Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Vehicle Technologies Office: Advanced Combustion Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Combustion Advanced Combustion Engines to someone by E-mail Share Vehicle Technologies Office: Advanced Combustion Engines on Facebook Tweet about Vehicle Technologies Office: Advanced Combustion Engines on Twitter Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Google Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Delicious Rank Vehicle Technologies Office: Advanced Combustion Engines on Digg Find More places to share Vehicle Technologies Office: Advanced Combustion Engines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Advanced Combustion Engines

2

Vehicle Technologies Office: Advanced Combustion Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Engines Combustion Engines Improving the efficiency of internal combustion engines is one of the most promising and cost-effective near- to mid-term approaches to increasing highway vehicles' fuel economy. The Vehicle Technologies Office's research and development activities address critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles. This technology has great potential to reduce U.S. petroleum consumption, resulting in greater economic, environmental, and energy security. Already offering outstanding drivability and reliability to over 230 million passenger vehicles, internal combustion engines have the potential to become substantially more efficient. Initial results from laboratory engine tests indicate that passenger vehicle fuel economy can be improved by more than up to 50 percent, and some vehicle simulation models estimate potential improvements of up to 75 percent. Advanced combustion engines can utilize renewable fuels, and when combined with hybrid electric powertrains could have even further reductions in fuel consumption. As the EIA reference case forecasts that by 2035, more than 99 percent of light- and heavy-duty vehicles sold will still have internal combustion engines, the potential fuel savings is tremendous.

3

2010 Advanced Combustion Engine R&D Report  

NLE Websites -- All DOE Office Websites (Extended Search)

and Development Approved by Gurpreet Singh Team Leader, Advanced Combustion Engine R&D Vehicle Technologies Program FY 2010 Progress rePort For AdvAnced combustion engine...

4

2009 Advanced Combustion Engine R&D Annual Report  

NLE Websites -- All DOE Office Websites (Extended Search)

COMBUSTION COMBUSTION ENGINE RESEARCH AND DEVELOPMENT annual progress report 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 Approved by Gurpreet Singh Team Leader, Advanced Combustion Engine R&D Office of Vehicle Technologies FY 2009 Progress rePort For AdvAnced combustion engine reseArcH And deveLoPment Energy Efficiency and Renewable Energy Office of Vehicle Technologies December 2009 U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 ii Advanced Combustion Engine Technologies FY 2009 Annual Progress Report

5

FY 2008 Progress Report for Advanced Combustion Engine Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

COMBUSTION COMBUSTION ENGINE TECHNOLOGIES annual progress report 2008 V e h i c l e T e c h n o l o g i e s P r o g r a m U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2008 Progress rePort For AdvAnced combustion engine technologies Energy Efficiency

6

2011 Advanced Combustion Engine R&D Annual Report  

NLE Websites -- All DOE Office Websites (Extended Search)

annual progress report 2011 annual progress report 2011 Advanced Combustion Engine Research and Development DOE-ACE-2011AR Approved by Gurpreet Singh Team Leader, Advanced Combustion Engine R&D Vehicle Technologies Program FY 2011 Progress rePort For AdvAnced combustion engine reseArcH And deveLoPment Energy Efficiency and Renewable Energy Vehicle Technologies Program U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 December 2011 DOE-ACE-2011AR ii Advanced Combustion Engine R&D FY 2011 Annual Progress Report We would like to express our sincere appreciation to Alliance Technical Services, Inc. and Oak Ridge National Laboratory for their technical and artistic contributions in preparing and publishing this report. In addition, we would like to thank all the participants for their contributions to the programs and all the

7

Internal Combustion Engine Advances for Distributed Generation Markets  

Science Conference Proceedings (OSTI)

Internal combustion engines (ICEs) can play a potentially significant role as a distributed generation resource. This report provides intelligence on vendor programs and on advances in ICE technology that could lead to commercial offerings within a 2-5 year time frame.

1997-09-30T23:59:59.000Z

8

Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments (Brochure)  

SciTech Connect

Fact sheet describes the top accomplishments, goals and strategies of DOEs Advanced Combustion Engine Research and Development sub program.

Not Available

2009-03-01T23:59:59.000Z

9

Surrogate Model Development for Fuels for Advanced Combustion Engines  

Science Conference Proceedings (OSTI)

The fuels used in internal-combustion engines are complex mixtures of a multitude of different types of hydrocarbon species. Attempting numerical simulations of combustion of real fuels with all of the hydrocarbon species included is highly unrealistic. Thus, a surrogate model approach is generally adopted, which involves choosing a few representative hydrocarbon species whose overall behavior mimics the characteristics of the target fuel. The present study proposes surrogate models for the nine fuels for advanced combustion engines (FACE) that have been developed for studying low-emission, high-efficiency advanced diesel engine concepts. The surrogate compositions for the fuels are arrived at by simulating their distillation profiles to within a maximum absolute error of 4% using a discrete multi-component (DMC) fuel model that has been incorporated in the multi-dimensional computational fluid dynamics (CFD) code, KIVA-ERC-CHEMKIN. The simulated surrogate compositions cover the range and measured concentrations of the various hydrocarbon classes present in the fuels. The fidelity of the surrogate fuel models is judged on the basis of matching their specific gravity, lower heating value, hydrogen/carbon (H/C) ratio, cetane number, and cetane index with the measured data for all nine FACE fuels.

Anand, Krishnasamy [University of Wisconsin, Madison; Ra, youngchul [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin; Bunting, Bruce G [ORNL

2011-01-01T23:59:59.000Z

10

Advanced Combustion Engine R&D 2003 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1000 Independence Avenue, S.W. 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2003 Progress Report for Advanced Combustion Engine Research & Development Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Approved by Gurpreet Singh December 2003 Advanced Combustion Engine R&D FY 2003 Progress Report ii Advanced Combustion Engine R&D FY 2003 Progress Report iii CONTENTS CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii INDEX OF PRIMARY AUTHORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

11

54.5 MPG and Beyond: Speeding Up Development of Advanced Combustion Engines  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Speeding Up Development of Advanced Combustion Speeding Up Development of Advanced Combustion Engines 54.5 MPG and Beyond: Speeding Up Development of Advanced Combustion Engines December 10, 2012 - 1:00pm Addthis Argonne engineer Steve Ciatti works on an engine in Argonne's Engine Research Facility -- a facility where researchers can study in-cylinder combustion and emissions under realistic operating conditions. | Photo courtesy of Argonne National Laboratory. Argonne engineer Steve Ciatti works on an engine in Argonne's Engine Research Facility -- a facility where researchers can study in-cylinder combustion and emissions under realistic operating conditions. | Photo courtesy of Argonne National Laboratory. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs

12

FY2000 Progress Report for Combustion and Emission Control for Advanced CIDI Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2000 Progress Report for Combustion and Emission Control for Advanced CIDI Engines Energy Efficiency and Renewable Energy Office of Transportation Technologies Approved by Steven Chalk November 2000 Combustion and Emission Control for Advanced CIDI Engines FY 2000 Progress Report CONTENTS Page iii I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 II. EMISSION CONTROL SUBSYSTEM DEVELOPMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . .9 A. Emission Control Subsystem Evaluation for Light-Duty CIDI Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

13

Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments  

NLE Websites -- All DOE Office Websites (Extended Search)

Although internal combustion engines have been used Although internal combustion engines have been used for more than a century, significant improvements in energy efficiency and emissions reduction are still possible. In fact, boosting the efficiency of internal combustion engines is one of the most promising and cost-effective approaches to increasing vehicle fuel economy over the next 30 years. The United States can cut its transportation fuel use 20%-40% through commercialization of advanced engines-resulting in greater economic, environmental, and energy security. Using these engines in hybrid and plug-in hybrid electric vehicles will enable even greater fuel savings benefits. The Advanced Combustion Engine R&D subprogram of the U.S. Department of Energy's Vehicle Technologies Program (VTP) is improving the fuel economy of

14

Advanced Vehicle Testing Activity: Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Other Internal Combustion Engine Vehicles on Facebook Tweet about Advanced...

15

Vehicle Technologies Office: Combustion Engine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Engine Combustion Engine Research to someone by E-mail Share Vehicle Technologies Office: Combustion Engine Research on Facebook Tweet about Vehicle Technologies Office: Combustion Engine Research on Twitter Bookmark Vehicle Technologies Office: Combustion Engine Research on Google Bookmark Vehicle Technologies Office: Combustion Engine Research on Delicious Rank Vehicle Technologies Office: Combustion Engine Research on Digg Find More places to share Vehicle Technologies Office: Combustion Engine Research on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Combustion Engine Research

16

Advanced Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Systems Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to generate electricity, which operate at efficiencies of 35-37 percent. Operation at higher temperatures and pressures can lead to higher efficiencies, resulting in reduced fuel consumption and lower greenhouse gas emissions. Higher efficiency also reduces CO2 production for the same amount of energy produced, thereby facilitating a reduction in greenhouse gas emissions. When combined, oxy-combustion comes with an efficiency hit, so it will actually increase the amount of CO2 to be captured. But without so much N2 in the flue gas, it will be easier and perhaps more efficient to capture, utilize and sequester. NETL's Advanced Combustion Project and members of the NETL-Regional University

17

Advanced Combustion  

Science Conference Proceedings (OSTI)

The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

Holcomb, Gordon R. [NETL

2013-03-11T23:59:59.000Z

18

Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)  

DOE Green Energy (OSTI)

The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.

Taylor, J.; Li, H.; Neill, S.

2006-08-01T23:59:59.000Z

19

Advanced Combustion Engine Program 2005 Merit Review and Peer Evaluation Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Less dependence on foreign oil, and eventual transition to an emissions-free, petroleum-free vehicle ADVANCED COMBUSTION ENGINE PROGRAM F r e e d o m C A r A n d V e h i C l e T e C h n o l o g i e s P r o g r A m MERIT REVIEW & PEER EVALUATION REPORT Department of Energy Washington, DC 20585 October 5, 2005 Dear Colleague: This document summarizes the comments provided by the Review Panel for the FY 2005 Department of Energy (DOE) Advanced Combustion Engine R&D Merit Review and Peer Evaluation Meeting, the "ACE Review," held on April 19-21, 2005 at Argonne National Laboratory (ANL). The raw evaluations and comments of the panel were provided (with reviewers' names deleted) to the presenters in early June and were used by national laboratory researchers in the development of Annual Operating Plans (AOPs) for fiscal year (FY) 2006. The panel's

20

DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program  

DOE Green Energy (OSTI)

The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

2012-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Combustion  

Science Conference Proceedings (OSTI)

Topics covered in this presentation include: the continued importance of coal; related materials challenges; combining oxy-combustion & A-USC steam; and casting large superalloy turbine components.

Holcomb, Gordon R. [NETL

2013-03-05T23:59:59.000Z

22

Advanced Vehicle Testing Activity: Hydrogen Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Advanced Vehicle Testing Activity: Hydrogen Internal Combustion Engine Vehicle Basics on Facebook Tweet about Advanced Vehicle Testing Activity:...

23

Advanced Vehicle Testing Activity: Hydrogen Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Advanced Vehicle Testing Activity: Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced...

24

Estimating the impact on fuel tax revenues from a changing light vehicle fleet with increased advanced internal combustion engine vehicles and electric vehicles.  

E-Print Network (OSTI)

??Advanced fuel economies in both traditional internal combustion engine vehicles (ICEs) and electric vehicles (EVs) have a strong influence on transportation revenue by reducing fuel… (more)

Hall, Andrea Lynn

2013-01-01T23:59:59.000Z

25

NREL: Vehicles and Fuels Research - Advanced Combustion and Fuels...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Combustion and Fuels Projects NREL's advanced combustion and fuels projects bridge fundamental chemical kinetics and engine research to investigate how new vehicle fuels...

26

Advanced Vehicle Testing Activity: Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles The Advanced Vehicle Testing Activity (AVTA) is tasked by the U.S. Department of Energy's (DOE) Vehicle Technology Office (VTO) to conduct...

27

Using a Phenomenological Computer Model to Investigate Advanced Combustion Trajectories in a CIDI Engine  

SciTech Connect

This paper summarizes results from simulations of conventional, high-dilution, and high-efficiency clean combustion in a diesel engine based on a two-zone phenomenological model. The two-zone combustion model is derived from a previously published multi-zone model, but it has been further simplified to increase computational speed by a factor of over 100. The results demonstrate that this simplified model is still able to track key aspects of the combustion trajectory responsible for NOx and soot production. In particular, the two-zone model in combination with highly simplified global kinetics correctly predicts the importance of including oxygen mass fraction (in addition to equivalence ratio and temperature) in lowering emissions from high-efficiency clean combustion. The methodology also provides a convenient framework for extracting information directly from in-cylinder pressure measurements. This feature is likely to be useful for on-board combustion diagnostics and controls. Because of the possibility for simulating large numbers of engine cycles in a short time, models of this type can provide insight into multi-cycle and transient combustion behavior not readily accessible to more computationally intensive models. Also the representation of the combustion trajectory in 3D space corresponding to equivalence ratio, flame temperature, and oxygen fraction provides new insight into optimal combustion management.

Gao, Zhiming [ORNL; Wagner, Robert M [ORNL; Sluder, Scott [ORNL; Daw, C Stuart [ORNL; Green Jr, Johney Boyd [ORNL

2011-01-01T23:59:59.000Z

28

Analysis of Combustion Trajectories of Advanced Combustion Modes in a CIDI Engine with a Two-Zone Phenomenological Model  

DOE Green Energy (OSTI)

We describe a two-zone phenomenological model for simulating in-cylinder details in conventional, highdilution, and high-efficiency clean combustion in a diesel engine. Using this model we characterize the differences in these combustion modes in terms of 3D trajectories involving equivalence ratio, flame temperature, and oxygen mass fraction. These trajectories in turn make it possible to better understand the relative NOx and particulate emissions of the different modes. The two-zone model predictions are shown to be consistent with more detailed CFD simulations and provide the benefit of very rapid simulation.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Sluder, Scott [ORNL; Green Jr, Johney Boyd [ORNL

2011-01-01T23:59:59.000Z

29

Internal combustion engine  

SciTech Connect

An improvement to an internal combustion engine is disclosed that has a fuel system for feeding a fuel-air mixture to the combustion chambers and an electrical generation system, such as an alternator. An electrolytic cell is attached adjacent to the engine to generate hydrogen and oxygen upon the application of a voltage between the cathode and anode of the electrolytic cell. The gas feed connects the electrolytic cell to the engine fuel system for feeding the hydrogen and oxygen to the engine combustion chambers. Improvements include placing the electrolytic cell under a predetermined pressure to prevent the electrolyte from boiling off, a cooling system for the electrolytic cell and safety features.

Valdespino, J.M.

1981-06-09T23:59:59.000Z

30

Advanced radiation techniques for inspection of diesel engine combustion chamber materials components. Final report  

DOE Green Energy (OSTI)

Heavy duty truck engines must meet stringent life cycle cost and regulatory requirements. Meeting these requirements has resulted in convergence on 4-stroke 6-in-line, turbocharged, and after-cooled engines with direct-injection combustion systems. These engines provide much higher efficiencies (42%, fuel consumption 200 g/kW-hr) than automotive engines (31%, fuel consumption 270 g/kW-hr), but at higher initial cost. Significant near-term diesel engine improvements are necessary and are spurred by continuing competitive, Middle - East oil problems and Congressional legislation. As a result of these trends and pressures, Caterpillar has been actively pursuing a low-fuel consumption engine research program with emphasis on product quality through process control and product inspection. The goal of this project is to combine the nondestructive evaluation and computational resources and expertise available at LLNL with the diesel engine and manufacturing expertise of the Caterpillar Corporation to develop in-process monitoring and inspection techniques for diesel engine combustion chamber components and materials. Early development of these techniques will assure the optimization of the manufacturing process by design/inspection interface. The transition from the development stage to the manufacturing stage requires a both a thorough understanding of the processes and a way of verifying conformance to process standards. NDE is one of the essential tools in accomplishing both elements and in this project will be integrated with Caterpillar`s technological and manufacturing expertise to accomplish the project goals.

NONE

1995-10-09T23:59:59.000Z

31

Engine Combustion & Efficiency - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Engine Combustion & Efficiency Engine Combustion & Efficiency ORNL currently and historically supports the U.S. DOE on multi-cylinder and vehicle applications of diesel combustion, lean burn gasoline combustion, and low temperature combustion processes, and performs principal research on efficiency enabling technologies including emission controls, thermal energy recovery, and bio-renewable fuels. Research areas span from fundamental concepts to engine/vehicle integration and demonstration with a particular emphasis on the following areas: Thermodynamics for identifying and characterizing efficiency opportunities for engine-systems as well as the development of non-conventional combustion concepts for reducing fundamental combustion losses. Nonlinear sciences for improving the physical understanding and

32

Internal combustion engine  

DOE Patents (OSTI)

An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

Baker, Quentin A. (P.O. Box 6477, San Antonio, TX 78209); Mecredy, Henry E. (1630-C W. 6th, Austin, TX 78703); O' Neal, Glenn B. (6503 Wagner Way, San Antonio, TX 78256)

1991-01-01T23:59:59.000Z

33

DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines  

DOE Green Energy (OSTI)

Research in 2011 was focused on diesel range fuels and diesel combustion and fuels evaluated in 2011 included a series of oxygenated biofuels fuels from University of Maine, oxygenated fuel compounds representing materials which could be made from sewage, oxygenated marine diesel fuels for low emissions, and a new series of FACE fuel surrogates and FACE fuels with detailed exhaust chemistry and particulate size measurements. Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel fuel (hydrotreated vegetable oil) from UOP, University of Maine cellulosic biofuel (levulene), and pyrolysis derived fuels from UOP pyrolysis oil, upgraded at University of Georgia. We were able to demonstrate, through a project with University of Wisconsin, that a hybrid strategy for fuel surrogates provided both accurate and rapid CFD combustion modeling for diesel HCCI. In this strategy, high molecular weight compounds are used to more accurately represent physical processes and smaller molecular weight compounds are used for chemistry to speed chemical calculations. We conducted a small collaboration with sp3H, a French company developing an on-board fuel quality sensor based on near infrared analysis to determine how to use fuel property and chemistry information for engine control. We were able to show that selected outputs from the sensor correlated to both fuel properties and to engine performance. This collaboration leveraged our past statistical analysis work and further work will be done as opportunity permits. We conducted blending experiments to determine characteristics of ethanol blends based on the gasoline characteristics used for blending. Results indicate that much of the octane benefits gained by high level ethanol blending can be negated by use of low octane gasoline blend stocks, as allowed by ASTM D5798. This may limit ability to optimize engines for improved efficiency with ethanol fuels. Extensive data from current and previous years was leveraged into participation with several large proposal teams, as our fuels database covers a very wide range of conventional and emerging fuels and biofuels.

Bunting, Bruce G [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

34

Argonne TTRDC - Engines - Home - combustion, compression ignition,  

NLE Websites -- All DOE Office Websites (Extended Search)

* Combustion Visualization * Combustion Visualization * Compression-Ignition * Emissions Control * Fuel Injection and Sprays * Idling * Multi-Dimensional Modeling * Particulate Matter * Spark Ignition Green Racing GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Engines Omnivorous engine tested by Thomas Wallner Thomas Wallner tests the omnivorous engine, a type of spark-ignition engine. Argonne's engine research is contributing to advances in technology that will impact the use of conventional and alternative fuels and the design of advanced technology vehicles. Compression Ignition

35

Advanced Computational Methods for Turbulence and Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Computational Methods for Turbulence and Combustion Advanced Computational Methods for Turbulence and Combustion Bell.png Key Challenges: Development and application of...

36

Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels  

SciTech Connect

The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

Pratapas, John; Zelepouga, Serguei; Gnatenko, Vitaliy; Saveliev, Alexei; Jangale, Vilas; Li, Hailin; Getz, Timothy; Mather, Daniel

2013-08-31T23:59:59.000Z

37

Low emission internal combustion engine  

DOE Patents (OSTI)

A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

Karaba, Albert M. (Muskegon, MI)

1979-01-01T23:59:59.000Z

38

Hydrogen engine and combustion control process  

DOE Patents (OSTI)

Hydrogen engine with controlled combustion comprises suction means connected to the crankcase reducing or precluding flow of lubricating oil or associated gases into the combustion chamber.

Swain, Michael R. (Coral Gables, FL); Swain, Matthew N. (Miami, FL)

1997-01-01T23:59:59.000Z

39

Improved Engine Design Through More Efficient Combustion ...  

Improved Engine Design Through More Efficient Combustion Simulations The Multi-Zone Combustion Model (MCM) is a software tool that enables ...

40

Staged combustion with piston engine and turbine engine supercharger  

DOE Patents (OSTI)

A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

Fischer, Larry E. (Los Gatos, CA); Anderson, Brian L. (Lodi, CA); O' Brien, Kevin C. (San Ramon, CA)

2006-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Staged combustion with piston engine and turbine engine supercharger  

DOE Patents (OSTI)

A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

Fischer, Larry E. (Los Gatos, CA); Anderson, Brian L. (Lodi, CA); O' Brien, Kevin C. (San Ramon, CA)

2011-11-01T23:59:59.000Z

42

Emissions Characterization from Advanced Combustion & Alternative Fuels -  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Characterization from Advanced Combustion & Emissions Characterization from Advanced Combustion & Alternative Fuels Exhaust emissions from engines operating in advanced combustion modes such as PCCI (Premixed Charge Compression Ignition) and HCCI (Homogeneous Charge Compression Ignition) are analyzed with an array of analytical tools. Furthermore, emissions from a variety of alternative fuels and mixtures thereof with conventional gasoline and diesel fuels are also measured. In addition to measuring the criteria pollutants nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HCs) are also measured and categorized based on chemistry. These chemical details of the emissions provide important information for optimizing combustion processes to maximize fuel efficiency while minimizing emissions

43

Engine control system for multiple combustion modes  

Science Conference Proceedings (OSTI)

To reduce the emission by Diesel-engine in railway traction, continuous development and innovation in combustion, sensing net, control method and strategies are required to met the legal requirements. Multiple combustion modes by Diesel engines can reduce ...

D. Bonta; V. Tulbure; Cl. Festila

2008-05-01T23:59:59.000Z

44

Free Energy and Internal Combustion Engine Cycles  

E-Print Network (OSTI)

The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

Harris, William D

2012-01-01T23:59:59.000Z

45

Engine Combustion Network Experimental Data  

DOE Data Explorer (OSTI)

Maintained by the Engine Combustion Department of Sandia National Laboratories, data currently available on the website includes reacting and non-reacting sprays in a constant-volume chamber at conditions typical of diesel combustion. The data are useful for model development and validation because of the well-defined boundary conditions and the wide range of conditions employed. A search utility displays data based on experimental conditions such as ambient temperature, ambient density, injection pressure, nozzle size, fuel, etc. Experiment-related visualizations are also available. The search utility for experimental data is located at http://public.ca.sandia.gov/ecn/cvdata/frameset.html (Specialized Interface)

46

COMBUSTION SYNTHESIS OF ADVANCED MATERIALS: PRINCIPLESAND APPLICATIONS  

E-Print Network (OSTI)

COMBUSTION SYNTHESIS OF ADVANCED MATERIALS: PRINCIPLESAND APPLICATIONS Arvind Varma, Alexander S. Gasless Combustion SynthesisFrom Elements B. Combustion Synthesis in Gas-Solid Systems C. Products of Thermite-vpe SHS D. Commercial Aspects IV. Theoretical Considerations A. Combustion Wave Propagation Theory

Mukasyan, Alexander

47

E-Alerts: Combustion, engines, and propellants (reciprocation and rotating combustion engines). E-mail newsletter  

Science Conference Proceedings (OSTI)

Design, performance, and testing of reciprocating and rotating engines of various configurations for all types of propulsion. Includes internal and external combustion engines; engine exhaust systems; engine air systems components; engine structures; stirling and diesel engines.

NONE

1999-04-01T23:59:59.000Z

48

Advanced Vehicle Testing Activity- Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles What's New 2012 Honda Civic CNG Baseline Performance Testing (PDF 292KB) 2013 Volkswagen Jetta TDI Baseline Performance Testing (PDF...

49

ME 374C Combustion Engine Processes ABET EC2000 syllabus  

E-Print Network (OSTI)

ME 374C ­ Combustion Engine Processes Page 1 ABET EC2000 syllabus ME 374C ­ Combustion Engine combustion engines, fuels, carburetion, combustion, exhaust emissions, knock, fuel injection, and factors to an appropriate major sequence in engineering. Textbook(s): Internal Combustion Engines and Automotive Engineering

Ben-Yakar, Adela

50

ENGINE COMBUSTION CONTROL VIA FUEL REACTIVITY ...  

A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a ...

51

Method of combustion for dual fuel engine  

DOE Patents (OSTI)

Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

Hsu, Bertrand D. (Erie, PA); Confer, Gregory L. (Erie, PA); Shen, Zujing (Erie, PA); Hapeman, Martin J. (Edinboro, PA); Flynn, Paul L. (Fairview, PA)

1993-12-21T23:59:59.000Z

52

Combustion engineering issues for solid fuel systems  

SciTech Connect

The book combines modeling, policy/regulation and fuel properties with cutting edge breakthroughs in solid fuel combustion for electricity generation and industrial applications. This book provides real-life experiences and tips for addressing the various technical, operational and regulatory issues that are associated with the use of fuels. Contents are: Introduction; Coal Characteristics; Characteristics of Alternative Fuels; Characteristics and Behavior of Inorganic Constituents; Fuel Blending for Combustion Management; Fuel Preparation; Conventional Firing Systems; Fluidized-Bed Firing Systems; Post-Combustion Emissions Control; Some Computer Applications for Combustion Engineering with Solid Fuels; Gasification; Policy Considerations for Combustion Engineering.

Bruce Miller; David Tillman [Pennsylvania State University, University Park, PA (United States). Energy Institute

2008-05-15T23:59:59.000Z

53

Method of combustion for dual fuel engine  

DOE Patents (OSTI)

Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

1993-12-21T23:59:59.000Z

54

Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies  

DOE Green Energy (OSTI)

The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuelsâ?? combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

Soloiu, Valentin

2012-03-31T23:59:59.000Z

55

Engine Valve Actuation For Combustion Enhancement  

DOE Patents (OSTI)

A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

Reitz, Rolf Deneys (Madison, WI); Rutland, Christopher J. (Madison, WI); Jhavar, Rahul (Madison, WI)

2004-05-18T23:59:59.000Z

56

Engine valve actuation for combustion enhancement  

DOE Patents (OSTI)

A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

Reitz, Rolf Deneys (Madison, WI); Rutland, Christopher J. (Madison, WI); Jhavar, Rahul (Madison, WI)

2008-03-04T23:59:59.000Z

57

Carburetor for internal combustion engines  

DOE Patents (OSTI)

A carburetor for internal combustion engines having a housing including a generally discoidal wall and a hub extending axially from the central portion thereof, an air valve having a relatively flat radially extending surface directed toward and concentric with said discoidal wall and with a central conoidal portion having its apex directed toward the interior of said hub portion. The housing wall and the radially extending surface of the valve define an air passage converging radially inwardly to form an annular valving construction and thence diverge into the interior of said hub. The hub includes an annular fuel passage terminating at its upper end in a circumferential series of micro-passages for directing liquid fuel uniformly distributed into said air passage substantially at said valving constriction at right angles to the direction of air flow. The air valve is adjustable axially toward and away from the discoidal wall of the carburetor housing to regulate the volume of air drawn into the engine with which said carburetor is associated. Fuel is delivered under pressure to the fuel metering valve and from there through said micro-passages and controlled cams simultaneously regulate the axial adjustment of said air valve and the rate of delivery of fuel through said micro-passages according to a predetermined ratio pattern. A third jointly controlled cam simultaneously regulates the ignition timing in accordance with various air and fuel supply settings. The air valve, fuel supply and ignition timing settings are all independent of the existing degree of engine vacuum.

Csonka, John J. (625 Linwood Ave., Buffalo, NY 14209); Csonka, Albert B. (109 Larchmont Rd., Buffalo, NY 14214)

1978-01-01T23:59:59.000Z

58

Advanced Combustion Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Clean Coal » Advanced Combustion Science & Innovation » Clean Coal » Advanced Combustion Technologies Advanced Combustion Technologies Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses laser-based Rayleigh light scattering to measure flame density and speed over a flat flame burner. Oxyfuel combustion, using oxygen in place of air with diluents such as steam or carbon dioxide, can reduce pollutant emissions in advanced power cycles using gas turbines. Photo courtesy of NETL Multimedia. Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses laser-based Rayleigh light scattering to measure flame density and speed over a flat flame burner. Oxyfuel combustion, using oxygen in place of air with diluents such as steam or carbon dioxide, can reduce pollutant

59

Combustion diagnostic for active engine feedback control  

DOE Patents (OSTI)

This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

Green, Jr., Johney Boyd (Knoxville, TN); Daw, Charles Stuart (Knoxville, TN); Wagner, Robert Milton (Knoxville, TN)

2007-10-02T23:59:59.000Z

60

Internal combustion engine and method for control  

SciTech Connect

In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

Brennan, Daniel G

2013-05-21T23:59:59.000Z

Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Starting apparatus for internal combustion engines  

DOE Patents (OSTI)

This report is a patent description for a system to start an internal combustion engine. Remote starting and starting by hearing impaired persons are addressed. The system monitors the amount of current being drawn by the starter motor to determine when the engine is started. When the engine is started the system automatically deactivates the starter motor. Five figures are included.

Dyches, G.M.; Dudar, A.M.

1995-01-01T23:59:59.000Z

62

Method and system for controlled combustion engines  

DOE Patents (OSTI)

A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

Oppenheim, A. K. (Berkeley, CA)

1990-01-01T23:59:59.000Z

63

Argonne TTRDC - Engines - Combustion Visualization - emissions,  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Visualization Combustion Visualization Exploring Combustion Using Advanced Imaging Techniques In the photo, the GM diesel test cell is shown with vehicle exhaust aftertreatment hardware (diesel particulate filtration and diesel oxidation catalyst) along with other advanced technology-such as a variable geometry turbocharger, cooled exhaust gas recirculation and a common-rail fuel injection system. Fig. 1. The GM diesel test cell is shown with vehicle exhaust aftertreatment hardware (diesel particulate filtration and diesel oxidation catalyst) along with other advanced technology-such as a variable geometry turbocharger, cooled exhaust gas recirculation and a common-rail fuel injection system. Two-dimensional image of hydrogen combustion OH chemiluminescence. Fig. 2. Two-dimensional image of hydrogen combustion OH chemiluminescence.

64

Past experiences with automotive external combustion engines  

SciTech Connect

GMR (General Motors Research Laboratories, now GM R and D Center) has a history of improving the internal combustion engine, especially as it relates to automotive use. During the quarter century from 1950--75, considerable effort was devoted to evaluating alternative powerplants based on thermodynamic cycles different from those on which the established spark-ignition and diesel engines are founded. Two of these, the steam engine and the Stirling engine, incorporated external combustion. Research on those two alternatives is reviewed. Both were judged to fall short of current needs for commercial success as prime movers for conventional automotive vehicles.

Amann, C.A.

1999-07-01T23:59:59.000Z

65

Two phase exhaust for internal combustion engine  

Science Conference Proceedings (OSTI)

An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

Vuk, Carl T. (Denver, IA)

2011-11-29T23:59:59.000Z

66

Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions  

DOE Green Energy (OSTI)

A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

2008-11-25T23:59:59.000Z

67

Annual Report: Advanced Combustion (30 September 2012)  

SciTech Connect

The Advanced Combustion Project addresses fundamental issues of fire-side and steam-side corrosion and materials performance in oxy-fuel combustion environments and provides an integrated approach into understanding the environmental and mechanical behavior such that environmental degradation can be ameliorated and long-term microstructural stability, and thus, mechanical performance can lead to longer lasting components and extended power plant life. The technical tasks of this effort are Oxy-combustion Environment Characterization, Alloy Modeling and Life Prediction, and Alloy Manufacturing and Process Development.

Hawk, Jeffrey [NETL] [NETL; Richards, George

2012-09-30T23:59:59.000Z

68

2.61 Internal Combustion Engines, Spring 2004  

E-Print Network (OSTI)

Fundamentals of how the design and operation of internal combustion engines affect their performance, operation, fuel requirements, and environmental impact. Study of fluid flow, thermodynamics, combustion, heat transfer ...

Heywood, John B.

69

Findings of Hydrogen Internal Combustion Engine Durability  

DOE Green Energy (OSTI)

Hydrogen Internal Combustion Engine (HICE) technology takes advantage of existing knowledge of combustion engines to provide a means to power passenger vehicle with hydrogen, perhaps as an interim measure while fuel cell technology continues to mature. This project seeks to provide data to determine the reliability of these engines. Data were collected from an engine operated on a dynamometer for 1000 hours of continuous use. Data were also collected from a fleet of eight (8) full-size pickup trucks powered with hydrogen-fueled engines. In this particular application, the data show that HICE technology provided reliable service during the operating period of the project. Analyses of engine components showed little sign of wear or stress except for cylinder head valves and seats. Material analysis showed signs of hydrogen embrittlement in intake valves.

Garrett Beauregard

2010-12-31T23:59:59.000Z

70

Combustion modeling in advanced gas turbine systems  

DOE Green Energy (OSTI)

Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K. [Brigham Young Univ., Provo, UT (United States). Advanced Combustion Engineering Research Center

1995-12-31T23:59:59.000Z

71

Hydrogen Internal Combustion Engine (ICE) Vehicle Testing Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Internal Combustion Internal Combustion Engine (ICE) Vehicle Testing Activities James Francfort Idaho National Laboratory 2 Paper #2006-01-0433 Presentation Outline Background and goal APS Alternative Fuel (Hydrogen) Pilot Plant - design and operations Fuel dispensing and prototype dispenser Hydrogen (H2) and HCNG (compressed natural gas) internal combustion engine (ICE) vehicle testing WWW Information 3 Paper #2006-01-0433 Background Advanced Vehicle Testing Activity (AVTA) is part of DOE's FreedomCAR and Vehicle Technologies Program These activities are conducted by the Idaho National Laboratory (INL) and the AVTA testing partner Electric Transportation Applications (ETA) 4 Paper #2006-01-0433 AVTA Goal Provide benchmark data for technology modeling, research and development programs, and help fleet managers and

72

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

1993-01-01T23:59:59.000Z

73

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

This invention is comprised of an improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

1992-12-31T23:59:59.000Z

74

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

1993-12-21T23:59:59.000Z

75

Advances in pulverized coal combustion  

Science Conference Proceedings (OSTI)

A combustion system has been developed to operate cost effectively in the difficult regulatory and economic climate of the 1980's. The system is designed to reduce auxiliary fuel oil comsumption by at least 30% while meeting all relevant emissions limits. This is achieved with the fewest components consistent with practical reliable design criteria. The Controlled Flow Split/Flame low NO/sub x/ burner, MBF pulverizer and Two-Stage ignition system are integrated into a mutually supporting system which is applicable to both new steam generators and, on a retrofit basis, to existing units. In the future, a pulverized coal ignition system will be available to eliminate fuel oil use within the boiler.

Vatsky, J.

1981-01-01T23:59:59.000Z

76

Engine combustion control via fuel reactivity stratification  

Science Conference Proceedings (OSTI)

A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

2013-12-31T23:59:59.000Z

77

Combustion Commonality and Differences Between HSDI and Heavy Duty Truck Engines  

DOE Green Energy (OSTI)

Experimental understanding of the diesel spray and combustion process at the fundamental level has helped advance the virtual lab simulation tools. The computational fluid dynamics (CFD)-based simulation has been globally verified in many engines, providing substantial credibility to the use of this technology in advanced engine development. This paper highlights the common aspects and differences between the smallbore HSDI and the larger displacement heavy-duty truck engine spray and combustion processes. Implications for combustion system strategies will be delineated. Detroit Diesel integrated ''Wired'' approach will be explained with pointers towards future tool enhancements.

Chen, Rong

2000-08-20T23:59:59.000Z

78

Systems Engineering Advancement Research Initiative  

E-Print Network (OSTI)

strategic partners Define and research fundamental concepts for advanced system engineering Contribute materials, and handbooks to inspire, inform, and guide students and practitioners VENUE SEAri is located

de Weck, Olivier L.

79

A Detailed Multi-Zone Thermodynamic Simulation For Direct-Injection Diesel Engine Combustion  

E-Print Network (OSTI)

A detailed multi-zone thermodynamic simulation has been developed for the direct-injection (DI) diesel engine combustion process. For the purpose of predicting heterogeneous type combustion systems, the model explores the formation of pre-ignition radicals, start of combustion, and eventual heat release. These mechanisms are described based on the current understanding and knowledge of the diesel engine combustion acquired through advanced laser-based diagnostics. Six zones are developed to take into account the surrounding bulk gas, liquid- and vapor-phase fuel, pre-ignition mixing, fuel-rich combustion products as well as the diffusion flame combustion products. A three-step phenomenological soot model and a nitric oxide emission model are applied based on where and when each of these reactions mainly occurs within the diesel fuel jet evolution process. The simulation is completed for a 4.5 liter, inline four-cylinder diesel engine for a range of operating conditions. Specifically, the engine possesses a compression ratio of 16.6, and has a bore and stroke of 106 and 127 mm. The results suggest that the simulation is able to accurately reproduce the fuel jet evolution and heat release process for conventional diesel engine combustion conditions. The soot and nitric oxide models are able to qualitatively predict the effects of various engine parameters on the engine-out emissions. In particular, the detailed thermodynamics and characteristics with respect to the combustion and emission formation processes are investigated for different engine speed/loads, injection pressures and timings, and EGR levels. The local thermodynamic properties and energy, mass distributions obtained from the simulation offer some fundamental insights into heterogeneous type combustion systems. The current work provides opportunities to better study and understand the diesel engine combustion and emission formation mechanisms for conventional diesel engine combustion modes. The flexible, low computational cost features of this simulation result in a convenient tool for conducting parametric studies, and benefits for engine control and diagnostics.

Xue, Xingyu 1985-

2012-12-01T23:59:59.000Z

80

Combustion Engineering IGCC Repowering Project  

SciTech Connect

C-E gasification process uses an entrained-flow, two-stage, slagging bottom gasifier. Figure 1 shows a schematic of the gasifier concept. Some of the coal and all of the char is fed to the combustor section, while the remaining coal is fed to the reducter section of the gasifier. The coal and char in the combustor is mixed with air and the fuel-rich mixture is burned creating the high temperature necessary to gasify the coal and melt the mineral matter in the coal. The slag flows through a slag tap at the bottom of the combustor into a water-filled slag tank where it is quenched and transformed into an inert, glassy, granular material. This vitrified slag is non-leaching, making it easy to dispose of in an environmentally acceptable manner. The hot gas leaving the combustor enters the second stage called the reductor. In the reducter, the char gasification occurs along the length of the reductor zone until the temperature falls to a point where the gasification kinetics become too slow. Once the gas temperature reaches this level, essentially no further gasification takes place and the gases subsequently are cooled with convective surface to a temperature low enough to enter the cleanup system. Nearly all of the liberated energy from the coal that does not produce fuel gas is collected and recovered with steam generating surface either in the walls of the vessel or by conventional boiler convective surfaces in the backpass of the gasifier. A mixture of unburned carbon and ash (called char) is carried out of the gasifier with the product gas strewn. The char is collected and recycled back to the gasifier where it is consumed. Thus, there is no net production of char which results in negligible carbon loss. The product gas enters a desulfurization system where it is cleaned of sulfur compounds present in the fuel gas. The clean fuel gas is now available for use in the gas turbine combuster for an integrated coal gasification combined cycle (IGCC) application.

Andrus, H.E.; Thibeault, P.R.; Gibson, C.R.

1992-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Combustion Engineering IGCC Repowering Project  

SciTech Connect

C-E gasification process uses an entrained-flow, two-stage, slagging bottom gasifier. Figure 1 shows a schematic of the gasifier concept. Some of the coal and all of the char is fed to the combustor section, while the remaining coal is fed to the reducter section of the gasifier. The coal and char in the combustor is mixed with air and the fuel-rich mixture is burned creating the high temperature necessary to gasify the coal and melt the mineral matter in the coal. The slag flows through a slag tap at the bottom of the combustor into a water-filled slag tank where it is quenched and transformed into an inert, glassy, granular material. This vitrified slag is non-leaching, making it easy to dispose of in an environmentally acceptable manner. The hot gas leaving the combustor enters the second stage called the reductor. In the reducter, the char gasification occurs along the length of the reductor zone until the temperature falls to a point where the gasification kinetics become too slow. Once the gas temperature reaches this level, essentially no further gasification takes place and the gases subsequently are cooled with convective surface to a temperature low enough to enter the cleanup system. Nearly all of the liberated energy from the coal that does not produce fuel gas is collected and recovered with steam generating surface either in the walls of the vessel or by conventional boiler convective surfaces in the backpass of the gasifier. A mixture of unburned carbon and ash (called char) is carried out of the gasifier with the product gas strewn. The char is collected and recycled back to the gasifier where it is consumed. Thus, there is no net production of char which results in negligible carbon loss. The product gas enters a desulfurization system where it is cleaned of sulfur compounds present in the fuel gas. The clean fuel gas is now available for use in the gas turbine combuster for an integrated coal gasification combined cycle (IGCC) application.

Andrus, H.E.; Thibeault, P.R.; Gibson, C.R.

1992-01-01T23:59:59.000Z

82

Second law analysis of premixed compression ignition combustion in a diesel engine using a thermodynamic engine cycle simulation  

E-Print Network (OSTI)

A second law analysis of compression ignition engine was completed using a thermodynamic engine cycle simulation. The major components of availability destruction and transfer for an entire engine cycle were identified and the influence of mode of combustion, injection timing and EGR on availability balance was evaluated. The simulation pressure data was matched with the available experimental pressure data gathered from the tests on the Isuzu 1.7 L direct injection diesel engine. Various input parameters of the simulation were changed to represent actual engine conditions. Availability destruction due to combustion decreases with advanced injection timing and under premixed compression ignition (PCI) modes; but it is found to be insensitive to the level of EGR. Similarly, trends (or lack of trends) in the other components of availability balance were identified for variation in injection timing, EGR level and mode of combustion. Optimum strategy for efficient combustion processes was proposed based on the observed trends.

Oak, Sushil Shreekant

2008-08-01T23:59:59.000Z

83

Combustion: Sandwiched Between Engines and Fuel (Trying to Make...  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion: Sandwiched Between Engines and Fuel (Trying to Make Bread from Combustion) Speaker(s): Robert Dibble Date: March 10, 2010 - 12:00pm Location: 90-3122 This seminar will...

84

Update on Engine Combustion Research at Sandia National Laboratories  

DOE Green Energy (OSTI)

The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work.

Jay Keller; Gurpreet Singh

2001-05-14T23:59:59.000Z

85

The Advanced Tangentially Fired Combustion Techniques for the...  

NLE Websites -- All DOE Office Websites (Extended Search)

MWe, but is capable of producing 200 MWe. The boiler is a Combustion Engineering, Inc. radiant reheat, natural circulation, steam generator, with five elevations of burners fed...

86

High efficiency stoichiometric internal combustion engine system  

DOE Patents (OSTI)

A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

Winsor, Richard Edward (Waterloo, IA); Chase, Scott Allen (Cedar Falls, IA)

2009-06-02T23:59:59.000Z

87

Combustion Stability in Complex Engineering Flows | Argonne Leadership...  

NLE Websites -- All DOE Office Websites (Extended Search)

vortex. Virtual testing enables engineers to design next-generation, low-emission combustion systems. Lee Shunn, Cascade Technologies; Shoreh Hajiloo, GE Global Research...

88

Argonne TTRDC - Engines - Multi-Dimensional Modeling - Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Modeling with Detailed Chemistry It is well known that the optimization of engines burning liquid and gaseous fuels through repeated experiments is a routine but rather...

89

A hybrid 2-zone/WAVE engine combustion model for simulating combustion instabilities during dilute operation  

Science Conference Proceedings (OSTI)

Internal combustion engines are operated under conditions of high exhaust gas recirculation (EGR) to reduce NO x emissions and promote enhanced combustion modes such as HCCI. However, high EGR under certain conditions also promotes nonlinear feedback between cycles, leading to the development of combustion instabilities and cyclic variability. We employ a two-zone phenomenological combustion model to simulate the onset of combustion instabilities under highly dilute conditions and to illustrate the impact of these instabilities on emissions and fuel efficiency. The two-zone in-cylinder combustion model is coupled to a WAVE engine-simulation code through a Simulink interface, allowing rapid simulation of several hundred successive engine cycles with many external engine parametric effects included. We demonstrate how this hybrid model can be used to study strategies for adaptive feedback control to reduce cyclic combustion instabilities and, thus, preserve fuel efficiency and reduce emissions.

Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Green Jr, Johney Boyd [ORNL

2006-01-01T23:59:59.000Z

90

Hydrogen-fueled internal combustion engines.  

DOE Green Energy (OSTI)

The threat posed by climate change and the striving for security of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Taking a prominent place in these strategic plans is hydrogen as a future energy carrier. A number of manufacturers are now leasing demonstration vehicles to consumers using hydrogen-fueled internal combustion engines (H{sub 2}ICEs) as well as fuel cell vehicles. Developing countries in particular are pushing for H{sub 2}ICEs (powering two- and three-wheelers as well as passenger cars and buses) to decrease local pollution at an affordable cost. This article offers a comprehensive overview of H{sub 2}ICEs. Topics that are discussed include fundamentals of the combustion of hydrogen, details on the different mixture formation strategies and their emissions characteristics, measures to convert existing vehicles, dedicated hydrogen engine features, a state of the art on increasing power output and efficiency while controlling emissions and modeling.

Verhelst, S.; Wallner, T.; Energy Systems; Ghent Univ.

2009-12-01T23:59:59.000Z

91

Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models  

E-Print Network (OSTI)

Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models of more predictive and more accurate detailed chemical kinetic models for the combustion of fuels that the combustion of liquid fuels will remain the main source of energy for transportation for the next 50 years.1

92

Modeling piston skirt lubrication in internal combustion engines  

E-Print Network (OSTI)

Ever-increasing demand for reduction of the undesirable emissions from the internal combustion engines propels broader effort in auto industry to design more fuel efficient engines. One of the major focuses is the reduction ...

Bai, Dongfang, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

93

Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies  

DOE Green Energy (OSTI)

In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

Chia-fon F. Lee; Alan C. Hansen

2010-09-30T23:59:59.000Z

94

Control of Combustion Processes in an Internal Combustion Engine by Low-Temperature Plasma  

Science Conference Proceedings (OSTI)

A new method of operation of internal combustion engines enhances power and reduces fuel consumption and exhaust toxicity. Low-temperature plasma control combines working processes of thermal engines and steam machines into a single process.

E. A. Olenev

2002-07-01T23:59:59.000Z

95

Numerical Simulation on Forced Swirl Combustion Chamber in Diesel Engine  

Science Conference Proceedings (OSTI)

A concept of forced swirl combustion chamber in diesel engine is proposed in this paper. It can be used to enhance the intensity of swirl flow in the cylinder and accelerate the rate of air-fuel mixture process by designing the special structure in the ... Keywords: diesel engine, forced swirl, combustion chamber, simulation

Yong Shang; Fu-shui Liu; Xiang-rong Li

2010-12-01T23:59:59.000Z

96

Numerical Simulation on Forced Swirl Combustion Chamber in Diesel Engine  

Science Conference Proceedings (OSTI)

A concept of forced swirl combustion chamber in diesel engine is proposed in this paper. It can be used to enhance the intensity of swirl flow in the cylinder and accelerate the rate of air-fuel mixture process by designing the special structure in the ... Keywords: diesel engine, forced swirl, combustion chamber, simulation

Shang Yong; Liu Fu-shui; Li Xiang-rong

2011-02-01T23:59:59.000Z

97

Internal combustion engine using premixed combustion of stratified charges  

DOE Patents (OSTI)

During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

Marriott, Craig D. (Rochester Hills, MI); Reitz, Rolf D. (Madison, WI

2003-12-30T23:59:59.000Z

98

Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode  

DOE Patents (OSTI)

This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

2008-10-07T23:59:59.000Z

99

HICEV AMERICA: HYDROGEN INTERNAL COMBUSTION ENGINE  

NLE Websites -- All DOE Office Websites (Extended Search)

HICEV AMERICA: HICEV AMERICA: HYDROGEN INTERNAL COMBUSTION ENGINE VEHICLE (HICEV) TECHNICAL SPECIFICATIONS Revision 0 November 1, 2004 Prepared by Electric Transportation Applications HICEV America Vehicle Specification i TABLE OF CONTENTS Minimum Vehicle Requirements 1 1. Regulatory Requirements 7 2. Chassis 8 3. Vehicle Characteristics 10 4. Drive System 11 5. Vehicle Performance 12 6. Hydrogen Fuel Storage System (HFSS) 14 7. Additional Vehicle Systems 17 8. Documentation 18 Appendices Appendix A - Vehicle Data 19 Appendix B - FMVSS Certification Methodology 26 DB12/7/04 HICEV America Vehicle Specification 2 MINIMUM VEHICLE REQUIREMENTS The HICEV America Program is sponsored by the U.S. Department of Energy Office of Transportation Technology to provide for independent assessment of hydrogen fueled, internal

100

Combustion characterization of methylal in reciprocating engines  

DOE Green Energy (OSTI)

Methylal, CH{sub 3}OCH{sub 2}OCH{sub 3}, also known as dimethoxy-methane, is unique among oxygenates in that it has a low autoignition temperature, no carbon-carbon bonds, and is soluble in middle distillate fuels. Because of these properties, methylal has been shown to be a favorable fuel additive for reducing smoke in diesel engines. Recent measurements of ignition delay times indicate that methylal has a cetane number in the range of 45-50, which is compatible with diesel fuels. Engine tests have shown that adding methylal to diesel fuel significantly reduces smoke emissions. Gaseous emissions and combustion efficiencies obtained with methylal/diesel fuel blends remain essentially the same as those measured using neat diesel fuel. Lubricity measurements of methylal/diesel fuel blends with a ball on cylinder lubrication evaluator (BOCLE) show that methylal improves the lubricity of diesel fuel. Even though additions of methylal lower the fuel viscosity, the results of the BOCLE tests indicate that the methylal/diesel fuel blends cause less pump wear than neat diesel fuel. The one drawback is that methylal has a low boiling point (42{degrees}C) and a relatively high vapor pressure. As a result, it lowers the flash point of diesel fuel and causes a potential fuel tank flammability hazard. One solution to this increased volatility is to make polyoxymethylenes with the general formula of CH{sub 3}O(CH{sub 2}O){sub x}CH{sub 3} where x > 2. The molecules are similar to methylal, but have higher molecular weights and thus higher viscosities and substantially lower vapor pressures. Therefore, their flash points will be compatible with regular diesel fuel. The polyoxymethylenes are expected to have combustion properties similar to methylal. It is theorized that by analogy with hydrocarbons, the ignition quality (i.e., cetane number) of the polyoxymethylenes will be better than that of methylal.

Dodge, L.; Naegeli, D. [Southwest Research Institute, San Antonio, TX (United States)

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Combustion Process in a Spark Ignition Engine: Dynamics and Noise Level Estimation  

E-Print Network (OSTI)

We analyse the experimental time series of internal pressure in a four cylinder spark ignition engine. In our experiment, performed for different spark advance angles, apart from usual cyclic changes of engine pressure we observed oscillations. These oscillations are with longer time scales ranging from one to several hundred engine cycles depending on engine working conditions. Basing on the pressure time dependence we have calculated the heat released per cycle. Using the time series of heat release to calculate the correlation coarse-grained entropy we estimated the noise level for internal combustion process. Our results show that for a smaller spark advance angle the system is more deterministic.

T. Kaminski; M. Wendeker; K. Urbanowicz; G. Litak

2003-12-28T23:59:59.000Z

102

Advanced Materials for Mercury 50 Gas Turbine Combustion System  

SciTech Connect

Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60,

Price, Jeffrey

2008-09-30T23:59:59.000Z

103

Advanced Materials for Mercury 50 Gas Turbine Combustion System  

DOE Green Energy (OSTI)

Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70,

Price, Jeffrey

2008-09-30T23:59:59.000Z

104

Synergies of PCCI-Type Combustion and Lean NOx Trap Catalysis for Diesel Engines  

Science Conference Proceedings (OSTI)

It is widely recognized that future NOx and PM emission targets for diesel engines cannot be met solely via advanced combustion over the full engine drive cycle. Therefore some combination of advanced combustion methodology with an aftertreatment technology will be required. In this study, NOx reduction, fuel efficiency, and regeneration performance of lean NOx trap (LNT) were evaluated for four operating conditions. The combustion approaches included baseline engine operation with and without EGR, two exhaust enrichment methods (post injection and delayed injection), and one advanced combustion mode to enable high efficiency clean combustion (HECC). A 1.7 liter 4-cylinder diesel engine was operated under five conditions, which represent key interest points for light-duty diesel operation. At the low load setting the exhaust temperature was too low to enable LNT regeneration and oxidation; however, HECC (low NOx) was achievable. HECC was also reached under more moderate loads and the exhaust temperatures were high enough to enable even further NOx reductions by the LNT. At high loads HECC becomes difficult but the LNT performance improves and acceptable regeneration can be met with enrichment methodologies.

Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL; Kass, Michael D [ORNL; Huff, Shean P [ORNL

2008-01-01T23:59:59.000Z

105

Overview of Engine Combustion Research at Sandia National Laboratories  

DOE Green Energy (OSTI)

The objectives of this paper are to describe the ongoing projects in diesel engine combustion research at Sandia National Laboratories' Combustion Research Facility and to detail recent experimental results. The approach we are employing is to assemble experimental hardware that mimic realistic engine geometries while enabling optical access. For example, we are using multi-cylinder engine heads or one-cylinder versions of production heads mated to one-cylinder engine blocks. Optical access is then obtained through a periscope in an exhaust valve, quartz windows in the piston crown, windows in spacer plates just below the head, or quartz cylinder liners. We have three diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, and a one-cylinder Caterpillar engine to evaluate combustion of alternative diesel fuels.

Robert W. Carling; Gurpreet Singh

1999-04-26T23:59:59.000Z

106

Solid fuel combustion system for gas turbine engine  

DOE Patents (OSTI)

A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

1993-01-01T23:59:59.000Z

107

High Performance Alloys for Advanced Combustion Systems  

Science Conference Proceedings (OSTI)

For steam turbines, it is necessary to raise temperatures in excess of 700?C. For gas turbines, raising the temperature also works but migrating the combustion ...

108

Method of controlling cyclic variation in engine combustion  

DOE Patents (OSTI)

Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling.

Davis, Jr., Leighton Ira (Ann Arbor, MI); Daw, Charles Stuart (Knoxville, TN); Feldkamp, Lee Albert (Plymouth, MI); Hoard, John William (Livonia, MI); Yuan, Fumin (Canton, MI); Connolly, Francis Thomas (Ann Arbor, MI)

1999-01-01T23:59:59.000Z

109

Method of controlling cyclic variation in engine combustion  

DOE Patents (OSTI)

Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling. 27 figs.

Davis, L.I. Jr.; Daw, C.S.; Feldkamp, L.A.; Hoard, J.W.; Yuan, F.; Connolly, F.T.

1999-07-13T23:59:59.000Z

110

NETL: IEP - Post-Combustion CO2 Emissions Control - Advanced...  

NLE Websites -- All DOE Office Websites (Extended Search)

IEP Post-Combustion CO2 Emissions Control Advanced Low Energy Enzyme Catalyzed Solvent for CO2 Capture Project No.: DE-FE0004228 Akermin, Inc. is to conduct bench-scale testing...

111

Advanced engineering environment pilot project.  

SciTech Connect

The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty (Parametric Technology Corporation, Needham, MA)

2006-10-01T23:59:59.000Z

112

DOE - Office of Legacy Management -- Combustion Engineering Co...  

Office of Legacy Management (LM)

CT.03-9 USACE Website Also see Documents Related to Combustion Engineering, CT CT.03-1 - DOE Memorandum; Wagoner to Price; Subject: Authorization for Remedial Action at the...

113

Corrosion performance of materials for advanced combustion systems  

Science Conference Proceedings (OSTI)

Conceptual designs of advanced combustion systems that utilize coal as a feedstock require high-temperature furnaces and heat transfer surfaces capable of operating at much higher temperatures than those in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments requires development and application of advanced ceramic materials for heat exchangers in these designs. This paper characterizes the chemistry of coal-fired combustion environments over the wide temperature range of interest in these systems and discusses some of the experimental results for several materials obtained from laboratory tests and from exposures in a pilot-scale facility.

Natesan, K. [Argonne National Lab., IL (United States); Freeman, M.; Mathur, M. [Pittsburgh Energy Technology Center, PA (United States)

1995-05-01T23:59:59.000Z

114

Advanced fuel chemistry for advanced engines.  

SciTech Connect

Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

2009-09-01T23:59:59.000Z

115

Advanced engineering environment collaboration project.  

SciTech Connect

The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

2008-12-01T23:59:59.000Z

116

Advanced engineering environment collaboration project.  

SciTech Connect

The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

2008-12-01T23:59:59.000Z

117

Coal slurry combustion optimization on single cylinder engine  

DOE Green Energy (OSTI)

Under the sponsorship of the US Department of Energy, Morgantown Energy Technology Center, GE Transportation System has been conducting a proof of concept program to use coal water slurry (CWS) fuel to power a diesel engine locomotive since 1988. As reported earlier [1], a high pressure electronically controlled accumulator injector using a diamond compact insert nozzle was developed for this project. The improved reliability and durability of this new FIE allowed for an improved and more thorough study of combustion of CWS fuel in a diesel engine. It was decided to include a diesel pilot fuel injector in the combustion system mainly due to engine start and low load operation needs. BKM, Inc. of San Diego, CA was contracted to develop the electronic diesel fuel pilot/starting FIE for the research engine. As a result, the experimental combustion study was very much facilitated due to the ability of changing pilot/CWS injection timings and quantities without having to stop the engine. Other parameters studied included combustion chamber configuration (by changing CWS fuel injector nozzle hole number/shape/angle), as well as injection pressure. The initial phase of this combustion study is now complete. The results have been adopted into the design of a 12 cylinder engine FIE, to be tested in 1992. This paper summarizes the main findings of this study.

Not Available

1992-09-01T23:59:59.000Z

118

Numerical Simulation Of Utility Boilers With Advanced Combustion Technologies  

E-Print Network (OSTI)

This paper presents calculations of a pulverized coal flame and a coal-fired utility boiler with advanced combustion technologies. A combustion model based on an extended Eddy Dissipation Concept (EDC) combined with finite rate chemistry is described and some applications are shown. This model can be regarded as an extension of the previously used Eddy Breakup model (EBU) where infinite fast chemistry is assumed. It is part of a 3D-prediction code for quasi-stationary turbulent reacting flows which is based on a conservative finite-volume solution procedure. Equations are solved for the conservation of mass, momentum and scalar quantities. A domain decomposition method is used to introduce locally refined grids. Validation and comparison of both combustion models are made by comparison with measurement data of a swirled flame with air staging in a semi-industrial pulverized coal combustion facility. The application to three-dimensional combustion systems is demonstrated by the simulati...

H. C. Magel; R. Schneider; B. Risio; U. Schnell; K. R. G. Hein

1995-01-01T23:59:59.000Z

119

FLAMELESS COMBUSTION APPLICATION FOR GAS TURBINE ENGINES IN THE AEROSPACE INDUSTRY.  

E-Print Network (OSTI)

??The objective of this thesis is to review the potential application of flameless combustion technology in aerospace gas turbine engines. Flameless combustion is a regime… (more)

OVERMAN, NICHOLAS

2006-01-01T23:59:59.000Z

120

Engine spray combustion modeling using unified spray model with dynamic mesh refinement.  

E-Print Network (OSTI)

??The primary objective of this study is to improve the spray and combustion modeling of internal combustion engines using dynamic mesh refinement. The first part… (more)

Kolakaluri, Ravi

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A homogenous combustion catalyst for fuel efficiency improvements in diesel engines fuelled with diesel and biodiesel.  

E-Print Network (OSTI)

??[Truncated abstract] The ferrous picrate based homogeneous combustion catalyst has been claimed to promote diesel combustion and improve fuel efficiency in diesel engines. However, the… (more)

Zhu, Mingming

2012-01-01T23:59:59.000Z

122

Pulsed jet combustion generator for premixed charge engines  

DOE Patents (OSTI)

A method and device for generating pulsed jets which will form plumes comprising eddie structures, which will entrain a fuel/air mixture from the head space of an internal combustion engine, and mixing this fuel/air mixture with a pre-ignited fuel/air mixture of the plumes thereby causing combustion of the reactants to occur within the interior of the eddie structures.

Oppenheim, A. K. (Berkeley, CA); Stewart, H. E. (Alameda, CA); Hom, K. (Hercules, CA)

1990-01-01T23:59:59.000Z

123

Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) Repowering Considerations  

NLE Websites -- All DOE Office Websites (Extended Search)

Weinstein & Travers: APFBC Repowering Considerations Weinstein & Travers: APFBC Repowering Considerations paper 970563 Page 1 of 35 Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) Repowering Considerations Richard E. Weinstein, P.E. Parsons Power Group Inc. Reading, Pennsylvania eMail: Richard_E_Weinstein@Parsons.COM / phone: 610 / 855-2699 Robert W. Travers, P.E. U.S. Department of Energy Office of Fossil Energy Germantown, Maryland eMail: Robert.Travers@HQ.DOE.GOV / phone: 301 / 903-6166 Weinstein & Travers: APFBC Repowering Considerations paper 970563 Page 2 of 35 Advanced Circulating Pressurized Fluidized Bed Combustion Repowering Considerations ABSTRACT ..............................................................................................................................................................................

124

Alcohol fuel conversion apparatus for internal combustion engines  

Science Conference Proceedings (OSTI)

An alcohol fuel conversion apparatus is described for internal combustion engines comprising: fuel storage means containing an alcohol fuel; primary heat exchanger means in fluid communication with the fuel storage means for transferring heat to pressurized alcohol contained within the heat exchanger means; a heat source for heating the heat exchange means; pressure relief valve means, in closed fluid communication with the primary heat exchange means, operable to release heated pressurized alcohol into an expansion chamber; converter means, including the expansion chamber, in fluid communication with the pressure relief valve means for receiving the heated pressurized alcohol and for the vaporization of the alcohol; carburetor means in fluid communication with the converter means for metering and mixing vaporized alcohol with air for proper combustion and for feeding the mixture to an internal combustion engine; and pump means for pressurized pumping of alcohol from the fuel storage means to the heat exchanger means, converter means, carburetor means, and to the engine.

Carroll, B.I.

1987-01-13T23:59:59.000Z

125

A combustion model for IC engine combustion simulations with multi-component fuels  

Science Conference Proceedings (OSTI)

Reduced chemical kinetic mechanisms for the oxidation of representative surrogate components of a typical multi-component automotive fuel have been developed and applied to model internal combustion engines. Starting from an existing reduced mechanism for primary reference fuel (PRF) oxidation, further improvement was made by including additional reactions and by optimizing reaction rate constants of selected reactions. Using a similar approach to that used to develop the reduced PRF mechanism, reduced mechanisms for the oxidation of n-tetradecane, toluene, cyclohexane, dimethyl ether (DME), ethanol, and methyl butanoate (MB) were built and combined with the PRF mechanism to form a multi-surrogate fuel chemistry (MultiChem) mechanism. The final version of the MultiChem mechanism consists of 113 species and 487 reactions. Validation of the present MultiChem mechanism was performed with ignition delay time measurements from shock tube tests and predictions by comprehensive mechanisms available in the literature. A combustion model was developed to simulate engine combustion with multi-component fuels using the present MultiChem mechanism, and the model was applied to simulate HCCI and DI engine combustion. The results show that the present multi-component combustion model gives reliable performance for combustion predictions, as well as computational efficiency improvements through the use of reduced mechanism for multi-dimensional CFD simulations. (author)

Ra, Youngchul; Reitz, Rolf D. [Engine Research Center, University of Wisconsin-Madison (United States)

2011-01-15T23:59:59.000Z

126

STATEMENT OF CONSIDERATIONS REQUEST BY CUMMINS ENGINE COMPANY, INC. FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CUMMINS ENGINE COMPANY, INC. FOR AN ADVANCE WAIVER CUMMINS ENGINE COMPANY, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-07NT43279; W(A)-08-032, CH-1423 The Petitioner, Cummins Engine Company, Inc, (Cummins) was awarded this cooperative agreement for the performance of work entitled, "Light Duty Efficient Clean Combustion", The goal of this program is to develop advanced combustion technologies demonstrating a 10% reduction in fuel consumption while meeting 2010 emission levels. Cummins will be evaluating a range of combustion technologies including pre-mix charged. compression ignition (PCCI) in-cylinder combustion and will be developing fuel sensing technology. The anticipated subsystems requiring performance enhancements to achieve the goals of this program include: fuel delivery; power

127

NETL: 2009 Conference Proceedings - Advanced Process Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Development PRESENTATIONS APECS Overview Advanced Process Engineering Co-Simulation for Design and Optimization of Fossil Energy Systems with Carbon Capture PDF-4MB Stephen E....

128

Advanced clean combustion technology in Shanxi province  

Science Conference Proceedings (OSTI)

Biomass energy resources in China are first described, along with biomass gasification R & D now underway. In Shanxi province biomass and other regenerative energy is relatively little used but coal resources are large. Hence Shanxi is mainly developing clean coal technology to meet its economic and environmental protection requirements. Clean combustion research at Taiyuan University of Technology includes cofiring of coal and RDF in FBC, gas purification and adsorption, fundamentals of plasma-aided coal pyrolysis and gasification and coal derived liquid fuels from synthesis gas. 5 refs.

Xie, K.-C. [Taiyuan University of Technology, Taiyuan (China)

2004-07-01T23:59:59.000Z

129

Dynamic instabilities in spark-ignited combustion engines with high exhaust gas recirculation  

DOE Green Energy (OSTI)

We propose a cycle-resolved dynamic model for combustion instabilities in spark-ignition engines operating with high levels of exhaust gas recirculation (EGR). High EGR is important for increasing fuel efficiency and implementing advanced low-emission combustion modes such as homogenous charge compression ignition (HCCI). We account for the complex combustion response to cycle-to-cycle feedback by utilizing a global probability distribution that describes the pre-spark state of in-cylinder fuel mixing. The proposed model does a good job of simulating combustion instabilities observed in both lean-fueling engine experiments and in experiments where nitrogen dilution is used to simulate some of the combustion inhibition of EGR. When used to simulate high internal EGR operation, the model exhibits a range of global bifurcations and chaos that appear to be very robust. We use the model to show that it should be possible to reduce high EGR combustion instabilities by switching from internal to external EGR. We also explain why it might be helpful to deliberately stratify the fuel in the pre-spark gas mixture. It might be possible to extend the simple approach used in this model to other chemical reaction systems with spatial inhomogeneity.

Daw, C Stuart [ORNL; FINNEY, Charles E A [ORNL

2011-01-01T23:59:59.000Z

130

Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines.  

E-Print Network (OSTI)

??A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption… (more)

Cho, Yeunwoo, 1973-

2004-01-01T23:59:59.000Z

131

CoalFleet Advanced Combustion IGCC Permits Database  

Science Conference Proceedings (OSTI)

The CoalFleet Advanced Combustion IGCC Permits Database presents comprehensive information on permitting requirements and permit conditions for Integrated Gasification Combined Cycle (IGCC) power plants in an online database format. This Technical Update is a compilation of the Database contents as of March 31, 2008.

2008-04-11T23:59:59.000Z

132

The railplug: Development of a new ignitor for internal combustion engines. Final report  

DOE Green Energy (OSTI)

A three year investigation of a new type of ignitor for internal combustion engines has been performed using funds from the Advanced Energy Projects Program of The Basic Energy Sciences Division of the U.S. Department of Energy and with matching funding from Research Applications, Inc. This project was a spin-off of {open_quotes}Star Wars{close_quotes} defense technology, specifically the railgun. The {open_quotes}railplug{close_quotes} is a miniaturized railgun which produces a high velocity plume of plasma that is injected into the combustion chamber of an engine. Unlike other types of alternative ignitors, such as plasma jet ignitors, electromagnetic forces enhance the acceleration of the plasma generated by a railplug. Thus, for a railplug, the combined effects of electromagnetic and thermodynamic forces drive the plasma into the combustion chamber. Several engine operating conditions or configurations can be identified that traditionally present ignition problems, and might benefit from enhanced ignition systems. One of these is ultra-lean combustion in spark ignition (SI) engines. This concept has the potential for lowering emissions of NOx while simultaneously improving thermal efficiency. Unfortunately, current lean burn engines cannot be operated sufficiently lean before ignition related problems are encountered to offer any benefits. High EGR engines have similar potential for emissions improvement, but also experience similar ignition problems, particularly at idle. Other potential applications include diesel cold start, alcohol and dual fuel engines, and high altitude relight of gas turbines. The railplug may find application for any of the above. This project focused on three of these potential applications: lean burn SI engines, high EGR SI engines, and diesel cold start.

Matthews, R.D.; Nichols, S.P.; Weldon, W.F.

1994-11-29T23:59:59.000Z

133

Fatigue of Advanced Materials  

Science Conference Proceedings (OSTI)

Oct 19, 2011... isolate the internal components from the external environment while ... overall thermal efficiency of advanced internal combustion engines ...

134

Vehicle Technologies Office: FY 2005 Progress Report for Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Progress Report 5 Progress Report for Advanced Combustion Engine Technologies to someone by E-mail Share Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Facebook Tweet about Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Twitter Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Google Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Delicious Rank Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Digg Find More places to share Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on

135

Vehicle Technologies Office: FY 2006 Progress Report for Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Progress Report 6 Progress Report for Advanced Combustion Engine Technologies to someone by E-mail Share Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Facebook Tweet about Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Twitter Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Google Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Delicious Rank Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Digg Find More places to share Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on

136

Water distillation using waste engine heat from an internal combustion engine  

E-Print Network (OSTI)

To meet the needs of forward deployed soldiers and disaster relief personnel, a mobile water distillation system was designed and tested. This system uses waste engine heat from the exhaust flow of an internal combustion ...

Mears, Kevin S

2006-01-01T23:59:59.000Z

137

Numerical modeling of hydrogen-fueled internal combustion engines  

DOE Green Energy (OSTI)

The planned use of hydrogen as the energy carrier of the future introduces new challenges and opportunities, especially to the engine design community. Hydrogen is a bio-friendly fuel that can be produced from renewable resources and has no carbon dioxide combustion products; and in a properly designed ICE, almost zero NO{sub x} and hydrocarbon emissions can be achieved. Because of the unique properties of hydrogen combustion - in particular the highly wrinkled nature of the laminar flame front due to the preferential diffusion instability - modeling approaches for hydrocarbon gaseous fuels are not generally applicable to hydrogen combustion. This paper reports on the current progress to develop a engine design capability based on KIVA family of codes for hydrogen-fueled, spark-ignited engines in support of the National Hydrogen Program. A turbulent combustion model, based on a modified eddy-turnover model in conjunction with an intake flow valve model, is found to describe well the efficiency and NO{sub x} emissions of this engine satisfy the Equivalent Zero Emission Vehicle (EZEV) standard established by the California Resource Board. 26 refs., 10 figs., 1 tab.

Johnson, N.L.; Amsden, A.A.

1996-12-31T23:59:59.000Z

138

Causes of Combustion Instabilities with Passive and Active Methods of Control for practical application to Gas Turbine Engines.  

E-Print Network (OSTI)

??Combustion at high pressure in applications such as rocket engines and gas turbine engines commonly experience destructive combustion instabilities. These instabilities results from interactions between… (more)

Cornwell, Michael

2011-01-01T23:59:59.000Z

139

Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start  

DOE Patents (OSTI)

A method and apparatus for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO.sub.2 is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine.

Janata, Jiri (Richland, WA); McVay, Gary L. (Richland, WA); Peden, Charles H. (West Richland, WA); Exarhos, Gregory J. (Richland, WA)

1998-01-01T23:59:59.000Z

140

FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES  

DOE Green Energy (OSTI)

In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for today’s engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.

Don Ferguson; Geo. A. Richard; Doug Straub

2008-06-13T23:59:59.000Z

Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fuel injector nozzle for an internal combustion engine  

DOE Green Energy (OSTI)

A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

Cavanagh, Mark S. (Bloomington, IL); Urven, Jr., Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

2008-11-04T23:59:59.000Z

142

Siemens Westinghouse Advanced Turbine Systems Program Final Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

development concentrated on the following areas: aerodynamic design, combustion, heat transfercooling design, engine mechanical design, advanced alloys, advanced coating...

143

DEMONSTRATION OF ADVANCED COMBUSTION NO X CONTROL TECHNIQUES  

NLE Websites -- All DOE Office Websites (Extended Search)

ADVANCED COMBUSTION NO ADVANCED COMBUSTION NO X CONTROL TECHNIQUES FOR A WALL-FIRED BOILER PROJECT PERFORMANCE SUMMARY CLEAN COAL TECHNOLOGY DEMONSTRATION PROGRAM JANUARY 2001 SOUTHERN COMPANY SERVICES, INC. DOE/FE-0429 Disclaimer This report was prepared using publicly available information, including the Final Technical Report and other reports prepared pursuant to a cooperative agreement partially funded by the U.S. Department of Energy. Neither the United States Government nor any agency, employee, contractor, or representative thereof, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately

144

Anti-overrunning device for an internal combustion engine  

Science Conference Proceedings (OSTI)

An anti-overrunning device is described for an internal combustion engine, comprising: (a) a carburetor having a venture passage for a fuel and air mixture, (b) a throttle valve in the passage movable to open and closed positions to regulate the effective area of the passage, (c) an actuator including a diaphragm responsive to pneumatic pressure operatively connected to the throttle valve, (d) an inertial pump comprising a housing having a weighted diaphragm mounted on an engine and subject to engine vibrations to develop pneumatic pressure, the inertial pump having an outlet connection to the actuator, and (e) a vibration sensor valve interposed in the outlet connection between the inertial pump and the actuator responsive to excessive vibration of the engine to connect the pump pressure to the actuator to cause movement of the throttle valve in a closing direction to reduce the speed of the engine.

Sejimo, Y.; Tsubai, T.; Tobinai, T.

1989-03-07T23:59:59.000Z

145

Anti-overrunning device for an internal combustion engine  

SciTech Connect

An anti-overrunning device for an internal combustion engine is described, consisting of (a) a carburetor having a venturi passage for a fuel and air mixture, (b) a throttle valve in the passage movable to open and closed positions to regulate the effective area of the passage, (c) an actuator including a diaphragm responsive to pneumatic pressure operatively connected to the throttle valve, (d) an inertial pump comprising a housing having a weighted diaphragm mounted on an engine and subject to engine vibrations to develop pneumatic pressure, the inertial pump having an inlet to receive atmospheric air and an outlet connected to the actuator, and (e) a vibration sensor in communication with the inertial pump inlet responsive to excessive vibration of the engine to connect the inlet to atmosphere to initiate pumping air from the outlet to the actuator to cause movement of the actuator diaphragm and the throttle valve in a closing direction to reduce the speed of the engine.

Sejimo, Y.; Tsubai, T.; Tobinai, T.

1989-03-07T23:59:59.000Z

146

ADVANCED DIESEL ENGINE AND AFTERTREATMENT TECHNOLOGY DEVELOPMENT FOR TIER 2 EMISSIONS  

DOE Green Energy (OSTI)

Advanced diesel engine and aftertreatment technologies have been developed for multiple engine and vehicle platforms. Tier 2 (2007 and beyond) emissions levels have been demonstrated for a light truck vehicle over a FTP-75 test cycle on a vehicle chassis dynamometer. These low emissions levels are obtained while retaining the fuel economy advantage characteristic of diesel engines. The performance and emissions results were achieved by integrating advanced combustion strategies (CLEAN Combustion{copyright}) with prototype aftertreatment systems. CLEAN Combustion{copyright} allows partial control of exhaust species for aftertreatment integration in addition to simultaneous NOx and PM reduction. Analytical tools enabled the engine and aftertreatment sub-systems development and system integration. The experimental technology development methodology utilized a range of facilities to streamline development of the eventual solution including utilization of steady state and transient dynamometer test-beds to simulate chassis dynamometer test cycles.

Aneja, R.; Bolton, B; Oladipo, A; Pavlova-MacKinnon, Z; Radwan, A

2003-08-24T23:59:59.000Z

147

Ceramic Technology for Advanced Heat Engines Project  

DOE Green Energy (OSTI)

The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

Not Available

1990-08-01T23:59:59.000Z

148

Advanced Biofuels: How Scientists are Engineering Bacteria to...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America December 6, 2011 -...

149

Advanced Combustion Systems for Next Generation Gas Turbines  

SciTech Connect

Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program. Emissions measurements were obtained over a variety of operating conditions. A kinetics model is formulated to describe the emissions performance. The model is a tool for determining the conditions for low emission performance. The flow field was also modeled using CFD. A first prototype was developed for low emission performance on natural gas. The design utilized the tools anchored to the atmospheric prototype performance. The 1/6 scale combustor was designed for low emission performance in GE's FA+e gas turbine. A second prototype was developed to evaluate changes in the design approach. The prototype was developed at a 1/10 scale for low emission performance in GE's FA+e gas turbine. The performance of the first two prototypes gave a strong indication of the best design approach. Review of the emission results led to the development of a 3rd prototype to further reduce the combustor emissions. The original plan to produce a scaled-up prototype was pushed out beyond the scope of the current program. The 3rd prototype was designed at 1/10 scale and targeted further reductions in the full-speed full-load emissions.

Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

2006-01-01T23:59:59.000Z

150

Pulsed jet combustion generator for non-premixed charge engines  

DOE Patents (OSTI)

A device for introducing fuel into the head space of cylinder of non-premixed charge (diesel) engines is disclosed, which distributes fuel in atomized form in a plume, whose fluid dynamic properties are such that the compression heated air in the cylinder head space is entrained into the interior of the plume where it is mixed with and ignites the fuel in the plume interior, to thereby control combustion, particularly by use of a multiplicity of individually controllable devices per cylinder.

Oppenheim, A. K. (Berkeley, CA); Stewart, H. E. (Alameda, CA)

1990-01-01T23:59:59.000Z

151

Partially-Premixed Flames in Internal Combustion Engines  

DOE Green Energy (OSTI)

This was a joint university-industry research program funded by the Partnerships for the Academic-Industrial Research Program (PAIR). The research examined partially premixed flames in laboratory and internal combustion engine environments at Vanderbilt University, University of Michigan, and General Motors Research and Development. At Vanderbilt University, stretched and curved ''tubular'' premixed flames were measured in a unique optically accessible burner with laser-induced spontaneous Raman scattering. Comparisons of optically measured temperature and species concentration profiles to detailed transport, complex chemistry simulations showed good correspondence at low-stretch conditions in the tubular flame. However, there were significant discrepancies at high-stretch conditions near flame extinction. The tubular flame predictions were found to be very sensitive to the specific hydrogen-air chemical kinetic mechanism and four different mechanisms were compared. In addition, the thermo-diffusive properties of the deficient reactant, H2, strongly affected the tubular flame structure. The poor prediction near extinction is most likely due to deficiencies in the chemical kinetic mechanisms near extinction. At the University of Michigan, an optical direct-injected engine was built up for laser-induced fluorescence imaging experiments on mixing and combustion under stratified charge combustion conditions with the assistance of General Motors. Laser attenuation effects were characterized both experimentally and numerically to improve laser imaging during the initial phase of the gasoline-air mixture development. Toluene was added to the isooctane fuel to image the fuel-air equivalence ratio in an optically accessible direct-injected gasoline engine. Temperature effects on the toluene imaging of fuel-air equivalence ratio were characterized. For the first time, oxygen imaging was accomplished in an internal combustion engine by combination of two fluorescence trackers, toluene and 3-pentanone. With this method, oxygen, fuel and equivalence ratio were measured in the cylinder. At General Motors, graduate students from the University of Michigan and Vanderbilt University worked with GM researchers to develop high-speed imaging methods for optically accessible direct-injection engines. Spark-emission spectroscopy was combined with high-speed spectrally-resolved combustion imaging in a direct-injected engine.

Robert W. Pitz; Michael C. Drake; Todd D. Fansler; Volker Sick

2003-11-05T23:59:59.000Z

152

Elimination of abnormal combustion in a hydrogen-fueled engine  

DOE Green Energy (OSTI)

This report covers the design, construction, and testing of a dedicated hydrogen-fueled engine. Both part-load and full-load data were taken under laboratory conditions. The engine design included a billet aluminum single combustion chamber cylinder-head with one intake valve, two sodium coiled exhaust valves, and two spark plugs. The cylinder-head design also included drilled cooling passages. The fuel-delivery system employed two modified Siemens electrically actuated fuel injectors, The exhaust system included two separate headers, one for each exhaust port. The piston/ring combination was designed specifically for hydrogen operation.

Swain, M.R.; Swain, M.N. [Analytical Technologies, Inc., Miami, FL (United States)

1995-11-01T23:59:59.000Z

153

Water cooled scavenged crankcase type otto internal combustion engine  

Science Conference Proceedings (OSTI)

In a system for a water cooled scavenged crankcase type two-cycle internal combustion engine comprising: a heat reclaimation system for extracting heat from an engine jacket for heating water supplied form an add-on reservoir via a heat exchanger located within the engine cylinder cooling system, the water being subsequently additionally heated by an exhaust pipe type heat exchanger to a superheated steam state and thence conveyed by a conduit to a steam lubricator for adjustably conveying in variably timed spaced succession intervals of regulated droplets of high viscous oil, fortified with adde graphite and tallow enrichment lubricant ingredients, and thence conveying such by steam at atmospheric pressure into an intake manifold which receives a carbureted air/fuel mixture into the crankcase via a manually operated auxiliary air intake device and way check valve and fire screen, due to suction effect of the piston up stroke action of the piston during engine operation.

Bidwell, H.

1988-10-25T23:59:59.000Z

154

Research on the Performance and Emission of a Port Fuel Injection Hydrogen Internal Combustion Engine  

Science Conference Proceedings (OSTI)

A 2.0L nature aspirate gasoline engine was modified to port fuel injection (PFI) hydrogen internal combustion engine (HICE) and a series dynamometer tests were carried out. The in-cylinder combustion process was analyzed, the performance, thermal efficiency ... Keywords: hydrogen ICE, performance, emission, combustion characteristics

Dawei Sun; Fushui Liu

2011-02-01T23:59:59.000Z

155

Research on the Performance and Emission of a Port Fuel Injection Hydrogen Internal Combustion Engine  

Science Conference Proceedings (OSTI)

A 2.0L nature aspirate gasoline engine was modified to port fuel injection (PFI) hydrogen internal combustion engine (HICE) and a series dynamometer tests were carried out. The in-cylinder combustion process was analyzed, the performance, thermal efficiency ... Keywords: hydrogen ICE, performance, emission, combustion characteristics

Dawei Sun; Fushui Liu

2010-12-01T23:59:59.000Z

156

Ceramic Technology For Advanced Heat Engines Project  

DOE Green Energy (OSTI)

Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.

Not Available

1990-12-01T23:59:59.000Z

157

Economics of electron beam and electrical discharge processing for post-combustion NO{sub x} control in internal combustion engines  

DOE Green Energy (OSTI)

This paper discusses the physics and chemistry of non-thermal plasma processing for post-combustion NO{sub x} control in internal combustion engines. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO{sub x} removal mechanisms, and by-product formation. Pollution control applications present a good opportunity for transferring pulsed power techniques to the commercial sector. However, unless advances are made to drastically reduce the price and power consumption of electron beam sources and pulsed power systems, these plasma techniques will not become commercially competitive with conventional thermal or surface-catalytic methods.

Penetrante, B.M.

1993-08-02T23:59:59.000Z

158

Advanced Engineering Preliminary Program Planning, Rough Draft  

SciTech Connect

The purpose of this document is to assembly certain job elements which may become part of the Advanced Engineerng Subsection programs, so that those individuals who may be requested to participate in such programs may be aware of the nature and form of Advanced Engineering planning.

Towle, H.C.

1961-04-20T23:59:59.000Z

159

Effect of market fuel variation and cetane improvers on CAI combustion in a GDI engine  

E-Print Network (OSTI)

There is continued interest in improving the fuel conversion efficiency of internal combustion engines and simultaneously reducing their emissions. One promising technology is that of Controlled Auto Ignition (CAI) combustion. ...

Cedrone, Kevin David

2010-01-01T23:59:59.000Z

160

Modeling the lubrication of the piston ring pack in internal combustion engines using the deterministic method  

E-Print Network (OSTI)

Piston ring packs are used in internal combustion engines to seal both the high pressure gas in the combustion chamber and the lubricant oil in the crank case. The interaction between the piston ring pack and the cylinder ...

Chen, Haijie

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A coal-water slurry fueled internal combustion engine and method for operating same  

DOE Patents (OSTI)

An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

McMillian, M.H.

1992-12-31T23:59:59.000Z

162

Coal-water slurry fuel internal combustion engine and method for operating same  

SciTech Connect

An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

McMillian, Michael H. (Fairmont, WV)

1992-01-01T23:59:59.000Z

163

Characterization of Single-Cylinder Small-Bore 4-Stroke CIDI Engine Combustion  

DOE Green Energy (OSTI)

Direct injection diesel engines power most of the heavy-duty vehicles. Due to their superior fuel economy, high power density and low carbon dioxide emissions, turbocharged, small bore, high speed, direct injection diesel engines are being considered to power light duty vehicles. Such vehicles have to meet stringent emission standards. However, it is difficult to meet these standards by modifying the in-cylinder thermodynamic and combustion processes to reduce engine-out emissions. After-treatment devices will be needed to achieve even lower emission targets required in the production engines to account for the anticipated deterioration after long periods of operation in the field. To reduce the size, mass and cost of the after-treatment devices, there is a need to reduce engine-out emissions and optimize both the engine and the aftertreatment devices as one integrated system. For example, the trade-off between engine-out NOx and PM, suggests that one of these species can be minimized in the engine, with a penalty in the other, which can be addressed efficiently in the after-treatment devices. Controlling engine-out emissions can be achieved by optimizing many engine design and operating parameters. The design parameters include, but are not limited to, the type of injection system: (CRS) Common Rail System, (HEUI ) Hydraulically Actuated and Electronically controlled Unit Injector, or (EUI) Electronic Unit Injector; engine compression ratio, combustion chamber design (bowl design), reentrance geometry, squish area and intake and exhaust ports design. With four-valve engines, the swirl ratio depends on the design of both the tangential and helical ports and their relative locations. For any specific engine design, the operating variables need also to be optimized. These include injection pressure, injection rate, injection duration and timing (pilot, main, and post injection), EGR ratio, and swirl ratio. The goal of the program is to gain a better understanding of the spray behavior under high injection pressures in small-bore, high compression ratio, high-speed, direct-injection diesel engines equipped with advanced fuel injection system. The final results demonstrate the capability of the engine in reducing the engine-out emissions and improve the trade-off between nitrogen oxides (NOx), particulate matter, other emissions and fuel economy. This report introduces a new phenomenological model for the fuel distribution and combustion, and emissions formation in the small bore, high speed, direct injection diesel engine. This will be followed by an analysis of the effect of each of injection pressure, EGR, injection advance and retard and swirl ratio on engine-out emissions and fuel economy. A discussion will be given on the 2-D and 3-D trade of maps. Finally a discussion will be made on the low temperature combustion regimes, its major problems and proposed solutions.

Henein, N A

2005-11-30T23:59:59.000Z

164

Multiple fuel supply system for an internal combustion engine  

DOE Patents (OSTI)

A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

Crothers, William T. (Sunol, CA)

1977-01-01T23:59:59.000Z

165

Fuel property effects on engine combustion processes. Final report  

DOE Green Energy (OSTI)

A major obstacle to improving spark ignition engine efficiency is the limitations on compression ratio imposed by tendency of hydrocarbon fuels to knock (autoignite). A research program investigated the knock problem in spark ignition engines. Objective was to understand low and intermediate temperature chemistry of combustion processes relevant to autoignition and knock and to determine fuel property effects. Experiments were conducted in an optically and physically accessible research engine, static reactor, and an atmospheric pressure flow reactor (APFR). Chemical kinetic models were developed for prediction of species evolution and autoignition behavior. The work provided insight into low and intermediate temperature chemistry prior to autoignition of n-butane, iso-butane, n-pentane, 1-pentene, n-heptane, iso-octane and some binary blends. Study of effects of ethers (MTBE, ETBE, TAME and DIPE ) and alcohols (methanol and ethanol) on the oxidation and autoignition of primary reference fuel (PRF) blends.

Cernansky, N.P.; Miller, D.L.

1995-04-27T23:59:59.000Z

166

Hydrogen-Assisted IC Engine Combustion as a Route to Hydrogen Implementation  

DOE Green Energy (OSTI)

The 'Freedom Car' Initiative announced by the Bush Administration has placed a significant emphasis on development of a hydrogen economy in the United States. While the hydrogen-fueled fuel-cell vehicle that is the focus of the 'Freedom Car' program would rely on electrochemical energy conversion, and despite the large amount of resources being devoted to its objectives, near-term implementation of hydrogen in the transportation sector is not likely to arise from fuel cell cars. Instead, fuel blending and ''hydrogen-assisted'' combustion are more realizable pathways for wide-scale hydrogen utilization within the next ten years. Thus, a large potential avenue for utilization of hydrogen in transportation applications is through blending with natural gas, since there is an existing market for natural-gas vehicles of various classes, and since hydrogen can provide a means of achieving even stricter emissions standards. Another potential avenue is through use of hydrogen to 'assist' diesel combustion to permit alternate combustion strategies that can achieve lower emissions and higher efficiency. This project focused on developing the underlying fundamental information to support technologies that will facilitate the introduction of coal-derived hydrogen into the market. Two paths were envisioned for hydrogen utilization in transportation applications. One is for hydrogen to be mixed with other fuels, specifically natural gas, to enhance performance in existing natural gas-fueled vehicles (e.g., transit buses) and provide a practical and marketable avenue to begin using hydrogen in the field. A second is to use hydrogen to enable alternative combustion modes in existing diesel engines, such as homogeneous charge compression ignition, to permit enhanced efficiency and reduced emissions. Thus, this project on hydrogen-assisted combustion encompassed two major objectives: (1) Optimization of hydrogen-natural gas mixture composition and utilization through laboratory studies of spark-ignition engine operation on H{sub 2}-NG and numerical simulation of the impact of hydrogen blending on the physical and chemical processes within the engine; and (2) Examination of hydrogen-assisted combustion in advanced compression-ignition engine processes. To that end, numerical capabilities were applied to the study of hydrogen assisted combustion and experimental facilities were developed to achieve the project objectives.

Andre Boehman; Daniel Haworth

2008-09-30T23:59:59.000Z

167

Combustion Stability in Complex Engineering Flows | Argonne Leadership  

NLE Websites -- All DOE Office Websites (Extended Search)

Instantaneous contours of temperature from large eddy simulation Instantaneous contours of temperature from large eddy simulation Instantaneous contours of temperature from large eddy simulation of a hypersonic scramjet combustor at Mach 8 flight conditions. Ethylene fuel is introduced through injection ports at the upper left and mixes with air at supersonic speeds. Flow separation and recirculation in the open cavity encourages fuel/air mixing and stable combustion. To maintain hypersonic flight, the fuel must be mixed, ignited, and burned to completion all within a few milliseconds. Cascade Technologies, Inc. Combustion Stability in Complex Engineering Flows PI Name: Lee Shunn PI Email: shunn@cascadetechnologies.com Institution: Cascade Technologies, Inc. Allocation Program: INCITE Allocation Hours at ALCF: 35 Million

168

Combustion Process in a Spark Ignition Engine: Analysis of Cyclic Maximum Pressure and Peak Pressure Angle  

E-Print Network (OSTI)

In this paper we analyze the cycle-to-cycle variations of maximum pressure $p_{max}$ and peak pressure angle $\\alpha_{pmax}$ in a four-cylinder spark ignition engine. We examine the experimental time series of $p_{max}$ and $\\alpha_{pmax}$ for three different spark advance angles. Using standard statistical techniques such as return maps and histograms we show that depending on the spark advance angle, there are significant differences in the fluctuations of $p_{max}$ and $\\alpha_{pmax}$. We also calculate the multiscale entropy of the various time series to estimate the effect of randomness in these fluctuations. Finally, we explain how the information on both $p_{max}$ and $\\alpha_{pmax}$ can be used to develop optimal strategies for controlling the combustion process and improving engine performance.

G. Litak; T. Kaminski; J. Czarnigowski; A. K. Sen; M. Wendeker

2006-11-29T23:59:59.000Z

169

Automatic fault diagnosis of internal combustion engine based on spectrogram and artificial neural network  

Science Conference Proceedings (OSTI)

This paper presents a signal analysis technique for internal combustion (IC) engine fault diagnosis based on the spectrogram and artificial neural network (ANN). Condition monitoring and fault diagnosis of IC engine through acoustic signal analysis is ... Keywords: acoustic analysis, fault diagnosis, internal combustion engine

Sandeep Kumar Yadav; Prem Kumar Kalra

2010-04-01T23:59:59.000Z

170

MECH 410N Outline-2010.doc MECH 410N -Internal Combustion Engines  

E-Print Network (OSTI)

MECH 410N Outline-2010.doc 01/09/2010 MECH 410N - Internal Combustion Engines COURSE OUTLINE 1-IGNITION ENGINES 2.1. Air-Standard & Fuel-Air Cycle analysis 2.2. Performance Criteria 2.3. SI Engine Combustion 3.2. The Limited Pressure Cycle 3.3. The fuel-air cycle with complete combustion 3.4. Turbocharged

171

Advanced Process Engineering Co-simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 AdvAnced Process engineering co-simulAtion Description The National Energy Technology Laboratory (NETL) and its R&D collaboration partners are developing the Advanced Process Engineering Co-Simulator (APECS) as an innovative software tool that combines process simulation with high-fidelity equipment models based on computational fluid dynamics (CFD). Winner of a 2004 R&D 100 Award and a 2007 Federal Laboratory Consortium (FLC) Excellence in Technology Transfer Award, this powerful co-simulation technology, for the first time, provides the necessary level of detail and accuracy essential for engineers to analyze and optimize the coupled fluid flow, heat and mass transfer, and chemical reactions that drive overall plant performance. Combined with advanced visualization and high-performance computing,

172

Large bore natural gas engine performance improvements and combustion stabilization through reformed natural gas precombustion chamber fueling.  

E-Print Network (OSTI)

??Lean combustion is a standard approach used to reduce NOx emissions in large bore natural gas engines. However, at lean operating points, combustion instabilities and… (more)

Ruter, Matthew D.

2010-01-01T23:59:59.000Z

173

Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines  

E-Print Network (OSTI)

A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption that the multi-grade oil can be modeled as a compound of several ...

Cho, Yeunwoo, 1973-

2004-01-01T23:59:59.000Z

174

Influence of the molecular structure of biofuels on combustion in a compression ignition engine.  

E-Print Network (OSTI)

??This thesis presents an experimental study on the influence of the molecular structure of potential biofuels on combustion in a compression ignition engine. The molecular… (more)

Schönborn, A.

2009-01-01T23:59:59.000Z

175

Exhaust gas recirculation system for an internal combustion engine  

SciTech Connect

An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

Wu, Ko-Jen

2013-05-21T23:59:59.000Z

176

Compatibility of alternative fuels with advanced automotive gas-turbine and Stirling engines. A literature survey  

DOE Green Energy (OSTI)

The application of alternative fuels in advanced automotive gas turbine and Stirling engines is discussed on the basis of a literature survey. These alternative engines are briefly described, and the aspects that will influence fuel selection are identified. Fuel properties and combustion properties are discussed, with consideration given to advanced materials and components. Alternative fuels from petroleum, coal, oil shale, alcohol, and hydrogen are discussed, and some background is given about the origin and production of these fuels. Fuel requirements for automotive gas turbine and Stirling engines are developed, and the need for certain research efforts is discussed. Future research efforts planned at Lewis are described. 52 references.

Cairelli, J.; Horvath, D.

1981-05-01T23:59:59.000Z

177

Computational study of homogeneous and stratified combustion in a compressed natural gas direct injection engine  

Science Conference Proceedings (OSTI)

In recent years, the type of combustion occurred within engine cylinder plays an important role determining the performance and emissions. In the present study, the computational investigation was performed in order to compare characteristics of homogeneous ... Keywords: compressed natural gas, direct injection, exhaust emissions, homogeneous combustion, stratified combustion

S. Abdullah; W. H. Kurniawan; M. A. Al-Rawi; Y. Ali; T. I. Mohamad

2009-02-01T23:59:59.000Z

178

FY2001 Progress Report for Combusion and Emission Control for Advanced CIDI Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

COMBUSTION AND COMBUSTION AND EMISSION CONTROL FOR ADVANCED CIDI ENGINES 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory and QSS Group, Inc., for their artistic, editorial and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2001 Progress Report for Combustion and Emission Control for Advanced CIDI Engines

179

ALS Ceramics Materials Research Advances Engine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C. Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals

180

ALS Ceramics Materials Research Advances Engine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 LBNL senior materials scientist and UC Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals and composites, Ritchie has illuminated groundbreaking cracking patterns and the underlying mechanistic processes using the x-ray synchrotron micro-tomography at ALS Beamline 8.3.2. Summary Slide ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter.

Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ALS Ceramics Materials Research Advances Engine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C. Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals

182

Development of Computation Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Computation Capabilities Computation Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems Background Staged combustion is a method of reducing nitrogen oxide (NO x ) emissions in boilers by controlling the combustion mixture of air and fuel. Its process conditions are particularly corrosive to lower furnace walls. Superheaters and/or reheaters are often employed in the upper furnace to reuse hot combustion gasses to further raise the

183

Impact of retarded spark timing on engine combustion, hydrocarbon emissions, and fast catalyst light-off  

E-Print Network (OSTI)

An experimental study was performed to determine the effects of substantial spark retard on engine combustion, hydrocarbon (HC) emissions, feed gas enthalpy, and catalyst light-off. Engine experiments were conducted at ...

Hallgren, Brian E. (Brian Eric), 1976-

2005-01-01T23:59:59.000Z

184

Combustion lean limits fundamentals and their application to a SI hydrogen-enhanced engine concept  

E-Print Network (OSTI)

Operating an engine with excess air, under lean conditions, has significant benefits in terms of increased engine efficiency and reduced emissions. However, under high dilution levels, a lean limit is reached where combustion ...

Ayala, Ferran A. (Ferran Alberto), 1976-

2006-01-01T23:59:59.000Z

185

Ceramic technology for Advanced Heat Engines Project  

DOE Green Energy (OSTI)

Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

Johnson, D.R.

1991-07-01T23:59:59.000Z

186

Coal slurry combustion optimization on single cylinder engine. Task 1.1.2.2.2, Combustion R&D  

DOE Green Energy (OSTI)

Under the sponsorship of the US Department of Energy, Morgantown Energy Technology Center, GE Transportation System has been conducting a proof of concept program to use coal water slurry (CWS) fuel to power a diesel engine locomotive since 1988. As reported earlier [1], a high pressure electronically controlled accumulator injector using a diamond compact insert nozzle was developed for this project. The improved reliability and durability of this new FIE allowed for an improved and more thorough study of combustion of CWS fuel in a diesel engine. It was decided to include a diesel pilot fuel injector in the combustion system mainly due to engine start and low load operation needs. BKM, Inc. of San Diego, CA was contracted to develop the electronic diesel fuel pilot/starting FIE for the research engine. As a result, the experimental combustion study was very much facilitated due to the ability of changing pilot/CWS injection timings and quantities without having to stop the engine. Other parameters studied included combustion chamber configuration (by changing CWS fuel injector nozzle hole number/shape/angle), as well as injection pressure. The initial phase of this combustion study is now complete. The results have been adopted into the design of a 12 cylinder engine FIE, to be tested in 1992. This paper summarizes the main findings of this study.

Not Available

1992-09-01T23:59:59.000Z

187

Towards a detailed soot model for internal combustion engines  

Science Conference Proceedings (OSTI)

In this work, we present a detailed model for the formation of soot in internal combustion engines describing not only bulk quantities such as soot mass, number density, volume fraction, and surface area but also the morphology and chemical composition of soot aggregates. The new model is based on the Stochastic Reactor Model (SRM) engine code, which uses detailed chemistry and takes into account convective heat transfer and turbulent mixing, and the soot formation is accounted for by SWEEP, a population balance solver based on a Monte Carlo method. In order to couple the gas-phase to the particulate phase, a detailed chemical kinetic mechanism describing the combustion of Primary Reference Fuels (PRFs) is extended to include small Polycyclic Aromatic Hydrocarbons (PAHs) such as pyrene, which function as soot precursor species for particle inception in the soot model. Apart from providing averaged quantities as functions of crank angle like soot mass, volume fraction, aggregate diameter, and the number of primary particles per aggregate for example, the integrated model also gives detailed information such as aggregate and primary particle size distribution functions. In addition, specifics about aggregate structure and composition, including C/H ratio and PAH ring count distributions, and images similar to those produced with Transmission Electron Microscopes (TEMs), can be obtained. The new model is applied to simulate an n-heptane fuelled Homogeneous Charge Compression Ignition (HCCI) engine which is operated at an equivalence ratio of 1.93. In-cylinder pressure and heat release predictions show satisfactory agreement with measurements. Furthermore, simulated aggregate size distributions as well as their time evolution are found to qualitatively agree with those obtained experimentally through snatch sampling. It is also observed both in the experiment as well as in the simulation that aggregates in the trapped residual gases play a vital role in the soot formation process. (author)

Mosbach, Sebastian; Celnik, Matthew S.; Raj, Abhijeet; Kraft, Markus [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Zhang, Hongzhi R. [Department of Chemical Engineering, University of Utah, 1495 East 100 South, Kennecott Research Building, Salt Lake City, UT 84112 (United States); Kubo, Shuichi [Frontier Research Center, Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan); Kim, Kyoung-Oh [Higashifuji Technical Center, Toyota Motor Corporation, Mishuku 1200, Susono, Shizuoka 480-1193 (Japan)

2009-06-15T23:59:59.000Z

188

Experimental Study of Air-Fuel Ratio Control Strategy for a Hydrogen Internal Combustion Engine  

Science Conference Proceedings (OSTI)

One of the most attractive combustive features for hydrogen fuel is its wide range of flammability. The wide flammability limits allow hydrogen engine to be operated at extremely lean air–fuel ratios compared to conventional fuels. Concepts for ... Keywords: Hydrogen internal combustion engine, Air/Fuel ratio, Control strategy

Zhong-yu Zhao; Fu-shui Liu

2010-11-01T23:59:59.000Z

189

Ceramic technology for advanced heat engines  

DOE Green Energy (OSTI)

The Ceramic Technology Project was initiated in 1983 for the purpose of developing highly reliable structural ceramics for applications in advanced heat engines, such as automotive gas turbines and advanced heavy duty diesel engines. The reliability problem was determined to be a result of uncontrolled populations of processing flaws in the brittle, flaw-sensitive materials, along with microstructural features, such as grain boundary phases, that contribute to time dependent strength reduction in service at high temperatures. The approaches taken to develop high reliability ceramics included the development of tougher materials with greater tolerance to microstructural flaws, the development of advanced processing technology to minimize the size and number of flaws, and the development of mechanical testing methodology and the characterization of time dependent mechanical behavior, leading to a life prediction methodology for structural ceramics. The reliability goals of the program were largely met by 1993, but commercial implementation of ceramic engine components has been delayed by the high cost of the components. A new effort in Cost Effective Ceramics for Heat Engines was initiated in 1993 and is expected to develop the manufacturing technology leading to an order of magnitude cost reduction. The program has been planned for a five year period.

Johnson, D.R. [Oak Ridge National Lab., TN (United States); Schulz, R.B. [Dept. of Energy, Washington, DC (United States)

1994-10-01T23:59:59.000Z

190

Review of Heavy-Duty Engine Combustion Research at Sandia National Laboratories  

DOE Green Energy (OSTI)

The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine facility is under development. Recent experimental results to be discussed are: the effects of injection timing and diluent addition on late-combustion soot burnout, diesel-spray ignition and premixed-burn behavior, a comparison of the combustion characteristics of M85 (a mixture of 85% methanol and 15% gasoline) and DF2 (No.2 diesel reference fuel), and a description of our HCCI experimental program and modeling work.

Robert W. Carling; Gurpreet Singh

2000-06-19T23:59:59.000Z

191

Oxy-Combustion Environment Characterization: Fire- and Steam-Side Corrosion in Advanced Combustion  

Science Conference Proceedings (OSTI)

Oxy-fuel combustion is burning a fuel in oxygen rather than air. The low nitrogen flue gas that results is relatively easy to capture CO{sub 2} from for reuse or sequestration. Corrosion issues associated with the environment change (replacement of much of the N{sub 2} with CO{sub 2} and higher sulfur levels) from air- to oxy-firing were examined. Alloys studied included model Fe-Cr alloys and commercial ferritic steels, austenitic steels, and nickel base superalloys. The corrosion behavior is described in terms of corrosion rates, scale morphologies, and scale/ash interactions for the different environmental conditions. Additionally, the progress towards laboratory oxidation tests in advanced ultra-supercritical steam is updated.

G. R. Holcomb; J. Tylczak; G. H. Meier; B. S. Lutz; N. M. Yanar; F. S. Pettit; J. Zhu; A. Wise; D. E. Laughlin; S. Sridhar

2012-09-25T23:59:59.000Z

192

Evaluation and silicon nitride internal combustion engine components  

DOE Green Energy (OSTI)

The feasibility of silicon nitride (Si[sub 3]N[sub 4]) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components' gas-pressure sinterable Si[sub 3]N[sub 4] (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si[sub 3]N[sub 4] components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

Voldrich, W. (Allied-Signal Aerospace Co., Torrance, CA (United States). Garrett Ceramic Components Div.)

1992-04-01T23:59:59.000Z

193

DESIGNATION SURVEY ADDENDUM REPORT II COMBUSTION ENGINEERING SITE  

Office of Legacy Management (LM)

,111 ,111 DESIGNATION SURVEY ADDENDUM REPORT II COMBUSTION ENGINEERING SITE *I W INDSOR, CONNECTICUT 111 E. W . ABELQUIST Prepared for the Office of Environmental Restoration U.S. Department of Energy I- II I- .:jj;jiE// .:::=::::: .ipij!li' ,:::i::.:. ..::I::::/. ,:ii~iiiiai, ..' iiiiiiiiii!!liiii~~~~,~:~:. ~i!i.~iii~' :' -' +g?' gg;; ,- ZY :i/ .:;i" .:!! .:::a .(/i?j i:/i;jl? I!kr ' -:~i~jg~;...,.;, ..,::&Si! :(j)//ji//(!: 3.. :jijiiiiiiqi:wi l~,. ,,v..::;:~/j~B/; g#;$ .;::::::::::! :::::::::: ::j/j j/i; :(/;;I . . :/:jij; ,:j:,i/; ::::::: ,i/j//:j ;igg;ij iii:::: ,;(iii$ :::::i:ii. ,,,,,, :i.;ifi;iuij;; ,,:,: ii ,,:::::::::::: .:zy,:l::... Lb. .::i:::. .,:.:::;:. ](i:iii:;!! :.:::::::p "'.'j?'~ fix&$ .ii .:::i .::i;;!jg#ggi& i///jjji_

194

Axially staged combustion system for a gas turbine engine  

DOE Patents (OSTI)

An axially staged combustion system is provided for a gas turbine engine comprising a main body structure having a plurality of first and second injectors. First structure provides fuel to at least one of the first injectors. The fuel provided to the one first injector is adapted to mix with air and ignite to produce a flame such that the flame associated with the one first injector defines a flame front having an average length when measured from a reference surface of the main body structure. Each of the second injectors comprising a section extending from the reference surface of the main body structure through the flame front and having a length greater than the average length of the flame front. Second structure provides fuel to at least one of the second injectors. The fuel passes through the one second injector and exits the one second injector at a location axially spaced from the flame front.

Bland, Robert J. (Oviedo, FL)

2009-12-15T23:59:59.000Z

195

Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion (HECC) in a Light-Duty Diesel Engine  

Science Conference Proceedings (OSTI)

An experimental study was performed to understand fuel property effects on low temperature combustion (LTC) processes in a light-duty diesel engine. These types of combustion modes are often collectively referred to as high efficiency clean combustion (HECC). A statistically designed set of research fuels, the Fuels for Advanced Combustion Engines (FACE), were used for this study. Engine conditions consistent with low speed cruise (1500 rpm, 2.6 bar BMEP) were chosen for investigating fuel property effects on HECC operation in a GM 1.9-L common rail diesel engine. The FACE fuel matrix includes nine combinations of fuel properties including cetane number (30 to 55), aromatic contents (20 to 45 %), and 90 % distillation temperature (270 to 340 C). HECC operation was achieved with high levels of EGR and adjusting injection parameters, e.g. higher fuel rail pressure and single injection event, which is also known as Premixed Charge Compression Ignition (PCCI) combustion. Engine performance, pollutant emissions, and details of the combustion process are discussed in this paper. Cetane number was found to significantly affect the combustion process with variations in the start of injection (SOI) timing, which revealed that the ranges of SOI timing for HECC operation and the PM emission levels were distinctively different between high cetane number (55) and low cetane number fuels (30). Low cetane number fuels showed comparable levels of regulated gas emissions with high cetane number fuels and had an advantage in PM emissions.

Cho, Kukwon [ORNL; Han, Manbae [ORNL; Wagner, Robert M [ORNL; Sluder, Scott [ORNL

2009-01-01T23:59:59.000Z

196

CYCLE-BY-CYCLE COMBUSTION VARIATIONS IN SPARK-IGNITED ENGINES Engineering Technology Division, Oak Ridge National Laboratory, Oak Ridge TN 37831-8088 USA  

E-Print Network (OSTI)

CYCLE-BY-CYCLE COMBUSTION VARIATIONS IN SPARK-IGNITED ENGINES C.S. DAW Engineering Technology-2053 USA ABSTRACT Under constant nominal operating conditions, internal combustion engines can exhibit sub- stantial variation in combustion efficiency from one cycle to the next. Previous researchers have attempted

Tennessee, University of

197

On the role of external combustion engines for on-site power generation  

SciTech Connect

Stationary external combustion engines are prime movers that have potential for becoming viable power generation machines in both the residential/commercial and industrial sectors. These large engines are being developed with the capability to employ alternative and/or non-scarce fuels. Energy sources under consideration include coal, coal derived liquids and gases, low-grade petroleum residues, biomass, and municipal wastes. Advantages of external combustion engines relative to conventional prime movers are: greater fuel efficiency, reduced environmental impacts (noise and emissions), and a high degree of fuel flexibility. External combustion engines include steam turbines, Stirling cycle engines, and externally-fired Brayton gas turbines. Among the various applications for external combustion engines are: total energy plants, ICES, industrial cogeneration, small municipal generating plants, and pumping stations. It is not necessary for all the heat supplied an external combustion engine to come from a single source. Various non-coal sources that can be used either independently or integrated with others to supply heat to external combustion engines include solar energy, municipal wastes, biomass, and geothermal. Stirling engine based systems are described. The development of the Stirling engine is briefly discussed. (MCW)

Holtz, R.E.; Uherka, K.L.

1979-01-01T23:59:59.000Z

198

Combustion in Homogeneous Charge Compression Ignition Engines: Experiments and Detailed Chemical Kinetic Simulations  

DOE Green Energy (OSTI)

Homogeneous charge compression ignition (HCCI) engines are being considered as an alternative to diesel engines. The HCCI concept involves premixing fuel and air prior to induction into the cylinder (as is done in current spark-ignition engine) then igniting the fuel-air mixture through the compression process (as is done in current diesel engines). The combustion occurring in an HCCI engine is fundamentally different from a spark-ignition or Diesel engine in that the heat release occurs as a global autoignition process, as opposed to the turbulent flame propagation or mixing controlled combustion used in current engines. The advantage of this global autoignition is that the temperatures within the cylinder are uniformly low, yielding very low emissions of oxides of nitrogen (NO{sub x}, the chief precursors to photochemical smog). The inherent features of HCCI combustion allows for design of engines with efficiency comparable to, or potentially higher than, diesel engines. While HCCI engines have great potential, several technical barriers exist which currently prevent widespread commercialization of this technology. The most significant challenge is that the combustion timing cannot be controlled by typical in-cylinder means. Means of controlling combustion have been demonstrated, but a robust control methodology that is applicable to the entire range of operation has yet to be developed. This research focuses on understanding basic characteristics of controlling and operating HCCI engines. Experiments and detailed chemical kinetic simulations have been applied to the characterize some of the fundamental operational and design characteristics of HCCI engines. Experiments have been conducted on single and multi-cylinder engines to investigate general features of how combustion timing affects the performance and emissions of HCCI engines. Single-zone modeling has been used to characterize and compare the implementation of different control strategies. Multi-zone modeling has been applied to investigate combustion chamber design with respect to increasing efficiency and reducing emissions in HCCI engines.

Flowers, D L

2002-06-07T23:59:59.000Z

199

Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing  

E-Print Network (OSTI)

Experimental study of biogas combustion characteristics andthe operation range of a biogas HCCI engine for powerOperating Conditions in a Biogas Fueled HCCI Engine for

Saxena, Samveg

2011-01-01T23:59:59.000Z

200

Vehicle Technologies Office: Combustion and Emission Control  

NLE Websites -- All DOE Office Websites (Extended Search)

and fuel formulation to arrive at the most cost-effective approach to optimizing advanced combustion engine efficiency and performance while reducing emissions to near-zero levels....

Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Computational Combustion  

DOE Green Energy (OSTI)

Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

2004-08-26T23:59:59.000Z

202

NETL: Advanced NOx Emissions Control: Control Technology - NOx Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Options and Integration Control Options and Integration Reaction Engineering International (REI) is optimizing the performance of, and reduce the technical risks associated with the combined application of low-NOx firing systems (LNFS) and post combustion controls through modeling, bench-scale testing, and field verification. Teaming with REI are the University of Utah and Brown University. During this two-year effort, REI will assess real-time monitoring equipment to evaluate waterwall wastage, soot formation, and burner stoichiometry, demonstrate analysis techniques to improve LNFS in combination with reburning/SNCR, assess selective catalytic reduction catalyst life, and develop UBC/fly ash separation processes. The REI program will be applicable to coal-fired boilers currently in use in the United States, including corner-, wall-, turbo-, and cyclone-fired units. However, the primary target of the research will be cyclone boilers, which are high NOx producing units and represent about 20% of the U.S. generating capacity. The results will also be applicable to all U.S. coals. The research will be divided into four key components:

203

Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency  

E-Print Network (OSTI)

thermal efficiency for electricity generation from combustible sources ( , or as a fraction of energy converted in the case of solar

DeFilippo, Anthony Cesar

2013-01-01T23:59:59.000Z

204

Traveling-Wave Thermoacoustic Engines With Internal Combustion  

DOE Patents (OSTI)

Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.

Weiland, Nathan Thomas (Blacksburg, VA); Zinn, Ben T. (Atlanta, GA); Swift, Gregory William (Sante Fe, NM)

2004-05-11T23:59:59.000Z

205

DEMONSTRATION OF ADVANCED COMBUSTION NO X CONTROL TECHNIQUES  

NLE Websites -- All DOE Office Websites (Extended Search)

x producing tempera- ture). The AOFA system enables the delayed combustion and sub-stoichiometric burner operation by introducing 10-20 percent of the secondary air through...

206

Advanced concurrent-engineering environment. Final report  

SciTech Connect

Sandia demonstrated large-scale visualization in a conference room environment. Project focused in the installation of hardware for visualization and display, and the integration of software tools for design and animation of 3-dimensional parts. Using a high-end visualization server, 3-dimensional modeling and animation software, and leading edge World Wide Web technology, an advanced concurrent engineering environment was simulated where a design team was able to work collectively, rather than as solely disjoint individual efforts. Finally, a successful animation of a Sandia part was demonstrated, and a computer video generated. This video is now accessible on a Sandia internal web server.

Jortner, J.N.; Friesen, J.A.

1997-07-01T23:59:59.000Z

207

Advanced concurrent engineering environment final report  

SciTech Connect

Sandia demonstrated large-scale visualization in a conference room environment. Project focused on the installation of hardware for visualization and display, and the integration of software tools for design and animation of 3-dimensional parts. Using a high-end visualization server, 3-dimensional modeling and animation software, and leading edge World Wide Web technology, and advanced concurrent engineering environment was simulated where a design team was able to work collectively, rather than as solely disjoint individual efforts. Finally, a successful animation of a Sandia part was demonstrated, and a computer video generated. This video is now accessible on a Sandia internal web server.

Jortner, J.N.; Friesen, J.A.; Schwegel, J.

1997-08-01T23:59:59.000Z

208

Fault Detection and Isolation of a Cryogenic Rocket Engine Combustion Chamber Using a Parity Space Approach  

Science Conference Proceedings (OSTI)

his paper presents a parity space (PS) approach for fault detection and isolation (FDI) of a cryogenic rocket engine combustion chamber. Nominal and non-nominal simulation data for three engine set points have been provided. The PS approach uses three ... Keywords: Fault Detection, Fault Isolation, Fault Diagnosis, Parity Space, Rocket Engine

Paul van Gelder; André Bos

2009-07-01T23:59:59.000Z

209

Task 2: Materials for Advanced Boiler and Oxy-combustion Systems  

Science Conference Proceedings (OSTI)

Characterize advanced boiler (oxy-fuel combustion, biomass cofired) gas compositions and ash deposits Generate critical data on the effects of environmental conditions; develop a unified test method with a view to future standardisation

G. R. Holcomb and B. McGhee

2009-05-01T23:59:59.000Z

210

Advanced Reactor Design for Integrated WGS/Pre-combustion CO2...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Reactor Design for Integrated WGSPre-combustion CO2 Capture TDA Research, Inc. Project Number: FE0012048 Project Description The purpose is to develop a new high-hydrogen...

211

NETL: An Advanced Catalytic Solvent for Lower Cost Post-combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Post-Combustion CO2 Capture in a Coal-fired Power Plant Project No.: DE-FE0012926 The University of Kentucky is testing an advanced catalyzed amine solvent coupled with a...

212

The railplug: A new ignitor for internal combustion engines  

SciTech Connect

A miniaturized railgun, termed the {open_quotes}railplug,{close_quotes} has been developed for use as an ignitor of combustible mixtures in engines. The device drives a plasma armature in a multishot mode with the aim of creating a line-source for ignition rather than the point source provided by traditional spark plugs. Railplugs have been fabricated in both parallel rail and co-axial rail geometries. The railplug differs from most plasma armature railguns in two striking ways: (1) no fuse or pellet is used to initially establish the plasma (the armature is simply the arc created by a high-voltage pulse), and (2) it operates over a range of elevated pressures (up to 500 psi). Consequently, the railplug power supply must provide a high voltage spike to breakdown the gap between the rails followed by a sustaining voltage that supplies current to drive the arc down the rails. Conceptually, this is the equivalent of combining the electrostatic problem of a sparkplug with the electrodynamic one of a railgun. Two power supply options that do this are outlined, as well as details of railplug geometries. Successes to date have demonstrated the firing of plugs for over 10{sup 4} shots at delivered arc energies of 1 J per shot. Rep rates have been demonstrated up to 50 Hz.

Faidley, R.W.; Darden, M.H.; Weldon, W.F.

1995-01-01T23:59:59.000Z

213

Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine  

E-Print Network (OSTI)

As part of the MIT micro-gas turbine engine project, the development of a hydrocarbon-fueled catalytic micro-combustion system is presented. A conventionally-machined catalytic flow reactor was built to simulate the ...

Peck, Jhongwoo, 1976-

2003-01-01T23:59:59.000Z

214

Effects of lubricant viscosity and surface texturing on ring-pack performance in internal combustion engines  

E-Print Network (OSTI)

The piston ring-pack contributes approximately 25% of the mechanical losses in an internal combustion engine. Both lubricant viscosity and surface texturing were investigated in an effort to reduce this ring-pack friction ...

Takata, Rosalind (Rosalind Kazuko), 1978-

2006-01-01T23:59:59.000Z

215

Modeling the structural behavior of the piston rings under different boundary conditions in internal combustion engines  

E-Print Network (OSTI)

In the process of designing internal combustion engine, piston ring plays an important role in fulfilling the requirements of camber gas sealing, friction reduction and lubrication oil consumption. The goal of this thesis ...

Xu, Dian

2010-01-01T23:59:59.000Z

216

Numerical modeling of piston secondary motion and skirt lubrication in internal combustion engines  

E-Print Network (OSTI)

Internal combustion engines dominate transportation of people and goods, contributing significantly to air pollution, and requiring large amounts of fossil fuels. With increasing public concern about the environment and ...

McClure, Fiona

2007-01-01T23:59:59.000Z

217

Research and development of hydrogen direct-injection internal combustion engine system  

Science Conference Proceedings (OSTI)

The research and development of hydrogen-internal combustion engine (ICE) system for heavy-duty trucks, with the goal of allowing carbon dioxide (CO2)-free operation in transportation department, has been carried out. The high-pressure hydrogen ... Keywords: NOx emission reduction, NOx storage reduction catalyst, carbon dioxide-free, direct injection, heavy-duty truck, high-pressure hydrogen injector, hydrogen, internal combustion engine

Yoshio Sato; Atsuhiro Kawamura; Tadanori Yanai; Kaname Naganuma; Kimitaka Yamane; Yasuo Takagi

2009-02-01T23:59:59.000Z

218

Advanced turbine design for coal-fueled engines  

DOE Green Energy (OSTI)

The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500[degrees]F (815[degrees]C), relatively innocuous salts. In this study it is found that at 1650[degrees]F (900[degrees]C) and above, calcium sulfate becomes an aggressive corrodent.

Bornstein, N.S.

1992-07-17T23:59:59.000Z

219

A Virtual Engineering Framework for Simulating Advanced Power System  

SciTech Connect

In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering. Furthermore, with little effort the modeling capabilities described in this report can be extended to support other DOE programs, such as ultra super critical boiler development, oxy-combustion boiler development or modifications to existing plants to include CO2 capture and sequestration.

Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

2008-06-18T23:59:59.000Z

220

Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load  

Science Conference Proceedings (OSTI)

It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that although higher CN does not significantly alter ignition delay at moderate to high loads it has a dominant influence on the acceptable injection timing range. Apart from CN effects, fuel oxygen content plays an independent role in reducing some emissions. It is therefore recommended that compensation for fuel ignitability and oxygen content be included in combustion control strategies to optimize emissions and performance of future diesel engines.

Szybist, James P [ORNL; Szymkowicz, Patrick G. [General Motors Corporation; Northrop, William F [General Motors Corporation

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Ceramic technology for advanced heat engines project  

DOE Green Energy (OSTI)

The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

Not Available

1990-09-01T23:59:59.000Z

222

SAPLE: Sandia Advanced Personnel Locator Engine.  

SciTech Connect

We present the Sandia Advanced Personnel Locator Engine (SAPLE) web application, a directory search application for use by Sandia National Laboratories personnel. SAPLE's purpose is to return Sandia personnel 'results' as a function of user search queries, with its mission to make it easier and faster to find people at Sandia. To accomplish this, SAPLE breaks from more traditional directory application approaches by aiming to return the correct set of results while placing minimal constraints on the user's query. Two key features form the core of SAPLE: advanced search query interpretation and inexact string matching. SAPLE's query interpretation permits the user to perform compound queries when typing into a single search field; where able, SAPLE infers the type of field that the user intends to search on based on the value of the search term. SAPLE's inexact string matching feature yields a high-quality ranking of personnel search results even when there are no exact matches to the user's query. This paper explores these two key features, describing in detail the architecture and operation of SAPLE. Finally, an extensive analysis on logged search query data taken from an 11-week sample period is presented.

Procopio, Michael J.

2010-04-01T23:59:59.000Z

223

Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Approaches Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping Background The United States Department of Energy (DOE) National Energy Technology Laboratory (NETL) develops affordable and clean energy from coal and other fossil fuels to secure a sustainable energy economy. To further this mission, NETL funds research and development of advanced control technologies, including chemical looping (CL)

224

Monitoring of some functional parameters for an internal-combustion engine  

Science Conference Proceedings (OSTI)

This work presents the achievement of a monitoring, recording, processing and interpretation concept, at laboratory scale, of some functional parameters for a spark-ignition engine, based on an electronic equipment, which measures the values of 17 parameters ... Keywords: cylinder, internal-combustion engine, pressure, sensors, speed

Sorin Ra?iu; Gabriel Nicolae Popa; Vasile Alexa

2008-11-01T23:59:59.000Z

225

"Optimization of efficiency of internal combustion engines via using  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimization of efficiency of internal combustion engines via using Optimization of efficiency of internal combustion engines via using spinning gas and non-spectroscopic method of determining gas constituents through rotation ..--.. Inventors Nathaniel Fisch, Vasily Geyko An important use of the disclosed approach is the improvement efficiency of thermal cycles and as result efficiency of engines. Different cycles and different ways of compression of spinning gas may be used to maximize possible efficiency gain. In conventional internal combustion engines, gas spinning is either not used at all or used only with the purpose of increasing turbulence and better mixing. In the disclosed method, gas rotation is used for energy storage, hence it allows an improvement in thermal cycle efficiency. To achieve significant effect related to

226

Method and apparatus for minimizing the fuel usage in an internal combustion engine  

SciTech Connect

An apparatus and method is disclosed for minimizing the fuel usage in an internal combustion engine. The subject invention is particularly adapted for use with an engine installation subject to varying loads and which includes a governor for varying fuel flow as a function of load. In operation, the combustibles in the exhaust gas of the engine is continuously monitored. The measured level of combustibles is then compared with a predetermined level corresponding to optimum efficiency. A controller is provided for varying the air/fuel ratio supplied to the engine for maximizing efficiency in correspondence with the preset level. By this arrangement, energy output is increased permitting the governor to further reduce fuel flow, thereby minimizing energy costs.

Smojven, R.R.

1984-09-18T23:59:59.000Z

227

AMO Industrial Distributed Energy: Advanced Reciprocating Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gas fueled engines for power generation that combine high efficiency, low emissions, fuel flexibility, and reduced cost of ownership. Phase I of the Cummins reciprocating engine...

228

Running out of steam. Part III. Development blues. [Alternatives to automotive internal combustion engines  

SciTech Connect

The history is given of systems that have been looked upon alternately as either strong competitors or engineering curiosities in the revived search to replace the Otto-cycle power plant with a cleaner, more efficient, and equally reliable passenger car engine. These recent efforts are largely attempts to polish up old technologies that were around long before a single model-T rolled off Henry Ford's first assembly line. The first steam vehicle, for example, hit the road more than 200 years ago and over the years has undergone considerable refinement. But, in spite of this long history and with the exception of short bursts of enthusiasm, the development of a steam-powered passenger car has never been high on the automobile industry's list of priorities. Some clues are given as to why this is true and why a number of ''think tank'' reports published over the past few years on the future role of steam-driven cars have ranged from mildly optimistic to forthrightly pessimistic. Electric vehicles have had a somewhat parallel history. They were early competitors with the Otto engine, but, unlike the steam cars, they have never completely disappeared. Indeed, for some special uses, they have outperformed all varieties of internal combustion engines (I.C.E.). Further inroads into the Otto-cycle car market, however, depend upon improved car design and the advancement of battery technology, an area of research that has been painfully slow in yielding results. Were it not for the wide public interest in environmental and resource issues that has been translated into new laws dealing with air pollution and resource management, the auto industry would have been content to sit on its I.C.E. for some time to come.

Reitze, A.W. Jr.

1977-01-01T23:59:59.000Z

229

Vehicle Technologies Office: 2009 Directions in Engine-Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Engine Combustion Network Lyle Pickett Sandia National Laboratories Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Mostafa Kamel Cummins Westport Inc....

230

Internal combustion engine with rotary valve assembly having variable intake valve timing  

DOE Patents (OSTI)

An internal combustion engine has rotary valves associated with movable shutters operable to vary the closing of intake air/fuel port sections to obtain peak volumetric efficiency over the entire range of speed of the engine. The shutters are moved automatically by a control mechanism that is responsive to the RPM of the engine. A foot-operated lever associated with the control mechanism is also used to move the shutters between their open and closed positions.

Hansen, Craig N. (Eden Prairie, MN); Cross, Paul C. (Shorewood, MN)

1995-01-01T23:59:59.000Z

231

Advanced Reactor Development and Technology - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Nuclear Data Program Advanced Reactor Development Overview Advanced Fast Reactor...

232

Natural Gas-optimized Advanced Heavy-duty Engine  

E-Print Network (OSTI)

Natural Gas-optimized Advanced Heavy-duty Engine Transportation Research PIER Transportation of natural gas vehicles as a clean alternative is currently limited to smaller engine displacements and spark ignition, which results in lower performance. A large displacement natural gas engine has

233

http://rcc.its.psu.edu/hpc Simulation of In-Cylinder Processes in Internal Combustion Engines  

E-Print Network (OSTI)

http://rcc.its.psu.edu/hpc Simulation of In-Cylinder Processes in Internal Combustion Engines into clean and efficient turbulent combustion remains imperative. A single grand challenge was identified in a 2006 DOE workshop on clean and efficient combustion of 21st century transportation fuels [1]: "The

Bjørnstad, Ottar Nordal

234

Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels  

DOE Patents (OSTI)

An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

Heffel, James W. (Lake Matthews, CA); Scott, Paul B. (Northridge, CA); Park, Chan Seung (Yorba Linda, CA)

2011-11-01T23:59:59.000Z

235

Advanced Start of Combustion Sensor Phases I and II-A: Feasibility Demonstration, Design and Optimization  

DOE Green Energy (OSTI)

Homogeneous Compressed Charge Ignition (HCCI) has elevated the need for Start of Combustion (SOC) sensors. HCCI engines have been the exciting focus of engine research recently, primarily because HCCI offers higher thermal efficiency than the conventional Spark Ignition (SI) engines and significantly lower NOx and soot emissions than conventional Compression Ignition (CI) engines, and could be fuel neutral. HCCI has the potential to unify all the internal combustion engine technology to achieve the high-efficiency, low-emission goal. However, these advantages do not come easy. It is well known that the problems encountered with HCCI combustion center on the difficulty of controlling the Start of Combustion. TIAX has an SOC sensor under development which has shown promise. In previous work, including a DOE-sponsored SBIR project, TIAX has developed an accelerometer-based method which was able to determine SOC within a few degrees crank angle for a range of operating conditions. A signal processing protocol allows reconstruction of the combustion pressure event signal imbedded in the background engine vibration recorded by the accelerometer. From this reconstructed pressure trace, an algorithm locates the SOC. This SOC sensor approach is nonintrusive, rugged, and is particularly robust when the pressure event is strong relative to background engine vibration (at medium to high engine load). Phase I of this project refined the previously developed technology with an engine-generic and robust algorithm. The objective of the Phase I research was to answer two fundamental questions: Can the accelerometer-based SOC sensor provide adequate SOC event capture to control an HCCI engine in a feedback loop? And, will the sensor system meet cost, durability, and software efficiency (speed) targets? Based upon the results, the answer to both questions was 'YES'. The objective of Phase II-A was to complete the parameter optimization of the SOC sensor prototype in order to reach a juncture where plans can be and are discussed with an industry partner for how best to perform a more detailed implementation of the TIAX SOC technology on an HCCI engine system. This occurred, as evidenced the number of potential commercialization partners shown in Table 4. Potential Commercialization Partners Contacted (up to date as of January 31, 2010). During the two phases, a robust, engine-generic algorithm was developed that met the desired targets and was shown to work extremely well for HCCI engine operation.

Chad Smutzer

2010-01-31T23:59:59.000Z

236

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America December 6, 2011 - 2:12pm Addthis Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs Who knew Escherichia coli (E. coli) could help America reduce its dependence on foreign oil? A breakthrough with the bacteria could make it cheaper to produce fuel from switchgrass -- an advanced biofuel with the

237

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Biofuels: How Scientists are Engineering Bacteria to Help Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America December 6, 2011 - 2:12pm Addthis Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs Who knew Escherichia coli (E. coli) could help America reduce its dependence on foreign oil? A breakthrough with the bacteria could make it cheaper to produce fuel from switchgrass -- an advanced biofuel with the

238

Advanced Computation & Visualization - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

239

Controlling combustion characteristics using a slit nozzle in a direct-injection methanol engine  

SciTech Connect

A new type of fuel injection nozzle, called a `slit nozzle,` has been developed to improve poor ignitability and to stabilize combustion under low load conditions in direct-injection methanol diesel engines manufactured for medium-duty trucks. This nozzle has a single oblong vent like a slit. Engine test results indicate that the slit nozzle can improve combustion and thermal efficiency, especially at low loads and no load. This can be explained by the fact that the slit nozzle forms a more highly concentrated methanol spray around the glow-plug than do multi-hole nozzles. As a result, this nozzle improves flame propagation. 3 refs., 12 figs., 4 tabs.

Kusaka, Jin; Daisho, Yasuhiro; Saito, Takeshi; Kihara, Ryoji

1994-10-01T23:59:59.000Z

240

Hydrocarbon-fueled internal combustion engines: "the worst form of vehicle propulsion... except for all the other forms"  

E-Print Network (OSTI)

, funded by the Defense Advanced Research Projects Agency (DARPA); a new and improved Stirling engine

Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

An investigation of late-combustion soot burnout in a DI diesel engine using simultaneous planar imaging of soot and OH radical  

DOE Green Energy (OSTI)

Diesel engine design continues to be driven by the need to improve performance while at the same time achieving further reductions in emissions. The development of new designs to accomplish these goals requires an understanding of how the emissions are produced in the engine. Laser-imaging diagnostics are uniquely capable of providing this information, and the understanding of diesel combustion and emissions formation has been advanced considerably in recent years by their application. However, previous studies have generally focused on the early and middle stages of diesel combustion. These previous laser-imaging studies do provide important insight into the soot formation and oxidation processes during the main combustion event. They indicate that prior to the end of injection, soot formation is initiated by fuel-rich premixed combustion (equivalence ratio > 4) near the upstream limit of the luminous portion of the reacting fuel jet. The soot is then oxidized at the diffusion flame around the periphery of the luminous plume. Under typical diesel engine conditions, the diffusion flame does not burn the remaining fuel and soot as rapidly as it is supplied, resulting in an expanding region of rich combustion products and soot. This is evident in natural emission images by the increasing size of the luminous soot cloud prior to the end of injection. Hence, the amount of soot in the combustion chamber typically increases until shortly after the end of fuel injection, at which time the main soot formation period ends and the burnout phase begins. Sampling valve and two-color pyrometry data indicate that the vast majority (more than 90%) of the soot formed is oxidized before combustion ends; however, it is generally thought that a small fraction of this soot from the main combustion zones is not consumed and is the source of tail pipe soot emissions.

John E. Dec; Peter L. Kelly-Zion

1999-10-01T23:59:59.000Z

242

Smart Engines Via Advanced Model Based Controls  

DOE Green Energy (OSTI)

A ''new'' process for developing control systems - Less engine testing - More robust control system - Shorter development cycle time - ''Smarter'' approach to engine control - On-board models describe engine behavior - Shorter, systematic calibration process - Customer and legislative requirements designed-in.

Allain, Marc

2000-08-20T23:59:59.000Z

243

Apparatus for closed-loop combustion control in internal combustion engines  

SciTech Connect

Schematically disclosed is an engine control apparatus wherein cylinder pressure is sensed before and after the top dead center position. Desired cylinder pressure curves are stored in a microcomputer for a range of engine speed-load combinations. By electrically comparing the actual pressure-time curve with the desired pressure curve for the existing speed-load combination it should be possible to generate an error signal representing deviation of actual engine performance from the desired performance, i.e., a permissible plus or minus band following the desired curve. The invention would provide a control action using only three parameters, namely engine speed, engine load and cylinder pressure.

Cheklich, G.E.

1983-03-10T23:59:59.000Z

244

Advanced combustion technologies for gas turbine power plants  

DOE Green Energy (OSTI)

Objectives are to develop actuators for enhancing the mixing between gas streams, increase combustion stability, and develop hgih-temperature materials for actuators and sensors in combustors. Turbulent kinetic energy maps of an excited jet with co-flow in a cavity with a partially closed exhaust end are given with and without a longitudinal or a transverse acoustic field. Dielectric constants and piezoelectric coefficients were determined for Sr{sub 2}(Nb{sub x}Ta{sub 1-x}){sub 2}O{sub 7} ceramics.

Vandsburger, U. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mechanical Engineering; Roe, L.A. [Arkansas Univ., Fayetteville, AR (United States). Dept. of Mechanical Engineering; Desu, S.B. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

1995-12-31T23:59:59.000Z

245

DOE/NETL ADVANCED COMBUSTION SYSTEMS: CHEMICAL LOOPING SUMMARY  

NLE Websites -- All DOE Office Websites (Extended Search)

COMBUSTION SYSTEMS: CHEMICAL LOOPING SUMMARY JULY 2013 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal li- ability or responsibility for the accuracy, completeness, or useful- ness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommenda-

246

Apparatus for improving gasoline comsumption, power and reducing emission pollutants of internal combustion engines  

Science Conference Proceedings (OSTI)

This patent describes an apparatus for improving performance and reducing fuel comsumption and emission pollutants from an internal combustion gasoline engine. This apparatus consists of: 1.) an internal combustion gasoline engine having, in part, an intake manifold and an exhaust manifold where the exhaust manifold is modified to include a manifold exhaust port; 2.) a modified internal combustion engine carburetor connected to the intake manifold on the engine; 3.) a positive crankcase ventilation valve (PCV) which has an input port conventionally connected to the internal combustion engine and also has a PCV output port; 4.) an automobile fuel pump having an input connected to a conventional fuel tank and having a fuel pump output port; 5.) a thermic reactor; 6.) a thermic reactor air cleaner pneumatically connected to the clean air input port on the thermic reactor; 7.) a catalytic gas injector; 8.) a fuel regulator/restrictor consisting of a solid block having a fuel pump input port and a carburetor output port.

Piedrafita, R.

1986-02-18T23:59:59.000Z

247

Advanced Combustion and Emission Control Techical Team Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

the vehicle mix and volume sold, and each vehicle has a fuel economy target based on the vehicle footprint. 4 Manufacturers do not assume that the engine alone will provide the...

248

The effects of spark ignition parameters on the lean burn limit of natural gas combustion in an internal combustion engine  

E-Print Network (OSTI)

A full factorial experiment was conducted to determine the effects of internal combustion engine ignition parameters on the air-fuel ratio (A/F) lean limit of combustion with compressed natural gas (CNG). Spark electrical characteristics (voltage, current, power, energy and duration), electrode design, electrode gap and compression ratio were the control variables and A/F lean limit, fuel consumption and hydrocarbon and oxides of nitrogen emission concentrations were the response variables. Experiments were performed on a General Motors' 2.2 liter four cylinder engine. Spark electrical characteristics were varied by applying various primary voltages and secondary resistances to the production inductive ignition system, with the engine operating at two operating conditions, a light load and a road load, and with two compression ratios. Cylinder pressure data was acquired to quantify load and combustion stability. Spark electrical characteristics were acquired with a digital oscilloscope to quantify secondary spark electrical characteristics. The results indicated that the response variables were generally insensitive to all the control variables, except for compression ratio. However, contrary to the literature, the A/F lean limit and fuel efficiency degraded with a higher compression ratio. Single and multi-variant linear regressions were studied between the A/F lean limit and the spark electrical characteristics. The only statistically significant and notable finding was a multi-variant linear regression of the A/F lean limit to increasing spark duration and decreasing spark energy at the road load operating condition. Statistical significance of the effect of the ignition system control variables on the response variables was higher at the road load than the light load operating condition. Emissions responded as expected with the higher compression ratio.

Chlubiski, Vincent Daniel

1997-01-01T23:59:59.000Z

249

Engineering development of advanced coal-fired low-emission boiler system  

Science Conference Proceedings (OSTI)

The Pittsburgh Energy Technology Center of the US Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems'' Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: NO[sub x] emissions not greater than one-third NSPS; SO[sub x] emissions not greater than one-third NSPS; and particulate emissions not greater than one-half NSPS. The specific secondary objectives are: Improved ash disposability and reduced waste generation; reduced air toxics emissions; increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a commercial generation unit.

Not Available

1993-02-26T23:59:59.000Z

250

Application of advanced laser diagnostics to hypersonic wind tunnels and combustion systems.  

SciTech Connect

This LDRD was a Sandia Fellowship that supported Andrea Hsu's PhD research at Texas A&M University and her work as a visitor at Sandia's Combustion Research Facility. The research project at Texas A&M University is concerned with the experimental characterization of hypersonic (Mach>5) flowfields using experimental diagnostics. This effort is part of a Multidisciplinary University Research Initiative (MURI) and is a collaboration between the Chemistry and Aerospace Engineering departments. Hypersonic flight conditions often lead to a non-thermochemical equilibrium (NTE) state of air, where the timescale of reaching a single (equilibrium) Boltzmann temperature is much longer than the timescale of the flow. Certain molecular modes, such as vibrational modes, may be much more excited than the translational or rotational modes of the molecule, leading to thermal-nonequilibrium. A nontrivial amount of energy is therefore contained within the vibrational mode, and this energy cascades into the flow as thermal energy, affecting flow properties through vibrational-vibrational (V-V) and vibrational-translational (V-T) energy exchanges between the flow species. The research is a fundamental experimental study of these NTE systems and involves the application of advanced laser and optical diagnostics towards hypersonic flowfields. The research is broken down into two main categories: the application and adaptation of existing laser and optical techniques towards characterization of NTE, and the development of new molecular tagging velocimetry techniques which have been demonstrated in an underexpanded jet flowfield, but may be extended towards a variety of flowfields. In addition, Andrea's work at Sandia National Labs involved the application of advanced laser diagnostics to flames and turbulent non-reacting jets. These studies included quench-free planar laser-induced fluorescence measurements of nitric oxide (NO) and mixture fraction measurements via Rayleigh scattering.

North, Simon W. (Texas A& M University, College Station, TX); Hsu, Andrea G. (Texas A& M University, College Station, TX); Frank, Jonathan H.

2009-09-01T23:59:59.000Z

251

Modeling the effects of late cycle oxygen enrichment on diesel engine combustion and emissions.  

DOE Green Energy (OSTI)

A multidimensional simulation of Auxiliary Gas Injection (AGI) for late cycle oxygen enrichment was exercised to assess the merits of AGI for reducing the emissions of soot from heavy duty diesel engines while not adversely affecting the NO{sub x} emissions of the engine. Here, AGI is the controlled enhancement of mixing within the diesel engine combustion chamber by high speed jets of air or another gas. The engine simulated was a Caterpillar 3401 engine. For a particular operating condition of this engine, the simulated soot emissions of the engine were reduced by 80% while not significantly affecting the engine-out NO{sub x} emissions compared to the engine operating without AGI. The effects of AGI duration, timing, and orientation are studied to confirm the window of opportunity for realizing lower engine-out soot while not increasing engine out NO{sub x} through controlled enhancement of in-cylinder mixing. These studies have shown that this window occurs during the late combustion cycle, from 20 to 60 crank angle degrees after top-dead-center. During this time, the combustion chamber temperatures are sufficiently high that soot oxidation increases in response in increased mixing, but the temperature is low enough that NO{sub x} reactions are quenched. The effect of the oxygen composition of the injected air is studied for the range of compositions between 21% and 30% oxygen by volume. This is the range of oxygen enrichment that is practical to produce from an air separation membrane. Simulations showed that this level of oxygen enrichment is insufficient to provide an additional benefit by either increasing the level of soot oxidation or prolonging the window of opportunity for increasing soot oxidation through enhanced mixing.

Mather, D. K.; Foster, D. E.; Poola, R. B.; Longman, D. E.; Chanda, A.; Vachon, T. J.

2002-02-28T23:59:59.000Z

252

Materials Physics and Engineering | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety and Training Divisions APS Engineering Support Division AES Groups Accelerator Systems Division ASD Groups X-ray Science Division XSD Groups Industry Argonne Home ...

253

ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)  

Science Conference Proceedings (OSTI)

Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

Leonard Angello

2004-03-31T23:59:59.000Z

254

ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)  

Science Conference Proceedings (OSTI)

Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

Leonard Angello

2004-09-30T23:59:59.000Z

255

Developing an approach utilizing local deterministic analysis to predict the cycle friction of the piston ring-pack in internal combustion engines  

E-Print Network (OSTI)

Nowadays, a rapid growth of internal combustion (IC) engines is considered to be a major contributor to energy crisis. About 20% of the mechanical loss in internal combustion engines directly goes to the friction loss ...

Liu, Yang, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

256

Initial Evaluation of Engine Combustion Network Injectors with X-Ray Diagnostics  

Science Conference Proceedings (OSTI)

A significant hurdle in the understanding of diesel sprays is the sensitivity of such sprays to the detailed geometry of the spray nozzle. This sensitivity hampers the comparison of results from spray measurements by different research groups, even if the groups measure nozzles with the same nominal geometry. Moreover, these differences make the comparison and validation of different diagnostic techniques problematic. To remove this source of uncertainty from diesel spray measurements, a collaboration of several research groups has formed to measure a common set of injectors under identical conditions under the auspices of Sandia National Laboratorys Engine Combustion Network. The current work describes the initial measurement of these injectors and the sprays created by these injectors using the x-ray diagnostics available at the Advanced Photon Source. X-ray phase-enhanced imaging is used to perform time-resolved, in situ measurements of injector pintle motion. In addition to these measurements, x-ray radiography measurements of the sprays from these injectors will be performed to better understand the near-nozzle fuel mass distribution in these sprays.

Kastengren, A.; Powell, C.F.; Tilocco, F.Z.; Fezzaa, K.

2012-09-10T23:59:59.000Z

257

Development of Innovative Combustion Processes for a Direct-Injection Diesel Engine  

DOE Green Energy (OSTI)

In support of the Partnership for a New Generation Vehicle (PNGV) emissions and fuel economy goals, a small-bore, high-speed, direct-injection (HSDI) diesel facility in which to conduct research into the physics of the combustion process relevant to these engines has been developed. The characteristics of this facility are described, and the motivation for selecting these characteristics and their relation to high efficiency, low-emission HSDI engine technology is discussed.

John Dec; Paul Miles

1999-01-01T23:59:59.000Z

258

REQUEST BY CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER CUMMINS ENGINE COMPANY, INC., FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF ENERGY COOPERATIVE AGREEMENT NO. DE-FC05-00OR22804; DOE WAIVER DOCKIET W(A)-00-021 [ORO-754] Petitioner, Cummins Engine Company, Inc., has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Cooperative Agreement No. DE-FC05-00OR22804. The scope of this work is to plan, develop and demonstrate advanced heavy duty diesel engine technologies to improve thermal efficiency and meet EPA proposed 2007 emissions of 0.2 NOx and 0.01 gm PM. This work is sponsored by the Office of Transportation Technologies, Office ol Heavy Vehicle

259

Stirling Engine Natural Gas Combustion Demonstration Program. Final report, October 1989-January 1991  

Science Conference Proceedings (OSTI)

Fueled on natural gas, the Stirling engine is an inherently clean, quiet, and efficient engine. With increasing environmental concern for air quality and the increasingly more stringent requirements for low engine exhaust emissions, the Stirling engine may be an attractive alternative to internal combustion (IC) engines. The study has demonstrated that ultra low emissions can be attained with a Stirling-engine-driven electric generator configured to burn natural gas. Combustion parameters were optimized to produce the lowest possible exhaust emissions for a flame-type combustor without compromising overall engine thermal efficiency. A market application survey and manufacturing cost analysis indicate that a market opportunity potentially exists in the volumes needed to economically manufacture a newly designed Stirling engine (Mod III) for stationary applications and hybrid vehicles. The translation of such potential markets into actual markets does, however, pose difficult challenges as substantial investments are required. Also, the general acceptance of a new engine type by purchasers requires a considerable amount of time.

Ernst, W.; Moryl, J.; Riecke, G.

1991-02-01T23:59:59.000Z

260

Materials Reliability Program: Aging Management Strategies for Westinghouse and Combustion Engineering PWR Internals (MRP-232)  

Science Conference Proceedings (OSTI)

This report summarizes the aging management strategy development for Westinghouse and Combustion Engineering (CE) reactor internals. This report provides the technical basis for the aging management requirements of Westinghouse and CE reactor internals in the Pressurized Water Reactor (PWR) internals I&E guidelines (MRP-227-Rev. 0).

2008-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines  

SciTech Connect

The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were: ? Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines. ? Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions. ? Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

Dennis N. Assanis; Arvind Atreya; Jyh-Yuan Chen; Wai K. Cheng; Robert W. Dibble; Chris Edwards; Zoran S. Filipi; Christian Gerdes; Hong Im; George A. Lavoie; Margaret S. Wooldridge

2009-12-31T23:59:59.000Z

262

Improving combustion stability in a bi-fuel engine  

Science Conference Proceedings (OSTI)

This article describes how a new strategy for ignition timing control can reduce NOx emissions from engines using CNG and gasoline. Until a proper fueling infrastructure is established, a certain fraction of vehicles powered by compressed natural gas (CNG) must have bi-fuel capability. A bi-fuel engine, enjoying the longer range of gasoline and the cleaner emissions of CNG, can overcome the problem of having few CNG fueling stations. However, bi-fuel engines must be optimized to run on both fuels since low CNG volumetric efficiency causes power losses compared to gasoline.

NONE

1995-06-01T23:59:59.000Z

263

Effect of nozzle orifice geometry on spray, combustion, and emission characteristics under diesel engine conditions.  

DOE Green Energy (OSTI)

Diesel engine performance and emissions are strongly coupled with fuel atomization and spray processes, which in turn are strongly influenced by injector flow dynamics. Modern engines employ micro-orifices with different orifice designs. It is critical to characterize the effects of various designs on engine performance and emissions. In this study, a recently developed primary breakup model (KH-ACT), which accounts for the effects of cavitation and turbulence generated inside the injector nozzle is incorporated into a CFD software CONVERGE for comprehensive engine simulations. The effects of orifice geometry on inner nozzle flow, spray, and combustion processes are examined by coupling the injector flow and spray simulations. Results indicate that conicity and hydrogrinding reduce cavitation and turbulence inside the nozzle orifice, which slows down primary breakup, increasing spray penetration, and reducing dispersion. Consequently, with conical and hydroground nozzles, the vaporization rate and fuel air mixing are reduced, and ignition occurs further downstream. The flame lift-off lengths are the highest and lowest for the hydroground and conical nozzles, respectively. This can be related to the rate of fuel injection, which is higher for the hydroground nozzle, leading to richer mixtures and lower flame base speeds. A modified flame index is employed to resolve the flame structure, which indicates a dual combustion mode. For the conical nozzle, the relative role of rich premixed combustion is enhanced and that of diffusion combustion reduced compared to the other two nozzles. In contrast, for the hydroground nozzle, the role of rich premixed combustion is reduced and that of non-premixed combustion is enhanced. Consequently, the amount of soot produced is the highest for the conical nozzle, while the amount of NOx produced is the highest for the hydroground nozzle, indicating the classical tradeoff between them.

Som, S.; Longman, D. E; Ramirez, A. I.; Aggarwal, S. K. (Energy Systems); (Univ. of Illinois at Chicago)

2011-03-01T23:59:59.000Z

264

EGR Distribution in Engine Cylinders Using Advanced Virtual Simulation  

DOE Green Energy (OSTI)

Exhaust Gas Recirculation (EGR) is a well-known technology for reduction of NOx in diesel engines. With the demand for extremely low engine out NOx emissions, it is important to have a consistently balanced EGR flow to individual engine cylinders. Otherwise, the variation in the cylinders' NOx contribution to the overall engine emissions will produce unacceptable variability. This presentation will demonstrate the effective use of advanced virtual simulation in the development of a balanced EGR distribution in engine cylinders. An initial design is analyzed reflecting the variance in the EGR distribution, quantitatively and visually. Iterative virtual lab tests result in an optimized system.

Fan, Xuetong

2000-08-20T23:59:59.000Z

265

Characterization of Engine Control Authority on HCCI Combustion as the High Load Limit is Approached  

SciTech Connect

While the potential emissions and efficiency benefits of homogeneous charge compression ignition (HCCI) combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on characterizing the authority of the available engine controls as the high load limit of HCCI combustion is approached. The experimental work is performed on a boosted single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), and a hydraulic valve actuation (HVA) valve train to enable the negative valve overlap (NVO) breathing strategy. Valve lift and duration are held constant while phasing is varied in an effort to make the results as relevant as possible to production intent cam-based variable valve actuation (VVA) systems on multi-cylinder engines. Results presented include engine loads from 350 to 650 kPa IMEPnet and manifold pressure from 98 to 190 kPaa at 2000 rpm. It is found that in order to increase engine load to 650 kPa IMEPnet, it is necessary to increase manifold pressure and external EGR while reducing the NVO duration. Both NVO duration and fuel injection timing are effective means of controlling combustion phasing, with NVO duration being a coarse control and fuel injection timing being a fine control. NOX emissions are low throughout the study, with emissions below 0.1 g/kW-h at all boosted HCCI conditions, while good combustion efficiency is maintained (>96.5%). Net indicated thermal efficiency increases with load up to 600 kPa IMEPnet, where a peak efficiency of 41% is achieved. Results of independent parametric investigations are presented on the effect of external EGR, intake effect of manifold pressure, and the effect of NVO duration. It is found that increasing EGR at a constant manifold pressure and increasing manifold pressure at a constant EGR rate both have the effect of retarding combustion phasing. It is also found that combustion phasing becomes increasingly sensitive to NVO duration as engine load increases. Finally, comparisons are made between three commonly used noise metrics (AVL noise meter, ringing intensity (RI), and maximum pressure rise rate (MPRR)). It is found that compared to the AVL noise meter, RI significantly underestimates combustion noise under boosted conditions.

Szybist, James P [ORNL; Edwards, Kevin Dean [ORNL; Foster, Matthew [Delphi; Confer, Keith [Delphi; Moore, Wayne [Delphi

2013-01-01T23:59:59.000Z

266

Proceedings of the 1987 coatings for advanced heat engines workshop  

DOE Green Energy (OSTI)

This Workshop was conducted to enhance communication among those involved in coating development for improved heat engine performance and durability. We were fortunate to have Bill Goward review the steady progress and problems encountered along the way in the use of thermal barrier coatings (TBC) in aircraft gas turbine engines. Navy contractors discussed their work toward the elusive goal of qualifying TBC for turbine airfoil applications. In the diesel community, Caterpillar and Cummins are developing TBC for combustion chamber components as part of the low heat rejection diesel engine concept. The diesel engine TBC work is based on gas turbine technology with a goal of more than twice the thickness used on gas turbine engine components. Adoption of TBC in production for diesel engines could justify a new generation of plasma spray coating equipment. Increasing interests in tribology were evident in this Workshop. Coatings have a significant role in reducing friction and wear under greater mechanical loadings at higher temperatures. The emergence of a high temperature synthetic lubricant could have an enormous impact on diesel engine design and operating conditions. The proven coating processes such as plasma spray, electron-beam physical vapor deposition, sputtering, and chemical vapor deposition have shown enhanced capabilities, particularly with microprocessor controls. Also, the newer coating schemes such as ion implantation and cathodic arc are demonstrating intriguing potential for engine applications. Coatings will play an expanding role in higher efficiency, more durable heat engines.

Not Available

1987-01-01T23:59:59.000Z

267

COMBUSTION  

E-Print Network (OSTI)

This document presents an overview of combustion as a waste management strategy in relation to the development of material-specific emission factors for EPA’s Waste Reduction Model (WARM). Included are estimates of the net greenhouse gas (GHG) emissions from combustion of most of the materials considered in WARM and several categories of mixed waste. 1. A SUMMARY OF THE GHG IMPLICATIONS OF COMBUSTION Combustion of municipal solid waste (MSW) results in emissions of CO 2 and N2O. Note that CO2 from combustion of biomass (such as paper products and yard trimmings) is not counted because it is biogenic (as explained in the Introduction & Overview chapter). WARM estimates emissions from combustion of MSW in waste-to-energy (WTE) facilities. WARM does not consider any recovery of materials from the MSW stream that may occur before MSW is delivered to the combustor. WTE facilities can be divided into three categories: (1) mass burn, (2) modular and (3) refusederived fuel (RDF). A mass burn facility generates electricity and/or steam from the combustion of

unknown authors

2012-01-01T23:59:59.000Z

268

ALS Ceramics Materials Research Advances Engine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

and at temperature. "The nickel-based superalloy materials that are currently used in our gas-turbine engines have reached the absolute limit of their temperature range," says...

269

Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine  

Science Conference Proceedings (OSTI)

Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

270

EIS-0290: Idaho National Engineering and Environmental Laboratory Advanced  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

90: Idaho National Engineering and Environmental Laboratory 90: Idaho National Engineering and Environmental Laboratory Advanced Mixed Waste Treatment Project (AMWTP) EIS-0290: Idaho National Engineering and Environmental Laboratory Advanced Mixed Waste Treatment Project (AMWTP) SUMMARY The AMWTP Final EIS assesses the potential environmental impacts associated with alternatives related to the construction and operation of a proposed waste treatment facility at the Idaho National Environmental and Engineering Laboratory (INEEL). PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 26, 2013 EIS-0290-SA-03: Supplement Analysis Disposition of Mixed Low-Level Waste and Low-Level Waste from Advanced Mixed Waste Treatment Project at Commercial Facilities, Idaho May 1, 2009 EIS-0290-SA-02: Supplement Analysis

271

Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine Equipped with Variable Valve Timing  

SciTech Connect

Widespread implementation of homogeneous charge compression ignition (HCCI) engines is presently hindered by stability, control, and load range issues. Although the operable HCCI speed/load range is expanding, it is likely that the initial HCCI engines will rely on conventional combustion for part of the operating cycle. In the present study, we have investigated the role of fuel properties and chemistry on the operation of a spark-assisted gasoline HCCI engine. The engine employed is a single cylinder, 500 cc, port fuel injected research engine, operating near lambda = 1.0 and equipped with hydraulic variable valve actuation. HCCI is initiated by early exhaust valve closing to retain exhaust in the cylinder, thereby increasing the cylinder gas temperature. This is also referred to as a 'negative overlap' strategy. A total of 10 custom blended gasolines and three different batches of indolene from two suppliers were run at 5 speed-load combinations and performance was characterized by timing sweeps. Within the quality of the data set, we can say the all fuels provided equivalent combustion and performance characteristics when compared at the same combustion phasing. The fuels did, however, require different degrees of retained exhaust as measured by exhaust valve closing angle to achieve the same combustion phasing. Fuels with higher octane sensitivity were found to ignite more easily or more quickly and to burn more quickly than fuels with lower octane sensitivity. This is an expected result since the engine is naturally aspirated and operates with high compression temperatures due to the high retained exhaust fraction and recompression.

Bunting, Bruce G [ORNL

2006-01-01T23:59:59.000Z

272

Advanced Process Engineering Co-Simulator (APECS) | Open Energy Information  

Open Energy Info (EERE)

Advanced Process Engineering Co-Simulator (APECS) Advanced Process Engineering Co-Simulator (APECS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: APECS Agency/Company /Organization: National Energy Technology Laboratory Partner: ANSYS Sector: Energy Focus Area: Industry Topics: Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.netl.doe.gov/technologies/coalpower/advresearch/apecs.html APECS Screenshot References: APECS Homepage[1] Logo: APECS Advanced Process Engineering Co-Simulator (APECS) is an innovative software tool that provides process/equipment co-simulation capabilities for model-based decision support in steady-state process design and optimization. Developed by NETL, ANSYS, and other research partners, the Advanced Process

273

Advanced Process Engineering Co-Simulator (APECS) | Open Energy Information  

Open Energy Info (EERE)

Advanced Process Engineering Co-Simulator (APECS) Advanced Process Engineering Co-Simulator (APECS) (Redirected from APECS) Jump to: navigation, search Tool Summary Name: APECS Agency/Company /Organization: National Energy Technology Laboratory Partner: ANSYS Sector: Energy Focus Area: Industry Topics: Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.netl.doe.gov/technologies/coalpower/advresearch/apecs.html APECS Screenshot References: APECS Homepage[1] Logo: APECS Advanced Process Engineering Co-Simulator (APECS) is an innovative software tool that provides process/equipment co-simulation capabilities for model-based decision support in steady-state process design and optimization. Developed by NETL, ANSYS, and other research partners, the Advanced Process

274

Wavelet Analysis of Cycle-to-Cycle Pressure Variations in an Internal Combustion Engine  

E-Print Network (OSTI)

Using a continuous wavelet transform we have analyzed the cycle-to-cycle variations of pressure in an internal combustion engine. The time series of maximum pressure variations are examined for different loading and their wavelet power spectrum is calculated for each load. From the wavelet power spectrum we detected the presence of long, intermediate and short-term periodicities in the pressure signal. It is found that depending on the load, the long and intermediate-term periodicities may span several cycles, whereas the short-period oscillations tend to appear intermittently. Knowledge of these periodicities may be useful to develop effective control strategies for efficient combustion.

Asok K. Sen; Grzegorz Litak; Rodolfo Taccani; Robert Radu

2006-07-19T23:59:59.000Z

275

Low Temperature Combustion using nitrogen enrichment to mitigate nox from large bore natural gas-filled engines.  

DOE Green Energy (OSTI)

Low Temperature Combustion (LTC) is identified as one of the pathways to meet the mandatory ultra low NOx emissions levels set by regulatory agencies. This phenomenon can be realized by utilizing various advanced combustion control strategies. The present work discusses nitrogen enrichment using an Air Separation Membrane (ASM) as a better alternative to the mature Exhaust Gas Re-circulation (EGR) technique currently in use. A 70% NOx reduction was realized with a moderate 2% nitrogen enrichment while maintaining power density and simultaneously improving Fuel Conversion Efficiency (FCE). The maximum acceptable Nitrogen Enriched Air (NEA) in a single cylinder spark ignited natural gas engine was investigated in this paper. Any enrichment beyond this level degraded engine performance both in terms of power density and FCE, and unburned hydrocarbon (UHC) emissions. The effect of ignition timing was also studied with and without N2 enrichment. Finally, lean burn versus stoichiometric operation utilizing NEA was compared. Analysis showed that lean burn operation along with NEA is one of the effective pathways for realizing better FCE and lower NOx emissions.

Biruduganti, M. S.; Gupta, S. B.; Sekar, R. R. (Energy Systems)

2008-01-01T23:59:59.000Z

276

Prediction of nitric oxide in advanced combustion systems  

SciTech Connect

A computer model to predict nitric oxide (NO) concentrations has been applied to advanced-concept pulverized coal systems and evaluated by comparing model predictions with experimental data. Specifically, the effects of pressure, stoichiometric ratio, air stage location, temperature, and inert gas type on NO concentrations were predicted by the model and compared to experimental data. This work is a continuation of previous model evaluations, which found favorable prediction of NO concentrations for variation of stoichiometric air/fuel ratio, coal moisture content, particle size, and swirling and nonswirling diffusion flames.

Boardman, R.D.; Smoot, L.D.

1988-09-01T23:59:59.000Z

277

Three-dimensional modeling of diesel engine intake flow, combustion and emissions-II  

DOE Green Energy (OSTI)

A three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented and previously reported are: Wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo`vich NO{sub x}, and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model and preliminary soot modeling results are described in this report. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme has been developed for modeling realistic (complex) engine geometries, and computations have been made of intake flow in the ports and combustion chamber of a two-intake-valve engine. The research also involves the use of the code to assess the effects of subprocesses on diesel engine performance. The accuracy of the predictions is being tested by comparisons with engine experiments. To date, comparisons have been made with measured engine cylinder pressure, temperature and heat flux data, and the model results are in good agreement with the experiments. Work is in progress that will allow validation of in-cylinder flow and soot formation predictions. An engine test facility is described that is being used to provide the needed validation data. Test results have been obtained showing the effect of injection rate and split injections on engine performance and emissions.

Reitz, R.D.; Rutland, C.J.

1993-09-01T23:59:59.000Z

278

Markets for small-scale, advanced coal-combustion technologies  

SciTech Connect

This report examines the potential of using US-developed advanced coal technologies (ACTs) for small combustors in foreign markets; in particular, the market potentials of the member countries of the Organization of Economic Co-operation and Development (OECD) were determined. First, the United States and those OECD countries with very low energy demands were eliminated. The remaining 15 countries were characterized on the basis of eight factors that would influence their decision to use US ACTs: energy plan and situation, dependence on oil and gas imports, experience with coal, residential/commercial energy demand, industrial energy demand, trade relationship with the United States, level of domestic competition with US ACT manufacturers, and environmental pressure to use advanced technology. Each country was rated high, medium-high, low-medium, or low on each factor, based on statistical and other data. The ratings were then used to group the countries in terms of their relative market potential (good, good but with impediments, or limited). The best potential markets appear to be Spain, Italy, turkey, Greece, and Canada. 25 refs., 1 fig., 37 tabs.

Placet, M.; Kenkeremath, L.D.; Streets, D.G.; Dials, G.E.; Kern, D.M.; Nehring, J.L.; Szpunar, C.B.

1988-12-01T23:59:59.000Z

279

Argonne TTRDC - Engines - Multi-Dimensional Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

and optimization of internal combustion engines using advanced transportation biofuels will greatly enhance the science for clean energy in the 21st century. Given the cost...

280

Active structures in advanced engineering - an overview  

Science Conference Proceedings (OSTI)

In the paper, the usefulness of active systems is considered, whereby both their advantages and disadvantages are emphasised. Some characteristic examples of breakdowns and disasters of objects and construction are presented, such as the catastrophe ... Keywords: active suspension, active systems, aerofoil flutter, cooling tower, disaster, safety engineering, shaft vehicle, variable geometry

Miomir K. Vukobratovic

2000-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Method for reducing peak phase current and decreasing staring time for an internal combustion engine having an induction machine  

DOE Patents (OSTI)

A method for reducing the starting time and reducing the peak phase currents for an internal combustion engine that is started using an induction machine starter/alternator. The starting time is reduced by pre-fluxing the induction machine and the peak phase currents are reduced by reducing the flux current command after a predetermined period of time has elapsed and concurrent to the application of the torque current command. The method of the present invention also provides a strategy for anticipating the start command for an internal combustion engine and determines a start strategy based on the start command and the operating state of the internal combustion engine.

Amey, David L. (Birmingham, MI); Degner, Michael W. (Farmington Hills, MI)

2002-01-01T23:59:59.000Z

282

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary for the Combustion Program The Combustion Technologies Product promotes the advancement of coal combustion power generation for use in industrial, commercial, and utility...

283

BIBLIOGRAPHY ON INTERNAL COMBUSTION ENGINES 1. F. Obert, Internal Combustion Engines and Air Pollution, Intext Educational Publishers, 1973  

E-Print Network (OSTI)

depend on vari- ous factors: engine temperature and load, aftertreatment de- vices and dilution-11545-2010 © Author(s) 2010. CC Attribution 3.0 License. Atmospheric Chemistry and Physics Impact of aftertreatment aftertreatment systems. One vehicle lacked exhaust aftertreatment devices, one ve- hicle was equipped

Entekhabi, Dara

284

Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report  

DOE Green Energy (OSTI)

This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

NONE

1998-12-01T23:59:59.000Z

285

Combustion Turbine Guidelines: Conventional and Advanced Machines: Volume 5: Westinghouse Models W501A-D  

Science Conference Proceedings (OSTI)

For more than a decade, EPRI has been developing gas turbine hot section component repair and coating guidelines to assist utilities in the refurbishment of these critical and expensive parts. Utilities and repair vendors have used these guidelines to perform repairs on buckets (blades), turbine nozzles (vanes), combustion liners, and combustor transitions. Guidelines now exist for a variety of conventional and advanced General Electric and Westinghouse heavy frame gas turbines.

2001-12-04T23:59:59.000Z

286

An approach for modeling the valve train system to control the homogeneous combustion in a compression ignition engine  

Science Conference Proceedings (OSTI)

This paper presents an approach for modeling the valve train system to obtain a homogeneous charge compression ignition (HCCI) engine from a gasoline engine. The HCCI engines use different indirect strategies to control the start of the combustion. The ... Keywords: exhaust gas recirculation, homogeneous charge compression ignition, variable valve timing

Radu Cosgarea; Corneliu Cofaru; Mihai Aleonte; Maria Luminita Scutaru; Liviu Jelenschi; Gabriel Sandu

2011-04-01T23:59:59.000Z

287

Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers  

SciTech Connect

The objective of this project was to develop and apply enabling tools and methods towards advanced combustion diagnostics and control of fired-equipment in large-scale petrochemical manufacturing. There are a number of technology gaps and opportunities for combustion optimization, including technologies involving advanced in-situ measurements, modeling, and thermal imaging. These technologies intersect most of manufacturing and energy systems within the chemical industry. This project leveraged the success of a previous DOE funded project led by Dow, where we co-developed an in-situ tunable diode laser (TDL) analyzer platform (with Analytical Specialties Inc, now owned by Yokogawa Electric Corp.). The TDL platform has been tested and proven in a number of combustion processes within Dow and outside of Dow. The primary focus of this project was on combustion diagnostics and control applied towards furnaces, fired heaters and boilers. Special emphasis was placed on the development and application of in-situ measurements for O2, CO and methane since these combustion gases are key variables in optimizing and controlling combustion processes safely. Current best practice in the industry relies on measurements that suffer from serious performance gaps such as limited sampling volume (point measurements), poor precision and accuracy, and poor reliability. Phase I of the project addressed these gaps by adding improved measurement capabilities such as CO and methane (ppm analysis at combustion zone temperatures) as well as improved optics to maintain alignment over path lengths up to 30 meters. Proof-of-concept was demonstrated on a modern olefins furnace located at Dow Chemical's facility in Freeport TX where the improved measurements were compared side-by-side to accepted best practice techniques (zirconium oxide and catalytic bead or thick film sensors). After developing and installing the improved combustion measurements (O2, CO, and methane), we also demonstrated the ability to improve control of an olefins furnace (via CO-trim) that resulted in significant energy savings and lower emissions such as NOx and other greenhouse gases. The cost to retrofit measurements on an existing olefins furnace was found to be very attractive, with an estimated payback achieved in 4 months or less.

Tate, J. D.; Le, Linh D.; Knittel,Trevor; Cowie, Alan

2010-03-20T23:59:59.000Z

288

Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers  

SciTech Connect

The objective of this project was to develop and apply enabling tools and methods towards advanced combustion diagnostics and control of fired-equipment in large-scale petrochemical manufacturing. There are a number of technology gaps and opportunities for combustion optimization, including technologies involving advanced in-situ measurements, modeling, and thermal imaging. These technologies intersect most of manufacturing and energy systems within the chemical industry. This project leveraged the success of a previous DOE funded project led by Dow, where we co-developed an in-situ tunable diode laser (TDL) analyzer platform (with Analytical Specialties Inc, now owned by Yokogawa Electric Corp.). The TDL platform has been tested and proven in a number of combustion processes within Dow and outside of Dow. The primary focus of this project was on combustion diagnostics and control applied towards furnaces, fired heaters and boilers. Special emphasis was placed on the development and application of in-situ measurements for O2, CO and methane since these combustion gases are key variables in optimizing and controlling combustion processes safely. Current best practice in the industry relies on measurements that suffer from serious performance gaps such as limited sampling volume (point measurements), poor precision and accuracy, and poor reliability. Phase I of the project addressed these gaps by adding improved measurement capabilities such as CO and methane (ppm analysis at combustion zone temperatures) as well as improved optics to maintain alignment over path lengths up to 30 meters. Proof-of-concept was demonstrated on a modern olefins furnace located at Dow Chemical's facility in Freeport TX where the improved measurements were compared side-by-side to accepted best practice techniques (zirconium oxide and catalytic bead or thick film sensors). After developing and installing the improved combustion measurements (O2, CO, and methane), we also demonstrated the ability to improve control of an olefins furnace (via CO-trim) that resulted in significant energy savings and lower emissions such as NOx and other greenhouse gases. The cost to retrofit measurements on an existing olefins furnace was found to be very attractive, with an estimated payback achieved in 4 months or less.

Tate, J. D.; Le, Linh D.; Knittel,Trevor; Cowie, Alan

2010-03-20T23:59:59.000Z

289

Engineered Sequestration and Advanced Power Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia University. Predictions of innovative energy technologies for the next century usually include everything from fusion to photovoltaics with the one notable exception of fossil fuels. Because of fears of diminishing supplies, pollution and climate change, the public is reluctant to consider these hydrocarbon fuels for the energy needs of the twenty- first century. An energy strategy for the new century, however, cannot ignore fossil fuels. Contrary to popular belief, they are plentiful and inexpensive. While it is true that fossil fuels are limited by their environmental impact, new technologies to eliminate environmental concerns are currently being developed. Managing the emission of

290

Mr. R. B. Bell, Jr. Combustion Engineering, Inc. Post Office Box 500  

Office of Legacy Management (LM)

g@ *tq g@ *tq 47 e "Y q$ . -0 t: 2 ~ i' ,; B 0 e %d&$ Department of Energy Washington, DC 20585 Mr. R. B. Bell, Jr. Combustion Engineering, Inc. Post Office Box 500 Windsor, Connecticut 06095-0500 Dear Mr. Bell: I have received two copies of the access agreement for the radiological survey of the Combustion Engineering Property at 1000 Prospect Hill Road in Windsor. I have signed the agreements on behalf of the U.S. Department of Energy, and I am returning one signed original copy to you, By copy of this letter, I am requesting that the Oak Ridge Institute for Science and Education contact you or Mr. Moulton to make arrangements for the survey. If you have any questions or if I may be of assistance, please call me at 301-903-8149. Sincerely

291

Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993  

DOE Green Energy (OSTI)

The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

Not Available

1990-07-01T23:59:59.000Z

292

Experimental researches of fuelling systems and alcohol blends on combustion and emissions in a two stroke Si engine  

Science Conference Proceedings (OSTI)

Fuelling systems play a major role in the process of air-fuel mixture formation, due to this fact; the aim of this paper was to achieve an optimal mixture, which results in low exhaust emissions and best behavior of the combustion process. In order to ... Keywords: alcohols, combustion, engine, exhaust emissions, gasoline

Mihai Aleonte; Corneliu Cofaru; Radu Cosgarea; Maria Luminita Scutaru; Liviu Jelenschi; Gabriel Sandu

2011-04-01T23:59:59.000Z

293

Assessment of ISLOCA risk-methodology and application to a combustion engineering plant  

Science Conference Proceedings (OSTI)

Inter-system loss-of-coolant accidents (ISLOCAs) have been identified as important contributors to offsite risk for some nuclear power plants. A methodology has been developed for identifying and evaluating plant-specific hardware designs, human factors issues, and accident consequence factors relevant to the estimation of ISOLOCA core damage frequency and risk. This report presents a detailed of description of the application of this analysis methodology to a Combustion Engineering plant.

Kelly, D.L.; Auflick, J.L.; Haney, L.N. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1992-04-01T23:59:59.000Z

294

Summary of Demonstration Projects Using Coal Combustion Residuals as Engineered Structural Fill  

Science Conference Proceedings (OSTI)

This report summarizes six demonstration projects in which coal combustion residuals (CCRs) were used as engineered structural fill to construct embankments for highways, a bridge approach, and an airport runway extension. The CCRs studied included coal fly ash, bottom ash, and stabilized flue gas desulfurization (FGD) material. Significant aspects of the design, construction, and performance of these structural fills are described. CCRs are often cost-effective substitutes for natural soils in structura...

2010-11-09T23:59:59.000Z

295

On the wall jet from the ring crevice of an internal combustion engine  

DOE Green Energy (OSTI)

Numerical simulations and experiments of the jetting of gases from the ring crevices of a laboratory engine shortly after exhaust valve opening showed an unanticipated radial flow of the crevice gases into the main combustion chamber. We report well-resolved numerical simulations of a wall jet that show that this radial motion is driven by vorticity generation in the wall boundary layer and at the corner of the piston crown.

Cloutman, L.D. [Lawrence Livermore National Lab., CA (United States); Green, R.M. [Sandia National Labs., Livermore, CA (United States)

1996-05-01T23:59:59.000Z

296

Vehicle Technologies Office: FY 2004 Progress Report for Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Progress Report 4 Progress Report for Advanced Combustion Engine Research and Development to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Digg Find More places to share Vehicle Technologies Office: FY 2004

297

Soybean and Coconut Biodiesel Fuel Effects on Combustion Characteristics in a Light-Duty Diesel Engine  

Science Conference Proceedings (OSTI)

This study investigated the effects of soybean- and coconut-derived biodiesel fuels on combustion characteristics in a 1.7-liter direct injection, common rail diesel engine. Five sets of fuels were studied: 2007 ultra-low sulfur diesel (ULSD), 5% and 20% volumetric blends of soybean biodiesel with ULSD (soybean B5 and B20), and 5% and 20% volumetric blends of coconut biodiesel with ULSD (coconut B5 and B20). In conventional diesel combustion mode, particulate matter (PM) and nitrogen oxides (NO/dx) emissions were similar for all fuels studied except soybean B20. Soybean B20 produced the lowest PM but the highest NO/dx emissions. Compared with conventional diesel combustion mode, high efficiency clean combustion (HECC) mode, achieved by increased EGR and combustion phasing, significantly reduced both PM and NO/dx emissions for all fuels studied at the expense of higher hydrocarbon (HC) and carbon monoxide (CO) emissions and an increase in fuel consumption (less than 4%). ULSD, soybean B5, and coconut B5 showed no difference in exhaust emissions. However, PM emissions increased slightly for soybean B20 and coconut B20. NO/dx emissions increased significantly for soybean B20, while those for coconut B20 were comparable to ULSD. Differences in the chemical and physical properties of soybean and coconut biodiesel fuels compared with ULSD, such as higher fuel-borne oxygen, greater viscosity, and higher boiling temperatures, play a key role in combustion processes and, therefore, exhaust emissions. Furthermore, the highly unsaturated ester composition in soybean biodiesel can be another factor in the increase of NO/dx emissions.

Han, Manbae [ORNL; Cho, Kukwon [ORNL; Sluder, Scott [ORNL; Wagner, Robert M [ORNL

2008-01-01T23:59:59.000Z

298

Engineering development of advanced froth flotation. Volume 2, Final report  

SciTech Connect

This report is an account of findings related to the Engineering and Development of Advanced Froth Flotation project. The results from benchscale and proof-of-concept (POC) level testing are presented and the important results from this testing are used to refine a conceptual design and cost estimate for a 20 TPH Semi-Works Facility incorporating the final proposed technology.

Ferris, D.D.; Bencho, J.R.; Torak, E.R. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)

1995-03-01T23:59:59.000Z

299

Joseph F. Ware Advanced Engineering Lab Ware Lab Summary Report  

E-Print Network (OSTI)

) ................................................................................... Section 12: Hybrid Electric Vehicle Team (HEVT the United States and overseas. Our Hybrid Electric Vehicle Team took first place at EcoCAR this year (2011Joseph F. Ware Advanced Engineering Lab Ware Lab Summary Report Academic Year 2011-12 Virginia Tech

Beex, A. A. "Louis"

300

Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 15, April 15 1996--June 1996  

SciTech Connect

The Pittsburgh Energy Technology center of the US Department of Energy (DOE) has contracted with Combustion Engineering; Inc. (ABB CE) to perform work on the {open_quotes}Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems{close_quote} Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis and Phases II and III on a cost-share basis.

1996-08-19T23:59:59.000Z

Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Development of Low Temperature Combustion Modes to Reduce Overall Emissions from a Medium-Duty, Four Cylinder Diesel Engine  

E-Print Network (OSTI)

Low temperature combustion (LTC) is an appealing new method of combustion that promises low nitric oxides and soot emissions while maintaining or improving on engine performance. The three main points of this study were to develop and validate an engine model in GT-Power capable of implementing LTC, to study parametrically exhaust gas recirculation (EGR) and injection timing effects on performance and emissions, and to investigate methods to decrease pressure rise rates during LTC operation. The model was validated at nine different operating points, 3 speeds and 3 loads, while the parametric studies were conducted on 6 of the 9 operating points, 3 speeds and 2 loads. The model consists of sections that include: cylinders, ports, intake and exhaust manifolds, EGR system, and turbocharger. For this model, GT-Power calculates the combustion using a multi-zone, quasi-dimensional model and a knock-induced combustion model. The main difference between them is that the multi-zone model is directly injected while the knock model is port injected. A variety of sub models calculate the fluid flow and heat transfer. A parametric study varying the EGR and the injection timing to determine the optimal combination was conducted using the multi-zone model while a parametric study that just varies EGR is carried out using the knock model. The first parametric study showed that the optimal EGR and injection timing combination for the low loads occurred at high levels of EGR (60 percent) and advanced injection timings (30 to 40 crank angle degrees before top dead center). The optimal EGR and injection timing combination for the high loads occurred at low levels of EGR (30 percent to 40 percent) and retarded injection timings (7.5 to 5 crank angle degrees before top dead center). The knock model determined that the ideal EGR ratio for homogeneous charge compression ignition (HCCI) operation varied from 30 percent to 45 percent, depending on the operating condition. Three methods were investigated as possible ways to reduce pressure rise rates during LTC operation. The only feasible method was the multiple injection strategy which provided dramatically reduced pressure rise rates across all EGR levels and injection timings.

Breen, Jonathan Robert

2010-08-01T23:59:59.000Z

302

Apparatus for controlling the air-fuel ratio in an internal combustion engine  

Science Conference Proceedings (OSTI)

Apparatus for controlling the air-fuel ratio in an internal combustion engine to substantially maintain the ratio at a predetermined value while the engine is operating under various load conditions. The engine has a carburetor with an air passageway through which air is drawn into the engine. Fuel is supplied to the carburetor through a fuel system and mixed with air passing through the carburetor. The presence of oxygen in the combustion products, which is a function of the air-fuel ratio of the mixture, is sensed and a first electrical signal representative of the oxygen content is supplied. The first electrical signal is compared with a predetermined reference level which is a function of the predetermined value to produce a second electrical signal having first and second signal elements, a first signal element being produced when the air-fuel ratio of the mixture is greater than the predetermined level and a second signal element being produced when the ratio is less than the level. A control responsive to the second electrical signal supplies to an air metering unit a control signal by which the quantity of air introduced into the fuel system is controlled. A change in the control signal is produced whenever the second electrical signal has a transition from one signal element to the other thereby for the air metering unit to change the quantity of air introduced into the fuel system conduit by an amount necessary to substantially maintain the air-fuel ratio at the predetermined value.

Gantzert, T.R.; Hicks, D.L.; Lindberg, A.W.

1981-07-21T23:59:59.000Z

303

A flammability and combustion model for integrated accident analysis. [Advanced light water reactors  

DOE Green Energy (OSTI)

A model for flammability characteristics and combustion of hydrogen and carbon monoxide mixtures is presented for application to severe accident analysis of Advanced Light Water Reactors (ALWR's). Flammability of general mixtures for thermodynamic conditions anticipated during a severe accident is quantified with a new correlation technique applied to data for several fuel and inertant mixtures and using accepted methods for combining these data. Combustion behavior is quantified by a mechanistic model consisting of a continuity and momentum balance for the burned gases, and considering an uncertainty parameter to match the idealized process to experiment. Benchmarks against experiment demonstrate the validity of this approach for a single recommended value of the flame flux multiplier parameter. The models presented here are equally applicable to analysis of current LWR's. 21 refs., 16 figs., 6 tabs.

Plys, M.G.; Astleford, R.D.; Epstein, M. (Fauske and Associates, Inc., Burr Ridge, IL (USA))

1988-01-01T23:59:59.000Z

304

A comparison between direct spark ignition and prechamber ignition in an internal combustion engine  

DOE Green Energy (OSTI)

We simulated the flow field and flame propagation near top dead center in a generic large-bore internal combustion engine using the COYOTE computer program, which is based on the full Navier-Stokes equations for a fluid mixture. The combustion chamber is a right circular cylinder, and the main charge is uniformly premixed. The calculations are axisymmetric. The results illustrate the differences in flow patterns, flame propagation, and thermal NO production between ignition with a spark plug and with a small prechamber. In the spark-ignited case, the flame propagates away from the spark plug approximately as a segment of a spherical surface, just as expected. With the prechamber, a high speed jet of hot combustion products shoots into the main chamber, quickly producing a large flame sheet that spreads along the piston face. The prechamber run consumes all of the fuel in half the time required by the spark-ignited case. The two cases produce comparable amounts of thermal NO at the end of fuel combustion.

Cloutman, L.D.

1993-12-03T23:59:59.000Z

305

Advanced Space Propulsion Based on Vacuum (Spacetime Metric) Engineering  

E-Print Network (OSTI)

A theme that has come to the fore in advanced planning for long-range space exploration is the concept that empty space itself (the quantum vacuum, or spacetime metric) might be engineered so as to provide energy/thrust for future space vehicles. Although far-reaching, such a proposal is solidly grounded in modern physical theory, and therefore the possibility that matter/vacuum interactions might be engineered for space-flight applications is not a priori ruled out. As examples, the current development of theoretical physics addresses such topics as warp drives, traversable wormholes and time machines that provide for such vacuum engineering possibilities. We provide here from a broad perspective the physics and correlates/consequences of the engineering of the spacetime metric.

Harold E. Puthoff

2012-02-03T23:59:59.000Z

306

Vehicle Technologies Office: FY 2007 Progress Report for Advanced...  

NLE Websites -- All DOE Office Websites (Extended Search)

meet future Federal emissions regulations. The primary goal of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion...

307

Study of using oxygen-enriched combustion air for locomotive diesel engines  

DOE Green Energy (OSTI)

A thermodynamic simulation is used to study effects of O2-enriched intake air on performance and NO emissions of a locomotive diesel engine. Parasitic power of the air separation membrane required to supply the O2-enriched air is also estimated. For a given constraint on peak cylinder pressure, gross and net power output of an engine operating under different levels of O2 enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in 13% increase in net engine power when intake air with 28 vol% O2 is used and fuel injection timing retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure can result in only 4% improvement in power. If part of the higher exhaust enthalpies from the O2 enrichment is recovered, the power requirements of the air separator membrane can be met. O2 enrichment with its higher combustion temperatures reduces emissions of particulates and visible smoke but increases NO emissions (by up to 3 times at 26% O2 content). Therefore, exhaust gas after-treatment and heat recovery would be required if the full potential of O2 enrichment for improving the performance of locomotive diesel engines is to be realized.

Poola, R.B.; Sekar, R. [Argonne National Lab., IL (United States); Assanis, D.N. [Michigan Univ., Ann Arbor, MI (United States); Cataldi, G.R. [Association of American Railroads, Washington, DC (United States)

1996-10-01T23:59:59.000Z

308

Apparatus and filtering systems relating to combustors in combustion turbine engines  

DOE Patents (OSTI)

A combustor for a combustion turbine engine, the combustor that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; a screen; and a standoff comprising a raised area on an outer surface of the outer wall near the periphery of the windows; wherein the screen extends over the windows and is supported by the standoff in a raised position in relation to the outer surface of the outer wall and the windows.

Johnson, Thomas Edward (Greer, SC); Zuo, Baifang (Simpsonville, SC); Stevenson, Christian Xavier (Inman, SC)

2012-07-24T23:59:59.000Z

309

THE EFFECTS OF HYDROGEN ADDITION AND INTAKE-INDUCED SWIRL ON THE CHARACTERISTICS OF NATURAL GAS COMBUSTION IN A SINGLE-CYLINDER SPARK-IGNITED ENGINE.  

E-Print Network (OSTI)

??Compressed natural gas (CNG) is an alternative fuel of interest for internal combustion engines (ICEs) in the mass transit and vocational applications. Increasingly, due to… (more)

Corrigan, Melanie

2011-01-01T23:59:59.000Z

310

Advanced Combustion, Emission Control, Health Impacts, and Fuels Merit Review and Peer Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

06 06 a n n u a l p r o g r e s s r e p o r t L e s s d e p e n d e n c e o n f o r e i g n o i l t o d a y, a n d t r a n s i t i o n t o a p e t r o l e u m - f r e e , e m i s s i o n s - f r e e v e h i c l e t o m o r r o w . F r e e d o m C A r A n d V e h i C l e T e C h n o l o g i e s P r o g r A m AdvAnced combustion, emission controls, HeAltH impActs, And Fuels merit review And peer evAluAtion Department of Energy Washington, DC 20585 October 2006 Dear Colleague: This document summarizes the comments provided by the Review Panel for the FY 2006 Department of Energy (DOE) Advanced Combustion, Emission Controls, Health Impacts, and Fuels Merit Review and Peer Evaluation Meeting, the "ACE Review," held on May 15-18, 2006 at Argonne National Laboratory (ANL). The raw evaluations and comments of the panel were provided (with reviewers' names deleted) to the presenters in early June and were used by national laboratory

311

Light Duty Efficient, Clean Combustion  

SciTech Connect

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

Donald Stanton

2010-12-31T23:59:59.000Z

312

Light Duty Efficient, Clean Combustion  

DOE Green Energy (OSTI)

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

Donald Stanton

2010-12-31T23:59:59.000Z

313

Light Duty Efficient, Clean Combustion  

SciTech Connect

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: 1. Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today’s state-ofthe- art diesel engine on the FTP city drive cycle 2. Develop & design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements. 3. Maintain power density comparable to that of current conventional engines for the applicable vehicle class. 4. Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: ? A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target ? An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system ? Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system ? Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle – Additional technical barriers exist for the no NOx aftertreatment engine ? Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated. ? The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing. ? The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment. ? The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment ? Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines) ? Key subsystems developed include – sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light- Duty Vehicles (ATP-LD) started in 2010.

Stanton, Donald W

2011-06-03T23:59:59.000Z

314

Effects of engine speed, fueling rate, and combustion phasing on the thermal stratification required to limit HCCI knocking intensity.  

DOE Green Energy (OSTI)

Thermal stratification has the potential to reduce pressure-rise rates and allow increased power output for HCCI engines. This paper systematically examines how the amount of thermal stratification of the core of the charge has to be adjusted to avoid excessive knock as the engine speed and fueling rate are increased. This is accomplished by a combination of multi-zone chemical-kinetics modeling and engine experiments, using iso-octane as the fuel. The experiments show that, for a low-residual engine configuration, the pressure traces are self-similar during changes to the engine speed when CA50 is maintained by adjusting the intake temperature. Consequently, the absolute pressure-rise rate measured as bar/ms increases proportionally with the engine speed. As a result, the knocking (ringing) intensity increases drastically with engine speed, unless counteracted by some means. This paper describes how adjustments of the thermal width of the in-cylinder charge can be used to limit the ringing intensity to 5 MW/m2 as both engine speed and fueling are increased. If the thermal width can be tailored without constraints, this enables smooth operation even for combinations of high speed, high load, and combustion phasing close to TDC. Since large alterations of the thermal width of the charge are not always possible, combustion retard is considered to reduce the requirement on the thermal stratification. The results show that combustion retard carries significant potential since it amplifies the benefit of a fixed thermal width. Therefore, the thermal stratification required for operation with an acceptable knocking intensity can be decreased substantially by the use of combustion retard. This enables combinations of high engine speed and high fueling rate even for operation with the naturally occurring thermal stratification. However, very precise control of the combustion phasing will likely be required for such operation.

SjÞoberg, Magnus; Dec, John E.

2004-12-01T23:59:59.000Z

315

Chemical Kinetic Models for HCCI and Diesel Combustion  

DOE Green Energy (OSTI)

Hydrocarbon fuels for advanced combustion engines consist of complex mixtures of hundreds or even thousands of different components. These components can be grouped into a number of chemically distinct classes, consisting of n-paraffins, branched paraffins, cyclic paraffins, olefins, oxygenates, and aromatics. Biodiesel contains its own unique chemical class called methyl esters. The fractional amounts of these chemical classes are quite different in gasoline, diesel fuel, oil-sand derived fuels and bio-derived fuels, which contributes to the very different combustion characteristics of each of these types of combustion systems. The objectives of this project are: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

Pitz, W J; Westbook, C K; Mehl, M

2008-10-30T23:59:59.000Z

316

Using Biofuel Tracers to Study Alternative Combustion Regimes  

E-Print Network (OSTI)

1979. J.B. Heywood, Internal Combustion Engine Fundamentals.Ignition Engine with Optimal Combustion Control. ” US PatentIntroduction to Internal Combustion Engines (3rd Edition).

Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

2006-01-01T23:59:59.000Z

317

Mixture of micronized coal powder with gaseous fuels for use in internal combustion engines  

DOE Patents (OSTI)

An improved fuel mixture for use in internal combustion engines is described. This fuel is an intimate mixture of micronized coal, having an average particle size of less than 100 microns, with a gaseous fuel selected from natural gas and coal-derived. The coal can be present from more than 0 percent to less than 100 percent, with generally the lower percentages being preferred. The addition of the coal to the gaseous fuel improves engine efficiency and power rating, and also decreases peak engine pressure allowing for higher compression ratios. An increase in the amount of the coal increases the oxides of sulfur while reducing the oxides of nitrogen in the exhaust. An increase in the amount of gas, on the other hand, increases the oxides of nitrogen but lowers oxides of sulfur. Accordingly, a preferred mixture will depend upon a particular application for the coal/gas fuel and thereby increases user fuel flexibility considerations. Modeling of the fuel mixture for use in a diesel engine is described. 3 figs., 3 tabs.

Carpenter, L.K.

1990-01-03T23:59:59.000Z

318

Mixing and flame structures inferred from OH-PLIF for conventional and low-temperature diesel engine combustion  

SciTech Connect

The structure of first- and second-stage combustion is investigated in a heavy-duty, single-cylinder optical engine using chemiluminescence imaging, Mie-scatter imaging of liquid-fuel, and OH planar laser-induced fluorescence (OH-PLIF) along with calculations of fluorescence quenching. Three different diesel combustion modes are studied: conventional non-diluted high-temperature combustion (HTC) with either (1) short or (2) long ignition delay, and (3) highly diluted low-temperature combustion (LTC) with early fuel injection. For the short ignition delay HTC condition, the OH fluorescence images show that second-stage combustion occurs mainly on the fuel jet periphery in a thickness of about 1 mm. For the long ignition delay HTC condition, the second-stage combustion zone on the jet periphery is thicker (5-6 mm). For the early-injection LTC condition, the second-stage combustion is even thicker (20-25 mm) and occurs only in the down-stream regions of the jet. The relationship between OH concentration and OH-PLIF intensity over a range of equivalence ratios is estimated from quenching calculations using collider species concentrations predicted by chemical kinetics simulations of combustion. The calculations show that both OH concentration and OH-PLIF intensity peak near stoichiometric mixtures and fall by an order of magnitude or more for equivalence ratios less than 0.2-0.4 and greater than 1.4-1.6. Using the OH fluorescence quenching predictions together with OH-PLIF images, quantitative boundaries for mixing are established for the three engine combustion modes. (author)

Singh, Satbir [General Motors Research and Development, Warren, MI 48090 (United States); Musculus, Mark P.B. [Sandia National Laboratories, Livermore, CA 94551 (United States); Reitz, Rolf D. [Department of Mechanical Engineering, University of Wisconsin, Madison, WI 53706 (United States)

2009-10-15T23:59:59.000Z

319

Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine  

Science Conference Proceedings (OSTI)

Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that that produces low NO{sub x} and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom machined pistons designed for RCCI operation. The pistons were designed with assistance from the KIVA 3V computational fluid dynamics (CFD) code. By using a genetic algorithm optimization, in conjunction with KIVA, the piston bowl profile was optimized for dedicated RCCI operation to reduce unburned fuel emissions and piston bowl surface area. By reducing these parameters, the thermal efficiency of the engine was improved while maintaining low NOx and PM emissions. Results show that with the new piston bowl profile and an optimized injection schedule, RCCI brake thermal efficiency was increased from 37%, with the stock EURO IV configuration, to 40% at the 2,600 rev/min, 6.9 bar BMEP condition, and NOx and PM emissions targets were met without the need for exhaust after-treatment.

Hanson, Reed M [ORNL; Curran, Scott [ORNL; Wagner, Robert M [ORNL; Reitz, Rolf [University of Wisconsin; Kokjohn, Sage [University of Wisconsin, Madison

2012-01-01T23:59:59.000Z

320

Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine  

DOE Green Energy (OSTI)

An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

Cho, Kukwon [ORNL; Curran, Scott [ORNL; Prikhodko, Vitaly Y [ORNL; Sluder, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES  

SciTech Connect

This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. A detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and concepts have been explored, and engine experiments will validate these concepts. An iterative process of experimentation, simulation and analysis, will be followed with the goal of demonstrating a complete optimized low-friction engine system. As planned, MIT has developed guidelines for an initial set of low-friction piston-ring-pack designs. Current recommendations focus on subtle top-piston-ring and oil-control-ring characteristics. A full-scale Waukesha F18 engine has been installed at Colorado State University and testing of the baseline configuration is in progress. Components for the first design iteration are being procured. Subsequent work includes examining the friction and engine performance data and extending the analyses to other areas to evaluate opportunities for further friction improvement and the impact on oil consumption/emission and wear, towards demonstrating an optimized reduced-friction engine system.

Victor W. Wong; Tian Tian; Grant Smedley

2003-08-28T23:59:59.000Z

322

Investigation of Diesel combustion using multiple injection strategies for idling after cold start of passenger-car engines  

Science Conference Proceedings (OSTI)

A comprehensive investigation was carried out in order to better understand the combustion behaviour in a low compression ratio DI Diesel engine when multiple injection strategies are applied just after the engine cold starts in low temperature conditions (idling). More specifically, the aim of this study was twofold: on one hand, to understand the effect of the multiple injection strategies on the indicated mean effective pressure; on the other hand, to contribute to the understanding of combustion stability characterized by the coefficient of variation of indicated mean effective pressure. The first objective was fulfilled by analyzing the rate of heat release obtained by in-cylinder pressure diagnosis. The results showed that the timing of the pilot injection closest to the main injection was the most influential parameter based on the behaviour of the rate of heat release (regardless of the multiple injection strategy applied). For the second objective, the combustion stability was found to be correlated with the combustion centroid angle. The results showed a trend between them and the existence of a range of centroid angles where the combustion stability is strong enough. In addition, it was also evident that convenient split injection allows shifting the centroid to such a zone and improves combustion stability after start. (author)

Payri, F.; Broatch, A.; Salavert, J.M.; Martin, J. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Aptdo. 22012, E-46071 Valencia (Spain)

2010-10-15T23:59:59.000Z

323

Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) Repowering Concept Assessment at Duke Energy's Dan River Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Wolfmeyer et al. APFBC Repowering Assessment at Duke Energy's Dan River Station Wolfmeyer et al. APFBC Repowering Assessment at Duke Energy's Dan River Station paper 970561 Page 1 of 36 Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) Repowering Concept Assessment at Duke Energy's Dan River Station John C. Wolfmeyer, P.E., and Cal Jowers, P.E. Duke Energy / Charlotte, North Carolina Richard E. Weinstein, P.E., Harvey N. Goldstein, P.E., and Jay S. White Parsons Power Group Inc. / Reading, Pennsylvania Robert W. Travers, P.E. U.S. Department of Energy Office of Fossil Energy / Germantown, Maryland electronic mail addresses/phone no. electronic mail addresses/phone no. Wolfmeyer { JCWolfme@Duke-Energy.COM 704 / 382-4017 Goldstein { Harvey_N_Goldstein@Parsons.COM 610 / 855-3281 Jowers { -- 704 / 382-9577 White { Jay_S_White@Parsons.COM

324

Low Temperature Combustion with Thermo-Chemical Recuperation to Maximize In-Use Engine Efficiency  

SciTech Connect

The key to overcome Low Temperature Combustion (LTC) load range limitations in reciprocating engines is based on proper control over the thermo-chemical properties of the in-cylinder charge. The studied alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel is a reformed product of the primary fuel in the tank. It is proposed in this report that the secondary fuel can be produced using exhaust heat and Thermo-Chemical Recuperation (TCR). TCR for reciprocating engines is a system that employs high efficiency recovery of sensible heat from engine exhaust gas and uses this energy to transform fuel composition. The recuperated sensible heat is returned to the engine as chemical energy. Chemical conversions are accomplished through catalytic and endothermic reactions in a specially designed reforming reactor. An equilibrium model developed by Gas Technology Institute (GTI) for heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures. Laboratory results, at a steam/heptane mole ratio less than 2:1, confirm that low temperature reforming reactions, in the range of 550 K to 650 K, can produce 10-30% hydrogen (by volume, wet) in the product stream. Also, the effect of trading low mean effective pressure for displacement to achieve power output and energy efficiency has been explored by WVU. A zerodimensional model of LTC using heptane as fuel and a diesel Compression Ignition (CI) combustion model were employed to estimate pressure, temperature and total heat release as inputs for a mechanical and thermal loss model. The model results show that the total cooling burden on an LTC engine with lower power density and higher displacement was 14.3% lower than the diesel engine for the same amount of energy addition in the case of high load (43.57mg fuel/cycle). These preliminary modeling and experimental results suggest that the LTC-TCR combination may offer a high efficiency solution to engine operation. A single zone model using a detailed chemical kinetic mechanism was implemented in CHEMKIN and to study the effects of base fuel and steam-fuel reforming products on the ignition timing and heat release characteristics. The study was performed considering the reformed fuel species composition for total n-heptane conversion (ideal case) and also at the composition corresponding to a specific set of operational reforming temperatures (real case). The computational model confirmed that the reformed products have a strong influence on the low temperature heat release (LTHR) region, affecting the onset of the high temperature heat release (HTHR). The ignition timing was proportionally delayed with respect to the baseline fuel case when higher concentrations of reformed gas were used. For stoichiometric concentration of RG, it was found that by increasing the proportion of reformed fuel to total fuel (RG), from 0% to 30%, the amount of energy released during the LTHR regime, or HR{sub L}, was reduced by 48% and the ignition timing was delayed 10.4 CA degrees with respect to the baseline fuel case. For RG composition corresponding to certain operational reforming temperatures, it was found that the most significant effects on the HCCI combustion, regarding HR{sub L} reduction and CA50 delay, was obtained by RG produced at a reforming temperature range of 675 K-725 K.

Nigel N. Clark; Francisco Posada; Clinton Bedick; John Pratapas; Aleksandr Kozlov; Martin Linck; Dmitri Boulanov

2009-03-30T23:59:59.000Z

325

Evaluation and silicon nitride internal combustion engine components. Final report, Phase I  

DOE Green Energy (OSTI)

The feasibility of silicon nitride (Si{sub 3}N{sub 4}) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components` gas-pressure sinterable Si{sub 3}N{sub 4} (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si{sub 3}N{sub 4} components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

Voldrich, W. [Allied-Signal Aerospace Co., Torrance, CA (United States). Garrett Ceramic Components Div.

1992-04-01T23:59:59.000Z

326

Comparative evaluation of acoustical noise levels of Soleq Evcort EV and ICE (internal combustion engine) counterpart  

DOE Green Energy (OSTI)

The Idaho National Engineering Laboratory (INEL) evaluates Ev propulsion systems and components for the US Department of Energy (DOE) Electric and Hybrid Vehicle (EHV) Program. This paper describes an INEL study which compares the exterior and interior acoustic noise levels of an electric vehicle to its internal combustion engine (ICE) counterpart base vehicle, under various operating conditions. The electric vehicle was a converted 1988 Ford Escort station wagon, retrofitted with a DC electric powertrain developed by Soleq Corporation. A comparably-equipped gasoline-fueled ICE-powered Ford Escort station wagon provided the baseline acoustic noise levels with which to compare the electric vehicle. Measurements of the interior and exterior noise levels were obtained using a Bruel and Kjaer (B K) Type 2231 Modular Precision Sound Level Meter. The tests were conducted in accordance with applicable Society of Automotive Engineer's (SAE) standard practices at Chrysler's Arizona Proving Grounds in Wittmann, Arizona. The results indicate that radiated interior and exterior acoustic noise levels of the electric vehicle were noticeably quieter under acceleration and idly conditions. However, under constant speed operation the electric and the ICE exhibited essentially equivalent interior and exterior noise levels. 8 refs., 2 tabs.

MacDowall, R.D.

1990-01-01T23:59:59.000Z

327

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES  

Science Conference Proceedings (OSTI)

This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, with full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.

Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

2005-09-30T23:59:59.000Z

328

CONFIRMATORY SURVEY RESULTS FOR PORTIONS OF THE ABB COMBUSTION ENGINEERING SITE IN WINDSOR, CONNECTICUT DURING THE FALL OF 2011  

SciTech Connect

From the mid-1950s until mid-2000, the Combustion Engineering, Inc. (CE) site in Windsor, Connecticut (Figure A-1) was involved in the research, development, engineering, production, and servicing of nuclear fuels, systems, and services. The site is currently undergoing decommissioning that will lead to license termination and unrestricted release in accordance with the requirements of the License Termination Rule in 10 CFR Part 20, Subpart E. Asea Brown Boveri Incorporated (ABB) has been decommissioning the CE site since 2001.

Wade C. Adams

2011-12-09T23:59:59.000Z

329

Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

RESEARCH & DEVELOPMENT RESEARCH & DEVELOPMENT Science Arizona Public Service Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine Vehicle Testing Alternative Fuel Pilot Plant The Arizona Public Service Alternative Fuel Pilot Plant is a model alternative fuel refueling system, dispensing hydrogen, compressed natural gas (CNG), and hydrogen/ CNG blends (HCNG). The plant is used daily to fuel vehicles operated in Arizona Public Service's fleet. Hydrogen Subsystem The plant's hydrogen system consists of production, compression, storage, and dispensing. The hydrogen produced is suitable for use in fuel cell-powered vehicles, for which the minimum hydrogen purity goal is 99.999%. Hydrogen is produced using an electrolysis process that separates water into hydrogen and oxygen. At present, the hydrogen is

330

NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach (Fact Sheet)  

SciTech Connect

This fact sheet describes the National Renewable Energy Laboratory's (NREL's) accomplishments in showcasing a Ford hydrogen-powered internal combustion engine (H2ICE) bus at The Taste of Colorado festival in Denver. NREL started using its U.S. Department of Energy-funded H2ICE bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. In September 2010, NREL featured the bus at The Taste of Colorado. This was the first major outreach event for the bus. NREL's educational brochure, vehicle wrap designs, and outreach efforts serve as a model for other organizations with DOE-funded H2ICE buses. Work was performed by the Hydrogen Education Group and Market Transformation Group in the Hydrogen Technologies and Systems Center.

2010-11-01T23:59:59.000Z

331

Analysis on driving forces of oil pumps for internal combustion engines  

Science Conference Proceedings (OSTI)

Measures to reduce friction losses for internal combustion engines have been promoted as a means to meet the recent socioeconomical demand for energy saving. This paper describes a unique study on oil pump driving forces as a part of such efforts. In this study, oil pump driving forces are divided into (1) pumping work, (2) gear intermeshing loss, (3) resistance by the viscosity of lubricating oil, (4) mechanical loss and (5) bearing friction loss. Individual driving forces have been analyzed by respective theories, which are synthesized into a theoretical equation. The comparison between the theoretically calculated values and measured values obtained by the tests has revealed that they are in good agreement, as being described in the text of the paper.

Baba, Y.; Hoshi, M.

1986-01-01T23:59:59.000Z

332

REVISED NOTICE OF PROPOSED AWARDS Advanced Natural Gas Engine Research and Development for Class 3  

E-Print Network (OSTI)

REVISED NOTICE OF PROPOSED AWARDS Advanced Natural Gas Engine Research and Development for Class 3 Notice (PON-12-504) entitled "Advanced Natural Gas Engine research and Development for Class 3 through of natural gas engine concepts for application in light heavy-duty vehicles (LHDV) and medium heavy duty

333

Engines - Spark Ignition Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Spark Ignition Engines Spark Ignition Engines Thomas Wallner and omni engine Thomas Wallner and the omnivorous engine Background Today the United States import more than 60% of its crude oil and petroleum products. Transportation accounts for a major portion of these imports. Research in this field is focused on reducing the dependency on foreign oil by increasing the engine efficiency on the one hand and blending gasoline with renewable domestic fuels, such as ethanol, on the other. Argonne's Research The main focus of research is on evaluation of advanced combustion concepts and effects of fuel properties on engine efficiency, performance and emissions. The platforms used are a single-cylinder research engine as well as an automotive-size four-cylinder engine with direct fuel injection.

334

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES  

Science Conference Proceedings (OSTI)

This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% ARES engine efficiency. The design strategies developed in this study have promising potential for application in all modern reciprocating engines as they represent simple, low-cost methods to extract significant fuel savings. The current program has possible spinoffs and applications in other industries as well, including transportation, CHP, and diesel power generation. The progress made in this program has wide engine efficiency implications, and potential deployment of low-friction engine components or lubricants in the near term is possible as current investigations continue.

Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

2006-03-31T23:59:59.000Z

335

SYMPOSIUM ON TURBULENCE AND COMBUSTION - SPECIAL SYMPOSIUM TO BRING TOGETHER TOP RESEARCHERS IN THE FIELDS OF FLUID TURBULENCE AND COMBUSTION TO PROMOTE ADVANCES IN TURBULENT, REACTING FLOWS  

SciTech Connect

A Symposium on Turbulence and Combustion was held at Cornell University on August 3-4, 2009. The overall goal of the Symposium was to promote future advances in the study of turbulence and combustion, through an unique forum intended to foster interactions between leading members of these two research communities. The Symposium program consisted of twelve invited lectures given by world-class experts in these fields, two poster sessions consisting of nearly 50 presentations, an open forum, and other informal activities designed to foster discussion. Topics covered in the lectures included turbulent dispersion, wall-bounded flows, mixing, finite-rate chemistry, and others, using experiment, modeling, and computations, and included perspectives from an international community of leading researchers from academia, national laboratories, and industry.

Caughey, David

2010-10-08T23:59:59.000Z

336

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES  

Science Conference Proceedings (OSTI)

This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scale Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology demonstration in an actual full-sized reciprocating natural-gas engine.

Victor W. Wong; Tian Tian; Grant Smedley; Jeffrey Jocsak

2004-09-30T23:59:59.000Z

337

Solution Combustion Synthesis Impregnated Layer Combustion Synthesis is a Novel  

E-Print Network (OSTI)

Solution Combustion Synthesis Impregnated Layer Combustion Synthesis is a Novel Methodology Engineering University of Notre Dame University of Notre Dame #12;Outline: Overview of combustion synthesis Reaction system Combustion front analaysis Theoretical model results Conclusions Acknowledgements #12

Mukasyan, Alexander

338

Heat-pipe gas-combustion system endurance test for Stirling engine. Final report, May 1990-September 1990  

SciTech Connect

Stirling Thermal Motors, Inc., (STM) has been developing a general purpose Heat Pipe Gas Combustion System (HPGC) suitable for use with the STM4-120 Stirling engine. The HPGC consists of a parallel plate recuperative preheater, a finned heat pipe evaporator and a film cooled gas combustor. A principal component of the HPGC is the heat pipe evaporator which collects and distributes the liquid sodium over the heat transfer surfaces. The liquid sodium evaporates and flows to the condensers where it delivers its latent heat. The report presents test results of endurance tests run on a Gas-Fired Stirling Engine (GFSE). Tests on a dynamometer test stand yielded 67 hours of engine operation at power levels over 10 kW (13.5 hp) with 26 hours at power levels above 15 kW (20 hp). Total testing of the engine, including both motoring tests and engine operation, yielded 245 hours of engine run time.

Mahrle, P.

1990-12-01T23:59:59.000Z

339

Chemical Kinetic Models for HCCI and Diesel Combustion  

DOE Green Energy (OSTI)

Predictive engine simulation models are needed to make rapid progress towards DOE's goals of increasing combustion engine efficiency and reducing pollutant emissions. These engine simulation models require chemical kinetic submodels to allow the prediction of the effect of fuel composition on engine performance and emissions. Chemical kinetic models for conventional and next-generation transportation fuels need to be developed so that engine simulation tools can predict fuel effects. The objectives are to: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

Pitz, W J; Westbrook, C K; Mehl, M; Sarathy, S M

2010-11-15T23:59:59.000Z

340

Low-rank coal research: Volume 3, Combustion research: Final report. [Great Plains  

DOE Green Energy (OSTI)

Volume III, Combustion Research, contains articles on fluidized bed combustion, advanced processes for low-rank coal slurry production, low-rank coal slurry combustion, heat engine utilization of low-rank coals, and Great Plains Gasification Plant. These articles have been entered individually into EDB and ERA. (LTN)

Mann, M. D.; Hajicek, D. R.; Zobeck, B. J.; Kalmanovitch, D. P.; Potas, T. A.; Maas, D. J.; Malterer, T. J.; DeWall, R. A.; Miller, B. G.; Johnson, M. D.

1987-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Drop Test Results for the Combustion Engineering Model No. ABB-2901 Fuel Pellet Package  

SciTech Connect

The U.S. Nuclear Regulatory Commission (USNRC) contracted with the Packaging Review Group (PRG) at Lawrence Livermore National Laboratory (LLNL) to conduct a single, 30-ft shallow-angle drop test on the Combustion Engineering ABB-2901 drum-type shipping package. The purpose of the test was to determine if bolted-ring drum closures could fail during shallow-angle drops. The PRG at LLNL planned the test, and Defense Technologies Engineering Division (DTED) personnel from LLNL's Site-300 Test Group executed the plan. The test was conducted in November 2001 using the drop-tower facility at LLNL's Site 300. Two representatives from Westinghouse Electric Company in Columbia, South Carolina (WEC-SC); two USNRC staff members; and three PRG members from LLNL witnessed the preliminary test runs and the final test. The single test clearly demonstrated the vulnerability of the bolted-ring drum closure to shallow-angle drops-the test package's drum closure was easily and totally separated from the drum package. The results of the preliminary test runs and the 30-ft shallow-angle drop test offer valuable qualitative understandings of the shallow-angle impact.

Hafner, R S; Mok, G C; Hagler, L G

2004-04-23T23:59:59.000Z

342

FY2002 Progress Report for Fuels for Advanced Compression Ignition Direct Injection (CIDI) Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels for Advanced Compression Fuels for Advanced Compression Ignition Direct Injection (CIDI) Engines Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Approved by Stephen Goguen November 2002 Fuels for Advanced CIDI Engines FY 2002 Progress Report iii CONTENTS CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii INDEX OF PRIMARY CONTACTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. FUEL/LUBRICANT EFFECTS TESTING ON ENGINE PERFORMANCE . . . . . . . . . 13 A. Oil Consumption Contribution to CIDI PM Emissions during Transient Operation . . . . . . . . . . . . . . . . . . . .13

343

Fundamental limitations of non-thermal plasma processing for internal combustion engine NO{sub x} control  

DOE Green Energy (OSTI)

This paper discusses the physics and chemistry of non-thermal plasma processing for post-combustion NO{sub x} control in internal combustion engines. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO{sub x} removal mechanisms, and by product formation. Can non-thermal deNO{sub x} operate efficiently without additives or catalysts? How much electrical power does it cost to operate? What are the by-products of the process? This paper addresses these fundamental issues based on an analysis of the electron-molecule processes and chemical kinetics.

Penetrante, B.M.

1993-08-19T23:59:59.000Z

344

Achieve Continuous Injection of Solid Fuels into Advanced Combustion System Pressures  

SciTech Connect

The overall objective of this project is the development of a mechanical rotary-disk feeder, known as the Stamet Posimetric High Pressure Solids Feeder System, to feed dry granular coal continuously and controllably into pressurized environments of up to 35 kg/cm{sup 2} (500 psi). This was to be accomplished in two phases. The first task was to review materials handling experience in pressurized operations as it related to the target pressures for this project, and review existing coal preparation processes and specifications currently used in advanced combustion systems. Samples of existing fuel materials were obtained and tested to evaluate flow, sealing and friction properties. This provided input data for use in the design of the Stamet Feeders for the project, and ensured that the material specification used met the requirements of advanced combustion & gasification systems. Ultimately, Powder River Basin coal provided by the PSDF facility in Wilsonville, AL was used as the basis for the feeder design and test program. Based on the material property information, a Phase 1 feeder system was designed and built to accomplish feeding the coal to an intermediate pressure up to 21 kg/cm{sup 2} (300 psi) at feed rates of approximately 100 kilograms (220lbs) per hour. The pump & motor system was installed in a custom built test rig comprising an inlet vessel containing an active live-wall hopper mounted in a support frame, transition into the pump inlet, transition from pump outlet and a receiver vessel containing a receiver drum supported on weigh cells. All pressure containment on the rig was rated for the final pressure requirement of 35 kg/cm{sup 2} (500psi). A program of testing and modification was carried out in Stamet's facility in CA, culminating in successful feeding of coal into the Phase 1 target of 21 kg/cm{sup 2} (300psi) gas pressure in December 2003. Further testing was carried out at CQ Inc's facility in PA, providing longer run times and experience of handling and feeding the coal in winter conditions. Based on the data developed through the testing of the Phase I unit, a Phase II system was designed for feeding coal into pressures of up to 35 kg/cm{sup 2} (500 psi). A further program of testing and modification was then carried out in Stamet's facility, with the target pressure being achieved in January 2005. Repeated runs at pressure were achieved, and optimization of the machine resulted in power reductions of 60% from the first successful pressure runs. General design layout of a commercial-scale unit was conducted, and preliminary cost estimates for a commercial unit obtained.

Derek L. Aldred; Timothy Saunders

2005-07-01T23:59:59.000Z

345

Comparison of engine simulation software for development of control system  

Science Conference Proceedings (OSTI)

Most commonly used commercial engine simulation packages generate detailed estimation of the combustion and gas flow parameters. These parameters are required for advanced research on fluid flow and heat transfer and development of geometries of engine ...

KinYip Chan, Andrzej Ordys, Konstantin Volkov, Olga Duran

2013-01-01T23:59:59.000Z

346

Investigation of spark discharge processes and ignition systems for spark-ignited internal combustion engines  

E-Print Network (OSTI)

Spark ignition of the air-fuel mixture at the appropriate time is important for successful flame initiation and complete combustion thereafter without unnecessary emissions. The physical and chemical reactions taking place between the spark plug electrodes during spark delivery determine the intensity of the spark and subsequent flame initiation. The energy of spark and the duration of its delivery are dependent on the ignition system design. The characteristics of the spark plug determine the interaction of the spark with the air-fuel mixture. The compression pressure, combustion chamber temperature and mixture motion at the time of spark generation play a significant role in the flame initiation process. All of these parameters are responsible for the resulting spark discharge and flame initiation process. The objectives of this research include investigation of the different phases of spark discharge and development of a thermodynamic analysis to determine the rate of change of the spark kernel temperature with time during the initial phases of the spark discharge. The effect of spark energy delivery rate, heat transfer losses and mass entrainment on the spark kernel temperature was determined through the thermodynamic analysis. This research also includes an evaluation of the various types of conventional as well as high-energy ignition systems for lean burn engines. An experimental ignition system was constructed to determine the effect of ignition energy, spark plug electrode geometry and gas pressure on the characteristics of the spark discharge. Images of spark discharge were captured through photography using three different types of electrode geometries and also by varying the pressure and by changing the ignition energy using different condensers in the ignition system. Finally, the results of the thermodynamic analysis were compared with the results from the experiment.

Khare, Yogesh Jayant

2000-01-01T23:59:59.000Z

347

Large eddy simulation of supersonic combustion with application to scramjet engines  

E-Print Network (OSTI)

diffusion term qj Heat flux vector R? Specific gas constant for species ? rd DDES RANS/LES blending parameter Re Reynolds number Rij Reynolds stress tensor Rm Mixture specific gas constant R0 Universal gas constant ~rL, ~rR Vectors from centre of left... and economical access to space. In order to meet these needs and ambitions, significant advancements in propulsion technol- ogy are required. The gas turbine engines commonly employed in subsonic and low supersonic aircraft are not practical above flight Mach...

Cocks, Peter

2011-07-12T23:59:59.000Z

348

Combustion Research Facility | A Department of Energy Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy-Duty Heavy-Duty Low-Temperature and Diesel Combustion HCCISCCI Engine Fundamentals Spray Combustion Automotive Low-Temperature Diesel Combustion DISI Combustion...

349

A research plan to study emissions from small internal combustion engines. Final report Sep 78-Sep 79  

SciTech Connect

The report examines some of the requirements for investigating the environmental status of small internal combustion (IC) engines. These engines range in size from 1.5 to 15 hp and power a variety of equipment operated by homeowners and industry. With EPA's general growing concern of identifying sources of potentially carcinogenic emissions, a possibility exists that these small IC engines are a problem source. Research to characterize emissions from IC engines has largely been limited to critical pollutants, even though the small IC engine is an incomplete combustor. It follows that some carcinogens and other hazardous compounds are probable. The basic requirements addressed in the report include analytical equipment, experimental systems design, and statistical experimental design.

Murrell, J.W.

1980-04-01T23:59:59.000Z

350

Copyright ©1999 by ASMEGas Turbines for Advanced Pressurized Fluidized Bed Combustion Combined Cycles (APFBC)  

E-Print Network (OSTI)

This paper describes gas turbines from several manufacturers that, with modification, have potential for repowering existing steam plants with high efficiency advanced circulating pressurized fluidized bed combustion combined cycle (APFBC) technology. The paper discusses the issues that must be addressed by these manufacturers if they are to have units suited for entry into the APFBC market. APFBC repowering retains the continued use of existing coal-fired capacity with acceptable economy. APFBC repowering significantly improves the energy efficiency of an existing plant, the plant’s environmental performance, and reduces operating costs. Coal-fired APFBC is now under test in large scale demonstrations, and will be ready for commercial repowering installations around year 2005, so it is prudent to begin evaluating the types of APFBC-modified units that might be offered from different manufacturers. APFBC repowering has some important advantages for the power generating company owner. For example, repowering the 106 MWe output Carolina Power & Light Company’s (CP&L) L.V. Sutton steam station Unit 2 with APFBC would boost output and improve the energy efficiency.

John M. Rockey; Richard E. Weinstein

1999-01-01T23:59:59.000Z

351

54.5 MPG and Beyond: Speeding Up Development of Advanced Combustion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photo courtesy of Argonne National Laboratory. Argonne engineer Steve Ciatti works on an engine in Argonne's Engine Research Facility -- a facility where researchers can study...

352

Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines  

SciTech Connect

This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% ARES engine efficiency. The design strategies developed in this study have promising potential for application in all modern reciprocating engines as they represent simple, low-cost methods to extract significant fuel savings. The current program has possible spinoffs and applications in other industries as well, including transportation, CHP, and diesel power generation. The progress made in this program has wide engine efficiency implications, and potential deployment of low-friction engine components or lubricants in the near term is quite possible.

Victor Wong; Tian Tian; G. Smedley; L. Moughon; Rosalind Takata; J. Jocsak

2006-11-30T23:59:59.000Z

353

Task 2 Materials for Advanced Boiler and Oxy-combustion Systems (NETL-US)  

Science Conference Proceedings (OSTI)

Exposures were completed to ~1400 hr. Analysis of kinetics are close to completion. No oxy-combustion gas phase effects were found at 700{degrees}C.

Holcomb, Gordon R. [NETL; Tylczak, Joseph [NETL

2013-08-28T23:59:59.000Z

354

Futuristic concepts in engines and components  

Science Conference Proceedings (OSTI)

This publication includes papers on two-stroke engines and components, Brayton Stirling and Otto Cycles, alternative cycles, advanced combustion, and other related topics. Contents include: Paving the way to controlled combustion engines (CCE); A new class of stratified-charge internal combustion engine; Internal combustion (IC) engine with minimum number of moving parts; New type of heat engine -- externally heated air engine; A porous media burner for reforming methanol for fuel cell powered electric vehicles; Using a Stirling engine simulation program as a regenerator design aid; In-cylinder regenerated engines; High speed electronic fuel injection for direct injected rotary engine; and The characteristics of fuel consumption and exhaust emissions of the side exhaust port rotary engine.

NONE

1995-12-31T23:59:59.000Z

355

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program  

SciTech Connect

On February 22, 1988, DOE issued Program Opportunity Notice (PON) Number-DE-PS01-88FE61530 for Round II of the CCT Program. The purpose of the PON was to solicit proposals to conduct cost-shared ICCT projects to demonstrate technologies that are capable of being commercialized in the 1990s, that are more cost-effective than current technologies, and that are capable of achieving significant reduction of SO[sub 2] and/or NO[sub x] emissions from existing coal burning facilities, particularly those that contribute to transboundary and interstate pollution. The Combustion Engineering (C-E) Integrated Coal Gasification Combined Cycle (IGCC) Repowering Project was one of 16 proposals selected by DOE for negotiation of cost-shared federal funding support from among the 55 proposals that were received in response to the PON. The ICCT Program has developed a three-level strategy for complying with the National Environmental Policy Act (NEPA) that is consistent with the President's Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and the DOE guidelines for compliance with NEPA (10 CFR 1021). The strategy includes the consideration of programmatic and project-specific environmental impacts during and subsequent to the reject selection process.

1992-03-01T23:59:59.000Z

356

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project, Clean Coal Technology Program  

Science Conference Proceedings (OSTI)

The DOE entered into a cooperative agreement with Combustion Engineering, Inc. (C-E) under which DOE proposes to provide cost-shared funding to design, construct, and operate an Integrated Coal Gasification Combined Cycle (IGCC) project to repower an existing steam turbine generator set at the Springfield (Illinois) City Water, Light and Power (CWL P) Lakeside Generating Station, while capturing 90% of the coal's sulfur and producing elemental sulfur as a salable by-product. The proposed demonstration would help determine the technical and economic feasibility of the proposed IGCC technology on a scale that would allow the utility industry to assess its applicability for repowering other coal-burning power plants. This Environmental Assessment (EA) has been prepared by DOE in compliance with the requirements of National Environmental Policy Act (NEPA). The sources of information for this EA include the following: C-E's technical proposal for the project submitted to DOE in response to the Innovative Clean Coal Technology (ICCT) Program Opportunity Notice (PON); discussions with C-E and CWL P staff; the volume of environmental information for the project and its supplements provided by C-E; and a site visit to the proposed project site.

Not Available

1992-03-01T23:59:59.000Z

357

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project, Clean Coal Technology Program. Environmental Assessment  

Science Conference Proceedings (OSTI)

The DOE entered into a cooperative agreement with Combustion Engineering, Inc. (C-E) under which DOE proposes to provide cost-shared funding to design, construct, and operate an Integrated Coal Gasification Combined Cycle (IGCC) project to repower an existing steam turbine generator set at the Springfield (Illinois) City Water, Light and Power (CWL&P) Lakeside Generating Station, while capturing 90% of the coal`s sulfur and producing elemental sulfur as a salable by-product. The proposed demonstration would help determine the technical and economic feasibility of the proposed IGCC technology on a scale that would allow the utility industry to assess its applicability for repowering other coal-burning power plants. This Environmental Assessment (EA) has been prepared by DOE in compliance with the requirements of National Environmental Policy Act (NEPA). The sources of information for this EA include the following: C-E`s technical proposal for the project submitted to DOE in response to the Innovative Clean Coal Technology (ICCT) Program Opportunity Notice (PON); discussions with C-E and CWL&P staff; the volume of environmental information for the project and its supplements provided by C-E; and a site visit to the proposed project site.

Not Available

1992-03-01T23:59:59.000Z

358

LED-induced fluorescence diagnostics for turbine and combustion engine thermometry  

DOE Green Energy (OSTI)

Fluorescence from phosphor coatings is the basis of an established technique for measuring temperature in a wide variety of turbine and combustion engine applications. Example surfaces include blades, vanes, combustors, intake valves, pistons, and rotors. Many situations that are remote and noncontact require the high intensity of a laser to illuminate the phosphor, especially if the surface is moving. Thermometric resolutions of 0.1 C are obtainable, and some laboratory versions of these systems have been calibrated against NIST standards to even higher precision. To improve the measurement signal-to-noise ratio, synchronous detection timing has been used to repeatedly interrogate the same blade in a high speed rotating turbine. High spatial resolution can be obtained by tightly focusing the interrogation beam in measurements of static surfaces, and by precise differential timing of the laser pulses on rotating surfaces. We report here the use of blue light emitting diodes (LEDs) as a n illumination source for producing useable fluorescence from phosphors for temperature measurements. An LED can excite most of the same phosphors used to cover the temperature range from 8 to 1400 C. The advantages of using LEDs are obvious in terms of size, power requirements, space requirements and cost. There can also be advantages associated with very long operating lifetimes, wide range of available colors, and their broader emission bandwidths as compared to laser diodes. Temperature may be inferred either from phase or time-decay determinations.

Allison, S.W.

2001-08-17T23:59:59.000Z

359

Apparatus and filtering systems relating to combustors in combustion turbine engines  

DOE Patents (OSTI)

A combustor for a combustion turbine engine that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; and a multilayer screen filter comprising at least two layers of screen over at least a portion of the windows and at least one layer of screen over the remaining portion of the windows. The windows include a forward end and a forward portion, and an aft end and an aft portion. The multilayer screen filter is positioned over the windows such that, in operation, a supply of compressed air entering the chamber through the windows passes through at least one layer of screen. The multilayer screen filter is configured such that the aft portion of the windows include at least two layers of screen, and the forward portion of the windows includes one less layer of screen than the aft portion of the windows.

Johnson, Thomas Edward (Greer, SC); Zuo, Baifang (Simpsonville, SC); Stevenson, Christian Xavier (Inman, SC)

2012-03-27T23:59:59.000Z

360

Multi-dimensional computation of compressible reacting flows through porous media to apply to Internal Combustion Engine simulation  

Science Conference Proceedings (OSTI)

In this work, a new multi-dimensional Finite Volume (FV) solver of partial differential equations (PDEs) for compressible and reacting flows through porous media has been developed. The solver makes use of a pseudo-staggered arrangement, in order to ... Keywords: CFD, Computational fluid dynamics, DPF, Diesel exhaust after-treatment simulation, Diesel particulate filters, ICE, Internal combustion engines, Numerical methods, Porous media solver

F. Piscaglia; A. Montorfano; A. Onorati

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Modeling the performance of the piston ring-pack with consideration of non-axisymmetric characteristics of the power cylinder system in internal combustion engines  

E-Print Network (OSTI)

The performance of the piston ring-pack is directly associated with the friction, oil consumption, wear, and blow-by in internal combustion engines. Because of non-axisymmetric characteristics of the power cylinder system, ...

Liu, Liang, 1971-

2005-01-01T23:59:59.000Z

362

High temperature solid lubricant materials for heavy duty and advanced heat engines  

DOE Green Energy (OSTI)

Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

DellaCorte, C.; Wood, J.C.

1994-10-01T23:59:59.000Z

363

NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

557 * November 2010 557 * November 2010 NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach National Renewable Energy Laboratory (NREL) Teams: Hydrogen Education, Melanie Caton; Market Transformation, Michael Ulsh Accomplishment: NREL started using its Ford hydrogen-powered internal combustion engine (H 2 ICE) bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. As the first national laboratory to receive such a bus, NREL

364

A retrospective survey of the use of laboratory tests to simulate internal combustion engine materials tribology problems  

DOE Green Energy (OSTI)

Progress in the Field of tribology strongly parallels, and has always been strongly driven by, developments and needs in transportation and related industries. Testing of candidate materials for internal combustion engine applications has historically taken several routes: (1) replacement of parts in actual engines subjected to daily use, (2) testing in special, instrumented test engines, (3) and simulative testing in laboratory tribometers using relatively simple specimens. The advantages and disadvantages of each approach are reviewed using historical examples. A four-decade, retrospective survey of the tribomaterials literature focused on the effectiveness of laboratory simulations for engine materials screening. Guidelines for designing and ducting successful tribology laboratory simulations will be discussed. These concepts were used to design a valve wear simulator at Oak Ridge National Laboratory.

Blau, P.J.

1992-12-31T23:59:59.000Z

365

Enlaces de Vehículos de Combustible Fexible  

NLE Websites -- All DOE Office Websites (Extended Search)

combustible flexible provista por el Alternative Fuels & Advanced Vehicles Data Center (AFDC) del DOE Vehculos de Combustible Flexible: Una alternativa de combustible renovable...

366

Combustion optimization studies for stratified charge and diesel engines. Progress report, October 1, 1977--September 30, 1978  

DOE Green Energy (OSTI)

The objectives of the program are to assess the feasibility and operating characteristics of the following high compression, spark ignition (or self ignition), stratified charge (or diesel) engine configuration: compression ratio: 16; open chember; direct fuel injection; unthrottled operation; 615 cc/cylinder; explored speed range 1000 to 4000 rpm (expected practical range 600 to 6000 rpm); fuels: ethanol-diesel mixtures; spark ignition (stratified charge) or self ignition (diesel), to continue the development and the testing of physical and numerical aspects of multi-dimensional combustion models in order to assess and improve their accuracy and to reduce their computation time, and to contribute to the achievement of a more fundamental and detailed understanding, characterization, and command of the processes wich control efficiency and emissions in internal combustion engines. Progress to date includes: engine modifications to obtain a transparent-piston, transparent-head configuration have been implemented; a gaseous fuel injection system has been designed, built, and operated; shadowgraph records of engine combustion have been obtained; a LDV system for in-cylinder gas velocity measurements has been selected; progress has been made toward measuring in-cylinder pressure, temperature, and composition for complete characterization of the charge; modeling of unsteady gaseous jets has yielded results which match asymptotically known steady state solutions; comparison with unsteady, two-dimensional bomb flames has yielded general scaling procedures for the computation of laminar flames; studies toward modeling of thick sprays have continued; DISC and other technical meetings have been attended and the results of the program made known to researchers and automotive industries; a very promising technique to apply television to unsteady events with short characteristic time (< 30 ms) has been developed and applied to obtain records of engine flames.

Steinberger, R.L.; Bracco, F.V.

1978-08-01T23:59:59.000Z

367

Method for starting and operating an advanced regenerative parallel compound dual fluid heat engine-advanced Cheng cycle(ACC)  

SciTech Connect

In a Cheng cycle, dual fluid heat engine of the type is described having: (i) a gas turbine engine including a compressor for compressing a first working fluid, having a compressor outlet, a combustion chamber in fluid communication with the compressor outlet, a turbine unit having an inlet in fluid communication with the combustion chamber for performing work by expansion of working fluid, and a turbine exhaust; (ii) a heat recovery steam generator coupled to the turbine exhaust for heating a second working fluid having a superheater with an outlet and an inlet, an evaporator having an outlet coupled to the superheater inlet and an evaporator inlet, a heat recovery boiler between the evaporator inlet and outlet having a drum; (iii) an injector for introducing heated second working fluid from the heat recovery steam generator into the gas turbine; (iv) a coolant inlet port for introducing coolant to at least one of turbine nozzles and blades in the gas turbine; and (v) control valve means for selectively throttling flow rate of second working fluid into the gas turbine connected upstream of the injector; (vi) a compressed gas source and pressure regulator selectively in communication with the drum; (vii) a sensor system coupled to gas turbine engine and the heat recovery steam generator for temperature and pressure detection; and (viii) a control system for operating fuel flow to the gas turbine; a method of operation of the heat engine comprising: (a) initializing start conditions in the gas turbine engine and the heat recovery steam generator with the control system; (b) setting the control valve means for idle flow condition of the heat engine; (c) pressurizing the drum with the compressed gas source, (d) starting the gas turbine engine from idle to full load; (e) throttling second working fluid flow rate with the control valve means and shutting off the compressed gas source.

Cheng, D.Y.

1993-08-10T23:59:59.000Z

368

APPENDIX B: CARBON DIOXIDE CAPTURE TECHNOLOGY SHEETS PRE-COMBUSTION SOLVENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

CARBON DIOXIDE CAPTURE TECHNOLOGY SHEETS PRE-COMBUSTION SOLVENTS PRE-COMBUSTION SORBENTS PRE-COMBUSTION MEMBRANES POST-COMBUSTION SOLVENTS POST-COMBUSTION SORBENTS POST-COMBUSTION MEMBRANES OXY-COMBUSTION OXYGEN PRODUCTION CHEMICAL LOOPING ADVANCED COMPRESSION R&D COLLABORATIONS B-1 APPENDIX B: CARBON DIOXIDE CAPTURE TECHNOLOGY SHEETS APPENDIX B: CARBON DIOXIDE CAPTURE TECHNOLOGY SHEETS NATIONAL ENERGY TECHNOLOGY LABORATORY PRE-COMBUSTION SOLVENTS B-6 SRI International - CO 2 Capture Using AC-ABC Processt B-7 PRE-COMBUSTION SORBENTS B-14 TDA Research - CO 2 Capture for Low-Rank Coal IGCC Systems B-15 URS Group - Sorbent Development for WGS B-18 Air Products and Chemicals - Advanced Acid Gas Separation B-24 Ohio State University-Department of Chemical Engineering - Calcium Looping for Hydrogen Production B-33

369

Advanced Vehicle Testing Activity - Diesel Engine Idling Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Engine Idling Test In support of the Department of Energys FreedomCAR and Vehicle Technologies Program goal to minimize diesel engine idling and reduce the consumption of...

370

On use of CO{sub 2} chemiluminescence for combustion metrics in natural gas fired reciprocating engines.  

DOE Green Energy (OSTI)

Flame chemiluminescence is widely acknowledged to be an indicator of heat release rate in premixed turbulent flames that are representative of gas turbine combustion. Though heat release rate is an important metric for evaluating combustion strategies in reciprocating engine systems, its correlation with flame chemiluminescence is not well studied. To address this gap an experimental study was carried out in a single-cylinder natural gas fired reciprocating engine that could simulate turbocharged conditions with exhaust gas recirculation. Crank angle resolved spectra (266-795 nm) of flame luminosity were measured for various operational conditions by varying the ignition timing for MBT conditions and by holding the speed at 1800 rpm and Brake Mean effective Pressure (BMEP) at 12 bar. The effect of dilution on CO*{sub 2}chemiluminescence intensities was studied, by varying the global equivalence ratio (0.6-1.0) and by varying the exhaust gas recirculation rate. It was attempted to relate the measured chemiluminescence intensities to thermodynamic metrics of importance to engine research -- in-cylinder bulk gas temperature and heat release rate (HRR) calculated from measured cylinder pressure signals. The peak of the measured CO*{sub 2} chemiluminescence intensities coincided with peak pressures within {+-}2 CAD for all test conditions. For each combustion cycle, the peaks of heat release rate, spectral intensity and temperature occurred in that sequence, well separated temporally. The peak heat release rates preceded the peak chemiluminescent emissions by 3.8-9.5 CAD, whereas the peak temperatures trailed by 5.8-15.6 CAD. Such a temporal separation precludes correlations on a crank-angle resolved basis. However, the peak cycle heat release rates and to a lesser extent the peak cycle temperatures correlated well with the chemiluminescent emission from CO*{sub 2}. Such observations point towards the potential use of flame chemiluminescence to monitor peak bulk gas temperatures as well as peak heat release rates in natural gas fired reciprocating engines.

Gupta, S. B.; Bihari, B.; Biruduganti, M.; Sekar, R.; Zigan, J. (Energy Systems); (Cummins Technical Center)

2011-01-01T23:59:59.000Z

371

New York Institute for Biomimetic Engineering and Advanced ...  

Science Conference Proceedings (OSTI)

... Technology investments (Advanced Materials, Production Technologies Platforms ... to attract and grow renewable energy-related companies in New ...

2012-10-16T23:59:59.000Z

372

Advanced Materials and Reservoir Engineering for Extreme Oil ...  

Science Conference Proceedings (OSTI)

Nanostructured and advanced materials potentially offer new possibilities in drilling, exploration and production. In this symposium both academia and industry ...

373

Engineering development of advanced coal-fired low-emission boiler system. Technical progress report No. 1, August--December 1992  

Science Conference Proceedings (OSTI)

The Pittsburgh Energy Technology Center of the US Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the ``Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems`` Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: NO{sub x} emissions not greater than one-third NSPS; SO{sub x} emissions not greater than one-third NSPS; and particulate emissions not greater than one-half NSPS. The specific secondary objectives are: Improved ash disposability and reduced waste generation; reduced air toxics emissions; increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a commercial generation unit.

Not Available

1993-02-26T23:59:59.000Z

374

REQUEST BY CUMMINS ENGINE COMPANY, INC. FOR AN ADVANCE WAIVER...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

develop and complete the specifications required to enter production for a new diesel engine for domestic light trucks. The work is sponsored by the Office of...

375

Hydrothermal spallation drilling and advanced energy conversion technologies for Engineered Geothermal Systems  

E-Print Network (OSTI)

The purpose of this research was to study the various factors affecting the economic and technical feasibility of Engineered Geothermal Systems, with a special emphasis on advanced drilling technologies. The first part of ...

Augustine, Chad R

2009-01-01T23:59:59.000Z

376

Synthesis and microfabrication of elastomeric biomaterials for advanced tissue engineering scaffolds  

E-Print Network (OSTI)

The subject of this thesis lies at the interface of microfabrication technology and advanced biomaterials synthesis and processing for use in designing and fabricating novel tissue engineered constructs. The unifying theme ...

Bettinger, Christopher John, 1981-

2008-01-01T23:59:59.000Z

377

16.355J / ESD.355J Advanced Software Engineering, Fall 2002  

E-Print Network (OSTI)

A reading and discussion subject on advanced topics in the engineering of software systems. Focus on software development. Topics differ but are chosen from: software process and lifecycle; requirements development, ...

Leveson, Nancy

378

Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli  

E-Print Network (OSTI)

One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical ...

Bokinsky, Gregory

379

REQUEST :BY CUMMINS ENGINE COMPANY, INC. FOR AN ADVANCE WAIVER...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in 1995 topped five billion and it employed over 24,000 people. It has also implemented ceramic materials for fuel systems, catalyst systems for emission control, advanced...

380

Advances in Surface Engineering: Alloyed and Composite Coatings  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... This symposium aims to capture the advances in the following areas of: ... Sprayed Carbon Nanotube Reinforced Aluminum Composites.

Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Lean combustion in automotive engines: as assessment of the addition of hydrogen to gasoline as compared to other techniques  

SciTech Connect

An examination was made of the feasibility, practicability, performance, fuel economy, and emissions of the concept of the addition of hydrogen to gasoline for use as an automobile fuel. The specific hydrogen addition concepts evaluated included onboard storage of hydrogen as a bottled gas, as a cryogenic liquid, and as a regenerable gas in a metal hydride storage system, and the onboard generation of hydrogen by the reformation of gasoline in a fuel reformer (or gas generator). Both partial oxidation and steam reforming fuel reformers were considered. For perspective, comparisons were made of the hydrogen addition concept with the conventional spark ignition engine baseline and other lean engine concepts, e.g., advanced lean carbureted engines and stratified charge engines. Hydrogen addition via fuel reformation was found to be a feasible method of achieving ultralean engine operation.

1976-02-01T23:59:59.000Z

382

The effect of gravity on the combustion synthesis of advanced materials  

Science Conference Proceedings (OSTI)

The effect of gravity on the combustion synthesis characteristics and the resultant microstructures of the synthesized metal matrix composites (MMCs) were studied for the HfB 2 /Al and Ni 3 Ti/TiB 2 reaction systems conducted under both normal (1 g) and low gravity conditions. Under normal gravity conditions

H. C. Yi; J. Y. Guigné; T. C. Woodger; J. J. Moore

1997-01-01T23:59:59.000Z

383

Engineering-Economic Evaluations of Advanced Coal Technologies with Carbon Capture and Storage  

Science Conference Proceedings (OSTI)

This is the current update in a continuing report series that distills the results of engineering and economic studies, by the Electric Power Research Institute (EPRI) and others, to furnish an overview of the expected costs and performance for fossil-fuel-based power plants with carbon dioxide capture and sequestration, including pulverized coal, fluidized-bed combustion, integrated gasification combined cycle, and natural gas combined cycle. The report surveys publicly reported cost estimates and statu...

2010-09-30T23:59:59.000Z

384

Engineering/Economic Evaluations of Advanced Coal Technologies with Carbon Capture and Storage - 2012  

Science Conference Proceedings (OSTI)

This is the 2012 update in an annual report series that distills the results of engineering and economic studies by the Electric Power Research Institute (EPRI) and others to provide an overview of the expected costs and performance for fossil-fuel-based power plants with carbon capture and storage (CCS). Power plant types covered in the report include pulverized coal, fluidized-bed combustion, integrated-gasification combined-cycle, and natural-gas combined-cycle. The report surveys publicly ...

2012-08-31T23:59:59.000Z

385

Engineering-Economic Evaluations of Advanced Coal Technologies with Carbon Capture and Storage -- 2011  

Science Conference Proceedings (OSTI)

This is the 2011 update in a continuing report series that distills the results of engineering and economic studies by the Electric Power Research Institute (EPRI) and others to furnish an overview of the expected costs and performance for fossil-fuel-based power plants with carbon dioxide (CO2) capture and sequestration, including pulverized coal, fluidized-bed combustion, integrated-gasification combined-cycle, and natural-gas combined-cycle plants. The report surveys publicly reported cost estimates a...

2011-06-30T23:59:59.000Z

386

REACH: Reduced Emissions and Advanced Combustion Hardware: A Low-Cost, Retrofit Approach to Reducing Stack Emissions and Enhancing t he Performance of Oil-Fired Boilers  

Science Conference Proceedings (OSTI)

Improved oil combustion technology, based upon optimization of oil atomizer and flame stabilizer design, has been developed for retrofit to oil-fired utility boilers. This technology is referred to as Reduced Emissions and Advanced Combustion Hardware, or REACH. REACH is commercially available for retrofit to oil-fired boilers to simultaneously reduce NOx, PM, and opacity, as well as provide operational and performance benefits.

1995-12-09T23:59:59.000Z

387

NREL: Vehicles and Fuels Research - Fuel Combustion Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Combustion Lab Fuel Combustion Lab NREL's Fuel Combustion Laboratory focuses on characterizing fuels at the molecular level. This information can then be used to understand and predict the fuel's effect on engine performance and emissions. By understanding the effects of fuel chemistry on ignition we can develop fuels that enable more efficient engine designs, using both today's technology and future advanced combustion concepts. This lab supports the distributed Renewable Fuels and Lubricants (ReFUEL) Laboratory, and the Biofuels activity. Photo of assembled IQT. Ignition Quality Tester The central piece of equipment in the Fuel Combustion Laboratory is the Ignition Quality Tester (IQT(tm)). The IQT(tm) is a constant volume combustion vessel that is used to study ignition properties of liquid

388

Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B  

SciTech Connect

This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

NONE

1998-01-01T23:59:59.000Z

389

Engineering design and analysis of advanced physical fine coal cleaning technologies  

SciTech Connect

This project is sponsored by the United States Department of Energy (DOE) for the Engineering Design and Analysis of Advanced Physical Fine Coal Cleaning Technologies. The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This DOE project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cylconing, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level.

1992-01-20T23:59:59.000Z

390

An Equal Opportunity and Affirmative Action InstitutionDegradation of Thermal Barrier Coatings with Syngas Combustion: Testing by Hyperbaric Advanced Development Environmental Simulator and Characterization by Advanced Electron Microscopy  

E-Print Network (OSTI)

Please accept my apology in delayed delivery. Enclosed is the final technical report entitled “Degradation of Thermal Barrier Coatings with Syngas Combustion: Testing by Hyperbaric Advanced Development Environmental Simulator and Characterization by Advanced Electron Microscopy, ” by Sohn. If you have any questions, please do not hesitate to contact me at 407-882-1181 or ysohn@mail.ucf.edu.

Dr. Richard Wenglarz; Yongho Sohn

2005-01-01T23:59:59.000Z

391

Cold start fuel management of port-fuel-injected internal combustion engines  

E-Print Network (OSTI)

The purpose of this study is to investigate how changes in fueling strategy in the second cycle of engine operation influence the delivered charge fuel mass and engine out hydrocarbon (EOHC) emissions in that and subsequent ...

Cuseo, James M. (James Michael)

2005-01-01T23:59:59.000Z

392

Advanced Diesel Engine Component Development Program, final report - tasks 4-14  

DOE Green Energy (OSTI)

The Advanced Diesel Engine Component Development (ADECD) Program is a multi-year, multi-phase effort to develop and demonstrate the critical technology needed to advance the heavy-duty low heat rejection (LHR) engine concept for the long-haul, heavy-duty truck market. The ADECD Program has been partitioned into two phases. The first phase, Phase 1, was completed in 1986, resulting in definition of the Advanced Diesel Reference Engine (ADRE)III. The second phase, Phase 11/111, examines the feasibility of the ADRE concepts for application to the on-highway diesel engine. Phase 11/111 is currently underway. This project is sponsored by the U.S. Department of Energy, Office of Transportation Technologies. The work has been performed by the Detroit Diesel Corporation (DDC) under Contract DEN3-329 with the NASA Lewis Research Center, who provide project management and technical direction.

Kaushal, T.S.; Weber, K.E.

1994-11-01T23:59:59.000Z

393

2000 Annual Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells  

DOE Green Energy (OSTI)

The Department of Energy's Office of Transportation Technologies Fiscal Year (FY) 2000 Annual Progress Report for the Fuels for Advanced CIDI Engines and Fuel Cells Program highlights progress achieved during FY 2000 and comprises 22 summaries of industry and National Laboratory projects that were conducted. The report provides an overview of the exciting work being conducted to tackle the tough technical challenges associated with developing clean burning fuels that will enable meeting the performance goals of the Emission Control R and D for Advanced CIDI Engines and the Transportation Fuel Cell Power Systems Programs. The summaries cover the effects of CIDI engine emissions and fuel cell power system performance, the effects of lubricants on engine emissions, the effects of fuel and consumed lubricants on exhaust emission control devices and the health and safety, materials compatibility, and economics of advanced petroleum-based fuels.

Chalk, S.

2000-12-11T23:59:59.000Z

394

Process Systems Engineering R&D for Advanced Fossil Energy Systems  

SciTech Connect

This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulation for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.

Zitney, S.E.

2007-09-11T23:59:59.000Z

395

Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends  

Science Conference Proceedings (OSTI)

Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.

Kirby S. Chapman; Amar Patil

2007-06-30T23:59:59.000Z

396

Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FUELS FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS 2000 ANNUAL PROGRESS REPORT FUELS F O R ADVANCED CIDI ENGINES A N D FUEL CELLS A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory, Computer Systems Management, Inc., National Renewable Energy Laboratory, and QSS Group, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2000 Progress Report for Fuels for Advanced CIDI

397

HYDROGEN ASSISTED DIESEL COMBUSTION.  

E-Print Network (OSTI)

??In this study, the effect of hydrogen assisted diesel combustion on conventional and advanced combustion modes was investigated on a DDC/VM Motori 2.5L, 4-cylinder, turbocharged,… (more)

Lilik, Gregory

2008-01-01T23:59:59.000Z

398

Hydrocarbon Fouling of SCR during PCCI combustion  

SciTech Connect

The combination of advanced combustion with advanced selective catalytic reduction (SCR) catalyst formulations was studied in the work presented here to determine the impact of the unique hydrocarbon (HC) emissions from premixed charge compression ignition (PCCI) combustion on SCR performance. Catalyst core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. The zeolites which form the basis of these catalysts are different with the Cu-based catalyst made on a chabazite zeolite which las smaller pore structures relative to the Fe-based catalyst. Subsequent to exposure, bench flow reactor characterization of performance and hydrocarbon release and oxidation enabled evaluation of overall impacts from the engine exhaust. The Fe-zeolite NOX conversion efficiency was significantly degraded, especially at low temperatures (<250 C), after the catalyst was exposed to the raw engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite showed better tolerance to HC fouling at low temperatures compared to the Fe-zeolite but PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOX conversion efficiency. Furthermore, chemical analysis of the hydrocarbons trapped on the SCR cores was conducted to better determine chemistry specific effects.

Prikhodko, Vitaly Y [ORNL; Pihl, Josh A [ORNL; Lewis Sr, Samuel Arthur [ORNL; Parks, II, James E [ORNL

2012-01-01T23:59:59.000Z

399

Argonne TTRDC - Engines - Emissions Control - Advanced Diesel Particulate  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Advanced Diesel Particulate Filtration Systems Development of Advanced Diesel Particulate Filtration Systems The U.S. Environmental Protection Agency regulations require that on-highway diesel vehicles have filtration systems to reduce tail-pipe soot emissions, known as particulate matter (PM). Diesel particulate filtration (DPF) systems are currently the most efficient at directly controlling PM. Argonne researchers, working with Corning, Inc., and Caterpillar, Inc., through a cooperative research and development agreement, are exploiting previously unavailable technology and research results on diesel PM filtration and regeneration processes, aiming to the technology transfer of advanced PM emission control to industry. Argonne's Research In operation of DPF systems, the filtration and regeneration of particulate emissions are the key processes to be controlled for high efficiency. Due to difficulties in accessing the micro-scaled structures of DPF membranes and monitoring particulate filtration and high-temperature thermal processes, however, research has been limited to macroscopic observation for the product.

400

Advanced turbine design for coal-fueled engines. Topical report, Task 1.6, Task 1.7  

DOE Green Energy (OSTI)

The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500{degrees}F (815{degrees}C), relatively innocuous salts. In this study it is found that at 1650{degrees}F (900{degrees}C) and above, calcium sulfate becomes an aggressive corrodent.

Bornstein, N.S.

1992-07-17T23:59:59.000Z

Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Parametric combustion modeling for ethanol-gasoline fuelled spark ignition engines.  

E-Print Network (OSTI)

?? Ethanol-gasoline fuel blends are increasingly being used in spark ignition (SI) engines due to continued growth in renewable fuels as part of a growing… (more)

Yeliana

2011-01-01T23:59:59.000Z

402

Identification of tribological research and development needs for lubrication of advanced heat engines  

DOE Green Energy (OSTI)

The continuous evolution of higher power density propulsion systems has always fueled the search for materials and lubricants with improved thermal and/or durability characteristics. Tribology of the upper cylinder region is the major technology roadblock in the path of the adiabatic diesel engine which has an energy reduction potential that exceeds that of all other engine development types. This tribology assessment resulted in the following major conclusions: a low friction and a low wear seal between the ring belt and cylinder bore are the most critical tribology functions in the diesel combustion chamber; development of solid lubrication systems will not satisfy the simultaneous low friction and low wear requirements in the upper cylinder area; development of separate upper cylinder liquid lubrication systems offers the most attractive design alternative for meeting the operational goals of future ''minimum cooled'' diesel engines.

Fehrenbacher, L.L.; Levinson, T.M.

1985-09-01T23:59:59.000Z

403

An Engineering and Economic Assessment of Post-Combustion CO2 Capture Retrofit to Intermountain  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is examining the feasibility of retrofitting post-combustion capture (PCC) to existing pulverized coal (PC) and/or circulating fluidized-bed (CFB) power plants for five host participants. Knowledge gained from previous CoalFleet ultrasupercritical (USC) PCC design studies is being applied directly to specific site conditions, plant designs, and operating data provided by each host utility participant. This project highlights the technical and economic issues a...

2011-05-31T23:59:59.000Z

404

Advanced Engine/Aftertreatment System R&D  

DOE Green Energy (OSTI)

Navistar and ORNL established this CRADA to develop diesel engine aftertreatment configurations and control strategies that could meet emissions regulations while maintaining or improving vehicle efficiency. The early years of the project focused on reducing the fuel penalty associated with lean NOx trap (LNT, also known as NOx adsorber catalyst) regeneration and desulfation. While Navistar pursued engine-based (in-cylinder) approaches to LNT regeneration, complementary experiments at ORNL focused on in-exhaust fuel injection. ORNL developed a PC-based controller for transient electronic control of EGR valve position, intake throttle position, and actuation of fuel injectors in the exhaust system of a Navistar engine installed at Oak Ridge. Aftertreatment systems consisting of different diesel oxidation catalysts (DOCs) in conjunction with a diesel particle filter and LNT were evaluated under quasi-steady-state conditions. Hydrocarbon (HC) species were measured at multiple locations in the exhaust system with Gas chromatograph mass spectrometry (GC-MS) and Fourier transform infrared (FTIR) spectroscopy.

Pihl, J.; West, B.; Toops, T.; Adelman, B. (Navistar, Inc.); Derybowski, E. (Navistar, Inc.)

2011-09-30T23:59:59.000Z

405

RD&D Study Plan for Advancement of Science and Engineering Supporting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RD&D Study Plan for Advancement of Science and Engineering RD&D Study Plan for Advancement of Science and Engineering Supporting Geologic Disposal in Bedded Salt- March 2013 Workshop Outcomes RD&D Study Plan for Advancement of Science and Engineering Supporting Geologic Disposal in Bedded Salt- March 2013 Workshop Outcomes This report defines a key set of RD&D activities to support a safety case for disposal of heat generating radioactive waste, such as used nuclear fuel (UNF) or high-level nuclear waste (HLW), in a generic bedded salt repository, given the current state of knowledge. The recommended RD&D activities are based on the outcomes of a DOE workshop held March 6-7, 2013. The workshop goal was to formulate an expert consensus on the relative importance of various technical issues and recommending RD&D

406

VALIDATION AND RESULTS OF A PSEUDO-MULTI-ZONE COMBUSTION TRAJECTORY PREDICTION MODEL FOR CAPTURING SOOT AND NOX FORMATION ON A MEDIUM DUTY DIESEL ENGINE  

SciTech Connect

A pseudo-multi-zone phenomenological model has been created with the ultimate goal of supporting efforts to enable broader commercialization of low temperature combustion modes in diesel engines. The benefits of low temperature combustion are the simultaneous reduction in soot and nitric oxide emissions and increased engine efficiency if combustion is properly controlled. Determining what qualifies as low temperature combustion for any given engine can be difficult without expensive emissions analysis equipment. This determination can be made off-line using computer models or through factory calibration procedures. This process could potentially be simplified if a real-time prediction model could be implemented to run for any engine platform this is the motivation for this study. The major benefit of this model is the ability for it to predict the combustion trajectory, i.e. local temperature and equivalence ratio in the burning zones. The model successfully captures all the expected trends based on the experimental data and even highlights an opportunity for simply using the average reaction temperature and equivalence ratio as an indicator of emissions levels alone - without solving formation sub-models. This general type of modeling effort is not new, but a major effort was made to minimize the calculation duration to enable implementation as an input to real-time next-cycle engine controller Instead of simply using the predicted engine out soot and NOx levels, control decisions could be made based on the trajectory. This has the potential to save large amounts of calibration time because with minor tuning (the model has only one automatically determined constant) it is hoped that the control algorithm would be generally applicable.

Bittle, Joshua A. [Texas A& M University] [Texas A& M University; Gao, Zhiming [ORNL] [ORNL; Jacobs, Timothy J. [Texas A& M University] [Texas A& M University

2013-01-01T23:59:59.000Z

407

Engineering and Cost Assessment of Listed Special Waste Designation of Coal Combustion Residuals Under Subtitle C of the Resource Co nservation and Recovery Act  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) undertook this project to identify engineering cost estimates for the changes at power plants needed to comply with the Subtitle C option in proposed federal rules regarding the management of coal combustion residuals. The analysis represents a high level evaluation of various plant operations before such federal rules are finalized. It relies on best engineering judgment interpretations of applying the proposed regulations on current practices for generating...

2010-11-16T23:59:59.000Z

408

Engineering development of advanced coal-fired low-emission boiler systems. Quarterly technical progress report No. 17, October 1, 1996--December 31, 1996  

SciTech Connect

This report describes the work performed between October 1 and December 31, 1996 by the ABB team on U.S. Department of Energy project ``Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems`` (LEBS), which is part of the DOE`s Combustion 2000 Program. The overall objective of the LEBS Project is to dramatically improve environmental performance of future coal-fired power plants without adversely impacting efficiency or the cost of electricity. Near-term technologies, i.e., advanced technologies that are partially developed, will be used to reduce NO{sub x} and SO{sub 2} emission to one-sixth current NSPS limits and particulates to one- third current NSPS limits.

Regan, J.W.; Bender, D.J.; Clark, J.P.; Wesnor, J.D.

1997-01-01T23:59:59.000Z

409

Method and apparatus utilizing valve throttling and charge stratification in the operation of an internal combustion engine  

Science Conference Proceedings (OSTI)

In an internal combustion engine this patent describes means forming a combustion chamber, a spark plug in the chamber, a piston disposed in the chamber for reciprocable movement toward and away from the spark plug, a valve member, circular seat means for the valve member, means for varying the lift of the valve member, a generally cylindrical shroud corresponding generally to the size of the seat means. The cylindrical shroud is relieved only in the direction of the spark plug so that, when the valve member is moved relative to the shroud by the lift-varying means, a stratified mixture of air and fuel is directed toward the spark plug until the lift-varying means causes the valve member to pass beyond the shroud so that during the initial lift of the valve member the stratified air and fuel mixture is directed solely toward the spark plug until the valve member passes beyond the shroud and the air and fuel mixture is directed generally through a 360/sup 0/ arc after the valve member passes beyond the shroud, and means limiting the lift of the valve member so that it does not pass the shroud during lighter loads, whereby the air and fuel mixture is directed primarily toward the spark plug until the valve member passes beyond the shroud.

Burandt, C.O.

1988-02-16T23:59:59.000Z

410

ECUT energy data reference series: high-temperature materials for advanced heat engines  

DOE Green Energy (OSTI)

Information that describes the use of high-temperature materials in advanced heat engines for ground transportation applications is summarized. Applications discussed are: automobiles, light trucks, and medium and heavy trucks. The information provided on each of these modes includes descriptions of the average conversion efficiency of the engine, the capital stock, the amount of energy used, and the activity level as measured in ton-miles.

Abarcar, R.B.; Hane, G.J.; Johnson, D.R.

1984-07-01T23:59:59.000Z

411

Studies of dynamic contact of ceramics and alloys for advanced heat engines. Final report  

DOE Green Energy (OSTI)

Advanced materials and coatings for low heat rejection engines have been investigated for almost a decade. Much of the work has concentrated on the critical wear interface between the piston ring and cylinder liner. Simplified bench tests have identified families of coatings with high temperature wear performance that could meet or exceed that of conventional engine materials at today`s operating temperatures. More recently, engine manufacturers have begun to optimize material combinations and manufacturing processes so that the materials not only have promising friction and wear performance but are practical replacements for current materials from a materials and manufacturing cost standpoint. In this study, the advanced materials supplied by major diesel engine manufacturers were evaluated in an experimental apparatus that simulates many of the in-cylinder conditions of a low heat rejection diesel engine. Results include ring wear factors and average dynamic friction coefficients measured at intervals during the test. These results are compared with other advanced materials tested in the past as well as the baseline wear of current engines. Both fabricated specimens and sections of actual ring and cylinder liners were used in the testing. Observations and relative friction and wear performance of the individual materials are provided.

Gaydos, P.A.; Dufrane, K.F. [Battelle, Columbus, OH (United States)

1993-06-01T23:59:59.000Z

412

Fail-safe coolant thermostat system for an internal combustion engine  

SciTech Connect

This patent describes an improvement in a device for controlling the flow of cooling fluid between a fluid-cooled engine and a radiator, wherein a primary passage is provided with a thermostat that normally controls the flow of cooling fluid between the engine and the radiator. It comprises: a bypass passage connected in parallel with the primary passage and thermostat; a control valve contained within the bypass passage, the valve comprising a solenoid operated cup-shaped valve body and means for continually urging open the valve toward an open position; and means for de-energizing the solenoid for positioning the control valve in an open condition when either the engine is not operating or the cooling fluid temperature exceeds a positioning the control valve in a closed condition when the engine is operating and the cooling fluid temperature is below the predetermined level.

Shelton, V.E.

1990-07-24T23:59:59.000Z

413

New Light on Improving Engine Efficiencies | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

The Crystal Structure of a Meta-stable Intermediate Particle in Virus The Crystal Structure of a Meta-stable Intermediate Particle in Virus Assembly Increasing Magnetic Response of Ferromagnetic Semiconductors under High Pressure Better Switching Through Chemistry in Thin Ferroelectrics First Molecular-Level Enzyme Images Could Improve Breast-Cancer Therapy Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed New Light on Improving Engine Efficiencies MARCH 3, 2009 Bookmark and Share The DOE, as part of its Clean Coal & Natural Gas Power Systems initiative, has a "Turbines of Tomorrow" program with the Program Performance Goal to: "By 2010, develop turbine technology that is capable of efficiently

414

Engineering Thin-Film Oxide Interfaces | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Materials Become Multifunctional at the Ultimate Quantum Limit Novel Materials Become Multifunctional at the Ultimate Quantum Limit Outsmarting Flu Viruses How Lead-Free Solder (Mis)Behaves under Stress Dynamics of Polymer Chains Atop Different Materials Priming the Pump in the Fight against Drug-Resistant Tuberculosis Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Engineering Thin-Film Oxide Interfaces NOVEMBER 12, 2012 Bookmark and Share LAO thin films on STO substrates are depicted in the top schematics (LAO indicated by blue spheres, STO by green spheres). The top left-hand panel demonstrates a chemically broad interface resulting from conventional growth in a low pressure oxygen environment. In contrast, the top

415

Advances in process intensification through multifunctional reactor engineering.  

SciTech Connect

A multifunctional reactor is a chemical engineering device that exploits enhanced heat and mass transfer to promote production of a desired chemical, combining more than one unit operation in a single system. The main component of the reactor system under study here is a vertical column containing packing material through which liquid(s) and gas flow cocurrently downward. Under certain conditions, a range of hydrodynamic regimes can be achieved within the column that can either enhance or inhibit a desired chemical reaction. To study such reactors in a controlled laboratory environment, two experimental facilities were constructed at Sandia National Laboratories. One experiment, referred to as the Two-Phase Experiment, operates with two phases (air and water). The second experiment, referred to as the Three-Phase Experiment, operates with three phases (immiscible organic liquid and aqueous liquid, and nitrogen). This report describes the motivation, design, construction, operational hazards, and operation of the both of these experiments. Data and conclusions are included.

Cooper, Marcia A.; Miller, James Edward; O'Hern, Timothy John; Gill, Walter; Evans, Lindsey R.

2011-02-01T23:59:59.000Z

416

Advances in process intensification through multifunctional reactor engineering  

SciTech Connect

This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes critical to process intensification and implementation in commercial applications. Physics of the heat and mass transfer and chemical kinetics and how these processes are ultimately scaled were investigated. Specifically, we progressed the knowledge and tools required to scale a multifunctional reactor for acid-catalyzed C4 paraffin/olefin alkylation to industrial dimensions. Understanding such process intensification strategies is crucial to improving the energy efficiency and profitability of multifunctional reactors, resulting in a projected energy savings of 100 trillion BTU/yr by 2020 and a substantial reduction in the accompanying emissions.

O'Hern, T. J.

2012-03-01T23:59:59.000Z

417

Vehicle Technologies Office: Materials for High Efficiency Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

High Efficiency Combustion Engines to someone by E-mail Share Vehicle Technologies Office: Materials for High Efficiency Combustion Engines on Facebook Tweet about Vehicle...

418

Combustion Simulations [Heat Transfer and Fluid Mechanics] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Simulations Combustion Simulations Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Combustion Simulations Density Distribution of Spray in Near-Injector Region Density Distribution of Spray in Near-Injector Region. Click on image to view larger image. Development of computer models based on Front-Tracking and

419

Center for Advanced Life Cycle Engineering University of Maryland AC Autoclave  

E-Print Network (OSTI)

CALCE® Center for Advanced Life Cycle Engineering CB Citizens Band CBGA Ceramic Ball Grid Array CCA Circuit Card Assembly CCD Charge Coupled Device CCGA Ceramic Column Grid Array CDM Charged Device Model Industry Association ELD Electroluminiscent Displays EMC Electromagnetic Compatibility EMC Encapsulated

Shapiro, Benjamin

420

Development of topping combustor for advanced concept pressurized fluidized-bed combustion  

SciTech Connect

The objective of this program is to develop a topping combustor to operate in a Second-Generation Pressurized Fluidized Bed (PFBC) Combined Cycle power generation system. The combustor must be able to: lightoff with a high heating value fuel and compressor discharge air to heat the fluidized bed(s) and provide power for PFBC and carbonizer off-line; operate with 1,600 F oxygen depleted air from the PFBC and high heating value fuel to handle carbonizer off-line conditions; ramp up to 100% carbonizer syngas firing (normal operation) by firing a blend of decreasing high heating value fuel and increasing low heating value syngas; utilize the vitiated air, at temperatures up to 1,600 F for as much cooling of the metal combustor as possible, thus minimizing the compressor bypass air needed for combustor cooling; provide an acceptance exit temperature pattern at the desired burner outlet temperature (BOT); minimize the conversion of fuel bound nitrogen (FBN) present in the syngas to NO{sub x}; and have acceptably high combustion efficiency, and low emissions of carbon monoxide, UHC, etc. This paper reports the results of tests of a 14 inch diameter topping combustor with a modified fuel-rich zone conducted in June 1993, design of an 18 inch diameter topping combustor to be tested in June 1994 and afterwards, and results of a 50% scale cold flow model which has been built and tested.

Domeracki, W.F.; Dowdy, T.E.; Bachovchin, D.

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced combustion engines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Application of oxygen-enriched combustion for locomotive diesel engines. Phase 1  

DOE Green Energy (OSTI)

A thermodynamic simulation is used to study the effects of oxygen-enriched intake air on the performance and nitrogen oxide (NO) emissions of a locomotive diesel engine. The parasitic power of the air separation membrane required to supply the oxygen-enriched air is also estimated. For a given constraint on peak cylinder pressure, the gross and net power outputs of an engine operating under different levels of oxygen enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in an increase in net engine power of approximately 13% when intake air with an oxygen content of 28% by volume is used and fuel injection timing is retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure improves power by only 4%. If part of the significantly higher exhaust enthalpies available as a result of oxygen enrichment are recovered, the power requirements of the air separator membrane can be met, resulting in substantial net power improvements. Oxygen enrichment reduces particulate and visible smoke emissions but increases NO emissions. However, a combination of retarded fuel injection timing and post-treatment of exhaust gases may be adequate to meet the locomotive diesel engine NO{sub x} standards. Exhaust gas after-treatment and heat recovery would be required to realize the full potential of oxygen enrichment. Economic analysis shows that oxygen-enrichment technology is economically feasible and provides high returns on investment. The study also indicates the strong influence of membrane parasitic requirements and exhaust energy recovery on economic benefits. To obtain an economic advantage while using a membrane with higher parasitic power requirements, it is necessary to recover a part of the exhaust energy.

Poola, R.B.; Sekar, R.R.; Assanis, D.N.

1996-09-01T23:59:59.000Z

422

STATEMENT OF CONSIDERATIONS REQUEST BY JOHN DEERE PRODUCT ENGINEERING CENTER FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PRODUCT ENGINEERING CENTER FOR AN ADVANCE PRODUCT ENGINEERING CENTER FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-05NT42422; W(A)-05-047, CH-1327 The Petitioner, John Deere Product Engineering Center (Deere) was awarded a cooperative agreement for the performance of work entitled, "Electrically coupled exhaust energy recovery system using a series power turbine approach." The purpose of the cooperative agreement is to design, test, and demonstrate the technical and commercial viability of electric turbo compounding. This waiver is only for inventions of Deere made under this cooperative agreement. The total estimated cost of the contract is $9,538,073 with DOE and Deere each cost sharing 50% or $4,769,037. The period of performance is from June 1, 2005 through May 31,

423

Oscillating combustion from a premix fuel nozzle  

DOE Green Energy (OSTI)

Stringent emissions requirements for stationary gas turbines have produced new challenges in combustor design. In the past, very low NOx pollutant emissions have been achieved through various combustion modifications, such as steam or water injection, or post-combustion cleanup methods such as selective catalytic reduction (SCR). An emerging approach to NOx abatement is lean premix combustion. Lean premix combustion avoids the cost and operational problems associated with other NOx control methods. By premixing fuel and air at very low equivalence ratios, the high temperatures which produce NOx are avoided. The challenges of premix combustion include avoiding flashback, and ensuring adequate fuel/air premixing. In addition, the combustion must be stable. The combustor should not operate so close to extinction that a momentary upset will extinguish the flame (static stability), and the flame should not oscillate (dynamic stability). Oscillations are undesirable because the associated pressure fluctuations can shorten component lifetime. Unfortunately, experience has shown that premix fuel nozzles burning natural gas are susceptible to oscillations. Eliminating these oscillations can be a costly and time consuming part of new engine development. As part of the U.S. Department of Energy`s Advanced Turbine Systems Program, the Morgantown Energy Technology Center (METC) is investigating the issue of combustion oscillations produced by lean premix fuel nozzles. METC is evaluating various techniques to stabilize oscillating combustion in gas turbines. Tests results from a premix fuel nozzle using swirl stabilization and a pilot flame are reported here.

Richards, G.A.; Yip, M.J.

1995-08-01T23:59:59.000Z