO{sub 2} emissions will adversely affect the global environment, to the timing and magnitude of their impact. A variety of sequestration technologies are being explored to mitigate CO{sub 2} emissions. These technologies must be both environmentally benign and economically viable. Mineral carbonation is an attractive candidate technology as it disposes of CO{sub 2} as geologically stable, environmentally benign mineral carbonates, clearly satisfying the first criteria. The primary challenge for mineral carbonation is cost-competitive process development. CO{sub 2} mineral sequestration--the conversion of stationary-source CO{sub 2} emissions into mineral carbonates (e.g., magnesium and calcium carbonate, MgCO{sub 3} and CaCO{sub 3})--has recently emerged as one of the most promising sequestration options, providing permanent CO{sub 2} disposal, rather than storage. In this approach a magnesium-bearing feedstock mineral (typically serpentine or olivine; available in vast quantities globally) is specially processed and allowed to react with CO{sub 2} under controlled conditions. This produces a mineral carbonate which (1) is environmentally benign, (2) already exists in nature in quantities far exceeding those that could result from carbonating the world's known fossil fuel reserves, and (3) is stable on a geological time scale. Minimizing the process cost via optimization of the reaction rate and degree of completion is the remaining challenge. As members of the DOE/NETL managed National Mineral Sequestration Working Group we have already significantly improved our understanding of mineral carbonation. Group members at the Albany Research Center have recently shown that carbonation of olivine and serpentine, which naturally occurs over geological time (i.e., 100,000s of years), can be accelerated to near completion in hours. Further process refinement will require a synergetic science/engineering approach that emphasizes simultaneous investigation of both thermodynamic processes and the detailed microscopic, atomic-level mechanisms that govern carbonation kinetics. Our previously funded Phase I Innovative Concepts project demonstrated the value of advanced quantum-mechanical modeling as a complementary tool in bridging important gaps in our understanding of the atomic/molecular structure and reaction mechanisms that govern CO{sub 2} mineral sequestration reaction processes for the model Mg-rich lamellar hydroxide feedstock material Mg(OH){sub 2}. In the present simulation project, improved techniques and more efficient computational schemes have allowed us to expand and augment these capabilities and explore more complex Mg-rich, lamellar hydroxide-based feedstock materials, including the serpentine-based minerals. These feedstock materials are being actively investigated due to their wide availability, and low-cost CO{sub 2} mineral sequestration potential. Cutting-edge first principles quantum chemical, computational solid-state and materials simulation methodology studies proposed herein, have been strategically integrated with our new DOE supported (ASU-Argonne National Laboratory) project to investigate the mechanisms that govern mineral feedstock heat-treatment and aqueous/fluid-phase serpentine mineral carbonation in situ. This unified, synergetic theoretical and experimental approach will provide a deeper understanding of the key reaction mechanisms than either individual approach can alone. Ab initio techniques will also significantly advance our understanding of atomic-level processes at the solid/solution interface by e

A.V.G. Chizmeshya

2003-12-19T23:59:59.000Z

143

ENHANCING THE ATOMIC-LEVEL UNDERSTANDING OF CO2 MINERAL SEQUESTRATION MECHANISMS VIA ADVANCED COMPUTATIONAL MODELING  

SciTech Connect

Fossil fuels currently provide 85% of the world's energy needs, with the majority coming from coal, due to its low cost, wide availability, and high energy content. The extensive use of coalfired power assumes that the resulting CO{sub 2} emissions can be vented to the atmosphere. However, exponentially increasing atmospheric CO{sub 2} levels have brought this assumption under critical review. Over the last decade, this discussion has evolved from whether exponentially increasing anthropogenic CO{sub 2} emissions will adversely affect the global environment, to the timing and magnitude of their impact. A variety of sequestration technologies are being explored to mitigate CO{sub 2} emissions. These technologies must be both environmentally benign and economically viable. Mineral carbonation is an attractive candidate technology as it disposes of CO{sub 2} as geologically stable, environmentally benign mineral carbonates, clearly satisfying the first criteria. The primary challenge for mineral carbonation is cost-competitive process development. CO{sub 2} mineral sequestration--the conversion of stationary-source CO{sub 2} emissions into mineral carbonates (e.g., magnesium and calcium carbonate, MgCO{sub 3} and CaCO{sub 3})--has recently emerged as one of the most promising sequestration options, providing permanent CO{sub 2} disposal, rather than storage. In this approach a magnesium-bearing feedstock mineral (typically serpentine or olivine; available in vast quantities globally) is specially processed and allowed to react with CO{sub 2} under controlled conditions. This produces a mineral carbonate which (i) is environmentally benign, (ii) already exists in nature in quantities far exceeding those that could result from carbonating the world's known fossil fuel reserves, and (iii) is stable on a geological time scale. Minimizing the process cost via optimization of the reaction rate and degree of completion is the remaining challenge. As members of the DOE/NETL managed National Mineral Sequestration Working Group we have already significantly improved our understanding of mineral carbonation. Group members at the Albany Research Center have recently shown that carbonation of olivine and serpentine, which naturally occurs over geological time (i.e., 100,000s of years), can be accelerated to near completion in hours. Further process refinement will require a synergetic science/engineering approach that emphasizes simultaneous investigation of both thermodynamic processes and the detailed microscopic, atomic-level mechanisms that govern carbonation kinetics. Our previously funded Phase I Innovative Concepts project demonstrated the value of advanced quantum-mechanical modeling as a complementary tool in bridging important gaps in our understanding of the atomic/molecular structure and reaction mechanisms that govern CO{sub 2} mineral sequestration reaction processes for the model Mg-rich lamellar hydroxide feedstock material Mg(OH){sub 2}. In the present simulation project, improved techniques and more efficient computational schemes have allowed us to expand and augment these capabilities and explore more complex Mg-rich, lamellar hydroxide-based feedstock materials, including the serpentine-based minerals. These feedstock materials are being actively investigated due to their wide availability, and low-cost CO{sub 2} mineral sequestration potential. Cutting-edge first principles quantum chemical, computational solid-state and materials simulation methodology studies proposed herein, have been strategically integrated with our new DOE supported (ASU-Argonne National Laboratory) project to investigate the mechanisms that govern mineral feedstock heat-treatment and aqueous/fluid-phase serpentine mineral carbonation in situ. This unified, synergetic theoretical and experimental approach will provide a deeper understanding of the key reaction mechanisms than either individual approach can alone. Ab initio techniques will also significantly advance our understanding of atomic-level processes at the solid/solution interface by

A.V.G. Chizmeshya

2002-12-19T23:59:59.000Z

144

ENHANCING THE ATOMIC-LEVEL UNDERSTANDING OF CO2 MINERAL SEQUESTRATION MECHANISMS VIA ADVANCED COMPUTATIONAL MODELING  

SciTech Connect

Fossil fuels currently provide 85% of the world's energy needs, with the majority coming from coal, due to its low cost, wide availability, and high energy content. The extensive use of coal-fired power assumes that the resulting CO2 emissions can be vented to the atmosphere. However, exponentially increasing atmospheric CO2 levels have brought this assumption under critical review. Over the last decade, this discussion has evolved from whether exponentially increasing anthropogenic CO2 emissions will adversely affect the global environment, to the timing and magnitude of their impact. A variety of sequestration technologies are being explored to mitigate CO2 emissions. These technologies must be both environmentally benign and economically viable. Mineral carbonation is an attractive candidate technology as it disposes of CO2 as geologically stable, environmentally benign mineral carbonates, clearly satisfying the first criteria. The primary challenge for mineral carbonation is cost-competitive process development. CO2 mineral sequestration--the conversion of stationary-source CO2 emissions into mineral carbonates (e.g., magnesium and calcium carbonate, MgCO3 and CaCO3)--has recently emerged as one of the most promising sequestration options, providing permanent CO2 disposal, rather than storage. In this approach a magnesium-bearing feedstock mineral (typically serpentine or olivine; available in vast quantities globally) is specially processed and allowed to react with CO2 under controlled conditions. This produces a mineral carbonate which (1) is environmentally benign, (2) already exists in nature in quantities far exceeding those that could result from carbonating the world's known fossil fuel reserves, and (3) is stable on a geological time scale. Minimizing the process cost via optimization of the reaction rate and degree of completion is the remaining challenge. As members of the DOE/NETL managed National Mineral Sequestration Working Group we have already significantly improved our understanding of mineral carbonation. Group members at the Albany Research Center have recently shown that carbonation of olivine and serpentine, which naturally occurs over geological time (i.e., 100,000s of years), can be accelerated to near completion in hours. Further process refinement will require a synergetic science/engineering approach that emphasizes simultaneous investigation of both thermodynamic processes and the detailed microscopic, atomic-level mechanisms that govern carbonation kinetics. Our previously funded Phase I Innovative Concepts project demonstrated the value of advanced quantum-mechanical modeling as a complementary tool in bridging important gaps in our understanding of the atomic/molecular structure and reaction mechanisms that govern CO2 mineral sequestration reaction processes for the model Mg-rich lamellar hydroxide feedstock material Mg(OH)2. In the present simulation project, improved techniques and more efficient computational schemes have allowed us to expand and augment these capabilities and explore more complex Mg-rich, lamellar hydroxide-based feedstock materials, including the serpentine-based minerals. These feedstock materials are being actively investigated due to their wide availability, and low-cost CO2 mineral sequestration potential. Cutting-edge first principles quantum chemical, computational solid-state and materials simulation methodology studies proposed herein, have been strategically integrated with our new DOE supported (ASU-Argonne National Laboratory) project to investigate the mechanisms that govern mineral feedstock heat-treatment and aqueous/fluid-phase serpentine mineral carbonation in situ. This unified, synergetic theoretical and experimental approach has provided a deeper understanding of the key reaction mechanisms than either individual approach can alone. We used ab initio techniques to significantly advance our understanding of atomic-level processes at the solid/solution interface by elucidating the origin of vibrational, electronic, x-ray and electron energy loss sp

A.V.G. Chizmeshya; M.J. McKelvy; G.H. Wolf; R.W. Carpenter; D.A. Gormley; J.R. Diefenbacher; R. Marzke

2006-03-01T23:59:59.000Z

145

An overview of the Advanced CompuTational Software (ACTS) collection  

Science Conference Proceedings (OSTI)

The ACTS Collection brings together a number of general-purpose computational tools that were developed by independent research projects mostly funded and supported by the U.S. Department of Energy. These tools tackle a number of common computational ... Keywords: Computational sciences, high-performance computing

L. A. Drummond; O. A. Marques

2005-09-01T23:59:59.000Z

146

Grand Challenges of Advanced Computing for Energy Innovation Report from the Workshop Held July 31-August 2, 2012  

SciTech Connect

On July 31-August 2 of 2012, the U.S. Department of Energy (DOE) held a workshop entitled Grand Challenges of Advanced Computing for Energy Innovation. This workshop built on three earlier workshops that clearly identified the potential for the Department and its national laboratories to enable energy innovation. The specific goal of the workshop was to identify the key challenges that the nation must overcome to apply the full benefit of taxpayer-funded advanced computing technologies to U.S. energy innovation in the ways that the country produces, moves, stores, and uses energy. Perhaps more importantly, the workshop also developed a set of recommendations to help the Department overcome those challenges. These recommendations provide an action plan for what the Department can do in the coming years to improve the nations energy future.

Larzelere, Alex R.; Ashby, Steven F.; Christensen, Dana C.; Crawford, Dona L.; Khaleel, Mohammad A.; John, Grosh; Stults, B. Ray; Lee, Steven L.; Hammond, Steven W.; Grover, Benjamin T.; Neely, Rob; Dudney, Lee Ann; Goldstein, Noah C.; Wells, Jack; Peltz, Jim

2013-03-06T23:59:59.000Z

147

(865) 574-6185, mccoydd@ornl.gov Advanced Scientific Computing Research  

E-Print Network (OSTI)

on integrating new software for the science applications which researchers run on high performance computing platforms. One of the key challenges in high performance computing is to ensure that the software which

148

In the ever-evolving world of computers, the latest applications and advances bring with them new challenges. With courses that develop  

E-Print Network (OSTI)

Overview In the ever-evolving world of computers, the latest applications and advances bring, our Master of Computer Science program equips you with the knowledge to develop much-needed solutions the Department of Computer Science, this online, coursework-only degree guides you through subjects such as

149

Computing Heavy Elements  

E-Print Network (OSTI)

Reliable calculations of the structure of heavy elements are crucial to address fundamental science questions such as the origin of the elements in the universe. Applications relevant for energy production, medicine, or national security also rely on theoretical predictions of basic properties of atomic nuclei. Heavy elements are best described within the nuclear density functional theory (DFT) and its various extensions. While relatively mature, DFT has never been implemented in its full power, as it relies on a very large number (~ 10^9-10^12) of expensive calculations (~ day). The advent of leadership-class computers, as well as dedicated large-scale collaborative efforts such as the SciDAC 2 UNEDF project, have dramatically changed the field. This article gives an overview of the various computational challenges related to the nuclear DFT, as well as some of the recent achievements.

Schunck, N; Kortelainen, M; McDonnell, J; Mor, J; Nazarewicz, W; Pei, J; Sarich, J; Sheikh, J; Staszczak, A; Stoitsov, M; Wild, S M

2011-01-01T23:59:59.000Z

150

Computing Heavy Elements  

E-Print Network (OSTI)

Reliable calculations of the structure of heavy elements are crucial to address fundamental science questions such as the origin of the elements in the universe. Applications relevant for energy production, medicine, or national security also rely on theoretical predictions of basic properties of atomic nuclei. Heavy elements are best described within the nuclear density functional theory (DFT) and its various extensions. While relatively mature, DFT has never been implemented in its full power, as it relies on a very large number (~ 10^9-10^12) of expensive calculations (~ day). The advent of leadership-class computers, as well as dedicated large-scale collaborative efforts such as the SciDAC 2 UNEDF project, have dramatically changed the field. This article gives an overview of the various computational challenges related to the nuclear DFT, as well as some of the recent achievements.

N. Schunck; A. Baran; M. Kortelainen; J. McDonnell; J. Mor; W. Nazarewicz; J. Pei; J. Sarich; J. Sheikh; A. Staszczak; M. Stoitsov; S. M. Wild

2011-07-25T23:59:59.000Z

151

CS4353 Course Outline Advanced Graphics ?  

E-Print Network (OSTI)

Introduce advanced interactive computer graphics concepts Introduce advanced architecture of computer graphics devices Introduce advanced mathematical representation of graphic images Develop advanced graphics programming skills

Instructor John; E. Howl

2009-01-01T23:59:59.000Z

152

National facility for advanced computational science: A sustainable path to scientific discovery  

E-Print Network (OSTI)

Security Administration (NNSA), NSF, and NASA, as well asfunded by DOE-SC, DOE-NNSA, NSF, and NASA, as well asrecognized by both the DOE/NNSA ASCI Advanced Simulation and

2004-01-01T23:59:59.000Z

153

Controller and computer display interface in an advanced terminal area ATC system  

E-Print Network (OSTI)

Controller and display interactions and information requirements in an advanced Air Traffic Control (ATC) system are investigated. A description of the present ATC system and of some proposed developments for the future ...

Dopart, Kevin Peter

1980-01-01T23:59:59.000Z

154

National facility for advanced computational science: A sustainable path to scientific discovery  

E-Print Network (OSTI)

Scientific Computing (NERSC) Center, 1996 present. Services and Systems at NERSC (Oct. 1, 1997- Dec 31, 1998,History Chief Architect, NERSC Division, Lawrence Berkeley

2004-01-01T23:59:59.000Z

155

Proceedings of the 2006 ACM SIGCHI international conference on Advances in computer entertainment technology  

Science Conference Proceedings (OSTI)

The field of computer entertainment technology has aroused great interest recently amongst researchers and developers in both academic and industrial / business fields as it is duly recognized as showing high promise of bringing on exciting new forms ...

Hiroshi Ishii; Newton Lee; Stephane Natkin; Katsuhide Tsushima

2006-06-01T23:59:59.000Z

156

Advances in bayesian modelling and computation: spatio-temporal processes, model assessment and adaptive mcmc  

Science Conference Proceedings (OSTI)

The modelling and analysis of complex stochastic systems with increasingly large data sets, state-spaces and parameters provides major stimulus to research in Bayesian nonparametric methods and Bayesian computation. This dissertation presents ...

Chunlin Ji / Mike West

2009-01-01T23:59:59.000Z

157

Proceedings of the International Conference on Advances in Computing, Communications and Informatics  

Science Conference Proceedings (OSTI)

Globalization tends to be most perceptible and observable in almost every facet of life mainly due to the emergence of new digital technologies of computing and communications. At the same time, informatics with its strong focus on providing fast and ...

K. Gopalan; Sabu M. Thampi

2012-08-01T23:59:59.000Z

158

CCSI and the role of advanced computing in accelerating the commercial deployment of carbon capture systems  

SciTech Connect

The Carbon Capture Simulation Initiative is developing state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technology. The CCSI Toolset consists of an integrated multi-scale modeling and simulation framework, which includes extensive use of reduced order models (ROMs) and a comprehensive uncertainty quantification (UQ) methodology. This paper focuses on the interrelation among high performance computing, detailed device simulations, ROMs for scale-bridging, UQ and the integration framework.

Miller, D.; Agarwal, D.; Sun, X.; Tong, C.

2011-01-01T23:59:59.000Z

159

Advanced computational simulation for design and manufacturing of lightweight material components for automotive applications  

DOE Green Energy (OSTI)

Computational vehicle models for the analysis of lightweight material performance in automobiles have been developed through collaboration between Oak Ridge National Laboratory, the National Highway Transportation Safety Administration, and George Washington University. The vehicle models have been verified against experimental data obtained from vehicle collisions. The crashed vehicles were analyzed, and the main impact energy dissipation mechanisms were identified and characterized. Important structural parts were extracted and digitized and directly compared with simulation results. High-performance computing played a key role in the model development because it allowed for rapid computational simulations and model modifications. The deformation of the computational model shows a very good agreement with the experiments. This report documents the modifications made to the computational model and relates them to the observations and findings on the test vehicle. Procedural guidelines are also provided that the authors believe need to be followed to create realistic models of passenger vehicles that could be used to evaluate the performance of lightweight materials in automotive structural components.

Simunovic, S.; Aramayo, G.A.; Zacharia, T. [Oak Ridge National Lab., TN (United States); Toridis, T.G. [George Washington Univ., Washington, DC (United States); Bandak, F.; Ragland, C.L. [Dept. of Transportation, Washington, DC (United States)

1997-04-01T23:59:59.000Z

160

The Research Alliance in Math and Science program is sponsored by the Mathematical, Information, and Computational Sciences Division, Office of Advanced Scientific Computing Research, U.S. Department of Energy. The work was performed at the Oak Ridge Nati  

E-Print Network (OSTI)

, and Computational Sciences Division, Office of Advanced Scientific Computing Research, U.S. Department of Energy Contract No. De-AC05-00OR22725. This work has been authored by a contractor of the U.S. Government, accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Research Alliance in Math and Science program is sponsored by the Mathematical, Information, and Computational Sciences Division, Office of Advanced Scientific Computing Research, U.S. Department of Energy. The work was performed at the Oak Ridge Nati  

E-Print Network (OSTI)

, and Computational Sciences Division, Office of Advanced Scientific Computing Research, U.S. Department of Energy NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY Improving the Manageability of OSCAR Selima Rollins City Contract No. De-AC05-00OR22725. This work has been authored by a contractor of the U.S. Government

162

Collaborative Technologies for Distributed Science - Fusion Energy and High-Energy Physics (A25518)  

E-Print Network (OSTI)

J. Physics Conf. Series 46, 102 (2006), Http://www.iop.org/EJ/toc/1742-6596/46/1SciDAC 2006 Scientific Discovery Through Advanced Computing(2006) Denver Colorado, US, 2006999615245

Schissel, D.P.

2006-07-12T23:59:59.000Z

163

THE WILLIAM DAVIDSON INSTITUTE Research Associate Grace Augustine developed this case under the supervision of Professor Tom Lyon at the University of Michigan Ross  

E-Print Network (OSTI)

, and microbiological processes in the subsurface is important for oil, nature gas and geothermal reservoir engineering using advanced computing (DOE SciDAC) Applications for RPSEA 2010 Unconventional Resources Program RFP

Edwards, Paul N.

164

Computer Aided Design of Advanced Turbine Airfoil Alloys for Industrial Gas Turbines in Coal Fired Environments  

SciTech Connect

Recent initiatives for fuel flexibility, increased efficiency and decreased emissions in power generating industrial gas turbines (IGT's), have highlighted the need for the development of techniques to produce large single crystal or columnar grained, directionally solidified Ni-base superalloy turbine blades and vanes. In order to address the technical difficulties of producing large single crystal components, a program has been initiated to, using computational materials science, better understand how alloy composition in potential IGT alloys and solidification conditions during processing, effect castability, defect formation and environmental resistance. This program will help to identify potential routes for the development of high strength, corrosion resistant airfoil/vane alloys, which would be a benefit to all IGT's, including small IGT's and even aerospace gas turbines. During the first year, collaboration with Siemens Power Corporation (SPC), Rolls-Royce, Howmet and Solar Turbines has identified and evaluated about 50 alloy compositions that are of interest for this potential application. In addition, alloy modifications to an existing alloy (CMSX-4) were also evaluated. Collaborating with SPC and using computational software at SPC to evaluate about 50 alloy compositions identified 5 candidate alloys for experimental evaluation. The results obtained from the experimentally determined phase transformation temperatures did not compare well to the calculated values in many cases. The effects of small additions of boundary strengtheners (i.e., C, B and N) to CMSX-4 were also examined. The calculated phase transformation temperatures were somewhat closer to the experimentally determined values than for the 5 candidate alloys, discussed above. The calculated partitioning coefficients were similar for all of the CMSX-4 alloys, similar to the experimentally determined segregation behavior. In general, it appears that computational materials science has become a useful tool to help reduce the number of iterations necessary to perform laboratory experiments or alloy development. However, we clearly are not able to rely solely on computational techniques in the development of high temperature materials for IGT applications. A significant amount of experimentation will continue to be required.

G.E. Fuchs

2007-12-31T23:59:59.000Z

165

Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors  

SciTech Connect

Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

2005-10-01T23:59:59.000Z

166

Advanced Computational Methods for Security Constrained Financial Transmission Rights: Structure and Parallelism  

Science Conference Proceedings (OSTI)

Financial Transmission Rights (FTRs) help power market participants reduce price risks associated with transmission congestion. FTRs are issued based on a process of solving a constrained optimization problem with the objective to maximize the FTR social welfare under power flow security constraints. Security constraints for different FTR categories (monthly, seasonal or annual) are usually coupled and the number of constraints increases exponentially with the number of categories. Commercial software for FTR calculation can only provide limited categories of FTRs due to the inherent computational challenges mentioned above. In this paper, a novel non-linear dynamical system (NDS) approach is proposed to solve the optimization problem. The new formulation and performance of the NDS solver is benchmarked against widely used linear programming (LP) solvers like CPLEX and tested on large-scale systems using data from the Western Electricity Coordinating Council (WECC). The NDS is demonstrated to outperform the widely used CPLEX algorithms while exhibiting superior scalability. Furthermore, the NDS based solver can be easily parallelized which results in significant computational improvement.

Elbert, Stephen T.; Kalsi, Karanjit; Vlachopoulou, Maria; Rice, Mark J.; Glaesemann, Kurt R.; Zhou, Ning

2012-07-26T23:59:59.000Z

167

Using a Phenomenological Computer Model to Investigate Advanced Combustion Trajectories in a CIDI Engine  

SciTech Connect

This paper summarizes results from simulations of conventional, high-dilution, and high-efficiency clean combustion in a diesel engine based on a two-zone phenomenological model. The two-zone combustion model is derived from a previously published multi-zone model, but it has been further simplified to increase computational speed by a factor of over 100. The results demonstrate that this simplified model is still able to track key aspects of the combustion trajectory responsible for NOx and soot production. In particular, the two-zone model in combination with highly simplified global kinetics correctly predicts the importance of including oxygen mass fraction (in addition to equivalence ratio and temperature) in lowering emissions from high-efficiency clean combustion. The methodology also provides a convenient framework for extracting information directly from in-cylinder pressure measurements. This feature is likely to be useful for on-board combustion diagnostics and controls. Because of the possibility for simulating large numbers of engine cycles in a short time, models of this type can provide insight into multi-cycle and transient combustion behavior not readily accessible to more computationally intensive models. Also the representation of the combustion trajectory in 3D space corresponding to equivalence ratio, flame temperature, and oxygen fraction provides new insight into optimal combustion management.

Gao, Zhiming [ORNL; Wagner, Robert M [ORNL; Sluder, Scott [ORNL; Daw, C Stuart [ORNL; Green Jr, Johney Boyd [ORNL

2011-01-01T23:59:59.000Z

168

The Magellan Final Report on Cloud Computing  

E-Print Network (OSTI)

Office of Advanced Scientific Computing Research (ASCR)Office of Advanced Scientific Computing Research (ASCR)Office of Advanced Scientific Computing Research (ASCR), was

Coghlan, Susan

2013-01-01T23:59:59.000Z

169

Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures  

SciTech Connect

OAK - B135 This project final report summarizes modeling research conducted in the U.S. Department of Energy (DOE), Low Dose Radiation Research Program at the Lovelace Respiratory Research Institute from October 1998 through June 2003. The modeling research described involves critically evaluating the validity of the linear nonthreshold (LNT) risk model as it relates to stochastic effects induced in cells by low doses of ionizing radiation and genotoxic chemicals. The LNT model plays a central role in low-dose risk assessment for humans. With the LNT model, any radiation (or genotoxic chemical) exposure is assumed to increase ones risk of cancer. Based on the LNT model, others have predicted tens of thousands of cancer deaths related to environmental exposure to radioactive material from nuclear accidents (e.g., Chernobyl) and fallout from nuclear weapons testing. Our research has focused on developing biologically based models that explain the shape of dose-response curves for low-dose radiation and genotoxic chemical-induced stochastic effects in cells. Understanding the shape of the dose-response curve for radiation and genotoxic chemical-induced stochastic effects in cells helps to better understand the shape of the dose-response curve for cancer induction in humans. We have used a modeling approach that facilitated model revisions over time, allowing for timely incorporation of new knowledge gained related to the biological basis for low-dose-induced stochastic effects in cells. Both deleterious (e.g., genomic instability, mutations, and neoplastic transformation) and protective (e.g., DNA repair and apoptosis) effects have been included in our modeling. Our most advanced model, NEOTRANS2, involves differing levels of genomic instability. Persistent genomic instability is presumed to be associated with nonspecific, nonlethal mutations and to increase both the risk for neoplastic transformation and for cancer occurrence. Our research results, based on applications of NEOTRANS2, indicate that nonlinear threshold-type, dose-response relationships for excess stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected after exposure to low linear energy transfer (LET) gamma rays or gamma rays in combination with high-LET alpha radiation. Similar thresholds are expected for low-dose-rate low-LET beta irradiation. We attribute the thresholds to low-dose, low-LET radiation induced protection against spontaneous mutations and neoplastic transformations. The protection is presumed mainly to involve selective elimination of problematic cells via apoptosis. Low-dose, low-LET radiation is presumed to trigger wide-area cell signaling, which in turn leads to problematic bystander cells (e.g., mutants, neoplastically transformed cells) selectively undergoing apoptosis. Thus, this protective bystander effect leads to selective elimination of problematic cells (a tissue cleansing process in vivo). However, this protective bystander effects is a different process from low-dose stimulation of the immune system. Low-dose, low-LET radiation stimulation of the immune system may explain why thresholds for inducing excess cancer appear much larger (possibly more than 100-fold larger) than thresholds for inducing excess mutations and neoplastic transformations, when the dose rate is low. For ionizing radiation, the current risk assessment paradigm is such that the relative risk (RR) is always 1, no matter how small the dose. Our research results indicate that for low-dose or low-dose-rate, low-LET irradiation, RR < 1 may be more the rule than the exception. Directly tied to the current RR paradigm are the billion-dollar cleanup costs for radionuclide-contaminated DOE sites. Our research results suggest that continued use of the current RR paradigm for which RR 1 could cause more harm than benefit to society (e.g., by spreading unwarranted fear about phantom excess risks associated with low-dose low-LET radiation). Such phantom risks also may arise from risk assessments conducted for com

Scott, Bobby, R., Ph.D.

2003-06-27T23:59:59.000Z

170

Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures  

Science Conference Proceedings (OSTI)

OAK - B135 This project final report summarizes modeling research conducted in the U.S. Department of Energy (DOE), Low Dose Radiation Research Program at the Lovelace Respiratory Research Institute from October 1998 through June 2003. The modeling research described involves critically evaluating the validity of the linear nonthreshold (LNT) risk model as it relates to stochastic effects induced in cells by low doses of ionizing radiation and genotoxic chemicals. The LNT model plays a central role in low-dose risk assessment for humans. With the LNT model, any radiation (or genotoxic chemical) exposure is assumed to increase ones risk of cancer. Based on the LNT model, others have predicted tens of thousands of cancer deaths related to environmental exposure to radioactive material from nuclear accidents (e.g., Chernobyl) and fallout from nuclear weapons testing. Our research has focused on developing biologically based models that explain the shape of dose-response curves for low-dose radiation and genotoxic chemical-induced stochastic effects in cells. Understanding the shape of the dose-response curve for radiation and genotoxic chemical-induced stochastic effects in cells helps to better understand the shape of the dose-response curve for cancer induction in humans. We have used a modeling approach that facilitated model revisions over time, allowing for timely incorporation of new knowledge gained related to the biological basis for low-dose-induced stochastic effects in cells. Both deleterious (e.g., genomic instability, mutations, and neoplastic transformation) and protective (e.g., DNA repair and apoptosis) effects have been included in our modeling. Our most advanced model, NEOTRANS2, involves differing levels of genomic instability. Persistent genomic instability is presumed to be associated with nonspecific, nonlethal mutations and to increase both the risk for neoplastic transformation and for cancer occurrence. Our research results, based on applications of NEOTRANS2, indicate that nonlinear threshold-type, dose-response relationships for excess stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected after exposure to low linear energy transfer (LET) gamma rays or gamma rays in combination with high-LET alpha radiation. Similar thresholds are expected for low-dose-rate low-LET beta irradiation. We attribute the thresholds to low-dose, low-LET radiation induced protection against spontaneous mutations and neoplastic transformations. The protection is presumed mainly to involve selective elimination of problematic cells via apoptosis. Low-dose, low-LET radiation is presumed to trigger wide-area cell signaling, which in turn leads to problematic bystander cells (e.g., mutants, neoplastically transformed cells) selectively undergoing apoptosis. Thus, this protective bystander effect leads to selective elimination of problematic cells (a tissue cleansing process in vivo). However, this protective bystander effects is a different process from low-dose stimulation of the immune system. Low-dose, low-LET radiation stimulation of the immune system may explain why thresholds for inducing excess cancer appear much larger (possibly more than 100-fold larger) than thresholds for inducing excess mutations and neoplastic transformations, when the dose rate is low. For ionizing radiation, the current risk assessment paradigm is such that the relative risk (RR) is always 1, no matter how small the dose. Our research results indicate that for low-dose or low-dose-rate, low-LET irradiation, RR fear about phantom excess risks associated with low-dose low-LET radiation). Such phantom risks also may arise from risk assessments conducted for com

Scott, Bobby, R., Ph.D.

2003-06-27T23:59:59.000Z

171

Final Report DOE Grant No. DE-FG03-01ER54617 Computer Modeling of Microturbulence and Macrostability Properties of Magnetically Confined Plasmas  

SciTech Connect

OAK-B135 We have made significant progress during the past grant period in several key areas of the UCLA and national Fusion Theory Program. This impressive body of work includes both fundamental and applied contributions to MHD and turbulence in DIII-D and Electric Tokamak plasmas, and also to Z-pinches, particularly with respect to the effect of flows on these phenomena. We have successfully carried out interpretive and predictive global gyrokinetic particle-in-cell calculations of DIII-D discharges. We have cemented our participation in the gyrokinetic PIC effort of the SciDAC Plasma Microturbulence Project through working membership in the Summit Gyrokinetic PIC Team. We have continued to teach advanced courses at UCLA pertaining to computational plasma physics and to foster interaction with students and junior researchers. We have in fact graduated 2 Ph. D. students during the past grant period. The research carried out during that time has resulted in many publications in the premier plasma physics and fusion energy sciences journals and in several invited oral communications at major conferences such as Sherwood, Transport Task Force (TTF), the annual meetings of the Division of Plasma Physics of the American Physical Society, of the European Physical Society, and the 2002 IAEA Fusion Energy Conference, FEC 2002. Many of these have been authored and co-authored with experimentalists at DIII-D.

Jean-Noel Leboeuf

2004-03-04T23:59:59.000Z

172

Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.  

Science Conference Proceedings (OSTI)

The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

2009-01-01T23:59:59.000Z

173

Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Computing Computing and Storage Requirements Computing and Storage Requirements for FES J. Candy General Atomics, San Diego, CA Presented at DOE Technical Program Review Hilton Washington DC/Rockville Rockville, MD 19-20 March 2013 2 Computing and Storage Requirements Drift waves and tokamak plasma turbulence Role in the context of fusion research * Plasma performance: In tokamak plasmas, performance is limited by turbulent radial transport of both energy and particles. * Gradient-driven: This turbulent transport is caused by drift-wave instabilities, driven by free energy in plasma temperature and density gradients. * Unavoidable: These instabilities will persist in a reactor. * Various types (asymptotic theory): ITG, TIM, TEM, ETG . . . + Electromagnetic variants (AITG, etc). 3 Computing and Storage Requirements Fokker-Planck Theory of Plasma Transport Basic equation still

174

The computational materials science of concrete:  

Science Conference Proceedings (OSTI)

... Computational Materials Engineering (ICME), advanced by the ... models need to advance to the ... reposito- ry, the computational materials science of ...

2013-07-29T23:59:59.000Z

175

Co-Design | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Co-Design Co-Design Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Co-Design SciDAC Institutes Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » Scientific Discovery through Advanced Computing (SciDAC) Co-Design Print Text Size: A A A RSS Feeds

176

Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research  

Science Conference Proceedings (OSTI)

Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex networked systems, and (4) design, situational awareness and control of complex networks. The program elements consist of a group of Complex Networked Systems Research Institutes (CNSRI), tightly coupled to an associated individual-investigator-based Complex Networked Systems Basic Research (CNSBR) program. The CNSRI's will be principally located at the DOE National Laboratories and are responsible for identifying research priorities, developing and maintaining a networked systems modeling and simulation software infrastructure, operating summer schools, workshops and conferences and coordinating with the CNSBR individual investigators. The CNSBR individual investigator projects will focus on specific challenges for networked systems. Relevancy of CNSBR research to DOE needs will be assured through the strong coupling provided between the CNSBR grants and the CNSRI's.

Brown, D L

2009-05-01T23:59:59.000Z

177

NERSC "Visualization Greenbook" Future visualization needs of the DOE computational science community hosted at NERSC  

E-Print Network (OSTI)

of Advanced Scientific Computing Research, Mathematical,Office of Advanced Scientific Computing Research (OASCR)

Hamann, Bernd; Bethel, E. Wes; Simon, Horst; Meza, Juan

2002-01-01T23:59:59.000Z

178

eUROPEAN nETWORK for aDVANCED cOMPUTING tECHNOLOGY for sCIENCE  

E-Print Network (OSTI)

on Grid Service Requirements (pp. 326) Report on High Performance Computing Development for the Next Network brings together High Performance Computing (HPC) Large Scale Facilities (LSF) funded by the DGXII

Farantos, Stavros C.

179

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

of Science, Advanced Scientific Computing Research (ASCR)Office of Advanced Scientific Computing Research, FacilitiesNP) Office of Advanced Scientific Computing Research (ASCR)

Gerber, Richard A.

2012-01-01T23:59:59.000Z

180

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

of Science, Advanced Scientific Computing Research (ASCR)Office of Advanced Scientific Computing Research, FacilitiesOffice of Advanced Scientific Computing Research (ASCR), and

Gerber, Richard A.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

National Energy Research Scientific Computing Center 2007 Annual Report  

E-Print Network (OSTI)

s Office of Advanced Scientific Computing Research, whichOffice of Advanced Scientific Computing Research The primaryof the Advanced Scientific Computing Research (ASCR) program

Hules, John A.

2008-01-01T23:59:59.000Z

182

Center Information Innovative Computing Laboratory  

E-Print Network (OSTI)

of Tennessee as a world leader in advanced scientific and high performance computing through research Computing Distributed Computing is an integral part of the high performance computing landscape

Tennessee, University of

183

Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan. Part 2, Mappings for the ASC software quality engineering practices. Version 1.0.  

SciTech Connect

The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, 'ASCI Software Quality Engineering: Goals, Principles, and Guidelines'. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

Ellis, Molly A.; Heaphy, Robert; Sturtevant, Judith E.; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

2005-01-01T23:59:59.000Z

184

Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan part 2 mappings for the ASC software quality engineering practices, version 2.0.  

SciTech Connect

The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR001.3.2 and CPR001.3.6 and to a Department of Energy document, ''ASCI Software Quality Engineering: Goals, Principles, and Guidelines''. This document also identifies ASC management and software project teams' responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

Heaphy, Robert; Sturtevant, Judith E.; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr. (,; .); Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

2006-09-01T23:59:59.000Z

185

Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1: ASC software quality engineering practices, Version 2.0.  

SciTech Connect

The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr. (,; .); Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

2006-09-01T23:59:59.000Z

186

Advanced Mixing Models  

Propose mixing indicators. Turbulence kinetic energy ... (Turbulence intensity observed at Point 8 in Tank B & C) Advanced Mixing Models. Computational Sciences. 13.

187

NIST Advances Single Photon Management for Quantum ...  

Science Conference Proceedings (OSTI)

NIST Advances Single Photon Management for Quantum Computers. For Immediate Release: January 19, 2011. ...

2011-01-20T23:59:59.000Z

188

Cloud Computing Forensic Science Workshop  

Science Conference Proceedings (OSTI)

Cloud Computing Forensic Science Workshop. Purpose: The New Frontiers in IT and Measurement Science Rapid advances ...

2013-09-05T23:59:59.000Z

189

BNL | CFN: Theory & Computation  

NLE Websites -- All DOE Office Websites (Extended Search)

Theory and Computation Contact: Mark Hybertsen Advances in theory, numerical algorithms and computational capabilities have enabled an unprecedented opportunity for fundamental...

190

Computational Computational  

E-Print Network (OSTI)

38 Computational complexity Computational complexity In 1965, the year Juris Hartmanis became Chair On the computational complexity of algorithms in the Transactions of the American Mathematical Society. The paper the best talent to the field. Theoretical computer science was immediately broadened from automata theory

Keinan, Alon

191

Development of coupled SCALE4.2/GTRAN2 computational capability for advanced MOX fueled assembly designs  

Science Conference Proceedings (OSTI)

An advanced assembly code system that can efficiently and accurately analyze various designs (current and advanced) proposed for plutonium disposition is being developed by {open_quotes}marrying{close_quotes} two existing state-of-the-art methodologies-GTRAN2 and SCALE 4.2. The resulting code system, GT-SCALE, posses several unique characteristics: exact 2D representation of a complete fuel assembly, while preserving the heterogeniety of each of its pin cells; flexibility in the energy group structure, the present upper limit being 218 groups; a comprehensive cross-section library and material data base; and accurate burnup calculations. The resulting GT-SCALE is expected to be very useful for a wide variety of applications, including the analysis of very heterogeneous UO{sub 2} fueled LWR fuel assemblies; of hexagonal shaped fuel assemblies as of the Russian LWRs; of fuel assemblies for HTGRs; as well as for the analysis of criticality safety and for calculation of the source term of spent fuel.

Vujic, J.; Greenspan, E.; Slater, Postma, T.; Casher, G.; Soares, I. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Leal, L. [Oak Ridge National Lab., TN (United States)

1995-05-01T23:59:59.000Z

192

Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.  

Science Conference Proceedings (OSTI)

Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.

2011-02-01T23:59:59.000Z

193

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

E-Print Network (OSTI)

BES) Office of Advanced Scientific Computing Research (ASCR)of Science, Advanced Scientific Computing Research (ASCR)Office of Advanced Scientific Computing Research, Facilities

Gerber, Richard

2012-01-01T23:59:59.000Z

194

Large Scale Computing and Storage Requirements for Biological and Environmental Research  

E-Print Network (OSTI)

of Science, Advanced Scientific Computing Research (ASCR)Office of Advanced Scientific Computing Research, FacilitiesOffice of Advanced Scientific Computing Research (ASCR), and

DOE Office of Science, Biological and Environmental Research Program Office BER,

2010-01-01T23:59:59.000Z

195

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

Act of 2009 Advanced Scientific Computing Research Courseof Science, Advanced Scientific Computing Research (ASCR)and for Advanced Scientific Computing Research, Facilities

Gerber, Richard

2012-01-01T23:59:59.000Z

196

COMPASS, the COMmunity Petascale project for Accelerator Science and Simulation, a board computational accelerator physics initiative  

Science Conference Proceedings (OSTI)

Accelerators are the largest and most costly scientific instruments of the Department of Energy, with uses across a broad range of science, including colliders for particle physics and nuclear science and light sources and neutron sources for materials studies. COMPASS, the Community Petascale Project for Accelerator Science and Simulation, is a broad, four-office (HEP, NP, BES, ASCR) effort to develop computational tools for the prediction and performance enhancement of accelerators. The tools being developed can be used to predict the dynamics of beams in the presence of optical elements and space charge forces, the calculation of electromagnetic modes and wake fields of cavities, the cooling induced by comoving beams, and the acceleration of beams by intense fields in plasmas generated by beams or lasers. In SciDAC-1, the computational tools had multiple successes in predicting the dynamics of beams and beam generation. In SciDAC-2 these tools will be petascale enabled to allow the inclusion of an unprecedented level of physics for detailed prediction.

Cary, J.R.; Spentzouris, P.; Amundson, J.; McInnes, L.; Borland, M.; Mustapha, B.; Ostroumov, P.; Wang, Y.; Fischer, W.; Fedotov, A.; Ben-Zvi, I.; Ryne, R.; Esarey, E.; Geddes, C.; Qiang, J.; Ng, E.; Li, S.; Ng, C.; Lee, R.; Merminga, L.; Wang, H.; Bruhwiler, D.L.; Dechow, D.; Mullowney, P.; Messmer, P.; Nieter, C.; Ovtchinnikov, S.; Paul, K.; Stoltz, P.; Wade-Stein, D.; Mori, W.B.; Decyk, V.; Huang, C.K.; Lu, W.; Tzoufras, M.; Tsung, F.; Zhou, M.; Werner, G.R.; Antonsen, T.; Katsouleas, T.; Morris, B.

2007-07-16T23:59:59.000Z

197

Computational physics and applied mathematics capability review June 8-10, 2010 (Advance materials to committee members)  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled mUlti-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CP AM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections): (1) Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the laboratory; (2) Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution of partial differential equations (broadly defined) in a variety of settings, including particle transport, solvers, and plasma physics; (3) Monte Carlo - Monte Carlo was invented at Los Alamos, and this theme discusses these vitally important methods and their application in everything from particle transport, to condensed matter theory, to biology; (4) Molecular Dynamics - This theme describes the widespread use of molecular dynamics for a variety of important applications, including nuclear energy, materials science, and biological modeling; (5) Discrete Event Simulation - The technical scope of this theme represents a class of complex system evolutions governed by the action of discrete events. Examples include network, communication, vehicle traffic, and epidemiology modeling; and (6) Integrated Codes - This theme discusses integrated applications (comprised of all of the supporting science represented in Themes 1-5) that are of strategic importance to the Laboratory and the nation. The laboratory has in approximately 10 million source lines of code in over 100 different such strategically important applications. Of these themes, four of them will be reviewed during the 2010 review cycle: Themes 1, 2, 3, and 6. Because these capability reviews occur every three years, Themes 4 and 5 will be reviewed in 201/span>3, along with Theme 6 (which will be reviewed during each review, owing to this theme's role as an integrator of the supporting science represented by the other 5 themes). Yearly written status reports will be provided to the Capability Review Committee Chair during off-cycle years.

Lee, Stephen R [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

198

Computational physics and applied mathematics capability review June 8-10, 2010 (Advance materials to committee members)  

SciTech Connect

Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled mUlti-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CP AM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections): (1) Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the laboratory; (2) Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution of partial differential equations (broadly defined) in a variety of settings, including particle transport, solvers, and plasma physics; (3) Monte Carlo - Monte Carlo was invented at Los Alamos, and this theme discusses these vitally important methods and their application in everything from particle transport, to condensed matter theory, to biology; (4) Molecular Dynamics - This theme describes the widespread use of molecular dynamics for a variety of important applications, including nuclear energy, materials science, and biological modeling; (5) Discrete Event Simulation - The technical scope of this theme represents a class of complex system evolutions governed by the action of discrete events. Examples include network, communication, vehicle traffic, and epidemiology modeling; and (6) Integrated Codes - This theme discusses integrated applications (comprised of all of the supporting science represented in Themes 1-5) that are of strategic importance to the Laboratory and the nation. The laboratory has in approximately 10 million source lines of code in over 100 different such strategically important applications. Of these themes, four of them will be reviewed during the 2010 review cycle: Themes 1, 2, 3, and 6. Because these capability reviews occur every three years, Themes 4 and 5 will be reviewed in 2013, along with Theme 6 (which will be reviewed during each review, owing to this theme's role as an integrator of the supporting science represented by the other 5 themes). Yearly written status reports will be provided to the Capability Review Committee Chair during off-cycle years.

Lee, Stephen R [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

199

Flagship Cluster Hiring Initiative Computational Science  

E-Print Network (OSTI)

Flagship Cluster Hiring Initiative Computational Science: Advancing Research, Society and the Economy Gabrielle Allen (PI) Thomas Sterling (Presenter/co-PI) Department of Computer Science Center for Computation & Technology #12;Computational Science: Advancing Research, Society and the Economy, External

Allen, Gabrielle

200

DOE SciDACs Earth System Grid Center for Enabling Technologies Final Report for University of Southern California Information Sciences Institute  

SciTech Connect

The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate data sets. Its specific goals are to (1) provide an easy-to-use and secure web-based data access environment for data sets; (2) add value to individual data sets by presenting them in the context of other data sets and tools for comparative analysis; (3) address the specific requirements of participating organizations with respect to bandwidth, access restrictions, and replication; (4) ensure that the data are readily accessible through the analysis and visualization tools used by the climate research community; and (5) transfer infrastructure advances to other domain areas. For the ESGF, the U.S. Department of Energys (DOEs) Earth System Grid Center for Enabling Technologies (ESG-CET) team has led international development and delivered a production environment for managing and accessing ultra-scale climate data. This production environment includes multiple national and international climate projects (such as the Community Earth System Model and the Coupled Model Intercomparison Project), ocean model data (such as the Parallel Ocean Program), observation data (Atmospheric Radiation Measurement Best Estimate, Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, etc.), and analysis and visualization tools, all serving a diverse user community. These data holdings and services are distributed across multiple ESG-CET sites (such as ANL, LANL, LBNL/NERSC, LLNL/PCMDI, NCAR, and ORNL) and at unfunded partner sites, such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing Centre, the National Aeronautics and Space Administration Jet Propulsion Laboratory, and the National Oceanic and Atmospheric Administration. The ESGF software is distinguished from other collaborative knowledge systems in the climate community by its widespread adoption, federation capabilities, and broad developer base. It is the leading source for present climate data holdings, including the most important and largest data sets in the globalclimate community, andassuming its development continueswe expect it to be the leading source for future climate data holdings as well. Recently, ESG-CET extended its services beyond data-file access and delivery to include more detailed information products (scientific graphics, animations, etc.), secure binary data-access services (based upon the OPeNDAP Data Access Protocol), and server-side analysis. The latter capabilities allow users to request data subsets transformed through commonly used analysis and intercomparison procedures. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users seeking to understand, process, extract value from, visualize, and/or communicate it to othersthis is of course if funding continues at some level. This ongoing effort, though daunting in scope and complexity, would greatly magnify the value of numerical climate model outputs and climate observations for future national and international climate-assessment reports. The ESG-CET team also faces substantial technical challenges due to the rapidly increasing scale of climate simulation and observational data, which will grow, for example, from less than 50 terabytes for the last Intergovernmental Panel on Climate Change (IPCC) assessment to multiple Petabytes for the next IPCC assessment. In a world of exponential technological change and rapidly growing sophistication in climate data analysis, an infrastructure such as ESGF must constantly evolve if it is to remain relevant and useful.

Chervenak, Ann Louise [University of Southern California] [University of Southern California

2013-12-19T23:59:59.000Z

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

University Program in Advanced Technology | National Nuclear...  

National Nuclear Security Administration (NNSA)

& Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > Institutional Research & Development > University Program in Advanced...

202

Sandia National Laboratories: Careers: Computer Science  

NLE Websites -- All DOE Office Websites (Extended Search)

at Sandia Advanced software research & development Collaborative technologies Computational science and mathematics High-performance computing Visualization and scientific...

203

Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.  

SciTech Connect

The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management and software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.

Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

2005-01-01T23:59:59.000Z

204

Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.  

SciTech Connect

The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management and software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.

Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

2005-01-01T23:59:59.000Z

205

BL-722 ADVANCED COMPUTER VISION  

E-Print Network (OSTI)

outperform STIP Classification accuracy 12 #12;13 · Temporal model helps · Our object-centric features outperform STIP · Visual phrases improves accuracy Classification accuracy 13 #12;14 · Temporal model helps · Our object-centric features outperform STIP · Visual phrases improves accuracy · Ideal object

Erdem, Erkut

206

Advanced Statistical Computing Course Notes  

E-Print Network (OSTI)

Newton methods to accelerate the search, can form practical algorithms for rigorously finding all roots do occur at such points in the second problem. nle-1 This one-dimensional problem is given __ Its roots are at x = 2 52 [ 4:237; 4:236] and x = 3 82 [ 5:829; 5:828]. nle-2

Lee, Stephen

207

Advances in Computational Solvation Thermodynamics.  

E-Print Network (OSTI)

??The aim of this thesis is to develop improved methods for calculating the free energy, entropy and enthalpy of solvation from molecular simulations. Solvation thermodynamics (more)

Wyczalkowski, Matthew

2009-01-01T23:59:59.000Z

208

Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Ductility EnhancEmEnt of molybDEnum Ductility EnhancEmEnt of molybDEnum PhasE by nano-sizED oxiDE DisPErsions Description Using computational modeling techniques, this research aims to develop predictive capabilities to facilitate the design and optimization of molybdenum (Mo), chromium (Cr), and other high-temperature structural materials to enable these materials to withstand the harsh environments of advanced power generation systems, such as gasification-based systems. These types of materials are essential to the development of highly efficient, clean energy technologies such as low-emission power systems that use coal or other fossil fuels.

209

Berkeley Lab Computing Sciences: Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Sciences organization enables and advances computational research throughout the DOE science community. NERSC and ESnet provide high performance computing and networking...

210

PNNL: Computational Sciences & Mathematics - Fundamental and...  

NLE Websites -- All DOE Office Websites (Extended Search)

(CM4) Northwest Institute for Advanced Computing Seminar Series Frontiers in Computational and Information Sciences Lecture Series Fundamental & Computational Sciences Home...

211

Computational Biology & KBase | Clean Energy| ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Biology and KBase SHARE Computational Biology and KBase The ever-increasing scale and complexity of biological data require advanced computational tools and resources...

212

Conference on Advances in Materials Science - Presentations ...  

National Nuclear Security Administration (NNSA)

- Presentations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

213

Computational Methods in Materials Education  

Science Conference Proceedings (OSTI)

search. faq. home. FORUMS > COMPUTATIONAL METHODS ... Search Category: [ advanced search ]. rss feed. Spacer Use this area to submit digital resources...

214

The Effect of a Contrast Agent on Proton Beam Range in Radiotherapy Planning Using Computed Tomography for Patients With Locoregionally Advanced Lung Cancer  

SciTech Connect

Purpose: We evaluated the effect of a contrast agent (CA) on proton beam range in a treatment planning system (TPS) for patients with locoregionally advanced lung cancer. Methods and Materials: Two sets of computed tomography (CT) images (with and without CA) were obtained from 20 patients with lung cancer. Because the increase in Hounsfield unit ( Increment HU) value of the heart and great vessels due to the effect of CA is most prominent among thoracic structures, to evaluate the effect of CA on proton beam range in the TPS, we compared the calculated distal ranges in the plan with CA-enhanced CT with those with corrected CT, in which the HU values of the heart and great vessels in the CA-enhanced CT were replaced by average HU values obtained from the unenhanced CT. Results: The mean Increment HU value and the longest length of the heart and great vessels within the proton beam path in the field that passed through these structures were 189 {+-} 29 HU (range, 110-250 HU) and 7.1 {+-} 1.1 cm (range, 2.6-11.2 cm), respectively. The mean distal range error in the TPS because of the presence of CA was 1.0 {+-} 0.7 cm (range, 0.2-2.6 cm). Conclusion: If CA-enhanced CT images are used for radiotherapy planning using a proton beam for the treatment of lung cancer, our results suggest that the HU values of the heart and great vessels should be replaced by the average HU values of soft tissue to avoid discrepancies between planned and delivered doses.

Hwang, Ui-Jung; Shin, Dong Ho [Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi (Korea, Republic of); Kim, Tae Hyun, E-mail: k2onco@naver.com [Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi (Korea, Republic of); Moon, Sung Ho; Lim, Young Kyung; Jeong, Hojin; Rah, Jeong-Eun; Kim, Sang Soo; Kim, Joo-Young; Kim, Dae Yong; Park, Sung Yong; Cho, Kwan Ho [Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi (Korea, Republic of)

2011-11-15T23:59:59.000Z

215

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Availability Technology Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And...

216

18.337J / 6.338J Applied Parallel Computing (SMA 5505), Spring 2005  

E-Print Network (OSTI)

Applied Parallel Computing is an advanced interdisciplinary introduction to applied parallel computing on modern supercomputers.

Edelman, Alan

217

NREL Carbon Metabolism Modeling Intends to Make Biofuels Engineering Routine and Reliable (Fact Sheet)  

DOE Green Energy (OSTI)

National Renewable Energy Laboratory (NREL) scientists, supported by the Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) Program, have assembled and simulated a model of key eukaryotic carbon metabolism that intends to move biochemical simulations into new realms of chemical fidelity.

Not Available

2011-02-01T23:59:59.000Z

218

Large Scale Computing and Storage Requirements for Biological...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy's Office of Biological & Environmental Research and Advanced Scientific Computing Research (ASCR) to elucidate computing requirements for biological and...

219

Advanced Simulation Capability for Environmental Management (ASCEM) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) ASCEM is being developed to provide a tool and approach to facilitate robust and standardized development of performance and risk assessments for cleanup and closure activities throughout the EM complex. The ASCEM team is composed of scientists from eight National Laboratories. This team is leveraging Department of Energy (DOE) investments in basic science and applied research including high performance computing codes developed through the Advanced Scientific Computing Research and Advanced Simulation & Computing programs as well as collaborating with the Offices of Science,

220

2009 American Association for the Advancement of Science ...  

Science Conference Proceedings (OSTI)

... for meritorious efforts to advance science or its ... for the Advancement of Science Fellow Award for ... in chemical physics and computational chemistry. ...

2012-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Army High Performance Computing Research Center  

E-Print Network (OSTI)

Army High Performance Computing Research Center Applying advanced computational science research challenges http://me.stanford.edu/research/centers/ahpcrc #12;Army High Performance Computing challenges http://me.stanford.edu/research/centers/ahpcrc #12;Army High Performance Computing Research

Prinz, Friedrich B.

222

Advanced Modeling & Simulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation ADVANCING THE STATE OF THE ART Innovation advances science. Historically, innovation resulted almost exclusively from fundamental theories combined with observation and experimentation over time. With advancements in engineering, computing power and visualization tools, scientists from all disciplines are gaining insights into physical systems in ways not possible with traditional approaches alone. Modeling and simulation has a long history with researchers and scientists exploring nuclear energy technologies. In fact, the existing fleet of currently operating reactors was licensed with computational tools that were produced or initiated in the 1970s. Researchers and scientists in

223

Resources & Expertise | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

is dedicated to large-scale computation and builds on Argonne's strengths in high-performance computing software, advanced hardware architectures and applications expertise. It...

224

Argonne's computing Zen | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

is dedicated to large-scale computation and builds on Argonne's strengths in high-performance computing software, advanced hardware architectures and applications expertise....

225

Computational Systems & Software Environment | National Nuclear...  

National Nuclear Security Administration (NNSA)

& Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > ASC Program Elements > Computational Systems & Software Environment...

226

Application of Robust Design and Advanced Computer Aided Engineering Technologies: Cooperative Research and Development Final Report, CRADA Number CRD-04-143  

SciTech Connect

Oshkosh Corporation (OSK) is taking an aggressive approach to implementing advanced technologies, including hybrid electric vehicle (HEV) technology, throughout their commercial and military product lines. These technologies have important implications for OSK's commercial and military customers, including fleet fuel efficiency, quiet operational modes, additional on-board electric capabilities, and lower thermal signature operation. However, technical challenges exist with selecting the optimal HEV components and design to work within the performance and packaging constraints of specific vehicle applications. SK desires to use unique expertise developed at the Department of Energy?s (DOE) National Renewable Energy Laboratory (NREL), including HEV modeling and simulation. These tools will be used to overcome technical hurdles to implementing advanced heavy vehicle technology that meet performance requirements while improving fuel efficiency.

Thornton, M.

2013-06-01T23:59:59.000Z

227

Lambdastation: a forwarding and admission control service to interface production network facilities with advanced research network paths  

Science Conference Proceedings (OSTI)

Over the past several years, there has been a great deal of research effort and funding put into the deployment of optical-based, advanced technology wide-area networks. Fermilab and CalTech have initiated a project to enable our production network facilities to exploit these advanced research network facilities. Our objective is to forward designated data transfers across these advanced wide area networks on a per-flow basis, making use our capacious production-use storage systems connected to the local campus network. To accomplish this, we intend to develop a dynamically provisioned forwarding service that would provide alternate path forwarding onto available wide area advanced research networks. The service would dynamically reconfigure forwarding of specific flows within our local production-use network facilities, as well as provide an interface to enable applications to utilize the service. We call this service LambdaStation. If one envisions wide area optical network paths as high bandwidth data railways, then LambdaStation would functionally be the railroad terminal that regulates which flows at the local site get directed onto the high bandwidth data railways. LambdaStation is a DOE-funded SciDac research project in its very early stage of development.

DeMar, Philip; Petravick, Don; /Fermilab

2004-12-01T23:59:59.000Z

228

aa | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information »

229

Applied Mathematics Conferences and Workshops | U.S. DOE Office of Science  

Office of Science (SC) Website

Applied Applied Mathematics » Applied Mathematics Conferences And Workshops Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Applied Mathematics Conferences And Workshops Computer Science Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » Applied Mathematics

230

SDM | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

SDM SDM Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information »

231

Programming Challenges Presentations | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Programming Challenges Programming Challenges Presentations Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information »

232

Next Generation Networking | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Next Next Generation Networking Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Next Generation Networking 2012 Scientific Collaborations at Extreme-Scale Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » Research Next Generation Networking Print Text Size: A A A

233

Challenges | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Challenges Challenges Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information »

234

Dynamic Links and Distributed Computing - CECM  

E-Print Network (OSTI)

Dynamic Links and Distributed Computing ... Next: Advanced Collaboration via Up: InternetExecutable Content, Previous: The Third-Generation Internet...

235

Mesoscale Computational Materials Science - Programmaster.org  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... Symposium, Mesoscale Computational Materials Science of Energy Materials. Sponsorship ... materials for advanced batteries and fuel cells

236

Advanced characterization of physical properties of coals with different coal structures by nuclear magnetic resonance and X-ray computed tomography  

Science Conference Proceedings (OSTI)

In order to understand the correlation between coal structure and physical property of coal, samples with different coal structures were collected from the Late Permian period coal seams in the Laochang area, Yunnan Province, China. A set of experiments ... Keywords: Adsorption capacities, Coal structure, Nuclear magnetic resonance (NMR), Seepage capacities, X-ray computed tomography (X-CT)

Song Li; Dazhen Tang; Hao Xu; Zi Yang

2012-11-01T23:59:59.000Z

237

Nick Wright Named Advanced Technologies Group Lead  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2013 Nick Nick Wright has been named head of the National Energy Research Scientific Computing Center's (NERSC) Advanced Technologies Group (ATG), which focuses on...

238

TMS 2010: Advanced Characterization and Modeling  

Science Conference Proceedings (OSTI)

Ten symposia are planned in areas covering computational materials science and engineering, and advanced characterization. Systems over a range of length ...

239

Advanced Characterization, Testing, and Simulation Committee  

Science Conference Proceedings (OSTI)

Our Mission: The science and engineering of advanced methods for ... and modeling of mechanical properties, and development of computational tools for...

240

Energy Department Requests Proposals for Advanced Scientific...  

Office of Science (SC) Website

Energy Department Requests Proposals for Advanced Scientific Computing Research News In the News 2013 2012 2011 2010 2009 2008 2007 2006 2005 In Focus Presentations & Testimony...

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Advanced Materials Center of Excellence Webinar, July 15 ...  

Science Conference Proceedings (OSTI)

... measurement science with emerging and innovative ... Goals of Advanced Materials CoE ... the development of integrated computational, modeling and ...

2013-07-16T23:59:59.000Z

242

PNNL: Fundamental & Computational Sciences - About  

NLE Websites -- All DOE Office Websites (Extended Search)

About Us Organizational Chart Button The Fundamental & Computational Sciences are vital at DOE's Pacific Northwest National Laboratory (PNNL). We advance scientific frontiers and...

243

EMSL: Capabilities: Molecular Science Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

understand complex chemical systems at the molecular level by coupling the power of advanced computational chemistry techniques with existing and rapidly evolving...

244

NETL: Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

AR AR Coal and Power Systems Advanced Research 12.11.13: Request for Information entitled "Novel Crosscutting Research and Development to Support Advanced Energy Systems". Application due date is January 15, 2014. The RFI and/or instructions can be found on the FedConnect site at FedConnect. Achieving Successes in High Performance Materials, Coal Utilization Sciences, Sensors & Controls Innovations, Computational Energy Sciences, Cooperative Research and Development, and sponsoring Education Initiatives. The Advanced Research (AR) program within NETL's Office of Coal and Power Systems fosters the development of innovative, cost-effective technologies for improving the efficiency and environmental performance of advanced coal and power systems. In addition, AR bridges the gap between fundamental

245

Advanced Simulation Capability for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Simulation Capability for Simulation Capability for Environmental Management (ASCEM) ASCEM is being developed to provide a tool and approach to facilitate robust and standardized development of perfor- mance and risk assessments for cleanup and closure activi- ties throughout the EM complex. The ASCEM team is composed of scientists from eight National Laboratories. This team is leveraging Department of Energy (DOE) investments in basic science and applied research including high performance computing codes developed through the Advanced Scientific Computing Research and Advanced Simulation & Computing pro- grams as well as collaborating with the Offices of Science, Fossil Energy, and Nuclear Energy. Challenge Current groundwater and soil remediation challenges that will continue to be addressed in the next decade include

246

Typologies of Computation and Computational Models  

E-Print Network (OSTI)

We need much better understanding of information processing and computation as its primary form. Future progress of new computational devices capable of dealing with problems of big data, internet of things, semantic web, cognitive robotics and neuroinformatics depends on the adequate models of computation. In this article we first present the current state of the art through systematization of existing models and mechanisms, and outline basic structural framework of computation. We argue that defining computation as information processing, and given that there is no information without (physical) representation, the dynamics of information on the fundamental level is physical/ intrinsic/ natural computation. As a special case, intrinsic computation is used for designed computation in computing machinery. Intrinsic natural computation occurs on variety of levels of physical processes, containing the levels of computation of living organisms (including highly intelligent animals) as well as designed computational devices. The present article offers a typology of current models of computation and indicates future paths for the advancement of the field; both by the development of new computational models and by learning from nature how to better compute using different mechanisms of intrinsic computation.

Mark Burgin; Gordana Dodig-Crnkovic

2013-12-09T23:59:59.000Z

247

Computational aspects of data mining  

Science Conference Proceedings (OSTI)

The last decade has witnessed an impressive growth of Data Mining through algorithms and applications. Despite the advances, a computational theory of Data Mining is still largely outstanding. This paper discusses some aspects relevant to computation ...

Flaviu Adrian M?rginean

2003-05-01T23:59:59.000Z

248

Computer Science & Computer Engineering  

E-Print Network (OSTI)

CSCE Computer Science & Computer Engineering #12;Computer scientists and computer engineers design and implement e cient software and hardware solutions to computer-solvable problems. They are involved, virtual reality and robotics. Within the Computer Science department, we o er four exciting majors from

Rohs, Remo

249

Computer resources Computer resources  

E-Print Network (OSTI)

Computer resources 1 Computer resources available to the LEAD group Cédric David 30 September 2009 #12;Ouline · UT computer resources and services · JSG computer resources and services · LEAD computers· LEAD computers 2 #12;UT Austin services UT EID and Password 3 https://utdirect.utexas.edu #12;UT Austin

Yang, Zong-Liang

250

Scientific Process Automation Improves Data Interaction  

SciTech Connect

This is an article written for the September 09 Scientific Computing magazine about the work of the Scientific Process Automation team of The U.S. Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) program. The SPA team is focused on developing and deploying automated workflows for a variety of computational science domains. Scientific workflows are the formalization of a scientific process that is frequently and repetitively performed.

Critchlow, Terence J.

2009-09-30T23:59:59.000Z

251

Estimating Computational Noise?  

E-Print Network (OSTI)

partment of Energy, under Contract DE-AC02-06CH11357. ... supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. De-.

252

Supercomputing | Computer Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Resilience Engineering of Scientific Software Translation Quantum Computing Machine Learning Information Retrieval Content Tagging Visual Analytics Data Earth Sciences Energy Science Future Technology Knowledge Discovery Materials Mathematics National Security Systems Modeling Engineering Analysis Behavioral Sciences Geographic Information Science and Technology Quantum Information Science Supercomputing and Computation Home | Science & Discovery | Supercomputing and Computation | Research Areas | Computer Science SHARE Computer Science Computer Science at ORNL involves extreme scale scientific simulations through research and engineering efforts advancing the state of the art in algorithms, programming environments, tools, and system software. ORNL's work is strongly motivated by, and often carried out in direct

253

Advanced Manufacturing  

Science Conference Proceedings (OSTI)

... new metrologically-based methods for industry as well ... for Advanced Catalyst Development and Durability ... Electron-Beam Irradiation of Solar Cells. ...

2013-07-29T23:59:59.000Z

254

Advanced Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Gasification Carbon feedstock gasification is a promising pathway for high-efficiency, low-pollutant power generation and chemical production. The inability, however, to...

255

Advanced Ceramics  

Science Conference Proceedings (OSTI)

Table 3   Raw materials for advanced structural and magnetic (ferrite) ceramics...conductivity Wear resistance Oxygen sensors, fuel cells (potential), high-temperature

256

Computer-Aided Light Sheet Flow Visualization  

Science Conference Proceedings (OSTI)

A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems.The computer process integrates a mathematical model for image reconstruction, advanced computer ...

Stacy Kathryn; Severance Kurt; Childers Brooks A.

1993-07-01T23:59:59.000Z

257

Computers and Computer Networks  

NLE Websites -- All DOE Office Websites (Extended Search)

and Computer Networks and Computer Networks Computer Science documentation, etc. Computer Science Research and Services at the Lab Super Computing Computer Graphics Computer & Internet information via yahoo.com, categorized by subject Perl UNIX documentation Shareware sites MBONE and Videoconferencing Computer Networks and related documentation Computer Documentation World Wide Web UNIX Documentation TeX, LaTeX FAQ, documents, archives, etc. MacInTouch -- current Macintosh information, from vendor & others Shareware sites The Free On-line Dictionary of Computing PDS: The Performance Database Server of Computer Benchmark Return to Top Return to Top Newsgroups, USEnet, and Mailing Lists Usenet (Internet News Groups) Mailing list software & information Return to Top Return to Top

258

Computational Combustion  

DOE Green Energy (OSTI)

Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

2004-08-26T23:59:59.000Z

259

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Advanced Materials Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Analysis Of Macromolecule, Liggands And Macromolecule-Lingand Complexes Express Licensing Carbon Microtubes Express Licensing Chemical Synthesis Of Chiral Conducting Polymers Express Licensing Forming Adherent Coatings Using Plasma Processing Express Licensing Hydrogen Scavengers Express Licensing Laser Welding Of Fused Quartz Express Licensing Multiple Feed Powder Splitter Negotiable Licensing Boron-10 Neutron Detectors for Helium-3 Replacement Negotiable Licensing Insensitive Extrudable Explosive Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Method of Synthesis of Proton Conducting Materials

260

Quantum Computing Computer Scientists  

E-Print Network (OSTI)

Quantum Computing for Computer Scientists Noson S. Yanofsky and Mirco A. Mannucci #12;© May 2007 Noson S. Yanofsky Mirco A. Mannucci #12;Quantum Computing for Computer Scientists Noson S. Yanofsky of Vector Spaces 3 The Leap From Classical to Quantum 3.1 Classical Deterministic Systems 3.2 Classical

Yanofsky, Noson S.

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced Ceramics  

Science Conference Proceedings (OSTI)

Table 2   Classification of advanced ceramics...solid electrolytes, piezoelectrics, dielectrics, superconductors Optical Low absorption coefficient Lamps, windows, fiber optics, infrared optics Nuclear Irradiation resistance, high absorption coefficient,

262

Document  

National Nuclear Security Administration (NNSA)

at the National Science Foundation, Computational Research Needs in Alternative and Renewable Energy, SciDAC Update, Potential Impact of High-end Capability Computing on Four...

263

Advanced Manufacturing Office: Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

Solicitations on Twitter Bookmark Advanced Manufacturing Office: Solicitations on Google Bookmark Advanced Manufacturing Office: Solicitations on Delicious Rank Advanced...

264

Advanced Manufacturing Office: Webcasts  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Webcasts on Twitter Bookmark Advanced Manufacturing Office: Webcasts on Google Bookmark Advanced Manufacturing Office: Webcasts on Delicious Rank Advanced...

265

Advanced Manufacturing Office: Subscribe  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Subscribe on Twitter Bookmark Advanced Manufacturing Office: Subscribe on Google Bookmark Advanced Manufacturing Office: Subscribe on Delicious Rank Advanced...

266

Advanced Manufacturing Office: Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Workshops on Twitter Bookmark Advanced Manufacturing Office: Workshops on Google Bookmark Advanced Manufacturing Office: Workshops on Delicious Rank Advanced...

267

Computing Frontier: Distributed Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Computing Computing Frontier: Distributed Computing and Facility Infrastructures Conveners: Kenneth Bloom 1 , Richard Gerber 2 1 Department of Physics and Astronomy, University of Nebraska-Lincoln 2 National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory 1.1 Introduction The field of particle physics has become increasingly reliant on large-scale computing resources to address the challenges of analyzing large datasets, completing specialized computations and simulations, and allowing for wide-spread participation of large groups of researchers. For a variety of reasons, these resources have become more distributed over a large geographic area, and some resources are highly specialized computing machines. In this report for the Snowmass Computing Frontier Study, we consider several questions about distributed computing

268

Large Scale Computing and Storage Requirements for Nuclear Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Science, Office of Advanced Scientific Computing Research (ASCR), Office of Nuclear Physics (NP), and the National Energy Research Scientific Computing Center (NERSC)...

269

NUCLEI: Nuclear Computational Low-Energy Initiative | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

NUCLEI: Nuclear Computational Low-Energy Initiative NUCLEI: Nuclear Computational Low-Energy Initiative This project seeks to advance large-scale nuclear physics compoutations in...

270

New Computer Codes Unlock the Secrets of Cleaner Burning Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes Unlock the Secrets of Cleaner Burning Coal New Computer Codes Unlock the Secrets of Cleaner Burning Coal March 29, 2012 | Tags: Advanced Scientific Computing Research (ASCR),...

271

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

providing high-performance computing (HPC) resources to moreof NERSChigh performance computing (HPC) and NERSC haveafforded by high performance computing, advanced simulations

Gerber, Richard

2012-01-01T23:59:59.000Z

272

Advanced Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Systems: Advanced Systems: high Performance fenestration systems Research areas: Research activities to improve the performance of windows and other fenestration products must address window systems issues as well as Glazing Materials research. LBNL activities in the area of Advanced Systems include research at both the product level and the building envelope and building systems levels. Highly insulating windows - using non structural center layers Lower cost solutions to more insulating three layer glazing systems, with the potential to turn windows in U.S. heating dominated residential applications into net-energy gainers. Highly Insulating Window Frames In collaboration with the Norwegian University of Science and Technology, we are researching the potentials for highly insulating window frames. Our initial work examines European frames with reported U-factors under 0.15 Btu/hr-ft2-F. Future research aims to analyze these designs, verify these performance levels and ensure that procedures used to calculate frame performance are accurate.

273

Computational Energy Sciences Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational EnErgy SCiEnCES program Computational EnErgy SCiEnCES program Description Led by the National Energy Technology Laboratory (NETL), the Advanced Research (AR) Computational Energy Sciences (CES) Program provides high-performance computational modeling and simulation resources to the Office of Fossil Energy (FE) and other programs of the U.S. Department of Energy (DOE). These resources are dedicated to speeding development and reducing costs associated with advanced power system design and performance modeling. CES research is focused on developing a set of complex but flexible computational tools that allow more rapid and efficient scale-up of new subsystems, devices, and components, thereby reducing the need for large and expensive demonstration-scale testing of integrated energy systems,

274

Computer applications: a service course  

Science Conference Proceedings (OSTI)

A paperless computer applications course, which is driven by an online syllabus is described. Students demo their work on the computer rather than hand in paper assignments. Several advanced topics are included to challenge the students and downloads ... Keywords: computer applications, data duplication, paperless

Abdul Sattar; Torben Lorenzen

2007-12-01T23:59:59.000Z

275

Better 'Photon Loops' May Be Key to Computer and Physics ...  

Science Conference Proceedings (OSTI)

Better 'Photon Loops' May Be Key to Computer and Physics Advances. From NIST Tech Beat: August 22, 2011. ...

2012-08-23T23:59:59.000Z

276

Sandia National Laboratories: Advanced Simulation and Computing...  

NLE Websites -- All DOE Office Websites (Extended Search)

tools for innovative product engineering. Engineering Physics Integrated Codes Sierra Mechanics Sierra is Sandia's engineering mechanics simulation code suite. This suite includes...

277

Advanced Computation & Visualization - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

278

Advances in Integrated Computational Materials Design  

Science Conference Proceedings (OSTI)

Parametric materials design integrating materials science, applied mechanics and quantum physics within a systems engineering framework has brought a first ...

279

Advanced reservoir simulation using soft computing  

Science Conference Proceedings (OSTI)

Reservoir simulation is a challenging problem for the oil and gas industry. A correctly calibrated reservoir simulator provides an effective tool for reservoir evaluation that can be used to obtain essential reservoir information. A long-standing problem ... Keywords: fuzzy control, history matching, parallel processing, reservoir simulation

G. Janoski; F.-S. Li; M. Pietrzyk; A. H. Sung; S.-H. Chang; R. B. Grigg

2000-06-01T23:59:59.000Z

280

Advances in Computational Materials Science and Engineering ...  

Science Conference Proceedings (OSTI)

May 1, 2007 ... Non-member price: 30.00. TMS Student Member price: 22.00. Product In Stock. Description These papers are based on presentations prepared...

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Software Advance Helps Computers Act Logically  

Science Conference Proceedings (OSTI)

... For instance, a person who hears the commands "paint it, before shipping it" and "turn on the coolant, before milling" understands that the word ...

2013-04-23T23:59:59.000Z

282

Supporting Advanced Scientific Computing Research * Basic Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy S ciences N etwork Enabling Virtual Science June 9, 2009 Steve C oer steve@es.net Dept. H ead, E nergy S ciences N etwork Lawrence B erkeley N aDonal L ab The E nergy S...

283

PNNL Fundamental & Computational Sciences Directorate - Advanced...  

NLE Websites -- All DOE Office Websites (Extended Search)

M Rousseau, Roger J Runci, Paul J Sacksteder, Colette A Sadler, Natalie C Sams, Robert L Schaef, Herbert T Schenter, Gregory K Schepmoes, Athena A Schmid, Beat Schuchardt, Karen...

284

Computational Biology and High Performance Computing 2000  

SciTech Connect

The pace of extraordinary advances in molecular biology has accelerated in the past decade due in large part to discoveries coming from genome projects on human and model organisms. The advances in the genome project so far, happening well ahead of schedule and under budget, have exceeded any dreams by its protagonists, let alone formal expectations. Biologists expect the next phase of the genome project to be even more startling in terms of dramatic breakthroughs in our understanding of human biology, the biology of health and of disease. Only today can biologists begin to envision the necessary experimental, computational and theoretical steps necessary to exploit genome sequence information for its medical impact, its contribution to biotechnology and economic competitiveness, and its ultimate contribution to environmental quality. High performance computing has become one of the critical enabling technologies, which will help to translate this vision of future advances in biology into reality. Biologists are increasingly becoming aware of the potential of high performance computing. The goal of this tutorial is to introduce the exciting new developments in computational biology and genomics to the high performance computing community.

Simon, Horst D.; Zorn, Manfred D.; Spengler, Sylvia J.; Shoichet, Brian K.; Stewart, Craig; Dubchak, Inna L.; Arkin, Adam P.

2000-10-19T23:59:59.000Z

285

Computational Biology | Supercomputing & Computation | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Home | Science & Discovery | Supercomputing and Computation | Research Areas | Biology SHARE Computational Biology Computational Biology research encompasses many important...

286

Innovative & Novel Computational Impact on Theory & Experiement (INCITE) |  

Office of Science (SC) Website

Innovative Innovative & Novel Computational Impact on Theory and Experiment (INCITE) Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Accessing ASCR Supercomputers Oak Ridge Leadership Computing Facility (OLCF) Argonne Leadership Computing Facility (ALCF) National Energy Research Scientific Computing Center (NERSC) Energy Sciences Network (ESnet) Research & Evaluation Prototypes (REP) Innovative & Novel Computational Impact on Theory and Experiment (INCITE) ASCR Leadership Computing Challenge (ALCC) Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building

287

WEB RESOURCE: Nuclear Physics and Related Computational ...  

Science Conference Proceedings (OSTI)

Feb 6, 2007 ... This site provides presentations from the Nuclear Physics and Related Computational Science R&D for Advanced Fuel Cycles Workshop:

288

Enabling Elements of Integrated Computational Materials and ...  

Science Conference Proceedings (OSTI)

Enabling technologies in the areas of advanced physics-based models, ... toward true integration of computational material and manufacturing science and...

289

News in ITL - Mathematical and Computational Sciences  

Science Conference Proceedings (OSTI)

News in ITL - Applied and Computational Mathematics. 11/29/12. ... 03/16/06. Algorithm Advance Produces Quantum Calculation Record. Contact. ...

2012-09-26T23:59:59.000Z

290

Center for Theoretical and Computational Materials Science  

Science Conference Proceedings (OSTI)

... an advanced code repository/wiki for collaboration and modern computational lab-notebook blogging tools (supported by the National Science ...

2012-10-02T23:59:59.000Z

291

Berkeley Lab Computing Sciences: Accelerating Scientific Discovery  

E-Print Network (OSTI)

facilities NERSC and ESnet and by conduct- ing appliedCOMPUTATIONAL SCIENCE ESnet is a reliable, high- bandwidthdevelopment. NERSC and ESnet staff participate in advanced

Hules, John A

2009-01-01T23:59:59.000Z

292

Advanced Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications Advanced Search Most publications by Environmental Energy Technologies Division authors are searchable from this page, including peer-reviewed publications, book chapters, conference proceedings and LBNL reports. Filter Advanced Search Publications list This publications database is an ongoing project, and not all Division publications are represented here yet. For additional help see the bottom of this page. Documents Found: 4418 Title Keyword LBNL Number Author - Any - Abadie, Marc O Abbey, Chad Abdolrazaghi, Mohamad Aberg, Annika Abhyankar, Nikit Abraham, Marvin M Abshire, James B Abushakra, Bass Acevedo-Ruiz, Manuel Aceves, Salvador Ache, Hans J Ackerly, David D Ackerman, Andrew S Adamkiewicz, Gary Adams, J W Adams, Carl Adamson, Bo Addy, Nathan Addy, Susan E Aden, Nathaniel T Adesola, Bunmi Adhikari,

293

Advanced Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Systems Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to generate electricity, which operate at efficiencies of 35-37 percent. Operation at higher temperatures and pressures can lead to higher efficiencies, resulting in reduced fuel consumption and lower greenhouse gas emissions. Higher efficiency also reduces CO2 production for the same amount of energy produced, thereby facilitating a reduction in greenhouse gas emissions. When combined, oxy-combustion comes with an efficiency hit, so it will actually increase the amount of CO2 to be captured. But without so much N2 in the flue gas, it will be easier and perhaps more efficient to capture, utilize and sequester. NETL's Advanced Combustion Project and members of the NETL-Regional University

294

Advanced Combustion  

Science Conference Proceedings (OSTI)

The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

Holcomb, Gordon R. [NETL

2013-03-11T23:59:59.000Z

295

Computational illumination  

Science Conference Proceedings (OSTI)

The field of computational photography includes computational imaging techniques that enhance or extend the capabilities of digital photography, a combination of computer vision, computer graphics, and applied optics. Computational illumination is an ...

Matthew Turk

2010-11-01T23:59:59.000Z

296

Advanced fuel chemistry for advanced engines.  

SciTech Connect

Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

2009-09-01T23:59:59.000Z

297

Applied Computation 274: Computational Fluid Dynamics Lecturer: David Knezevic  

E-Print Network (OSTI)

, nuclear reactor modeling and blood flow simulation. With major advances in CFD algorithms and computer: With Applications in Incompressible Fluid Dynamics, Oxford University Press, 2005. A. Ern, J.-L. Guermond, Theory

Chen, Yiling

298

Toward exascale computational science with heterogeneous processing  

Science Conference Proceedings (OSTI)

Computational requirements for scientific simulation continue to grow in scale and complexity. Meanwhile, HPC systems and centers are facing urgent constraints of power and thermal limits, while continuing to advance computational science. Our experiences ...

Jeffrey Vetter

2010-03-01T23:59:59.000Z

299

Efficient algorithms for new computational models  

E-Print Network (OSTI)

Advances in hardware design and manufacturing often lead to new ways in which problems can be solved computationally. In this thesis we explore fundamental problems in three computational models that are based on such ...

Ruhl, Jan Matthias, 1973-

2003-01-01T23:59:59.000Z

300

Advances in new interfaces for musical expression  

Science Conference Proceedings (OSTI)

Advances in digital audio technologies have led to a situation where computers now play a role in most music production and performance. Digital technologies offer unprecedented opportunities for creation and manipulation of sound, but the flexibility ...

Sidney Fels; Michael Lyons

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry  

DOE Green Energy (OSTI)

This SciDAC project enabled a multidisciplinary research consortium to develop a high fidelity direct numerical simulation (DNS) software package for the simulation of turbulent reactive flows. Within this collaboration, the authors, based at CMU's Pittsburgh Supercomputing Center (PSC), focused on extensive new developments in Sandia National Laboratories' "S3D" software to address more realistic combustion features and geometries while exploiting Terascale computational possibilities. This work significantly advances the state-of-the-art of DNS of turbulent reacting flows.

Raghurama Reddy; Roberto Gomez; Junwoo Lim; Yang Wang; Sergiu Sanielevici

2004-10-15T23:59:59.000Z

302

STATEMENT OF CONSIDERATIONS CLASS ADVANCE WAIVER OF THE GOVERNMENT...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

le - 003 STATEMENT OF CONSIDERATIONS CLASS ADVANCE WAIVER ASCI RP No. PF-01 high performance computing technologies that would subaoquantly be economically sustained in the...

303

Lawrence Livermore teams with industry to advance energy technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

release: 03192012 | NR-12-03-01 Lawrence Livermore teams with industry to advance energy technologies using high performance computing Donald B Johnston , LLNL, (925)...

304

Conference on Advances in Materials Science | National Nuclear...  

National Nuclear Security Administration (NNSA)

in Materials Science Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

305

Conference on Advances In Materials Science - 2009, Prague, Czech...  

National Nuclear Security Administration (NNSA)

Czech Republic Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

306

Berkeley Lab Computing Sciences: Accelerating Scientific Discovery  

Science Conference Proceedings (OSTI)

Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics.

Hules, John A

2008-12-12T23:59:59.000Z

307

Advanced Energy Storage Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Energy Storage Publications Reports: Advanced Technology Development Program For Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report Advanced Technology...

308

Advanced Manufacturing Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Office: News on Twitter Bookmark Advanced Manufacturing Office: News on Google Bookmark Advanced Manufacturing Office: News on Delicious Rank Advanced Manufacturing...

309

Uncertainty Analyses of Advanced Fuel Cycles  

SciTech Connect

The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

2008-12-12T23:59:59.000Z

310

CiFTS : Coordinated Infrastructure for Fault Tolerant Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Demos Team News Contact Us Coordinated and Improved Fault Tolerance for High Performance Computing Systems In the next few years SciDAC applications will utilize exascale...

311

Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Super HigH-TemperaTure alloyS and Super HigH-TemperaTure alloyS and CompoSiTeS From nb-W-Cr SySTemS Description The U.S. Department of Energy's Office of Fossil Energy (DOE-FE) has awarded a three-year grant to the University of Texas at El Paso (UTEP) and Argonne National Laboratory (ANL) to jointly explore the high-temperature properties of alloys composed of niobium (Nb), tungsten (W), and chromium (Cr). The grant is administered by the Advanced Research (AR) program of the National

312

Mission Advancing  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Accomplishments NETL Accomplishments - the lab 2 Mission Advancing energy options to fuel our economy, strengthen our security, and improve our environment. Renewed Prosperity Through Technological Innovation - Letter from the Director NETL: the ENERGY lab 4 6 3 Contents Technology Transfer Patents and Commercialization Sharing Our Expertise Noteworthy Publications 60 62 63 64 66 Environment, Economy, & Supply Carbon Capture and Storage Partnerships Work to Reduce Atmospheric CO 2 Demand-Side Efficiencies New NETL Facility Showcases Green Technologies Environment & Economy Materials Mercury Membranes NETL Education Program Produces Significant Achievement Monitoring Water Economy & Supply NETL's Natural Gas Prediction Tool Aids Hurricane Recovery Energy Infrastructure

313

EMSL: Capabilities: Molecular Science Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Partners and Related Links Partners and Related Links These are the organizations with which EMSL maintains closest relationships in high performance computing and software development. Partners Note: The links below leave this site Argonne National Laboratory (ANL) National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory (LBNL) Daresbury Laboratory San Diego Supercomputer Center (SDSC) at UCSD Maui High Performance Computing Center (MHPCC) Intel Corporation Silicon Graphics, Inc. Hewlett-Packard Company (HP) Quadrics Ltd. Organizations SP-XXL SCICOMP Cray User Group (CUG) SC Conference Series - International Conference of High Performing Computing and Communications High Performance Computing Links Advanced Simulation and Computing at Lawrence Livermore National

314

University of Arizona Research Computing 2012  

E-Print Network (OSTI)

in High Performance Computing and High Throughput Computing (HPC/HTC) and storage will greatly advance, the new Research Data Center houses our next generation of High Performance Computing (HPC), High on interdisciplinary concepts and on collaborations with industry. Our reliance on high performance computing

Lega, Joceline

315

Run to the Hills! Ubiquitous Computing Meltdown  

Science Conference Proceedings (OSTI)

We have seen the future of ubiquitous computing, and it's gloomy. While the various technologies keep advancing at a breakneck pace, and half of human race are already carrying computing systems with them, the goal of transparently integrating all those ... Keywords: Calm Computing, Context Awareness, Interoperability, Overload, Privacy, Systems Design, Ubiquitous Computing, Usability

Pertti Huuskonen

2007-06-01T23:59:59.000Z

316

Modern Meteorological Computing Resourcesthe Maryland Experience  

Science Conference Proceedings (OSTI)

The Department of Meteorology at the University of Maryland is developing one of the first computer. systems in meteorology to take advantage of the new networked computer architecture that has been made possible by recent advances in computer ...

George J. Huffman

1988-07-01T23:59:59.000Z

317

Computational Science and Innovation  

SciTech Connect

Simulations - utilizing computers to solve complicated science and engineering problems - are a key ingredient of modern science. The U.S. Department of Energy (DOE) is a world leader in the development of high-performance computing (HPC), the development of applied math and algorithms that utilize the full potential of HPC platforms, and the application of computing to science and engineering problems. An interesting general question is whether the DOE can strategically utilize its capability in simulations to advance innovation more broadly. In this article, I will argue that this is certainly possible.

Dean, David Jarvis [ORNL

2011-01-01T23:59:59.000Z

318

Computational Science and Innovation  

E-Print Network (OSTI)

Simulations - utilizing computers to solve complicated science and engineering problems - are a key ingredient of modern science. The U.S. Department of Energy (DOE) is a world leader in the development of high-performance computing (HPC), the development of applied math and algorithms that utilize the full potential of HPC platforms, and the application of computing to science and engineering problems. An interesting general question is whether the DOE can strategically utilize its capability in simulations to advance innovation more broadly. In this article, I will argue that this is certainly possible.

Dean, D J

2010-01-01T23:59:59.000Z

319

Computational Science and Innovation  

E-Print Network (OSTI)

Simulations - utilizing computers to solve complicated science and engineering problems - are a key ingredient of modern science. The U.S. Department of Energy (DOE) is a world leader in the development of high-performance computing (HPC), the development of applied math and algorithms that utilize the full potential of HPC platforms, and the application of computing to science and engineering problems. An interesting general question is whether the DOE can strategically utilize its capability in simulations to advance innovation more broadly. In this article, I will argue that this is certainly possible.

D. J. Dean

2010-09-13T23:59:59.000Z

320

Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

05/2007 05/2007 NitrogeN evolutioN aNd CorrosioN MeChaNisMs With oxyCoMbustioN of Coal Description Under a grant from the University Coal Research (UCR) program, Brigham Young University (BYU) is leading a three-year research effort to investigate the physical processes that several common types of coal undergo during oxy-fuel combustion. Specifically, research addresses the mixture of gases emitted from burning, particularly such pollutants as nitrogen oxides (NO X ) and carbon dioxide (CO 2 ), and the potential for corrosion at the various stages of combustion. The UCR program is administered by the Advanced Research Program at the National Energy Technology Laboratory (NETL), under the U.S. Department of Energy's Office of

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced geothermal technologies  

DOE Green Energy (OSTI)

Research and development in advanced technologies for geothermal energy production continue to increase the energy production options for the Nation. The high-risk investment over the past few years by the US Department of Energy in geopressured, hot dry rock, and magma energy resources is producing new means to lower production costs and to take advantage of these resources. The Nation has far larger and more regionally extensive geothermal resources than heretofore realized. At the end of a short 30-day closed-loop flow test, the manmade hot dry rock reservoir at Fenton Hill, New Mexico, was producing 10 MW thermal - and still climbing - proving the technical feasibility of this new technology. The scientific feasibility of magma energy extraction has been demonstrated, and new field tests to evaluate this technology are planned. Analysis and field tests confirm the viability of geopressured-geothermal energy and the prospect that many dry-hole or depleted petroleum wells can be turned into producing geopressured-geothermal wells. Technological advances achieved through hot dry rock, magma, geopressured, and other geothermal research are making these resources and conventional hydrothermal resources more competitive. Noteworthy among these technological advances are techniques in computer simulation of geothermal reservoirs, new means for well stimulation, new high-temperature logging tools and packers, new hard-rock penetration techniques, and new methods for mapping fracture flow paths across large underground areas in reservoirs. In addition, many of these same technological advances can be applied by the petroleum industry to help lower production costs in domestic oil and gas fields. 5 refs., 4 figs.

Whetten, J.T.; Murphy, H.D.; Hanold, R.J.; Myers, C.W.; Dunn, J.C.

1988-01-01T23:59:59.000Z

322

Automated computation of scattering amplitudes  

E-Print Network (OSTI)

We review some of the recent advances in the computation of one-loop scattering amplitudes which led to the construction of efficient and automated computational tools for NLO predictions. Particular attention is devoted to unitarity-based methods and integrand-level reduction techniques. Extensions of one-loop integrand-level techniques to higher orders are also briefly illustrated.

Giovanni Ossola

2013-10-11T23:59:59.000Z

323

: Computer Aided Learning in Computer  

E-Print Network (OSTI)

CAL2 : Computer Aided Learning in Computer Architecture Laboratory JOVAN DJORDJEVIC,1 BOSKO NIKOLIC,1 TANJA BOROZAN,1 ALEKSANDAR MILENKOVIC´ 2 1 Computer Engineering Department, Faculty of Electrical Engineering, University of Belgrade, Belgrade, Serbia 2 Electrical and Computer Engineering Department

Milenkovi, Aleksandar

324

Advanced Materials Facilities & Capabilites | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Highlights Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Facilities and Capabilities ORNL has resources that together provide a unique environment for Advanced Materials Researchers. ORNL hosts two of the most advanced neutron research facilities in the world, the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). In addition, the Center for Nanophase Materials Sciences offers world-class capabilities and expertise for nanofabrication, scanning probe microscopy, chemical and laser synthesis, spectroscopy, and computational modeling and their. The ORNL

325

PNNL: Computational Sciences & Mathematics - Fundamental & Computational  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Contacts mathematical sciences, Computational Sciences & Mathematics We focus on merging high performance computing with data-centric analysis capabilities to solve significant problems in energy, the environment, and national security. PNNL has made scientific breakthroughs and advanced frontiers in high performance computer science, computational biology and bioinformatics, subsurface simulation modeling, and multiscale mathematics. Stream flowing through rocks with binary data on top Testing a Land Model's Water Cycle Simulation Skills Scientists at Pacific Northwest National Laboratory and Oak Ridge National Laboratory, exploring new research territory in a popular Earth system model, applied a computational technique to systematically evaluate the

326

News Releases | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

News & Awards News & Awards News Releases Honors & Awards News Features Advanced Materials Home | Science & Discovery | Advanced Materials | News & Awards | News Releases News Releases 1-7 of 7 Results ORNL devises recipe to fine-tune diameter of silica rods December 16, 2013 - OAK RIDGE, Tenn., Dec. 16, 2013 - By controlling the temperature of silica rods as they grow, researchers at the Department of Energy's Oak Ridge National Laboratory could be setting the stage for advances in anti-reflective solar cells, computer monitors, TV screens, eye glasses and more. ORNL's Bruce Pint elected 2014 NACE fellow December 13, 2013 - OAK RIDGE, Tenn., Dec. 13, 2013 - Bruce Pint, a research staff member at the Department of Energy's Oak Ridge National Laboratory, has been elected a 2014 National Association of Corrosion

327

NETL: Advanced Research - Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Materials > Chrome Oxide Refractory High Performance Materials > Chrome Oxide Refractory Advanced Research High Performance Materials Chrome Oxide Refractory One notable NETL success is the development of a chrome oxide refractory material capable of working in slagging gasifier conditions. In this project, researchers first determined that one of the major failure mechanisms for chrome oxide refractories exposed to the intense heat and corrosive environment was spalling, or the chipping or flaking of refractory material from an exposed face. They used this information to formulate a high-chrome oxide refractory composition that resists spalling, resulting in a refractory with a longer service life in the gasifier. Inside an ultrasupercritical (USC) pulverized coal power plant, materials are exposed to temperatures up to 760°C and pressures up to 5,000 psi. Operating a USC system can improve power plant efficiency up to 47% and reduce emissions. However, finding boiler and turbine materials that can hold up under extreme conditions requires new high-temperature metal alloys and ceramic coatings, as well as computational modeling research to optimize the processing of these materials. Advanced Research Materials Development program successes in this area include the following:

328

II.AdvancedTcl Advanced Tcl  

E-Print Network (OSTI)

119 P A R T II.AdvancedTcl II Advanced Tcl Part II describes advanced programming techniques that support sophisticated applications. The Tcl interfaces remain simple, so you can quickly construct pow- erful applications. Chapter 10 describes eval, which lets you create Tcl programs on the fly

Chen, Yuanzhu Peter

329

IEEE Computer Society: http://computer.org Computer: http://computer.org/computer  

E-Print Network (OSTI)

IEEE Computer Society: http://computer.org Computer: http://computer.org/computer computer@computer.org IEEE Computer Society Publications Office: +1 714 821 8380 COVER FEATURES GUEST EDITOR'S INTRODUCTION 28 Computational Photography--The Next Big Step Oliver Bimber Computational photography extends

Stanford University

330

Computer Rekonstruktion  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Rekonstruktion Von jedem Kollisionsereignis registriert der Detektor Millionen von Datenpunkten. Daher ist es ntig, dass ein Computer diese Datenmenge verarbeitet: die...

331

National Energy Research Scientific Computing Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Computing Center Scientific Computing Center 2004 annual report Cover image: Visualization based on a simulation of the density of a fuel pellet after it is injected into a tokamak fusion reactor. See page 40 for more information. National Energy Research Scientific Computing Center 2004 annual report Ernest Orlando Lawrence Berkeley National Laboratory * University of California * Berkeley, California 94720 This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research of the U.S. Department of Energy under Contract No. DE-AC 03-76SF00098. LBNL-57369, April 2005 ii iii The Year in Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Advances in Computational Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

332

Alternative and Advanced Fuels  

Energy.gov (U.S. Department of Energy (DOE))

There are a variety of alternative and advanced fuels available, which are used to fuel alternative and advanced vehicles. Learn more about:

333

Help - Advanced Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Search The advanced search form will help you create a more specific search in the Publications database. First, specify your search criteria. You can search by author,...

334

Computer supported collaborative design: Retrospective and perspective  

Science Conference Proceedings (OSTI)

Industry today requires new technologies to address increasingly complex product development and the high expectations of customers. Computer Supported Collaborative Design (CSCD) emerged in response to this requirement. With the rapid advancement of ... Keywords: Agents, Collaborative engineering, Computer supported collaborative design, Computer supported cooperative work, Concurrent engineering

Weiming Shen; Qi Hao; Weidong Li

2008-12-01T23:59:59.000Z

335

DOE Supercomputing Resources Available for Advancing Scientific  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputing Resources Available for Advancing Scientific Supercomputing Resources Available for Advancing Scientific Breakthroughs DOE Supercomputing Resources Available for Advancing Scientific Breakthroughs April 15, 2009 - 12:00am Addthis Washington, DC - The U.S. Department of Energy (DOE) announced today it is accepting proposals for a program to support high-impact scientific advances through the use of some of the world's most powerful supercomputers located at DOE national laboratories. Approximately 1.3 billion supercomputer processor-hours will be awarded in 2010 through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program for large-scale, computationally intensive projects addressing some of the toughest challenges in science and engineering. Researchers are currently using supercomputing time under this year's

336

Computer Forensics  

Science Conference Proceedings (OSTI)

Computer Forensics. National Software Reference Library (NSRL) -- The National Software Reference Library (NSRL) is ...

2010-10-05T23:59:59.000Z

337

Advanced Materials in MML  

Science Conference Proceedings (OSTI)

... Advanced Materials Characterization. Fusion Wall Development Research by Neutron Depth Profiling. < Previous 1 2 3 Next . ...

2012-06-12T23:59:59.000Z

338

Soft Molecular Computing Computer Science  

E-Print Network (OSTI)

Soft Molecular Computing Max Garzon Computer Science The University of Memphis Memphis, TN 38152@memphis.edu Abstract Molecular computing (MC) utilizes the complex interaction of biomolecules and molecular biology for computational purposes. Five years later, substantial obstacles remain to bring the potential of molecular

Deaton, Russell J.

339

Computing and Electronics Computer Technology  

E-Print Network (OSTI)

Computing and Electronics Technology Computer Technology NetworkManagementoption InformationSystemsManagementoption Computer System Technician Electronics Technology Energy Technology ace.cte.umt.edu www.cte.umt.edu Department of Applied Computing and Electronics Chair: Tom Gallagher Phone: 406.243.7814 Email: Thomas

Crone, Elizabeth

340

National Energy Research Scientific Computing Center (NERSC) | U.S. DOE  

Office of Science (SC) Website

National National Energy Research Scientific Computing Center (NERSC) Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Accessing ASCR Supercomputers Oak Ridge Leadership Computing Facility (OLCF) Argonne Leadership Computing Facility (ALCF) National Energy Research Scientific Computing Center (NERSC) Energy Sciences Network (ESnet) Research & Evaluation Prototypes (REP) Innovative & Novel Computational Impact on Theory and Experiment (INCITE) ASCR Leadership Computing Challenge (ALCC) Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301)

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Argonne Leadership Computing Facility (ALCF) | U.S. DOE Office of Science  

Office of Science (SC) Website

Argonne Argonne Leadership Computing Facility (ALCF) Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Accessing ASCR Supercomputers Oak Ridge Leadership Computing Facility (OLCF) Argonne Leadership Computing Facility (ALCF) National Energy Research Scientific Computing Center (NERSC) Energy Sciences Network (ESnet) Research & Evaluation Prototypes (REP) Innovative & Novel Computational Impact on Theory and Experiment (INCITE) ASCR Leadership Computing Challenge (ALCC) Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301)

342

ASCR Leadership Computing Challenge (ALCC) | U.S. DOE Office of Science  

Office of Science (SC) Website

ASCR ASCR Leadership Computing Challenge (ALCC) Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Accessing ASCR Supercomputers Oak Ridge Leadership Computing Facility (OLCF) Argonne Leadership Computing Facility (ALCF) National Energy Research Scientific Computing Center (NERSC) Energy Sciences Network (ESnet) Research & Evaluation Prototypes (REP) Innovative & Novel Computational Impact on Theory and Experiment (INCITE) ASCR Leadership Computing Challenge (ALCC) ALCC Application Details ALCC Past Awards Frequently Asked Questions Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy

343

Trace-Penalty Minimization for Large-scale Eigenspace Computation  

E-Print Network (OSTI)

Mar 6, 2013 ... U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research (and Basic Energy Sciences) under award number...

344

High Performance Computing Systems Integration, HPC-5: HPC: LANL...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fax: 664-0172 MS B272 Latest in cluster technologies New technology in High Performance Computing and Simulation HPC-5 provides advanced research, development, testing, and...

345

Five-Laboratory Conference on Computational Mathematics - 2005...  

National Nuclear Security Administration (NNSA)

Vienna, Austria Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

346

Development of Medical Simulation Computer Models: Medical Ice...  

NLE Websites -- All DOE Office Websites (Extended Search)

Application in Advanced Laparoscopic Procedures Application in Emergency Response Current Research on Medical Slurry Cooling Development of Medical Simulation Computer Models...

347

High Performance Computing Innovation Center marks second anniversary  

NLE Websites -- All DOE Office Websites (Extended Search)

utilized HPC modeling and simulation to develop technologies that increase semi-truck fuel efficiency by at least 17 percent. The advanced computing technique used in this...

348

Large Scale Computing and Storage Requirements for Biological...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sponsored by: U.S. Department of Energy Office of Science Office of Advanced Scientific Computing Research (ASCR) Office of Biological and Environmental Research (BER) National...

349

NERSC seeks Computational Systems Group Lead  

NLE Websites -- All DOE Office Websites (Extended Search)

seeks Computational Systems Group Lead seeks Computational Systems Group Lead NERSC seeks Computational Systems Group Lead January 6, 2011 by Katie Antypas Note: This position is now closed. The Computational Systems Group provides production support and advanced development for the supercomputer systems at NERSC. Manage the Computational Systems Group (CSG) which provides production support and advanced development for the supercomputer systems at NERSC (National Energy Research Scientific Computing Center). These systems, which include the second fastest supercomputer in the U.S., provide 24x7 computational services for open (unclassified) science to world-wide researchers supported by DOE's Office of Science. Duties/Responsibilities Manage the Computational Systems Group's staff of approximately 10

350

Compiler-based Memory Optimizations for High Performance Computing Systems.  

E-Print Network (OSTI)

??Parallelism has always been the primary method to achieve higher performance. To advance the computational capabilities of state-of-the-art high performance computing systems, we continue to (more)

Kultursay, Emre

2013-01-01T23:59:59.000Z

351

UTILITY OF MECHANISTIC MODELS FOR DIRECTING ADVANCED SEPARATIONS RESEARCH & DEVELOPMENT ACTIVITIES: Electrochemically Modulated Separation Example  

SciTech Connect

The objective for this work was to demonstrate the utility of mechanistic computer models designed to simulate actinide behavior for use in efficiently and effectively directing advanced laboratory R&D activities associated with developing advanced separations methods.

Schwantes, Jon M.

2009-06-01T23:59:59.000Z

352

Nanoscale Heat Transfer: from Computation to Experiment  

E-Print Network (OSTI)

Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement in computational and experimental techniques has enabled a large number of interesting observations and understanding of heat transfer processes at the nanoscale. In this review, we will first discuss recent advances in computational and experimental methods used in nanoscale thermal transport studies, followed by reviews of novel thermal transport phenomena at the nanoscale observed in both computational and experimental studies, and discussion on current understanding of these novel phenomena. Our perspectives on challenges and opportunities on computational and experimental methods are also presented.

Luo, Tengfei

2013-01-01T23:59:59.000Z

353

Spatial computation  

Science Conference Proceedings (OSTI)

This paper describes a computer architecture, Spatial Computation (SC), which is based on the translation of high-level language programs directly into hardware structures. SC program implementations are completely distributed, with no centralized ... Keywords: application-specific hardware, dataflow machine, low-power, spatial computation

Mihai Budiu; Girish Venkataramani; Tiberiu Chelcea; Seth Copen Goldstein

2004-12-01T23:59:59.000Z

354

Light Computing  

E-Print Network (OSTI)

A configuration of light pulses is generated, together with emitters and receptors, that allows computing. The computing is extraordinarily high in number of flops per second, exceeding the capability of a quantum computer for a given size and coherence region. The emitters and receptors are based on the quantum diode, which can emit and detect individual photons with high accuracy.

Gordon Chalmers

2006-10-13T23:59:59.000Z

355

Unsolicited Projects in 2011: Research in Execution Models | U.S. DOE  

Office of Science (SC) Website

1: Research in Execution Models 1: Research in Execution Models Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information »

356

Programming Challenges Workshop | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Programming Challenges Workshop Programming Challenges Workshop Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information »

357

Challenges to be Addressed | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Challenges to be Addressed Challenges to be Addressed Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information »

358

Performance Analysis Tools Working Session | U.S. DOE Office of Science  

Office of Science (SC) Website

Performance Analysis Tools Working Performance Analysis Tools Working Session Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information »

359

ASCR SBIR-STTR | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

ASCR ASCR SBIR-STTR Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » Research ASCR SBIR-STTR Print Text Size: A A A RSS Feeds FeedbackShare Page DOE SBIR-STTR Web Page ASCR Program Manager Rich Carlson

360

Applied Mathematics | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Applied Applied Mathematics Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Applied Mathematics Conferences And Workshops Computer Science Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » Research Applied Mathematics Print Text Size: A A A RSS Feeds FeedbackShare Page

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Cross-cutting Issues Working Session | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Cross-cutting Issues Working Session Cross-cutting Issues Working Session Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information »

362

ASCR X-Stack Portfolio | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

ASCR X-Stack Portfolio ASCR X-Stack Portfolio Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information »

363

Exascale Tools Workshop Presentations | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Exascale Tools Workshop Presentations Exascale Tools Workshop Presentations Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information »

364

X-Stack Software Research | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

X-Stack Software Research X-Stack Software Research Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information »

365

2012 Scientific Collaborations at Extreme-Scale | U.S. DOE Office of  

Office of Science (SC) Website

Next Next Generation Networking » 2012 Scientific Collaborations at Extreme-Scale Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Next Generation Networking 2012 Scientific Collaborations at Extreme-Scale Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » Next Generation Networking

366

Exascale Tools Workshop | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Exascale Tools Workshop Exascale Tools Workshop Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information »

367

Debugging and Correctness Tools Working Session | U.S. DOE Office of  

Office of Science (SC) Website

Debugging and Correctness Tools Debugging and Correctness Tools Working Session Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information »

368

Programming Challenges Abstracts | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Programming Challenges Programming Challenges Abstracts and Biographies Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information »

369

Computer Science Research: Computation Directorate  

Science Conference Proceedings (OSTI)

This report contains short papers in the following areas: large-scale scientific computation; parallel computing; general-purpose numerical algorithms; distributed operating systems and networks; knowledge-based systems; and technology information systems.

Durst, M.J. (ed.); Grupe, K.F. (ed.)

1988-01-01T23:59:59.000Z

370

Computation Directorate 2008 Annual Report  

SciTech Connect

Whether a computer is simulating the aging and performance of a nuclear weapon, the folding of a protein, or the probability of rainfall over a particular mountain range, the necessary calculations can be enormous. Our computers help researchers answer these and other complex problems, and each new generation of system hardware and software widens the realm of possibilities. Building on Livermore's historical excellence and leadership in high-performance computing, Computation added more than 331 trillion floating-point operations per second (teraFLOPS) of power to LLNL's computer room floors in 2008. In addition, Livermore's next big supercomputer, Sequoia, advanced ever closer to its 2011-2012 delivery date, as architecture plans and the procurement contract were finalized. Hyperion, an advanced technology cluster test bed that teams Livermore with 10 industry leaders, made a big splash when it was announced during Michael Dell's keynote speech at the 2008 Supercomputing Conference. The Wall Street Journal touted Hyperion as a 'bright spot amid turmoil' in the computer industry. Computation continues to measure and improve the costs of operating LLNL's high-performance computing systems by moving hardware support in-house, by measuring causes of outages to apply resources asymmetrically, and by automating most of the account and access authorization and management processes. These improvements enable more dollars to go toward fielding the best supercomputers for science, while operating them at less cost and greater responsiveness to the customers.

Crawford, D L

2009-03-25T23:59:59.000Z

371

Oak Ridge Leadership Computing Facility (OLCF) | U.S. DOE Office of Science  

Office of Science (SC) Website

Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Accessing ASCR Supercomputers Oak Ridge Leadership Computing Facility (OLCF) Argonne Leadership Computing Facility (ALCF) National Energy Research Scientific Computing Center (NERSC) Energy Sciences Network (ESnet) Research & Evaluation Prototypes (REP) Innovative & Novel Computational Impact on Theory and Experiment (INCITE) ASCR Leadership Computing Challenge (ALCC) Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301)

372

Nuclear fusion advances  

Science Conference Proceedings (OSTI)

The last decade has seen advances in the shaping and confinement of plasmas, and in approaches to noninductive current drive. Here, the author presents an overview of nuclear fusion advances between 1983-93 examining: fusion milestones; plasma shaping; ...

W. Sweet

1994-02-01T23:59:59.000Z

373

AdvAnced  

NLE Websites -- All DOE Office Websites (Extended Search)

AdvAnced test reActor At the InL advanced Unlike large, commercial power reactors, ATR is a low- temperature, low-pressure reactor. A nuclear reactor is basically an elaborate tool...

374

Advanced Routing Worm and Its Security Challenges  

Science Conference Proceedings (OSTI)

Most well-known worms, such as Code Red, Slammer, Blaster, and Sasser, infected vulnerable computers by scanning the entire IPv4 address space. In this article, the authors present an advanced worm called the "routing worm," which implements two new ... Keywords: Network security, modeling, routing worm

Cliff C. Zou; Don Towsley; Weibo Gong; Songlin Cai

2006-01-01T23:59:59.000Z

375

Integrating High Performance Computing and Virtual Environments  

E-Print Network (OSTI)

High performance computing has become accepted as a tool that can be used to solve many large scale computational problems. Because of the complexity of the problems associated with high performance computing, visualization of the output of high performance computing applications has always been an important factor in providing a complete problem solving environment for the high performance computing user. As visualization technology advances, it is important to consider what impacts those advances will have on the integration of high performance computing and visualization. Virtual environments are the most recent, and arguably the most powerful, visualization environments in use today. In this paper we analyze the current state of the research of integrating visualization, and in particular virtual environments, with high performance computing. We also present a framework for implementing such an environment and report on the status of its implementation at the Australian National Un...

Brian Corrie; David Sitsky; Paul Mackerras

1997-01-01T23:59:59.000Z

376

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

advanced spectrally selective low-e double-pane windows and the same type of daylighting control system

2006-01-01T23:59:59.000Z

377

Advanced High Frequency Devices  

Science Conference Proceedings (OSTI)

... External agencies, including the Defense Advanced Research Projects Agency (DARPA) and the Office of Naval Research (ONR), have ...

2010-10-05T23:59:59.000Z

378

ADVANCED DATA SECURITY  

Science Conference Proceedings (OSTI)

ADVANCED DATA SECURITY. NVLAP Lab Code: 200968-0. Address and Contact Information: 1933 O'Toole Avenue San ...

2013-11-08T23:59:59.000Z

379

Fatigue of Advanced Materials  

Science Conference Proceedings (OSTI)

Oct 19, 2011... isolate the internal components from the external environment while ... overall thermal efficiency of advanced internal combustion engines...

380

Supporting Advanced Communications Networks  

Science Conference Proceedings (OSTI)

... it will rely on revolutionary advances in network architecture. ... telemedicine), sensor and control networks (eg, Smart Grid, environmental monitoring ...

2012-02-13T23:59:59.000Z

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF DOMESTIC AND FOREIGN...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AGREEMENT DE-AI01-05NA26054, WITH DEFENSE ADVANCED RESEARCH PROJECTS AGENCY (DARPA) UNDER THE DARPA HIGH PRODUCTIVITY COMPUTING SYSTEMS PROGRAM - W(A)-07-007, CH-1396...

382

Advanced Process Engineering Co-simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 AdvAnced Process engineering co-simulAtion Description The National Energy Technology Laboratory (NETL) and its R&D collaboration partners are developing the Advanced Process Engineering Co-Simulator (APECS) as an innovative software tool that combines process simulation with high-fidelity equipment models based on computational fluid dynamics (CFD). Winner of a 2004 R&D 100 Award and a 2007 Federal Laboratory Consortium (FLC) Excellence in Technology Transfer Award, this powerful co-simulation technology, for the first time, provides the necessary level of detail and accuracy essential for engineers to analyze and optimize the coupled fluid flow, heat and mass transfer, and chemical reactions that drive overall plant performance. Combined with advanced visualization and high-performance computing,

383

A DYNAMICALLY CONFIGURABLE ENVIRONMENT FOR HIGH Performance Computing  

E-Print Network (OSTI)

Current tools available for high performance computing require that all the computing nodes used in a parallel execution be known in advance: the execution environment must know where the different "chunks" of programs will be executed, and each computer involved in the execution must be properly configured. In this paper, we describe how the ) environment may be used to dynamically locate available computers to perform such computations and how these computers are dynamically configured.

Nabil Abdennadher; Gilbert Babin; Peter Kropf; Gilbert Babin ; Peter Kropf ; Pierre Kuonen

2000-01-01T23:59:59.000Z

384

Legends in Computing Anita Jones  

E-Print Network (OSTI)

Machinery (ACM) American Association for the Advancement of Science IEEE Author of two books and more than 40 papers U.S. Air Force Meritorious Civilian Service Award Distinguished Public Service Award tabulate 7th degree polynomials #12;Legends in Computing Tracy Camp Co-chair of ACM's Committee on Women

Xuan, Dong

385

6.854J / 18.415J Advanced Algorithms, Fall 2001  

E-Print Network (OSTI)

A first-year graduate course in algorithms. Emphasizes fundamental algorithms and advanced methods of algorithmic design, analysis, and implementation. Data structures. Network flows. Linear programming. Computational ...

Goemans, Michel

386

The Computation Directorate at Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

The Computation Directorate at Lawrence Livermore National Laboratory has four major areas of work: (1) Programmatic Support -- Programs are areas which receive funding to develop solutions to problems or advance basic science in their areas (Stockpile Stewardship, Homeland Security, the Human Genome project). Computer scientists are 'matrixed' to these programs to provide computer science support. (2) Livermore Computer Center (LCC) -- Development, support and advanced planning for the large, massively parallel computers, networks and storage facilities used throughout the laboratory. (3) Research -- Computer scientists research advanced solutions for programmatic work and for external contracts and research new HPC hardware solutions. (4) Infrastructure -- Support for thousands of desktop computers and numerous LANs, labwide unclassified networks, computer security, computer-use policy.

Cook, L

2006-09-07T23:59:59.000Z

387

Session: CSP Advanced Systems -- Advanced Overview (Presentation)  

DOE Green Energy (OSTI)

The project description is: (1) it supports crosscutting activities, e.g. advanced optical materials, that aren't tied to a single CSP technology and (2) it supports the 'incubation' of new concepts in preliminary stages of investigation.

Mehos, M.

2008-04-01T23:59:59.000Z

388

Advanced Manufacturing Office: Better Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Plants on Twitter Bookmark Advanced Manufacturing Office: Better Plants on Google Bookmark Advanced Manufacturing Office: Better Plants on Delicious Rank Advanced...

389

Advanced Manufacturing Office: Pump Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Pump Systems on Twitter Bookmark Advanced Manufacturing Office: Pump Systems on Google Bookmark Advanced Manufacturing Office: Pump Systems on Delicious Rank Advanced...

390

Continuing Progress on a Lattice QCD Software Infrastructure  

E-Print Network (OSTI)

We report on the progress of the software effort in the QCD Application Area of SciDAC. In particular, we discuss how the software developed under SciDAC enabled the aggressive exploitation of leadership computers, and we report on progress in the area of QCD software for multi-core architectures.

Balint Joo; for the USQCD Collaboration

2008-06-13T23:59:59.000Z

391

NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEAMS: The Nuclear Energy Advanced NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program is developing a simulation tool kit using leading-edge computational methods that will accelerate the development and deployment of nuclear power technologies that employ enhanced safety and security features, produce power more cost-effectively, and utilize natural resources more efficiently. The NEAMS ToolKit

392

Throughput-competitive advance reservation with bounded path dispersion  

Science Conference Proceedings (OSTI)

In response to the high throughput needs of grid and cloud computing applications, several production networks have recently started to support advance reservation of dedicated circuits. An important open problem within this context is to devise advance ... Keywords: approximation algorithms, high-speed networks, routing, scheduling

Reuven Cohen; Niloofar Fazlollahi; David Starobinski

2011-10-01T23:59:59.000Z

393

Computational Chemistry  

Science Conference Proceedings (OSTI)

... and numerical tools to quantify uncertainties for computational quantum chemistry. ... Results appear in the issue of The Journal of Chemical Physics. ...

2010-10-05T23:59:59.000Z

394

Computer Science  

NLE Websites -- All DOE Office Websites (Extended Search)

in Physics, Mathematics, Computer Science, Quantitative Biology, Quantitative Finance and Statistics Cite Seer Department of Energy provided open access science research citations...

395

Center for Simulation of Advanced Rockets (CSAR): Gallery of Images from Advanced Rockets Simulations  

DOE Data Explorer (OSTI)

The Center for Simulation of Advanced Rockets (CSAR) is one of five university-based Centers of Excellence founded in 1997 and funded by the U.S. Department of Energy's Advanced Simulation and Computing program, whose objective is to enable accurate prediction of the performance, reliability, and safety of complex physical systems through computational simulation. CSAR's mission is to achieve this goal in the specific context of solid propellant rockets, which are of vital importance to the space launch industry. A particular focus for CSAR is on the reusable solid rocket motor (RSRM) that powers the U.S. Space Shuttle.

396

Teaching the art of computer programming (TAOCP)  

Science Conference Proceedings (OSTI)

Donald Knuth's magnum opus, The Art of Computer Programming (TAOCP), is often bought, frequently cited, sometimes browsed, occasionally read, but almost never used for teaching. The purpose of this paper is to describe the author's experience ... Keywords: Donald E. Knuth, advanced undergraduate, graduate student classes, the art of computer programming

Frank Ruskey

2011-05-01T23:59:59.000Z

397

Storage Hierarchy Management for Scientific Computing  

E-Print Network (OSTI)

of the driving forces behind the design of computer systems. As a result, many advances in CPU architecture were-terabyte tertiary storage system attached to a high- speed computer. The analysis finds that the number of files instead of the two separate views of the system studied. This finding was a major motivation of the design

Miller, Ethan L.

398

Storage Hierarchy Management for Scientific Computing  

E-Print Network (OSTI)

the design of com- puter systems. As a result, many advances in CPU architecture were first developed for high-speed supercomputer systems, keeping them among the fastest computers in the world. However system attached to a high-speed computer. The analysis finds that the number of files and average file

Miller, Ethan L.

399

Quantum Statistical Mechanics and Quantum Computation  

E-Print Network (OSTI)

Quantum Statistical Mechanics and Quantum Computation 22-23 March 2012 Room 111, Jadwin Hall, focused meeting to explore the intersection between quantum statistical mechanics and quantum computation, specifically quantum complexity theory. Advances in complexity theory have interesting implications for physics

400

Cyber Security | National Security | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

National Security Home | Science & Discovery | National Security | Initiatives | Cyber Security SHARE Cyber Security Through Science A Science-Based Approach image ORNL uses a science-based approach that combines experimentation, theory, modeling, and high performance computing to solve some of the nation's cyber security grand challenges. Significant, 'game-changing' transformation requires a science-based approach that combines fundamental understanding with experimentation, theory, and modeling. The most successful scientific programs use peer review to maximize intellectual capital and prioritize research needs. The Department of Energy has applied this approach through programs such as the Scientific Discovery through Advanced Computing (SciDAC) and ASCI,

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Quantum computing  

E-Print Network (OSTI)

This article gives an elementary introduction to quantum computing. It is a draft for a book chapter of the "Handbook of Nature-Inspired and Innovative Computing", Eds. A. Zomaya, G.J. Milburn, J. Dongarra, D. Bader, R. Brent, M. Eshaghian-Wilner, F. Seredynski (Springer, Berlin Heidelberg New York, 2006).

J. Eisert; M. M. Wolf

2004-01-05T23:59:59.000Z

402

for the Support of High Performance Computing  

E-Print Network (OSTI)

Architecture for the Support of High Performance Computing was sponsored by the National Science Foundation to identify critical research topics in computer architecture as they relate to high performance computing. Following a wide-ranging discus-sion of the computational characteristics and requirements of the grand challenge applications, the workshop identified four major computer architecture grand challenges as crucial to advancing the state of the art of high performance computation in the coming decade. These are: (1) idealized parallel computer models; (2) usable peta-ops (1015 ops) performance; (3) computers in an era of HDTV, gigabyte networks, and visualization; and (4) infrastruc-ture for prototyping architectures. This report overviews some of the demands of the grand challenge applications and presents the above four grand challenges for computer architecture. Q MZ AM-demic Press, Inc. A. Origin of the Workshop

Howard Jay Siegel; Seth Abraham; William L. Bain; Kenneth E. Batcher; Thomas L. Casavant; Doug Degroot; Jack B. Dennis; David C. Douglas; Tse-yun Feng; James R. Goodman; Alan Huang; Harry F. Jordan; J. Robertjump; Yalen. Patt; I Alan; Jay Smith; James E. Smith; Lawrence Snyder; I~harold S. Stone; Russ Tuck; Benjamin W. Wah

1992-01-01T23:59:59.000Z

403

Advanced Manufacturing Office: Technical Assistance  

NLE Websites -- All DOE Office Websites (Extended Search)

Assistance on Twitter Bookmark Advanced Manufacturing Office: Technical Assistance on Google Bookmark Advanced Manufacturing Office: Technical Assistance on Delicious Rank...

404

Advanced Manufacturing Office: Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Advanced Manufacturing Office: Financial Opportunities on Google Bookmark Advanced Manufacturing Office: Financial Opportunities on Delicious Rank...

405

National Energ y Research Scientific Computing Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Report Annual Report This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research of the U.S. Department of Energy under Contract No. DE-AC 03-76SF00098. LBNL-49186, December 2001 National Energ y Research Scientific Computing Center 2001 Annual Report NERSC aspires to be a world leader in accelerating scientific discovery through computation. Our vision is to provide high- performance computing tools to tackle science's biggest and most challenging problems, and to play a major role in advancing large- scale computational science and computing technology. The result will be a rate of scientific progress previously unknown. NERSC's mission is to accelerate the pace of scientific discovery in the Department of Energy Office

406

Elsevier Editorial System(tm) for Computer Vision and Image Understanding Manuscript Draft Manuscript Number: Title: Terrain Modelling from lidar range data in natural landscapes: a predictive and Bayesian framework Article Type: Special Issue: New Advanc  

E-Print Network (OSTI)

Abstract: The Earth's topography, including vegetation and human-made features, reduced to a virtual 3D representation is a key geographic layer for any extended development or risk management project. Processed from multiple aerial images, or from airborne lidar systems, the 3D topography is first represented as a point cloud. This article deals with the generation of Digital Terrain Models in natural landscapes. We present a global methodology for estimating the terrain height by deriving a predictive filter paradigm. Under the assumption that the terrain topography (elevation and slope) is regular in a neighbouring system, a predictive filter combines linearly the predicted topographic values and the effective measured values. In this paper, it is applied to 3D lidar data which are known to be of high altimetric accuracy. The algorithm generates an adaptive local geometry wherein the altimetric distribution of the point cloud is analysed. Since local terrain elevations depend on the local slope, a predictive filter is first applied on the slopes then on the terrain elevations. The algorithm propagates through the point cloud following specific rules in order to optimize the probability of computing areas containing terrain points. Considered as an initial surface, theprevious DTM is finally regularized in a Bayesian framework. Our approach is based on the definition of an energy function that manages the evolution of a terrain surface. The energy is designed as a compromise between a data attraction term and a regularization term. The minimum of this energy corresponds to the

unknown authors

2008-01-01T23:59:59.000Z

407

A Review of Nuclear Computational Information  

SciTech Connect

The Radiation Safety Information Computational Center (RSICC) and the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency Data Bank (NEADB) work together to acquire sets of computer codes, nuclear data, and integral experiments relevant to shielding and dosimetry applications for fission, fusion, and accelerator applications. To keep up with advances in computing technology, international researchers continue to develop nuclear software. Collection centers like RSICC and NEADB serve the community and play a role in advancing nuclear science and technology research.

Kirk, Bernadette Lugue [ORNL

2010-01-01T23:59:59.000Z

408

Computer Science Sample Occupations  

E-Print Network (OSTI)

Computer Science Sample Occupations COMPUTER OPERATIONS Computer Hardware/ Software Engineer Computer Operator Database Manager/ Administrator Data Entry Operator Operations Manager DESIGN & MANUFACTURING, ENGINEERING Coder CAD Computer Applications Engineers Computer Research Scientist Computer

Ronquist, Fredrik

409

Chromatin Computation  

E-Print Network (OSTI)

In living cells, DNA is packaged along with protein and RNA into chromatin. Chemical modifications to nucleotides and histone proteins are added, removed and recognized by multi-functional molecular complexes. Here I define a new computational model, in which chromatin modifications are information units that can be written onto a one-dimensional string of nucleosomes, analogous to the symbols written onto cells of a Turing machine tape, and chromatin-modifying complexes are modeled as read-write rules that operate on a finite set of adjacent nucleosomes. I illustrate the use of this chromatin computer to solve an instance of the Hamiltonian path problem. I prove that chromatin computers are computationally universal and therefore more powerful than the logic circuits often used to model transcription factor control of gene expression. Features of biological chromatin provide a rich instruction set for efficient computation of nontrivial algorithms in biological time scales. Modeling chromatin as a computer shifts how we think about chromatin function, suggests new approaches to medical intervention, and lays the groundwork for the engineering of a new class of biological computing machines.

Barbara Bryant

2012-01-01T23:59:59.000Z

410

Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Directionally Solidified Materials Using high-temperature optical floating zone furnace to produce monocrystalline molybdenum alloy micro-pillars Home | Science & Discovery | Advanced Materials Advanced Materials | Advanced Materials SHARE ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of advanced materials for energy generation, storage, and use. We have core strengths in three main areas: materials synthesis, characterization, and theory. In other words, we discover and make new materials, we study their structure,

411

Advanced Concepts Breakout Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop Workshop Advanced Concepts Working Group Facilitator: John J. Petrovic Scribe: Sherry Marin Advanced Storage Techniques/ Approaches in Priority Order 1. Crystalline Nanoporous Materials (15) 2. Polymer Microspheres (12) Self-Assembled Nanocomposites (12) 3. Advanced Hydrides (11) Metals - Organic (11) 4. BN Nanotubes (5) Hydrogenated Amorphous Carbon (5) 5. Mesoporous materials (4) Bulk Amorphous Materials (BAMs) (4) 6. Iron Hydrolysis (3) 7. Nanosize powders (2) 8. Metallic Hydrogen (1) Hydride Alcoholysis (1) Overarching R&D Questions for All Advanced Materials * Maximum storage capacity - theoretical model * Energy balance / life cycle analysis * Hydrogen absorption / desorption kinetics * Preliminary cost analysis - potential for low cost, high

412

Institute for Advanced Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Institute for Advanced Studies Institute for Advanced Studies Institute for Advanced Studies NMC leverages the strengths of three research universities to build joint programs, develop strategic partnerships, provide common organization and facilities. Contact Leader TBD LANL Program Administrator Pam Hundley (505) 663-5453 Email Building regional partnerships in education, leveraging strengths of three research universities The Institute for Advanced Studies (IAS) works with the three New Mexico research universities (University of New Mexico, New Mexico Tech, and New Mexico State University) to develop research and educational collaborations and partnerships. To facilitate interactions between the universities and LANL, the three New Mexico schools established the New Mexico Consortium (NMC), a nonprofit

413

Advancement in Battery Materials  

Science Conference Proceedings (OSTI)

Oct 18, 2010 ... Advanced Electrochemical Storage for Renewable Integration and Utility Applications: Zhenguo "Gary" Yang1; Dawon Choi1; Gordon Graff1;...

414

Advanced Research Materials Program  

NLE Websites -- All DOE Office Websites (Extended Search)

materials requirements for all fossil energy systems, including materials for advanced power generation and coal fuels technologies. Examples of these technologies include coal...

415

advance meeting brochure  

Science Conference Proceedings (OSTI)

May 23, 1999 ... Ponte Vedra Beach, Florida, USA. ADVANCE PROGRAM ..... but she has two enclosed glass-sided decks, an out- side balcony and the...

416

Brochures | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Podcasts Image Gallery external site Video Library Syndicated Feeds (RSS) The Advanced Photon Source: Lighting the Way to a Better Tomorrow aps brochure The APS helps...

417

Divisions | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Chart Argonne Research Divisions APS Research Divisions In May 2002, The Advanced Photon Source was reorganized into three divisions: the Accelerator Systems Division...

418

Project: Advanced Fire Detection  

Science Conference Proceedings (OSTI)

... residential fire deaths through development of measurement ... Beyond advances in sensing technologies, a key ... data will be used to develop and test ...

2013-05-30T23:59:59.000Z

419

OpenADR Advances  

NLE Websites -- All DOE Office Websites (Extended Search)

Volume 54 Issue 11 Date Published 112012 Keywords communication and standards, openadr, smart grid Abstract An important goal for the advancement of smart grid deployments is to...

420

DOE Advanced Protection Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Task 3 - Advanced Protection - Evaluate measures - 2009 - Design, model Irvine Smart Grid Demo protection system - 2010 6 Copyright 2010, Southern California Edison Task 1 -...

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF THE GOVERNMENT'S  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ADVANCE WAIVER OF THE GOVERNMENT'S ADVANCE WAIVER OF THE GOVERNMENT'S U.S. AND FOREIGN PATENT RIGHTS IN INVENTIONS MADE BY THE INTERNATIONAL BUSINESS MACHINES CORPORATION IN THE PERFORMANCE OF LLNL'S SUBCONTRACT NO. 8517552 UNDER DOE'S ACCELERATED STRATEGIC COMPUTING INITIATIVE DOE WAIVER NO. W(A)-01-018, (SAN 688) The Petitioner, the T.J. Watson Research Center of International Business Machines (IBM) Corporation, has submitted a petition for an advance waiver of the Government's domestic and foreign rights to inventions made during performance of the above cited Subcontract. Background: DOE's Office of Integrated Computer Systems DP-142, has provided the NNSA's Tri-Laboratory community of Sandia, Lawrence Livermore and Los Alamos National Laboratories funding for the Advanced Simulation and Computing (ASCI)

422

Computing compliance  

Science Conference Proceedings (OSTI)

Inquisitive semantics (cf. Groenendijk, 2008) provides a formal framework for reasoning about information exchange. The central logical notion that the semantics gives rise to is compliance. This paper presents an algorithm that computes the set of compliant ...

Ivano Ciardelli; Irma Cornelisse; Jeroen Groenendijk; Floris Roelofsen

2009-10-01T23:59:59.000Z

423

The alliance for computing at the extreme scale.  

SciTech Connect

Los Alamos and Sandia National Laboratories have formed a new high performance computing center, the Alliance for Computing at the Extreme Scale (ACES). The two labs will jointly architect, develop, procure and operate capability systems for DOE's Advanced Simulation and Computing Program. This presentation will discuss a petascale production capability system, Cielo, that will be deployed in late 2010, and a new partnership with Cray on advanced interconnect technologies.

Ang, James Alfred; Dosanjh, Sudip Singh; Doerfler, Douglas W.; Hemmert, Karl Scott; Vigil, Manuel (Los Alamos National Laboratory, Los Alamos, NM); Koch, Ken (Los Alamos National Laboratory, Los Alamos, NM); Morrison, John (Los Alamos National Laboratory, Los Alamos, NM)

2010-05-01T23:59:59.000Z

424

NREL: Hydrogen and Fuel Cells Research - Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials The Advanced Materials group within NREL's Materials and Computational Sciences Center develops novel and optimized materials for energy-related applications that include sorption-based hydrogen storage, fuel cells, catalysts, photovoltaics, batteries, electrochromics, electronics, sensors, electricity conduction, and thermal management. These R&D efforts use first-principle models combined with state-of-the-art synthetic and characterization techniques to rationally design and construct advanced materials with new and improved properties. In addition to creating specific material properties tailored for the application of interest by understanding the underlying chemical and physical mechanisms involved, the research focuses on developing materials

425

Advanced Model and Methodology Development [Heat Transfer and Fluid  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Model and Advanced Model and Methodology Development Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Advanced Model and Methodology Development Electrorefiner Model for Treatment of Spent Nuclear Fuel Electrorefiner Model for Treatment of Spent Nuclear Fuel. Click on image to

426

University Program in Advanced Technology | National Nuclear Security  

National Nuclear Security Administration (NNSA)

University Program in Advanced Technology | National Nuclear Security University Program in Advanced Technology | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog University Program in Advanced Technology Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

427

Kansas Advanced Semiconductor Project  

SciTech Connect

KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

2007-09-21T23:59:59.000Z

428

Advanced Windows Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior of Advanced Windows Test Facility Exterior of Advanced Windows Test Facility Advanced Windows Test Facility This multi-room laboratory's purpose is to test the performance and properties of advanced windows and window systems such as electrochromic windows, and automatically controlled shutters and blinds. The lab simulates real-world office spaces. Embedded instrumentation throughout the lab records solar gains and losses for specified time periods, weather conditions, energy use, and human comfort indicators. Electrochromic glazings promise to be a major advance in energy-efficient window technology, helping to achieve the goal of transforming windows and skylights from an energy liability in buildings to an energy source. The glazing can be reversibly switched from a clear to a transparent, colored

429

Advanced Fuels Synthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Fuels Synthesis Advanced Fuels Synthesis Coal and Coal/Biomass to Liquids Advanced Fuels Synthesis The Advanced Fuels Synthesis Key Technology is focused on catalyst and reactor optimization for producing liquid hydrocarbon fuels from coal/biomass mixtures, supports the development and demonstration of advanced separation technologies, and sponsors research on novel technologies to convert coal/biomass to liquid fuels. Active projects within the program portfolio include the following: Fischer-Tropsch fuels synthesis Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Small Scale Pilot Plant for the Gasification of Coal and Coal/Biomass Blends and Conversion of Derived Syngas to Liquid Fuels Via Fischer-Tropsch Synthesis Coal Fuels Alliance: Design and Construction of Early Lead Mini Fischer-Tropsch Refinery

430

Database Manipulation on Quantum Computers  

E-Print Network (OSTI)

Manipulating a database system on a quantum computer is an essential aim to benefit from the promising speed-up of quantum computers over classical computers in areas that take a vast amount of storage and processing time such as in databases. In this paper, the basic operations for manipulating the data in a quantum database will be defined, e.g. INSERT, UPDATE, DELETE, SELECT, backing up and restoring a database file. This gives the ability to perform the data processing that usually takes a long processing time on a classical database system, in a simultaneous way on a quantum computer. Defining a quantum version of more advanced concepts used in database systems, e.g. the referential integrity and the relational algebra, is a normal extension to this work

Ahmed Younes

2007-05-29T23:59:59.000Z

431

Computational biology and high performance computing  

E-Print Network (OSTI)

Acknowledgements for Community White Paper in ComputationalComputational Biology white paper Is there strong objectionportions of community white paper on high end computing

Shoichet, Brian

2011-01-01T23:59:59.000Z

432

Computational biology and high performance computing  

E-Print Network (OSTI)

Biology and High Performance Computing Manfred Zorn, TeresaBiology and High Performance Computing Presenters: Manfred99-Portland High performance computing has become one of the

Shoichet, Brian

2011-01-01T23:59:59.000Z

433

Homepage: Computer, Computational, and Statistical Sciences,...  

NLE Websites -- All DOE Office Websites (Extended Search)

ADTSC Computer, Computational, & Statistical Sciences, CCS Home Internal Home About Us Organization Jobs CCS Home Groups Computational Physics & Methods CCS-2 Information Sciences...

434

The power of play: design lessons for increasing the lifespan of outdated computers  

Science Conference Proceedings (OSTI)

One consequence of rapid advances in computer technology is the obsolescence of hundreds of millions of computers each year. This paper explores strategies for increasing the reuse of outdated computers through an investigation of an 8-bit home computer ... Keywords: abandonware, ethnography, games, hci4d, ict4d, obsolescence, social computing, sustainability

Derek Lomas; Anuj Kumar; Kishan Patel; Dixie Ching; Meera Lakshmanan; Matthew Kam; Jodi L. Forlizzi

2013-04-01T23:59:59.000Z

435

Renaissance Computing  

E-Print Network (OSTI)

We describe version 2 of RENCI PowerMon, a device that can be inserted between a computer power supply and the computers main board to measure power usage at each of the DC power rails supplying the board. PowerMon 2 provides a capability to collect accurate, frequent, and time-correlated measurements. Since the measurements occur after the AC power supply, this approach eliminates power supply efficiency and time-domain filtering perturbations of the power measurements. PowerMon 2 provides detail about the power consumption of the hardware subsystems connected to each of its eight measurement channles. The device fits in an internal 3.5 hard disk drive bay, thus allowing it to be used in a 1U server chassis. It cost less than $150 per unit to fabricate our small quantity of prototypes. 1

Daniel Bedard; Min Yeol Lim; Robert Fowler; Allan Porterfield

2009-01-01T23:59:59.000Z

436

Proposed research on advanced accelerator concepts  

Science Conference Proceedings (OSTI)

This report summarizes technical progress and accomplishments during the proposed three-year research on advanced accelerator concepts supported by the Department of Energy under Contract No. DE-FG02-88ER40465. A vigorous theoretical program has been pursued in critical problem areas related to advanced accelerator concepts and the basic equilibrium, stability, and radiation properties of intense charged particle beams. Broadly speaking, our research has made significant contributions in the following three major areas: Investigations of physics issues related to particle acceleration including two-beam accelerators and cyclotron resonance laser (CRL) accelerators; Investigations of RF sources including the free- electron lasers, cyclotron resonance masers, and relativistic magnetrons; Studies of coherent structures in electron plasmas and beams ranging from a low-density, nonrelativistic, pure electron plasma column to high-density, relativistic, non-neutral electron flow in a high-voltage diode. The remainder of this report presents theoretical and computational advances in these areas.

Davidson, R.C.; Wurtele, J.S.

1991-09-01T23:59:59.000Z

437

Nick Wright Named Advanced Technologies Group Lead  

NLE Websites -- All DOE Office Websites (Extended Search)

Nick Wright Named Nick Wright Named Advanced Technologies Group Lead Nick Wright Named Advanced Technologies Group Lead February 4, 2013 Nick Nick Wright has been named head of the National Energy Research Scientific Computing Center's (NERSC) Advanced Technologies Group (ATG), which focuses on understanding the requirements of current and emerging applications to make choices in hardware design and programming models that best serve the science needs of NERSC users. ATG specializes in benchmarking, system performance, debugging and analysis, workload monitoring, use of application modeling tools, and future algorithm scaling and technology assessment. The team also engages with vendors and the general research community to advocate technological features that will enhance the effectiveness of systems for NERSC scientists.

438

Cloud Computing at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Computing Energy Efficient Computing Exascale Computing Performance & Monitoring Tools Petascale Initiative Science Gateway Development Storage and IO Technologies Testbeds...

439

A computer music instrumentarium  

E-Print Network (OSTI)

Chapter 6. COMPUTERS: To Solder or Not toMusic Models : A Computer Music Instrumentarium . . . . .Interactive Computer Systems . . . . . . . . . . . . . . 101

Oliver La Rosa, Jaime Eduardo

2011-01-01T23:59:59.000Z

440

Display computers  

E-Print Network (OSTI)

A Display Computer (DC) is an everyday object: Display Computer = Display + Computer. The ?Display? part is the standard viewing surface found on everyday objects that conveys information or art. The ?Computer? is found on the same everyday object; but by its ubiquitous nature, it will be relatively unnoticeable by the DC user, as it is manufactured ?in the margins?. A DC may be mobile, moving with us as part of the everyday object we are using. DCs will be ubiquitous: ?effectively invisible?, available at a glance, and seamlessly integrated into the environment. A DC should be an example of Weiser?s calm technology: encalming to the user, providing peripheral awareness without information overload. A DC should provide unremarkable computing in support of our daily routines in life. The nbaCub (nightly bedtime ambient Cues utility buddy) prototype illustrates a sample application of how DCs can be useful in the everyday environment of the home of the future. Embedding a computer into a toy, such that the display is the only visible portion, can present many opportunities for seamless and nontraditional uses of computing technology for our youngest user community. A field study was conducted in the home environment of a five-year old child over ten consecutive weeks as an informal, proof of concept of what Display Computers for children can look like and be used for in the near future. The personalized nbaCub provided lightweight, ambient information during the necessary daily routines of preparing for bed (evening routine) and preparing to go to school (morning routine). To further understand the child?s progress towards learning abstract concepts of time passage and routines, a novel ?test by design? activity was included. Here, the role of the subject changed to primary designer/director. Final post-testing showed the subject knew both morning and bedtime routines very well and correctly answered seven of eight questions based on abstract images of time passage. Thus, the subject was in the process of learning the more abstract concept of time passage, but was not totally comfortable with the idea at the end of the study.

Smith, Lisa Min-yi Chen

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

High Performance Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Science, Computing, Applied Math High Performance Computing High Performance Computing Providing world-class high performance computing capability that enables...

442

NEWTON's Computer Science Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Science Videos Do you have a great computer science video? Please click our Ideas page. Featured Videos: Computer Science Videos from Purdue Computer Science Videos from...

443

Institute of Computer Science Computational experience with ...  

E-Print Network (OSTI)

Institute of Computer Science. Academy of Sciences of the Czech Republic. Computational experience with modified. conjugate gradient methods for.

444

Advanced Chlorophyll Fluorometer  

To advance miniaturization of the AquaSentinel environmental monitoring technology, ORNL and the University of Tennessee researchers developed a microfluidics-based pulse amplitude modulation (PAM) chlorophyll fluorometerthe first of its ...

445

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

Research Energy Systems Integration Advancement ofintegration issues related to using EC windows within a whole building energy efficient systemenergy- savings benefit with EC-daylighting-HVAC integration (assuming a conventional VAV system

2006-01-01T23:59:59.000Z

446

Advanced Cathode Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Research 1 HFCIT Program Kick-off Meeting, Arlington, VA, February 13-14, 2007 Program Kick-off Meeting Arlington, Virginia, February 13-14, 2007 Advanced Cathode...

447

Search Asia Advanced Search  

E-Print Network (OSTI)

Asia Times Search Asia Times Advanced Search Southeast Asia Malaysia tackles illegal logging:52:14 AM Search #12;Asia Times illegal logging," he said, adding that nine Malaysians had been arrested

448

Search Asia Advanced Search  

E-Print Network (OSTI)

Asia Times Search Asia Times Advanced Search Southeast Asia Indonesia looks to curb log smuggling.html (1 of 2)9/4/2007 12:59:34 PM Search #12;Asia Times No material from Asia Times Online may

449

About | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

the APS Welcome to the Advanced Photon Source Here you will find an introduction and tour of the facility, as well as information about the organizations and opportunities at...

450

Nanostructured Materials for Advanced  

E-Print Network (OSTI)

of electric vehicles (EVs) and hybrid electric vehicles (HEVs). High energy and high power densitiesT Nanostructured Materials for Advanced Li-Ion Rechargeable Batteries THE RECENT INCREASE IN demand

Cao, Guozhong

451

ComputationalComputational ScienceScience  

E-Print Network (OSTI)

ComputationalComputational ScienceScience KenKen HawickHawick k.a.k.a.hawickhawick@massey.ac.nz@massey.ac.nz Massey UniversityMassey University #12;Computational Science / eScienceComputational Science / eScience Computational Science concerns the application of computer science to physics, mathematics, chemistry, biology

Hawick, Ken

452

Advanced Distribution Monitoring  

Science Conference Proceedings (OSTI)

Advanced Distribution Automation (ADA) is a concept for a fully controllable and flexible distribution system that will facilitate the exchange of electrical energy AND information between participants and system components. Advances in the monitoring of system parameters like voltages, currents and breaker/switch positions as well as environmental variables like temperature and wind speed will be required in order to fully implement ADA. This report presents background information on distribution monito...

2005-12-05T23:59:59.000Z

453

Advanced drilling systems study  

DOE Green Energy (OSTI)

This work was initiated as part of the National Advanced Drilling and Excavation Technologies (NADET) Program. It is being performed through joint finding from the Department of Energy Geothermal Division and the Natural Gas Technology Branch, Morgantown Energy Technology Center. Interest in advanced drilling systems is high. The Geothermal Division of the Department of Energy has initiated a multi-year effort in the development of advanced drilling systems; the National Research Council completed a study of drilling and excavation technologies last year; and the MIT Energy Laboratory recently submitted a proposal for a national initiative in advanced drilling and excavation research. The primary reasons for this interest are financial. Worldwide expenditures on oil and gas drilling approach $75 billion per year. Also, drilling and well completion account for 25% to 50% of the cost of producing electricity from geothermal energy. There is incentive to search for methods to reduce the cost of drilling. Work on ideas to improve or replace rotary drilling technology dates back at least to the 1930`s. There was a significant amount of work in this area in the 1960`s and 1970`s; and there has been some continued effort through the 1980`s. Undoubtedly there are concepts for advanced drilling systems that have yet to be studied; however, it is almost certain that new efforts to initiate work on advanced drilling systems will build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems provide the basis for the current study of advanced drilling.

Pierce, K.G. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants, San Diego, CA (United States)

1995-03-01T23:59:59.000Z

454

Advance Electronics | Open Energy Information  

Open Energy Info (EERE)

Advance Electronics Jump to: navigation, search Name Advance Electronics Place United Kingdom Zip LL14 3YR Product Develop and deliver power conditioners, transient suppressors,...

455

NETL: Advanced NOx Emissions Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Advanced NOx Emissions Control Innovations for Existing Plants Advanced NOx Emissions Control Adv....

456

Advanced engineering environment collaboration project.  

SciTech Connect

The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

2008-12-01T23:59:59.000Z

457

Advanced engineering environment collaboration project.  

SciTech Connect

The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

2008-12-01T23:59:59.000Z

458

COMPUTER SCIENCE RESEARCH MELISSES: Liquid Services for Scalable Multithreaded and Multicore Execution on Emerging Supercomputers  

Science Conference Proceedings (OSTI)

In this final report, we summarize the contributions made through support from the DOE ECPI award to research and training in advanced computing systems.

Dimitrios S. Nikolopoulos

2008-08-10T23:59:59.000Z

459

18.337J / 6.338J Applied Parallel Computing (SMA 5505), Spring 2003  

E-Print Network (OSTI)

Advanced interdisciplinary introduction to modern scientific computing on parallel supercomputers. Numerical topics include dense and sparse linear algebra, N-body problems, and Fourier transforms. Geometrical topics include ...

Edelman, Alan

460

RATIO COMPUTER  

DOE Patents (OSTI)

An electronic computer circuit is described for producing an output voltage proportional to the product or quotient of tbe voltages of a pair of input signals. ln essence, the disclosed invention provides a computer having two channels adapted to receive separate input signals and each having amplifiers with like fixed amplification factors and like negatlve feedback amplifiers. One of the channels receives a constant signal for comparison purposes, whereby a difference signal is produced to control the amplification factors of the variable feedback amplifiers. The output of the other channel is thereby proportional to the product or quotient of input signals depending upon the relation of input to fixed signals in the first mentioned channel.

Post, R.F.

1958-11-11T23:59:59.000Z

Note: This page contains sample records for the topic "advanced computing scidac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Advanced Vehicle Technologies Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Vehicle Technologies Awards Advanced Vehicle Technologies Awards Microsoft Word - VTP 175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 AdvancedVehiclesTechn...

462

NETL: News Release - Projects Selected to Advance Innovative Materials for  

NLE Websites -- All DOE Office Websites (Extended Search)

14, 2010 14, 2010 Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems Washington, D.C. - Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy. The projects will develop computational capabilities for designing materials with unique thermal, chemical and mechanical properties necessary for withstanding the high temperatures and extreme environments of advanced energy systems. These innovative systems are both fuel efficient and produce lower amounts of emissions, including carbon dioxide for permanent storage. An effective way to accelerate research is to use advances in materials simulations and high performance computing and communications to guide experiments. Concurrent with the continuing drive to reduce costs and design cycle time in the manufacture of power plant equipment is an increase in the need for more materials property data demonstrating sufficient performance.

463

High Performance Computing  

Science Conference Proceedings (OSTI)

High Performance Computing. Summary: High Performance Computing (HPC) enables work on challenging problems that ...

2012-03-05T23:59:59.000Z

464

Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological  

NLE Websites -- All DOE Office Websites (Extended Search)

Network Monitoring and Network Monitoring and Visualiza4on at ESnet Jon Dugan, Network Engineer ESnet Network Engineering Group February 3, 2010 Winter Joint Techs, Salt Lake City, UT Overview Data Collec4on (ESxSNMP) Data Visualiza4on (Graphite) Event/Metadata Log (Net Almanac) ESxSNMP: Goals * Automate everything possible * Provide summaries but don't lose raw data - Disk is cheap - It can be useful to take a hard look at the past * Flexibility and scalability * Minimize up front assumptions * Protect data collection from DoS by users * Make data easy to access and manipulate ESxSNMP: Polling * Interface metadata - Automatically detects new interfaces - Automatically detects interface changes - Historical log of interface info * Automatic addition of new devices

465

Supercomputing and Advanced Computing at the National Labs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

supercomputing 1000 Independence Ave. SW Washington DC supercomputing 1000 Independence Ave. SW Washington DC 20585 202-586-5000 en Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research http://energy.gov/articles/lab-breakthrough-supercomputing-power-accelerate-fossil-energy-research Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research

466

Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological  

E-Print Network (OSTI)

Allied Signal ARM KCP NOAA OSTI ORAU SRS JLAB PPPL Lab DC Offices MIT/ PSFC BNL NREL GA DOE GTN NNSA NNSA

467

Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological  

E-Print Network (OSTI)

Jacobs Company (BJC) 44 Mb/s none via ORNL connecDon DOE NNSA Headquarters - Germantown (DOE-NNSA-GTN) 155 Mb/s none Future: DC MAN parDcipant DOE NNSA Service Center - Albuquerque (DOE-NNSA-SC) 52 Mb/s none via SNL-NM connec

468

Advanced Models, Applications and Software Systems for High Performance Computing  

E-Print Network (OSTI)

Spezifikation von Softwaresystemen. - In: Technische Zuverlässigkeit 1991. Berlin: VDE-Verl., 1991, S. 7-18-170. Bertoncini, R.; Jauho, A.P.: Gauge-invariant formulation of the intracollisional field effect including.J.; Harlander, M.K.; Lautenbacher, M.E.; Salazar, C.: Renormaliza- tion group analysis of charged Higgs effects

Middeldorp, Aart

469

Advanced computational reasoning based on the NKRL conceptual model  

Science Conference Proceedings (OSTI)

After having recalled some well-known shortcomings linked with the Semantic Web approach to the creation of (application oriented) systems of ''rules'' - e.g., limited expressiveness, adoption of an Open World Assumption (OWA) paradigm, absence of variables ... Keywords: "Binary" vs. "n-ary" approaches, "Rules" in a SW context, Functional roles, Inference techniques, Ontologies

Gian Piero Zarri

2013-06-01T23:59:59.000Z

470

INFORMS Journal on Computing Articles in Advance, pp. 118  

E-Print Network (OSTI)

car- bon emissions and reduced dependence on unreliable supplies. This process requires significant such as bat- teries and pumped hydro. The dynamics of our system are driven by exoge- nous factors (wind

Powell, Warren B.

471

Merit Review Procedures for Advanced Scientific Computing Research...  

Office of Science (SC) Website

News In the News In Focus Presentations & Testimony Recovery Act About Organization Budget Field Offices Federal Advisory Committees History Scientific and Technical...

472

Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological  

E-Print Network (OSTI)

· NERSC / LBNL · ALCF / ANL ­ Will provide multiple 10's of teraflops and multiple petabytes of storageNetwork Sunnyvale NYC Nashville Chicago OLCF/ ORNL 100G ALCF/ANL NERSC Magellan Magellan 6 #12;ARRA/ANI Testbed (Oakland, CA) and ALCF (Argonne, IL) 9 #12;Network Testbed Components · Network Testbed will consist of

473

DOE researchers advance scientific computing with record-setting...  

NLE Websites -- All DOE Office Websites (Extended Search)

capability called Cardioid to realistically and rapidly model a beating human heart at near-cellular resolution. The highly scalable code models in exquisite detail the...

474

Advances in Computational Tools for Virtual Casting of Aluminum ...  

Science Conference Proceedings (OSTI)

First Principles Modeling of Shape Memory Alloy Magnetic Refrigeration Materials ... of Lithium Battery Materials LiMPO4 (M = Mn, Fe, Co, and Ni): A Comparative ... Forming-Crush Simulation Optimization Using Internal State Variable Model.

475

Office of Advanced Simulation and Computing / Institutional Research...  

National Nuclear Security Administration (NNSA)

ASC at the Labs Supercomputers University Partnerships Related Links Contacts Russia Tri-Lab S&T Collaborations ASC Newsletters ASC Publications ASC Program Elements Current...

476

Advanced Simulation and Computing Program, ASC: Los Alamos National...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Sandia national laboratories to ensure the safety and reliability of the nation's nuclear weapons stockpile. Read more about the ASC Program Feature Stories Mikhail...

477

B61: Advanced Simulation and Computing Program, ASC: LANL Inside  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL ASC Science Underpins Stockpile Modernization Before the end of underground nuclear weapons testing, our nation relied on theory, experiment (testing), and simulation to...