National Library of Energy BETA

Sample records for advanced combustion engines

  1. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research...

  2. Optimization of Advanced Diesel Engine Combustion Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Computational Fluid Dynamics ...

  3. Vehicle Technologies Office: 2015 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2015 ... low emissions advanced internal combustion engines for passenger and commercial vehicles. ...

  4. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 ... low emissions advanced internal combustion engines for passenger and commercial vehicles. ...

  5. Optimization of Advanced Diesel Engine Combustion Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Use of Low Cetane Fuel to Enable Low Temperature ...

  6. Increased Engine Efficiency via Advancements in Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Efficiency via Advancements in Engine Combustion Systems Increased Engine Efficiency via Advancements in Engine Combustion Systems Presentation given at the 16th Directions...

  7. advanced combustion engines | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Combustion Engines Improving the efficiency of internal combustion engines is one of the most promising and cost-effective near- to mid-term approaches to increasing...

  8. Advancing Internal Combustion Engine Simulations using Sensitivity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advancing Internal Combustion Engine Simulations using Sensitivity Analysis PI Name: Sibendu Som PI Email: ssom@anl.gov Institution: Argonne National Laboratory Allocation Program:...

  9. Large Eddy Simulation (LES) Applied to Advanced Engine Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research Large Eddy Simulation (LES) Applied to Low-Temperature and Diesel Engine Combustion Research Vehicle ...

  10. 2012 Annual Merit Review Results Report - Advanced Combustion Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy 2 Annual Merit Review Results Report - Advanced Combustion Engine Technologies 2012 Annual Merit Review Results Report - Advanced Combustion Engine Technologies Merit review of DOE Vehicle Technologies research activities PDF icon 2012_amr_04.pdf More Documents & Publications 2011 Annual Merit Review Results Report - Advanced Combustion Engine Technologies DOE Vehicle Technologies Program 2009 Merit Review Report - Advanced Combustion 2010 DOE EERE

  11. Vehicle Technologies Office: Advanced Combustion Engines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy You are here Home » Fuel Efficiency & Emissions » Vehicle Technologies Office: Advanced Combustion Engines Vehicle Technologies Office: Advanced Combustion Engines Researchers take laser-based velocity measurements at the Sandia National Laboratory's Combustion Research Facility. Researchers take laser-based velocity measurements at the Sandia National Laboratory's Combustion Research Facility. Improving the efficiency of internal combustion engines is one of the most promising

  12. Improved Solvers for Advanced Engine Combustion Simulation

    Broader source: Energy.gov [DOE]

    Document:  ace076_mcnenly_2013_o.pdfTechnology Area: Advanced Combustion; Combustion and Emissions ControlPresenter: Matthew McNenlyPresenting Organization: Lawrence Livermore National Laboratory ...

  13. Fuels for Advanced Combustion Engines (FACE) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_taylor.pdf More Documents & Publications Fuels For Advanced Combustion Engines (FACE) Fuels for Advanced Combustion Engines Fuels for Advanced Combustion Engines

  14. Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Report | Department of Energy Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low

  15. Integrated CHP/Advanced Reciprocating Internal Combustion Engine...

    Office of Environmental Management (EM)

    to meet local air quality authority emissions restrictions. Integrated Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to...

  16. Vehicle Technologies Office: 2015 Advanced Combustion Engine Annual Progress Report

    Broader source: Energy.gov [DOE]

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive...

  17. FY2014 Advanced Combustion Engine Annual Progress Report

    SciTech Connect (OSTI)

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  18. Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion: Heavy-Duty Optical-Engine Research Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research 2009 DOE Hydrogen Program and Vehicle Technologies ...

  19. Overview of the DOE Advanced Combustion Engine R&D Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Engine R&D Program Gurpreet Singh, Program Manager Advanced Combustion Engine R&D Team Members: Ken Howden, Roland Gravel, and Leo Breton June 16, 2014 VEHICLE TECHNOLOGIES OFFICE 2 Outline  State of technology today for ICE  Overview of the Advanced Combustion Engine R&D Program  Combustion and Emission Control Subprogram  Engine Combustion Research * Low Temperature Combustion * Predictive Simulation for ICE Design  Emission Control R&D  High

  20. Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    Fact sheet describes the top accomplishments, goals and strategies of DOEs Advanced Combustion Engine Research and Development sub program.

  1. FY2013 Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect (OSTI)

    None

    2013-12-01

    Annual progress report on the work of the the Advanced Combustion Engine Program. The Advanced Combustion Engine Program supports the Vehicle Technologies Office mission by addressing critical technical barriers to commercializing higher efficiency, very low emissions, advanced combustion engines for passenger and commercial vehicles that meet future federal emissions regulations.

  2. FY2012 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect (OSTI)

    None

    2013-02-01

    Annual report on the work of the the Advanced Combustion Engine R&D subprogram. The Advanced Combustion Engine R&D subprogram supports the Vehicle Technologies Office mission by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  3. Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine R&D: Goals, Strategies, and Top Accomplishments Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments PDF icon advcombustiongoals.pdf More Documents &...

  4. 54.5 MPG and Beyond: Speeding Up Development of Advanced Combustion Engines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Speeding Up Development of Advanced Combustion Engines 54.5 MPG and Beyond: Speeding Up Development of Advanced Combustion Engines December 10, 2012 - 1:00pm Addthis Argonne engineer Steve Ciatti works on an engine in Argonne's Engine Research Facility -- a facility where researchers can study in-cylinder combustion and emissions under realistic operating conditions. | Photo courtesy of Argonne National Laboratory. Argonne engineer Steve Ciatti works on an engine in

  5. General Motors Clean Combustion Engines Advanced with Predictive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    infrastructure, and future generation vehicles; energy storage-advanced batteries and hydrogen storage; clean advanced combustion; and future generation vehicle networks and...

  6. Advanced Combustion Engine R&D and Fuels Technology Merit Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Combustion Engine R&D and Fuels Technology Merit Review Advanced Combustion Engine R&D and Fuels Technology Merit Review Merit review of DOE FCVT combustion, emission control, health impacts, and fuels research. PDF icon Annual Progress Report More Documents & Publications Heavy Vehicle Systems Optimization Peer Review 2008 Annual Merit Review Results Summary - 7. Combustion Research 2012 Annual Merit Review Results Report - Advanced Combustion

  7. Surrogate Model Development for Fuels for Advanced Combustion Engines

    SciTech Connect (OSTI)

    Anand, Krishnasamy; Ra, youngchul; Reitz, Rolf; Bunting, Bruce G

    2011-01-01

    The fuels used in internal-combustion engines are complex mixtures of a multitude of different types of hydrocarbon species. Attempting numerical simulations of combustion of real fuels with all of the hydrocarbon species included is highly unrealistic. Thus, a surrogate model approach is generally adopted, which involves choosing a few representative hydrocarbon species whose overall behavior mimics the characteristics of the target fuel. The present study proposes surrogate models for the nine fuels for advanced combustion engines (FACE) that have been developed for studying low-emission, high-efficiency advanced diesel engine concepts. The surrogate compositions for the fuels are arrived at by simulating their distillation profiles to within a maximum absolute error of 4% using a discrete multi-component (DMC) fuel model that has been incorporated in the multi-dimensional computational fluid dynamics (CFD) code, KIVA-ERC-CHEMKIN. The simulated surrogate compositions cover the range and measured concentrations of the various hydrocarbon classes present in the fuels. The fidelity of the surrogate fuel models is judged on the basis of matching their specific gravity, lower heating value, hydrogen/carbon (H/C) ratio, cetane number, and cetane index with the measured data for all nine FACE fuels.

  8. Advanced Combustion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Advanced Combustion Combustion engines drive a large percentage of our nation's transportation vehicles and power generation and manufacturing facilities. Today's...

  9. Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments

    Office of Energy Efficiency and Renewable Energy (EERE)

    Fact sheet describing the goals, strategies, and some of the major accomplishments of the Advanced Combustion Engine R&D subprogram of VTP.

  10. Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments

    SciTech Connect (OSTI)

    2009-03-02

    Fact sheet describing the goals, strategies, and some of the major accomplishments of the Advanced Combustion Engine R&D subprogram of the Vehicle Technologies Program.

  11. Advanced Combustion Engine R&D and Fuels Technology Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D and Fuels Technology Merit Review Advanced Combustion Engine R&D and Fuels Technology Merit Review Merit review of DOE FCVT combustion, emission control, health impacts, ...

  12. Increased Engine Efficiency via Advancements in Engine Combustion Systems

    Broader source: Energy.gov [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  13. FY2011 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect (OSTI)

    none,

    2011-12-01

    Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram supporting the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  14. Advanced concepts for controlled combustion in engines. Final report

    SciTech Connect (OSTI)

    Oppenheim, A.K.

    1991-12-15

    Studies carried out at the University of California, Berkeley, over a period of four years were concerned with fluid mechanical properties of turbulent pulsed jet plumes - systems that are of particular relevance to the initiation and control of combustion in engines. The eventual purpose of this program was to provide a rational background for a fundamental refinement of stratified charge diesel engines - the development of a combustion system where the formation of pollutants is minimized, fuel economy is maximized, while fuel tolerance is optimized. The results demonstrated that this goal is attainable by means of appropriate Pulsed Jet Combustion (PJC) generators. The exothermic process of combustion is executed thereby in the form of a fireball taking place in a stratified charge generated by turbulent plumes of a PJC system.

  15. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Combustion Fact Sheet Key Contacts Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to generate electricity, which operate at efficiencies of 35-37 percent. Operation at higher temperatures and pressures can lead to higher efficiencies. Oxy-combustion comes with an efficiency loss, so it will actually increase the amount of CO2 to be captured. But without so much N2 in the flue gas, it will be easier and perhaps more efficient to capture,

  16. Overview of the Advanced Combustion Engine R&D

    Broader source: Energy.gov (indexed) [DOE]

    for light-duty vehicles for many years, probably decades ..." NRC Report 1 * Advanced engines in conventional, hybrid electric vehicles (HEVs) and plug-in hybrid electric...

  17. Engine Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... with the U.S. automotive and heavy-duty diesel engine industries, energy companies, and other ... The strategies include: ultra-low-emission, low-temperature combustion; ...

  18. FY2009 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect (OSTI)

    none,

    2009-12-01

    Fiscal Year 2009 Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram. The Advanced Combustion Engine R&D subprogram supports the mission of the VTP program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  19. Overview of DOE Advanced Combustion Engine R&D | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vtpn05acesingh2012o.pdf More Documents & Publications Overview of the Advanced Combustion Engine R&D Overview of DOE Emission Control R&D Overview of DOE Emission Control...

  20. FY2010 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect (OSTI)

    Singh, Gurpreet

    2010-12-01

    The Advanced Combustion Engine R&D subprogram supports the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  1. Combustion Engine

    Broader source: Energy.gov [DOE]

    Pictured here is an animation showing the basic mechanics of how an internal combustion engine works. With support from the Energy Department, General Motors researchers developed a new technology ...

  2. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    SciTech Connect (OSTI)

    Pitz, William J.; McNenly, Matt J.; Whitesides, Russell; Mehl, Marco; Killingsworth, Nick J.; Westbrook, Charles K.

    2015-12-17

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  3. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  4. US DRIVE Advanced Combustion and Emission Control Technical Team Roadmap

    Broader source: Energy.gov [DOE]

    The ACEC focuses on advanced engine and aftertreatment technology for three major combustion strategies: (1) Low-Temperature Combustion, (2) Dilute Gasoline combustion, and (3) Clean Diesel Combustion.

  5. Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)

    SciTech Connect (OSTI)

    Taylor, J.; Li, H.; Neill, S.

    2006-08-01

    The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.

  6. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2013-03-05

    Topics covered in this presentation include: the continued importance of coal; related materials challenges; combining oxy-combustion & A-USC steam; and casting large superalloy turbine components.

  7. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect (OSTI)

    Gallant, Tom; Franz, Jim; Alnajjar, Mikhail; Storey, John Morse; Lewis Sr, Samuel Arthur; Sluder, Scott; Cannella, William C; Fairbridge, Craig; Hager, Darcy; Dettman, Heather; Luecke, Jon; Ratcliff, Matthew A.; Zigler, Brad

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  8. Advanced Combustion FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Combustion FAQs faq-header-big.jpg ADVANCED COMBUSTION SYSTEMS - BASICS Q: What is advanced combustion? A: State-of-the-art, coal-fired boilers use air for the combustion of fuel. However, advanced combustion power generation burns fossil fuels in a high-oxygen concentration environment, rather than air. This strategy eliminates most, if not all, of the nitrogen found in air from the combustion process, resulting in flue gas composed of carbon dioxide (CO2), water, contaminants from the

  9. DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program

    SciTech Connect (OSTI)

    Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

    2012-10-26

    The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

  10. Linkages from DOE's Vehicle Technologies R&D in Advanced Combustion to More Efficient, Cleaner-Burning Engines

    Broader source: Energy.gov [DOE]

    Linkages from DOE’s Vehicle Technologies R&D in Advanced Combustion to More Efficient, Cleaner-Burning Engines, a report from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

  11. 2014 Annual Merit Review Results Report - Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Technologies 2014 Annual Merit Review Results Report - Advanced Combustion Engine Technologies Merit review of DOE Vehicle Technologies research...

  12. 2012 Annual Merit Review Results Report - Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Technologies 2012 Annual Merit Review Results Report - Advanced Combustion Engine Technologies Merit review of DOE Vehicle Technologies research...

  13. 2011 Annual Merit Review Results Report - Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Technologies 2011 Annual Merit Review Results Report - Advanced Combustion Engine Technologies Merit review of DOE Vehicle Technologies research...

  14. 2013 Annual Merit Review Results Report - Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Technologies 2013 Annual Merit Review Results Report - Advanced Combustion Engine Technologies Merit review of DOE Vehicle Technologies research...

  15. Particulate Produced from Advanced Combustion Operation in a...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Produced from Advanced Combustion Operation in a Compression Ignition Engine Particulate Produced from Advanced Combustion Operation in a Compression Ignition Engine Determine ...

  16. US DRIVE Advanced Combustion and Emission Control Technical Team...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion and Emission Control Technical Team Roadmap US DRIVE Advanced Combustion and Emission Control Technical Team Roadmap The ACEC focuses on advanced engine and ...

  17. Advanced Combustion Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Turbines The Advanced Turbines program at NETL is focused on R&D activities to develop technologies that will accelerate turbine performance and efficiency beyond current state-of-the-art and reduce the risk to market for novel and advanced turbine-based power cycles. Advanced Combustion Turbines for Combined Cycle Applications area is focused on components and combustion systems for advanced combustion turbines in combined cycle operation that can achieve greater than 65 %

  18. Advanced Combustion Technology to Enable High Efficiency Clean Combustion

    Broader source: Energy.gov [DOE]

    Summary of advanced combustion research at Cummins to explore strategies for fuel economy improvements (PCCI and HECC) and redced engine-out NOx emissions.

  19. Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress Report The Advanced Combustion Engine R&D subprogram supports the VTP Program by removing the technical ...

  20. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Le, L.K.

    1990-11-20

    This patent describes an internal combustion engine comprising; a rotary compressor mechanism; a rotary expander mechanism; and combustion chamber means disposed between the compressor mechanism and the expander mechanism, whereby compressed air is delivered to the combustion chamber through the compressor discharge port, and pressurized gas is delivered from the combustion chamber into the expander mechanism through the pressurized gas intake port.

  1. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and ...

  2. Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines

    Broader source: Energy.gov [DOE]

    Clean, in-cylinder combustion can be enabled by a micro-variable circular orifice, dual mode PCCI, dew film combustion, and a novel combustion chamber design

  3. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Murray, J.L.

    1993-07-20

    A multi bank power plant is described comprising at least a first and a second rotary internal combustion engine connectable together in series, each of the engines comprising: a housing; a cam track internally disposed within the housing and adapted to receive a cam follower; an engine block disposed within the housing and rotatable about a central axis; an output shaft extending axially from each the engine block, each output shaft being coaxial with the other; means for coupling the output shafts together so that the output shafts rotate together in the same direction at the same speed; at least one radially arranged cylinder assembly on each block, each cylinder assembly including a cylinder having a longitudinal axis extending generally radially outwardly from the rotational axis of the block, the cylinder including means defining an end wall, a piston member disposed within the cylinder and adapted to reciprocate within the cylinder; a combustion chamber, means permitting periodic introduction of air and fuel into the combustion chamber, means for causing combustion of a compressed mixture of air and fuel within the combustion chamber, means permitting periodic exhaust of products of combustion of air and fuel from the combustion chamber, and means for imparting forces and motions of the piston within the cylinder to and from the cam track, the means comprising a cam follower operatively connected to the piston; wherein the cam track includes at least a first segment and at least a second segment thereof, the first segment having a generally positive slope wherein the segment has a generally increasing radial distance from the rotational axis of the engine block whereby as a piston moves outwardly in a cylinder on a power stroke while the cam follower is in radial register with the cam track segment, the reactive force of the respective cam follower against the cam track segment acts in a direction tending to impart rotation to the engine block.

  4. Stratified cross combustion engine

    SciTech Connect (OSTI)

    Rhoads, J.L.

    1981-06-23

    A piston engine is provided in which adjacent cylinder pairs share a common combustion chamber and the pistons are mounted to reciprocate substantially in phase, one of the pistons in each piston pair receiving a rich mixture which is ignited by a sparkplug in that cylinder, with the other cylinder in the cylinder pair being passive in its preferred form, and receiving through a separate intake valve either pure air or a leaner mixture into which the combusted richer mixture pours, insuring that the greatest combustion possible resulting in the greatest percentage of carbon dioxide formation as opposed to carbon monoxide is created.

  5. Internal combustion engine

    DOE Patents [OSTI]

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  6. Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_taylor.pdf More Documents & Publications Fuel Requirements for HCCI Engine Operation Advanced Petroleum Based Fuels Research at NREL Effects of Ignition Quality and Fuel Composition on Critical Equivalence Ratio

  7. Enhancing Transportation Energy Security through Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Security through Advanced Combustion and Fuels Technologies Enhancing Transportation Energy Security through Advanced Combustion and Fuels Technologies 2005 ...

  8. Internal combustion rotary engine

    SciTech Connect (OSTI)

    Chen, S.P.

    1993-08-24

    An internal combustion rotary engine is described comprising: an internal combustion chamber wherein a combustible fuel-air mixture is ignited for producing a driving gas flow; a central rotor having an outer surface in which at least one group of curved channels circumferentially-and-axially extending without radially extending through the central rotor; and at least one annular rotor each enclosing the central rotor having an inner surface in which a corresponding number of curved channels circumferentially-and-axially extending without radially extending through the annular rotor; when the curved channels in the central rotor communicate with the curved channels in the annular rotor, the driving gas flow circumferentially-and-axially passing between the outer surface of the central rotor and the inner surface of the annular rotor for rotating the central rotor and the annular rotor in opposite directions.

  9. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Murray, J.L.; Mosca, J.O.

    1992-02-25

    This patent describes a rotary internal combustion engine. It includes a housing; a cam track internally disposed within the housing and adapted to receive a cam follower; an engine block disposed within the housing, the engine block being relatively rotatable within the housing about a central axis; means connectable to an external drive member for translating the relative rotation of the engine block with respect to the housing into useful work; at least one radially arranged cylinder assembly on the block, each cylinder assembly including a cylinder having a longitudinal axis extending generally radially outwardly from the rotational axis of the block, the cylinder including means defining an end wall, a piston member disposed within the cylinder and adapted to reciprocate within the cylinder; the piston, cylinder and cylinder end wall together.

  10. International combustion engines; Applied thermosciences

    SciTech Connect (OSTI)

    Ferguson, C.R.

    1985-01-01

    Focusing on thermodynamic analysis - from the requisite first law to more sophisticated applications - and engine design, this book is an introduction to internal combustion engines and their mechanics. It covers the many types of internal combustion engines, including spark ignition, compression ignition, and stratified charge engines, and examines processes, keeping equations of state simple by assuming constant specific heats. Equations are limited to heat engines and later applied to combustion engines. Topics include realistic equations of state, stroichiometry, predictions of chemical equilibrium, engine performance criteria, and friction, which is discussed in terms of the hydrodynamic theory of lubrication and experimental methods such as dimensional analysis.

  11. Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide Emissions Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference ...

  12. Advanced Combustion Technology to Enable High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of advanced combustion research at Cummins to explore strategies for fuel economy improvements (PCCI and HECC) and redced engine-out NOx emissions. PDF icon ...

  13. Rotary reciprical combustion engines

    SciTech Connect (OSTI)

    Blount, D.H.

    1992-10-20

    This patent describes a rotary-reciprocal combustion engine having a cycle which includes the four strokes of intake, compression, expansion and exhaustion, the engine. It comprises: a housing formed with a peripheral wall with side walls, a rotor in the housing, the inner surface of the peripheral inner wall being cylindrical; a shaft; mounted in the center of the housing, passing through the rotor's hub and extending through the side walls of the housing, the hub having means to allow the rotor to reciprocate on the shaft while the shaft is rotating with the rotor; a reciprocal and rotary guide having means to guide the rotary and reciprocal motions of the rotor while keeping the rotor's piston in continuous sealing contact with the cylinder chamber walls and varying the volume of the cylinder chambers enabling a compression of a gaseous mixture to take place after aspirating a gaseous mixture; an ignition system having means for igniting compressed gaseous mixture and expansion of the cylinder chambers due to pressure of the combustion products.

  14. Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy This page contains information on the recently released BioPower engines. PDF icon analysis_saab2007.pdf More Documents & Publications Enabling High Efficiency Ethanol Engines Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) The Impact of Low Octane Hydrocarbon Blending Streams on "E85" Engine Optimization

    Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this

  15. Low emission internal combustion engine

    DOE Patents [OSTI]

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  16. AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures PDF icon HICEV ...

  17. Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels

    SciTech Connect (OSTI)

    Pratapas, John; Zelepouga, Serguei; Gnatenko, Vitaliy; Saveliev, Alexei; Jangale, Vilas; Li, Hailin; Getz, Timothy; Mather, Daniel

    2013-08-31

    The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

  18. Engine combustion and flow diagnostics

    SciTech Connect (OSTI)

    1995-12-31

    This informative publication discusses the application of diagnostic techniques to internal combustion engines. The papers included fall into three broad categories: flow diagnostics, combustion diagnostics, and fuel spray diagnostics. Contents include: controlling combustion in a spark ignition engine by quantitative fuel distribution; a model for converting SI engine flame arrival signals into flame contours; in-cylinder diesel flame imaging compared with numerical computations; ignition and early soot formation in a DI diesel engine using multiple 2-D imaging diagnostics; investigation of diesel sprays using diffraction-based droplet sizing; fuel distribution effects on the combustion of a direct-injection stratified-charge engine; and 2-D measurements of the liquid phase temperature in fuel sprays.

  19. Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 10 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual Progress Report PDF icon 2010_adv_combustion_engine.pdf More Documents & Publications Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Combustion

  20. Rotary-reciprocal combustion engines

    SciTech Connect (OSTI)

    Blount, D.H.

    1992-10-06

    This patent describes an internal combustion engine of the rotary-reciprocal type. It comprises a housing formed with a peripheral wall; a rotor; and a shaft for the rotor.

  1. Combustion Model for Engine Concept Development | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Presentation shows how 1-cylinder testing, 3D combustion CFD and 1D gas exchange with an advanced combustion model are used together for fast, reliable predictions PDF icon deer12_andersson.pdf More Documents & Publications Partially Premixed Combustion Flex Fuel Optimized SI and HCCI Engine High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control

  2. Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Annual report on the work of the the Advanced Combustion Engine R&D subprogram. The Advanced Combustion Engine R&D subprogram supports the Vehicle Technologies Office mission by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  3. Development of Advanced Combustion Technologies for Increased...

    Broader source: Energy.gov (indexed) [DOE]

    in Improving Thermal Efficiency Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine

  4. Advanced Combustion and Emission Control Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The Advanced Combustion and Emission Control (ACEC) Technical Team is focused on removing technical barriers to the commercialization of advanced, high-efficiency, emission-compliant internal combustion (IC) engines for light-duty vehicle powertrains (i.e., passenger car, minivan, SUV, and pickup trucks).

  5. Supersonic combustion engine and method of combustion initiation and distribution

    SciTech Connect (OSTI)

    Stickler, D.B.; Ballantyne, A.; Kyuman Jeong.

    1993-06-29

    A supersonic combustion ramjet engine having a combustor with a combustion zone intended to channel gas flow at relatively high speed therethrough, the engine comprising: means for substantially continuously supplying fuel into the combustion zone; and means for substantially instantaneously igniting a volume of fuel in the combustion zone for providing a spatially controlled combustion distribution, the igniting means having means for providing a diffuse discharge of energy into the volume, the volume extending across a substantially complete cross-sectional area of the combustion zone, the means for discharging energy being capable of generating free radicals within the volume of reactive fuel in the combustion zone such that fuel in the volume can initiate a controlled relatively rapid combustion of fuel in the combustion zone whereby combustion distribution in relatively high speed gas flows through the combustion zone can be initiated and controlled without dependence upon a flame holder or relatively high local static temperature in the combustion zone.

  6. Hydrogen engine and combustion control process

    DOE Patents [OSTI]

    Swain, Michael R.; Swain, Matthew N.

    1997-01-01

    Hydrogen engine with controlled combustion comprises suction means connected to the crankcase reducing or precluding flow of lubricating oil or associated gases into the combustion chamber.

  7. Steam boosted internal combustion engine

    SciTech Connect (OSTI)

    Green, M.A.

    1987-01-20

    A device is described to supplement the power produced by burning fuel in an internal combustion engine with steam, the device comprising: a means for producing a constant flow of water past a boiler means; a means for allowing the water to flow in the direction of the boiler; a boiler means external to the internal combustion engine to convert the water into superheated steam; a means for controlling the pressure of the water such that the water pressure is greater than the pressure of the steam produced by the boiler; and a means for injection of the superheated steam directly into a cylinder of the internal combustion engine, a means for producing a constant flow of water at a pressure greater than the pressure of the superheated steam, wherein the constant flow means at greater pressure comprises a chamber with a gaseous component, with the gaseous component being of constant volume and exerting constant pressure upon water within the chamber.

  8. Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Annual report on the work of the the Advanced Combustion Engine R&D subprogram that focuses on developing advanced ICE technologies for all highway transportation vehicles.

  9. Staged combustion with piston engine and turbine engine supercharger

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  10. Staged combustion with piston engine and turbine engine supercharger

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2006-05-09

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  11. Advanced Reciprocating Engine Systems

    Broader source: Energy.gov [DOE]

    The Advanced Reciprocating Engine Systems (ARES) program is designed to promote separate but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the...

  12. NREL: Transportation Research - Fuel Combustion and Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Combustion and Engine Performance Photo of a gasoline direct injection piston with injector. NREL studies the effects of new fuel properties on performance and emissions in advanced engine technologies. Photo by Dennis Schroeder, NREL NREL's combustion research and development bridges fundamental chemical kinetics and applied engine research to investigate how new engine technologies can be co-developed with fuels and lubricants to maximize energy-efficient vehicle performance. Through

  13. Advanced Combustion and Fuels; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Zigler, Brad

    2015-06-08

    Presented at the U.S. Department of Energy Vehicle Technologies Office 2015 Annual Merit Review and Peer Evaluation Meeting, held June 8-12, 2015, in Arlington, Virginia. It addresses technical barriers of inadequate data and predictive tools for fuel and lubricant effects on advanced combustion engines, with the strategy being through collaboration, develop techniques, tools, and data to quantify critical fuel physico-chemical effects to enable development of advanced combustion engines that use alternative fuels.

  14. Linkages from DOE's Vehicle Technologies R&D in Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies R&D in Advanced Combustion to More Efficient, Cleaner-Burning Engines Linkages from DOE's Vehicle Technologies R&D in Advanced Combustion to More Efficient, ...

  15. Engine Combustion Network Experimental Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maintained by the Engine Combustion Department of Sandia National Laboratories, data currently available on the website includes reacting and non-reacting sprays in a constant-volume chamber at conditions typical of diesel combustion. The data are useful for model development and validation because of the well-defined boundary conditions and the wide range of conditions employed. A search utility displays data based on experimental conditions such as ambient temperature, ambient density, injection pressure, nozzle size, fuel, etc. Experiment-related visualizations are also available. The search utility for experimental data is located at http://public.ca.sandia.gov/ecn/cvdata/frameset.html (Specialized Interface)

  16. Stratified charge internal combustion engine

    SciTech Connect (OSTI)

    Skopil, A.O.

    1991-01-01

    This patent describes an internal combustion engine. It comprises: a main cylinder, a main piston within the main cylinder, and means for delivering a combustible charge into the main cylinder; a smaller idle cylinder, and idle piston within the idle cylinder, and means for delivering a combustible charge into the idle cylinder; an ignition passageway leading from the idle cylinder to the main cylinder; and an ignition device within the ignition passageway operable to ignite a compressed charge discharged by the idle cylinder into the ignition passageway. The passageway being positioned to discharge the ignited compressed charge from the idle cylinder into the main cylinder to ignite the compressed charge within the main cylinder.

  17. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect (OSTI)

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  18. Internal combustion engine with rotary combustion chamber

    SciTech Connect (OSTI)

    Hansen, C.N.; Cross, P.C.

    1986-09-23

    This patent describes an internal combustion engine comprising: a block having at least one cylindrical wall surrounding a piston chamber, piston means located in the piston chamber means operable to reciprocate the piston means in the chamber, head means mounted on the block covering the chamber. The head means has an air and fuel intake passage, and exhaust gas passage, a rotary valve assembly operatively associated with the head means for controlling the flow of air and fuel into the rotary valve assembly and piston chamber and the flow of exhaust gas from rotary valve assembly and the piston chamber. The means has a housing with a bore open to the piston chamber accommodating the rotary valve assembly, the valve assembly comprising a cylindrical sleeve located in the bore, the sleeve having an inner surface, an ignition hole, and intake and exhaust ports aligned with the intake passage and exhaust gas passage, spark generating means mounted on the housing operable to generate a spark. The rotatable valving means is located within the sleeve for controlling the flow of air and fuel into the rotary valve assembly and piston chamber and the flow of exhaust gases out of the rotary valve assembly and piston chamber.

  19. Internal combustion engine fuel feed

    SciTech Connect (OSTI)

    Cochard, P.; Guicherd, C.

    1980-02-19

    In a method and apparatus for controlling the fuel feed to a stratified-charge internal combustion engine, from idle up to the position corresponding with the maximum flow of air, the overall richness (Rg) of the combustible mixture is reduced by acting simultaneously upon the flow of fuel feeding the main chamber and upon the flow of fuel injected into the auxiliary chamber. For higher loads the maximum flow of air is kept constant and rg is increased by continuing to act upon both fuel flows. By keeping the richness of the mixture in the auxiliary chamber substantially constant, it is possible to obtain the best compromise between the performance of the engine and the emission of pollutant gases.

  20. Rotary reciprocating internal combustion engine

    SciTech Connect (OSTI)

    Ogren, W.

    1992-06-23

    This patent describes a rotary reciprocating internal combustion engine. It comprises a housing which comprises a cylindrical head with two end and frame plates mounted on both ends of the head enclose the head, the head including a pair of fuel into ports and a pair of exhaust ports, a pair of ring gears; a rotor axially aligned in the cylindrical head and comprising a set of four radially extending cylinders and pistons reciprocable in the cylinders; a power take off shaft fixed to the crank support plates and axially aligned with the rotor; oiling means for oiling the rotary engine; and a set of eight crank gears.

  1. Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy Combustion R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual Progress Report PDF icon 2008_adv_combustion_engine.pdf More Documents & Publications Ignition Control for HCCI Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress Report

  2. E-Alerts: Combustion, engines, and propellants (reciprocation and rotating combustion engines). E-mail newsletter

    SciTech Connect (OSTI)

    1999-04-01

    Design, performance, and testing of reciprocating and rotating engines of various configurations for all types of propulsion. Includes internal and external combustion engines; engine exhaust systems; engine air systems components; engine structures; stirling and diesel engines.

  3. Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 9 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress Report The Advanced Combustion Engine R&D subprogram supports the VTP Program by removing the technical barriers to commercialization of ICEs for paaenger and commercial vehicles that meet future Federal emissions regulations. PDF icon 2009_adv_combustion_engine.pdf More Documents & Publications Vehicle Technologies Office:

  4. Rotary valve internal combustion engine

    SciTech Connect (OSTI)

    Bunk, P.H.

    1989-03-28

    A rotary valve internal combustion engine is described, comprising: an engine block; at least one cylinder in the engine block; at least one cylinder having a top end; cylinder head means located adjacent the top end of at least one cylinder, the cylinder head means having a cylindrically shaped cavity therein, the cylindrically shaped cavity being oriented in perpendicular relation to at least one cylinder; a piston sealingly mounted in at least one cylinder for reciprocable movement therein, the reciprocable movement including an intake stroke and an exhaust stroke; engine shaft means rotatably mounted to the engine block; means within the engine block for converting the reciprocable movement of the piston into rotary motion of the engine shaft means; a cylinder port located at the top end of at least one cylinder; a rotary valve rotatably mounted in the cylindrically shaped cavity; means connected with the engine shaft means for rotating the rotary valve in a predetermined synchronization with the reciprocable movement of the piston; aspiration means in the rotary valve for selectively aspirating at least one cylinder during the intake an exhaust strokes; and a spark plug removably mounted within the rotary valve and rotatable therewith.

  5. Advanced Combustion Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Technologies Advanced Combustion Technologies Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses laser-based Rayleigh light scattering to measure flame density and speed over a flat flame burner. Oxyfuel combustion, using oxygen in place of air with diluents such as steam or carbon dioxide, can reduce pollutant emissions in advanced power cycles using gas turbines. Photo courtesy of NETL Multimedia. Joe Yip, a researcher at FE's National Energy

  6. Advanced Combustion Concepts - Enabling Systems and Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ACCESS) for High Efficiency Light Duty Vehicles Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for ...

  7. DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion

    Office of Scientific and Technical Information (OSTI)

    Combustion Engines Bunting, Bruce G ORNL; Bunce, Michael ORNL 02 PETROLEUM; 04 OIL SHALES AND TAR SANDS; 10 SYNTHETIC FUELS; 33 ADVANCED PROPULSION SYSTEMS; BIOFUELS;...

  8. Computational Fluid Dynamics Modeling of Diesel Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions 2005 Diesel Engine ...

  9. Internal Combustion Engine Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Internal Combustion Engine Basics Internal Combustion Engine Basics November 22, 2013 - 2:02pm Addthis Internal combustion engines provide outstanding drivability and durability, with more than 250 million highway transportation vehicles in the United States relying on them. Along with gasoline or diesel, they can also utilize renewable or alternative fuels (e.g., natural gas, propane, biodiesel, or ethanol). They can also be combined with hybrid electric powertrains to increase fuel economy or

  10. Thermodynamic Advantages of Low Temperature Combustion Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermodynamic cycle simulation was used to evaluate low temperature combustion in systematic and sequential fashion to base engine design. PDF icon deer10caton.pdf More Documents ...

  11. Engine Combustion Network (ECN): Global sensitivity analysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 Date Published June 2015 Keywords diesel, Engine Combustion Network, global sensitivity ... The uncertainty in the fuel temperature was found to have a profound influence on the ...

  12. Method of combustion for dual fuel engine

    DOE Patents [OSTI]

    Hsu, Bertrand D.; Confer, Gregory L.; Shen, Zujing; Hapeman, Martin J.; Flynn, Paul L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

  13. Method of combustion for dual fuel engine

    DOE Patents [OSTI]

    Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

  14. Open cycle, internal combustion Stirling engine

    SciTech Connect (OSTI)

    Thring, R.H.

    1991-09-24

    This patent describes an internal- combustion fluid engine. It comprises means, including a hot piston, for defining a combustion chamber; means for causing combustion within the combustion chamber; means, including a cold piston, for defining a compression chamber for pressurizing a fluid; inlet control means for controlling flow of the fluid into the compression chamber; cooling means for maintaining lower temperature in the compression chamber than in the combustion chamber; means, comprising linkage between the hot piston and the cold piston, for varying the volume of the compression chamber in relation to the volume of the combustion chamber in a manner characteristic of a conventional Stirling engine; a manifold connected in fluid communication between the combustion chamber and the compression chamber for enabling flow of the fluid from the compression chamber to the compression chamber; transfer control means for controlling the flow of the fluid from the compression chamber to the combustion chamber.

  15. Multicylinder Diesel Engine for Low Temperature Combustion Operation...

    Broader source: Energy.gov (indexed) [DOE]

    Combustion Demonstrator for High Efficiency Clean Combustion Multicylinder Diesel Engine Design for HCCI Operation Impact of Variable Valve Timing on Low Temperature Combustion

  16. H2 Internal Combustion Engine Research Towards 45% efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

  17. Engine Valve Actuation For Combustion Enhancement

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Rutland, Christopher J.; Jhavar, Rahul

    2004-05-18

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  18. Engine valve actuation for combustion enhancement

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Rutland, Christopher J.; Jhavar, Rahul

    2008-03-04

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  19. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect (OSTI)

    Soloiu, Valentin

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels?? combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  20. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect (OSTI)

    Soloiu, Valentin

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  1. Injector tip for an internal combustion engine

    DOE Patents [OSTI]

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  2. DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion

    Office of Scientific and Technical Information (OSTI)

    Engines (Technical Report) | SciTech Connect 6, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines Citation Details In-Document Search Title: DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines Research in 2011 was focused on diesel range fuels and diesel combustion and fuels evaluated in 2011 included a series of oxygenated biofuels fuels from University of Maine, oxygenated fuel compounds representing materials which could be made from sewage, oxygenated

  3. Carburetor for internal combustion engines

    DOE Patents [OSTI]

    Csonka, John J.; Csonka, Albert B.

    1978-01-01

    A carburetor for internal combustion engines having a housing including a generally discoidal wall and a hub extending axially from the central portion thereof, an air valve having a relatively flat radially extending surface directed toward and concentric with said discoidal wall and with a central conoidal portion having its apex directed toward the interior of said hub portion. The housing wall and the radially extending surface of the valve define an air passage converging radially inwardly to form an annular valving construction and thence diverge into the interior of said hub. The hub includes an annular fuel passage terminating at its upper end in a circumferential series of micro-passages for directing liquid fuel uniformly distributed into said air passage substantially at said valving constriction at right angles to the direction of air flow. The air valve is adjustable axially toward and away from the discoidal wall of the carburetor housing to regulate the volume of air drawn into the engine with which said carburetor is associated. Fuel is delivered under pressure to the fuel metering valve and from there through said micro-passages and controlled cams simultaneously regulate the axial adjustment of said air valve and the rate of delivery of fuel through said micro-passages according to a predetermined ratio pattern. A third jointly controlled cam simultaneously regulates the ignition timing in accordance with various air and fuel supply settings. The air valve, fuel supply and ignition timing settings are all independent of the existing degree of engine vacuum.

  4. Combustion diagnostic for active engine feedback control

    DOE Patents [OSTI]

    Green, Jr., Johney Boyd; Daw, Charles Stuart; Wagner, Robert Milton

    2007-10-02

    This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

  5. Vehicle Technologies Office Merit Review 2014: Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancement in...

  6. Optimization of Direct-Injection H2 Combustion Engine Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions H2 Internal Combustion Engine Research Towards 45% ...

  7. Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines...

    Office of Environmental Management (EM)

    Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Discusses a novel TEG which utilizes a ...

  8. Internal combustion engine and method for control

    SciTech Connect (OSTI)

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  9. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    SciTech Connect (OSTI)

    2009-02-01

    Gas Technology Institute will collaborate with Integrated CHP Systems Corporation, West Virginia University, Vronay Engineering Services, KAR Engineering Associates, Pioneer Air Systems, and Energy Concepts Company to recover waste heat from reciprocating engines. The project will integrate waste heat recovery along with gas clean-up technology system improvements. This will address fuel quality issues that have hampered expanded use of opportunity fuels such as landfill gas, digester biogas, and coal mine methane. This will enable increased application of CHP using renewable and domestically derived opportunity fuels.

  10. Vehicle Technologies Office Merit Review 2015: Overview of the VTO Advanced Combustion Engine R&D Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the Advanced...

  11. Advanced Combustion/Modeling and Analysis Toward HCCI/PCCI in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced CombustionModeling and Analysis Toward HCCIPCCI in a 60% Efficient Free-Piston Engine Rotary Shaft Power Extraction From a Free-Piston Engine 50% thermo-mechanical ...

  12. Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual Progress Report Annual report on the work of the the Advanced Combustion ...

  13. Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual Progress Report Annual report on the work of the the Advanced Combustion...

  14. Method and system for controlled combustion engines

    DOE Patents [OSTI]

    Oppenheim, A. K.

    1990-01-01

    A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

  15. Starting apparatus for internal combustion engines

    DOE Patents [OSTI]

    Dyches, G.M.; Dudar, A.M.

    1995-01-01

    This report is a patent description for a system to start an internal combustion engine. Remote starting and starting by hearing impaired persons are addressed. The system monitors the amount of current being drawn by the starter motor to determine when the engine is started. When the engine is started the system automatically deactivates the starter motor. Five figures are included.

  16. High Efficiency Clean Combustion Engine Designs for Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program and Vehicle Technologies ...

  17. Development of High-Efficiency Clean Combustion Engines Designs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Clean Combustion Engines Designs for SI and CI Engines Development of High-Efficiency Clean Combustion Engines Designs for SI and CI Engines 2010 DOE Vehicle...

  18. Technical Staff, Engine Combustion, Sandia National Laboratories...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for his work on the paper, "Early Direct-Injection, Low-Temperature Combustion of Diesel Fuel in an Optical Engine Utilizing a 15-Hole, Dual-Row, Narrow-Included-Angle Nozzle." ...

  19. Fuel injector nozzle for internal combustion engine

    SciTech Connect (OSTI)

    Klomp, E.D.; Peters, B.D.

    1990-06-12

    This patent describes a fuel injection nozzle for a combustion chamber of an internal combustion engine. It comprises: a nozzle body with at least one fuel flow opening therethrough for feed fuel to the chamber, a resilient diaphragm normally sealing the opening and having orifice means therein for further atomizing and directing the pulses into the chamber, fastening means for fixing the diaphragm to the body so that diaphragm can deflect by a predetermined amount under low engine load operating conditions so that a wide angle cone of atomized fuel is injected into and generally at one end of the combustion chamber for the stratified charge thereof and deflect by an amount greater than the first amount of deflection under high engine load operating conditions. A narrow spray cone of atomized fuel is injected in a deeper pattern into and throughout the combustion chamber for optimizing the charge thereof and fuel burns under the low and high load engine operating conditions.

  20. Advanced CFD Models for High Efficiency Compression Ignition Engines |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Advanced CFD models for high efficiency compression-ignition engines can be used to show how turbulence-chemistry interactions influence autoignition and combustion. PDF icon p-19_raja.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems Advanced Combustion Modeling with STAR-CD using Transient Flemelet Models: TIF and TPV Numerical Modeling of PCCI Combustion

  1. Past experiences with automotive external combustion engines

    SciTech Connect (OSTI)

    Amann, C.A.

    1999-07-01

    GMR (General Motors Research Laboratories, now GM R and D Center) has a history of improving the internal combustion engine, especially as it relates to automotive use. During the quarter century from 1950--75, considerable effort was devoted to evaluating alternative powerplants based on thermodynamic cycles different from those on which the established spark-ignition and diesel engines are founded. Two of these, the steam engine and the Stirling engine, incorporated external combustion. Research on those two alternatives is reviewed. Both were judged to fall short of current needs for commercial success as prime movers for conventional automotive vehicles.

  2. Control system for supercharged internal combustion engine

    SciTech Connect (OSTI)

    Kawamura, H.

    1988-05-24

    A control system for controlling an internal combustion engine is described having a supercharge including a rotatable shaft and an exhaust turbine driven by exhaust gas. The control system comprising: a rotary electric machine mounted on the rotatable shaft of the supercharger for imposing a load on the exhaust turbine of the supercharger; setting means for setting an engine brake mode of the internal combustion engine; and operating means for operating the rotary electric machine when the engine brake mode is set by the setting means.

  3. Internal combustion engine injection superheated steam

    SciTech Connect (OSTI)

    Mahoney, F.G.

    1991-01-22

    This patent describes a method for introducing water vapor to the combustion chambers of an internal combustion engine. It comprises: introducing a metered amount of liquid water into a heat exchanger; contacting the heat exchanger directly with hot exhaust gases emanating from the exhaust manifold; maintaining the water in the heat exchanger for a period sufficient to vaporize the water into steam and superheat same; reducing pressure and increasing temperature to create superheated steam; introducing the superheated steam into the air supply proximate to the air induction system, upstream of any carburetion, of the internal combustion engine.

  4. Advanced Combustion/Modeling and Analysis Toward HCCI/PCCI in a 60%

    Broader source: Energy.gov (indexed) [DOE]

    Efficient Free-Piston Engine | Department of Energy This presentation covers analysis and prediction of attainable combustion ratios in an HCCI/PCCI free-piston engine PDF icon deer09_fitzgerald.pdf More Documents & Publications Advanced Combustion/Modeling and Analysis Toward HCCI/PCCI in a 60% Efficient Free-Piston Engine Rotary Shaft Power Extraction From a Free-Piston Engine 50% thermo-mechanical efficiency utilizing a free-piston engine in Hybrid vehicles

  5. Two phase exhaust for internal combustion engine

    DOE Patents [OSTI]

    Vuk, Carl T.

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  6. Annual Report: Advanced Combustion (30 September 2012)

    SciTech Connect (OSTI)

    Hawk, Jeffrey; Richards, George

    2012-09-30

    The Advanced Combustion Project addresses fundamental issues of fire-side and steam-side corrosion and materials performance in oxy-fuel combustion environments and provides an integrated approach into understanding the environmental and mechanical behavior such that environmental degradation can be ameliorated and long-term microstructural stability, and thus, mechanical performance can lead to longer lasting components and extended power plant life. The technical tasks of this effort are Oxy-combustion Environment Characterization, Alloy Modeling and Life Prediction, and Alloy Manufacturing and Process Development.

  7. Improved Reliability of Ballistic Weapons and Combustion Engines - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Vehicles and Fuels Vehicles and Fuels Advanced Materials Advanced Materials Find More Like This Return to Search Improved Reliability of Ballistic Weapons and Combustion Engines Methods of Forming Boron Nitride DOE Grant Recipients Idaho National Laboratory Contact GRANT About This Technology Publications: PDF Document Publication 8968827.pdf (626 KB) Technology Marketing Summary A novel method for coating the barrel of a ballistic weapon or its bullets with a unique

  8. Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual Progress Report Annual report on the work of the the Advanced...

  9. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOE Patents [OSTI]

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  10. Advanced Reciprocating Engine Systems (ARES)

    Broader source: Energy.gov [DOE]

    Advanced Natural Gas Reciprocating Engines Increase Efficiency and Reduce Emissions for Distributed Power Generation Applications

  11. Progress of the Engine Combustion Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Engine Combustion Network Progress of the Engine Combustion Network ECN seeks to accelerate development of clean high-efficiency engines. PDF icon deer09pickett.pdf More...

  12. High Efficiency Clean Combustion for Heavy-Duty Engine | Department...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon deer09zhang.pdf More Documents & Publications Heavy Truck Engine Development & HECC High Efficiency Clean Combustion for Heavy-Duty Engine Heavy-Duty Engine Combustion ...

  13. Findings of Hydrogen Internal Combustion Engine Durability

    SciTech Connect (OSTI)

    Garrett Beauregard

    2010-12-31

    Hydrogen Internal Combustion Engine (HICE) technology takes advantage of existing knowledge of combustion engines to provide a means to power passenger vehicle with hydrogen, perhaps as an interim measure while fuel cell technology continues to mature. This project seeks to provide data to determine the reliability of these engines. Data were collected from an engine operated on a dynamometer for 1000 hours of continuous use. Data were also collected from a fleet of eight (8) full-size pickup trucks powered with hydrogen-fueled engines. In this particular application, the data show that HICE technology provided reliable service during the operating period of the project. Analyses of engine components showed little sign of wear or stress except for cylinder head valves and seats. Material analysis showed signs of hydrogen embrittlement in intake valves.

  14. Fuels for Advanced Combustion Engines

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  15. Impacts of Advanced Combustion Engines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... & systems evaluations; vehicle systems optimization. * Directly supports US Drive ACEC... rates were optimized using MATLAB optimization functions for each DOC performance at ...

  16. Multiple vane rotary internal combustion engine

    SciTech Connect (OSTI)

    Pangman, E.L.

    1994-01-11

    A three-piece housing enclosing a cavity has rotatably mounted therein a rotor having a plurality of slots, each slot supporting a vane. Each vane has a retention end guided in its revolution around the rotor by an internal, non-circular vane retention track. Two adjacent vanes define opposite sides of a combustion chamber, while the housing and the portion of the rotor between the adjacent vanes form the remaining surfaces of the combustion chamber. Each combustion chamber is rotated past an intake port, a diagonal plasma bleed-over groove, and an exhaust port to accomplish the phases of a combustion cycle. Fuel ignition is provided to more than one combustion chamber at a time by expanding gases passing through a plasma bleed-over groove and being formed into a vortex that ignites and churns the charge in a succeeding combustion chamber. Exhaust gases remaining after primary evacuation are removed by a secondary evacuation system utilizing a venturi creating negative pressure which evacuates the combustion chamber. Lubrication is circulated through the engine without the use of a lubricant pump. The centrifugal force of the rotating rotor causes the lubricant therein to be pressurized thereby drawing additional lubricant into the closed system and forcing lubricant within the engine to be circulated. 9 figs.

  17. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  18. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

    1993-12-21

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

  19. Internal combustion engine utilizing stratified charge combustion process

    SciTech Connect (OSTI)

    Artman, N.G.

    1988-11-15

    This patent describes an internal combustion engine having a main air inlet passage communicating at an end thereof through the face of an cylinder head with an alternately expandable and contractable variable volume space in an end of a cylinder closed by such head, there being within the cylinder head a precombustion chamber forming a section of such passage and interposed between the space and an upstream portion of the passage, the chamber having a principal axis extending between opposite ends thereof and of which ends one is an air inlet and having a valve seat through which the chamber is communicative with the upstream passage portion and of which ends the other is an open end through which the passage has two-way communication with the space and is disposed to discharge air from the chamber into the space axially of the cylinder, the combination of air deflecting means in the chamber and operable during expansion of the space to modulate the flow of intake air passing through the chamber into the space into the form of a stream composed of a core portion flowing axially of the cylinder into the space and of a tubular portion encircling the core portion and flowing helically thereabout, fuel delivery means operable during a fuel injection period commencing during expansion of the space and subsequent to entry of a leading portion of the air stream into the space to inject evaporative fuel into the passage and into a trailing portion of the air stream therein at a rate to mix and form therewith an air-fuel mixture lean in fuel richness than flows within and at least partially through the chamber en route to the space during the expansion thereof. The fuel delivery means being operable to increase the volume of the trailing air stream portion mixed with fuel by advancing the starting time of the fuel injection period to increase the length of such period measured in units of space expansion.

  20. Vehicle Technologies Office: 2013 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Combustion R&D Annual Progress Report This report describes the progress made on the ...

  1. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  2. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  3. Advanced Combustion Modeling with STAR-CD using Transient Flemelet...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER ... Eddy Simulation (LES) Applied to Low-Temperature and Diesel Engine Combustion Research

  4. Quantum combustion chamber for the digital engine

    SciTech Connect (OSTI)

    Evers, L.W.; Baasch, V.

    1985-01-01

    For increasing fuel economy and reducing hydrocarbon emissions, a two-stoke-cycle, loop-scavenged single cylinder engine was modified by replacing the head with a head having three subchambers and incorporating a distributing pump fuel injection system. The fuel injection system allowed one subchamber to be operated at a time. The quantum combustion system demonstrated both lower fuel consumption and lower hydrocarbon emissions than a conventional homogeneous charge engine. The experimental evidence also indicates that the combustion essentially occurred in the one chamber into which fuel was injected. Establishing stratified charge combustion by mechanically separating the regions of air from the regions of air/fuel mixtures by means of subchambers is feasible.

  5. Making a Difference: Heavy-Duty Combustion Engine Research Saved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Combustion Engine Research Saved Billions Making a Difference: Heavy-Duty Combustion Engine Research Saved Billions December 29, 2015 - 12:22pm Addthis Sandia researcher ...

  6. Advanced Reciprocating Engine System (ARES)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Reciprocating Engine Systems (ARES) C L E A N C I T I E S ADVANCED MANUFACTURING OFFICE Raising the Bar on Engine Technology with Increased Efficiency and Reduced ...

  7. Influence of the Combustion Energy Release on Surface Accelerations of an HCCI Engine

    SciTech Connect (OSTI)

    Massey, Jeffery A; Eaton, Scott J; Wagner, Robert M

    2009-01-01

    Large cyclic variability along with increased combustion noise present in low temperature combustion (LTC) modes of internal combustion engines has driven the need for fast response, robust sensors for diagnostics and feedback control. Accelerometers have been shown as a possible technology for diagnostics and feedback control of advanced LTC operation in internal combustion engines. To make better use of this technology, an improved understanding is necessary of the effect of energy release from the combustion process on engine surface vibrations. This study explores the surface acceleration response for a single-cylinder engine operating with homogeneous charge compression ignition (HCCI) combustion. Preliminary investigation of the engine surface accelerations is conducted using a finite element analysis of the engine cylinder jacket along with consideration of cylindrical modes of the engine cylinder. Measured in-cylinder pressure is utilized as a load input to the FE model to provide an initial comparison of the computed and measured surface accelerations. Additionally, the cylindrical cavity resonant modes of the engine geometry are computed and the in-cylinder pressure frequency content is examined to verify this resonant behavior. Experimental correlations between heat release and surface acceleration metrics are then used to identify specific acceleration frequency bands in which characteristics of the combustion heat release process is detected with minimal structural resonant influence. Investigation of a metric capable of indicting combustion phasing is presented. Impact of variations in the combustion energy release process on the surface accelerations is discussed.

  8. Advanced engineering analysis

    SciTech Connect (OSTI)

    Freeman, W.R.

    1992-11-01

    The Advanced Engineering Analysis project is being used to improve the breadth of engineering analysis types, the particular phenomena which may be simulated, and also increase the accuracy and usability of the results of both new and current types of simulations and analyses. This is an interim report covering several topics under this project. Information on two new implementations of failure criteria for metal forming, the implementation of coupled fluid flow/heat transfer analysis capabilities, the integration of experimental shock and vibration test data with analyses, a correction to a contact solution problem with a 3-D parabolic brick finite element, and the development and implementation of a file translator to link IDEAS to DYNA3D is provided in this report.

  9. Starting apparatus for internal combustion engines

    DOE Patents [OSTI]

    Dyches, Gregory M.; Dudar, Aed M.

    1997-01-01

    An internal combustion engine starting apparatus uses a signal from a curt sensor to determine when the engine is energized and the starter motor should be de-energized. One embodiment comprises a transmitter, receiver, computer processing unit, current sensor and relays to energize a starter motor and subsequently de-energize the same when the engine is running. Another embodiment comprises a switch, current transducer, low-pass filter, gain/comparator, relay and a plurality of switches to energize and de-energize a starter motor. Both embodiments contain an indicator lamp or speaker which alerts an operator as to whether a successful engine start has been achieved. Both embodiments also contain circuitry to protect the starter and to de-energize the engine.

  10. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace016_curran_2011_o.pdf More Documents & Publications Addressing the Challenges of RCCI Operation on a Light-Duty Multi-Cylinder Engine High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2014: Impacts of Advanced Combustion Engines

  11. Internal combustion engine with sustained power stroke

    SciTech Connect (OSTI)

    McNair, R.J.

    1980-09-09

    A four stroke cycle internal combustion engine is presented having a sustained power stroke which results from a delayed mixing of a stratified charge. Use of delayed mixing of an overall stoichiometric air-fuel mixture results in formation of a low amount of the oxides of nitrogen. Delayed mixing of the stratified charge is achieved by placement of at least one Helmholtz resonator cavity in the head or closed end of each combustion chamber. The Helmholtz resonator cavity communicates with the top end of the main combustion chamber via a narrow slot. On the intake stroke of each engine cylinder, the main chamber is filled with a slightly fuel rich gaseous charge while the companion Helmholtz resonator cavity is filled with air. During the compression stroke some of the rich air-fuel mixture is forced into the resonator cavity via the communicating slot. At or near tdc, the air-fuel mixture in the main chamber is ignited. As the flame front progresses across the chamber a rapid increase in pressure serves not only to power the piston, but also to initiate a resonant reaction in the Helmholtz resonator cavity which results in a transfer of the unburned gases therein into the main combustion chamber. This both sustains the power stroke and at the same time lowers the peak flame temperature in the main chamber.

  12. Tailoring next-generation biofuels and their combustion in next-generation engines.

    SciTech Connect (OSTI)

    Gladden, John Michael; Wu, Weihua; Taatjes, Craig A.; Scheer, Adam Michael; Turner, Kevin M.; Yu, Eizadora T.; O'Bryan, Greg; Powell, Amy Jo; Gao, Connie W.

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  13. Vehicle Technologies Office: Advanced Combustion Strategies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Combustion Strategies Vehicle Technologies Office: Advanced Combustion Strategies On the left is real-time video of conventional diesel combustion. The fuel injector sprays 8 jets of liquid fuel into the combustion chamber. Compression-heating ignites the fuel, creating a flame. Soot forms in jets, which glow red, orange, and yellow. High temperature combustion has high efficiency, but also produces high emissions of nitrogen oxides. On the right is a real-time video of a Homogeneous

  14. The Role of Advanced Combustion in Improving Thermal Efficiency |

    Energy Savers [EERE]

    Department of Energy The Role of Advanced Combustion in Improving Thermal Efficiency The Role of Advanced Combustion in Improving Thermal Efficiency Combustion plays an important role in enabling high thermal efficiencies. Technologies that deliver short combustion duration and low soot emissions are needed. PDF icon deer08_gehrke.pdf More Documents & Publications Development of Enabling Technologies for High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI)

  15. Computational Fluid Dynamics Modeling of Diesel Engine Combustion and

    Broader source: Energy.gov (indexed) [DOE]

    Emissions | Department of Energy 05 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_reitz.pdf More Documents & Publications Experiments and Modeling of Two-Stage Combustion in Low-Emissions Diesel Engines Comparison of Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI) Combustion in a Light-Duty Engine High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control

  16. Demonstrating Optimum HCCI Combustion with Advanced Control Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Control-Oriented Modeling for HCCI Combustion and Multi-Cylinder HCCI Experimental Activities Diesel HCCI Results at Caterpillar Flex Fuel Optimized SI and HCCI Engine

  17. Internal combustion engine with integral intercooler

    SciTech Connect (OSTI)

    Poore, B.B.; Beitel, H.V.; Weinert, S.

    1990-11-06

    This patent describes a liquid-cooled internal combustion engine. It comprises: a cylinder block; a cylinder head attached to the block and having formed therein a combustion air inlet, a coolant supply passage, a coolant return passage and an air supply passage for receiving turbocharged air; an intercooler having a coolant inlet and a coolant outlet; a first conduit communicating the intercooler coolant inlet with the coolant supply passage; a second conduit communicating the intercooler coolant outlet with the coolant return passage; a cover attachable to the cylinder head, the cover completely enclosing the intercooler and the first and second conduits; and the cover, the cylinder head and the intercooler being arranged so that turbocharged air flows from the air supply passage to the air inlet via the intercooler.

  18. High efficiency stoichiometric internal combustion engine system

    DOE Patents [OSTI]

    Winsor, Richard Edward; Chase, Scott Allen

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  19. Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines

    Broader source: Energy.gov [DOE]

    Document:  ace012_flowers_2013_o.pdfTechnology Area: Advanced Combustion; Combustion and Emissions ControlPresenter: Dan FlowersPresenting Organization: Lawrence Livermore National Laboratory (LLNL...

  20. Materials performance in advanced combustion systems

    SciTech Connect (OSTI)

    Natesan, K.

    1992-12-01

    A number of advanced technologies are being developed to convert coal into clean fuels for use as feedstock in chemical plants and for power generation. From the standpoint of component materials, the environments created by coal conversion and combustion in these technologies and their interactions with materials are of interest. The trend in the new or advanced systems is to improve thermal efficiency and reduce the environmental impact of the process effluents. This paper discusses several systems that are under development and identifies requirements for materials application in those systems. Available data on the performance of materials in several of the environments are used to examine the performance envelopes for materials for several of the systems and to identify needs for additional work in different areas.

  1. Low Temperature Combustion and Diesel Emission Reduction Research...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon 2006deerreitz.pdf More Documents & Publications Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies ...

  2. Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual Progress Report PDF icon 2010advcombustionengine.pdf More Documents & Publications Vehicle Technologies Office: ...

  3. Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual Progress Report PDF icon 2008advcombustionengine.pdf More Documents & Publications Ignition Control for HCCI ...

  4. Vehicle Technologies Office Merit Review 2014: Advanced Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts - enabling systems and solutions for high efficiency light duty...

  5. Vehicle Technologies Office Merit Review 2014: Advanced Combustion and Fuels

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion and fuels.

  6. Advancement in Fuel Spray and Combustion Modeling for Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling using KH-ACT Primary Breakup Model & Detailed Chemistry Vehicle Technologies Office Merit Review 2014: Advancement...

  7. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Reciprocating Engine System (ARES) Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Dresser Waukesha, June 2011 Integration of Diesel Engine Technology ...

  8. Advanced Combustion Technologies | Department of Energy

    Energy Savers [EERE]

    Air Separation Oxycombustion cannot be simply substituted for air combustion in existing fossil-fueled power plants due to differences in combustion characteristics. For...

  9. DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion

    Office of Scientific and Technical Information (OSTI)

    Engines (Technical Report) | SciTech Connect 6, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines Citation Details In-Document Search Title: DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in

  10. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace016_curran_2012_o.pdf More Documents & Publications Addressing the Challenges of RCCI Operation on a Light-Duty Multi-Cylinder Engine Vehicle Technologies Office Merit Review 2015: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Gasoline-Like Fuel Effects on Advanced Combustion Regimes

  11. Optimization of Direct-Injection H2 Combustion Engine Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency, and Emissions Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle ...

  12. "Optimization of efficiency of internal combustion engines via...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization of efficiency of internal combustion engines via using spinning gas and non-spectroscopic method of determining gas constituents through rotation ..--.. Inventors...

  13. Oxygen-Enriched Combustion for Military Diesel Engine Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and considerably lower peak pressure can result from oxygen-enriched diesel ...

  14. High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel

    Broader source: Energy.gov (indexed) [DOE]

    Engines | Department of Energy 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_35_patton.pdf More Documents & Publications High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines Development of High-Efficiency Clean Combustion Engines Designs for SI and CI Engines Expanding Robust HCCI Operation (Delphi CRADA)

  15. Hydrogen-fueled internal combustion engines.

    SciTech Connect (OSTI)

    Verhelst, S.; Wallner, T.; Energy Systems; Ghent Univ.

    2009-12-01

    The threat posed by climate change and the striving for security of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Taking a prominent place in these strategic plans is hydrogen as a future energy carrier. A number of manufacturers are now leasing demonstration vehicles to consumers using hydrogen-fueled internal combustion engines (H{sub 2}ICEs) as well as fuel cell vehicles. Developing countries in particular are pushing for H{sub 2}ICEs (powering two- and three-wheelers as well as passenger cars and buses) to decrease local pollution at an affordable cost. This article offers a comprehensive overview of H{sub 2}ICEs. Topics that are discussed include fundamentals of the combustion of hydrogen, details on the different mixture formation strategies and their emissions characteristics, measures to convert existing vehicles, dedicated hydrogen engine features, a state of the art on increasing power output and efficiency while controlling emissions and modeling.

  16. Internal combustion engine with compound air compression

    SciTech Connect (OSTI)

    Paul, M.A.; Paul, A.

    1991-10-15

    This patent describes an internal combustion engine in combination with a compound air compression system. It comprises: a reciprocator with at least one cylinder, at least one piston reciprocal in the cylinder and a combustion chamber formed in substantial part by portions of the piston and cylinder, the reciprocator having a drive shaft; a rotary compressor having a drive shaft mechanically coupled to the drive shaft of the reciprocator, the rotary compressor having a Wankel-type, three-lobe, epitrochiodal configuration sides having a conduit conjected to the reciprocator for supplying compressed air to the reciprocator; a turbocharged with a gas turbine and a turbocompressor, the turbocompressor having an air conduit connected to the expander side of the rotary compressor; and a bypass conduit with a valve means connecting the turbocharger to the reciprocator for supplying compressed air directly to the reciprocator wherein the drive shaft of the reciprocator and the drive shaft of the compressor have connecting means for transmitting mechanical energy to the reciprocator at mid to high operating speeds of the engine when the turbocharge supplies compressed air to the rotary compressor and, at least in part, drives the rotary compressor.

  17. Simulation of High Efficiency Clean Combustion Engines and Detailed...

    Broader source: Energy.gov (indexed) [DOE]

    continuing work on exploring fuel chemistry, analysis of advanced combustion regimes, and improvements in simulation methodologies PDF icon deer12flowers.pdf More Documents & ...

  18. Internal combustion engine utilizing stratified charge combustion process

    SciTech Connect (OSTI)

    Artman, N.G.

    1991-07-16

    This patent describes an internal combustion engine in which a piston is reciprocal alternately toward and from the upper end of a cylinder within a variable volume space adjacent to such end, a cylinder head having a face in closing relation with such cylinder end and containing a precombustion chamber with a sidewall having an inner periphery constructed about an axis extending upwardly from the cylinder and the periphery having an open lower end in two-way communication through the face with the variable volume space, the lower open end being smaller in diameter than the diameter of the cylinder, the upper end of the chamber having an air inlet passage closable by a valve, the chamber being operable when the valve is open and attendant to movement of the piston downwardly from the upper cylinder end to receive from the inlet passage a main inlet air stream and conduct the same downwardly therein and discharge the same through the open end downwardly therein and discharge the same through the open end downwardly into the variable volume space.

  19. Advanced Materials for Mercury 50 Gas Turbine Combustion System

    SciTech Connect (OSTI)

    Price, Jeffrey

    2008-09-30

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70, Taurus 65, Titan 130, Titan 250 and Mercury 50). This TBC coating system significantly outperformed all other TBC systems evaluated under the program. The initial field unit, with the 40 mil advanced TBC developed under this program, has far exceeded the 4,000-hour requirement of the program, accumulating over 20,000 hours of commercial operation at Qualcomm Inc. in San Diego, CA. The 40 mil advanced TBC remains in excellent condition, with no evidence of chipping or spalling. The engine will continue operation until the unit is due for overhaul at approximately 30,000 hours. The Oxide Dispersion Strengthened (ODS) alloy injector tip testing and evaluation was also successful, however, the ODS injector tip development on this program was terminated, primarily due to the fact that the Mercury 50 injector tip was redesigned (Generation 3) by Combustion Engineering.

  20. Internal combustion engine using premixed combustion of stratified charges

    DOE Patents [OSTI]

    Marriott, Craig D.; Reitz, Rolf D. (Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  1. Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon deer07zhang.pdf More Documents & Publications High Efficiency Clean Combustion for Heavy-Duty Engine Heavy Truck Engine Development & HECC A Micro-Variable Circular ...

  2. Distributed ignition method and apparatus for a combustion engine

    DOE Patents [OSTI]

    Willi, Martin L.; Bailey, Brett M.; Fiveland, Scott B.; Gong, Weidong

    2006-03-07

    A method and apparatus for operating an internal combustion engine is provided. The method comprises the steps of introducing a primary fuel into a main combustion chamber of the engine, introducing a pilot fuel into the main combustion chamber of the engine, determining an operating load of the engine, determining a desired spark plug ignition timing based on the engine operating load, and igniting the primary fuel and pilot fuel with a spark plug at the desired spark plug ignition timing. The method is characterized in that the octane number of the pilot fuel is lower than the octane number of the primary fuel.

  3. Compounded turbocharged rotary internal combustion engine fueled with natural gas

    SciTech Connect (OSTI)

    Jenkins, P.E.

    1992-10-15

    This patent describes a compounded engine. It comprises: a first Wankel engine having a housing with a trochoidal inner surface containing a generally triangular shaped rotor, the engine containing a fuel supply system suitable for operating the engine with natural gas as a fuel; a turbocharge compressing air for combustion by the engine, the turbocharger being driven by the exhaust gases which exit from the engine; a combustion chamber in fluid communication with the exhaust from the engine after that exhaust has passed through the turbocharger, the chamber having an ignition device suitable for igniting hydrocarbons in the engine exhaust, whereby the engine timing, and the air and fuel mixture of the engine are controlled so that when the engine exhaust reaches the combustion chamber the exhaust contains a sufficient amount of oxygen and hydrocarbons to enable ignition and combustion of the engine exhaust in the combustion chamber without the addition of fuel or air, and whereby the engine operating conditions are controlled to vary the performance of the secondary combustor; and a controllable ignition device to ignite the exhaust gases in the combustion chamber at predetermined times.

  4. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    SciTech Connect (OSTI)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  5. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    DOE Patents [OSTI]

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  6. Combustion characterization of methylal in reciprocating engines

    SciTech Connect (OSTI)

    Dodge, L.; Naegeli, D.

    1994-06-01

    Methylal, CH{sub 3}OCH{sub 2}OCH{sub 3}, also known as dimethoxy-methane, is unique among oxygenates in that it has a low autoignition temperature, no carbon-carbon bonds, and is soluble in middle distillate fuels. Because of these properties, methylal has been shown to be a favorable fuel additive for reducing smoke in diesel engines. Recent measurements of ignition delay times indicate that methylal has a cetane number in the range of 45-50, which is compatible with diesel fuels. Engine tests have shown that adding methylal to diesel fuel significantly reduces smoke emissions. Gaseous emissions and combustion efficiencies obtained with methylal/diesel fuel blends remain essentially the same as those measured using neat diesel fuel. Lubricity measurements of methylal/diesel fuel blends with a ball on cylinder lubrication evaluator (BOCLE) show that methylal improves the lubricity of diesel fuel. Even though additions of methylal lower the fuel viscosity, the results of the BOCLE tests indicate that the methylal/diesel fuel blends cause less pump wear than neat diesel fuel. The one drawback is that methylal has a low boiling point (42{degrees}C) and a relatively high vapor pressure. As a result, it lowers the flash point of diesel fuel and causes a potential fuel tank flammability hazard. One solution to this increased volatility is to make polyoxymethylenes with the general formula of CH{sub 3}O(CH{sub 2}O){sub x}CH{sub 3} where x > 2. The molecules are similar to methylal, but have higher molecular weights and thus higher viscosities and substantially lower vapor pressures. Therefore, their flash points will be compatible with regular diesel fuel. The polyoxymethylenes are expected to have combustion properties similar to methylal. It is theorized that by analogy with hydrocarbons, the ignition quality (i.e., cetane number) of the polyoxymethylenes will be better than that of methylal.

  7. Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for

    Broader source: Energy.gov (indexed) [DOE]

    High Efficiency Light Duty Vehicles | Department of Energy Discusses development highly capable and flexible advanced control concepts and enabling system to manage multi-mode/multi-fuel combustion events and achieve an up to 30 percent fuel economy improvement PDF icon deer11_yilmaz.pdf More Documents & Publications Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles Vehicle Technologies Office Merit Review 2014: Advanced

  8. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharged Direct Injection (GTDI) Engine Development Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine ...

  9. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics...

  10. Advanced Natural Gas Reciprocating Engines (ARES)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Stoichiometric combustion, Exhaust Gas Recirculation, Advanced Three Way Catalyst ... (operate with non- std gases: landfill gas and other renewables) Non-std gases ...

  11. Advanced Diagnostics for High Pressure Spray Combustion.

    SciTech Connect (OSTI)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  12. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Advanced Gasoline Turbocharged Direct Injection (GTDI) ...

  13. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Daw, C. Stuart; Finney, Charles E. A.; Kaul, Brian C.; Edwards, Kevin Dean; Wagner, Robert M.

    2014-12-29

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel-economy. One new advanced engine strategy utilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy inmore » the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities.« less

  14. Variable compression ratio device for internal combustion engine

    DOE Patents [OSTI]

    Maloney, Ronald P.; Faletti, James J.

    2004-03-23

    An internal combustion engine, particularly suitable for use in a work machine, is provided with a combustion cylinder, a cylinder head at an end of the combustion cylinder and a primary piston reciprocally disposed within the combustion cylinder. The cylinder head includes a secondary cylinder and a secondary piston reciprocally disposed within the secondary cylinder. An actuator is coupled with the secondary piston for controlling the position of the secondary piston dependent upon the position of the primary piston. A communication port establishes fluid flow communication between the combustion cylinder and the secondary cylinder.

  15. Development of Advanced Small Hydrogen Engines

    SciTech Connect (OSTI)

    Sapru, Krishna; Tan, Zhaosheng; Chao, Ben

    2010-09-30

    The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

  16. Method of controlling cyclic variation in engine combustion

    DOE Patents [OSTI]

    Davis, Jr., Leighton Ira; Daw, Charles Stuart; Feldkamp, Lee Albert; Hoard, John William; Yuan, Fumin; Connolly, Francis Thomas

    1999-01-01

    Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling.

  17. Method of controlling cyclic variation in engine combustion

    DOE Patents [OSTI]

    Davis, L.I. Jr.; Daw, C.S.; Feldkamp, L.A.; Hoard, J.W.; Yuan, F.; Connolly, F.T.

    1999-07-13

    Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling. 27 figs.

  18. Solid fuel combustion system for gas turbine engine

    DOE Patents [OSTI]

    Wilkes, Colin; Mongia, Hukam C.

    1993-01-01

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  19. Overview of Engine Combustion Research at Sandia National Laboratories

    SciTech Connect (OSTI)

    Robert W. Carling; Gurpreet Singh

    1999-04-26

    The objectives of this paper are to describe the ongoing projects in diesel engine combustion research at Sandia National Laboratories' Combustion Research Facility and to detail recent experimental results. The approach we are employing is to assemble experimental hardware that mimic realistic engine geometries while enabling optical access. For example, we are using multi-cylinder engine heads or one-cylinder versions of production heads mated to one-cylinder engine blocks. Optical access is then obtained through a periscope in an exhaust valve, quartz windows in the piston crown, windows in spacer plates just below the head, or quartz cylinder liners. We have three diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, and a one-cylinder Caterpillar engine to evaluate combustion of alternative diesel fuels.

  20. Vehicle Technologies Office: Fuel Effects on Advanced Combustion |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Efficiency & Emissions » Vehicle Technologies Office: Fuel Effects on Advanced Combustion Vehicle Technologies Office: Fuel Effects on Advanced Combustion More than 90 percent of transportation relies on petroleum-based fuels: gasoline and diesel. While alternative fuels and plug-in electric vehicles offer great promise to reduce America's petroleum consumption, petroleum-based fuels are likely to play a substantial role for years to come. However, the sources

  1. Synergies of PCCI-Type Combustion and Lean NOx Trap Catalysis for Diesel Engines

    SciTech Connect (OSTI)

    Parks, II, James E; Prikhodko, Vitaly Y; Kass, Michael D; Huff, Shean P

    2008-01-01

    It is widely recognized that future NOx and PM emission targets for diesel engines cannot be met solely via advanced combustion over the full engine drive cycle. Therefore some combination of advanced combustion methodology with an aftertreatment technology will be required. In this study, NOx reduction, fuel efficiency, and regeneration performance of lean NOx trap (LNT) were evaluated for four operating conditions. The combustion approaches included baseline engine operation with and without EGR, two exhaust enrichment methods (post injection and delayed injection), and one advanced combustion mode to enable high efficiency clean combustion (HECC). A 1.7 liter 4-cylinder diesel engine was operated under five conditions, which represent key interest points for light-duty diesel operation. At the low load setting the exhaust temperature was too low to enable LNT regeneration and oxidation; however, HECC (low NOx) was achievable. HECC was also reached under more moderate loads and the exhaust temperatures were high enough to enable even further NOx reductions by the LNT. At high loads HECC becomes difficult but the LNT performance improves and acceptable regeneration can be met with enrichment methodologies.

  2. Radial inflow gas turbine engine with advanced transition duct

    DOE Patents [OSTI]

    Wiebe, David J

    2015-03-17

    A gas turbine engine (10), including: a turbine having radial inflow impellor blades (38); and an array of advanced transition combustor assemblies arranged circumferentially about the radial inflow impellor blades (38) and having inner surfaces (34) that are adjacent to combustion gases (40). The inner surfaces (34) of the array are configured to accelerate and orient, for delivery directly onto the radial inflow impellor blades (38), a plurality of discrete flows of the combustion gases (40). The array inner surfaces (34) define respective combustion gas flow axes (20). Each combustion gas flow axis (20) is straight from a point of ignition until no longer bound by the array inner surfaces (34), and each combustion gas flow axis (20) intersects a unique location on a circumference defined by a sweep of the radial inflow impellor blades (38).

  3. Adaptive Control to Improve Low Temperature Diesel Engine Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications An Enabling Study of Diesel Low-Temperautre Combustion via ... Regimes? ADEC II Universal SCR Retrofit System for On-road and Off-road Diesel Engines

  4. AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications and Test

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procedures | Department of Energy Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures PDF icon HICEV Technical Specifications PDF icon HICEV America Test Sequence PDF icon ETA-HITP01 Implementation of SAE Standard J1263 - Road Load Measurements and Dynamometer Simulation Using Coast Down Techniques PDF icon ETA-HITP02 Implementation of SAE Standard J1666 May93 - HICE Vehicle

  5. Boosting Small Engines to High Performance- Boosting Systems and Combustion Development Methodology

    Broader source: Energy.gov [DOE]

    Overview on combustion approaches and challenges for smaller boosted engines to improve vehicle fuel economy, particularly downsizing gasoline engines

  6. The Role of the Internal Combustion Engine in our Energy Future

    Broader source: Energy.gov [DOE]

    Reviews heavy-duty vehicle market, alternatives to internal combustion engines, and pathways to increasing diesel engine efficiency

  7. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect (OSTI)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nations energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nations future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillars DIGN program under the ARES program. This work has consisted of both modeling and single cylinder engine experiments to quantify DIGN performance. The air handling systems of natural gas engines dissipate a percentage of available energy as a result of both flow losses and turbomachinery inefficiencies. An analytical study was initiated to increase compressor efficiency by employing a 2-stage inter-cooled compressor. Caterpillar also studied a turbo-compound system that employs a power turbine to recover energy from the exhaust gases for improved engine efficiency. Several other component and system investigations were undertaken during the final phase of the program to reach the ultimate ARES goals. An intake valve actuation system was developed and tested to improve engine efficiency, durability and load acceptance. Analytical modeling and materials testing were performed to evaluate the performance of steel pistons and compacted graphite iron cylinder head. Effort was made to improve the detonation sensing system by studying and comparing the performance of different pressure sensors. To reduce unburned hydrocarbon emissions, different camshafts were designed and built to investigate the effect of exhaust valve opening timing and value overlap. 1-D & 3-D coupled simulation was used to study intake and exhaust manifold dynamics with the goal of reducing load in-balance between cylinders. Selective catalytic reduction with on-board reductant generation to reduce NOx emissions was also engine tested. An effective mean to successfully deploy ARES technologies into the energy markets is to deploy demonstration projects in the field. In 2010, NETL and Caterpillar agreed to include a new opportunity fuel deliverable and two field demonstrations in the ARES program. An Organic Rankine Cycle system was designed with production intent incorporating lessons learned from the Phase II demonstration. Unfortunately, business conditions caused Caterpillar to cancel this demonstration in 2011. Nonetheless, Caterpillar partnered with a local dealer to deploy an ARES class engine using syngas from a biomass gasifier as

  8. Engineering and Economic Analysis of an Advanced Ultra-Supercritical Pulverized Coal Power Plant with and without Post-Combustion Carbon Capture Task 7. Design and Economic Studies

    SciTech Connect (OSTI)

    Booras, George; Powers, J.; Riley, C.; Hendrix, H.

    2015-09-01

    This report evaluates the economics and performance of two A-USC PC power plants; Case 1 is a conventionally configured A-USC PC power plant with superior emission controls, but without CO2 removal; and Case 2 adds a post-combustion carbon capture (PCC) system to the plant from Case 1, using the design and heat integration strategies from EPRI’s 2015 report, “Best Integrated Coal Plant.” The capture design basis for this case is “partial,” to meet EPA’s proposed New Source Performance Standard, which was initially proposed as 500 kg-CO2/MWh (gross) or 1100 lb-CO2/MWh (gross), but modified in August 2015 to 635 kg-CO2/MWh (gross) or 1400 lb-CO2/MWh (gross). This report draws upon the collective experience of consortium members, with EPRI and General Electric leading the study. General Electric provided the steam cycle analysis as well as v the steam turbine design and cost estimating. EPRI performed integrated plant performance analysis using EPRI’s PC Cost model.

  9. Ducted combustion chamber for direct injection engines and method

    SciTech Connect (OSTI)

    Mueller, Charles

    2015-03-03

    An internal combustion engine includes an engine block having a cylinder bore and a cylinder head having a flame deck surface disposed at one end of the cylinder bore. A piston connected to a rotatable crankshaft and configured to reciprocate within the cylinder bore has a piston crown portion facing the flame deck surface such that a combustion chamber is defined within the cylinder bore and between the piston crown and the flame deck surface. A fuel injector having a nozzle tip disposed in fluid communication with the combustion chamber has at least one nozzle opening configured to inject a fuel jet into the combustion chamber along a fuel jet centerline. At least one duct defined in the combustion chamber between the piston crown and the flame deck surface has a generally rectangular cross section and extends in a radial direction relative to the cylinder bore substantially along the fuel jet centerline.

  10. Review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    SciTech Connect (OSTI)

    Schock, H.J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed.

  11. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    SciTech Connect (OSTI)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables such as internal dilution level and charge temperature. As a result, HCCI combustion has limited robustness when variables exceed the required narrow ranges determined in this program. HCCI combustion is also not available for the entire range of production engine speeds and loads, (i.e., the dynamic range is limited). Thus, regular SI combustion must be employed for a majority of the full dynamic range of the engine. This degrades the potential fuel economy impact of HCCI combustion. Currently-available combustion control actuators for the simple valve train system engine do not have the authority for continuous air - fuel or torque control for managing the combustion mode transitions between SI and HCCI and thus, require further refinement to meet customer refinement expectations. HCCI combustion control sensors require further development to enable robust long-term HCCI combustion control. Finally, the added technologies required to effectively manage HCCI combustion such as electric cam phasers, central direct fuel injection, cylinder pressure sensing, high-flow exhaust gas recirculation system, etc. add excessive on-engine cost and complexity that erodes the production-viability business

  12. Advanced engineering environment pilot project.

    SciTech Connect (OSTI)

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty

    2006-10-01

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

  13. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dresser Waukesha, June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Dresser Waukesha, June 2011 Presentation on Advanced Natural Gas Reciprocating ...

  14. Advanced fuel chemistry for advanced engines.

    SciTech Connect (OSTI)

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  15. Engine combustion control at low loads via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2014-10-07

    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

  16. Combustion mode switching with a turbocharged/supercharged engine

    DOE Patents [OSTI]

    Mond, Alan; Jiang, Li

    2015-09-22

    A method for switching between low- and high-dilution combustion modes in an internal combustion engine having an intake passage with an exhaust-driven turbocharger, a crankshaft-driven positive displacement supercharger downstream of the turbocharger and having variable boost controllable with a supercharger bypass valve, and a throttle valve downstream of the supercharger. The current combustion mode and mass air flow are determined. A switch to the target combustion mode is commanded when an operating condition falls within a range of predetermined operating conditions. A target mass air flow to achieve a target air-fuel ratio corresponding to the current operating condition and the target combustion mode is determined. The degree of opening of the supercharger bypass valve and the throttle valve are controlled to achieve the target mass air flow. The amount of residual exhaust gas is manipulated.

  17. Four stroke concentric oscillating rotary vane internal combustion engine

    SciTech Connect (OSTI)

    Seno, C.L.

    1992-02-11

    This patent describes a four stroke concentric oscillating rotary vane internal combustion engine made up of a pair of cranking mechanisms, a pair of forced porting mechanisms, an output shaft mechanism, a stator, a rotor, four arcuate combustion chambers and longitudinal and transverse grooves for lubrication and dynamic sealing. It comprises the pair of cranking mechanisms control the oscillating rotary motion of the rotor, each cranking mechanism comprising: one end; the pair of forced porting mechanisms control the forced porting of air into and combustion by-products from the combustion chambers, each forced porting mechanism: products from the combustion chambers; the output shaft mechanism orchestrating and coordinating the synchronized iterative operations of the cranking.

  18. Advanced System for Process Engineering

    Energy Science and Technology Software Center (OSTI)

    1992-02-01

    ASPEN (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes. ASPEN can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations. It is supported by a comprehensive physical property system for computationmore » of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The ASPEN Input Language is oriented towards process engineers.« less

  19. Pulsed jet combustion generator for premixed charge engines

    DOE Patents [OSTI]

    Oppenheim, A. K.; Stewart, H. E.; Hom, K.

    1990-01-01

    A method and device for generating pulsed jets which will form plumes comprising eddie structures, which will entrain a fuel/air mixture from the head space of an internal combustion engine, and mixing this fuel/air mixture with a pre-ignited fuel/air mixture of the plumes thereby causing combustion of the reactants to occur within the interior of the eddie structures.

  20. Advanced clean combustion technology in Shanxi province

    SciTech Connect (OSTI)

    Xie, K.-C.

    2004-07-01

    Biomass energy resources in China are first described, along with biomass gasification R & D now underway. In Shanxi province biomass and other regenerative energy is relatively little used but coal resources are large. Hence Shanxi is mainly developing clean coal technology to meet its economic and environmental protection requirements. Clean combustion research at Taiyuan University of Technology includes cofiring of coal and RDF in FBC, gas purification and adsorption, fundamentals of plasma-aided coal pyrolysis and gasification and coal derived liquid fuels from synthesis gas. 5 refs.

  1. A combustion model for IC engine combustion simulations with multi-component fuels

    SciTech Connect (OSTI)

    Ra, Youngchul; Reitz, Rolf D.

    2011-01-15

    Reduced chemical kinetic mechanisms for the oxidation of representative surrogate components of a typical multi-component automotive fuel have been developed and applied to model internal combustion engines. Starting from an existing reduced mechanism for primary reference fuel (PRF) oxidation, further improvement was made by including additional reactions and by optimizing reaction rate constants of selected reactions. Using a similar approach to that used to develop the reduced PRF mechanism, reduced mechanisms for the oxidation of n-tetradecane, toluene, cyclohexane, dimethyl ether (DME), ethanol, and methyl butanoate (MB) were built and combined with the PRF mechanism to form a multi-surrogate fuel chemistry (MultiChem) mechanism. The final version of the MultiChem mechanism consists of 113 species and 487 reactions. Validation of the present MultiChem mechanism was performed with ignition delay time measurements from shock tube tests and predictions by comprehensive mechanisms available in the literature. A combustion model was developed to simulate engine combustion with multi-component fuels using the present MultiChem mechanism, and the model was applied to simulate HCCI and DI engine combustion. The results show that the present multi-component combustion model gives reliable performance for combustion predictions, as well as computational efficiency improvements through the use of reduced mechanism for multi-dimensional CFD simulations. (author)

  2. Advanced engineering environment collaboration project.

    SciTech Connect (OSTI)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

  3. Demonstrating Optimum HCCI Combustion with Advanced Control Technology |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_killingsworth.pdf More Documents & Publications Control-Oriented Modeling for HCCI Combustion and Multi-Cylinder HCCI Experimental Activities Diesel HCCI Results at Caterpillar Flex Fuel Optimized SI and HCCI Engine

  4. Improved Solvers for Advanced Engine Combustion Simulation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Optimization of Advanced Diesel Engine Combustion Strategies

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  6. Optimization of Advanced Diesel Engine Combustion Strategies

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Optimization of Advanced Diesel Engine Combustion Strategies

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  8. Dynamic instabilities in spark-ignited combustion engines with high exhaust gas recirculation

    SciTech Connect (OSTI)

    Daw, C Stuart; FINNEY, Charles E A

    2011-01-01

    We propose a cycle-resolved dynamic model for combustion instabilities in spark-ignition engines operating with high levels of exhaust gas recirculation (EGR). High EGR is important for increasing fuel efficiency and implementing advanced low-emission combustion modes such as homogenous charge compression ignition (HCCI). We account for the complex combustion response to cycle-to-cycle feedback by utilizing a global probability distribution that describes the pre-spark state of in-cylinder fuel mixing. The proposed model does a good job of simulating combustion instabilities observed in both lean-fueling engine experiments and in experiments where nitrogen dilution is used to simulate some of the combustion inhibition of EGR. When used to simulate high internal EGR operation, the model exhibits a range of global bifurcations and chaos that appear to be very robust. We use the model to show that it should be possible to reduce high EGR combustion instabilities by switching from internal to external EGR. We also explain why it might be helpful to deliberately stratify the fuel in the pre-spark gas mixture. It might be possible to extend the simple approach used in this model to other chemical reaction systems with spatial inhomogeneity.

  9. Task 2 Materials for Advanced Boiler and Oxy-combustion Systems...

    Office of Scientific and Technical Information (OSTI)

    Task 2 Materials for Advanced Boiler and Oxy-combustion Systems (NETL-US) Citation Details In-Document Search Title: Task 2 Materials for Advanced Boiler and Oxy-combustion Systems ...

  10. Advanced System for Process Engineering

    Energy Science and Technology Software Center (OSTI)

    1998-09-14

    PRO ASPEN/PC1.0 (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes and has been ported to run on a PC. PRO ASPEN/PC1.0 can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations.more » It is supported by a comprehensive physical property system for computation of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The PRO ASPEN/PC1.0 Input Language is oriented towards process engineers.« less

  11. A thermochemical phase space for combustion in engines

    SciTech Connect (OSTI)

    Oppenheim, A.K.; Maxson, J.A.

    1994-12-31

    The phase space introduced in this paper is based on the recognition that the combustion system is nonlinear, and takes advantage, therefore, of the classical concept of nonlinear mechanics: a space whose coordinates are all the dependent variables of the problem. In the case at hand, they consist of all the thermochemical parameters of the system. The dimension of this space is thus equal to the number of degrees of freedom. The authors name it the Le Chatelier Space. Its major asset lies in providing a map for the global effects of the thermochemical processes occurring in the physical space of the combustion chamber, expressed in terms of trajectories or manifolds. Obtained thereby is an analytical insight into the effective mechanism of the combustion system. Application of the method is illustrated by the evaluation of advantages one can accrue on this basis for a premixed charge engine. It is shown, in particular, that if, instead of a throttled homogeneous charge combustion, the exothermic process is executed in a fireball mode of a direct injection stratified charge system, the engine can be rendered the ability for part-load operation at wide-open throttle, with significant gains in fuel economy and concomitant reduction in pollutant emissions. Such a mode of combustion takes place within large-scale vortex structures generated and sustained by pulsed jets.

  12. Advanced Reciprocating Engine System (ARES) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Reciprocating Engine System (ARES) Advanced Reciprocating Engine System (ARES) The ARES program is designed to promote separate, but parallel engine development among the major stationary, gaseous fueled engine manufacturers in the United States. PDF icon Advanced Reciprocating Engine Systems (ARES) Brochure More Documents & Publications Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Cummins, Inc., June 2011 Advanced Natural Gas Reciprocating Engines (ARES) -

  13. Advanced radiant combustion system. Final report, September 1989--September 1996

    SciTech Connect (OSTI)

    Sullivan, J.D.; Carswell, M.G.; Long, F.S.

    1996-09-01

    Results of the Advanced Radiant Combustion System (ARCS) project are presented in this report. This work was performed by Alzeta Corporation as prime contractor under a contract to the U.S. Department of Energy Office of Industrial Technologies as part of a larger DOE program entitled Research Program for Advanced Combustion Systems. The goals of the Alzeta ARCS project were to (a) Improve the high temperature performance characteristics of porous surface ceramic fiber burners, (b) Develop an Advanced Radiant Combustion System (ARCS) that combines combustion controls with an advanced radiant burner, and (c) Demonstrate the advanced burner and controls in an industrial application. Prior to the start of this project, Alzeta had developed and commercialized a porous surface radiant burner, the Pyrocore{trademark} burner. The product had been commercially available for approximately 5 years and had achieved commercial success in a number of applications ranging from small burners for commercial cooking equipment to large burners for low temperature industrial fluid heating applications. The burner was not recommended for use in applications with process temperatures above 1000{degrees}F, which prevented the burner from being used in intermediate to high temperature processes in the chemical and petroleum refining industries. The interest in increasing the maximum use temperature of the burner was motivated in part by a desire to expand the number of applications that could use the Pyrocore product, but also because many of the fluid sensitive heating applications of interest would benefit from the distributed flux characteristic of porous surface burners. Background information on porous surface radiant burners, and a discussion of advantages that would be provided by an improved product, are presented in Section 2.

  14. Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start

    DOE Patents [OSTI]

    Janata, Jiri (Richland, WA); McVay, Gary L. (Richland, WA); Peden, Charles H. (West Richland, WA); Exarhos, Gregory J. (Richland, WA)

    1998-01-01

    A method and apparatus for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO.sub.2 is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine.

  15. FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES

    SciTech Connect (OSTI)

    Don Ferguson; Geo. A. Richard; Doug Straub

    2008-06-13

    In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for todays engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.

  16. Combustion control technologies for direct injection SI engine

    SciTech Connect (OSTI)

    Kume, T.; Iwamoto, Y.; Iida, K.; Murakami, M.; Akishino, K.; Ando, H.

    1996-09-01

    Novel combustion control technologies for the direct injection SI engine have been developed. By adopting upright straight intake ports to generate air tumble, an electromagnetic swirl injector to realize optimized spray dispersion and atomization and a compact piston cavity to maintain charge stratification, it has become possible to achieve super-lean stratified combustion for higher thermal efficiency under partial loads as well as homogeneous combustion to realize higher performance at full loads. At partial loads, fuel is injected into the piston cavity during the later stage of the compression stroke. Any fuel spray impinging on the cavity wall is directed to the spark plug. Tumbling air flow in the cavity also assists the conservation of the rich mixture zone around the spark plug. Stable combustion can be realized under a air fuel ratio exceeding 40. At higher loads, fuel is injected during the early stage of the intake stroke. Since air cooling by the latent heat of vaporization increases volumetric efficiency and reduces the octane number requirement, a high compression ratio of 12 to 1 can be adopted. As a result, engines utilizing these types of control technologies show a 10% increase in improved performance over conventional port injection engines.

  17. Fuel injector nozzle for an internal combustion engine

    DOE Patents [OSTI]

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2008-11-04

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  18. Fuel injector nozzle for an internal combustion engine

    DOE Patents [OSTI]

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2007-11-06

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  19. Fuel injector nozzle for an internal combustion engine

    DOE Patents [OSTI]

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2011-03-22

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  20. Fuel Injector Nozzle For An Internal Combustion Engine

    DOE Patents [OSTI]

    Cavanagh, Mark S.; Urven, Jr.; Roger L.; Lawrence, Keith E.

    2006-04-25

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  1. Simulation of High Efficiency Clean Combustion Engines and Detailed Chemical Kinetic Mechanisms Development

    Broader source: Energy.gov [DOE]

    Discusses continuing work on exploring fuel chemistry, analysis of advanced combustion regimes, and improvements in simulation methodologies

  2. Advanced Diesel Engine and Aftertreatment Technology Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003 DEER Conference Presentation: Detroit Diesel Corporation PDF icon 2003deerbolton1.pdf ...

  3. Pneumatic starter for internal combustion engine

    SciTech Connect (OSTI)

    Kristoff, J.J.; Elwer, M.

    1992-05-12

    This patent describes a starter arrangement for an engine. It comprises a fluid actuated rotary vane motor which is adapted to engage an associated engine, the rotary motor having a hub and at least one blade which is slidably mounted in the hub and is made from a fiber reinforced plastic material to reduce friction, and wherein the at least one blade has a wear surface made of the same material; a housing including a sleeve in which the rotary motor is positioned, (a relay valve means for selectively providing a pressurized operating fluid to the rotary motor,) wherein the blade material and the sleeve inner surface coating cooperate to enable the motor to rotate in the sleeve with a minimum of friction thereby obviating the need for a lubricating system for the starter arrangement.

  4. Combustion Energy Frontier Research Center Post-Doctoral Position in Advanced Combustion Simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EFRC seeks outstanding applicants for the position of post-doctoral research associate to perform research at Cornell University and Sandia National Laboratories on advanced simulations of turbulent combustion. The project involves two simulation methodologies: direct numerical simulation (DNS); and large-eddy simulation (LES) using the filtered density function (FDF) approach. DNS involves minimal modeling, but is restricted (by computational capabilities) to simple geometries and a moderate

  5. Process/Engineering Co-Simulation of Oxy-Combustion and Chemical Looping Combustion

    SciTech Connect (OSTI)

    Sloan, David

    2012-12-31

    Over the past several years, the DOE has sponsored various funded programs, collectively referred to as Advanced Process Engineering Co-Simulator (APECS) programs, which have targeted the development of a steady-state simulator for advanced power plants. The simulator allows the DOE and its contractors to systematically evaluate various power plant concepts, either for preliminary conceptual design or detailed final design. One of the novel and powerful characteristics of the simulator is that it is designed to couple a hierarchy of plant-level and equipment-level models that have varying levels of fidelity and computational speed suitable. For example, the simulator may be used to couple the cycle analysis software Aspen Plus (marketed by Aspen Technology, Inc.) with an equipment item on the process flowsheet modeled with the FLUENT computational fluid dynamics (CFD) code (marketed by ANSYS Inc.). An important enhancement to the APECS toolkit has been the creation of computationally efficient reduced-order models (ROMs) based on information generated from high-fidelity CFD models. The overarching goal of the present DOE program has been to advance and apply APECS to an overlapping advanced carbon capture technology applications area and a dense-phase, chemical looping (CL) applications area. The specific objectives of the project are to (1) develop ROMs for dense-phase computations using the ROM Builder (based on the regression ROM methodology plus principal component analysis (PCA) for contour plots), and (2) demonstrate commercial-scale, oxyfired (OF), circulating fluidized bed (CFB) co-simulations, as well as CL combustion cosimulations, using the ROM and APECS tool kit. The overall intent of the program is to enhance the APECS toolkit so that it is capable of providing dense-phase riser co-simulations using a CAPEOPEN (CO)-compliant ROM, constructed using the ROM Builder, for CL and oxy-fired CFB systems. As the prime contractor, Alstom Power has the responsibility to demonstrate the capabilities of the enhanced APECS tool to simulate commercial-scale OF CFB and CL combustion co-simulations, both of which involve the time-dependent, dense-phase submodels in the FLUENT code. ANSYS Inc., as a subcontractor, bears the responsibility to enhance the APECS tool kit for the dense-phase submodel applications, and to assist in the development of specific User-Defined Functions (UDFs) necessary for the particle-phase reactions. In April of 2012, Alstom was notified that the workscope would be curtailed after the end of the budget period. Alstom and the DOE agreed to a revised workscope. The technical work was originally encompassed by Tasks 3 and 4. Task 3, associated with the OF CFB applications area, was curtailed, and Task 4, associated with the CL applications area, was eliminated. Only a portion of Task 3 has been completed. Consequently, this report constitutes a final report for that body of work that was accomplished through May of 2012, in accordance with the workscope revisions.

  6. Light Duty Efficient Clean Combustion | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Enabling High Efficiency Clean Combustion Advanced Diesel Engine Technology Development for HECC Low-Temperature Combustion Demonstrator for ...

  7. Pneumatic starter for internal combustion engine

    SciTech Connect (OSTI)

    Kristof, J.J.; Elwer, M.

    1989-07-11

    A starter arrangement for an engine is described which consists of: a fluid actuated rotary vane motor which is adapted to engage an associated engine, the rotary motor having a hub and at least one blade which is slidably mounted in the hub and is made from a fiber reinforced plastic material to reduce friction, and wherein at least one blade has a wear surface made of the same material; a housing including a sleeve in which the rotary motor is positioned, the sleeve having on its inner surface a hard metallic coating to reduce friction, wherein the sleeve inner surface coating comprises a chromium electrocuting having a hardness which measures at least 70 on the Rockwell C hardness scale and a microfinish of less than 10 micro-inches R.M.S.; and, a relay valve means for selectively providing a pressurized operating fluid to the rotary motor, wherein the blade material and the sleeve inner surface coating cooperate to enable the motor to rotate in the sleeve with a minimum of friction thereby obviating the need for a lubricating system for the starter arrangement.

  8. Advanced Combustion Systems for Next Generation Gas Turbines

    SciTech Connect (OSTI)

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program. Emissions measurements were obtained over a variety of operating conditions. A kinetics model is formulated to describe the emissions performance. The model is a tool for determining the conditions for low emission performance. The flow field was also modeled using CFD. A first prototype was developed for low emission performance on natural gas. The design utilized the tools anchored to the atmospheric prototype performance. The 1/6 scale combustor was designed for low emission performance in GE's FA+e gas turbine. A second prototype was developed to evaluate changes in the design approach. The prototype was developed at a 1/10 scale for low emission performance in GE's FA+e gas turbine. The performance of the first two prototypes gave a strong indication of the best design approach. Review of the emission results led to the development of a 3rd prototype to further reduce the combustor emissions. The original plan to produce a scaled-up prototype was pushed out beyond the scope of the current program. The 3rd prototype was designed at 1/10 scale and targeted further reductions in the full-speed full-load emissions.

  9. Enhanced Efficiency of Internal Combustion Engines By Employing Spinning Gas

    SciTech Connect (OSTI)

    Geyko, Vasily; Fisch, Nathaniel

    2014-02-27

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A gain in fuel efficiency of several percent is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in the efficiency.

  10. Low-Temperature Gasoline Combustion (LTGC) Engine Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature Gasoline Combustion (LTGC) Engine Research - Previously known as HCCI / SCCI - John E. Dec Jeremie Dernotte and Chunsheng Ji Sandia National Laboratories June 17, 2014 - 12:00 p.m. U.S. DOE, Office of Vehicle Technologies Annual Merit Review and Peer Evaluation Program Managers: Gurpreet Singh & Leo Breton Project ID: ACE004 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Timeline ● Project provides fundamental research

  11. Pulsed jet combustion generator for non-premixed charge engines

    DOE Patents [OSTI]

    Oppenheim, A. K.; Stewart, H. E.

    1990-01-01

    A device for introducing fuel into the head space of cylinder of non-premixed charge (diesel) engines is disclosed, which distributes fuel in atomized form in a plume, whose fluid dynamic properties are such that the compression heated air in the cylinder head space is entrained into the interior of the plume where it is mixed with and ignites the fuel in the plume interior, to thereby control combustion, particularly by use of a multiplicity of individually controllable devices per cylinder.

  12. Partially-Premixed Flames in Internal Combustion Engines

    SciTech Connect (OSTI)

    Robert W. Pitz; Michael C. Drake; Todd D. Fansler; Volker Sick

    2003-11-05

    This was a joint university-industry research program funded by the Partnerships for the Academic-Industrial Research Program (PAIR). The research examined partially premixed flames in laboratory and internal combustion engine environments at Vanderbilt University, University of Michigan, and General Motors Research and Development. At Vanderbilt University, stretched and curved ''tubular'' premixed flames were measured in a unique optically accessible burner with laser-induced spontaneous Raman scattering. Comparisons of optically measured temperature and species concentration profiles to detailed transport, complex chemistry simulations showed good correspondence at low-stretch conditions in the tubular flame. However, there were significant discrepancies at high-stretch conditions near flame extinction. The tubular flame predictions were found to be very sensitive to the specific hydrogen-air chemical kinetic mechanism and four different mechanisms were compared. In addition, the thermo-diffusive properties of the deficient reactant, H2, strongly affected the tubular flame structure. The poor prediction near extinction is most likely due to deficiencies in the chemical kinetic mechanisms near extinction. At the University of Michigan, an optical direct-injected engine was built up for laser-induced fluorescence imaging experiments on mixing and combustion under stratified charge combustion conditions with the assistance of General Motors. Laser attenuation effects were characterized both experimentally and numerically to improve laser imaging during the initial phase of the gasoline-air mixture development. Toluene was added to the isooctane fuel to image the fuel-air equivalence ratio in an optically accessible direct-injected gasoline engine. Temperature effects on the toluene imaging of fuel-air equivalence ratio were characterized. For the first time, oxygen imaging was accomplished in an internal combustion engine by combination of two fluorescence trackers, toluene and 3-pentanone. With this method, oxygen, fuel and equivalence ratio were measured in the cylinder. At General Motors, graduate students from the University of Michigan and Vanderbilt University worked with GM researchers to develop high-speed imaging methods for optically accessible direct-injection engines. Spark-emission spectroscopy was combined with high-speed spectrally-resolved combustion imaging in a direct-injected engine.

  13. High-Load Partially Premixed Combustion in a Heavy-Duty Diesel Engine |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_johansson.pdf More Documents & Publications Experiments and Modeling of Two-Stage Combustion in Low-Emissions Diesel Engines High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control Path to High Efficiency Gasoline Engine

  14. Coal-water slurry fuel internal combustion engine and method for operating same

    DOE Patents [OSTI]

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  15. Dynamic estimator for determining operating conditions in an internal combustion engine

    DOE Patents [OSTI]

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-01-05

    Methods and systems are provided for estimating engine performance information for a combustion cycle of an internal combustion engine. Estimated performance information for a previous combustion cycle is retrieved from memory. The estimated performance information includes an estimated value of at least one engine performance variable. Actuator settings applied to engine actuators are also received. The performance information for the current combustion cycle is then estimated based, at least in part, on the estimated performance information for the previous combustion cycle and the actuator settings applied during the previous combustion cycle. The estimated performance information for the current combustion cycle is then stored to the memory to be used in estimating performance information for a subsequent combustion cycle.

  16. Multiple fuel supply system for an internal combustion engine

    DOE Patents [OSTI]

    Crothers, William T.

    1977-01-01

    A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

  17. Stratified charge combustion system and method for gaseous fuel internal combustion engines

    SciTech Connect (OSTI)

    Rhoades, W.A. Jr.

    1986-03-11

    This patent describes a stratified charge combustion system for use in a gaseous fuel internal combustion engine. This system consists of: (a) a combustion chamber; (b) an ignition; (c) a gaseous fuel injection valve assembly in communication with the combustion chamber and in spaced relationship from the ignition source with a portion of the inside surfaces extending between the fuel injection valve assembly and the ignition source. The fuel valve assembly defines an entry port for the entrance of gaseous fuel, the entry port is recessed outside of a fixed inside surface. (d) means for pressuring the gaseous fuel prior to injection; and (e) a curved transitional surface extending from the entry port toward the portion of the inside surfaces extending between the fuel injection valve assembly and the ignition source. The curved transitional surface curves away from the direction of the entry port. The curved transitional surface has a curvature for the particular direction and configuration of the entry port. The particular configuration of the portion of the inside surfaces extends between the injection valve assembly and the ignition source. The particular arrangment of the fuel injection valve assembly in the combustion chamber, and for the particular pressure of the gaseous fuel is to produce the Coanda Effect in the injected gaseous fuel flow after it passes through the entry port and follows the curved transitional surface under the Coanda Effect. As the curved transitional surface curves away from the direction of the entry port, a flow is produced of the gaseous fuel that clings to and follows the particular configuration of the inside surfaces to the ignition source.

  18. Ceramic Technology for Advanced Heat Engines Project

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  19. Hydrogen-Assisted IC Engine Combustion as a Route to Hydrogen Implementation

    SciTech Connect (OSTI)

    Andre Boehman; Daniel Haworth

    2008-09-30

    The 'Freedom Car' Initiative announced by the Bush Administration has placed a significant emphasis on development of a hydrogen economy in the United States. While the hydrogen-fueled fuel-cell vehicle that is the focus of the 'Freedom Car' program would rely on electrochemical energy conversion, and despite the large amount of resources being devoted to its objectives, near-term implementation of hydrogen in the transportation sector is not likely to arise from fuel cell cars. Instead, fuel blending and ''hydrogen-assisted'' combustion are more realizable pathways for wide-scale hydrogen utilization within the next ten years. Thus, a large potential avenue for utilization of hydrogen in transportation applications is through blending with natural gas, since there is an existing market for natural-gas vehicles of various classes, and since hydrogen can provide a means of achieving even stricter emissions standards. Another potential avenue is through use of hydrogen to 'assist' diesel combustion to permit alternate combustion strategies that can achieve lower emissions and higher efficiency. This project focused on developing the underlying fundamental information to support technologies that will facilitate the introduction of coal-derived hydrogen into the market. Two paths were envisioned for hydrogen utilization in transportation applications. One is for hydrogen to be mixed with other fuels, specifically natural gas, to enhance performance in existing natural gas-fueled vehicles (e.g., transit buses) and provide a practical and marketable avenue to begin using hydrogen in the field. A second is to use hydrogen to enable alternative combustion modes in existing diesel engines, such as homogeneous charge compression ignition, to permit enhanced efficiency and reduced emissions. Thus, this project on hydrogen-assisted combustion encompassed two major objectives: (1) Optimization of hydrogen-natural gas mixture composition and utilization through laboratory studies of spark-ignition engine operation on H{sub 2}-NG and numerical simulation of the impact of hydrogen blending on the physical and chemical processes within the engine; and (2) Examination of hydrogen-assisted combustion in advanced compression-ignition engine processes. To that end, numerical capabilities were applied to the study of hydrogen assisted combustion and experimental facilities were developed to achieve the project objectives.

  20. Vehicle Technologies Office: 2013 Advanced Combustion R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 3 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Combustion R&D Annual Progress Report This report describes the progress made on the research and development projects funded by the Advanced Combustion subprogram in the Vehicle Technologies Office. Past year's reports are listed on the Annual Progress Reports page. PDF icon fy13advancedcombustionprogressreport.pdf More Documents & Publications Vehicle

  1. Advanced High Efficiency Clean Diesel Combustion with Low Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean, in-cylinder combustion can be enabled by a micro-variable circular orifice, dual mode PCCI, dew film combustion, and a novel combustion chamber design PDF icon ...

  2. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photo), are now studying can withstand temperatures that would melt current state-of-the-art engine material, alloy-based nickel. The heat-resistant properties of advanced ceramics...

  3. Characterization of Single-Cylinder Small-Bore 4-Stroke CIDI Engine Combustion

    SciTech Connect (OSTI)

    Henein, N A

    2005-11-30

    Direct injection diesel engines power most of the heavy-duty vehicles. Due to their superior fuel economy, high power density and low carbon dioxide emissions, turbocharged, small bore, high speed, direct injection diesel engines are being considered to power light duty vehicles. Such vehicles have to meet stringent emission standards. However, it is difficult to meet these standards by modifying the in-cylinder thermodynamic and combustion processes to reduce engine-out emissions. After-treatment devices will be needed to achieve even lower emission targets required in the production engines to account for the anticipated deterioration after long periods of operation in the field. To reduce the size, mass and cost of the after-treatment devices, there is a need to reduce engine-out emissions and optimize both the engine and the aftertreatment devices as one integrated system. For example, the trade-off between engine-out NOx and PM, suggests that one of these species can be minimized in the engine, with a penalty in the other, which can be addressed efficiently in the after-treatment devices. Controlling engine-out emissions can be achieved by optimizing many engine design and operating parameters. The design parameters include, but are not limited to, the type of injection system: (CRS) Common Rail System, (HEUI ) Hydraulically Actuated and Electronically controlled Unit Injector, or (EUI) Electronic Unit Injector; engine compression ratio, combustion chamber design (bowl design), reentrance geometry, squish area and intake and exhaust ports design. With four-valve engines, the swirl ratio depends on the design of both the tangential and helical ports and their relative locations. For any specific engine design, the operating variables need also to be optimized. These include injection pressure, injection rate, injection duration and timing (pilot, main, and post injection), EGR ratio, and swirl ratio. The goal of the program is to gain a better understanding of the spray behavior under high injection pressures in small-bore, high compression ratio, high-speed, direct-injection diesel engines equipped with advanced fuel injection system. The final results demonstrate the capability of the engine in reducing the engine-out emissions and improve the trade-off between nitrogen oxides (NOx), particulate matter, other emissions and fuel economy. This report introduces a new phenomenological model for the fuel distribution and combustion, and emissions formation in the small bore, high speed, direct injection diesel engine. This will be followed by an analysis of the effect of each of injection pressure, EGR, injection advance and retard and swirl ratio on engine-out emissions and fuel economy. A discussion will be given on the 2-D and 3-D trade of maps. Finally a discussion will be made on the low temperature combustion regimes, its major problems and proposed solutions.

  4. Rotational position detecting device for internal combustion engine

    SciTech Connect (OSTI)

    Ushida, M.; Nakamura, Y.; Abe, K.

    1986-11-04

    This patent describes a device for detecting the rotational position of an internal combustion engine of the type that has a cam shaft extending outwardly from the engine through a wall of the engine block and a rotary member fixed to the cam shaft and driven therewith by a crankshaft of the engine. The device comprises: reference position information means and angular position information means both fixed to the end face of the driven rotary member remote from the wall of the engine block. In this way, the reference position and angular position information means are both moved among circular paths when the rotary member is rotated. The reference position and angular position information means are disposed at different radial distances from the axis of the driven rotary member; a reference position sensor and an angular position sensor respectively disposed to face the circular paths of the reference position and angular position information means; a housing fixed to the engine block to cover the driven rotary member and support the sensors; the housing having an end wall formed therein with an opening coaxial with the cam shaft; the cam shaft having an outer end portion extending outwardly beyond the driven rotary member into and through the opening; and a bearing mounted in the opening to rotatably receive the outer end portion of the cam shaft and position the housing with respect to the cam shaft.

  5. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C.

  6. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C.

  7. DESIGNATION SURVEY ADDENDUM REPORT II COMBUSTION ENGINEERING SITE

    Office of Legacy Management (LM)

    ,111 DESIGNATION SURVEY ADDENDUM REPORT II COMBUSTION ENGINEERING SITE *I W INDSOR, CONNECTICUT 111 E. W . ABELQUIST Prepared for the Office of Environmental Restoration U.S. Department of Energy I- II I- .:jj;jiE// .:::=::::: .ipij!li' ,:::i::.:. ..::I::::/. ,:ii~iiiiai, ..' iiiiiiiiii!!liiii~~~~,~:~:. ~i!i.~iii~' :' -' +g?' gg;; ,- ZY :i/ .:;i" .:!! .:::a .(/i?j i:/i;jl? I!kr ' -:~i~jg~;...,.;, ..,::&Si! :(j)//ji//(!: 3.. :jijiiiiiiqi:wi l~,. ,,v..::;:~/j~B/; g#;$ .;::::::::::!

  8. Spherical rotary valve assembly for an internal combustion engine

    SciTech Connect (OSTI)

    Coates, G.J.

    1991-02-05

    This patent describes an improved rotary intake valve for use in a rotary valved internal combustion engine. It comprises: a drum body of spherical section formed by two parallel planar side walls of a sphere disposed about a center thereof thereby defining a spherically-shaped end wall and formed with a shaft receiving aperture, the drum body formed with a circularly-shaped cavity in a side wall thereof and with a channel extending between the circularly-shaped cavity and an aperture formed in the spherically-shaped end wall.

  9. Tailored Materials for Advanced CIDI Engines | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced CIDI Engines Tailored Materials for Advanced CIDI Engines 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer ...

  10. Injection System and Engine Strategies for Advanced Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection System and Engine Strategies for Advanced Emission Standards Injection System and Engine Strategies for Advanced Emission Standards Presentation given at DEER 2006, ...

  11. Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start

    DOE Patents [OSTI]

    Janata, J.; McVay, G.L.; Peden, C.H.; Exarhos, G.J.

    1998-07-14

    A method and apparatus are disclosed for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO{sub 2} is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine. 4 figs.

  12. Catalytic combustion in internal combustion engines: A possible explanation for the Woschni effect in thermally-insulated diesel engines. Interim report

    SciTech Connect (OSTI)

    Jones, R.L.

    1996-11-15

    This report describes research undertaken to determine if catalytic combustion effects occur with the use of zirconia (ZrO{sub 2}) thermal barrier coatings (TBCs), or other coatings, in diesel engines, and if so, whether these effects have significant impact upon engine combustion, fuel economy, or pollutant emissions. A simple furnace system was used to identify catalytic combustion effects in the ignition and combustion of propane/air mixtures over catalyst-doped m-ZrO{sub 2} spheres. Three classes of catalysts were examined: zirconia-stabilizing oxides (CeO{sub 2}, Y{sub 2}O{sub 3}, MgO), transition metal oxides (Co{sub 3}O{sub 4}, Cr{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}), and noble metals (Pt). Each class exhibited characteristic combustion effects, with the ignition temperature increasing, e.g., from approximately 2000 deg C for Pt to 5500 deg C for the stabilizing oxides. The results suggest that the Woschni effect, a controversial phenomenon wherein thermal-insulating measures are postulated to actually increase heat transfer from the diesel combustion chamber, may be only a manifestation of catalytic combustion. Previous research on catalytic combustion in internal combustion engines is briefly reviewed and discussed. An earlier version of this report is to be published in J. Surface and Coatings Technology as `Catalytic Combustion Effects on m-ZrO{sub 2} Doped with Various Metal Nitrates.`

  13. Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced

    Broader source: Energy.gov (indexed) [DOE]

    Emissions and Improved Fuel Efficiency | Department of Energy An advanced engine design that is 15 percent more efficient than diesel, pollution free, and uses any fuel. PDF icon deer08_zajac.pdf More Documents & Publications Impact of Biodiesel Metals on the Performance and Durability of DOC and DPF Technologies High Thermal Efficiency and Low Emissions with Supercritical Gasoline Injection-Ignition in a Light Duty Engine Evaluation of Variable Compression Ratio on Energy Efficiency

  14. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    SciTech Connect (OSTI)

    Yang, Li-Ping Ding, Shun-Liang; Song, En-Zhe; Ma, Xiu-Zhen; Litak, Grzegorz

    2015-01-15

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  15. The history and evolution of optically accessible research engines and their impact on our understanding of engine combustion

    SciTech Connect (OSTI)

    Miles, Paul C.

    2015-03-01

    The development and application of optically accessible engines to further our understanding of in-cylinder combustion processes is reviewed, spanning early efforts in simplified engines to the more recent development of high-pressure, high-speed engines that retain the geometric complexities of modern production engines. Limitations of these engines with respect to the reproduction of realistic metal test engine characteristics and performance are identified, as well as methods that have been used to overcome these limitations. Finally, the role of the work performed in these engines on clarifying the fundamental physical processes governing the combustion process and on laying the foundation for predictive engine simulation is summarized.

  16. Exhaust gas recirculation system for an internal combustion engine

    DOE Patents [OSTI]

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  17. Internal combustion engine for natural gas compressor operation

    DOE Patents [OSTI]

    Hagen, Christopher L.; Babbitt, Guy; Turner, Christopher; Echter, Nick; Weyer-Geigel, Kristina

    2016-04-19

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a system for compressing a gas comprises a reciprocating internal combustion engine including at least one piston-cylinder assembly comprising a piston configured to travel in a cylinder and to compress gas in the cylinder in multiple compression stages. The system can further comprise a first pressure tank in fluid communication with the piston-cylinder assembly to receive compressed gas from the piston-cylinder assembly until the first pressure tank reaches a predetermined pressure, and a second pressure tank in fluid communication with the piston-cylinder assembly and the first pressure tank. The second pressure tank can be configured to receive compressed gas from the piston-cylinder assembly until the second pressure tank reaches a predetermined pressure. When the first and second pressure tanks have reached the predetermined pressures, the first pressure tank can be configured to supply gas to the piston-cylinder assembly, and the piston can be configured to compress the gas supplied by the first pressure tank such that the compressed gas flows into the second pressure tank.

  18. Oxy-Combustion Environment Characterization: Fire- and Steam-Side Corrosion in Advanced Combustion

    SciTech Connect (OSTI)

    G. R. Holcomb; J. Tylczak; G. H. Meier; B. S. Lutz; N. M. Yanar; F. S. Pettit; J. Zhu; A. Wise; D. E. Laughlin; S. Sridhar

    2012-09-25

    Oxy-fuel combustion is burning a fuel in oxygen rather than air. The low nitrogen flue gas that results is relatively easy to capture CO{sub 2} from for reuse or sequestration. Corrosion issues associated with the environment change (replacement of much of the N{sub 2} with CO{sub 2} and higher sulfur levels) from air- to oxy-firing were examined. Alloys studied included model Fe-Cr alloys and commercial ferritic steels, austenitic steels, and nickel base superalloys. The corrosion behavior is described in terms of corrosion rates, scale morphologies, and scale/ash interactions for the different environmental conditions. Additionally, the progress towards laboratory oxidation tests in advanced ultra-supercritical steam is updated.

  19. Gasoline-like fuel effects on advanced combustion regimes | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ft008_szybist_2011_o.pdf More Documents & Publications Non-Petroleum-Based Fuel Effects on Advanced Combustion Gasoline-Like Fuel Effects on Advanced Combustion Regimes

  20. Towards a detailed soot model for internal combustion engines

    SciTech Connect (OSTI)

    Mosbach, Sebastian; Celnik, Matthew S.; Raj, Abhijeet; Kraft, Markus; Zhang, Hongzhi R.; Kubo, Shuichi; Kim, Kyoung-Oh

    2009-06-15

    In this work, we present a detailed model for the formation of soot in internal combustion engines describing not only bulk quantities such as soot mass, number density, volume fraction, and surface area but also the morphology and chemical composition of soot aggregates. The new model is based on the Stochastic Reactor Model (SRM) engine code, which uses detailed chemistry and takes into account convective heat transfer and turbulent mixing, and the soot formation is accounted for by SWEEP, a population balance solver based on a Monte Carlo method. In order to couple the gas-phase to the particulate phase, a detailed chemical kinetic mechanism describing the combustion of Primary Reference Fuels (PRFs) is extended to include small Polycyclic Aromatic Hydrocarbons (PAHs) such as pyrene, which function as soot precursor species for particle inception in the soot model. Apart from providing averaged quantities as functions of crank angle like soot mass, volume fraction, aggregate diameter, and the number of primary particles per aggregate for example, the integrated model also gives detailed information such as aggregate and primary particle size distribution functions. In addition, specifics about aggregate structure and composition, including C/H ratio and PAH ring count distributions, and images similar to those produced with Transmission Electron Microscopes (TEMs), can be obtained. The new model is applied to simulate an n-heptane fuelled Homogeneous Charge Compression Ignition (HCCI) engine which is operated at an equivalence ratio of 1.93. In-cylinder pressure and heat release predictions show satisfactory agreement with measurements. Furthermore, simulated aggregate size distributions as well as their time evolution are found to qualitatively agree with those obtained experimentally through snatch sampling. It is also observed both in the experiment as well as in the simulation that aggregates in the trapped residual gases play a vital role in the soot formation process. (author)

  1. Optical-Engine and Surrogate-Fuels Research for an Improved Understand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Understanding of Fuel Effects on Advanced-Combustion Strategies Optical-Engine and Surrogate-Fuels Research for an Improved Understanding of Fuel Effects on Advanced-Combustion ...

  2. Turbocharged two-stroke internal combustion engine with four-stroke capability

    SciTech Connect (OSTI)

    Burrahm, R.W.

    1990-03-13

    This patent describes, in a turbocharged two-stroke internal combustion engine without crankcase scavenging and having means for operating the exhaust valves in accordance with either two-stroke or four-stroke operation, a means for enabling the intake of combustible gas into cylinders of the engine during four-stroke operation through a port in each cylinder from a combustible gas source. It comprises: a valve mounted on each port responsive to pressure within the cylinder.

  3. Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines

    SciTech Connect (OSTI)

    Srinivasan, K. K.; Krishnan, S. R.

    2012-05-09

    Dual fuel pilot ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed low temperature combustion (LTC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90%t relative to straight diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel LTC is achieved by injection of a small amount of diesel fuel (2-3 percent on an energy basis) to ignite a premixed natural gas–air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed “relative combustion phasing”). For conventional dual fueling, as % NG increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel LTC, as diesel injection timing is advanced from 20° to 60°BTDC, the relative combustion phasing is identified as an important combustion parameter along with SoC, Pmax, and CaPmax. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high %NG and advanced injection timings. Finally, heat release return maps were analyzed to demonstrate thermal management strategies as an effective tool to mitigate cyclic combustion variations, especially in dual fuel LTC.

  4. Axially staged combustion system for a gas turbine engine

    DOE Patents [OSTI]

    Bland, Robert J.

    2009-12-15

    An axially staged combustion system is provided for a gas turbine engine comprising a main body structure having a plurality of first and second injectors. First structure provides fuel to at least one of the first injectors. The fuel provided to the one first injector is adapted to mix with air and ignite to produce a flame such that the flame associated with the one first injector defines a flame front having an average length when measured from a reference surface of the main body structure. Each of the second injectors comprising a section extending from the reference surface of the main body structure through the flame front and having a length greater than the average length of the flame front. Second structure provides fuel to at least one of the second injectors. The fuel passes through the one second injector and exits the one second injector at a location axially spaced from the flame front.

  5. Pressure non-uniformity and mixing characteristics in stratified-charge rotary engine combustion

    SciTech Connect (OSTI)

    Abraham, J.; Wey, M.J.; Bracco, F.V.

    1988-01-01

    Stratified-charge combustion in rotary engines was studied using a three-dimensional model to compute intake, compression, liquid fuel injection, combustion, expansion, and exhaust. The model was applied to two engines of different displacement and at seven operating conditions. Good agreement is found between the measured pressure and the results of previous studies. The main feature of the combustion flowfield in the two engines, the slow and nonuniform mixing of fuel and air which leads to long and incomplete combustion, is attributed at least in part to low turbulent diffusivity within the rotor pocket. The TDC diffusivity in this type of rotary engine is shown to be lower than in corresponding reciprocating engines primarily because of the longer time between intake and TDC. The model also explains pressure nonuniformities that have been experimentally observed within the combustion chamber around TDC. The nonuniformity is due to the large fluid acceleration caused by the motion of the rotor. 34 references.

  6. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    DOE Patents [OSTI]

    Besmann, Theodore M

    2014-01-21

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  7. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    DOE Patents [OSTI]

    Besmann, Theodore M

    2015-01-06

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  8. Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion (HECC) in a Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Cho, Kukwon; Han, Manbae; Wagner, Robert M; Sluder, Scott

    2009-01-01

    An experimental study was performed to understand fuel property effects on low temperature combustion (LTC) processes in a light-duty diesel engine. These types of combustion modes are often collectively referred to as high efficiency clean combustion (HECC). A statistically designed set of research fuels, the Fuels for Advanced Combustion Engines (FACE), were used for this study. Engine conditions consistent with low speed cruise (1500 rpm, 2.6 bar BMEP) were chosen for investigating fuel property effects on HECC operation in a GM 1.9-L common rail diesel engine. The FACE fuel matrix includes nine combinations of fuel properties including cetane number (30 to 55), aromatic contents (20 to 45 %), and 90 % distillation temperature (270 to 340 C). HECC operation was achieved with high levels of EGR and adjusting injection parameters, e.g. higher fuel rail pressure and single injection event, which is also known as Premixed Charge Compression Ignition (PCCI) combustion. Engine performance, pollutant emissions, and details of the combustion process are discussed in this paper. Cetane number was found to significantly affect the combustion process with variations in the start of injection (SOI) timing, which revealed that the ranges of SOI timing for HECC operation and the PM emission levels were distinctively different between high cetane number (55) and low cetane number fuels (30). Low cetane number fuels showed comparable levels of regulated gas emissions with high cetane number fuels and had an advantage in PM emissions.

  9. Emission control system and method for internal combustion engine

    SciTech Connect (OSTI)

    Owens, L.

    1980-06-03

    Fresh air is introduced into the exhaust pipe leading to the muffler for an internal combustion engine, while the air and exhaust gas mixture is cooled, not only in the muffler but also in a circuitous tube which extends from the muffler to the normal discharge or tail pipe and in which a special cooler may be installed. From the outlet of the special cooling tube, which faces forwardly, a portion of the air and exhaust gas mixture, now cooled, is led from a Y-connection to the intake tube of the air filter, so that the air and exhaust gas mixture will be introduced into the intake system prior to the carburetor. A rearwardly slanting arm of the Y-connection connects the front end of the special cooling pipe with the normal tail pipe. The carburetor has one or more air bleed tubes leading into the mixture passage at or below the butterfly valves, so that at idling speeds, a small amount of fresh air is introduced, irrespective of the position of the butterfly valves, to overcome any tendency for the engine, when idling, to cough or sputter due to the introduction of an air and exhaust gas mixture to the air filter intake.

  10. Ceramic technology for Advanced Heat Engines Project

    SciTech Connect (OSTI)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  11. Pilot fuel ignited stratified charge rotary combustion engine and fuel injector therefor

    SciTech Connect (OSTI)

    Loyd, R. W.

    1980-02-12

    For a pilot fuel ignited stratified charge rotary, internal combustion engine, the fuel injection system and a fuel injector therefor comprises a fuel injector having plural discharge ports with at least one of the discharge ports located to emit a ''pilot'' fuel charge (relatively rich fuel-air mixture) into a passage in the engine housing, which passage communicates with the engine combustion chambers. An ignition element is located in the passage to ignite the ''pilot'' fuel (a relatively rich fuel-air mixture) flowing through the passage. At least one other discharge port of the fuel injector is in substantially direct communication with the combustion chambers of the engine to emit a main fuel charge into the latter. The ignited ''pilot'' fuelair mixture, when ignited, flashes into the combustion chambers to ignite the main, relatively lean, fuel-air mixture which is in the combustion chambers.

  12. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Stanton, Donald W.

    2011-06-03

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of our objectives were met with fuel efficiency improvement targets exceeded.

  13. Traveling-Wave Thermoacoustic Engines With Internal Combustion

    DOE Patents [OSTI]

    Weiland, Nathan Thomas; Zinn, Ben T.; Swift, Gregory William

    2004-05-11

    Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.

  14. High Efficiency Clean Combustion for Heavy-Duty Engine

    Broader source: Energy.gov [DOE]

    Innovative dual mode combustion strategy enabled by variable fuel injection offers emission reduction and efficiency improvement advantages.

  15. Oxygen-Enriched Combustion for Military Diesel Engine Generators

    Broader source: Energy.gov [DOE]

    Substantial increases in brake power and considerably lower peak pressure can result from oxygen-enriched diesel combustion

  16. Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine

    Office of Scientific and Technical Information (OSTI)

    Equipped with Variable Valve Timing (Conference) | SciTech Connect Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine Equipped with Variable Valve Timing Citation Details In-Document Search Title: Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine Equipped with Variable Valve Timing Widespread implementation of homogeneous charge compression ignition (HCCI) engines is presently hindered by stability, control, and load range issues. Although the operable

  17. Simultaneous dual mode combustion engine operating on spark ignition and homogenous charge compression ignition

    DOE Patents [OSTI]

    Fiveland, Scott B.; Wiggers, Timothy E.

    2004-06-22

    An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.

  18. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Six different fuels were investigated to study the influence of fuel properties on engine out emissions and performance of low temperature premixed compression ignition combustion light-duty HSDI engines PDF icon deer10_tatur.pdf More Documents & Publications An Experimental Investigation of Low Octane Gasoline in Diesel Engines Use of Low Cetane Fuel to Enable Low Temperature Combustion Vehicle Technologies Office Merit Review 2015: Use of Low Cetane Fuel to Enable

  19. FE's Advanced Combustion R&D Seeks Innovative Ways to Lower Cost of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capturing Carbon Emissions from Coal Fired Power Plants | Department of Energy Advanced Combustion R&D Seeks Innovative Ways to Lower Cost of Capturing Carbon Emissions from Coal Fired Power Plants FE's Advanced Combustion R&D Seeks Innovative Ways to Lower Cost of Capturing Carbon Emissions from Coal Fired Power Plants March 27, 2014 - 10:37am Addthis Learn more about the FE Advanced Combustion R&D. You've probably heard about carbon capture and storage (CCS), a suite of

  20. Advanced LD Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LD Engine Systems and Emissions Control Modeling and Analysis Advanced LD Engine Systems and Emissions Control Modeling and Analysis 2012 DOE Hydrogen and Fuel Cells Program and ...

  1. Advanced PHEV Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Engine Systems and Emissions Control Modeling and Analysis Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis 2011 DOE Hydrogen and Fuel Cells Program, ...

  2. APS Engineering Support Division (AES) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Engineering Support Division (AES) The APS Engineering Support Division provides reliable operations and technical support to the Advanced Photon Source user community. AES...

  3. Advances in Diesel Engine Technologies for European Passenger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation: Volkswagen AG ...

  4. Advanced Reciprocating Engine Systems (ARES) R&D - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reciprocating Engine Systems (ARES) R&D - Presentation by Argonne National Laboratory, June 2011 Advanced Reciprocating Engine Systems (ARES) R&D - Presentation by Argonne National ...

  5. Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios

    DOE Patents [OSTI]

    Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

    2006-01-03

    A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

  6. FE's Advanced Combustion R&D Seeks Innovative Ways to Lower Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Coal Fired Power Plants FE's Advanced Combustion R&D Seeks Innovative Ways to Lower Cost of Capturing Carbon Emissions from Coal Fired Power Plants March 27, 2014 - 10:37am ...

  7. Advanced Tissue-engineered Human Ectypal Networks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Tissue-engineered Human Ectypal Networks Analyzer (ATHENA) March 30, 2016 Request for Information Los Alamos National Security, LLC (LANS) is the manager and operator of Los Alamos National Laboratory (Los Alamos) for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52-06NA25396. Los Alamos is a mission- centric Federally Funded Research and Development Center focused on solving critical national security challenges through science and

  8. Simulation of High Efficiency Clean Combustion Engines and Detailed...

    Broader source: Energy.gov (indexed) [DOE]

    ongoing work exploring fuel chemistry, analysis of and improving simulation methodologies for high efficiency clean combustion regimes, and computational performance PDF icon ...

  9. Multicylinder Diesel Engine for Low Temperature Combustion Operation

    Broader source: Energy.gov [DOE]

    Fuel injection strategies to extend low temperature combustion temperatures to yield low NOx at higher loads and better efficiency over the speed-load range

  10. The history and evolution of optically accessible research engines and their impact on our understanding of engine combustion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miles, Paul C.

    2015-03-01

    The development and application of optically accessible engines to further our understanding of in-cylinder combustion processes is reviewed, spanning early efforts in simplified engines to the more recent development of high-pressure, high-speed engines that retain the geometric complexities of modern production engines. Limitations of these engines with respect to the reproduction of realistic metal test engine characteristics and performance are identified, as well as methods that have been used to overcome these limitations. Finally, the role of the work performed in these engines on clarifying the fundamental physical processes governing the combustion process and on laying the foundation for predictivemore »engine simulation is summarized.« less

  11. Private Company Uses EERE-Supported Chemistry Model to Substantially Improve Combustion Engine Simulation Software

    Broader source: Energy.gov [DOE]

    Convergent Science, Inc. (CSI) is using Lawrence Livermore National Laboratorys Multi-Zone Combustion Model (MCM) to help automotive engineers develop the next generation of high-efficiency, low-emission vehicles.

  12. Engine combustion optimization by exhaust analysis. Final report, December 1986-July 1988

    SciTech Connect (OSTI)

    Jahn, R.K.; Lee, D.J.; Cremean, S.P.; Bayless, R.A.

    1989-01-01

    This report documents the application of an air/fuel ratio analyzer and trim control system to a two-cycle turbocharged compressor engine. The trim control strategy is based upon both oxygen and combustibles in the exhaust gases.

  13. Advanced Combustion Systems Project Information | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Oxy-combustion Agreement Number Project Title Performer FE0009448 Oxy-Fired Pressurized Fluidized Bed Combustor Development and Scale-up for New and Retrofit Coal-fired Power Plants Aerojet Rocketdyne FE0009702 Staged, High-Pressure Oxy-combustion Technology: Development and Scale-up Washington University in St. Louis FE0025160 Enabling Technologies for Oxy-Fired Pressurized Fluidized Bed Combustor Development Aerojet Rocketdyne FE0025168 Characterizing Impacts of High Temperatures

  14. Low-Temperature Gasoline Combustion (LTGC) Engine Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Sandia LTGC Engine Laboratory All-Metal Engine Optical Engine Optics Table Dynamometer Intake Plenum Exhaust Plenum Water & Oil Pumps & Heaters Flame Arrestor Matching ...

  15. Advanced Natural Gas Reciprocating Engines (ARES)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    detailed combustion feedback for control Difficulty - durability at acceptable cost Laser Ignition Problem - provide energetic, robust, long-life ignition ...

  16. 3-D Combustion Simulation Strategy Status, Future Potential, and

    Broader source: Energy.gov (indexed) [DOE]

    Application Issues | Department of Energy 04 Diesel Engine Emissions Reduction (DEER) Conference Presentation: DaimlerChrylser PDF icon 2004_deer_steiner.pdf More Documents & Publications Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications High Efficiency GDI Engine Research, with Emphasis on Ignition Systems

  17. Department of Energy Awards More Than $175 Million for Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... supports research in electric drive vehicle systems, advanced combustion engines, materials technologies, fuels and lubricants, energy storage, and automotive electronics. ...

  18. Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine

    Broader source: Energy.gov [DOE]

    This study measured the effects of hydrogen substitution on engine performance and reducing NOx emissions in a diesel engine

  19. Compression ignition engine having fuel system for non-sooting combustion and method

    DOE Patents [OSTI]

    Bazyn, Timothy; Gehrke, Christopher

    2014-10-28

    A direct injection compression ignition internal combustion engine includes a fuel system having a nozzle extending into a cylinder of the engine and a plurality of spray orifices formed in the nozzle. Each of the spray orifices has an inner diameter dimension of about 0.09 mm or less, and define inter-orifice angles between adjacent spray orifice center axes of about 36.degree. or greater such that spray plumes of injected fuel from each of the spray orifices combust within the cylinder according to a non-sooting lifted flame and gas entrainment combustion pattern. Related methodology is also disclosed.

  20. Application of advanced hydrocarbon characterization and its consequences

    Broader source: Energy.gov (indexed) [DOE]

    on future fuel properties and advanced combustion research | Department of Energy Research on future fuels chemistry and effects on combustion in advanced internal combustion engines PDF icon p-14_gieleciak.pdf More Documents & Publications Effect of the Composition of Hydrocarbon Streams on HCCI Performance Fuels for Advanced Combustion Engines Vehicle Technologies Office Merit Review 2014: Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion

  1. Method for operating a spark-ignition, direct-injection internal combustion engine

    DOE Patents [OSTI]

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  2. HCCI and Stratified-Charge CI Engine Combustion Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... CNL, DI-60 CNL, PFS CNL, PM RI, DI-60 RI, PFS RI, PM CA50 Sweeps at Constant Fueling P in 2.4 bar, PM, std. PFS, & Early -DI Adapted Matlab code for combustion noise level ...

  3. Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load

    SciTech Connect (OSTI)

    Szybist, James P; Szymkowicz, Patrick G.; Northrop, William F

    2012-01-01

    It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that although higher CN does not significantly alter ignition delay at moderate to high loads it has a dominant influence on the acceptable injection timing range. Apart from CN effects, fuel oxygen content plays an independent role in reducing some emissions. It is therefore recommended that compensation for fuel ignitability and oxygen content be included in combustion control strategies to optimize emissions and performance of future diesel engines.

  4. Multi-zone modelling of partially premixed low-temperature combustion in pilot-ignited natural-gas engines

    SciTech Connect (OSTI)

    Krishnan, S. R.; Srinivasan, K. K.

    2010-06-29

    Detailed results from a multi-zone phenomenological simulation of partially premixed advanced-injection low-pilot-ignited natural-gas low-temperature combustion are presented with a focus on early injection timings (the beginning of (pilot) injection (BOI)) and very small diesel quantities (2-3 per cent of total fuel energy). Combining several aspects of diesel and spark ignition engine combustion models, the closed-cycle simulation accounted for diesel autoignition, diesel spray combustion, and natural-gas combustion by premixed turbulent flame propagation. The cylinder contents were divided into an unburned zone, several pilot fuel zones (or 'packets') that modelled diesel evaporation and ignition, a flame zone for natural-gas combustion, and a burned zone. The simulation predicted the onset of ignition, cylinder pressures, and heat release rate profiles satisfactorily over a wide range of BOIs (20-60° before top dead centre (before TDC)) but especially well at early BOIs. Strong coupling was observed between pilot spray combustion in the packets and premixed turbulent combustion in the flame zone and, therefore, the number of ignition centres (packets) profoundly affected flame combustion. The highest local peak temperatures (greater than 2000 K) were observed in the packets, while the flame zone was much cooler (about 1650 K), indicating that pilot diesel spray combustion is probably the dominant source of engine-out emissions of nitrogen oxide (NO x). Further, the 60° before TDC BOI yielded the lowest average peak packet temperatures (about 1720 K) compared with the 20° before TDC BOI (about 2480 K) and 40° before TDC BOI (about 2700 K). These trends support experimental NO x trends, which showed the lowest NO x emissions for the 60°, 20°, and 40° before TDC BOIs in that order. Parametric studies showed that increasing the intake charge temperature, pilot quantity, and natural-gas equivalence ratio all led to higher peak heat release rates and hotter packets but the pilot quantity and intake temperature affected the potential for NO x formation to a greater extent.

  5. Internal combustion engines: Computer applications. (Latest citations from the EI Compendex plus database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The bibliography contains citations concerning the application of computers and computerized simulations in the design, analysis, operation, and evaluation of various types of internal combustion engines and associated components and apparatus. Special attention is given to engine control and performance. (Contains a minimum of 67 citations and includes a subject term index and title list.)

  6. Side branch absorber for exhaust manifold of two-stroke internal combustion engine

    DOE Patents [OSTI]

    Harris, Ralph E.; Broerman, III, Eugene L.; Bourn, Gary D.

    2011-01-11

    A method of improving scavenging operation of a two-stroke internal combustion engine. The exhaust pressure of the engine is analyzed to determine if there is a pulsation frequency. Acoustic modeling is used to design an absorber. An appropriately designed side branch absorber may be attached to the exhaust manifold.

  7. Influence of diesel engine combustion on the rupture strength of partially stabilized zirconia

    SciTech Connect (OSTI)

    Brinkman, C.R.; VonCook, K.; Foster, B.E.; Graves, R.L.; Kahl, W.K.; Liu, K.C.; Simpson, W.A. )

    1989-08-01

    This article is on a study conducted to determine whether long-term exposure of two types of partially stabilized zirconia (PSZ) to the combustion environment of diesel engines would generate a change in mechanical properties. The author explains why PSZ was chosen for the study and goes on to discuss some reservations about the use of PSZ in diesel engines.

  8. Experimental and theoretical evaluation of a toroidal combustion chamber for stratified-charge engines

    SciTech Connect (OSTI)

    Quiros, E.N.; Adams, J.W.; Otis, D.R.; Myers, P.S.

    1990-03-02

    Maximum efficiency of cyclic combustion engines (CCE) is achieved when using stratified charge and high compression ratio with controlled air circulation and combustion. A description is given of a varying-area, toroidal-shaped combustion chamber designed to achieve the above objectives by: obtaining initial circulatory air motion induced by the piston late in the compression stroke; increasing this piston-induced velocity using the momentum of fuel injected tangentially to the center line of the toroid; and by using combustion to further increase the circulation rate. Four combustion chamber configurations were studied in a bomb with zero initial air velocity to ascertain whether significant rotation could be achieved by injection and combustion. Gas pressure was measured and high speed photographs were taken of the injection and combustion process. The ideal situation, at full load, is to have one rotation of the gas during the time allocated to combustion. The experimental results, with zero initial velocity, show that fuel momentum plus combustion produces from one-half to three-quarters of a rotation in the available time. Modeling suggests that the use of initial, piston-induced velocities would result in the desired one rotation in the available time.

  9. Vehicle Technologies Office: Materials for High-Efficiency Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy High-Efficiency Combustion Engines Vehicle Technologies Office: Materials for High-Efficiency Combustion Engines The Vehicle Technologies Office (VTO) is supporting work to improve the efficiency of advanced internal combustion engines for automotive, light trucks, and heavy-truck applications by 25% to 50%. However, many of these combustion strategies require high operating temperatures and pressures that exceed current materials' abilities to reliably operate

  10. Turbulent Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  11. Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

  12. Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Massachusetts Institute of Technology

  13. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    SciTech Connect (OSTI)

    Confer, Keith

    2014-09-30

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  14. DOE/BES Workshop on Clean and Efficient Combustion of 21st Century...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Centers A Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE) Overview of the DOE Advanced Combustion Engine R&D

  15. A Virtual Engineering Framework for Simulating Advanced Power System

    SciTech Connect (OSTI)

    Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

    2008-06-18

    In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering. Furthermore, with little effort the modeling capabilities described in this report can be extended to support other DOE programs, such as ultra super critical boiler development, oxy-combustion boiler development or modifications to existing plants to include CO2 capture and sequestration.

  16. Investigation of methyl decanoate combustion in an optical direct-injection diesel engine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, A. S.; Dumitrescu, Cosmin E.; Mueller, Charles J.

    2014-11-24

    In this study, an optically accessible heavy-duty diesel engine was used to investigate the impact of methyl decanoate (MD) on combustion and emissions. A specific goal of the study was to determine if MD could enable soot-free leaner-lifted flame combustion (LLFC) – a mode of mixing-controlled combustion associated with fuel-air equivalence ratios below approximately two. An ultra-low sulfur diesel certification fuel (CF) was used as the baseline fuel, and experiments were conducted at two fuel-injection pressures with three levels of charge-gas dilution. In addition to conventional pressure-based and engine-out emissions measurements, exhaust laser-induced incandescence, in-cylinder natural luminosity (NL), and in-cylindermore » chemiluminescence (CL) diagnostics were used to provide detailed insight into combustion processes.« less

  17. Investigation of methyl decanoate combustion in an optical direct-injection diesel engine

    SciTech Connect (OSTI)

    Cheng, A. S.; Dumitrescu, Cosmin E.; Mueller, Charles J.

    2014-11-24

    In this study, an optically accessible heavy-duty diesel engine was used to investigate the impact of methyl decanoate (MD) on combustion and emissions. A specific goal of the study was to determine if MD could enable soot-free leaner-lifted flame combustion (LLFC) – a mode of mixing-controlled combustion associated with fuel-air equivalence ratios below approximately two. An ultra-low sulfur diesel certification fuel (CF) was used as the baseline fuel, and experiments were conducted at two fuel-injection pressures with three levels of charge-gas dilution. In addition to conventional pressure-based and engine-out emissions measurements, exhaust laser-induced incandescence, in-cylinder natural luminosity (NL), and in-cylinder chemiluminescence (CL) diagnostics were used to provide detailed insight into combustion processes.

  18. Device to lower NOx in a gas turbine engine combustion system

    DOE Patents [OSTI]

    Laster, Walter R; Schilp, Reinhard; Wiebe, David J

    2015-02-24

    An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).

  19. Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide Emissions

    Broader source: Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  20. Exploring Advanced Combustion Regimes for Efficiency and Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    Low-Engine-Out NOx and PM with Highly Diluted Diesel Combustuion Vehicle Technologies Office Merit Review 2015: Use of Low Cetane Fuel to Enable Low Temperature ...

  1. 2013 Annual Merit Review Results Report - Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of spark- versus microwave-assisted spark ... an optimal filter design had been proposed based on experimental data findings of the ... engine and transmission cooling was not ...

  2. Fuel injection for internal combustion engines. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-08-01

    The bibliography contains citations concerning research and development of fuel injection systems applied to internal combustion engines and turbines. Gasoline, diesel, synthetic fuels, and liquid gas systems are discussed relative to systems` variations and performances. Fuel injection atomization and combustion are considered in theory, and fuel injection relative to emission control is included.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. Fuel injection for internal combustion engines. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The bibliography contains citations concerning research and development of fuel injection systems applied to internal combustion engines and turbines. Gasoline, diesel, synthetic fuels, and liquid gas systems are discussed relative to systems' variations and performances. Fuel injection atomization and combustion are considered in theory, and fuel injection relative to emission control is included. (Contains a minimum of 223 citations and includes a subject term index and title list.)

  4. Internal combustion engine with rotary valve assembly having variable intake valve timing

    DOE Patents [OSTI]

    Hansen, Craig N.; Cross, Paul C.

    1995-01-01

    An internal combustion engine has rotary valves associated with movable shutters operable to vary the closing of intake air/fuel port sections to obtain peak volumetric efficiency over the entire range of speed of the engine. The shutters are moved automatically by a control mechanism that is responsive to the RPM of the engine. A foot-operated lever associated with the control mechanism is also used to move the shutters between their open and closed positions.

  5. Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 05 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_troy.pdf More Documents & Publications An Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine Closed-loop Control Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual Progress Report Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency

  6. Internal combustion engine with rotary valve assembly having variable intake valve timing

    SciTech Connect (OSTI)

    Hansen, C.N.; Cross, P.C.

    1995-12-12

    An internal combustion engine has rotary valves associated with movable shutters operable to vary the closing of intake air/fuel port sections to obtain peak volumetric efficiency over the entire range of speed of the engine. The shutters are moved automatically by a control mechanism that is responsive to the RPM of the engine. A foot-operated lever associated with the control mechanism is also used to move the shutters between their open and closed positions. 21 figs.

  7. Method and systems for power control of internal combustion engines using individual cycle cut-off

    SciTech Connect (OSTI)

    Fedorenko, Y.; Korzhov, M.; Filippov, A.; Atamanenko, N.

    1996-09-01

    A new method of controlling power has been developed for improving efficiency and emissions performance of internal combustion engines at partial load. The method involves cutting-off some of the work cycles, as the load decreases, to obtain required power. Theoretical and experimental material is presented to illustrate the underlying principle, the implementation means and the results for the 4- and 8-cylinder piston engine and a twin rotor Wankel engine applications.

  8. Vehicle Technologies Office Merit Review 2015: Advanced Combustion and Fuels

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about advanced...

  9. Vehicle Technologies Office Merit Review 2015: Impacts of Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Engines | Department of Energy Impacts of Advanced Combustion Engines Vehicle Technologies Office Merit Review 2015: Impacts of Advanced Combustion Engines Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about impacts of advanced combustion engines. PDF icon vss140_curran_2015_p.pdf More Documents & Publications Vehicle Technologies Office Merit

  10. Advanced Combustion, Emission Control, Health Impacts, and Fuels Merit Review and Peer Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AdvAnced combustion, emission controls, HeAltH impActs, And Fuels merit review And peer evAluAtion Department of Energy Washington, DC 20585 October 2006 Dear Colleague: This document summarizes the comments provided by the Review Panel for the FY 2006 Department of Energy (DOE) Advanced Combustion, Emission Controls, Health Impacts, and Fuels Merit Review and Peer Evaluation Meeting, the "ACE Review," held on May 15-18, 2006 at Argonne National Laboratory (ANL). The raw evaluations

  11. SAPLE: Sandia Advanced Personnel Locator Engine.

    SciTech Connect (OSTI)

    Procopio, Michael J.

    2010-04-01

    We present the Sandia Advanced Personnel Locator Engine (SAPLE) web application, a directory search application for use by Sandia National Laboratories personnel. SAPLE's purpose is to return Sandia personnel 'results' as a function of user search queries, with its mission to make it easier and faster to find people at Sandia. To accomplish this, SAPLE breaks from more traditional directory application approaches by aiming to return the correct set of results while placing minimal constraints on the user's query. Two key features form the core of SAPLE: advanced search query interpretation and inexact string matching. SAPLE's query interpretation permits the user to perform compound queries when typing into a single search field; where able, SAPLE infers the type of field that the user intends to search on based on the value of the search term. SAPLE's inexact string matching feature yields a high-quality ranking of personnel search results even when there are no exact matches to the user's query. This paper explores these two key features, describing in detail the architecture and operation of SAPLE. Finally, an extensive analysis on logged search query data taken from an 11-week sample period is presented.

  12. Advanced Biofuels: How Scientists are Engineering Bacteria to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America Advanced ... This non-food crop is a perennial grass that is both salt- and drought-tolerant, can ...

  13. Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America | Department of Energy Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America December 6, 2011 - 2:12pm Addthis Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars

  14. 10 Questions with Advanced Tech Vehicle Engineer, Pam Fletcher | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy with Advanced Tech Vehicle Engineer, Pam Fletcher 10 Questions with Advanced Tech Vehicle Engineer, Pam Fletcher March 3, 2015 - 3:39pm Addthis Pamela Fletcher, GM Executive Chief Engineer for Electrified Vehicles, poses with the 2016 Chevrolet Volt at the 2015 North American International Auto Show | Photo Courtesy of General Motors, Steve Fecht. Pamela Fletcher, GM Executive Chief Engineer for Electrified Vehicles, poses with the 2016 Chevrolet Volt at the 2015 North American

  15. Advanced Process Engineering Co-Simulator (APECS) | Open Energy...

    Open Energy Info (EERE)

    Advanced Process Engineering Co-Simulator (APECS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: APECS AgencyCompany Organization: National Energy Technology...

  16. Advanced Process Engineering Co-Simulator (APECS) | Open Energy...

    Open Energy Info (EERE)

    Advanced Process Engineering Co-Simulator (APECS) (Redirected from APECS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: APECS AgencyCompany Organization: National...

  17. Internal combustion engine system having a power turbine with a broad efficiency range

    DOE Patents [OSTI]

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  18. Fuel injection characteristics and combustion behavior of a direct-injection stratified-charge engine

    SciTech Connect (OSTI)

    Balles, E.N.; Ekchian, J.A.; Heywood, J.B.

    1984-01-01

    High levels of hydrocarbon emissions during light load operation keep the direct injection stratified charge engine from commercial application. Previous analytical work has identified several possible hydrocarbon emissions mechanisms which can result from poor in-cylinder fuel distribution. Poor fuel distribution can be caused by erratic fuel injection. Experiments conducted on a single cylinder disc engine show a dramatic increase in the cycle to cycle variation in injection characteristics as engine load decreases. This is accompanied by an increase in cycle to cycle variation in combustion behavior suggesting that degradation in combustion results from the degradation in the quality of the injection event. Examination of combustion and injection characteristics on a cycle by cycle basis shows that, at light load, IMEP and heat release do not correlate with the amount of fuel injected into the cylinder. There are strong indications that individual cycles undergo partial or complete misfire.

  19. Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Compression Ignition Engine Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide Emissions Impacts of Rail Pressure and Biodiesel Composition on Soot Nanostructure

  20. Advanced Start of Combustion Sensor Phases I and II-A: Feasibility Demonstration, Design and Optimization

    SciTech Connect (OSTI)

    Chad Smutzer

    2010-01-31

    Homogeneous Compressed Charge Ignition (HCCI) has elevated the need for Start of Combustion (SOC) sensors. HCCI engines have been the exciting focus of engine research recently, primarily because HCCI offers higher thermal efficiency than the conventional Spark Ignition (SI) engines and significantly lower NOx and soot emissions than conventional Compression Ignition (CI) engines, and could be fuel neutral. HCCI has the potential to unify all the internal combustion engine technology to achieve the high-efficiency, low-emission goal. However, these advantages do not come easy. It is well known that the problems encountered with HCCI combustion center on the difficulty of controlling the Start of Combustion. TIAX has an SOC sensor under development which has shown promise. In previous work, including a DOE-sponsored SBIR project, TIAX has developed an accelerometer-based method which was able to determine SOC within a few degrees crank angle for a range of operating conditions. A signal processing protocol allows reconstruction of the combustion pressure event signal imbedded in the background engine vibration recorded by the accelerometer. From this reconstructed pressure trace, an algorithm locates the SOC. This SOC sensor approach is nonintrusive, rugged, and is particularly robust when the pressure event is strong relative to background engine vibration (at medium to high engine load). Phase I of this project refined the previously developed technology with an engine-generic and robust algorithm. The objective of the Phase I research was to answer two fundamental questions: Can the accelerometer-based SOC sensor provide adequate SOC event capture to control an HCCI engine in a feedback loop? And, will the sensor system meet cost, durability, and software efficiency (speed) targets? Based upon the results, the answer to both questions was 'YES'. The objective of Phase II-A was to complete the parameter optimization of the SOC sensor prototype in order to reach a juncture where plans can be and are discussed with an industry partner for how best to perform a more detailed implementation of the TIAX SOC technology on an HCCI engine system. This occurred, as evidenced the number of potential commercialization partners shown in Table 4. Potential Commercialization Partners Contacted (up to date as of January 31, 2010). During the two phases, a robust, engine-generic algorithm was developed that met the desired targets and was shown to work extremely well for HCCI engine operation.

  1. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOE Patents [OSTI]

    Heffel, James W.; Scott, Paul B.; Park, Chan Seung

    2011-11-01

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  2. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOE Patents [OSTI]

    Heffel, James W.; Scott, Paul B.

    2003-09-02

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  3. Exploring Advanced Combustion Regimes for Efficiency and Emissions |

    Broader source: Energy.gov (indexed) [DOE]

    Energy from abundant, renewable, domestic biomass can reduce U.S. dependence on oil, lower impacts on climate, and stimulate jobs and economic growth. Energy from abundant, renewable, domestic biomass can reduce U.S. dependence on oil, lower impacts on climate, and stimulate jobs and economic growth. Feedstocks Feedstocks Farmers Seasonal workers Tree farm workers Mechanical engineers Harvesting equipment mechanics Equipment production workers Chemical engineers Chemical application specialists

  4. Low Temperature Combustion Demonstrator for High Efficiency Clean

    Broader source: Energy.gov (indexed) [DOE]

    Combustion | Department of Energy Applied low temperature combustion to the Navistar 6.4L V8 engine with 0.2g NOx/bhp-hr operation attained at the rated 16.5 BMEP PDF icon deer09_deojeda.pdf More Documents & Publications Multicylinder Diesel Engine for Low Temperature Combustion Operation Impact of Variable Valve Timing on Low Temperature Combustion Development of Advanced Combustion Technologies for Increased Thermal Efficiency

  5. Mr. R. B. Bell, Jr. Combustion Engineering, Inc. Post Office Box 500

    Office of Legacy Management (LM)

    g@ *tq 47 e "Y q$ . -0 t: 2 ~ i' ,; B 0 e %d&$ Department of Energy Washington, DC 20585 Mr. R. B. Bell, Jr. Combustion Engineering, Inc. Post Office Box 500 Windsor, Connecticut 06095-0500 Dear Mr. Bell: I have received two copies of the access agreement for the radiological survey of the Combustion Engineering Property at 1000 Prospect Hill Road in Windsor. I have signed the agreements on behalf of the U.S. Department of Energy, and I am returning one signed original copy to you, By

  6. CFD Combustion Modeling with Conditional Moment Closure using Tabulated

    Broader source: Energy.gov (indexed) [DOE]

    Chemistry | Department of Energy method is presented that allows for efficient conditional moment closure combustion simulations through the use of a progress variable based parameterization of the combustion chemistry. PDF icon p-15_borg.pdf More Documents & Publications Advanced CFD Models for High Efficiency Compression Ignition Engines Accurate Predictions of Fuel Effects on Combustion and Emissions in Engines Using CFD Simulations With Detailed Fuel Chemistry Advanced Combustion

  7. Vehicle Technologies Office Merit Review 2014: Impacts of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines Vehicle Technologies Office Merit Review 2014: Impacts of Advanced Combustion Engines Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel ...

  8. Vehicle Technologies Office Merit Review 2015: Impacts of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines Vehicle Technologies Office Merit Review 2015: Impacts of Advanced Combustion Engines Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel ...

  9. Dual fuel combustion in a turbocharged diesel engine

    SciTech Connect (OSTI)

    Few, P.C.; Newlyn, H.A.

    1987-01-01

    The modification of a turbocharged diesel engine to a dual-fuel engine using methane as the supplementary fuel has been carried out. The effect of the gaseous fuel in a turbo-charged diesel engine has been investigated by means of a heat release study and a computer program already developed at Leicester Polytechnic. It is used in order to examine the rate of heat released under any operational condition.

  10. Characterization of Particulate Emissions from GDI Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis showed that gasoline direct injection engine particulates from alcohol-blended fuels are significantly different in morphology and nanostructures PDF icon p-19seong.pdf ...

  11. Advanced stratified charge rotary aircraft engine design study

    SciTech Connect (OSTI)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise and installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  12. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    SciTech Connect (OSTI)

    Leonard Angello

    2004-09-30

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

  13. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    SciTech Connect (OSTI)

    Leonard Angello

    2004-03-31

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

  14. System for lubrication of a brake air compressor associated with a turbocharged internal combustion engine

    SciTech Connect (OSTI)

    Spencer, J.C.

    1992-10-13

    This patent describes a system for use with a vehicle which includes a turbocharged internal combustion engine having a lubricating system wherein lubricating oil from an engine oil reservoir is circulated within the engine and also to and from an associated brake system air compressor which supplies compressed air for operation of the vehicle air braking system. This patent describes improvement in passing supercharged air to an oil crankcase of the air compressor to cause lubricating oil to drain therefrom and return to the engine oil reservoir.

  15. Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Overview of DOE Advanced Combustion Engine R&D

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Overview of the DOE Advanced Combustion Engine R&D

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  18. Overview of DOE Advanced Combustion Engine R&D

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Overview of the DOE Advanced Combustion Engine R&D

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  20. Overview of the Advanced Combustion Engine R&D

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary

  1. Overview of the DOE Advanced Combustion Engine R&D

    Office of Energy Efficiency and Renewable Energy (EERE)

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  2. Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research

    Broader source: Energy.gov (indexed) [DOE]

    Energy MicroGrid | Department of Energy is a 47-slide presentation on the performance and operation of the microgrid on the island of Lanai with multi-megawatt solar PV generation. Location Hawaii United States See map: Google Maps Date October 2009 Topic Solar Basics & Educating Consumers Systems Performance Codes, Standards & Utility Policies Subprogram Systems Integration Author SunPower, Satcon, Florida Solar Energy Center PDF icon lanai_renewable_energy_microgrid.pdf More

  3. 2010 Advanced Combustion Engine R&D Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... sprays were made by transmission electron microscopy-grid ... Novel Computational Impact on Theory and Experiment program. ... (2) compared one- and two-line temperature-imaging ...

  4. 2009 Advanced Combustion Engine R&D Annual Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... dark field scanning transmission electron microscopy ... We performed density functional theory (DFT) calculations in ... 2 O 3 substrate. Also in line with the experiments, our ...

  5. FY 2008 Progress Report for Advanced Combustion Engine Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Modeling, Boston, MA: "Thermoelectric Materials by ... using high resolution transmission electron microscopy" ... as the dashed line -20 CAD simulated ambient conditions. ...

  6. 2011 Advanced Combustion Engine R&D Annual Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... soot) analyzed by transmission electron microscopy. ... (4) completed an initial design concept for a TE device ... level; experimental data for galvanomagnetic and ...

  7. Fuels For Advanced Combustion Engines (FACE) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary PDF icon vtpn06_stork_ft_2011_o.pdf More Documents & Publications Overview of Fuels Technologies Overview of DOE Fuel & Lubricant Technologies R&D Overview of DOE Fuel Technologies R&D

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon

  8. Fuels for Advanced Combustion Engines | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ft002_zigler_2012

  9. Fuels for Advanced Combustion Engines | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ft002_zigler_2011

  10. Sandia Energy - DISI Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DISI Combustion Home Transportation Energy Predictive Simulation of Engines Engine Combustion Automotive DISI Combustion DISI CombustionAshley Otero2015-10-28T02:06:42+00:00 DISI...

  11. Sandia Energy - Spray Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spray Combustion Home Transportation Energy Predictive Simulation of Engines Engine Combustion Automotive Spray Combustion Spray CombustionAshley Otero2015-10-28T02:10:49+00:00...

  12. Sandia Energy - Spray Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spray Combustion Home Transportation Energy Predictive Simulation of Engines Engine Combustion Heavy Duty Spray Combustion Spray CombustionAshley Otero2015-10-28T02:00:56+00:00...

  13. Sandia Energy - DISI Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DISI Combustion Home Transportation Energy Predictive Simulation of Engines Engine Combustion Fuels DISI Combustion DISI CombustionAshley Otero2015-10-28T02:15:13+00:00 In order to...

  14. Sandia Energy - Spray Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spray Combustion Home Transportation Energy Predictive Simulation of Engines Engine Combustion Fuels Spray Combustion Spray CombustionAshley Otero2015-10-28T02:17:06+00:00 Fuel...

  15. Improving combustion stability in a bi-fuel engine

    SciTech Connect (OSTI)

    1995-06-01

    This article describes how a new strategy for ignition timing control can reduce NOx emissions from engines using CNG and gasoline. Until a proper fueling infrastructure is established, a certain fraction of vehicles powered by compressed natural gas (CNG) must have bi-fuel capability. A bi-fuel engine, enjoying the longer range of gasoline and the cleaner emissions of CNG, can overcome the problem of having few CNG fueling stations. However, bi-fuel engines must be optimized to run on both fuels since low CNG volumetric efficiency causes power losses compared to gasoline.

  16. Throttle valve control device for internal combustion engines

    SciTech Connect (OSTI)

    Ejiri, Y.; Ito, T.

    1988-05-31

    In a throttle valve control device for controlling a position of an engine throttle valve secured to a rotary shaft, which includes a control unit operative to produce a first electrical signal in accordance with a movement of an engine accelerator and an electro-mechanical force transducer operative to impart a first rotational torque to the rotary shaft and thereby to the throttle valve, the first rotational torque corresponding to the first electrical signal, the improvement is described comprising: a throttle valve returning means operative to produce a second rotational torque for biasing the throttle valve to a fully closed position irrespective of the movement of the engine accelerator and means responsive to the second electrical signal to transmit the second rotational torque to the rotary shaft irrespective of the movement of the engine accelerator.

  17. Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss041_daw_2011_o.pdf More Documents & Publications PHEV Engine and Aftertreatment Model Development PHEV Engine and Aftertreatment Model Development Advanced LD Engine Systems and Emissions Control Modeling and Analysis

  18. Turbulent Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  19. Internal combustion engines for alcohol motor fuels: a compilation of background technical information

    SciTech Connect (OSTI)

    Blaser, Richard

    1980-11-01

    This compilation, a draft training manual containing technical background information on internal combustion engines and alcohol motor fuel technologies, is presented in 3 parts. The first is a compilation of facts from the state of the art on internal combustion engine fuels and their characteristics and requisites and provides an overview of fuel sources, fuels technology and future projections for availability and alternatives. Part two compiles facts about alcohol chemistry, alcohol identification, production, and use, examines ethanol as spirit and as fuel, and provides an overview of modern evaluation of alcohols as motor fuels and of the characteristics of alcohol fuels. The final section compiles cross references on the handling and combustion of fuels for I.C. engines, presents basic evaluations of events leading to the use of alcohols as motor fuels, reviews current applications of alcohols as motor fuels, describes the formulation of alcohol fuels for engines and engine and fuel handling hardware modifications for using alcohol fuels, and introduces the multifuel engines concept. (LCL)

  20. A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines

    SciTech Connect (OSTI)

    Dennis N. Assanis; Arvind Atreya; Jyh-Yuan Chen; Wai K. Cheng; Robert W. Dibble; Chris Edwards; Zoran S. Filipi; Christian Gerdes; Hong Im; George A. Lavoie; Margaret S. Wooldridge

    2009-12-31

    The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were: ? Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines. ? Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions. ? Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

  1. Advanced Combustion Systems Projects Selected for Funding | Department of

    Energy Savers [EERE]

    Blade Manufacturing Advanced Blade Manufacturing While the blades of a turbine may be one of the most recognizable features of any wind installation, they also represent one of the largest physical challenges in the manufacturing process. Turbine blades can reach up to 75 meters (250 feet) in length, and will continue to increase in size as the demand for renewable energy grows and as wind turbines are deployed offshore. Because of their size and aerodynamic complexity, wind turbine blades are

  2. Characterization of Engine Control Authority on HCCI Combustion as the High Load Limit is Approached

    SciTech Connect (OSTI)

    Szybist, James P; Edwards, Kevin Dean; Foster, Matthew; Confer, Keith; Moore, Wayne

    2013-01-01

    While the potential emissions and efficiency benefits of homogeneous charge compression ignition (HCCI) combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on characterizing the authority of the available engine controls as the high load limit of HCCI combustion is approached. The experimental work is performed on a boosted single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), and a hydraulic valve actuation (HVA) valve train to enable the negative valve overlap (NVO) breathing strategy. Valve lift and duration are held constant while phasing is varied in an effort to make the results as relevant as possible to production intent cam-based variable valve actuation (VVA) systems on multi-cylinder engines. Results presented include engine loads from 350 to 650 kPa IMEPnet and manifold pressure from 98 to 190 kPaa at 2000 rpm. It is found that in order to increase engine load to 650 kPa IMEPnet, it is necessary to increase manifold pressure and external EGR while reducing the NVO duration. Both NVO duration and fuel injection timing are effective means of controlling combustion phasing, with NVO duration being a coarse control and fuel injection timing being a fine control. NOX emissions are low throughout the study, with emissions below 0.1 g/kW-h at all boosted HCCI conditions, while good combustion efficiency is maintained (>96.5%). Net indicated thermal efficiency increases with load up to 600 kPa IMEPnet, where a peak efficiency of 41% is achieved. Results of independent parametric investigations are presented on the effect of external EGR, intake effect of manifold pressure, and the effect of NVO duration. It is found that increasing EGR at a constant manifold pressure and increasing manifold pressure at a constant EGR rate both have the effect of retarding combustion phasing. It is also found that combustion phasing becomes increasingly sensitive to NVO duration as engine load increases. Finally, comparisons are made between three commonly used noise metrics (AVL noise meter, ringing intensity (RI), and maximum pressure rise rate (MPRR)). It is found that compared to the AVL noise meter, RI significantly underestimates combustion noise under boosted conditions.

  3. System and method for conditioning intake air to an internal combustion engine

    SciTech Connect (OSTI)

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  4. Stirling Engine Natural Gas Combustion Demonstration Program. Final report, October 1989-January 1991

    SciTech Connect (OSTI)

    Ernst, W.; Moryl, J.; Riecke, G.

    1991-02-01

    Fueled on natural gas, the Stirling engine is an inherently clean, quiet, and efficient engine. With increasing environmental concern for air quality and the increasingly more stringent requirements for low engine exhaust emissions, the Stirling engine may be an attractive alternative to internal combustion (IC) engines. The study has demonstrated that ultra low emissions can be attained with a Stirling-engine-driven electric generator configured to burn natural gas. Combustion parameters were optimized to produce the lowest possible exhaust emissions for a flame-type combustor without compromising overall engine thermal efficiency. A market application survey and manufacturing cost analysis indicate that a market opportunity potentially exists in the volumes needed to economically manufacture a newly designed Stirling engine (Mod III) for stationary applications and hybrid vehicles. The translation of such potential markets into actual markets does, however, pose difficult challenges as substantial investments are required. Also, the general acceptance of a new engine type by purchasers requires a considerable amount of time.

  5. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Oak Ridge National Laboratory, June 2011 Development and Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck Program) High Fuel Economy Heavy-Duty Truck Engine

  6. Advanced Natural Gas Reciprocating Engines (ARES)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Reciprocating Engines (ARES) Contract: DE-FC26-01CH11080 GE Energy, Dresser ... Washington, D.C. June 1-2, 2011 2 GE gas engines Zurlo: 6282011 Project Overview ...

  7. Task 2: Materials for Advanced Boiler and Oxy-combustion Systems

    SciTech Connect (OSTI)

    Holcolm, Gordon R.; McGhee, Barry

    2009-05-01

    The PowerPoint presentation provides an overview of the tasks for the project: Characterize advanced boiler (oxy-fuel combustion, biomass co-fired) gas compositions and ash deposits; Generate critical data on the effects of environmental conditions; develop a unified test method with a view to future standardization; Generate critical data for coating systems for use in advanced boiler systems; Generate critical data for flue gas recycle piping materials for oxy-fuel systems; and, Compile materials performance data from laboratory and pilot plant exposures of candidate alloys for use in advanced boiler systems.

  8. Combustion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Combustion To develop a more thorough understanding of combustion, scientists and engineers must be able to analyze the interaction of many different chemical species at...

  9. A Stochastic Reactor Based Virtual Engine Model Employing Detailed Chemistry for Kinetic Studies of In-Cylinder Combustion and Exhaust Aftertreatment

    Broader source: Energy.gov [DOE]

    The model consists of an in-cylinder combustion engine model, an interconnecting exhaust pipe and a TWC.

  10. Advanced tangentially fired low-NO{sub x} combustion demonstration. Phase 2, LNCFS Level 2 tests

    SciTech Connect (OSTI)

    Smith, L.L.; Hooper, M.

    1993-08-01

    This report summarizes the activities and results for the second testing phase (Phase 2) of an Innovative Clean Coal Technology (ICCT) demonstration of advanced tangentially fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. All three levels of Asea Brown Boveri Combustion Engineering Service`s (ABB CE`s) Low-NO{sub x} Concentric Firing System (LNCFS) are being demonstrated during this project. The primary goal of this project is to demonstrate the NO{sub x} emissions characteristics of these technologies when operated under normal load dispatched conditions. The equipment is being tested at Gulf Power Company`s Plant Lansing Smith Unit 2 in Lynn Haven, Florida. The long-term NO{sub x} emission trends were documented while the unit was operating under normal load dispatch conditions with the LNCFS Level II equipment. Fifty-five days of long-term data were collected. The data included the effects of mill patterns, unit load, mill outages, weather, fuel variability, and load swings. Test results indicated full-load (180 MW) NO{sub x} emissions of 0.39 lb/MBtu, which is about equal to the short-term test results. At 110 MW, long-term NO{sub x} emissions increased to 0.42 lb/MBtu, which are slightly higher than the short-term data. At 75 MW, NO{sub x} emissions were 0.51 lb/MBtu, which is significantly higher than the short-term data. The annual and 30-day average achievable NOx emissions were determined to be 0.41 and 0.45 lb/MBtu, respectively, for long-term testing load scenarios. NO{sub x} emissions were reduced by a maximum of 40 percent when compared to the baseline data collected in the previous phase. The long-term NO{sub x} reduction at full load (180 MW) was 37 percent while NO{sub x} reduction at low load was minimal.

  11. Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott; Hanson, Reed M; Wagner, Robert M

    2012-01-01

    Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

  12. Advanced Enzyme Deconstruction/ Enzyme Engineering & Optimization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enzyme Deconstruction Enzyme Engineering & Optimization Date: March 23-27 Technology Area Review: Biochemical Platform Principal Investigator: Michael E. Himmel Task Leader: Steve ...

  13. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    One of Ritchie's latest materials research projects is contributing to the evolution of jet engine performance, and hence has industry players heavily interested and invested. ...

  14. Combustion engine variable compression ratio apparatus and method

    DOE Patents [OSTI]

    Lawrence; Keith E.; Strawbridge, Bryan E.; Dutart, Charles H.

    2006-06-06

    An apparatus and method for varying a compression ratio of an engine having a block and a head mounted thereto. The apparatus and method includes a cylinder having a block portion and a head portion, a piston linearly movable in the block portion of the cylinder, a cylinder plug linearly movable in the head portion of the cylinder, and a valve located in the cylinder plug and operable to provide controlled fluid communication with the block portion of the cylinder.

  15. Adaptive Control to Improve Low Temperature Diesel Engine Combustion |

    Broader source: Energy.gov (indexed) [DOE]

    Sheet, April 2014 | Department of Energy The University of Minnesota, Morris, in collaboration with the University of Minnesota Center for Diesel Research, Cummins Power Generation Inc., ALL Power Labs, and Hammel, Green & Abrahamson (HGA), integrated a biomass gasifier and a reciprocating engine generator set into a combined platform, enabling electricity generation from waste biomass while reducing diesel fuel consumption and greenhouse gas (GHG) emissions. PDF icon

  16. Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines |

    Broader source: Energy.gov (indexed) [DOE]

    Combining Solar and Home Performance Services, call slides and discussion summary, December 11, 2014. PDF icon Call Slides and Discussion Summary More Documents & Publications Think Again! A Fresh Look at Home Performance Business Models and Service Offerings (301) Lessons Learned: Peer Exchange Calls -- No. 3 Voluntary Initiative on Incentives: Toolkit Training Webinar Department of Energy

    Discusses a novel TEG which utilizes a proprietary stack designed thermoelectric engine to

  17. Three-dimensional modeling of diesel engine intake flow, combustion and emissions-II

    SciTech Connect (OSTI)

    Reitz, R.D.; Rutland, C.J.

    1993-09-01

    A three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented and previously reported are: Wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo`vich NO{sub x}, and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model and preliminary soot modeling results are described in this report. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme has been developed for modeling realistic (complex) engine geometries, and computations have been made of intake flow in the ports and combustion chamber of a two-intake-valve engine. The research also involves the use of the code to assess the effects of subprocesses on diesel engine performance. The accuracy of the predictions is being tested by comparisons with engine experiments. To date, comparisons have been made with measured engine cylinder pressure, temperature and heat flux data, and the model results are in good agreement with the experiments. Work is in progress that will allow validation of in-cylinder flow and soot formation predictions. An engine test facility is described that is being used to provide the needed validation data. Test results have been obtained showing the effect of injection rate and split injections on engine performance and emissions.

  18. Low Temperature Combustion using nitrogen enrichment to mitigate nox from large bore natural gas-filled engines.

    SciTech Connect (OSTI)

    Biruduganti, M. S.; Gupta, S. B.; Sekar, R. R.

    2008-01-01

    Low Temperature Combustion (LTC) is identified as one of the pathways to meet the mandatory ultra low NOx emissions levels set by regulatory agencies. This phenomenon can be realized by utilizing various advanced combustion control strategies. The present work discusses nitrogen enrichment using an Air Separation Membrane (ASM) as a better alternative to the mature Exhaust Gas Re-circulation (EGR) technique currently in use. A 70% NOx reduction was realized with a moderate 2% nitrogen enrichment while maintaining power density and simultaneously improving Fuel Conversion Efficiency (FCE). The maximum acceptable Nitrogen Enriched Air (NEA) in a single cylinder spark ignited natural gas engine was investigated in this paper. Any enrichment beyond this level degraded engine performance both in terms of power density and FCE, and unburned hydrocarbon (UHC) emissions. The effect of ignition timing was also studied with and without N2 enrichment. Finally, lean burn versus stoichiometric operation utilizing NEA was compared. Analysis showed that lean burn operation along with NEA is one of the effective pathways for realizing better FCE and lower NOx emissions.

  19. Advanced Natural Gas Reciprocating Engines (ARES)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, ... Metha ne Number , Varyi ng DiluentsComposition 2 Technical Approach: Architecture ...

  20. Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers

    SciTech Connect (OSTI)

    Tate, J. D.; Le, Linh D.; Knittel,Trevor; Cowie, Alan

    2010-03-20

    The objective of this project was to develop and apply enabling tools and methods towards advanced combustion diagnostics and control of fired-equipment in large-scale petrochemical manufacturing. There are a number of technology gaps and opportunities for combustion optimization, including technologies involving advanced in-situ measurements, modeling, and thermal imaging. These technologies intersect most of manufacturing and energy systems within the chemical industry. This project leveraged the success of a previous DOE funded project led by Dow, where we co-developed an in-situ tunable diode laser (TDL) analyzer platform (with Analytical Specialties Inc, now owned by Yokogawa Electric Corp.). The TDL platform has been tested and proven in a number of combustion processes within Dow and outside of Dow. The primary focus of this project was on combustion diagnostics and control applied towards furnaces, fired heaters and boilers. Special emphasis was placed on the development and application of in-situ measurements for O2, CO and methane since these combustion gases are key variables in optimizing and controlling combustion processes safely. Current best practice in the industry relies on measurements that suffer from serious performance gaps such as limited sampling volume (point measurements), poor precision and accuracy, and poor reliability. Phase I of the project addressed these gaps by adding improved measurement capabilities such as CO and methane (ppm analysis at combustion zone temperatures) as well as improved optics to maintain alignment over path lengths up to 30 meters. Proof-of-concept was demonstrated on a modern olefins furnace located at Dow Chemical's facility in Freeport TX where the improved measurements were compared side-by-side to accepted best practice techniques (zirconium oxide and catalytic bead or thick film sensors). After developing and installing the improved combustion measurements (O2, CO, and methane), we also demonstrated the ability to improve control of an olefins furnace (via CO-trim) that resulted in significant energy savings and lower emissions such as NOx and other greenhouse gases. The cost to retrofit measurements on an existing olefins furnace was found to be very attractive, with an estimated payback achieved in 4 months or less.

  1. Advanced combustion, emission control, health impacts, and fuels merit review and peer evaluation

    SciTech Connect (OSTI)

    None, None

    2006-10-01

    This report is a summary and analysis of comments from the Advisory Panel at the FY 2006 DOE National Laboratory Advanced Combustion, Emission Control, Health Impacts, and Fuels Merit Review and Peer Evaluation, held May 15-18, 2006 at Argonne National Laboratory. The work evaluated in this document supports the FreedomCAR and Vehicle Technologies Program. The results of this merit review and peer evaluation are major inputs used by DOE in making its funding decisions for the upcoming fiscal year.

  2. An experimental study of the combustion characteristics in SCCI and CAI based on direct-injection gasoline engine

    SciTech Connect (OSTI)

    Lee, C.H.; Lee, K.H.

    2007-08-15

    Emissions remain a critical issue affecting engine design and operation, while energy conservation is becoming increasingly important. One approach to favorably address these issues is to achieve homogeneous charge combustion and stratified charge combustion at lower peak temperatures with a variable compression ratio, a variable intake temperature and a trapped rate of the EGR using NVO (negative valve overlap). This experiment was attempted to investigate the origins of these lower temperature auto-ignition phenomena with SCCI and CAI using gasoline fuel. In case of SCCI, the combustion and emission characteristics of gasoline-fueled stratified-charge compression ignition (SCCI) engine according to intake temperature and compression ratio was examined. We investigated the effects of air-fuel ratio, residual EGR rate and injection timing on the CAI combustion area. In addition, the effect of injection timing on combustion factors such as the start of combustion, its duration and its heat release rate was also investigated. (author)

  3. Method for reducing peak phase current and decreasing staring time for an internal combustion engine having an induction machine

    DOE Patents [OSTI]

    Amey, David L.; Degner, Michael W.

    2002-01-01

    A method for reducing the starting time and reducing the peak phase currents for an internal combustion engine that is started using an induction machine starter/alternator. The starting time is reduced by pre-fluxing the induction machine and the peak phase currents are reduced by reducing the flux current command after a predetermined period of time has elapsed and concurrent to the application of the torque current command. The method of the present invention also provides a strategy for anticipating the start command for an internal combustion engine and determines a start strategy based on the start command and the operating state of the internal combustion engine.

  4. Fuels and Combustion Strategies for High-Efficiency Clean-Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuels and Combustion Strategies for High-Efficiency Clean-Combustion Engines 2012 DOE Hydrogen and Fuel Cells ...

  5. Tolerance engineering in bacteria for the production of advanced biofuels

    Office of Scientific and Technical Information (OSTI)

    and chemicals (Journal Article) | SciTech Connect Journal Article: Tolerance engineering in bacteria for the production of advanced biofuels and chemicals Citation Details In-Document Search Title: Tolerance engineering in bacteria for the production of advanced biofuels and chemicals Authors: Mukhopadhyay, Aindrila Publication Date: 2015-08-01 OSTI Identifier: 1250601 Grant/Contract Number: AC02-05CH11231 Type: Published Article Journal Name: Trends in Microbiology Additional Journal

  6. Proceedings of the 1987 coatings for advanced heat engines workshop

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This Workshop was conducted to enhance communication among those involved in coating development for improved heat engine performance and durability. We were fortunate to have Bill Goward review the steady progress and problems encountered along the way in the use of thermal barrier coatings (TBC) in aircraft gas turbine engines. Navy contractors discussed their work toward the elusive goal of qualifying TBC for turbine airfoil applications. In the diesel community, Caterpillar and Cummins are developing TBC for combustion chamber components as part of the low heat rejection diesel engine concept. The diesel engine TBC work is based on gas turbine technology with a goal of more than twice the thickness used on gas turbine engine components. Adoption of TBC in production for diesel engines could justify a new generation of plasma spray coating equipment. Increasing interests in tribology were evident in this Workshop. Coatings have a significant role in reducing friction and wear under greater mechanical loadings at higher temperatures. The emergence of a high temperature synthetic lubricant could have an enormous impact on diesel engine design and operating conditions. The proven coating processes such as plasma spray, electron-beam physical vapor deposition, sputtering, and chemical vapor deposition have shown enhanced capabilities, particularly with microprocessor controls. Also, the newer coating schemes such as ion implantation and cathodic arc are demonstrating intriguing potential for engine applications. Coatings will play an expanding role in higher efficiency, more durable heat engines.

  7. EGR Distribution in Engine Cylinders Using Advanced Virtual Simulation

    SciTech Connect (OSTI)

    Fan, Xuetong

    2000-08-20

    Exhaust Gas Recirculation (EGR) is a well-known technology for reduction of NOx in diesel engines. With the demand for extremely low engine out NOx emissions, it is important to have a consistently balanced EGR flow to individual engine cylinders. Otherwise, the variation in the cylinders' NOx contribution to the overall engine emissions will produce unacceptable variability. This presentation will demonstrate the effective use of advanced virtual simulation in the development of a balanced EGR distribution in engine cylinders. An initial design is analyzed reflecting the variance in the EGR distribution, quantitatively and visually. Iterative virtual lab tests result in an optimized system.

  8. Effects of primary breakup modeling on spray and combustion characteristics of compression ignition engines

    SciTech Connect (OSTI)

    Som, S.; Aggarwal, S.K.

    2010-06-15

    Injector flow dynamics and primary breakup processes are known to play a pivotal role in determining combustion and emissions in diesel engines. In the present study, we examine the effects of primary breakup modeling on the spray and combustion characteristics under diesel engine conditions. The commonly used KH model, which considers the aerodynamically induced breakup based on the Kelvin-Helmholtz instability, is modified to include the effects of cavitation and turbulence generated inside the injector. The KH model and the new (KH-ACT) model are extensively evaluated by performing 3-D time-dependent simulations with detailed chemistry under diesel engine conditions. Results indicate that the inclusion of cavitation and turbulence enhances primary breakup, leading to smaller droplet sizes, decrease in liquid penetration, and increase in the radial dispersion of spray. Predictions are compared with measurements for non-evaporating and evaporating sprays, as well as with flame measurements. While both the models are able to reproduce the experimentally observed global spray and combustion characteristics, predictions using the KH-ACT model exhibit closer agreement with measurements in terms of liquid penetration, cone angle, spray axial velocity, and liquid mass distribution for non-evaporating sprays. Similarly, the KH-ACT model leads to better agreement with respect to the liquid length and vapor penetration distance for evaporating sprays, and with respect to the flame lift-off location for combusting sprays. The improved agreement is attributed to the ability of the new model to account for the effects of turbulence and cavitation generated inside the injector, which enhance the primary breakup. Results further indicate that the combustion under diesel engine conditions is characterized by a double-flame structure with a rich premixed reaction zone near the flame stabilization region and a non-premixed reaction zone further downstream. This flame structure is consistent with the Dec's model for diesel engine combustion (Dec, 1997), and well captured by a newly developed flame index based on the scalar product of CO and O{sub 2} mass fraction gradients. (author)

  9. Advanced Gasoline Turbocharged Direction Injection (GTDI) Engine Development

    SciTech Connect (OSTI)

    Wagner, Terrance

    2015-12-31

    This program was undertaken in response to US Department of Energy Solicitation DE-FOA-0000079, resulting in a cooperative agreement with Ford and MTU to demonstrate improvement of fuel efficiency in a vehicle equipped with an advanced GTDI engine. Ford Motor Company has invested significantly in GTDI engine technology as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost technology. Ford envisions additional fuel economy improvement in the medium and long term by further advancing EcoBoost technology. The approach for the project was to engineer a comprehensive suite of gasoline engine systems technologies to achieve the project objectives, and to progressively demonstrate the objectives via concept analysis / computer modeling, single-cylinder and multi-cylinder engine testing on engine dynamometer, and vehicle level testing on chassis rolls.

  10. Identification of Potential Efficiency Opportunities in Internal Combustion Engines Using a Detailed Thermodynamic Analysis of Engine Simulation Results

    SciTech Connect (OSTI)

    Edwards, Kevin Dean; Wagner, Robert M; Graves, Ronald L

    2008-01-01

    Current political and environmental concerns are driving renewed efforts to develop techniques for improving the efficiency of internal combustion engines. A detailed thermodynamic analysis of an engine and its components from a 1st and 2nd law perspective is necessary to characterize system losses and to identify efficiency opportunities. We have developed a method for performing this analysis using engine-simulation results obtained from WAVE , a commercial engine-modeling software package available from Ricardo, Inc. Results from the engine simulation are post-processed to compute thermodynamic properties such as internal energy, enthalpy, entropy, and availability (or exergy), which are required to perform energy and availability balances of the system. This analysis is performed for all major components (turbocharger, intercooler, EGR cooler, etc.) of the engine as a function of crank angle degree for the entire engine cycle. With this information, we are able to identify potential efficiency opportunities as well as guide engine experiments for exploring new technologies for recovering system losses.

  11. A Study of the Theoretical Potential of Thermochemical Exhaust Heat Recuperation in Internal Combustion Engines

    SciTech Connect (OSTI)

    Daw, C Stuart; Pihl, Josh A; Chakravarthy, Veerathu K; Conklin, Jim

    2010-01-01

    A detailed thermodynamic analysis of thermochemical recuperation (TCR) applied to an idealized internal combustion engine with single-stage work extraction is presented. Results for several different fuels are included. For a stoichiometric mixture of methanol and air, TCR can increase the estimated ideal engine second law efficiency by about 3% for constant pressure reforming and over 5% for constant volume reforming. For ethanol and isooctane, the estimated second law efficiency increases for constant volume reforming are 9 and 11%, respectively. The second law efficiency improvements from TCR result primarily from the higher intrinsic exergy of the reformed fuel and pressure boost associated with the gas mole increase. Reduced combustion irreversibility may also yield benefits for future implementations of combined cycle work extraction.

  12. A Study of the Theoretical Potential of Thermochemical Exhaust Heat Recuperation for Internal Combustion Engines

    SciTech Connect (OSTI)

    Chakravarthy, Veerathu K; Daw, C Stuart; Pihl, Josh A; Conklin, Jim

    2010-01-01

    We present a detailed thermodynamic analysis of thermochemical recuperation (TCR) applied to an idealized internal combustion engine with single-stage work extraction. Results for several different fuels are included. For a stoichiometric mixture of methanol and air, TCR can increase the estimated ideal engine Second Law efficiency by about 3% for constant pressure reforming and over 5% for constant volume reforming. For ethanol and isooctane the estimated Second Law efficiency increases for constant volume reforming are 9% and 11%, respectively. The Second Law efficiency improvements from TCR result primarily from the higher intrinsic exergy of the reformed fuel and pressure boost associated with gas mole increase. Reduced combustion irreversibility may also yield benefits for future implementations of combined cycle work extraction.

  13. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    SciTech Connect (OSTI)

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  14. Invited Review. Combustion instability in spray-guided stratified-charge engines. A review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fansler, Todd D.; Reuss, D. L.; Sick, V.; Dahms, R. N.

    2015-02-02

    Our article reviews systematic research on combustion instabilities (principally rare, random misfires and partial burns) in spray-guided stratified-charge (SGSC) engines operated at part load with highly stratified fuel -air -residual mixtures. Results from high-speed optical imaging diagnostics and numerical simulation provide a conceptual framework and quantify the sensitivity of ignition and flame propagation to strong, cyclically varying temporal and spatial gradients in the flow field and in the fuel -air -residual distribution. For SGSC engines using multi-hole injectors, spark stretching and locally rich ignition are beneficial. Moreover, combustion instability is dominated by convective flow fluctuations that impede motion of themore » spark or flame kernel toward the bulk of the fuel, coupled with low flame speeds due to locally lean mixtures surrounding the kernel. In SGSC engines using outwardly opening piezo-electric injectors, ignition and early flame growth are strongly influenced by the spray's characteristic recirculation vortex. For both injection systems, the spray and the intake/compression-generated flow field influence each other. Factors underlying the benefits of multi-pulse injection are identified. Finally, some unresolved questions include (1) the extent to which piezo-SGSC misfires are caused by failure to form a flame kernel rather than by flame-kernel extinction (as in multi-hole SGSC engines); (2) the relative contributions of partially premixed flame propagation and mixing-controlled combustion under the exceptionally late-injection conditions that permit SGSC operation on E85-like fuels with very low NOx and soot emissions; and (3) the effects of flow-field variability on later combustion, where fuel-air-residual mixing within the piston bowl becomes important.« less

  15. Assessment of ISLOCA risk-methodology and application to a combustion engineering plant

    SciTech Connect (OSTI)

    Kelly, D.L.; Auflick, J.L.; Haney, L.N.

    1992-04-01

    Inter-system loss-of-coolant accidents (ISLOCAs) have been identified as important contributors to offsite risk for some nuclear power plants. A methodology has been developed for identifying and evaluating plant-specific hardware designs, human factors issues, and accident consequence factors relevant to the estimation of ISOLOCA core damage frequency and risk. This report presents a detailed of description of the application of this analysis methodology to a Combustion Engineering plant.

  16. Invited Review. Combustion instability in spray-guided stratified-charge engines. A review

    SciTech Connect (OSTI)

    Fansler, Todd D.; Reuss, D. L.; Sick, V.; Dahms, R. N.

    2015-02-02

    Our article reviews systematic research on combustion instabilities (principally rare, random misfires and partial burns) in spray-guided stratified-charge (SGSC) engines operated at part load with highly stratified fuel -air -residual mixtures. Results from high-speed optical imaging diagnostics and numerical simulation provide a conceptual framework and quantify the sensitivity of ignition and flame propagation to strong, cyclically varying temporal and spatial gradients in the flow field and in the fuel -air -residual distribution. For SGSC engines using multi-hole injectors, spark stretching and locally rich ignition are beneficial. Moreover, combustion instability is dominated by convective flow fluctuations that impede motion of the spark or flame kernel toward the bulk of the fuel, coupled with low flame speeds due to locally lean mixtures surrounding the kernel. In SGSC engines using outwardly opening piezo-electric injectors, ignition and early flame growth are strongly influenced by the spray's characteristic recirculation vortex. For both injection systems, the spray and the intake/compression-generated flow field influence each other. Factors underlying the benefits of multi-pulse injection are identified. Finally, some unresolved questions include (1) the extent to which piezo-SGSC misfires are caused by failure to form a flame kernel rather than by flame-kernel extinction (as in multi-hole SGSC engines); (2) the relative contributions of partially premixed flame propagation and mixing-controlled combustion under the exceptionally late-injection conditions that permit SGSC operation on E85-like fuels with very low NOx and soot emissions; and (3) the effects of flow-field variability on later combustion, where fuel-air-residual mixing within the piston bowl becomes important.

  17. NREL: Transportation Research - Fuel Combustion Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Laboratory NREL's Fuel Combustion Laboratory focuses on characterizing fuels at the molecular level. This information can then be used to understand and predict a fuel's effect on engine performance and emissions. By understanding the effects of fuel chemistry on ignition, as well as the potential emissions impacts, we can develop fuels that enable more efficient engine designs, using both today's technology and future advanced combustion concepts. This lab supports the Renewable

  18. Rotary internal combustion engine and method of operation

    SciTech Connect (OSTI)

    Ballinger, M.S.

    1988-05-03

    A rotor is formed to include recesses each of which engages a portion of a rotary piston. The remaining portions of the rotary pistons project radially outwardly from the periphery of the rotor to a position contiguous the inner surface of a peripheral stator wall. The peripheral stator wall includes endwardly projecting lobes. The lobes are elongated axially of the engine and present convex surfaces of circular curvature which conform in size and shape to concave pockets formed in side portion of the rotary pistons. During rotation of the rotary assembly the piston pockets move into and then out from a meshing engagement with the lobes. One of the lobes carries an igniter. An explosive lean mixture is drawn into the side pocket of a piston as the piston moves past an inlet opening. This mixture is compressed by the engagement of the piston pocket and the lobe. Ignition of the compressed charged creates an explosive force acting on the rotor assembly, causing it to rotate.

  19. EERE Success Story—Private Company Uses EERE-Supported Chemistry Model to Substantially Improve Combustion Engine Simulation Software

    Broader source: Energy.gov [DOE]

    Convergent Science, Inc. (CSI) is using Lawrence Livermore National Laboratory’s Multi-Zone Combustion Model (MCM) to help automotive engineers develop the next generation of high-efficiency, low-emission vehicles.

  20. Modeling of reciprocating internal combustion engines for power generation and heat recovery

    SciTech Connect (OSTI)

    Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

    2013-02-01

    This paper presents a power generation and heat recovery model for reciprocating internal combustion engines (ICEs). The purpose of the proposed model is to provide realistic estimates of performance/efficiency maps for both electrical power output and useful thermal output for various capacities of engines for use in a preliminary CHP design/simulation process. The proposed model will serve as an alternative to constant engine efficiencies or empirical efficiency curves commonly used in the current literature for simulations of CHP systems. The engine performance/efficiency calculation algorithm has been coded to a publicly distributed FORTRAN Dynamic Link Library (DLL), and a user friendly tool has been developed using Visual Basic programming. Simulation results using the proposed model are validated against manufacturer’s technical data.

  1. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    had more section loss in the high water flue gas de-sulfurized condition (FGD) with 20% H2O and without FGD cases. The scale morphologies were 3-layer structures of Fe-Cr-O-S near...

  2. Proceedings of the 1996 spring technical conference of the ASME Internal Combustion Engine Division. Volume 2: Engine design and engine systems; ICE-Volume 26-2

    SciTech Connect (OSTI)

    Uzkan, T.

    1996-12-31

    Although the cost of the petroleum crude has not increased much within the last decade, the drive to develop internal combustion engines is still continuing. The basic motivation of this drive is to reduce both emissions and costs. Recent developments in computer chip production and information management technology have opened up new applications in engine controls and monitoring. The development of new information is continuing at a rapid pace. Some of these research and development results were presented at the 1996 Spring Technical Conference of the ASME Internal Combustion Engine Division in Youngstown, Ohio, April 21--24, 1996. The papers presented covered various aspects of the design, development, and application of compression ignition and spark ignition engines. The conference was held at the Holiday Inn Metroplex Complex and hosted by Altronic Incorporated of Girard, Ohio. The written papers submitted to the conference have been published in three conference volumes. Volume 2 includes the papers on the topics of engine design, engine systems, and engine user experience.

  3. Sandia Energy - DISI Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DISI Combustion Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry DISI Combustion DISI CombustionAshley Otero2015-10-28T02:44:30+00:00...

  4. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    SciTech Connect (OSTI)

    Kung, Steven; Rapp, Robert

    2014-08-31

    A comprehensive corrosion research project consisting of pilot-scale combustion testing and long-term laboratory corrosion study has been successfully performed. A pilot-scale combustion facility available at Brigham Young University was selected and modified to enable burning of pulverized coals under the operating conditions typical for advanced coal-fired utility boilers. Eight United States (U.S.) coals were selected for this investigation, with the test conditions for all coals set to have the same heat input to the combustor. In addition, the air/fuel stoichiometric ratio was controlled so that staged combustion was established, with the stoichiometric ratio maintained at 0.85 in the burner zone and 1.15 in the burnout zone. The burner zone represented the lower furnace of utility boilers, while the burnout zone mimicked the upper furnace areas adjacent to the superheaters and reheaters. From this staged combustion, approximately 3% excess oxygen was attained in the combustion gas at the furnace outlet. During each of the pilot-scale combustion tests, extensive online measurements of the flue gas compositions were performed. In addition, deposit samples were collected at the same location for chemical analyses. Such extensive gas and deposit analyses enabled detailed characterization of the actual combustion environments existing at the lower furnace walls under reducing conditions and those adjacent to the superheaters and reheaters under oxidizing conditions in advanced U.S. coal-fired utility boilers. The gas and deposit compositions were then carefully simulated in a series of 1000-hour laboratory corrosion tests, in which the corrosion performances of different commercial candidate alloys and weld overlays were evaluated at various temperatures for advanced boiler systems. Results of this laboratory study led to significant improvement in understanding of the corrosion mechanisms operating on the furnace walls as well as superheaters and reheaters in coal-fired boilers resulting from the coexistence of sulfur and chlorine in the fuel. A new corrosion mechanism, i.e., “Active Sulfidation Corrosion Mechanism,” has been proposed to account for the accelerated corrosion wastage observed on the furnace walls of utility boilers burning coals containing sulfur and chlorine. In addition, a second corrosion mechanism, i.e., “Active Sulfide-to-Oxide Corrosion Mechanism,” has been identified to account for the rapid corrosion attack on superheaters and reheaters. Both of the newly discovered corrosion mechanisms involve the formation of iron chloride (FeCl2) vapor from iron sulfide (FeS) and HCl, followed by the decomposition of FeCl2 via self-sustaining cycling reactions. For higher alloys containing sufficient chromium, the attack on superheaters and reheaters is dominated by Hot Corrosion in the presence of a fused salt. Furthermore, two stages of the hot corrosion mechanism have been identified and characterized in detail. The initiation of hot corrosion attack induced by molten sulfate leads to Stage 1 “acidic” fluxing and re-precipitation of the protective scale formed initially on the deposit-covered alloy surfaces. Once the protective scale is penetrated, Stage 2 Hot Corrosion is initiated, which is dominated by “basic” fluxing and re-precipitation of the scale in the fused salt. Based on the extensive corrosion information generated from this project, corrosion modeling was performed using non-linear regression analysis. As a result of the modeling efforts, two predictive equations have been formulated, one for furnace walls and the other for superheaters and reheaters. These first-of-the-kind equations can be used to estimate the corrosion rates of boiler tubes based on coal chemistry, alloy compositions, and boiler operating conditions for advanced boiler systems.

  5. Fuel-air mixing and combustion in a two-dimensional Wankel engine

    SciTech Connect (OSTI)

    Shih, T.I.P.; Schock, H.J.; Ramos, J.I.

    1987-01-01

    The effects of mixture stratification at the intake port and gaseous fuel injection on the flow field and fuel-air mixing in a two-dimensional rotary engine model have been investigated by means of a two-equation model of turbulence, an algebraic grid generation method and an approximate factorization time-linearized numerical technique. It is shown that the fuel distribution in the combustion chamber is a function of the air-fuel mixture fluctuations at the intake port. The fuel is advected by the flow field induced by the rotor and is concentrated near the leading apex during the intake stroke. During compression, the fuel concentration is highest near the trailing apex and lowest near the rotor. The penetration of gaseous fuel injected into the combustion chamber during the compression stroke increases with the injection velocity.

  6. Advanced engine management of individual cylinders for control of exhaust species

    DOE Patents [OSTI]

    Graves, Ronald L [Knoxville, TN; West, Brian H [Knoxville, TN; Huff, Shean P [Knoxville, TN; Parks, II, James E

    2008-12-30

    A method and system controls engine-out exhaust species of a combustion engine having a plurality of cylinders. The method typically includes various combinations of steps such as controlling combustion parameters in individual cylinders, grouping the individual cylinders into a lean set and a rich set of one or more cylinders, combusting the lean set in a lean combustion parameter condition having a lean air:fuel equivalence ratio, combusting the rich set in a rich combustion parameter condition having a rich air:fuel equivalence ratio, and adjusting the lean set and the rich set of one or more cylinders to generate net-lean combustion. The exhaust species may have elevated concentrations of hydrogen and oxygen.

  7. Computationally Efficient Modeling of High-Efficiency Clean Combustion

    Broader source: Energy.gov (indexed) [DOE]

    Engines | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace012_aceves_2011_o.pdf More Documents & Publications Simulation of High Efficiency Clean Combustion Engines and Detailed Chemical Kinetic Mechanisms Development Improving Combustion Software to Solve Detailed Chemical Kinetics for HECC Improved Solvers for Advanced Engine Combustion Simulation

  8. Caterpillar`s advanced reciprocating engine for distributed generation markets

    SciTech Connect (OSTI)

    Gerber, G.; Brandes, D.; Reinhart, M.; Nagel, G.; Wong, E.

    1999-11-01

    Competition in energy markets and federal and state policy advocating clean, advanced technologies as means to achieve environmental and global climate change goals are clear drivers to original equipment manufacturers of prime movers. Underpinning competition are the principle of consumer choice to facilitate retail competition, and the desire to improve system and grid reliability. Caterpillar`s Gas Engine Division is responding to the market`s demand for a more efficient, lower lifecycle cost engine with reduced emissions. Cat`s first generation TARGET engine will be positioned to effectively serve distributed generation and combined heat and power (CHP) applications. TARGET (The Advanced Reciprocating Gas Engine Technology) will embody Cat`s product attributes: durability, reliability, and competitively priced life cycle cost products. Further, Caterpillar`s nationwide, fully established dealer sales and service ensure continued product support subsequent to the sale and installation of the product.

  9. Combustion Analysis Software Package for Internal Combustion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Search Combustion Analysis Software Package for Internal Combustion Engines Colorado State University Contact CSU About This Technology Technology Marketing Summary ...

  10. Plasmatron Fuel Reformer Development and Internal Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications ...

  11. Advances in refrigeration and heat transfer engineering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-05-13

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been themore » most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).« less

  12. Advances in refrigeration and heat transfer engineering

    SciTech Connect (OSTI)

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-05-13

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been the most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).

  13. Solutions for VOC and HAPS control on natural gas fired internal combustion engines

    SciTech Connect (OSTI)

    Marcus, J.Z.; Sleigh, S.; Cotherman, R.

    1996-12-31

    Natural gas fired stationary internal combustion engines (IC engines) emit volatile organic compounds (VOC) and hazardous air pollutants (HAP) as part of their normal operations. VOC and HAP emissions are coming under increased scrutiny with the advent of such Clean Air Act Amendments of 1990 regulations as Title I`s Reasonably Available Control Technology (RACT), Title III`s Maximum Achievable Control Technology (MACT) and Title V`s Operating Permit Program (Title V). In addition, many states are imposing more stringent emission limits on these sources. These emissions may also contribute to the reportable chemicals from the total facility under SARA Title III. Numerous facilities nationwide are interested in reducing these emissions in order to comply with current requirements, to opt out of requirements or to reduce reportable chemicals. This paper will examine the source of these emissions, and discuss combustion control technologies and system operating flexibility, end-of-pipe control technologies, and system tuning opportunities which have the potential to reduce VOC and HAP emissions from IC engines. Data will be presented on potential emission reduction efficiencies achievable using the various control options. 7 refs., 4 tabs.

  14. Study of using oxygen-enriched combustion air for locomotive diesel engines

    SciTech Connect (OSTI)

    Poola, R.B.; Sekar, R.; Assanis, D.N.; Cataldi, G.R.

    1996-12-31

    A thermodynamic simulation is used to study the effects of oxygen-enriched intake air on the performance and nitrogen oxide (NO) emissions of a locomotive diesel engine. The parasitic power of the air separation membrane required to supply the oxygen-enriched air is also estimated. For a given constraint on peak cylinder pressure, the gross and net power output of an engine operating under different levels of oxygen enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in an increase in net engine power of approximately 13% when intake air with an oxygen content of 28% by volume is used and fuel injection timing is retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure can improve power by only 4%. If part of the significantly higher exhaust enthalpies available as a result of oxygen enrichment are recovered, the power requirements of the air separator membrane can be met, resulting in substantial net power improvements. Oxygen enrichment with its attendant higher combustion temperatures, reduces emissions of particulates and visible smoke but increases NO emissions (by up to three times at 26% oxygen content). Therefore, exhaust gas after-treatment and heat recovery would be required if the full potential of oxygen enrichment for improving the performance of locomotive diesel engines is to be realized.

  15. Apparatus and filtering systems relating to combustors in combustion turbine engines

    DOE Patents [OSTI]

    Johnson, Thomas Edward; Zuo, Baifang; Stevenson, Christian Xavier

    2012-07-24

    A combustor for a combustion turbine engine, the combustor that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; a screen; and a standoff comprising a raised area on an outer surface of the outer wall near the periphery of the windows; wherein the screen extends over the windows and is supported by the standoff in a raised position in relation to the outer surface of the outer wall and the windows.

  16. Advanced Tissue-engineered Human Ectypal Networks Analyzer (ATHENA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Opportunities » ATHENA Advanced Tissue-engineered Human Ectypal Networks Analyzer (ATHENA) LANS is gauging interest from industry to collaborate with LANS in advancing a next-gen in vitro platform for lead compound and toxicity screening. Submit your response by email by 11:59 PM MST on Friday, May 27, 2016. March 30, 2016 LANS is gauging interest from industry to collaborate with LANS in advancing a next-gen in vitro platform for lead compound and toxicity screening. Submit your

  17. Advanced development of rotary stratified charge 750 and 1500 HP military multi-fuel engines at Curtiss-Wright

    SciTech Connect (OSTI)

    Jones, C.

    1984-01-01

    During the period from 1977 to 1982, two and four rotor naturally aspirated Stratified Charge Rotary Combustion engines were under development for the U.S. Marine Corps. These engines are described and highlights of work conducted under the government ''Advanced Development'' contracts are discussed. The basic direct injected and spark ignited stratified charge technology was defined during 1973-1976 for automotive engine applications. It was then demonstrated that the unthrottled naturally aspirated Rotary could match indirect injected diesel fuel consumption, without regard to fuel cetane or octane rating. This same technology was scaled from the 60''/sup 3//rotor automotive engine module to the 350''/sup 3//rotor military engine size. In addition, parallel company-sponsored research efforts were undertaken to explore growth directions. Tests showed significant thermal efficiency improvement at lean air-fuel ratios. When turbocharged, high exhaust energy recovery of this ported engine provided induction airflow sufficient for increased output plus excess for operation at the lean mixture strengths of best combustion efficiency. With additive improvements in mechanical efficiency accruing to higher BMEP operation, the potential for fuel economy in the same range as direct injected diesels was demonstrated. These lightweight, compact, multi-fuel engines are believed to open new possiblities for lightweight, reliable, highly mobile and agile military fighting vehicles of the future.

  18. Combustion Kinetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Fuel Cycle Defense Waste Management Programs ... creating the first internal combustion engines, chemists ... need to know any chemistry beyond fuel + air heat ...

  19. Engineering development of advanced froth flotation. Volume 2, Final report

    SciTech Connect (OSTI)

    Ferris, D.D.; Bencho, J.R.; Torak, E.R.

    1995-03-01

    This report is an account of findings related to the Engineering and Development of Advanced Froth Flotation project. The results from benchscale and proof-of-concept (POC) level testing are presented and the important results from this testing are used to refine a conceptual design and cost estimate for a 20 TPH Semi-Works Facility incorporating the final proposed technology.

  20. An Analysis of the Impact of Selected Fuel Thermochemical Properties on Internal Combustion Engine Efficiency

    SciTech Connect (OSTI)

    Szybist, James P; Chakravathy, Kalyana; Daw, C Stuart

    2012-01-01

    In this study we model the effects of 23 different fuels on First and Second Law thermodynamic efficiency of an adiabatic internal combustion engine. First Law efficiency is calculated using lower heating value (LHV) while Second Law efficiency is calculated with exergy, which represents the inherent chemical energy available to produce propulsion. We find that First Law efficiency can deviate by as much as nine percentage points between fuels while Second Law efficiency exhibits a much smaller degree of variability. We also find that First and Second Law efficiency can be nearly the same for some fuels (methane and ethane) but differ substantially for other fuels (hydrogen and ethanol). The differences in First and Second Law efficiency are due to differences in LHV and exergy for a given fuel. In order to explain First Law efficiency differences between fuels as well as the differences between LHV and exergy, we introduce a new term: the molar expansion ratio (MER), defined as the ratio of product moles to reactant moles for complete stoichiometric combustion. We find that the MER is a useful expression for providing a physical explanation for fuel-specific efficiency differences as well as differences between First and Second Law efficiency. First and Second Law efficiency are affected by a number of other fuel-specific thermochemical properties, such as the ratio of specific heat and dissociation of combustion products.

  1. Retrospective Benefit-Cost Evaluation of U.S. DOE Vehicle Combustion Engine R&D Program: Impacts of a Cluster of Energy Technologies

    Broader source: Energy.gov [DOE]

    Retrospective Benefit-Cost Evaluation of U.S. DOE Vehicle Combustion Engine R&D Investments: Impacts of a Cluster of Energy Technologies, May 2010.

  2. Integrated Combined Heat and Power/Advanced Reciprocating Internal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications Development of an Improved Modular Landfill Gas Cleanup and...

  3. Method and apparatus for advanced staged combustion utilizing forced internal recirculation

    DOE Patents [OSTI]

    Rabovitser, Iosif K.; Knight, Richard A.; Cygan, David F.; Nester, Serguei; Abbasi, Hamid A.

    2003-12-16

    A method and apparatus for combustion of a fuel in which a first-stage fuel and a first-stage oxidant are introduced into a combustion chamber and ignited, forming a primary combustion zone. At least about 5% of the total heat output produced by combustion of the first-stage fuel and the first-stage oxidant is removed from the primary combustion zone, forming cooled first-stage combustion products. A portion of the cooled first-stage combustion products from a downstream region of the primary combustion zone is recirculated to an upstream region of primary combustion zone. A second-stage fuel is introduced into the combustion chamber downstream of the primary combustion zone and ignited, forming a secondary combustion zone. At least about 5% of the heat from the secondary combustion zone is removed. In accordance with one embodiment, a third-stage oxidant is introduced into the combustion chamber downstream of the secondary combustion zone, forming a tertiary combustion zone.

  4. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-12-31

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

  5. Technology Development for High Efficiency Clean Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    deer09stanton.pdf More Documents & Publications High Efficient Clean Combustion for SuperTruck Advanced Diesel Engine Technology Development for HECC Enabling High Efficiency...

  6. Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications

    DOE Patents [OSTI]

    Poola, Ramesh B.; Sekar, Ramanujam R.; Cole, Roger L.

    1997-01-01

    An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.

  7. Path to High Efficiency Gasoline Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Partially Premixed Combustion High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control Advanced Lean-Burn DI ...

  8. Mixing and flame structures inferred from OH-PLIF for conventional and low-temperature diesel engine combustion

    SciTech Connect (OSTI)

    Singh, Satbir; Musculus, Mark P.B.; Reitz, Rolf D.

    2009-10-15

    The structure of first- and second-stage combustion is investigated in a heavy-duty, single-cylinder optical engine using chemiluminescence imaging, Mie-scatter imaging of liquid-fuel, and OH planar laser-induced fluorescence (OH-PLIF) along with calculations of fluorescence quenching. Three different diesel combustion modes are studied: conventional non-diluted high-temperature combustion (HTC) with either (1) short or (2) long ignition delay, and (3) highly diluted low-temperature combustion (LTC) with early fuel injection. For the short ignition delay HTC condition, the OH fluorescence images show that second-stage combustion occurs mainly on the fuel jet periphery in a thickness of about 1 mm. For the long ignition delay HTC condition, the second-stage combustion zone on the jet periphery is thicker (5-6 mm). For the early-injection LTC condition, the second-stage combustion is even thicker (20-25 mm) and occurs only in the down-stream regions of the jet. The relationship between OH concentration and OH-PLIF intensity over a range of equivalence ratios is estimated from quenching calculations using collider species concentrations predicted by chemical kinetics simulations of combustion. The calculations show that both OH concentration and OH-PLIF intensity peak near stoichiometric mixtures and fall by an order of magnitude or more for equivalence ratios less than 0.2-0.4 and greater than 1.4-1.6. Using the OH fluorescence quenching predictions together with OH-PLIF images, quantitative boundaries for mixing are established for the three engine combustion modes. (author)

  9. High-speed laser-induced fluorescence and spark plug absorption sensor diagnostics for mixing and combustion studies in engines

    SciTech Connect (OSTI)

    Cundy, Michael; Schucht, Torsten; Thiele, Olaf; Sick, Volker

    2009-02-01

    Simultaneous high-speed in-cylinder measurements of laser-induced fluorescence of biacetyl as a fuel tracer and mid-infrared broadband absorption of fuel and combustion products (water and carbon dioxide) using a spark plug probe are compared in an optical engine. The study addresses uncertainties and the applicability of absorption measurements at a location slightly offset to the spark plug when information about mixing at the spark plug is desired. Absorbance profiles reflect important engine operation events, such as valve opening and closing, mixing, combustion, and outgassing from crevices.

  10. 2008 Annual Merit Review Results Summary - 7. Combustion Research |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 7. Combustion Research 2008 Annual Merit Review Results Summary - 7. Combustion Research DOE Vehicle Technologies Annual Merit Review PDF icon 2008_merit_review_7.pdf More Documents & Publications 2008 Annual Merit Review Results Summary - 8. High Efficiency Clean Combustion and Enabling Technologies 2008 Annual Merit Review Results Summary - 9. Emission Control and Aftertreatment 2012 Annual Merit Review Results Report - Advanced Combustion Engine Technologies

  11. Pressurized Combustion and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Software Computations Uncertainty Quantification Stochastic About CRF Transportation Energy Consortiums Engine Combustion Heavy Duty Heavy Duty Low-Temperature & Diesel Combustion ...

  12. Chemical Kinetic Models for HCCI and Diesel Combustion

    SciTech Connect (OSTI)

    Pitz, W J; Westbook, C K; Mehl, M

    2008-10-30

    Hydrocarbon fuels for advanced combustion engines consist of complex mixtures of hundreds or even thousands of different components. These components can be grouped into a number of chemically distinct classes, consisting of n-paraffins, branched paraffins, cyclic paraffins, olefins, oxygenates, and aromatics. Biodiesel contains its own unique chemical class called methyl esters. The fractional amounts of these chemical classes are quite different in gasoline, diesel fuel, oil-sand derived fuels and bio-derived fuels, which contributes to the very different combustion characteristics of each of these types of combustion systems. The objectives of this project are: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

  13. Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine

    SciTech Connect (OSTI)

    Hanson, Reed M; Curran, Scott; Wagner, Robert M; Reitz, Rolf; Kokjohn, Sage

    2012-01-01

    Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that that produces low NO{sub x} and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom machined pistons designed for RCCI operation. The pistons were designed with assistance from the KIVA 3V computational fluid dynamics (CFD) code. By using a genetic algorithm optimization, in conjunction with KIVA, the piston bowl profile was optimized for dedicated RCCI operation to reduce unburned fuel emissions and piston bowl surface area. By reducing these parameters, the thermal efficiency of the engine was improved while maintaining low NOx and PM emissions. Results show that with the new piston bowl profile and an optimized injection schedule, RCCI brake thermal efficiency was increased from 37%, with the stock EURO IV configuration, to 40% at the 2,600 rev/min, 6.9 bar BMEP condition, and NOx and PM emissions targets were met without the need for exhaust after-treatment.

  14. Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Cho, Kukwon; Curran, Scott; Prikhodko, Vitaly Y; Sluder, Scott; Parks, II, James E; Wagner, Robert M

    2011-01-01

    An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

  15. Investigation of Diesel combustion using multiple injection strategies for idling after cold start of passenger-car engines

    SciTech Connect (OSTI)

    Payri, F.; Broatch, A.; Salavert, J.M.; Martin, J.

    2010-10-15

    A comprehensive investigation was carried out in order to better understand the combustion behaviour in a low compression ratio DI Diesel engine when multiple injection strategies are applied just after the engine cold starts in low temperature conditions (idling). More specifically, the aim of this study was twofold: on one hand, to understand the effect of the multiple injection strategies on the indicated mean effective pressure; on the other hand, to contribute to the understanding of combustion stability characterized by the coefficient of variation of indicated mean effective pressure. The first objective was fulfilled by analyzing the rate of heat release obtained by in-cylinder pressure diagnosis. The results showed that the timing of the pilot injection closest to the main injection was the most influential parameter based on the behaviour of the rate of heat release (regardless of the multiple injection strategy applied). For the second objective, the combustion stability was found to be correlated with the combustion centroid angle. The results showed a trend between them and the existence of a range of centroid angles where the combustion stability is strong enough. In addition, it was also evident that convenient split injection allows shifting the centroid to such a zone and improves combustion stability after start. (author)

  16. Collaboration in Research and Engineering for Advanced Technology.

    SciTech Connect (OSTI)

    Vrieling, P. Douglas

    2016-01-01

    SNL/CA proposes the Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) facility to support customer-driven national security mission requirements while demonstrating a fiscally responsible approach to cost-control. SNL/CA realizes that due to the current backlog of capital projects in NNSA that following the normal Line Item process to procure capital funding is unlikely and therefore SNL/CA will be looking at all options including Alternative Financing.

  17. Low Temperature Combustion with Thermo-Chemical Recuperation to Maximize In-Use Engine Efficiency

    SciTech Connect (OSTI)

    Nigel N. Clark; Francisco Posada; Clinton Bedick; John Pratapas; Aleksandr Kozlov; Martin Linck; Dmitri Boulanov

    2009-03-30

    The key to overcome Low Temperature Combustion (LTC) load range limitations in reciprocating engines is based on proper control over the thermo-chemical properties of the in-cylinder charge. The studied alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel is a reformed product of the primary fuel in the tank. It is proposed in this report that the secondary fuel can be produced using exhaust heat and Thermo-Chemical Recuperation (TCR). TCR for reciprocating engines is a system that employs high efficiency recovery of sensible heat from engine exhaust gas and uses this energy to transform fuel composition. The recuperated sensible heat is returned to the engine as chemical energy. Chemical conversions are accomplished through catalytic and endothermic reactions in a specially designed reforming reactor. An equilibrium model developed by Gas Technology Institute (GTI) for heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures. Laboratory results, at a steam/heptane mole ratio less than 2:1, confirm that low temperature reforming reactions, in the range of 550 K to 650 K, can produce 10-30% hydrogen (by volume, wet) in the product stream. Also, the effect of trading low mean effective pressure for displacement to achieve power output and energy efficiency has been explored by WVU. A zerodimensional model of LTC using heptane as fuel and a diesel Compression Ignition (CI) combustion model were employed to estimate pressure, temperature and total heat release as inputs for a mechanical and thermal loss model. The model results show that the total cooling burden on an LTC engine with lower power density and higher displacement was 14.3% lower than the diesel engine for the same amount of energy addition in the case of high load (43.57mg fuel/cycle). These preliminary modeling and experimental results suggest that the LTC-TCR combination may offer a high efficiency solution to engine operation. A single zone model using a detailed chemical kinetic mechanism was implemented in CHEMKIN and to study the effects of base fuel and steam-fuel reforming products on the ignition timing and heat release characteristics. The study was performed considering the reformed fuel species composition for total n-heptane conversion (ideal case) and also at the composition corresponding to a specific set of operational reforming temperatures (real case). The computational model confirmed that the reformed products have a strong influence on the low temperature heat release (LTHR) region, affecting the onset of the high temperature heat release (HTHR). The ignition timing was proportionally delayed with respect to the baseline fuel case when higher concentrations of reformed gas were used. For stoichiometric concentration of RG, it was found that by increasing the proportion of reformed fuel to total fuel (RG), from 0% to 30%, the amount of energy released during the LTHR regime, or HR{sub L}, was reduced by 48% and the ignition timing was delayed 10.4 CA degrees with respect to the baseline fuel case. For RG composition corresponding to certain operational reforming temperatures, it was found that the most significant effects on the HCCI combustion, regarding HR{sub L} reduction and CA50 delay, was obtained by RG produced at a reforming temperature range of 675 K-725 K.

  18. POD-based analysis of combustion images in optically accessible engines

    SciTech Connect (OSTI)

    Bizon, K.; Continillo, G.; Mancaruso, E.; Merola, S.S.; Vaglieco, B.M.

    2010-04-15

    This paper reports on 2D images of combustion-related luminosity taken in two optically accessible automobile engines of the most recent generation. The results are discussed to elucidate physical phenomena in the combustion chambers. Then, proper orthogonal decomposition (POD) is applied to the acquired images. The coefficients of the orthogonal modes are then used for the analysis of cycle variability, along with data of dynamic in-cylinder pressure and rate of heat release. The advantage is that statistical analysis can be run on a small number of scalar coefficients rather than on the full data set of pixel luminosity values. Statistics of the POD coefficients provide information on cycle variations of the luminosity field. POD modes are then discriminated by means of normality tests, to separate the mean from the coherent and the incoherent parts of the fluctuation of the luminosity field, in a non-truncated representation of the data. The morphology of the fluctuation components can finally be reconstructed by grouping coherent and incoherent modes. The structure of the incoherent component of the fluctuation is consistent with the underlying turbulent field. (author)

  19. SYMPOSIUM ON TURBULENCE AND COMBUSTION - SPECIAL SYMPOSIUM TO BRING TOGETHER TOP RESEARCHERS IN THE FIELDS OF FLUID TURBULENCE AND COMBUSTION TO PROMOTE ADVANCES IN TURBULENT, REACTING FLOWS

    SciTech Connect (OSTI)

    Caughey, David

    2010-10-08

    A Symposium on Turbulence and Combustion was held at Cornell University on August 3-4, 2009. The overall goal of the Symposium was to promote future advances in the study of turbulence and combustion, through an unique forum intended to foster interactions between leading members of these two research communities. The Symposium program consisted of twelve invited lectures given by world-class experts in these fields, two poster sessions consisting of nearly 50 presentations, an open forum, and other informal activities designed to foster discussion. Topics covered in the lectures included turbulent dispersion, wall-bounded flows, mixing, finite-rate chemistry, and others, using experiment, modeling, and computations, and included perspectives from an international community of leading researchers from academia, national laboratories, and industry.

  20. CONFIRMATORY SURVEY RESULTS FOR PORTIONS OF THE ABB COMBUSTION ENGINEERING SITE IN WINDSOR, CONNECTICUT DURING THE FALL OF 2011

    SciTech Connect (OSTI)

    Wade C. Adams

    2011-12-09

    From the mid-1950s until mid-2000, the Combustion Engineering, Inc. (CE) site in Windsor, Connecticut (Figure A-1) was involved in the research, development, engineering, production, and servicing of nuclear fuels, systems, and services. The site is currently undergoing decommissioning that will lead to license termination and unrestricted release in accordance with the requirements of the License Termination Rule in 10 CFR Part 20, Subpart E. Asea Brown Boveri Incorporated (ABB) has been decommissioning the CE site since 2001.