National Library of Energy BETA

Sample records for advanced coal technologies

  1. DOE-Supported Project Advances Clean Coal, Carbon Capture Technology |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Supported Project Advances Clean Coal, Carbon Capture Technology DOE-Supported Project Advances Clean Coal, Carbon Capture Technology January 29, 2013 - 12:00pm Addthis Washington, DC - Researchers at The Ohio State University (OSU) have successfully completed more than 200 hours of continuous operation of their patented Coal-Direct Chemical Looping (CDCL) technology - a one-step process to produce both electric power and high-purity carbon dioxide (CO2). The test, led

  2. Center for Advanced Separation Technology Honaker, Rick 01 COAL...

    Office of Scientific and Technical Information (OSTI)

    Advanced Separation Technology Honaker, Rick 01 COAL, LIGNITE, AND PEAT; 54 ENVIRONMENTAL SCIENCES The U.S. is the largest producer of mining products in the world. In 2011, U.S....

  3. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    SciTech Connect (OSTI)

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  4. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research

    SciTech Connect (OSTI)

    Speight, J.G.

    1992-01-01

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  5. Design manual for management of solid by-products from advanced coal technologies

    SciTech Connect (OSTI)

    1994-10-01

    Developing coal conversion technologies face major obstacles in byproduct management. This project has developed several management strategies based on field trials of small-scale landfills in an earlier phase of the project, as well as on published/unpublished sources detailing regulatory issues, current industry practice, and reuse opportunities. Field testing, which forms the basis for several of the disposal alternatives presented in this design manual, was limited to byproducts from Ca-based dry SO{sub 2} control technologies, circulating fluidized bed combustion ash, and bubbling bed fluidized bed combustion ash. Data on byproducts from other advanced coal technologies and on reuse opportunities are drawn from other sources (citations following Chapter 3). Field results from the 5 test cases examined under this project, together with results from other ongoing research, provide a basis for predictive modeling of long-term performance of some advanced coal byproducts on exposure to ambient environment. This manual is intended to provide a reference database and development plan for designing, permitting, and operating facilities where advanced coal technology byproducts are managed.

  6. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    SciTech Connect (OSTI)

    Spencer, D.F.

    1997-12-31

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  7. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  8. Technology status and project development risks of advanced coal power generation technologies in APEC developing economies

    SciTech Connect (OSTI)

    Lusica, N.; Xie, T.; Lu, T.

    2008-10-15

    The report reviews the current status of IGCC and supercritical/ultrasupercritical pulverized-coal power plants and summarizes risks associated with project development, construction and operation. The report includes an economic analysis using three case studies of Chinese projects; a supercritical PC, an ultrasupercritical PC, and an IGCC plant. The analysis discusses barriers to clean coal technologies and ways to encourage their adoption for new power plants. 25 figs., 25 tabs.

  9. Clean coal technologies market potential

    SciTech Connect (OSTI)

    Drazga, B.

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  10. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect (OSTI)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  11. Low-rank coal research: Volume 2, Advanced research and technology development: Final report

    SciTech Connect (OSTI)

    Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

    1987-04-01

    Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

  12. An analysis of markets for small-scale, advanced coal-combustion technology in Spain, Italy, and Turkey

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    This report describes the results of an in-depth analysis of markets for US-developed, advanced coal-combustion technology (ACT) in the residential, commercial, and industrial sectors of three countries -- Spain, Italy, and Turkey. These countries were chosen in a previous study, in which member countries of the Organization for Economic Cooperation and Development (OECD) were rated on eight factors influencing their propensity to use small-scale, US-developed ACT. 76 refs., 16 figs., 14 tabs.

  13. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    SciTech Connect (OSTI)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology Sour Pressure Swing Adsorption (PSA) to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  14. DOE's Advanced Coal Research, Development, and Demonstration Program to

    Office of Environmental Management (EM)

    Develop Low-carbon Emission Coal Technologies | Department of Energy Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies DOE's Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies March 11, 2009 - 3:18pm Addthis Statement of Victor K. Der, Acting Assistant Secretary, Office of Fossil Energy before the Subcommittee on Energy and Environment, Committee on Science and

  15. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    SciTech Connect (OSTI)

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  16. Center for Advanced Separation Technology (Technical Report)...

    Office of Scientific and Technical Information (OSTI)

    information resources in energy science and technology. ... new products, reduce production costs, and meet ... Advanced Pre-Combustion Clean Coal Technologies and ...

  17. Advanced CO{sub 2} Capture Technology for Low Rank Coal IGCC System

    SciTech Connect (OSTI)

    Alptekin, Gokhan

    2013-09-30

    The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO{sub 2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO{sub 2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO{sub 2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO{sub 2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO{sub 2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO{sub 2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in bituminous coal the net plant efficiency is about 2.4 percentage points higher than an Integrated Gasification Combined Cycle (IGCC) plant equipped with SelexolTM to capture CO{sub 2}. We also previously completed two successful field demonstrations: one at the National Carbon Capture Center (Southern- Wilsonville, AL) in 2011, and a second demonstration in fall of 2012 at the Wabash River IGCC plant (Terra Haute, IN). In this project, we first optimized the sorbent to catalyst ratio used in the combined WGS and CO{sub 2} capture process and confirmed the technical feasibility in bench-scale experiments. In these tests, we did not observe any CO breakthrough both during adsorption and desorption steps indicating that there is complete conversion of CO to CO{sub 2} and H{sub 2}. The overall CO conversions above 90 percent were observed. The sorbent achieved a total CO{sub 2} loading of 7.82 percent wt. of which 5.68 percent is from conversion of CO into CO{sub 2}. The results of the system analysis suggest that the TDA combined shift and high temperature PSA-based Warm Gas Clean-up technology can make a substantial improvement in the IGCC plant thermal performance for a plant designed to achieve near zero emissions (including greater than 90 percent carbon capture). The capital expenses are also expected to be lower than those of Selexol. The higher net plant efficiency and lower capital and operating costs result in substantial reduction in the COE for the IGCC plant equipped with the TDA combined shift and high temperature PSA-based carbon capture system.

  18. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    SciTech Connect (OSTI)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  19. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect (OSTI)

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, Chengliang.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof will lead to identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  20. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect (OSTI)

    Wang, Xiang-Huai.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof, are directed at identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  1. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect (OSTI)

    Wang, Xiang-Huai.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surfaces reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of the pyrite rejection in coal flotation. The product as well as their structure, the mechanism and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc., are directed at identifying the cause and possible solutions of the pyrite rejection problems in coal cleaning.

  2. Development of advanced, dry, SO{sub x}/NO{sub x} emission control technologies for high-sulfur coal. Final report, April 1, 1993--December 31, 1994

    SciTech Connect (OSTI)

    Amrhein, G.T.

    1994-12-23

    Dry Scrubbing is a common commercial process that has been limited to low- and medium-sulfur coal applications because high-sulfur coal requires more reagent than can be efficiently injected into the process. Babcock & Wilcox has made several advances that extend dry scrubbing technologies to higher sulfur coals by allowing deposit-free operation at low scrubber exit temperatures. This not only increases the amount of reagent that can be injected into the scrubber, but also increases SO{sub 2} removal efficiency and sorbent utilization. The objectives of this project were to demonstrate, at pilot scale, that advanced, dry-scrubbing-based technologies can attain the performance levels specified by the 1990 Clean Air Act Amendments for SO{sub 2} and NO{sub x} emissions while burning high-sulfur coal, and that these technologies are economically competitive with wet scrubber systems. The use of these technologies by utilities in and around Ohio, on new or retrofit applications, will ensure the future of markets for high-sulfur coal by creating cost effective options to coal switching.

  3. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992

    SciTech Connect (OSTI)

    Speight, J.G.

    1992-12-31

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  4. An analysis of markets for small-scale, advanced coal-combustion technology in Spain, Italy, and Turkey

    SciTech Connect (OSTI)

    Placet, M.; Gerry, P.A.; Kenski, D.M.; Kern, D.M.; Nehring, J.L.; Szpunar, C.B.

    1989-09-01

    This report discusses the examination of potential overseas markets for using small-scale, US-developed, advanced coal-combustion technologies (ACTs). In previous work, member countries of the Organization for Economic Cooperation and Development (OECD) were rated on their potential for using ACTs through a comprehensive screening methodology. The three most promising OECD markets were found to be Spain, Italy, and Turkey. This report provides in-depth analyses of these three selected countries. First, it addresses changes in the European Community with particular reference to the 1992 restructuring and its potential effect on the energy situation in Europe, specifically in the three subject countries. It presents individual country studies that examine demographics, economics, building infrastructures, and energy-related factors. Potential niches for ACTs are explored for each country through regional analyses. Marketing channels, strategies, and the trading environments in each country are also discussed. The information gathered indicates that Turkey is a most promising market, Spain is a fairly promising market, and Italy appears to be a somewhat limited market for US ACTs. 76 refs., 16 figs., 14 tabs.

  5. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  6. Health effects of coal technologies: research needs

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

  7. Commercialization of clean coal technologies

    SciTech Connect (OSTI)

    Bharucha, N.

    1994-12-31

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  8. International Experts on Clean Coal, Carbon Capture Technologies to Meet at Pittsburgh Coal Conference

    Broader source: Energy.gov [DOE]

    The role of fossil fuels in the global energy portfolio, reducing the environmental impacts of coal-based energy systems, and recent advances in clean coal technology are just some of the subjects that will be discussed at the 2012 International Pittsburgh Coal Conference to be held October 15-18 at the David L. Lawrence Convention Center in Pittsburgh, Pa.

  9. Advanced Coal Wind Hybrid: Economic Analysis

    SciTech Connect (OSTI)

    Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

    2008-11-28

    Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW transmission line. In the G+CC+CCS plant, coal is gasified into syngas and CO{sub 2} (which is captured). The syngas is burned in the combined cycle plant to produce electricity. The ACWH facility is operated in such a way that the transmission line is always utilized at its full capacity by backing down the combined cycle (CC) power generation units to accommodate wind generation. Operating the ACWH facility in this manner results in a constant power delivery of 3,000 MW to the load centers, in effect firming-up the wind generation at the project site.

  10. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Phase 2, Overfire air tests

    SciTech Connect (OSTI)

    Smith, L.L.; Hooper, M.P.

    1992-07-13

    This Phase 2 Test Report summarizes the testing activities and results for the second testing phase of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The second phase demonstrates the Advanced Overfire Air (AOFA) retrofit with existing Foster Wheeler (FWEC) burners. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data supported by short-term characterization data. Ultimately a fifty percent NO{sub x} reduction target using combinations of combustion modifications has been established for this project.

  11. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Smith, L.L.; Hooper, M.P. )

    1992-07-13

    This Phase 2 Test Report summarizes the testing activities and results for the second testing phase of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers. The second phase demonstrates the Advanced Overfire Air (AOFA) retrofit with existing Foster Wheeler (FWEC) burners. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO[sub x] combustion equipment through the collection and analysis of long-term emissions data supported by short-term characterization data. Ultimately a fifty percent NO[sub x] reduction target using combinations of combustion modifications has been established for this project.

  12. Development of an Advanced Deshaling Technology to Improve the Energy Efficiency of Coal Handling, Processing, and Utilization Operations

    SciTech Connect (OSTI)

    Rick Honaker; Gerald Luttrell

    2007-09-30

    The concept of using a dry, density-based separator to achieve efficient, near-face rock removal, commonly referred to as deshaling, was evaluated in several applications across the U.S.. Varying amounts of high-density rock exist in most run-of-mine feed. In the central Appalachian coalfields, a rock content exceeding 50% in the feed to a preparation plant is commonplace due to high amounts of out-of-seam dilution made necessary by extracting coal from thin seams. In the western U.S, an increase in out-of-seam dilution and environmental regulations associated with combustion emissions have resulted in a need to clean low rank coals and dry cleaning may be the only option. A 5 ton/hr mobile deshaling unit incorporating a density-based, air-table technology commercially known as the FGX Separator has been evaluated at mine sites located within the states of Utah, Wyoming, Texas, West Virginia, Virginia, Pennsylvania and Kentucky. The FGX technology utilizes table riffling principles with air as the medium. Air enters through the table and creates a fluidized bed of particles comprised of mostly fine, high density particles. The high density particle bed lifts the low-density coal particles to the top of the bed. The low-density coal moves toward the front of the table due to mass action and the downward slope of the table. The high-density particles settle through the fluidized particle bed and, upon making contact with the table, moves toward the back of the table with the assistance of table vibration. As a result, the low-density coal particles exit the front of the table closest to the feed whereas the high-density, high-ash content particles leave on the side and front of the table located at the farthest from the feed entry. At each test site, the run-of-mine feed was either directly fed to the FGX unit or pre-screened to remove the majority of the -6mm material. The surface moisture of the feed must be maintained below 9%. Pre-screening is required when the surface moisture of the feed coal exceeds the maximum limit. However, the content of -6mm in the feed to the FGX separator should be maintained between 10% and 20% to ensure an adequate fluidized bed. A parametric evaluation was conducted using a 3-level experimental design at each test site to identify the optimum separation performance and parameter values. The test data was used to develop empirical expressions that describe the response variables (i.e., mass yield and product ash content) as a function of the operating parameter values. From this process, it was established that table frequency and longitudinal slope are the most critical factors in controlling both mass yield and clean coal ash while the cross table slope was the least significant. Fan blower frequency is a critical parameter that controls mass yield. Although the splitter positions between product and middling streams and the middling and tailing streams were held constant during the tests, a separate evaluation indicated that performance is sensitive to splitter position within certain lengths of the table and insensitive in others. For a Utah bituminous coal, the FGX separator provided clean coal ash contents that ranged from a low of 8.57% to a high of 12.48% from a feed coal containing around 17% ash. From the 29 tests involved in the statistically designed test program, the average clean coal ash content was 10.76% while the tailings ash content averaged around 72%. One of the best separation performances achieved an ash reduction from 17.36% to 10.67% while recovering 85.9% of the total feed mass, which equated to an ash rejection value of around 47%. The total sulfur content was typically decreased from 1.61% to 1.49%. These performances were quantified by blending the middlings stream with the clean coal product. At a second Utah site, coal sources from three different bituminous coal seams were treated by the FGX deshaling unit. Three parameter values were varied based on the results obtained from Site No. 1 to obtain the optimum results shown in Table E-1. Approximately 9 tests w

  13. DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration

    Office of Environmental Management (EM)

    | Department of Energy DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration January 4, 2011 - 12:00pm Addthis Washington, DC - A novel technology that could help release some of the currently unusable energy in an estimated 2 billion tons of U.S. coal waste has been successfully demonstrated by a Department of Energy (DOE) supported project. The full-scale test of the advanced hyperbaric

  14. Clean coal technologies: A business report

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base.

  15. Measurement and modeling of advanced coal conversion processes

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. Brigham Young Univ., Provo, UT )

    1991-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  16. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993

    SciTech Connect (OSTI)

    Smith, V.E.

    1994-09-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  17. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect (OSTI)

    Janos Beer; Karen Obenshain

    2006-07-15

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  18. New coal dewatering technology turns sludge to powder

    SciTech Connect (OSTI)

    2009-03-15

    Virginian Tech's College of Engineering's Roe-Hoan Yoon and his group have developed a hyperbaric centrifuge that can dewater coal as fine as talcum powder. Such coal fines presently must be discarded by even the most advanced coal cleaning plants because of their high moisture content. The new technology can be used with the Microcel technology to remove ash, to re-mine the fine coal discarded to impoundments and to help minimize waste generation. Virginia Tech has received $1 million in funding from the US Department of State to also help the Indian coal industry produce a cleaner product. 1 photo.

  19. DOE - Fossil Energy: The Cleanest Coal Technology - A Real Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-Cleanest Coal Technology An Energy Lesson Cleaning Up Coal The Cleanest Coal Technology - a Real Gas! Don't think of coal as a solid black rock. Think of it as a mass of atoms. Most of the atoms are carbon. A few are hydrogen. And there are some others, like sulfur and nitrogen, mixed in. Chemists can take this mass of atoms, break it apart, and make new substances - like gas! - The Tampa Electric Polk Power Station - One of the most advanced - and cleanest - coal power plants in the world is

  20. Eight Advanced Coal Projects Chosen for Further Development by DOE's

    Office of Environmental Management (EM)

    University Coal Research Program | Department of Energy Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program July 5, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects will improve coal conversion and

  1. Clean Coal Technologies | Open Energy Information

    Open Energy Info (EERE)

    of harmful pollutants from coal, including mercury, sulfur and coal tars. References: Clean Coal Technologies1 This article is a stub. You can help OpenEI by expanding it....

  2. Clean Coal Technology Programs: Program Update 2007

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FE-0514 Clean Coal Technology Programs: Program Update 2007 Includes Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI) Projects As of September 2007 U.S. Department of Energy Assistant Secretary for Fossil Energy Washington, DC 20585 January 2008 T E C H N O L O G Y DOE/FE-0514 Clean Coal Technology Programs: Program Update 2007 Includes Clean Coal Technology Demonstration Program (CCTDP), Power Plant

  3. Treasury, Energy Departments Release New Advanced Coal Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Treasury, Energy Departments Release New Advanced Coal Project Tax Credit Applications for 2007-2008 Treasury, Energy Departments Release New Advanced Coal Project Tax Credit...

  4. Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992

    SciTech Connect (OSTI)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F.; Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C.; Hu, W.; Zou, Y.; Chen, W.; Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R.

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  5. Evaluation of technology modifications required to apply clean coal technologies in Russian utilities. Final report

    SciTech Connect (OSTI)

    1995-12-01

    The report describes the following: overview of the Russian power industry; electric power equipment of Russia; power industry development forecast for Russia; clean coal technology demonstration program of the US Department of Energy; reduction of coal TPS (thermal power station) environmental impacts in Russia; and base options of advanced coal thermal power plants. Terms of the application of clean coal technology at Russian TPS are discussed in the Conclusions.

  6. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. First annual report, September 1, 1990--August 30, 1991

    SciTech Connect (OSTI)

    Wang, Xiang-Huai

    1991-12-31

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof, are directed at identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  7. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quartery report, August 1994--November 1994

    SciTech Connect (OSTI)

    1994-12-01

    This first quarterly report describes work during the first three months of the University of Pittsburgh`s (Pitt`s) project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with Pitt on this project are Dravo Lime Company (DLC), Mill Service, Inc. (MSO and the Center for Hazardous Materials Research (CHMR)). The report states the goals of the project - both general and specific - and then describes the activities of the project team during the reporting period. All of this work has been organizational and developmental in nature. No data has yet been collected. Technical details and data will appear for the first time in the second quarterly report and be the major topic of subsequent reports.

  8. Advanced dry scrubbing on Ohio coals

    SciTech Connect (OSTI)

    Amrhein, G.T.; Kudlac, G.A.; Smith, P.V.

    1994-12-31

    The objective of this project is to demonstrate, at pilot scale, that advanced dry-scrubbing-based technologies can attain the performance levels specified by the 1990 Clean Air Act Amendments for SO{sub 2} emissions while burning high-sulfur Ohio coal, and that these technologies are economically competitive with wet scrubber systems. Dry scrubbing involves injecting an atomized mist of sorbent-containing slurry droplets into hot flue gas. The reaction products exit the scrubber as a dry powder that can be filtered from the gas and recycled or disposed. The project consists of testing an advanced dry scrubber system on two high sulfur Ohio coals. All testing will be conducted in the 5 MBtu pilot facility at B and W`s Alliance Research Center. The facility consists of a test furnace, a dry scrubber using a B and W DuraJet{trademark} two fluid atomizer, a pulse-jet baghouse, and an ash slaking system. Tests were conducted with and without recycling the solids collected from the baghouse. During recycle operation the solids were slurried with water and injected into the dry scrubber with the fresh lime slurry. Test results will be presented, including SO{sub 2} removal (70--99%), calcium to sulfur ratios (1.1--1.9), dry scrubber outlet temperatures (10--30 F), and system performance. An advanced feature of the project was the use of the B and W patented Droplet Impingement Device which removes large slurry droplets from the gas stream prior to the baghouse to prevent baghouse deposition. This allows operation at low approach temperatures.

  9. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Phase 3B LNB AOFA tests

    SciTech Connect (OSTI)

    Smith, L.L.; Larsen, L.L.

    1993-12-13

    This Innovative Clean Coal Technology II project seeks to evaluate NO{sub x} control techniques on a 500 MW(e) utility boiler. This report is provided to document the testing performed and results achieved during Phase 3B--Low NO{sub x} Burner Retrofit with Advanced Overfire Air (AOFA). This effort began in May 1993 following completion of Phase 3A--Low-NO{sub x} Burner Testing. The primary objective of the Phase 3B test effort was to establish LNB plus AOFA retrofit NO{sub x} emission characteristics under short-term well controlled conditions and under long-term normal system load dispatch conditions. In addition, other important performance data related to the operation of the boiler in this retrofit configuration were documented for comparison to those measured during the Phase 1 baseline test effort. Protocols for data collection and instrumentation operation were established during Phase 1 (see Phase 1 Baseline Tests Report).

  10. Advanced Hydrogen Transport Membrane for Coal Gasification

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Transport Membrane for Coal Gasification DE-FE0004908 Praxair, Inc. Advanced Hydrogen Transport Membrane for Coal Gasification Final Report October 2010 - September 2015 Joseph Schwartz and David Makuch Praxair, Inc. J. Douglas Way, Jason Porter, Neil Patki, and Madison Kelley Colorado School of Mines Josh Stanislowski and Scott Tolbert University of North Dakota - Energy and Environmental Research Center December 23, 2015 PREPARED FOR THE UNITED STATES DEPARTMENT OF ENERGY Under

  11. Development of an Advanced Fine Coal Suspension Dewatering Process

    SciTech Connect (OSTI)

    B. K. Parekh; D. P. Patil

    2008-04-30

    With the advancement in fine coal cleaning technology, recovery of fine coal (minus 28 mesh) has become an attractive route for the U.S. coal industry. The clean coal recovered using the advanced flotation technology i.e. column flotation, contains on average 20% solids and 80% water, with an average particle size of 35 microns. Fine coal slurry is usually dewatered using a vacuum dewatering technique, providing a material with about 25 to 30 percent moisture. The process developed in this project will improve dewatering of fine (0.6mm) coal slurry to less than 20 percent moisture. Thus, thermal drying of dewatered wet coal will be eliminated. This will provide significant energy savings for the coal industry along with some environmental benefits. A 1% increase in recovery of coal and producing a filter cake material of less than 20 % moisture will amount to energy savings of 1900 trillion Btu/yr/unit. In terms of the amount of coal it will be about 0.8% of the total coal being used in the USA for electric power generation. It is difficult to dewater the fine clean coal slurry to about 20% moisture level using the conventional dewatering techniques. The finer the particle, the larger the surface area and thus, it retains large amounts of moisture on the surface. The coal industry has shown some reluctance in using the advanced coal recovery techniques, because of unavailability of an economical dewatering technique which can provide a product containing less than 20% moisture. The U.S.DOE and Industry has identified the dewatering of coal fines as a high priority problem. The goal of the proposed program is to develop and evaluate a novel two stage dewatering process developed at the University of Kentucky, which involves utilization of two forces, namely, vacuum and pressure for dewatering of fine coal slurries. It has been observed that a fine coal filter cake formed under vacuum has a porous structure with water trapped in the capillaries. When this porous cake is subjected to pressure for a short time, the free water present is released from the filter cake. Laboratory studies have shown that depending on the coal type a filter cake containing about 15% moisture could be obtained using the two-stage filtration technique. It was also noted that applying intermittent breaks in vacuum force during cake formation, which disturbed the cake structure, helped in removing moisture from the filter cakes. In this project a novel approach of cleaning coal using column flotation was also developed. With this approach the feed capacity of the column is increased significantly, and the column was also able to recover coarser size coal which usually gets lost in the process. The outcome of the research benefits the coal industry, utility industry, and indirectly the general public. The benefits can be counted in terms of clean energy, cleaner environment, and lower cost power.

  12. Advanced uranium enrichment technologies

    SciTech Connect (OSTI)

    Merriman, R.

    1983-03-10

    The Advanced Gas Centrifuge and Atomic Vapor Laser Isotope Separation methods are described. The status and potential of the technologies are summarized, the programs outlined, and the economic incentives are noted. How the advanced technologies, once demonstrated, might be deployed so that SWV costs in the 1990s can be significantly reduced is described.

  13. DOE - Fossil Energy: Clean Coal Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-Clean Coal Technology An Energy Lesson Cleaning Up Coal The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada decided that something had to be done about the "acid rain" that was believed to be damaging rivers, lakes, forests, and buildings in both countries. Since many of the pollutants that formed "acid rain" were coming from big coal-burning power plants in the United States, the U.S. Government took the lead

  14. Clean Coal Technology Demonstration Program. Program update 1994

    SciTech Connect (OSTI)

    1995-04-01

    The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

  15. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, November 1994--February 1995

    SciTech Connect (OSTI)

    1995-03-01

    This second quarterly report describes work during the second three months of the University of Pittsburgh`s (Pitt`s) project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with Pitt on this project are Dravo Lime Company (DLC), Mill Service, Inc. (MSI) and the Center for Hazardous Materials Research (CHMR). The report describes the activities of the project team during the reporting period. The principal work has focussed upon the acquisition of by-product samples and their initial analysis. Other efforts during the second quarter have been directed toward identifying the first hazardous waste samples and preparing for their treatment and analysis. Relatively little data has yet been collected. Major presentation of technical details and data will appear for the first time in the third quarterly report. The activity on the project during the second quarter of Phase One, as presented in the following sections, has fallen into seven areas: (1) Acquiring by-products, (2) Analyzing by-products, (3) Identifying, analyzing and treating suitable hazardous wastes, (4) Carrying out the quality assurance/quality control program, (5) Developing background, and (6) Initiating public relations

  16. Clean coal technology programs: program update 2006

    SciTech Connect (OSTI)

    2006-09-15

    The purpose of the Clean Coal Technology Programs: Program Update 2006 is to provide an updated status of the DOE commercial-scale demonstrations of clean coal technologies (CCTs). These demonstrations are performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII) and the Clean Coal Power Initiative (CCPI). Program Update 2006 provides 1) a discussion of the role of clean coal technology demonstrations in improving the nation's energy security and reliability, while protecting the environment using the nation's most abundant energy resource - coal; 2) a summary of the funding and costs of the demonstrations; and 3) an overview of the technologies being demonstrated, with fact sheets for demonstration projects that are active, recently completed, withdrawn or ended, including status as of June 30 2006. 4 apps.

  17. Clean Coal Technology Programs: Program Update 2009

    SciTech Connect (OSTI)

    2009-10-01

    The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nation’s energy security and reliability, while protecting the environment using the nation’s most abundant energy resource—coal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

  18. Measurement and modeling of advanced coal conversion processes

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1992-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This technology is important to reduce the technical and economic risks inherent in utilizing coal, a feedstock whose variable and often unexpected behavior presents a significant challenge. This program will merge significant advances made at Advanced Fuel Research, Inc. (AFR) in measuring and quantitatively describing the mechanisms in coal conversion behavior, with technology being developed at Brigham Young University (BYU) in comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors. The foundation to describe coal-specific conversion behavior is AFR's Functional Group (FG) and Devolatilization, Vaporization and Crosslinking (DVC) models, developed under previous and on-going METC sponsored programs. These models have demonstrated the capability to describe the time dependent evolution of individual gas species, and the amount and characteristics of tar and char. The combined FG-DVC model will be integrated with BYU's comprehensive two-dimensional reactor model, PCGC-2, which is currently the most widely used reactor simulation for combustion or gasification. The program includes: (i) validation of the submodels by comparison with laboratory data obtained in this program, (ii) extensive validation of the modified comprehensive code by comparison of predicted results with data from bench-scale and process scale investigations of gasification, mild gasification and combustion of coal or coal-derived products in heat engines, and (iii) development of well documented user friendly software applicable to a workstation'' environment.

  19. Clean Coal Technology - From Research to Reality | Department of Energy

    Office of Environmental Management (EM)

    Clean Coal Technology - From Research to Reality Clean Coal Technology - From Research to Reality PDF icon Clean Coal Technology: From Research to Reality More Documents & Publications Fact Sheet: Clean Coal Technology Ushers In New Era in Energy Fact Sheet: Clean Coal Technology Ushers In New Era in Energy

  20. Advanced Optical Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Optical Technologies The Advanced Optical Components and Technologies program develops, creates and provides critical optical components for laser-based missions at LLNL. Past projects focused on kinoform phase plates for LLNL's Nova laser and on large-area, submicron-pitch holographic diffraction gratings for LLNL's Petawatt (1015 watt) ultrashort-pulse laser. Today, the optical team designs and fabricates a variety of custom diffractive optics for researchers worldwide. Included are

  1. Moving baseline for evaluation of advanced coal-extraction systems

    SciTech Connect (OSTI)

    Bickerton, C.R.; Westerfield, M.D.

    1981-04-15

    This document reports results from the initial effort to establish baseline economic performance comparators for a program whose intent is to define, develop, and demonstrate advanced systems suitable for coal resource extraction beyond the year 2000. Systems used in this study were selected from contemporary coal mining technology and from conservative conjectures of year 2000 technology. The analysis was also based on a seam thickness of 6 ft. Therefore, the results are specific to the study systems and the selected seam thickness. To be more beneficial to the program, the effort should be extended to other seam thicknesses. This document is one of a series which describe systems level requirements for advanced underground coal mining equipment. Five areas of performance are discussed: production cost, miner safety, miner health, environmental impact, and recovery efficiency. The projections for cost and production capability comprise a so-called moving baseline which will be used to assess compliance with the systems requirement for production cost. Separate projections were prepared for room and pillar, longwall, and shortwall technology all operating under comparable sets of mining conditions. This work is part of an effort to define and develop innovative coal extraction systems suitable for the significant resources remaining in the year 2000.

  2. Advanced coal-fired glass melting development program

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    The objective of Phase 1 of the current contract was to verify the technical feasibility and economic benefits of Vortec's advanced combustion/melting technology using coal as the fuel of choice. The objective of the Phase 2 effort was to improve the performance of the primary components and demonstrate the effective operation of a subscale process heater system integrated with a glass separator/reservoir. (VC)

  3. Milliken Clean Coal Technology Demonstration Project. Project performance summary, Clean Coal Technology Demonstration Program

    SciTech Connect (OSTI)

    None, None

    2002-11-30

    The New York State Electric & Gas Corporation (NYSEG) demonstrated a combination of technologies at its Milliken Station in Lansing, New York, designed to: (1) achieve high sulfur dioxide (SO2) capture efficiency, (2) bring nitrogen oxide (NOx) emissions into compliance with Clean Air Act Amendments of 1990 (CAAA), (3) maintain high station efficiency, and (4) eliminate waste water discharge. This project is part of the U.S. Department of Energy?s (DOE) Clean Coal Technology Demonstration Program (CCTDP) established to address energy and environmental concerns related to coal use. DOE sought cost-shared partnerships with industry through five nationally competed solicitations to accelerate commercialization of the most promising advance coal-based power generation and pollution control technologies. The CCTDP, valued at over five billion dollars, has significantly leveraged federal funding by forging effective partnerships founded on sound principles. For every federal dollar invested, CCTDP participants have invested two dollars. These participants include utilities, technology developers, state governments, and research organizations. The project presented here was one of nine selected in January 1991 from 33 proposals submitted in response to the program?s fourth solicitation.

  4. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership ...

  5. Clean coal technology demonstration program: Program update 1996-97

    SciTech Connect (OSTI)

    1997-10-01

    The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

  6. Clean Coal Technology Demonstration Program: Program update 1993

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a $6.9 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Technology has a vital role in ensuring that coal can continue to serve U.S. energy interests and enhance opportunities for economic growth and employment while meeting the national committment to a clean and healthy global environment. These technologies are being advanced through the CCT Program. The CCT Program supports three substantive national objectives: ensuring a sustainable environment through technology; enhancing energy efficiency and reliability; providing opportunities for economic growth and employment. The technologies being demonstrated under the CCT Program reduce the emissions of sulfur oxides, nitrogen oxides, greenhouse gases, hazardous air pollutants, solid and liquid wastes, and other emissions resulting from coal use or conversion to other fuel forms. These emissions reductions are achieved with efficiencies greater than or equal to currently available technologies.

  7. EESTech Aryan Clean Coal Technologies JV | Open Energy Information

    Open Energy Info (EERE)

    EESTech Aryan Clean Coal Technologies JV Jump to: navigation, search Name: EESTech & Aryan Clean Coal Technologies JV Place: India Product: India-based JV formed to develop clean...

  8. Clean Coal Technology Demonstration Program. Program update 1995

    SciTech Connect (OSTI)

    1996-04-01

    This document describes activities of the U.S. Clean Coal Technology Program for the time of 1985-1995. Various clean coal technologies are described.

  9. Environmental data energy technology characterizations: coal

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    This document describes the activities leading to the conversion of coal to electricity. Specifically, the activities consist of coal mining and beneficiation, coal transport, electric power generation, and power transmission. To enhance the usefulness of the material presented, resource requirements, energy products, and residuals for each activity area are normalized in terms of 10/sup 12/ Btus of energy produced. Thus, the total effect of producing electricity from coal can be determined by combining the residuals associated with the appropriate activity areas. Emissions from the coal cycle are highly dependent upon the type of coal consumed as well as the control technology assigned to the activity area. Each area is assumed to be equipped with currently available control technologies that meet environmental regulations. The conventional boiler, for example, has an electrostatic precipitator and a flue gas desulfurization scrubber. While this results in the removal of most of the particulate matter and sulfur dioxide in the flue gas stream, it creates other new environmental residuals -- solid waste, sludge, and ash. There are many different types of mined coal. For informational purposes, two types from two major producing regions, the East and the West, are characterized here. The eastern coal is typical of the Northern Appalachian coal district with a high sulfur and heat content. The western coal, from the Powder River Basin, has much less sulfur, but also has a substantially lower heating value.

  10. Clean Coal Technology Demonstration Program | Department of Energy

    Energy Savers [EERE]

    Clean Coal Technology Demonstration Program Clean Coal Technology Demonstration Program The Office of Fossil Energy's Clean Coal Technology Demonstration Program (1986-1993) laid the foundation for effective technologies now in use that have helped significantly lower emissions of sulfur dioxide (SO2), nitrogen oxides (NOx) and airborne particulates (PM10). PDF icon Clean Coal Technology Demonstration Program More Documents & Publications Return on Investment Sustainable Coal Use Clean Coal

  11. State perspectives on clean coal technology deployment

    SciTech Connect (OSTI)

    Moreland, T.

    1997-12-31

    State governments have been funding partners in the Clean Coal Technology program since its beginnings. Today, regulatory and market uncertainties and tight budgets have reduced state investment in energy R and D, but states have developed program initiatives in support of deployment. State officials think that the federal government must continue to support these technologies in the deployment phase. Discussions of national energy policy must include attention to the Clean Coal Technology program and its accomplishments.

  12. Six University Coal Research Projects Selected to Boost Advanced Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production | Department of Energy Six University Coal Research Projects Selected to Boost Advanced Energy Production Six University Coal Research Projects Selected to Boost Advanced Energy Production September 9, 2014 - 12:14pm Addthis The U.S. Department of Energy (DOE) selected six new projects under the University Coal Research Program (UCR) that seek long-term solutions for the clean and efficient use of our nation's abundant coal resources. The selected projects support the Office of

  13. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  14. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle ...

  15. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle ...

  16. Treasury, Energy Departments Release New Advanced Coal Project Tax Credit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications for 2007-2008 | Department of Energy Departments Release New Advanced Coal Project Tax Credit Applications for 2007-2008 Treasury, Energy Departments Release New Advanced Coal Project Tax Credit Applications for 2007-2008 June 7, 2007 - 1:40pm Addthis WASHINGTON, DC - The Treasury Department and the Department of Energy (DOE) released today new instructions for applying for the tax credits for advanced coal projects and gasification projects. The new instructions provide

  17. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  18. Coal liquefaction and gasification technologies

    SciTech Connect (OSTI)

    Mangold, E.C.; Muradaz, M.A.; Ouellette, R.P.; Farah, O.G.; Cheremisinoff, P.N.

    1982-01-01

    The state-of-the-art of selected coal liquefaction and gasification processes developed with support from the United States are reviewed. The Exxon Donor Solvent, H-Coal, SRC-I, SRC-II, Mobile Gasoline Synthesis, Fischer-Tropsch Synthesis, and Zinc Halide Hydrocracking liquefaction processes and the Slagging Lurgi, Texaco, Combustion Engineering, COGAS, and Shell-Koppers gasification processes are covered. Separate abstracts were prepared for 5 chapters.

  19. 5. annual clean coal technology conference: powering the next millennium. Volume 2

    SciTech Connect (OSTI)

    1997-06-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.

  20. Sixth clean coal technology conference: Proceedings. Volume 1: Policy papers

    SciTech Connect (OSTI)

    1998-12-01

    The Sixth Clean Coal Technology Conference focused on the ability of clean coal technologies (CCTs) to meet increasingly demanding environmental requirements while simultaneously remaining competitive in both international and domestic markets. Conference speakers assessed environmental, economic, and technical issues and identified approaches that will help enable CCTs to be deployed in an era of competing, interrelated demands for energy, economic growth, and environmental protection. Recognition was given to the dynamic changes that will result from increasing competition in electricity and fuel markets and industry restructuring, both domestically and internationally. Volume 1 contains 38 papers arranged under the following topical sections: International business forum branch; Keynote session; Identification of the issues; CCTs--Providing for unprecedented environmental concerns; Domestic competitive pressures for CCTs; Financing challenges for CCTs; New markets for CCTs; Clean coal for the 21st century: What will it take? Conclusions and recommendations. The clean coal technologies discussed include advanced pulverized coal-fired boilers, atmospheric fluidized-bed combustion (FBC), pressurized FBC, integrated gasification combined-cycle systems, pressurized pulverized coal combustion, integrated gasification fuel cell systems, and magnetohydrodynamic power generation.

  1. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates Conversion Technologies for Advanced Biofuels - Carbohydrates...

  2. Introduction of clean coal technology in Japan

    SciTech Connect (OSTI)

    Takashi Kiga

    2008-01-15

    Coal is an abundant resource, found throughout the world, and inexpensive and constant in price. For this reason, coal is expected to play a role as one of the energy supply sources in the world. The most critical issues to promote utilization of coal are to decrease the environmental load. In this report, the history, outline and recent developments of the clean coal technology in Japan, mainly the thermal power generation technology are discussed. As recent topics, here outlined first is the technology against global warming such as the improvement of steam condition for steam turbines, improvement of power generation efficiency by introducing combined generation, carbon neutral combined combustion of biomass, and carbon dioxide capture and storage (CCS) technology. Also introduced are outlines of Japanese superiority in application technology against NOx and SO{sub 2} which create acid rain, development status of the technical improvement in the handling method for coal which is a rather difficult solid-state resource, and utilization of coal ash.

  3. APEC experts` group on clean coal technology

    SciTech Connect (OSTI)

    1994-12-31

    The proceedings of the Asia-Pacific Economic Cooperation (APEC) Expert`s Group on Clean Coal Technology`s Technical Seminar held in Jakarta, Indonesia, from October 10-13, 1994 are presented. A total of 28 papers were presented at the seminar. These papers addressed issues of relevance to APEC member economies associated with the application of clean coal technologies (CCTs) and created a forum where information and ideas about CCTs and their application in the Asia-Pacific Region could be exchanged. A separate abstract was prepared for each paper for inclusion in the Energy Science and Technology Database.

  4. Measurement and modeling of advanced coal conversion processes. Annual report, October 1990--September 1991

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S.

    1991-12-31

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  5. New Projects Set to Target Efficiency, Environmental Gains at Advanced Coal

    Office of Environmental Management (EM)

    Gasification Facilities | Department of Energy Projects Set to Target Efficiency, Environmental Gains at Advanced Coal Gasification Facilities New Projects Set to Target Efficiency, Environmental Gains at Advanced Coal Gasification Facilities July 27, 2010 - 1:00pm Addthis Washington, D.C. -- Four projects that will demonstrate an innovative technology that could eventually enhance hydrogen fuel production, lower greenhouse gas (GHG) emissions, improve efficiencies and lower consumer

  6. Coal based electric generation comparative technologies report

    SciTech Connect (OSTI)

    Not Available

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  7. Advanced Reactor Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Reactor Technologies » Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative

  8. State Technologies Advancement Collaborative

    SciTech Connect (OSTI)

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

  9. 2011 Grants for Advanced Hydropower Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grants for Advanced Hydropower Technologies 2011 Grants for Advanced Hydropower Technologies 2011 Grants for Advanced Hydropower Technologies Click on an Awardee or Project Site...

  10. Performance and risks of advanced pulverized-coal plants

    SciTech Connect (OSTI)

    Nalbandian, H.

    2009-07-01

    This article is based on an in-depth report of the same title published by the IEA Clean Coal Centre, CCC/135 (see Coal Abstracts entry Sep 2008 00535). It discusses the commercial, developmental and future status of pulverized fuel power plants including subcritical supercritical and ultra supercritical systems of pulverized coal combustion, the most widely used technology in coal-fired power generation. 1 fig., 1 tab.

  11. Fossil Energy Advanced Technologies (2008 – 2009)

    Broader source: Energy.gov [DOE]

    Federal Loan Guarantees For Coal-based Power Generation And Industrial Gasification Facilities That Incorporate Carbon Capture And Sequestration Or Other Beneficial Uses Of Carbon And For Advanced Coal Gasification Facilities

  12. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect (OSTI)

    Groppo, J.G.; Parekh, B.K.; Rawls, P.

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  13. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect (OSTI)

    1998-03-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. The main activity during this granting period was a detailed comparative analysis of the suite of spectral editing results obtained on the Argonne coals. We have extended our fitting procedure to include carbons of all types in the analysis.

  14. Advanced Nuclear Technology: Advanced Light Water Reactors Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary Advanced Nuclear Technology: Advanced Light Water Reactors ...

  15. Advanced Hydrogen Transport Membrane for Coal Gasification (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect SciTech Connect Search Results Technical Report: Advanced Hydrogen Transport Membrane for Coal Gasification Citation Details In-Document Search Title: Advanced Hydrogen Transport Membrane for Coal Gasification A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of

  16. Coal slurry combustion and technology. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

  17. Regional Effort to Deploy Clean Coal Technologies

    SciTech Connect (OSTI)

    Gerald Hill; Kenneth Nemeth; Gary Garrett; Kimberly Sams

    2009-01-31

    The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts to Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.

  18. Environmental issues affecting clean coal technology deployment

    SciTech Connect (OSTI)

    Miller, M.J.

    1997-12-31

    The author outlines what he considers to be the key environmental issues affecting Clean Coal Technology (CCT) deployment both in the US and internationally. Since the international issues are difficult to characterize given different environmental drivers in various countries and regions, the primary focus of his remarks is on US deployment. However, he makes some general remarks, particularly regarding the environmental issues in developing vs. developed countries and how these issues may affect CCT deployment. Further, how environment affects deployment depends on which particular type of clean coal technology one is addressing. It is not the author`s intention to mention many specific technologies other than to use them for the purposes of example. He generally categorizes CCTs into four groups since environment is likely to affect deployment for each category somewhat differently. These four categories are: Precombustion technologies such as coal cleaning; Combustion technologies such as low NOx burners; Postcombustion technologies such as FGD systems and postcombustion NOx control; and New generation technologies such as gasification and fluidized bed combustion.

  19. Revolutionizing Clean Energy Technology with Advanced Composites |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Revolutionizing Clean Energy Technology with Advanced Composites Revolutionizing Clean Energy Technology with Advanced Composites Addthis

  20. The directory of US coal and technology export resources

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    The purpose of The Directory remains focused on offering a consolidated resource to potential buyers of US coal, coal technology, and expertise. This is consistent with the US policy on coal and coal technology trade, which continues to emphasize export market strategy implementation. Within this context, DOE will continue to support the teaming'' approach to marketing; i.e., vertically integrated large project teams to include multiple industry sectors, such as coal producers, engineering and construction firms, equipment manufacturers, financing and service organizations.

  1. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Fourth quarterly technical progress report, June 1, 1991--August 31, 1991

    SciTech Connect (OSTI)

    Wang, Xiang-Huai

    1991-12-31

    The objective of this project is to conduct extensive studies on the surfaces reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of the pyrite rejection in coal flotation. The product as well as their structure, the mechanism and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc., are directed at identifying the cause and possible solutions of the pyrite rejection problems in coal cleaning.

  2. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Third quarterly technical progress report, March 1, 1991--May 30, 1991

    SciTech Connect (OSTI)

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, Chengliang

    1991-12-31

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof will lead to identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  3. BASELINE DESIGN/ECONOMICS FOR ADVANCED FISCHER-TROPSCH TECHNOLOGY

    SciTech Connect (OSTI)

    1998-04-01

    Bechtel, along with Amoco as the main subcontractor, developed a Baseline design, two alternative designs, and computer process simulation models for indirect coal liquefaction based on advanced Fischer-Tropsch (F-T) technology for the U. S. Department of Energy's (DOE's) Federal Energy Technology Center (FETC).

  4. Coal Technology '80. Volume 5. Synthetic fuels from coal. Volume 6. Industrial/utility applications for coal

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The 3rd international coal utilization exhibition and conference Coal Technology '80 was held at the Astrohall, Houston, Texas, November 18-20, 1980. Volume 5 deals with coal gasification and coal liquefaction. Volume 6 deals with fluidized-bed combustion of coal, cogeneration and combined-cycle power plants, coal-fuel oil mixtures (COM), chemical feedstocks via coal gasification and Fischer-Tropsch synthesis. Thirty-six papers have been entered individually into EDB and seven also into ERA; three had been entered previously from other sources. (LTN)

  5. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect (OSTI)

    1997-09-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. The main activity during this granting period was a completion of a detailed comparative analysis of the suite of spectral editing techniques developed in our laboratory for this purpose. The appended report is a manuscript being submitted to the Journal of Magnetic Resonance on this subject.

  6. Advancing Clean Energy Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    DOE/EERE Solar Energy Technologies Program Fact Sheet - Advancing Clean Energy Technology, May 2010.

  7. Advanced Green Technologies | Open Energy Information

    Open Energy Info (EERE)

    Green Technologies Jump to: navigation, search Name: Advanced Green Technologies Place: Fort Lauderdale, Florida Zip: 33311 Product: Advanced Green Technologies is a US-based...

  8. Advanced Window and Shading Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eleanor Lee, eslee@lbl.gov Lawrence Berkeley National Laboratory US-China Clean Energy Research Center Building Energy Efficiency Consortium Advanced Window and Shading Technologies 2014 Building Technologies Office Peer Review INSERT PROJECT SPECIFIC PHOTO (replacing this shape) 2 Project Summary Timeline: Start date: January 2010 Planned end date: December 2015 Key Milestones 1. Develop and evaluate energy impacts of emerging fenestration technologies in LBNL's full-scale outdoor Advanced

  9. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    SciTech Connect (OSTI)

    Not Available

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  10. Report on Audit of Activities Designed to Recover the Taxpayers' Investment in the Clean Coal Technology Program, IG-0391

    Energy Savers [EERE]

    June 6, 1996 REPLY TO ATTN OF: IG-1 SUBJECT: INFORMATION: Report on "Audit of Department of Energy's Activities Designed to Recover the Taxpayers' Investment in the Clean Coal Technology Program" TO: The Secretary BACKGROUND: In 1985, the Congress directed the Department of Energy to implement a Clean Coal Technology Program. The purpose of this Departmental initiative is to successfully demonstrate a new generation of advanced coal-based technologies. As a part of the program, the

  11. EIS-0146: Programmatic for Clean Coal Technology Demonstration Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    This programmatic environmental impact statement assesses the environmental impacts of continuing the Clean Coal Technology Demonstration Program involving the selection, for cost-shared federal funding, of one or more clean coal projects proposed by the private sector.

  12. Innovative Drying Technology Extracts More Energy from High Moisture Coal

    Broader source: Energy.gov [DOE]

    An innovative coal-drying technology that will extract more energy from high moisture coal at less cost and simultaneously reduce potentially harmful emissions is ready for commercial use after successful testing at a Minnesota electric utility.

  13. Vehicle Technologies Office Merit Review 2015: Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Vehicle Lab Benchmarking (L1&L2) Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2) Presentation given by Argonne ...

  14. Vehicle Technologies Office Merit Review 2014: Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Vehicle Lab Benchmarking - Level 1 Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking - Level 1 Presentation given by ...

  15. Advanced clean combustion technology in Shanxi province

    SciTech Connect (OSTI)

    Xie, K.-C.

    2004-07-01

    Biomass energy resources in China are first described, along with biomass gasification R & D now underway. In Shanxi province biomass and other regenerative energy is relatively little used but coal resources are large. Hence Shanxi is mainly developing clean coal technology to meet its economic and environmental protection requirements. Clean combustion research at Taiyuan University of Technology includes cofiring of coal and RDF in FBC, gas purification and adsorption, fundamentals of plasma-aided coal pyrolysis and gasification and coal derived liquid fuels from synthesis gas. 5 refs.

  16. Advanced progress concepts for direct coal liquefaction

    SciTech Connect (OSTI)

    Anderson, R.; Derbyshire, F.; Givens, E.

    1995-09-01

    Given the low cost of petroleum crude, direct coal liquefaction is still not an economically viable process. The DOE objectives are to further reduce the cost of coal liquefaction to a more competitive level. In this project the primary focus is on the use of low-rank coal feedstocks. A particular strength is the use of process-derived liquids rather than model compound solvents. The original concepts are illustrated in Figure 1, where they are shown on a schematic of the Wilsonville pilot plant operation. Wilsonville operating data have been used to define a base case scenario using run {number_sign}263J, and Wilsonville process materials have been used in experimental work. The CAER has investigated: low severity CO pretreatment of coal for oxygen rejection, increasing coal reactivity and mg inhibiting the propensity for regressive reactions; the application of more active. Low-cost Fe and Mo dispersed catalysts; and the possible use of fluid coking for solids rejection and to generate an overhead product for recycle. CONSOL has investigated: oil agglomeration for coal ash rejection, for the possible rejection of ash in the recycled resid, and for catalyst addition and recovery; and distillate dewaxing to remove naphthenes and paraffins, and to generate an improved quality feed for recycle distillate hydrogenation. At Sandia, research has been concerned with the production of active hydrogen donor distillate solvent fractions produced by the hydrogenation of dewaxed distillates and by fluid coking via low severity reaction with H{sub 2}/CO/H{sub 2}O mixtures using hydrous metal oxide and other catalysts.

  17. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap Workshop Innovative Topics for...

  18. Technology Advancements for Next Generation Falling Particle...

    Office of Scientific and Technical Information (OSTI)

    Technology Advancements for Next Generation Falling Particle Receivers. Citation Details In-Document Search Title: Technology Advancements for Next Generation Falling Particle...

  19. Advancing Solar Through Photovoltaic Technology Innovations ...

    Energy Savers [EERE]

    Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity ...

  20. Three Offshore Wind Advanced Technology Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding September ...

  1. TRC Advanced Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Logo: TRC Advanced Technologies Inc Name: TRC Advanced Technologies Inc Address: 8700 Commerce Park Place: Houston, Texas Zip: 77036 Region: Texas Area Sector: Solar Product:...

  2. Voluntary Protection Program Onsite Review, Advanced Technologies...

    Office of Environmental Management (EM)

    Advanced Technologies and Laboratories, Inc., Hanford - Feb 2014 Voluntary Protection Program Onsite Review, Advanced Technologies and Laboratories, Inc., Hanford - Feb 2014...

  3. Energy Storage - Advanced Technology Development Merit Review...

    Energy Savers [EERE]

    Advanced Technology Development Merit Review Energy Storage - Advanced Technology Development Merit Review This document is a summary of the evaluation and comments provided by the ...

  4. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research and...

  5. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research...

  6. Advanced Technology Vehicles Manufacturing Incentive Program | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles manufacturing incentive program. PDF icon Advanced Technology Vehicles Manufacturing Incentive Program More Documents & Publications Advanced Technology Vehicles Manufacturing Incentive Program MEMA: Comments MEMA: Letter

  7. CENTER FOR ADVANCED SEPARATION TECHNOLOGY (CAST) PROGRAM

    SciTech Connect (OSTI)

    Yoon, Roe-Hoan; Hull, Christopher

    2014-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations.

  8. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel...

  9. Gas Technology Institute (Partnership for Advanced Residential...

    Open Energy Info (EERE)

    Technology Institute (Partnership for Advanced Residential Retrofit) Jump to: navigation, search Name: Gas Technology Institute Place: Des Plaines, IL Website:...

  10. Advanced Particulate Filter Technologies for Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Specific ...

  11. DOE - Fossil Energy: Introduction to Coal Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introduction An Energy Lesson Cleaning Up Coal COAL is our most abundant fossil fuel. The United States has more coal than the rest of the world has oil. There is still enough coal underground in this country to provide energy for the next 200 to 300 years. But coal is not a perfect fuel. Trapped inside coal are traces of impurities like sulfur and nitrogen. When coal burns, these impurities are released into the air. While floating in the air, these substances can combine with water vapor (for

  12. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 1

    SciTech Connect (OSTI)

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume I contains papers presented at the following sessions: opening commentaries; changes in the market and technology drivers; advanced IGCC systems; advanced PFBC systems; advanced filter systems; desulfurization system; turbine systems; and poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  13. DOE Selects Projects to Advance Technologies for the Co-Production of Power

    Office of Environmental Management (EM)

    and Hydrogen, Fuels or Chemicals from Coal-Biomass Feedstocks | Department of Energy to Advance Technologies for the Co-Production of Power and Hydrogen, Fuels or Chemicals from Coal-Biomass Feedstocks DOE Selects Projects to Advance Technologies for the Co-Production of Power and Hydrogen, Fuels or Chemicals from Coal-Biomass Feedstocks August 18, 2010 - 1:00pm Addthis Washington, DC - Eight projects that will focus on gasification of coal/biomass to produce synthetic gas (syngas) have been

  14. Advanced Vehicle Technologies Awards | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon Microsoft Word - VTP $175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 File AdvancedVehiclesTechnologiesAwardsMap.pptx More Documents & Publications Advanced Vehicle Technologies Awards Table

  15. Clean coal technology. Coal utilisation by-products

    SciTech Connect (OSTI)

    2006-08-15

    The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as coal utilisation by-products, or CUBs. More than 40% of CUBs were sold or reused in the USA in 2004 compared to less than 25% in 1996. A goal of 50% utilization has been established for 2010. The American Coal Ash Association (ACCA) together with the US Department of Energy's Power Plant Improvement Initiative (PPPI) and Clean Coal Power Initiative (CCPI) sponsor a number of projects that promote CUB utilization. Several are mentioned in this report. Report sections are: Executive summary; Introduction; Where do CUBs come from?; Market analysis; DOE-sponsored CUB demonstrations; Examples of best-practice utilization of CUB materials; Factors limiting the use of CUBs; and Conclusions. 14 refs., 1 fig., 5 tabs., 14 photos.

  16. Clean Coal Technology Programs: Program Update 2003 (Volume 1)

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2003-12-01

    Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  17. Clean Coal Technology Programs: Completed Projects (Volume 2)

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2003-12-01

    Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  18. Advanced Reactor Technology Documents | Department of Energy

    Energy Savers [EERE]

    Nuclear Reactor Technologies » Advanced Reactor Technologies » Advanced Reactor Technology Documents Advanced Reactor Technology Documents January 30, 2013 Advanced Reactor Concepts Technical Review Panel Report This report documents the establishment of a technical review process and the findings of the Advanced Reactor Concepts (ARC) Technical Review Panel (TRP).1 The intent of the process is to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D

  19. Proceedings, twenty-fourth annual international Pittsburgh coal conference

    SciTech Connect (OSTI)

    2007-07-01

    Topics covered include: gasification technologies; coal production and preparation; combustion technologies; environmental control technologies; synthesis of liquid fuels, chemicals, materials and other non-fuel uses of coal; hydrogen from coal; advanced synthesis gas cleanup; coal chemistry, geosciences and resources; Fischer-Tropsch technology; coal and sustainability; global climate change; gasification (including underground gasification); materials, instrumentation and controls; and coal utilisation byproducts.

  20. The 1986-93 Clean Coal Technology Program | Department of Energy

    Energy Savers [EERE]

    1986-93 Clean Coal Technology Program The 1986-93 Clean Coal Technology Program Begun in 1986, the Clean Coal Technology Program was the most ambitious government-industry ...

  1. Fact Sheet: Clean Coal Technology Ushers In New Era in Energy | Department

    Office of Environmental Management (EM)

    of Energy Clean Coal Technology Ushers In New Era in Energy Fact Sheet: Clean Coal Technology Ushers In New Era in Energy A fact sheet on Clean Coal technology of the future. PDF icon Fact Sheet: Clean Coal Technology Ushers In New Era in Energy More Documents & Publications Fact Sheet: Clean Coal Technology Ushers In New Era in Energy Clean Coal Technology - From Research to Reality

  2. Chapter 4: Advancing Clean Electric Power Technologies | Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The advanced plant technologies are combined with carbon capture and storage (CCS) ... the cost of capturing carbon with CCS technologies compared to conventional systems. ...

  3. Measurement and modeling of advanced coal conversion processes. Twenty-sixth quarterly report, January 1, 1993--March 31, 1993

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S.

    1993-09-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This technology is important to reduce the technical and economic risks inherent in utilizing coal, a feedstock whose variable and often unexpected behavior presents a significant challenge. This program will merge significant advances made at Advanced Fuel Research, Inc. (AFR) in measuring and quantitatively describing the mechanisms in coal conversion behavior, with technology being developed at Brigham Young University (BYU) in comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors. The program includes: (i) validation of the submodels by comparison with laboratory data obtained in this program, (ii) extensive validation of the modified comprehensive code by comparison of predicted results with data from bench-scale and process scale investigations of gasification, mild gasification and combustion of coal or coal-derived products in heat engines, and (iii) development of well documented user friendly software applicable to a ``workstation`` environment. Success in this program will be a major step in improving the predictive capabilities for coal conversion processes including: Demonstrated accuracy and reliability and a generalized ``first principles`` treatment of coals based on readily obtained composition data.

  4. Coal-fired power generation: Proven technologies and pollution control systems

    SciTech Connect (OSTI)

    Balat, M.

    2008-07-01

    During the last two decades, significant advances have been made in the reduction of emissions from coal-fired power generating plants. New technologies include better understanding of the fundamentals of the formation and destruction of criteria pollutants in combustion processes (low nitrogen oxides burners) and improved methods for separating criteria pollutants from stack gases (FGD technology), as well as efficiency improvements in power plants (clean coal technologies). Future demand for more environmentally benign electric power, however, will lead to even more stringent controls of pollutants (sulphur dioxide and nitrogen oxides) and greenhouse gases such as carbon dioxide.

  5. Conversion Technologies for Advanced Biofuels - Carbohydrates Production

    Office of Environmental Management (EM)

    | Department of Energy Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production. PDF icon ctab_webinar_carbohydrates_production.pdf More Documents & Publications Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading

  6. Vehicle Technologies Office: 2012 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress ...

  7. Subsea completion technology needs advances

    SciTech Connect (OSTI)

    Ledbetter, R.

    1995-09-18

    Subsea technology needs further advances to reduce operational costs before operators will expand the use of subsea well completions in the Gulf of Mexico. They will continue to choose surface completion-oriented systems as long as these are more economical operationally than subsea system. Designs of subsea equipment such as trees, connectors, control pods, umbilicals, and flow lines, must bring about reductions in the cost of both installation and workover compatibility. Remote operated vehicle (ROV) manipulation is one avenue that should be exploited. The bottom line is that significant cooperation between equipment manufacturers and ROV companies is needed to develop advanced ROV technology, and operators should be involved to help guide operational strategies.

  8. Guiding SSL Technology Advances | Department of Energy

    Energy Savers [EERE]

    Guiding SSL Technology Advances Guiding SSL Technology Advances PDF icon Guiding Solid-State Lighting Technology Advances More Documents & Publications Doing Business with DOE's Solid-State Lighting Program Doing Business with DOE's Solid-State Lighting Program SSL Technology Application R&D

  9. Clean coal technologies: Research, development, and demonstration program plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  10. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    SciTech Connect (OSTI)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri, John; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Liber, Pawel; Lopez-Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-03-30

    The purpose of this project was to evaluate the ability of advanced low rank coal gasification technology to cause a significant reduction in the COE for IGCC power plants with 90% carbon capture and sequestration compared with the COE for similarly configured IGCC plants using conventional low rank coal gasification technology. GE’s advanced low rank coal gasification technology uses the Posimetric Feed System, a new dry coal feed system based on GE’s proprietary Posimetric Feeder. In order to demonstrate the performance and economic benefits of the Posimetric Feeder in lowering the cost of low rank coal-fired IGCC power with carbon capture, two case studies were completed. In the Base Case, the gasifier was fed a dilute slurry of Montana Rosebud PRB coal using GE’s conventional slurry feed system. In the Advanced Technology Case, the slurry feed system was replaced with the Posimetric Feed system. The process configurations of both cases were kept the same, to the extent possible, in order to highlight the benefit of substituting the Posimetric Feed System for the slurry feed system.

  11. Center for Advanced Separation Technology (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Technical Report: Center for Advanced Separation Technology Citation Details In-Document Search Title: Center for Advanced Separation Technology The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation's GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry

  12. Center for Advanced Separation Technology (Technical Report) | SciTech

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connect Center for Advanced Separation Technology Citation Details In-Document Search Title: Center for Advanced Separation Technology The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation's GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well

  13. Regional price targets appropriate for advanced coal extraction. [Forecasting to 1985 and 2000; USA; Regional analysis

    SciTech Connect (OSTI)

    Terasawa, K.L.; Whipple, D.W.

    1980-12-01

    The object of the study is to provide a methodology for predicting coal prices in regional markets for the target time frames 1985 and 2000 that could subsequently be used to guide the development of an advanced coal extraction system. The model constructed for the study is a supply and demand model that focuses on underground mining, since the advanced technology is expected to be developed for these reserves by the target years. The supply side of the model is based on coal reserve data generated by Energy and Environmental Analysis, Inc. (EEA). Given this data and the cost of operating a mine (data from US Department of Energy and Bureau of Mines), the Minimum Acceptable Selling Price (MASP) is obtained. The MASP is defined as the smallest price that would induce the producer to bring the mine into production, and is sensitive to the current technology and to assumptions concerning miner productivity. Based on this information, market supply curves can then be generated. On the demand side of the model, demand by region is calculated based on an EEA methodology that emphasizes demand by electric utilities and demand by industry. The demand and supply curves are then used to obtain the price targets. This last step is accomplished by allocating the demands among the suppliers so that the combined cost of producing and transporting coal is minimized.

  14. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 2

    SciTech Connect (OSTI)

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume II contains papers presented at the following sessions: filter technology issues; hazardous air pollutants; sorbents and solid wastes; and membranes. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  15. Advanced Thermoelectric Materials and Generator Technology for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM ...

  16. Advanced Diesel Engine and Aftertreatment Technology Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Aftertreatment Technology Development for Tier 2 Emissions Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003 DEER Conference...

  17. Revolutionizing Clean Energy Technology with Advanced Composites

    SciTech Connect (OSTI)

    Hockfield, Susan; Holliday Jr, Charles O.; Markell, Brad

    2015-01-13

    Energy conservation and manufacturing leaders discuss manufacturing products with advance composites to revolutionize the future with clean energy technology.

  18. University Program in Advanced Technology | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Facility Operations and User Support Computational Systems & Software Environment Verification & Validation Physics and Engineering Models Integrated Codes Advanced Technology ...

  19. Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000

    SciTech Connect (OSTI)

    2000-09-01

    The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.

  20. Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading |

    Office of Environmental Management (EM)

    Department of Energy Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. PDF icon ctab_webinar_carbohydrates_upgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap Workshop Innovative Topics for Advanced Biofuels

  1. Demonstration of Innovative Applications of Technology for the CT-121 FGD Process. Project Performance Summary, Clean Coal Technology Demonstration Project

    SciTech Connect (OSTI)

    None, None

    2002-08-01

    This project is part of the U.S. Department of Energy?s (DOE) Clean Coal Technology Demonstration Program (CCTDP) established to address energy and environmental concerns related to coal use. DOE sought cost-shared partnerships with industry through five nationally competed solicitations to accelerate commercialization of the most promising advanced coal-based power generation and pollution control technologies. The CCTDP, valued at over five billion dollars, has significantly leveraged federal funding by forging effective partnerships founded on sound principles. For every federal dollar invested, CCTDP participants have invested two dollars. These participants include utilities, technology developers, state governments, and research organizations. The project presented here was one of sixteen selected from 55 proposals submitted in 1988 and 1989 in response to the CCTDP second solicitation.

  2. Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction

    SciTech Connect (OSTI)

    1996-10-01

    This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

  3. Guiding SSL Technology Advances | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guiding SSL Technology Advances Guiding SSL Technology Advances PDF icon Guiding Solid-State Lighting Technology Advances More Documents & Publications Doing Business with DOE's Solid-State Lighting Program Doing Business with DOE's Solid-State Lighting Program Manufacturing R&D Initiative Lowers Costs and Boosts Quality

  4. Measurement and modeling of advanced coal conversion processes

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1992-01-01

    The objectives of this proposed study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. This report describes progress during twenty second quarter of the program. Specifically, the paper discusses progress in three task areas: (1) Submodel development and evaluation: coal to char chemistry submodel; fundamental high-pressure reaction rate data; secondary reaction of pyrolysis product and burnout submodels; ash physics and chemistry submodel; large particle submodels; large char particle oxidation at high pressures; and SO[sub x]-NO[sub x] submodel development and evaluation; (2) Comprehensive model development and evaluation: integration of advanced submodels into entrained-flow code, with evaluation and documentation; comprehensive fixed-bed modeling review, development evaluation and implementation; and generalized fuels feedstock submodel; and (3) Application of integrated codes: application of generalized pulverized coal comprehensive code and application of fixed-bed code.

  5. Advanced Development Of The Coal Fired Oxyfuel Process With CO2...

    Open Energy Info (EERE)

    Development Of The Coal Fired Oxyfuel Process With CO2 Separation ADECOS Jump to: navigation, search Name: Advanced Development Of The Coal-Fired Oxyfuel Process With CO2...

  6. Comprehensive report to Congress: Proposals received in response to the Clean Coal Technology V Program Opportunity Notice

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This report is a comprehensive overview of all proposals received and the projects that were selected in response to the Program Opportunity Notice (PON) for the Clean Coal Technology V (CCT-V) Demonstration Projects (solicitation number DE-PS01-92FE62647). The Department of Energy (DOE) issued the solicitation on July 6, 1992. Through this PON, DOE solicited proposals to conduct cost-shared Clean Coal Technology (CCT) projects that advance significantly the efficiency and environmental performance of coal-using technologies and that are applicable to either new or existing facilities.

  7. Hydrogen Production: Coal Gasification

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Fossil Energy supports activities to advance coal-to-hydrogen technologies, specifically through the process of coal gasification with carbon capture, utilization, and storage.

  8. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in COAL IGCC Powerplants

    SciTech Connect (OSTI)

    Kenneth A. Yackly

    2004-09-30

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, has been re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for Coal IGCC powerplants. The new program has been re-titled as ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants'' to better match the new scope. This technical progress report summarizes the work accomplished in the reporting period April 1, 2004 to August 31, 2004 on the revised Re-Directed and De-Scoped program activity. The program Tasks are: Task 1--IGCC Environmental Impact on high Temperature Materials: This first materials task has been refocused to address Coal IGCC environmental impacts on high temperature materials use in gas turbines and remains in the program. This task will screen material performance and quantify the effects of high temperature erosion and corrosion of hot gas path materials in Coal IGCC applications. The materials of interest will include those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: This second task develops and demonstrates new sensor technologies to determine the in-service health of advanced technology Coal IGCC powerplants, and remains in the program with a reduced scope. Its focus is now on only two critical sensor need areas for advanced Coal IGCC gas turbines: (1) Fuel Quality Sensor for detection of fuel impurities that could lead to rapid component degradation, and a Fuel Heating Value Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware.

  9. Advanced Modular Inverter Technology Development

    SciTech Connect (OSTI)

    Adam Szczepanek

    2006-02-04

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

  10. The 1986-93 Clean Coal Technology Program | Department of Energy

    Energy Savers [EERE]

    1986-93 Clean Coal Technology Program The 1986-93 Clean Coal Technology Program Begun in 1986, the Clean Coal Technology Program was the most ambitious government-industry initiative ever undertaken to develop environmental solutions for the Nation's abundant coal resources. "The U.S. Clean Coal Technology Demonstration Program is the envy of the world." Robert W. Smock Editorial Director, Power Engineering The program's goal: to demonstrate the best, most innovative technology

  11. Overall requirements for an advanced underground coal extraction system

    SciTech Connect (OSTI)

    Goldsmith, M.; Lavin, M.L.

    1980-10-15

    This report presents overall requirements on underground mining systems suitable for coal seams exploitable in the year 2000, with particular relevance to the resources of Central Appalachia. These requirements may be summarized as follows: (1) Production Cost: demonstrate a return on incremental investment of 1.5 to 2.5 times the value required by a low-risk capital project. (2) Miner Safety: achieve at least a 50% reduction in deaths and disabling injuries per million man-hours. (3) Miner Health: meet the intent of all applicable regulations, with particular attention to coal dust, carcinogens, and mutagens; and with continued emphasis on acceptable levels of noise and vibration, lighting, humidity and temperature, and adequate work space. (4) Environmental Impact: maintain the value of mined and adjacent lands at the pre-mining value following reclamation; mitigation of off-site impacts should not cost more than the procedures used in contemporary mining. (5) Coal Conservation: the recovery of coal from the seam being mined should be at least as good as the best available contemporary technology operating in comparable conditions. No significant trade-offs between production cost and other performance indices were found.

  12. Sixth clean coal technology conference: Proceedings. Volume 2: Technical papers

    SciTech Connect (OSTI)

    1998-12-01

    The Sixth Clean Coal Technology Conference focused on the ability of clean coal technologies (CCTs) to meet increasingly demanding environmental requirements while simultaneously remaining competitive in both international and domestic markets. Conference speakers assessed environmental, economic, and technical issues and identified approaches that will help enable CCTs to be deployed in an era of competing, interrelated demands for energy, economic growth, and environmental protection. Recognition was given to the dynamic changes that will result from increasing competition in electricity and fuel markets and industry restructuring, both domestically and internationally. Volume 2 contains 28 papers related to fluidized-bed combustion, coal gasification for combined cycle power plants, the Liquid Phase Methanol Process, use of coal in iron making, air pollution control of nitrogen oxides, coke making, and hot gas cleanup.

  13. Economic feasibility study: CFR advanced direct coal liquefaction process. Volume 4

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    Preliminary technical and economic data are presented on the CFR Advanced Coal Liquefaction Process. Operating cost estimates and material balances are given.

  14. DOE Announces Restructured FutureGen Approach to Demonstrate CCS Technology at Multiple Clean Coal Plants

    Broader source: Energy.gov [DOE]

    Affirms Commitment to Clean Coal Technology Investments; Requests $648 Million for Coal Research, Development and Deployment for FY09 Budget - Largest Coal Budget Request in more than 25 years...

  15. Categorical Exclusion Determinations: Advanced Technology Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Loan Program | Department of Energy Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations: Advanced Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations issued by Advanced Technology Vehicles Manufacturing Loan Program. DOCUMENTS AVAILABLE FOR DOWNLOAD September 6, 2011 CX-006488: Categorical Exclusion Determination Chrysler Group LLC, Revised Specific Project Application 2, Retooling, Reequipping and Engineering

  16. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    SciTech Connect (OSTI)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity. Retrofit technologies that address the challenges of slow-speed integral compression are: (1) optimum turndown using a combination of speed and clearance with single-acting operation as a last resort; (2) if single-acting is required, implement infinite length nozzles to address nozzle pulsation and tunable side branch absorbers for 1x lateral pulsations; and (3) advanced valves, either the semi-active plate valve or the passive rotary valve, to extend valve life to three years with half the pressure drop. This next generation of slow-speed compression should attain 95% efficiency, a three-year valve life, and expanded turndown. New equipment technologies that address the challenges of large-horsepower, high-speed compression are: (1) optimum turndown with unit speed; (2) tapered nozzles to effectively reduce nozzle pulsation with half the pressure drop and minimization of mechanical cylinder stretch induced vibrations; (3) tunable side branch absorber or higher-order filter bottle to address lateral piping pulsations over the entire extended speed range with minimal pressure drop; and (4) semi-active plate valves or passive rotary valves to extend valve life with half the pressure drop. This next generation of large-horsepower, high-speed compression should attain 90% efficiency, a two-year valve life, 50% turndown, and less than 0.75 IPS vibration. This program has generated proof-of-concept technologies with the potential to meet these ambitious goals. Full development of these identified technologies is underway. The GMRC has committed to pursue the most promising enabling technologies for their industry.

  17. Clean Coal Technology Demonstration Program: Program Update 1998

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    1999-03-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  18. Clean Coal Technology Demonstration Program: Program Update 2000

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2001-04-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  19. Clean Coal Technology Demonstration Program: Program Update 1999

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2000-04-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  20. Clean Coal Technology Demonstration Program: Program Update 2001

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2002-07-30

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results. Also includes Power Plant Improvement Initiative Projects.

  1. Advanced Propulsion Technology Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propulsion Technology Strategy Advanced Propulsion Technology Strategy GM is also developing new classes of electrically driven vehicles, leveraging technology first used in their hybrids. PDF icon deer10_stephens.pdf More Documents & Publications Advanced Engine Trends, Challenges and Opportunities The Drive for Energy Diversity and Sustainability: The Impact on Transportation Fuels and Propulsion System Portfolios Overview of the DOE Advanced Combustion Engine R&D

  2. Nick Wright Named Advanced Technologies Group Lead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nick Wright Named Advanced Technologies Group Lead Nick Wright Named Advanced Technologies Group Lead February 4, 2013 Nick Nick Wright has been named head of the National Energy Research Scientific Computing Center's (NERSC) Advanced Technologies Group (ATG), which focuses on understanding the requirements of current and emerging applications to make choices in hardware design and programming models that best serve the science needs of NERSC users. ATG specializes in benchmarking, system

  3. Advanced Combustion Technologies | Department of Energy

    Energy Savers [EERE]

    Advanced Combustion Technologies Advanced Combustion Technologies Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses laser-based Rayleigh light scattering to measure flame density and speed over a flat flame burner. Oxyfuel combustion, using oxygen in place of air with diluents such as steam or carbon dioxide, can reduce pollutant emissions in advanced power cycles using gas turbines. Photo courtesy of NETL Multimedia. Joe Yip, a researcher at FE's National Energy

  4. Energy Storage - Advanced Technology Development Merit Review |

    Office of Environmental Management (EM)

    Department of Energy Advanced Technology Development Merit Review Energy Storage - Advanced Technology Development Merit Review This document is a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Advanced Technology Development (ATD) program annual review. The review was held at the Argonne National Laboratory on August 9-10, 2005. A panel of knowledgeable, independent reviewers assessed the accomplishments of the ATD program and

  5. Driving Economic Growth: Advanced Technology Vehicles Manufacturing |

    Office of Environmental Management (EM)

    Department of Energy Driving Economic Growth: Advanced Technology Vehicles Manufacturing Driving Economic Growth: Advanced Technology Vehicles Manufacturing With $8 billion in loans and commitments to projects that have supported the production of more than 4 million fuel-efficient cars and more than 35,000 direct jobs across eight states, the Advanced Technology Vehicles Manufacturing (ATVM) loan program has played a key role in helping the American auto industry propel the resurgence of

  6. Workshop on Conversion Technologies for Advanced Biofuels - Bio...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil...

  7. Advanced vehicle technology analysis and evaluation activities

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    FY 2007 annual progress report evaluating the technologies and performance characteristics of advanced automotive powertrain components and subsystems in an integrated vehicle systems context.

  8. Advanced Technology Development and Mitigation | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Our Jobs Working at NNSA Blog Home About Us Our Programs Defense Programs Future Science & Technology Programs Advanced Simulation and Computing and Institutional R&D...

  9. Advanced Vehicle Technology Analysis & Evaluation Team

    Broader source: Energy.gov [DOE]

    Presentation on Advanced Vehicle Technology Analysis & Evaluation Team to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  10. Advanced Solar Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    California Sector: Solar Product: California-based domestic and commercial designer and installer of solar energy equipment. References: Advanced Solar Technologies Inc1 This...

  11. Advanced AMR Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Advanced AMR Technologies Inc Address: 285 Newbury Street Place: Peabody, Massachusetts Zip: 01960 Region: Greater Boston Area Sector: Efficiency Product:...

  12. Vehicle Technologies Office: 2008 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Machinery R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress Report ...

  13. Vehicle Technologies Office: 2011 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  14. Vehicle Technologies Office: 2013 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  15. Vehicle Technologies Office: 2009 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report Annual report focusing on understanding and ...

  16. Bore II - Advanced Wellbore Technology Characterizes Groundwater...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This Return to Search Bore II - Advanced Wellbore Technology Characterizes Groundwater Flow and Contamination Lawrence Berkeley National Laboratory Contact LBL About This...

  17. Advanced Capacitor Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Advanced Capacitor Technologies Inc Place: Tokyo, Japan Zip: 196-8558 Sector: Carbon Product: Japanese manufacturer of ultracapacitors from...

  18. The reduced environmental liability of clean coal technologies

    SciTech Connect (OSTI)

    Leslie, A.C.D.; McMillen, M.

    1997-08-01

    In this paper the authors will discuss the waste stream minimization that future commercially operated clean coal technologies can effect. They will explore the ability of these now-beginning-to-mature technologies to reduce those aspects of the emission streams that have greatest potential for what the authors term as environmental liability. Environmental liability is manifested in a variety of forms. There are both current liabilities and future liabilities. In addition, uncertainties may reside in future anticipated regulatory compliance and the costs of such compliance. Exposure to liability translates into perceived risk which creates an air of uncertainty to the power industry and its lenders who provide the capital to build new power plants. In the context of electric power generation, newer, high efficiency power generation technologies developed in the course of the Clean Coal Technology Program of the US Department of Energy result in reduced waste stream emissions when compared against more aging conventional combustion technologies. This paper will discuss how the introduction of new clean coal technologies will help balance the conflict between adverse environmental impact and the global demand for increased energy. The authors will discuss how clean coal technologies will facilitate compliance with future air standards that may otherwise expose power producers to modification and cleanup costs, noncompliance penalties, or premature shut down.

  19. Use of coal in Z-BOP steelmaking technologies

    SciTech Connect (OSTI)

    Boutchenkov, A.; Oppelt, R.

    1994-12-31

    Z-BOP steelmaking technologies are a family of modifications to traditional Basic Oxygen Process (BOP) steelmaking. Z-BOP was developed and initially implemented at the West Siberian Steel Works (ZapSib), Russia. In 1992, the technology became available for commercialization and was successfully implemented at Bethlehem Steel, Bethlehem, Pennsylvania, and at ISCOR, Limited, Newcastle Works, Republic of South Africa. The family of Z-BOP technologies provides for greater flexibility in the type and quantity of the solid metallic charge to the BOP without costly expenditures for equipment. Z-BOP technologies achieve the results by effectively and expeditiously releasing and utilizing auxiliary heat in the steelmaking process. The selection of the Z-BOP modifications to be utilized is custom designed for each implementation. The selection criteria are driven by the objectives and limitation of each BOP shop. Some of the Z-BOP modifications utilize coal as a source of auxiliary heat. The coal additions can be anthracite or bituminous, or a combination of the two, depending upon the design. In order to be effective, the coal used must be within specified properties and be introduced into the process with specific control. The amount of coal addition is one method of providing for additional flexibility in the solid metallic charge and will vary according to the amount of auxiliary heat required. The amount of coal addition will also vary to accommodate fluctuations in the temperature and chemistry of the hot metal component of the charge.

  20. Second annual clean coal technology conference: Proceedings. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-09-09

    The Second Annual Clean Coal Technology Conference was held at Atlanta, Georgia, September 7--9, 1993. The Conference, cosponsored by the US Department of Energy (USDOE) and the Southern States Energy Board (SSEB), seeks to examine the status and role of the Clean Coal Technology Demonstration Program (CCTDP) and its projects. The Program is reviewed within the larger context of environmental needs, sustained economic growth, world markets, user performance requirements and supplier commercialization activities. This will be accomplished through in-depth review and discussion of factors affecting domestic and international markets for clean coal technology, the environmental considerations in commercial deployment, the current status of projects, and the timing and effectiveness of transfer of data from these projects to potential users, suppliers, financing entities, regulators, the interested environmental community and the public. Individual papers have been entered separately.

  1. Measurement and modeling of advanced coal conversion processes. Twenty-seventh quarterly report, April 1, 1993--June 30, 1993

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S.

    1993-09-01

    Significant advances have been made at Brigham Young University (BYU) in comprehensive two-dimensional computer codes for mechanistic modeling of entrained-bed gasification and pulverized coal combustion. During the same time period, significant advances have been made at Advanced Fuel Research, Inc. (AFR) in the mechanisms and kinetics of coal pyrolysis and secondary reactions of pyrolysis products. This program presents a unique opportunity to merge the technology developed by each organization to provide detailed predictive capability for advanced coal characterization techniques in conjunction with comprehensive computer models to provide accurate process simulations. The program will streamline submodels existing or under development for coal pyrolysis chemistry, volatile secondary reactions, tar formation, soot formation, char reactivity, and SO{sub x}-NO{sub x} pollutant formation. Submodels for coal viscosity, agglomeration, tar/char secondary reactions, sulfur capture, and ash physics and chemistry will be developed or adapted. The submodels will first be incorporated into the BYU entrained-bed gasification code and subsequently, into a fixed-bed gasification code (to be selected and adapted). These codes will be validated by comparison with small scale laboratory and PDU-scale experiments. Progress is described.

  2. Advance Energy Technologies: Order (2013-CE-5302)

    Broader source: Energy.gov [DOE]

    DOE ordered Advance Energy Technologies, Inc., to pay a $8,000 civil penalty after finding Advance Energy Technologies had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standard.

  3. Analysis of some potential social effects of four coal technologies

    SciTech Connect (OSTI)

    Walker, C.A.; Gould, L.C.

    1980-09-01

    This is an analysis of the potential social impacts of four coal technologies: conventional combustion, fluidized-bed combustion, liquifaction, and gasification. Because of their flexibility, and the abundance and relatively low costs of coal, the potential benefits of these technologies would seem to outweigh their potential social costs, both in the intermediate and long term. Nevertheless, the social costs of a coal industry are far more obscure and hard to quantify than the benefits. In general, however, it maybe expected that those technologies that can be deployed most quickly, that provide fuels that can substitute most easily for oil and natural gas, that are the cheapest, and that are the most thermally efficient will minimize social costs most in the intermediate term, while technologies that can guide energy infrastructure changes to become the most compatable with the fuels that will be most easily derived from inexhaustible sources (electricity and hydrogen) will minimize social costs most in the long run. An industry structured to favor eastern over western coal and plant sites in moderate sized communities, which could easily adapt to inexhaustible energy technologies (nuclear or solar) in the future, would be favored in either time period.

  4. Potential for thermal coal and Clean Coal Technology (CCT) in the Asia-Pacific

    SciTech Connect (OSTI)

    Johnson, C.J.; Long, S.

    1991-11-22

    The Coal Project was able to make considerable progress in understanding the evolving energy situation in Asia and the future role of coal and Clean Coal Technologies. It is clear that there will be major growth in consumption of coal in Asia over the next two decades -- we estimate an increase of 1.2 billion metric tons. Second, all governments are concerned about the environmental impacts of increased coal use, however enforcement of regulations appears to be quite variable among Asian countries. There is general caution of the part of Asian utilities with respect to the introduction of CCT's. However, there appears to be potential for introduction of CCT's in a few countries by the turn of the century. It is important to emphasize that it will be a long term effort to succeed in getting CCT's introduced to Asia. The Coal Project recommends that the US CCT program be expanded to allow the early introduction of CCT's in a number of countries.

  5. Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab Benchmarking (L1&L2) | Department of Energy Advanced Technology Vehicle Lab Benchmarking (L1&L2) Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2) Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced technology vehicle lab benchmarking (L1&L2). PDF icon vss030_stutenberg_2015_o.pdf More

  6. Cross-cutting Technologies for Advanced Biofuels | Department of Energy

    Office of Environmental Management (EM)

    Cross-cutting Technologies for Advanced Biofuels Cross-cutting Technologies for Advanced Biofuels NREL report-out presentation at the CTAB webinar on crosscutting technologies for advanced biofuels. PDF icon ctab_webinar_crosscutting.pdf More Documents & Publications Innovative Topics for Advanced Biofuels Conversion Technologies for Advanced Biofuels - Carbohydrates Production Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading

  7. Development and evaluation of coal/water mixture combustion technology. Final report

    SciTech Connect (OSTI)

    Scheffee, R.S.; Rossmeissl, N.P.; Skolnik, E.G.; McHale, E.T.

    1981-08-01

    The objective was to advance the technology for the preparation, storage, handling and combustion of highly-loaded coal/water mixtures. A systematic program to prepare and experimentally evaluate coal/water mixtures was conducted to develop mixtures which (1) burn efficiently using combustion chambers and burners designed for oil, (2) can be provided at a cost less than that of No. 6 oil, and (3) can be easily transported and stored. The program consisted of three principal tasks. The first was a literature survey relevant to coal/water mixture technology. The second involved slurry preparation and evaluation of rheological and stability properties, and processing techniques. The third consisted of combustion tests to characterize equipment and slurry parameters. The first task comprised a complete search of the literature, results of which are tabulated in Appendix A. Task 2 was involved with the evaluation of composition and process variables on slurry rheology and stability. Three bituminous coals, representing a range of values of volatile content, ash content, and hardness were used in the slurries. Task 3 was concerned with the combustion behavior of coal/water slurry. The studies involved first upgrading of an experimental furnace facility, which was used to burn slurry fuels, with emphasis on studying the effect on combustion of slurry properties such as viscosity and particle size, and the effect of equipment parameters such as secondary air preheat and atomization.

  8. Vehicle Technologies Office Merit Review 2015: Daikin Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daikin Advanced Lithium Ion Battery Technology High Voltage Electrolyte Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion Battery Technology High ...

  9. Electrochromic Windows - Advanced Processing Technology | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Electrochromic Windows - Advanced Processing Technology Electrochromic Windows - Advanced Processing Technology 'Smart Glass' Technology Reduces Solar Heat Gain in Buildings Windows are often the most inefficient part of a building envelope and are responsible for heat loss in cold months and solar heat gain in warm months. Sunlight entering a home can increase cooling loads by up to 20%. In some instances, glare from the sun can make it difficult to see a computer or other LCD

  10. Fossil energy, clean coal technology, and FutureGen

    SciTech Connect (OSTI)

    Sarkus, T.A.

    2008-07-15

    Future fossil use will rely heavily on carbon sequestration. Clean coal technologies are being incorporated in the USA, including air pollution control, and will need to incorporate carbon capture and sequestration. The paper ends with an outline of the restructured FutureGen project. 7 figs.

  11. Measurement and modeling of advanced coal conversion processes. 23rd quarterly report, April 1, 1992--June 30, 1992

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S.

    1992-12-31

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This technology is important to reduce the technical and economic risks inherent in utilizing coal, a feedstock whose variable and often unexpected behavior presents a significant challenge. This program will merge significant advances made at Advanced Fuel Research, Inc. (AFR) in measuring and quantitatively describing the mechanisms in coal conversion behavior, with technology being developed at Brigham Young University (BYU) in comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors. The foundation to describe coal-specific conversion behavior is AFR`s Functional Group (FG) and Devolatilization, Vaporization and Crosslinking (DVC) models, developed under previous and on-going METC sponsored programs. These models have demonstrated the capability to describe the time dependent evolution of individual gas species, and the amount and characteristics of tar and char. The combined FG-DVC model will be integrated with BYU`s comprehensive two-dimensional reactor model, PCGC-2, which is currently the most widely used reactor simulation for combustion or gasification. The program includes: (i) validation of the submodels by comparison with laboratory data obtained in this program, (ii) extensive validation of the modified comprehensive code by comparison of predicted results with data from bench-scale and process scale investigations of gasification, mild gasification and combustion of coal or coal-derived products in heat engines, and (iii) development of well documented user friendly software applicable to a ``workstation`` environment.

  12. Projects Aimed at Advancing State-of-the-Art Carbon Capture from Coal Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants Selected for Further Development | Department of Energy Aimed at Advancing State-of-the-Art Carbon Capture from Coal Power Plants Selected for Further Development Projects Aimed at Advancing State-of-the-Art Carbon Capture from Coal Power Plants Selected for Further Development August 15, 2011 - 1:00pm Addthis Washington, DC - Four projects aimed at reducing the energy and cost penalties of advanced carbon capture systems applied to power plants have been selected for further

  13. Construction Begins on First-of-its-Kind Advanced Clean Coal Electric

    Energy Savers [EERE]

    Generating Facility | Department of Energy Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility September 10, 2007 - 3:16pm Addthis ORLANDO, Fla. - Officials representing the U.S. Department of Energy (DOE), Southern Company, KBR Inc. and the Orlando Utilities Commission (OUC) today broke ground to begin construction of an advanced 285-megawatt integrated

  14. advanced vehicle technologies awards table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applicant Location DOE Award Description Advanced fuels and lubricants (Area of Interest 1A, 1B, and 1C) Alliance for Sustainable Energy, LLC - NREL Golden, CO $1,506,164 This project will determine levels at which higher alcohols and other advanced oxygenated fuel components can be readily integrated into the existing fuel supply (i.e., drop-in replacement fuels). Ford Motor Company Dearborn, MI $1,500,000 This project will identify fuel properties that can be used to enable novel combustion

  15. The role of NEPA in the Clean Coal Technology Program of the US Department of Energy

    SciTech Connect (OSTI)

    Pell, J.

    1994-12-31

    The Clean Coal Technology (CCT) Program of the US Dept. of Energy (DOE) supports the demonstration of emerging advanced systems capable of reducing emissions of SO{sub 2}, NO{sub x}, and, through increased efficiency, CO{sub 2}. Along with four previous solicitations, a fifth, {open_quotes}Program Opportunity Notice{close_quotes} (PON), was released on 6 July 1992, and awarded on 4 May 1993. Together, these solicitations fulfill the commitment that was made to implement a five-year, $5 billion (cost shared), program for the demonstration of clean coal technologies. The fourth (1991) and fifth PONs incorporated several new environmental features. These latter $570 million and $568 million competitions were tailored to attract advanced coal technologies, expected to be used into the 21st century. Projects considered for funding support are subject to review in accordance with the NEPA requirements. DOE`s three step process to ensure Program compliance includes preparation of a Programmatic Environmental Impact Statement (November 1989), pre-selection project-specific environmental review, and post-selection site-specific documentation. Most CCT Environmental Assessments culminate in {open_quotes}Findings of No Significant Impacts.{close_quotes} During the course of the EIS process, NEPA prohibits the taking of any action that could {open_quotes}have an adverse environmental effect or limit the choice of reasonable alternatives{close_quotes} to the project.

  16. Task 1.13 - Data Collection and Database Development for Clean Coal Technology By-Product Characteristics and Management Practices

    SciTech Connect (OSTI)

    Debra F. Pflughoeft-Hassett

    1998-02-01

    U.S. Department of Energy Federal Energy Technology Center-Morgantown (DOE FETC) efforts in the areas of fossil fuels and clean coal technology (CCT) have included involvement with both conventional and advanced process coal conversion by-products. In 1993, DOE submitted a Report to Congress on "Barriers to the Increased Utilization of Coal Combustion Desulfurization Byproducts by Governmental and Commercial Sectors" that provided an outline of activities to remove the barriers identified in the report. DOE charged itself with participation in this process, and the work proposed in this document facilitates DOE's response to its own recommendations for action. The work reflects DOE's commitment to the coal combustion by-product (CCB) industry, to the advancement of clean coal technology, and to cooperation with other government agencies. Information from DOE projects and commercial endeavors in fluidized-bed combustion (FBC) and coal gasification is the focus of this task. The primary goal is to provide an easily accessible compilation of characterization information on the by-products from these processes to government agencies and industry to facilitate sound regulatory and management decisions. Additional written documentation will facilitate the preparation of an updated final version of background information collected for DOE in preparation of the Report to Congress on barriers to CCB utilization.

  17. TECHNOLOGIES TO OPTIMIZE ADVANCED TOKAMAK

    SciTech Connect (OSTI)

    SIMONEN, TC

    2004-01-01

    OAK-B135 Commercial fusion power systems must operate near the limits of the engineering systems and plasma parameters. Achieving these objectives will require real time feedback control of the plasma. This paper describes plasma control systems being used in the national DIII-D advanced tokamak research program.

  18. Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect (OSTI)

    2005-05-01

    The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

  19. Interoperable Technologies for Advanced Petascale Simulations (Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report) | SciTech Connect Technical Report: Interoperable Technologies for Advanced Petascale Simulations Citation Details In-Document Search Title: Interoperable Technologies for Advanced Petascale Simulations Our final report on the accomplishments of ITAPS at Stony Brook during period covered by the research award includes component service, interface service and applications. On the component service, we have designed and implemented a robust functionality for the Lagrangian tracking of

  20. Engineering development of advanced coal-fired low emission boiler systems

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    Riley Stoker Corporation is leading an R&D program for the expedited development of a new generation of pulverized coal-fired boiler systems. The overall objective is to develop relatively near term technologies to produce Low-Emission coal-fired Boiler Systems (LEBS) ready for full scale commercial generating plants by the end of the decade. The specific goal is to develop a LEBS incorporating an advanced slagging system for improved ash management in addition to meeting the emission and performance goals. This Concept Selection Report documents an evaluation of subsystems and LEBS concepts. Priority was given to the evaluation of the boiler system, steam cycle, and advanced slagging combustor. Some findings are as follows: An ultra supercritical steam cycle is required to meet project efficiency goals. The cost of electricity (COE) for this cycle, at today`s fuel prices, and without externality costs, is slightly higher than a conventional subcritical cycle. The supercritical cycle includes a substantial contingency. Reduction of contingency, escalation of fuel cost, or inclusion of externalities all lead to a lower COE for the supercritical cycle compared to the subcritical cycle. The advanced cycle is selected for inclusion in the LEBS. The advanced slagging combustor (TVC), should it meet the projected performance goals, yields a lower COE than either a dry firing system or a more conventional slagger fitted with post combustion NO{sub x} controls. Verification and development of the advanced slagger performance is the primary focus of this project. A commercial slagging configuration know as U-firing is selected for parallel development and as a platform for adaptation to the TVC.

  1. Coal based synthetic fuel technology assessment guides

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    Seventeen synthetic fuel processes are described in detail and compared on a uniform basis. This work was supported by the Energy Information Administration for the purpose of technology assessment of the processes, their efficiency, the capitalized and operating cost of plants of similar size, possible constraints, possible siting problems, regional effects, pollution control, etc. (LTN)

  2. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels Cross-cutting...

  3. Clean coal technology deployment: From today into the next millennium

    SciTech Connect (OSTI)

    Papay, L.T.; Trocki, L.K.; McKinsey, R.R.

    1997-12-31

    The Department of Energy`s clean coal technology (CCT) program succeeded in developing more efficient, cleaner, coal-fired electricity options. The Department and its private partners succeeded in the demonstration of CCT -- a major feat that required more than a decade of commitment between them. As with many large-scale capital developments and changes, the market can shift dramatically over the course of the development process. The CCT program was undertaken in an era of unstable oil and gas prices, concern over acid rain, and guaranteed markets for power suppliers. Regulations, fuel prices, emergency of competing technologies, and institutional factors are all affecting the outlook for CCT deployment. The authors identify the major barriers to CCT deployment and then introduce some possible means to surmount the barriers.

  4. EM Leads with Advanced Simulation Capability Technology

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Since 2010, EM’s Office of Soil and Groundwater Remediation has initiated technology development programs such as the Advanced Simulation Capability for Environmental Management (ASCEM) and the Applied Field Research Initiatives to enhance characterization and remediation technologies and create cost savings.

  5. Advanced Materials Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Marketing Summaries (345) Success Stories (3) Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse

  6. Development and applications of clean coal fluidized bed technology

    SciTech Connect (OSTI)

    Eskin, N.; Hepbasli, A.

    2006-09-15

    Power generation in Europe and elsewhere relies heavily on coal and coal-based fuels as the source of energy. The reliance will increase in the future due to the decreasing stability of price and security of oil supply. In other words, the studies on fluidized bed combustion systems, which is one of the clean coal technologies, will maintain its importance. The main objective of the present study is to introduce the development and the applications of the fluidized bed technology (FBT) and to review the fluidized bed combustion studies conducted in Turkey. The industrial applications of the fluidized bed technology in the country date back to the 1980s. Since then, the number of the fluidized bed boilers has increased. The majority of the installations are in the textile sector. In Turkey, there is also a circulating fluidized bed thermal power plant with a capacity of 2 x 160 MW under construction at Can in Canakkale. It is expected that the FBT has had, or will have, a significant and increasing role in dictating the energy strategies for Turkey.

  7. Advanced Technology Center Overview 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lockheed Martin Corporation, All Rights Reserved © 2015 Lockheed Martin Corporation, All Rights Reserved DOE Nuclear Energy Enabling Technologies (NEET) AMM Direct Manufacturing of Nuclear Power Components September 29 th , 2015 Acknowledgment : "This mat erial is based upon work support ed by t he Depart ment of Energy , Office of Nuclear Energy, Idaho Operations, under Award Number DE- NE0000542" Disclaimer: "This report was prepared as an account of work sponsored by an

  8. Green Racing: Accelerating the Use of Advanced Technologies ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Use of Advanced Technologies & Renewable Fuels, Developing Market Acceptance Green Racing: Accelerating the Use of Advanced Technologies & Renewable Fuels, Developing...

  9. Green Racing Initiative: Accelerating the Use of Advanced Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Racing Initiative: Accelerating the Use of Advanced Technologies & Renewable Fuels Green Racing Initiative: Accelerating the Use of Advanced Technologies & Renewable Fuels 2011 DOE...

  10. DOE Vehicle Technologies Program 2009 Merit Review Report - Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion DOE Vehicle Technologies Program 2009 Merit Review Report - Advanced Combustion Merit review of DOE Vehicle Technologies Program research efforts...

  11. Technology Advances Needed for Photovoltaics to Achieve Widespread...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advances Needed for Photovoltaics to Achieve Widespread Grid Price Parity Technology Advances Needed for Photovoltaics to Achieve Widespread Grid Price Parity Abstract:...

  12. Under Secretary of Energy Highlights Advanced Energy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highlights Advanced Energy Technologies to Sustain America's Economic Growth Under Secretary of Energy Highlights Advanced Energy Technologies to Sustain America's Economic Growth ...

  13. U.S. Offshore Wind Advanced Technology Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting ...

  14. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) Data Collection for Improved Cold Temperature Thermal Modeling Advanced Technology ...

  15. ITP Metal Casting: Advanced Melting Technologies: Energy Saving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and...

  16. Fuels and Lubricants to Support Advanced Diesel Engine Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricants to Support Advanced Diesel Engine Technology Fuels and Lubricants to Support Advanced Diesel Engine Technology 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  17. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels...

  18. Air Cooling Technology for Advanced Power Electronics and Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Power Electronics and Electric Machines Air Cooling Technology for Advanced Power Electronics and Electric Machines 2009 DOE Hydrogen Program and Vehicle Technologies ...

  19. Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY...

  20. Fact Sheet: Advanced Implementation of Energy Storage Technologies...

    Energy Savers [EERE]

    Advanced Implementation of Energy Storage Technologies - Community Energy Storage for Grid Support (August 2013) Fact Sheet: Advanced Implementation of Energy Storage Technologies ...

  1. 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced Combustion Advanced combustion research and development merit review results PDF icon...

  2. Frontiers in Advanced Storage Technologies (FAST) project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage R&D Frontiers in Advanced Storage Technologies (FAST) project Working with vendors to develop new functionality in storage technologies generally not yet available to industry. The NERSC project involves selecting particular technologies of interest, partnering with the vendor, assessing their hardware, and providing feedback or co-development to improve the product for use in HPC environments. The FAST project involves establishing long-term development collaboration agreements to

  3. Demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Hardman, R.R.; Wilson, S.M. ); Smith, L.L.; Larsen, L. )

    1991-01-01

    This paper discusses the progress of a US Department of Energy Innovative Clean Coal Technology Project demonstrating advanced tangentially fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The primary objective of the demonstration is to determine the performance of four low NO{sub x} combustion technologies applied in a stepwise fashion to a 180 MW boiler. A target of achieving fifty percent NO{sub x} reduction has been established for the project. Details of the required instrumentation including acoustic pyrometers and continuous emissions and monitoring systems are given. Results from a 1/12 scale model of the demonstration boiler outfitted with the retrofit technology are presented. Finally, preliminary baseline results are presented. 4 figs.

  4. Ceramic Technology for Advanced Heat Engines Project

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  5. Measurement and modeling of advanced coal conversion processes

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1991-01-01

    The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.

  6. Measurement and modeling of advanced coal conversion processes

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1991-09-25

    The objectives of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. (VC)

  7. Regional trends in the take-up of clean coal technologies

    SciTech Connect (OSTI)

    Wootten, J.M.

    1997-12-31

    Using surveys of the electricity industry taken in major OECD coal producing/coal consuming regions of North America, Europe, Southern Africa, and Asia/Pacific, this paper reports on the attitudes of power plant operators and developers toward clean coal technologies, the barriers to their use and the policies and measures that might be implemented, if a country or region desired to encourage greater use of clean coal technologies.

  8. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  9. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  10. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  11. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    Broader source: Energy.gov [DOE]

    Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary November 2014

  12. Advanced solids NMR studies of coal structure and chemistry. Progress report, March 1 - September 1, 1996

    SciTech Connect (OSTI)

    Zilm, K.W.

    1996-12-31

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utili- zation of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. Our goals are twofold. First, we are interested in developing new methods that will enable us to measure important structural parameters in whole coals not directly accessible by other techniques. In parallel with these efforts we will apply these NNM methods in a study of the chemical differences between gas-sourcing and oil-sourcing coals. The NMR methods work will specifically focus on determination of the number and types of methylene groups, determination of the number and types of methine groups, identification of carbons adjacent to nitrogen and sites with exchangeable protons, and methods to more finely characterize the distribution of hydrogen in coals. We will also develop NMR methods for probing coal macropore structure using hyperpolarized {sup 29}Xe as a probe, and study the molecular dynamics of what appear to be mobile, CH{sub 2} rich, long chain hydrocarbons. The motivation for investigating these specific structural features of coals arises from their relevance to the chemical reactivity of coals, and their suitability for possible correlations with the oil sourcing potential of some types of coals. The coals to be studied and contrasted include oil-prone coals from Australia and Indonesia, those comprising the Argonne Premium Coal Sample bank, and other relevant samples.

  13. POC-Scale Testing of an Advanced Fine Coal Dewatering Equipment/Technique

    SciTech Connect (OSTI)

    B. K. Karekh; D. Tao; J. G. Groppo

    1998-08-28

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 mm) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy's program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 45 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 ? March 31, 1998.

  14. Electrochromic Windows: Advanced Processing Technology

    SciTech Connect (OSTI)

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGEs production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.0261015BTU/yr) by the year 2017.

  15. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    SciTech Connect (OSTI)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri,; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-11-30

    This report describes the development of the design of an advanced dry feed system that was carried out under Task 4.0 of Cooperative Agreement DE-FE0007902 with the US DOE, “Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the use of Low- Rank Coal.” The resulting design will be used for the advanced technology IGCC case with 90% carbon capture for sequestration to be developed under Task 5.0 of the same agreement. The scope of work covered coal preparation and feeding up through the gasifier injector. Subcomponents have been broken down into feed preparation (including grinding and drying), low pressure conveyance, pressurization, high pressure conveyance, and injection. Pressurization of the coal feed is done using Posimetric1 Feeders sized for the application. In addition, a secondary feed system is described for preparing and feeding slag additive and recycle fines to the gasifier injector. This report includes information on the basis for the design, requirements for down selection of the key technologies used, the down selection methodology and the final, down selected design for the Posimetric Feed System, or PFS.

  16. Field study of disposed solid wastes from advanced coal processes

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  17. Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems

    SciTech Connect (OSTI)

    Anbo Wang; Gary Pickrell

    2011-12-31

    This report summarizes technical progress on the program ??Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems? funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed jointly by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering and the Department of Materials Science and Engineering at Virginia Tech. This three-year project started on October 1, 2008. In the project, a fiber optical sensing system based on intrinsic Fabry-Perot Interferometer (IFPI) was developed for strain and temperature measurements for Ultra Supercritical boiler condition assessment. Investigations were focused on sensor design, fabrication, attachment techniques and novel materials for high temperature and strain measurements. At the start of the project, the technical requirements for the sensing technology were determined together with our industrial partner Alstom Power. As is demonstrated in Chapter 4, all the technical requirements are successfully met. The success of the technology extended beyond laboratory test; its capability was further validated through the field test at DOE NETL, in which the sensors yielded distributed temperature mapping of a testing coupon installed in the turbine test rig. The measurement results agreed well with prior results generated with thermocouples. In this project, significant improvements were made to the IFPI sensor technology by splicing condition optimization, transmission loss reduction, sensor signal demodulation and sensor system design.

  18. Cross-cutting Technologies for Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cross-cutting Technologies for Advanced Biofuels Report-Out Webinar February 9, 2012 Adam Bratis, Ph.D. NREL Energy Efficiency & Renewable Energy eere.energy.gov 2 Cross-cutting Technology Areas: Feedstock Supply and Logistics  growth, harvesting, delivery Analysis  economic, life-cycle, resource assessment Catalysis  design, characterization, testing Separations  contaminant removal, product recovery Dr. Adam Bratis Biomass Program Manager National Renewable Energy Laboratory

  19. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  20. Milliken Clean Coal Demonstration Project: A DOE Assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-08-15

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal-utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage.

  1. Numerical Investigation of Advanced Compressor Technologies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Investigation of Advanced Compressor Technologies Numerical Investigation of Advanced Compressor Technologies The purpose of the work was to explore advanced boost technologies to support clean diesel combustion, such as HCCI/LTC applications. PDF icon deer08_sun.pdf More Documents & Publications Numerical Investigation of Advanced Compressor Technologies Advanced boost system development for diesel HCCI/LTC applications Advanced Boost System Development for Diesel HCCI/LTC

  2. Office of Technology Advancement & Outreach

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advancement & Outreach State Energy Advisory Board Meeting Wednesday March 15, 2007 Roger D. Meyer Team Lead Director Media Relations Electronic Communications Outreach Coordination Team Lead Functions -Rapid media response -Strategic media outreach -Speech writing -Media inquires, interviews, visits -News releases, fact sheets, background papers -Media training Functions -Events planning and management -Marketing -Public relations campaign -Strategic stakeholder outreach

  3. Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference

    SciTech Connect (OSTI)

    Geiling, D.W.

    1993-08-01

    The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

  4. The development of coal-based technologies for Department of Defense facilities. Volume 1, Technical report. Semiannual technical progress report, September 28, 1994--March 27, 1995

    SciTech Connect (OSTI)

    Miller, B.G.; Bartley, D.A.; Hatcher, P. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1996-10-15

    This program is being conducted as a cooperative agreement between the Consortium for Coal Water Mixture Technology and the U.S. Department of Energy. Activities this reporting period are summarized by phase. Phase I is nearly completed. During this reporting period, coal beneficiation/preparation studies, engineering designs and economics for retrofitting the Crane, Indiana boiler to fire coal-based fuels, and a 1,000-hour demonstration of dry, micronized coal were completed. In addition, a demonstration-scale micronized-coal water mixture (MCWM) preparation circuit was constructed and a 1,000-hour demonstration firing MCWM began. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations involved literature surveys of NO{sub x}, SO{sub 2}, trace metals, volatile organic compounds, and fine particulate matter capture. In addition, vendors and engineering firms were contacted to identify the appropriate emissions technologies for the installation of commercial NO{sub x} and SO{sub 2} removal systems on the demonstration boiler. Information from the literature surveys and engineering firms will be used to identify, design, and install a control system(s). Work continued on the refinement and optimization of coal grinding and MCWM preparation procedures, and on the development of advanced processes for beneficiating high ash, high sulfur coals. Work also continued on determining the basic cost estimation of boiler retrofits, and evaluating environmental, regulatory, and regional economic impacts. In addition, the feasibility of technology adoption, and the public`s perception of the benefits and costs of coal usage was studied. A coal market analysis was completed. Work in Phase III focused on coal preparation studies, emissions reductions and economic analyses of coal use.

  5. Measurement and modeling of advanced coal conversion processes, Volume III

    SciTech Connect (OSTI)

    Ghani, M.U.; Hobbs, M.L.; Hamblen, D.G.

    1993-08-01

    A generalized one-dimensional, heterogeneous, steady-state, fixed-bed model for coal gasification and combustion is presented. The model, FBED-1, is a design and analysis tool that can be used to simulate a variety of gasification, devolatilization, and combustion processes. The model considers separate gas and solid temperatures, axially variable solid and gas flow rates, variable bed void fraction, coal drying, devolatilization based on chemical functional group composition, depolymerization, vaporization and crosslinking, oxidation, and gasification of char, and partial equilibrium in the gas phase.

  6. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    This reports presents the operating results for Run 252 at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. This run operated in the Close-Coupled Integrated Two-Stage Liquefaction mode (CC-ITSL) using Illinois No. 6 bituminous coal. The primary run objective was demonstration of unit and system operability in the CC-ITSL mode with catalytic-catalytic reactors and with ash recycle. Run 252 began on 26 November 1986 and continued through 3 February 1987. During this period 214.4 MF tons of Illinois No. 6 coal were fed in 1250 hours of operation. 3 refs., 29 figs., 18 tabs.

  7. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carbohydrates Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates DOE report-out presentation at the CTAB webinar on carbohydrates. PDF icon ctab_webinar_carbohydrates_intro.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels Cross-cutting Technologies for Advanced Biofuels

  8. Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual Progress Report PDF icon 2010advcombustionengine.pdf More...

  9. Vehicle Technologies Office Merit Review 2014: Advanced in situ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced in situ Diagnostic Techniques for Battery Materials Vehicle Technologies Office Merit Review 2014: Advanced in situ Diagnostic Techniques for Battery Materials ...

  10. Vehicle Technologies Office Merit Review 2014: Advanced Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions ...

  11. Vehicle Technologies Office Merit Review 2015: Impacts of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Advanced Combustion Engines Vehicle Technologies Office Merit Review 2015: Impacts of Advanced Combustion Engines Presentation given by Oak Ridge National Laboratory at...

  12. Vehicle Technologies Office Merit Review 2014: Impacts of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Advanced Combustion Engines Vehicle Technologies Office Merit Review 2014: Impacts of Advanced Combustion Engines Presentation given by Oak Ridge National Laboratory at...

  13. Energy Department Announces Advanced Fuel-Efficient Vehicle Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces Advanced Fuel-Efficient Vehicle Technologies Funding Opportunity, Includes Alternative Fuels Workplace Safety Programs Energy Department Announces Advanced Fuel-Efficient ...

  14. Vehicle Technologies Office: 2013 Advanced Combustion R&D Annual...

    Energy Savers [EERE]

    of Advanced Combustion Engines Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual Progress Report Lean Gasoline System Development for Fuel Efficient Small Car...

  15. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mini-Van PHEV DOE Funded Project Advancing Transportation Through Vehicle Electrification - PHEV Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity...

  16. ZAP Advanced Battery Technologies JV | Open Energy Information

    Open Energy Info (EERE)

    battery manufacturer Advanced Battery Technologies focusing on manufacturing and marketing of advanced batteries for electric cars using the latest in nanotechnology....

  17. Advanced manufacturing: Technology and international competitiveness

    SciTech Connect (OSTI)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  18. Advanced Technology Vehicle Benchmark and Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmark and Assessment Advanced Technology Vehicle Benchmark and Assessment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss016_lohsebusch_2010_o.pdf More Documents & Publications Advanced Technology Vehicle Lab Benchmarking - Level 1 Advanced Technology Vehicle Lab Benchmarking - Level 1

  19. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Cell Technologies and Advanced Manufacturing Webinar Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Download the presentation slides from the "Joint Fuel Cell Technologies Office and Advanced Manufacturing Office Webinar" held November 20, 2012. PDF icon Joint Fuel Cell Technologies Office and Advanced Manufacturing Office Webinar Slides More Documents & Publications Hydrogen and Fuel Cell Technologies FY 2014 Budget Request Rollout to

  20. Clean Coal Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

  1. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    SciTech Connect (OSTI)

    Moe, Wayne Leland

    2015-05-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory importance of key DOE reactor research initiatives should be assessed early in the technology development process. Quality assurance requirements supportive of later licensing activities must also be attached to important research activities to ensure resulting data is usable in that context. Early regulatory analysis and licensing approach planning thus provides a significant benefit to the formulation of research plans and also enables the planning and development of a compatible AdvSMR licensing framework, should significant modification be required.

  2. Technical progress in the development of zero emission coal technologies.

    SciTech Connect (OSTI)

    Ziock, H. J.; Anthony, E. J.; Brosha, E. L.; Garzon, F. H.; Guthrie, G. D.; Johnson, A. A.; Kramer, A.; Lackner, K. S.; Lau, Francis,; Mukundan, R.; Robison, Thomas W.; Roop, B. J.; Ruby, J. D.; Smith, B. F.; Wang, J.

    2002-01-01

    We present an update on the development of technologies required for the Zero Emission Carbon (ZEC) concept being pursued by ZECA Corporation. The concept has a highly integrated design involving hydrogasification, a calcium oxide driven reforming step that includes simultaneous C02 separation, coal compatible fuel cells for electricity production and heat recovery, and a closed loop gas system in which coal contaminants are removed either as liquids or solids. The process does not involve any combustion and as such has neither smokestack nor air emissions. An independent assessment of the concept by Nexant, a Bcchtel affiliated company, suggests a net efficiency of approximately 70% for conversion of the higher heat value fuel energy into electrical output. This is even after the penalties of carbon dioxide separation and pressurization to 1000 psi are taken into account. For carbon dioxide sequestration a variety of options are being considered, which include enhanced oil recovery in the near-term and mineral carbonation as a long-term approach. We report on our early results in the development of sulfur tolerant anode materials for solid oxide fuel cells; a critical analysis of the calcium oxide - calcium carbonate cycle; trace element removal; and the recent results of hydrogasification tests.

  3. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect (OSTI)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

    1992-06-01

    This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

  4. Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Technology - High Voltage Electrolyte | Department of Energy Daikin Advanced Lithium Ion Battery Technology - High Voltage Electrolyte Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion Battery Technology - High Voltage Electrolyte Presentation given by Daikin America at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion battery technology - high

  5. Advanced Biomass Gasification Technologies Inc ABGT | Open Energy...

    Open Energy Info (EERE)

    Biomass Gasification Technologies Inc ABGT Jump to: navigation, search Name: Advanced Biomass Gasification Technologies Inc. (ABGT) Place: New York, New York Zip: 10036 Product:...

  6. Advanced Ceramic Materials and Packaging Technologies for Realizing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors ...

  7. Advanced Technology Vehicle Lab Benchmarking - Level 1 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications HEV, PHEV, EV Test Standard Development and Validation Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking ...

  8. Samsung Advanced Institute of Technology SAIT | Open Energy Informatio...

    Open Energy Info (EERE)

    Advanced Institute of Technology SAIT Jump to: navigation, search Name: Samsung Advanced Institute of Technology (SAIT) Place: Yongin-Si, Gyeonggi-do, Korea (Republic) Zip: 449-712...

  9. Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress Report The Advanced Combustion Engine R&D subprogram...

  10. 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion | Department of Energy Advanced Combustion 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced Combustion Advanced combustion research and development merit review results PDF icon 2010_amr_04.pdf More Documents & Publications 2012 Annual Merit Review Results Report - Advanced Combustion Engine Technologies Advanced Combustion Engine R&D and Fuels Technology Merit Review 2008 Annual Merit Review Results Summary - 7. Combustion Research

  11. Voluntary Protection Program Onsite Review, Advanced Technologies and

    Office of Environmental Management (EM)

    Laboratories, Inc., Hanford - Feb 2014 | Department of Energy Advanced Technologies and Laboratories, Inc., Hanford - Feb 2014 Voluntary Protection Program Onsite Review, Advanced Technologies and Laboratories, Inc., Hanford - Feb 2014 February 6. 2014 Evaluation to determine whether Advanced Technologies and Laboratories, Inc., Hanford is performing at a level deserving DOE-VPP Star recognition. PDF icon Voluntary Protection Program Onsite Review, Advanced Technologies and Laboratories,

  12. Energy Efficiency, Renewables, Advanced Transmission and Distribution Technologies (2008)

    Broader source: Energy.gov [DOE]

    Federal Loan Guarantees For Projects That Employ Innovative Energy Efficiency, Renewable Energy, And Advanced Transmission And Distribution Technologies

  13. Conversion Technologies for Advanced Biofuels - Bio-Oil Production |

    Office of Environmental Management (EM)

    Department of Energy Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels - Bio-Oil Production. PDF icon ctab_webinar_bio_oils_production.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils

  14. Advanced Technology System Scheduling Governance Model

    SciTech Connect (OSTI)

    Ang, Jim; Carnes, Brian; Hoang, Thuc; Vigil, Manuel

    2015-06-11

    In the fall of 2005, the Advanced Simulation and Computing (ASC) Program appointed a team to formulate a governance model for allocating resources and scheduling the stockpile stewardship workload on ASC capability systems. This update to the original document takes into account the new technical challenges and roles for advanced technology (AT) systems and the new ASC Program workload categories that must be supported. The goal of this updated model is to effectively allocate and schedule AT computing resources among all three National Nuclear Security Administration (NNSA) laboratories for weapons deliverables that merit priority on this class of resource. The process outlined below describes how proposed work can be evaluated and approved for resource allocations while preserving high effective utilization of the systems. This approach will provide the broadest possible benefit to the Stockpile Stewardship Program (SSP).

  15. Low-rank coal study: national needs for resource development. Volume 3. Technology evaluation

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    Technologies applicable to the development and use of low-rank coals are analyzed in order to identify specific needs for research, development, and demonstration (RD and D). Major sections of the report address the following technologies: extraction; transportation; preparation, handling and storage; conventional combustion and environmental control technology; gasification; liquefaction; and pyrolysis. Each of these sections contains an introduction and summary of the key issues with regard to subbituminous coal and lignite; description of all relevant technology, both existing and under development; a description of related environmental control technology; an evaluation of the effects of low-rank coal properties on the technology; and summaries of current commercial status of the technology and/or current RD and D projects relevant to low-rank coals.

  16. The fate of alkali species in advanced coal conversion systems

    SciTech Connect (OSTI)

    Krishnan, G.N.; Wood, B.J.

    1991-11-01

    The fate of species during coal combustion and gasification was determined experimentally in a fluidized bed reactor. A molecular-beam sampling mags spectrometer was used to identify and measure the concentration of vapor phase sodium species in the high temperature environment. Concurrent collection and analysis of the ash established the distribution of sodium species between gas-entrained and residual ash fractions. Two coals, Beulah Zap lignite and Illinois No. 6 bituminous, were used under combustion and gasification conditions at atmospheric pressure. Steady-state bed temperatures were in the range 800--950[degree]C. An extensive calibration procedure ensured that the mass spectrometer was capable of detecting sodium-containing vapor species at concentrations as low as 50 ppb. In the temperature range 800[degree] to 950[degree]C, the concentrations of vapor phase sodium species (Na, Na[sub 2]O, NaCl, and Na[sub 2]SO[sub 4]) are less than 0.05 ppm under combustion conditions with excess air. However, under gasification conditions with Beulah Zap lignite, sodium vapor species are present at about 14 ppm at a temperature of 820[degree]. Of this amount, NaCl vapor constitutes about 5 ppm and the rest is very likely NAOH. Sodium in the form of NaCl in coal enhances the vaporization of sodium species during combustion. Vapor phase concentration of both NaCl and Na[sub 2]SO[sub 4] increased when NaCl was added to the Beulah Zap lignite. Ash particles account for nearly 100% of the sodium in the coal during combustion in the investigated temperature range. The fine fly-ash particles (<10 [mu]m) are enriched in sodium, mainly in the form of sodium sulfate. The amount of sodium species in this ash fraction may be as high as 30 wt % of the total sodium. Sodium in the coarse ash particle phase retained in the bed is mainly in amorphous forms.

  17. Implementing Advances in Transport Security Technologies | Department of

    Office of Environmental Management (EM)

    Energy Implementing Advances in Transport Security Technologies Implementing Advances in Transport Security Technologies PDF icon Implementing Advances in Transport Security Technologies More Documents & Publications U.S. Global Threat Reduction Initiative/U.S.-Origin Nuclear Fuel Removals National Nuclear Security Administration Global Threat Reduction Initiative

  18. Low-rank coal research

    SciTech Connect (OSTI)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  19. Technological advancements in NGV station design

    SciTech Connect (OSTI)

    Ledbetter, G.S.; Grimmer, J.E.; Ketcham, E.T.

    1995-12-31

    Hurricane Compressors` SPRINT System (patent pending) is designed to increase the rate of flow from compressed natural gas (CNG) fuel stations and provide greater utilization of stored CNG than is available from traditional compressor stations. Using a novel method of adapting compressor operation to changes in CNG storage system pressures, this advanced technology provides an alternative mechanism for fuel delivery when demand for fuel is high. Transfer of CNG may be made at higher rates of flow than would be possible either from a pressure depleted storage system or directly from the compressor.

  20. THE DEVELOPMENT OF COAL-BASED TECHNOLOGIES FOR DEPARTMENT OF DEFENSE FACILITIES

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Sarma V. Pisupati; Chunshan Song; Ronald S. Wasco; Ronald T. Wincek; Xiaochun Xu; Alan W. Scaroni; Richard Hogg; Subhash Chander; M. Thaddeus Ityokumbul; Mark S. Klima; Peter T. Luckie; Adam Rose; Richard L. Gordon; Jeffrey Lazo; A. Michael Schaal

    2004-01-30

    The third phase of a three-phase project investigating the development of coal-based technologies for US Department of Defense (DOD) facilities was completed. The objectives of the project were to: decrease DOD's dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase III activities were focused on evaluating deeply-cleaned coals as fuels for industrial boilers and investigating emissions control strategies for providing ultra-low emissions when firing coal-based fuels. This was addressed by performing coal beneficiation and preparation studies, and bench- to demonstration-scale emissions reduction studies. In addition, economic studies were conducted focused on determining cost and market penetration, selection of incentives, and regional economic impacts of coal-based technologies.

  1. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly report, April 1--June 30, 1997

    SciTech Connect (OSTI)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-12-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). Accomplishments during the quarter are described on the following tasks and subtasks: Development of near-term applications (engineering development and dewatering studies); Engineering development of selective agglomeration (bench-scale testing and process scale-up); PDU and advanced column flotation module (coal selection and procurement and advanced flotation topical report); Selective agglomeration module (module operation and clean coal production with Hiawatha, Taggart, and Indiana 7 coals); Disposition of the PDU; and Project final report. Plans for next quarter are discussed and agglomeration results of the three tested coals are presented.

  2. Systematic Discrimination of Advanced Hydrogen Production Technologies

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson

    2010-07-01

    The U.S. Department of Energy, in concert with industry, is developing a high-temperature gas-cooled reactor at the Idaho National Laboratory (INL) to demonstrate high temperature heat applications to produce hydrogen and electricity or to support other industrial applications. A key part of this program is the production of hydrogen from water that would significantly reduce carbon emissions compared to current production using natural gas. In 2009 the INL led the methodical evaluation of promising advanced hydrogen production technologies in order to focus future resources on the most viable processes. This paper describes how the evaluation process was systematically planned and executed. As a result, High-Temperature Steam Electrolysis was selected as the most viable near-term technology to deploy as a part of the Next Generation Nuclear Plant Project.

  3. Clean Coal Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Coal Research Clean Coal Research DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled power plants by increasing overall system efficiencies and reducing capital costs. In the near-term, advanced technologies that increase the power generation efficiency for new plants and technologies to capture carbon dioxide (CO2) from new and existing

  4. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    The investigation of various Two-Stage Liquefaction (TSL) process configurations was conducted at the Wilsonville Advanced Coal Liquefaction R D Facility between July 1982 and September 1986. The facility combines three process units. There are the liquefaction unit, either thermal (TLU) or catalytic, for the dissolution of coal, the Critical Solvent Deashing unit (CSD) for the separation of ash and undissolved coal, and a catalytic hydrogenation unit (HTR) for product upgrading and recycle process solvent replenishment. The various TSL process configurations were created by changing the process sequence of these three units and by recycling hydrotreated solvents between the units. This report presents a description of the TSL configurations investigated and an analysis of the operating and performance data from the period of study. Illinois No. 6 Burning Star Mine coal Wyodak Clovis Point Mine coal were processed. Cobalt-molybdenum and disposable iron-oxide catalysts were used to improve coal liquefaction reactions and nickel-molybdenum catalysts were used in the hydrotreater. 28 refs., 31 figs., 13 tabs.

  5. Neutron Imaging of Advanced Engine Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace052_toops_2012_o.pdf More Documents & Publications Neutron Imaging of Advanced Engine Technologies Vehicle Technologies Office Merit Review 2015: Neutron Imaging of Advanced Transportation Technologies Neutron Imaging of Diesel Particulate Filters

  6. Advanced Electric Traction System Technology Development

    SciTech Connect (OSTI)

    Anderson, Iver

    2011-01-14

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  7. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Advanced Sensors, Controls, Platforms and Modeling for Manufacturing is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between

  8. DOE/NETL's advanced NOx emissions control technology R & D program

    SciTech Connect (OSTI)

    Lani, B.W.; Feeley, T.J. III; Miller, C.E.; Carney, B.A.; Murphy, J.T.

    2006-11-15

    Efforts are underway to provide more cost-effective options for coal-fired power plants to meet stringent emissions limits. Several recently completed DOE/NETL R & D projects were successful in achieving the short-term goal of controlling NOx emissions at 0.15 lb/MMBtu using in-furnace technologies. In anticipation of CAIR and possible congressional multi-pollutant legislation, DOE/NETL issued a solicitation in 2004 to continue R & D efforts to meet the 2007 goal and to initiate R & D targeting the 2010 goal of achieving 0.10 lb/MMBtu using in-furnace technologies in lieu of SCR. As a result, four new NOx R & D projects are currently underway and will be completed over the next three years. The article outlines: ALSTOM's Project on developing an enhanced combustion, low NOx burner for tangentially-fired boilers; Babcock and Wilcox's demonstration of an advanced NOx control technology to achieve an emission rate of 0.10 lb/MMBtu while burning bituminous coal for both wall- and cyclone-fired boilers; Reaction Engineering International's (REI) full-scale field testing of advanced layered technology application (ALTA) NOx control for cyclone fired boilers; and pilot-scale testing of ALTA NOx control of coal-fired boilers also by REI. DOE/NETL has begun an R & D effort to optimize performance of SCR controls to achieve the long term goal of 0.01 lb/MMBtu NOx emission rate by 2020. 1 fig.

  9. Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Data | Department of Energy Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data The Vehicle Technologies Office (VTO) supports testing and data collection on a wide range of advanced and alternative fuel vehicles and technologies through the Advanced Vehicle Testing Activity (AVTA) . The following table has downloadable performance, reliability, and driver behavior data for selected

  10. Alternative Fuels Data Center: Alternative Fuel and Advanced Technology

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Aid in Emergency Recovery Efforts Alternative Fuel and Advanced Technology Vehicles Aid in Emergency Recovery Efforts to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicles Aid in Emergency Recovery Efforts on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicles Aid in Emergency Recovery Efforts on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced

  11. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  12. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization | Department of Energy 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon geophysical_imaging_peer2013.pdf More Documents & Publications Advanced 3D Geophysical Imaging Technologies for

  13. Air Cooling Technology for Advanced Power Electronics and Electric Machines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Advanced Power Electronics and Electric Machines Air Cooling Technology for Advanced Power Electronics and Electric Machines 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_12_bharathan.pdf More Documents & Publications Air Cooling Technology for Power Electronic Thermal Control Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric

  14. Green Racing Initiative: Accelerating the Use of Advanced Technologies &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Fuels | Department of Energy Racing Initiative: Accelerating the Use of Advanced Technologies & Renewable Fuels Green Racing Initiative: Accelerating the Use of Advanced Technologies & Renewable Fuels 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss054_larsen_2011_o.pdf More Documents & Publications Green Racing: Accelerating the Use of Advanced Technologies & Renewable Fuels, Developing

  15. DOE Vehicle Technologies Program 2009 Merit Review Report - Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion | Department of Energy Advanced Combustion DOE Vehicle Technologies Program 2009 Merit Review Report - Advanced Combustion Merit review of DOE Vehicle Technologies Program research efforts PDF icon 2009_merit_review_4.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials DOE Vehicle Technologies Program 2009 Merit Review Report - Fuels and Lubricants 2011 Annual Merit Review Results Report - Advanced Combustion

  16. Advanced Technologies and Practices - Building America Top Innovations |

    Energy Savers [EERE]

    Department of Energy Advanced Technologies and Practices - Building America Top Innovations Advanced Technologies and Practices - Building America Top Innovations July 16, 2014 - 4:04pm Addthis Advanced Technologies and Practices - Building America Top Innovations Top Innovations in this category encompass research in specific technologies and construction practices that improve the building envelope; heating, ventilation, and air conditioning (HVAC); water heating components; and indoor air

  17. Offshore Wind Advanced Technology Demonstration Projects | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Technology Demonstration Projects Offshore Wind Advanced Technology Demonstration Projects With roughly 80% of the U.S. electricity demand originating from coastal states, offshore wind is a crucial renewable resource to be incorporated in the country's clean energy mix. Designed to reduce the cost of offshore wind energy through the development and deployment of innovative technologies, the Department of Energy has selected three Offshore Wind Advanced Technology

  18. Effects of Advanced Combustion Technologies on Particulate Matter Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characteristics | Department of Energy Advanced Combustion Technologies on Particulate Matter Emissions Characteristics Effects of Advanced Combustion Technologies on Particulate Matter Emissions Characteristics Findings of important implications for aftertreatment devices such as EGR coolers and diesel particulate filters, of physico-chemical changes observed in particulate matter during advanced combustion. PDF icon deer08_storey.pdf More Documents & Publications Measurement and

  19. Snorre subsea completions advance TFL technology

    SciTech Connect (OSTI)

    Gunnarsson, B.; Tonnessen, S.H. )

    1992-12-01

    Well-service operations on subsea completions at Saga Petroleum's Snorre field performed by TFL (through-flowline) methods. These operations will be carried out by an innovative system that advances the state-of-the-art for TFL technology. The initial field development phase for Snorre includes 10 subsea wells mounted no a large template known as the Subsea Production System, or SPS. The 2 [times] 10 well slot arrangement on the SPS allows additional wells to be drilled as needed to replace the original ten. The template is located 6,500 m (21,320 ft) from the Snorre TLP and is connected to it by two 8-in. production lines, one 8-in. water injection line and two 3-in.-ID TFL service lines. The wells will be completed with dual 3 1/2-in. Tubing strings for TFL service operations. This article will overview the Snorre TFL system and discuss completion design.

  20. The directory of United States coal & technology export resources. Profiles of domestic US corporations, associations and public entities, nationwide, which offer products or services suitable for export, relating to coal and its utilization

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The purpose of this directory is to provide a listing of available U.S. coal and coal related resources to potential purchasers of those resources abroad. The directory lists business entities within the US which offer coal related resources, products and services for sale on the international market. Each listing is intended to describe the particular business niche or range of product and/or services offered by a particular company. The listing provides addresses, telephones, and telex/fax for key staff in each company committed to the facilitation of international trade. The content of each listing has been formulated especially for this directory and reflects data current as of the date of this edition. The directory listings are divided into four primary classifications: coal resources; technology resources; support services; and financing and resource packaging. The first three of which are subdivided as follows: Coal Resources -- coal derivatives, coal exporters, and coal mining; Technology Resources -- advanced utilization, architects and engineers, boiler equipment, emissions control and waste disposal systems, facility construction, mining equipment, power generation systems, technical publications, and transport equipment; Support Services -- coal transport, facility operations, freight forwarders, sampling services and equipment, and technical consultants. Listings for the directory were solicited on the basis of this industry breakdown. Each of the four sections of this directory begins with a matrix illustrating which companies fall within the particular subclassifications specific to that main classification. A general alphabetical index of companies and an index by product/service classification are provided following the last section of the directory.

  1. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, April--June 1992

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    Effective September 26, 1991, Bechtel, with Amoco as the main subcontractor, initiated a study to develop a computer model and baseline design for advanced Fischer-Tropsch (F-T) technology for the US Department of Energy`s Pittsburgh Energy Technology Center (PETC). The objectives of the study are to: Develop a baseline design for indirect liquefaction using advanced F-T technology; prepare the capital and operating costs for the baseline design; and develop a process flow sheet simulation (PI-S) model. The baseline design, the economic analysis, and the computer model win be the major research planning tools that PETC will use to plan, guide, and evaluate its ongoing and future research and commercialization programs relating to indirect coal liquefaction. for the manufacture of synthetic liquid fuels from coal. This report is Bechtel`s third quarterly technical progress report covering the period from March 16, 1992 through June 21, 1992. This report consists of seven sections: Section 1 - introduction; Section 2 - summary; Section 3 - carbon dioxide removal tradeoff study; Section 4 - preliminary plant designs for coal preparation; Section 5 - preliminary design for syngas production; Section 6 - Task 3 - engineering design criteria; and Section 7 - project management.

  2. Report to the United States Congress clean coal technology export markets and financing mechanisms

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This report responds to a Congressional Conference Report that requests that $625,000 in funding provided will be used by the Department to identify potential markets for clean coal technologies in developing countries and countries with economies in transition from nonmarket economies and to identify existing, or new, financial mechanisms or financial support to be provided by the Federal government that will enhance the ability of US industry to participate in these markets. The Energy Information Administration (EIA) expects world coal consumption to increase by 30 percent between 1990 and 2010, from 5.1 to 6.5 billion short tons. Five regions stand out as major foreign markets for the export of US clean coal technologies: China; The Pacific Rim (other than China); South Asia (primarily India); Transitional Economies (Central Europe and the Newly Independent States); and Other Markets (the Americas and Southern Africa). Nearly two-thirds of the expected worldwide growth in coal utilization will occur in China, one quarter in the United States. EIA forecasts nearly a billion tons per year of additional coal consumption in China between 1990 and 2010, a virtual doubling of that country`s coal consumption. A 30-percent increase in coal consumption is projected in other developing countries over that same period. This increase in coal consumption will be accompanied by an increase in demand for technologies for burning coal cost-effectively, efficiently and cleanly. In the Pacific Rim and South Asia, rapid economic growth coupled with substantial indigenous coal supplies combine to create a large potential market for CCTS. In Central Europe and the Newly Independent States, the challenge will be to correct the damage of decades of environmental neglect without adding to already-considerable economic disruption. Though the situation varies, all these countries share the basic need to use indigenous low-quality coal cleanly and efficiently.

  3. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss031_rask_2011_o.pdf More Documents & Publications Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) Data Collection for Improved Cold Temperature Thermal Modeling Advanced Technology Vehicle Benchmark and Assessment

  4. Technology Development Advances EM Cleanup | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development Advances EM Cleanup Technology Development Advances EM Cleanup The unique nature of many of EM's remaining facilities will require a strong and responsive engineering and technology program to improve work and public safety, and reduce costs and environmental impacts while completing the cleanup program. A Ceramic membrane to Recycle Caustic Waste Processing Annual Technology Development Report 2007

  5. Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual Progress Report Annual report on the work of the the Advanced Combustion...

  6. Assessment of Long-Term Research Needs for Coal-Liquefaction Technologies

    SciTech Connect (OSTI)

    Penner, S.S.

    1980-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of J.M. Deutch (Under Secretary of DOE), E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has studied and reviewed currently funded coal-liquefaction technologies. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term development of coal-liquefaction technologies. This report summarizes the findings and research recommendations of FERWG.

  7. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  8. Advanced Materials Manufacturing and Innovative Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...) - Challenges: * Manufacturing Methodology MUST be Able to Deliver Required ... Research Opportunities & Challenges Advanced Materials Manufacturing & Innovative ...

  9. Experimental study of the Self-Advancing Miner for coal (SAM). Final technical report

    SciTech Connect (OSTI)

    Douglas, S.B.

    1981-08-01

    The design, fabrication, and field testing of the Rapidex Self-Advancing Miner (SAM) are discussed in detail. The SAM concept utilizes a unique conical screw geometry to excavate coal by first slotting the face and then breaking free the weakened material between slots. Field tests proved that the technique works well in coal and that the SAM does self advance along the face. Using the experimental data obtained, full scale estimates are made for four mining applications. Longwall mining with SAM cutterheads appears the most feasible and offers many operational advantages, including improved dust control. Other key SAM features are increased cutting efficiency, improved face control to minimize slabbing, and low methane emission and risk of face ignitions.

  10. Advanced Technology Planning for Federal Energy Savings Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contracts | Department of Energy Advanced Technology Planning for Federal Energy Savings Performance Contracts Advanced Technology Planning for Federal Energy Savings Performance Contracts The Federal Energy Management Program helps agencies to identify and plan opportunities to deploy advanced technologies through federal energy savings performance contracts (ESPCs). A federal project executive (FPE) will work with a project facilitator and a U.S. Department of Energy national laboratory

  11. Sec. Moniz Discusses Advanced Technology Vehicle Manufacturing Loans |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Discusses Advanced Technology Vehicle Manufacturing Loans Sec. Moniz Discusses Advanced Technology Vehicle Manufacturing Loans April 2, 2014 - 4:37pm Addthis NEWS MEDIA CONTACT (202) 586-4940 Washington D.C. - U.S. Secretary of Energy Ernest Moniz today highlighted key improvements to the Department's Advanced Technology Vehicles Manufacturing (ATVM) Loan Program at the Motor & Equipment Manufacturers Association (MEMA) Legislative Summit. The ATVM Loan Program plays

  12. Inexpensive Delivery of Compressed Hydrogen with Advanced Vessel Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Inexpensive Delivery of Compressed Hydrogen with Advanced Vessel Technology Inexpensive Delivery of Compressed Hydrogen with Advanced Vessel Technology Presentation on inexpensive delivery of compressed hydrogen with advanced vessel technology. PDF icon wkshp_storage_berry.pdf More Documents & Publications President's Hydrogen Fuel Initiative Overview of FreedomCAR & Fuels Partnership/DOE Delivery Program High-Pressure Tube Trailers and Tanks

  13. Final Technical Report - Center for Technology for Advanced Scientific

    Office of Scientific and Technical Information (OSTI)

    Component Software (TASCS) (Technical Report) | SciTech Connect Technical Report: Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS) Citation Details In-Document Search Title: Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS) This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work

  14. Three Offshore Wind Advanced Technology Demonstration Projects Receive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase 2 Funding | Department of Energy Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding September 11, 2014 - 3:16pm Addthis The U.S. Department of Energy (DOE) awarded additional funding to three of the seven projects from the Offshore Wind Advanced Technology Demonstration Funding Opportunity. Dominion Virginia Power, Fishermen's Energy of New Jersey, and Principle Power

  15. Under Secretary of Energy Highlights Advanced Energy Technologies to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustain America's Economic Growth | Department of Energy Highlights Advanced Energy Technologies to Sustain America's Economic Growth Under Secretary of Energy Highlights Advanced Energy Technologies to Sustain America's Economic Growth June 2, 2006 - 2:12pm Addthis HONEOYE FALLS, NY - U.S. Under Secretary of Energy David Garman today visited the General Motors (GM) Advanced Technologies Facility in Honeoye Falls, New York, with Rep. Randy Kuhl (NY-29th), to tour the facility and view new

  16. Vehicle Technologies Office Merit Review 2015: Impacts of Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Engines | Department of Energy Impacts of Advanced Combustion Engines Vehicle Technologies Office Merit Review 2015: Impacts of Advanced Combustion Engines Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about impacts of advanced combustion engines. PDF icon vss140_curran_2015_p.pdf More Documents & Publications Vehicle Technologies Office Merit

  17. Small Businesses Receive $2 Million to Advance HVAC Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Small Businesses Receive $2 Million to Advance HVAC Technologies Small Businesses Receive $2 Million to Advance HVAC Technologies March 24, 2014 - 5:55pm Addthis The U.S. Department of Energy announced March 20, 2014, approximately $2 million to advance next generation water heating technologies developed by America's small businesses. The two selected Phase II projects-one by Sheetak of Austin, Texas, and the other by Xergy Inc. of Seaford, Del.-received awards under

  18. Vehicle Technologies Office Merit Review 2014: Impacts of Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Engines | Department of Energy Impacts of Advanced Combustion Engines Vehicle Technologies Office Merit Review 2014: Impacts of Advanced Combustion Engines Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about impacts of advanced combustion engines. PDF icon vss140_curran_2014_p.pdf More Documents & Publications Vehicle Technologies Office Merit

  19. EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nautical miles offshore of Virginia Beach, Virginia | Department of Energy 85: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia SUMMARY DOE is proposing to fund Virginia Electric and Power Company's Virginia Offshore Wind Technology Advancement Project (VOWTAP). The proposed VOWTAP project

  20. Final Week of National Energy Action Month Features Technological Advances

    Office of Environmental Management (EM)

    in Clean Energy and DOE Support of Scientific Research | Department of Energy Final Week of National Energy Action Month Features Technological Advances in Clean Energy and DOE Support of Scientific Research Final Week of National Energy Action Month Features Technological Advances in Clean Energy and DOE Support of Scientific Research October 23, 2014 - 4:20pm Addthis News Media Contact 202-586-4940 Final Week of National Energy Action Month Features Technological Advances in Clean Energy

  1. Chapter 4 - Advancing Clean Electric Power Technologies | Department of

    Office of Environmental Management (EM)

    Energy 4 - Advancing Clean Electric Power Technologies Chapter 4 - Advancing Clean Electric Power Technologies Chapter 4 - Advancing Clean Electric Power Technologies Clean electric power is paramount to today's mission to meet our interdependent security, economic, and environmental goals. While supporting aggressive emission reductions, the traditional market drivers such as reliability, safety, and affordability must be maintained and enhanced. The current portfolio of electric production

  2. Chapter 6 - Innovating Clean Energy Technologies in Advanced

    Office of Environmental Management (EM)

    Manufacturing | Department of Energy 6 - Innovating Clean Energy Technologies in Advanced Manufacturing Chapter 6 - Innovating Clean Energy Technologies in Advanced Manufacturing Chapter 6 - Innovating Clean Energy Technologies in Advanced Manufacturing Clean energy manufacturing involves the minimization of the energy and environmental impacts of the production, use, and disposal of manufactured goods, which range from fundamental commodities such as metals and chemicals to sophisticated

  3. Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels |

    Office of Environmental Management (EM)

    Department of Energy 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Fuels play a critical role throughout our economy. In 2013, fuels directly supplied about 99% of the energy needed by our national transportation system, 66% of that needed to generate our electricity, 68% of that needed by our industry, and 27% of that needed by our

  4. Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bio-Oils Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils Introduction presentation report-out at the CTAB webinar on bio-oils. PDF icon ctab_webinar_bio_oils_intro.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading Challenge # 2 Logistics and Compatibility with Existing Infrastructure Throughout Supply Chain

  5. 16 Projects To Advance Hydropower Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology September 6, 2011 - 11:24am Addthis U.S. Department Energy Secretary Steven Chu and U.S. Department of the Interior Secretary Ken Salazar announced nearly $17 million in funding over the next three years for research and development projects to advance hydropower technology. The list of 16 projects in 11 different states can be found here. Applicant Location Award Amount; Funding is from DOE unless otherwise

  6. Technology Advances Needed for Photovoltaics to Achieve Widespread Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Price Parity | Department of Energy Technology Advances Needed for Photovoltaics to Achieve Widespread Grid Price Parity Technology Advances Needed for Photovoltaics to Achieve Widespread Grid Price Parity Abstract: To quantify the potential value of technological advances to the photovoltaics (PV) sector, this paper examines the impact of changes to key PV systems parameters on the levelized cost of energy (LCOE). The parameters selected include module manufacturing cost, efficiency,

  7. EA-1678: Nissan North America, Inc., Advanced Technology Electric Vehicle

    Office of Environmental Management (EM)

    Manufacturing Plant in Smyrna, TN | Department of Energy ATVM » ATVM Environmental Compliance » EA-1678: Nissan North America, Inc., Advanced Technology Electric Vehicle Manufacturing Plant in Smyrna, TN EA-1678: Nissan North America, Inc., Advanced Technology Electric Vehicle Manufacturing Plant in Smyrna, TN November 2, 2009 EA-1678: Final Environmental Assessment Loan To Nissan North America, Inc., for Advanced Technology Electric Vehicle Manufacturing Project in Smyrna, Tennessee

  8. EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing

    Office of Environmental Management (EM)

    Project in Dearborn, MI | Department of Energy ATVM » ATVM Environmental Compliance » EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn, MI EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn, MI February 1, 2011 EA-1834: Final Environmental Assessment Loan to Severstal Dearborn, Inc., for Advanced Technology Vehicles Manufacturing Project in Dearborn, Michigan February 18, 2011 EA-1834: Finding of No Significant

  9. Advanced Technology and Alternative Fuel Vehicle Basics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Technology and Alternative Fuel Vehicle Basics Advanced Technology and Alternative Fuel Vehicle Basics August 20, 2013 - 9:00am Addthis Photo of a large blue truck with 'PG&amp;E Cleanair' written on the side. There are a variety of alternative fuel and advanced technology vehicles that run on fuels other than traditional petroleum. Learn about the following types of vehicles: Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid and Plug-In Electric Vehicles Natural Gas

  10. Assessment of advanced coal-gasification processes. [AVCO high throughput gasification in process; Bell High Mass Flux process; CS-R process; and Exxon Gasification process

    SciTech Connect (OSTI)

    McCarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-06-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process, Bell Single - Stage High Mass Flux (HMF) Process, Cities Service/Rockwell (CS/R) Hydrogasification Process, and the Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic fluidbed reactor producing all of the raw product methane in the gasifier.

  11. Eleventh annual international Pittsburgh coal conference proceedings: Volume 2

    SciTech Connect (OSTI)

    Chiang, S.H.

    1994-12-31

    The conference presented over 300 papers in 39 separate sessions. These presentations are grouped into five topical areas: the technologies in pre- and post-utilization of coal; research and development in coal conversion; advanced coal combustion; environmental control technologies, and environmental policy issues related to coal use. The program has expanded its coverage in non-fuel use of coal. This is reflected in the three sessions on use of coal in the steel industry, and a sessions on carbon products and non-fuel coal applications. Volume 2 includes the following topics: Environmental systems and technologies/Environmental policy; Coal drying, dewatering and reconstitution; Coal cleaning technology; Slurry bed technology; Coal syngas, methanol, DME, olefins and oxygenates; Environmental issues in energy conversion technology; Applied coal geology; Use of coal in the steel industry; Recent developments in coal preparation; International coal gasification projects; Progress on Clean Coal projects; Retrofit air quality control technologies;Fluidized bed combustion; Commercialization of coal preparation technologies; Integrated gasification combined cycle program; the US Department of Energy`s Combustion 2000 program; and Environmental issues in coal utilization. All papers have been processed separately for inclusion on the data base.

  12. Evaluation of ADAM/1 model for advanced coal-extraction concepts

    SciTech Connect (OSTI)

    Deshpande, G. K.; Gangal, M. D.

    1982-01-15

    The Advanced Coal Extraction Project is sponsored by the Department of Energy at the Jet Propulsion Laboratory to define and develop advanced underground coal extraction systems which: (1) are suitable for significant remaining resources after the year 2000, and (2) promise a significant improvement in production cost and miner safety, with no degradation in miner health, environmental quality and resource recovery. System requirements in the five performance areas have been defined by Goldsmith and Lavin (1980). Several existing computer programs for estimating life-cycle cost of mining systems have been evaluated. A commercially available program ADAM/1 was found to be satisfactory in relation to the needs of the Advanced Coal Extraction Project. Two test cases were run to confirm the ability of the program to handle non-conventional mining equipment and procedures. The results were satisfactory. The model, therefore, is recommended to the project team for evaluation of their conceptual designs. Since the model is commercially available, data preparation instructions are not reproduced in this document; instead the reader is referred to the original documents for this information.

  13. Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual Progress Report PDF icon 2008advcombustionengine.pdf More Documents &...

  14. Vehicle Technologies Office: 2015 Advanced Combustion Engine Annual Progress Report

    Broader source: Energy.gov [DOE]

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive...

  15. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  16. Advanced Heat/Mass Exchanger Technology for Geothermal and solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Systems Advanced HeatMass Exchanger Technology for Geothermal and solar Renewable Energy Systems presentation at the April 2013 peer review meeting held in Denver,...

  17. Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

  18. Overview of the Batteries for Advanced Transportation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    es00bduong2010o.pdf More Documents & Publications Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of...

  19. Overview of the Batteries for Advanced Transportation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. PDF icon es15srinivasan.pdf More Documents & Publications Overview of the Batteries for Advanced Transportation Technologies (BATT) Program BATT Program- Summary and...

  20. Vehicle Technologies Office Merit Review 2014: Advanced Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts - enabling systems and solutions for high efficiency light duty...

  1. Characterization and Development of Advanced Heat Transfer Technologies (Presentation)

    SciTech Connect (OSTI)

    Kelly, K.

    2009-05-01

    This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

  2. Advances in Diesel Engine Technologies for European Passenger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation: Volkswagen AG PDF icon 2002deerschindler.pdf More Documents & ...

  3. Sec. Chu Announces the First Auto Loans for Advanced Technologies

    Broader source: Energy.gov [DOE]

    In Dearborn, Michigan Energy Secretary Steven Chu announced $8 billion in conditional loan commitments for the development of innovative, advanced vehicle technologies that will create thousands of...

  4. ATU Advanced Technology Upgrading Ltd | Open Energy Information

    Open Energy Info (EERE)

    Upgrading) Ltd Place: Israel Product: Focused on development of rechargeable magnesium battery. References: ATU (Advanced Technology Upgrading) Ltd1 This article is a stub. You...

  5. Advanced Technology Development Center ATDC | Open Energy Information

    Open Energy Info (EERE)

    Development Center ATDC Jump to: navigation, search Name: Advanced Technology Development Center (ATDC) Place: United States Sector: Services Product: General Financial & Legal...

  6. Small Businesses Receive $2 Million to Advance HVAC Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The U.S. Department of Energy announced March 20, 2014, approximately 2 million to advance next generation water heating technologies developed by America's small businesses. The ...

  7. Vehicle Technologies Office Merit Review 2014: Advanced Combustion and Fuels

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion and fuels.

  8. Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Storage Technology Advancement Partnership (ESTAP) is acooperative funding and information-sharing partnership between DOE and interested states that aims to accelerate the...

  9. The Center for Advanced Ceramics Technology CACT | Open Energy...

    Open Energy Info (EERE)

    itleTheCenterforAdvancedCeramicsTechnologyCACT&oldid780750" Feedback Contact needs updating Image needs updating Reference needed Missing content Broken link Other...

  10. DOE-Funded Primer Underscores Technology Advances, Challenges...

    Broader source: Energy.gov (indexed) [DOE]

    of information on the technology advances and challenges that accompany deep shale gas development. Natural gas production from hydrocarbon rich deep shale formations, known...

  11. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recognizes Leaders in Advanced Vehicle Research, Development and Deployment Vehicle Technologies ... Wereszczak's work in ceramics and brittle materials supports vehicle OEMs and their ...

  12. U.S. Advanced Manufacturing and Clean Energy Technology Challenges

    Energy Savers [EERE]

    U.S. Advanced Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer ... & Programs: Pilar Thomas * Office of Nuclear Energy: Martha Shields, Alison Hahn, ...

  13. Effects of Advanced Combustion Technologies on Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions from Advanced Technologies Efficient Emissions Control for Multi-Mode Lean DI Engines Measurement and Characterization of Lean NOx Adsorber Regeneration and...

  14. NTT Advanced Technology Corporation NTT AT | Open Energy Information

    Open Energy Info (EERE)

    search Name: NTT Advanced Technology Corporation (NTT-AT) Place: Tokyo, Tokyo, Japan Zip: 163-0431 Product: Telecommunications service provider. Coordinates: 35.670479,...

  15. EA-1678: Nissan North America, Inc., Advanced Technology Electric...

    Office of Environmental Management (EM)

    ATVM ATVM Environmental Compliance EA-1678: Nissan North America, Inc., Advanced Technology Electric Vehicle Manufacturing Plant in Smyrna, TN EA-1678: Nissan North America,...

  16. Vehicle Technologies Office Merit Review 2015: Advanced Combustion and Fuels

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about advanced...

  17. Enhancement of surface properties for coal beneficiation

    SciTech Connect (OSTI)

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  18. Vehicle Technologies Office Merit Review 2014: Advanced Battery Recycling

    Broader source: Energy.gov [DOE]

    Presentation given by OnTo Technology LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced battery recycling.

  19. Advances in Chip Technology, Packaging Enable White LED Breakthroughs

    Broader source: Energy.gov [DOE]

    Significant advances in chip technology have enabled Cree, Inc.'s Santa Barbara Technology Center to demonstrate white LEDs with record efficacies as high as 74 lumens per watt - on par with...

  20. Advanced ignition and propulsion technology program

    SciTech Connect (OSTI)

    Oldenborg, R.; Early, J.; Lester, C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

  1. Advanced Lost Foam Casting Technology - Phase V

    SciTech Connect (OSTI)

    Wanliang Sun; Harry E. Littleton; Charles E. Bates

    2004-04-29

    Previous research, conducted under DOE Contracts DE-FC07-89ID12869, DE-FC07-93ID12230 and DE-FC07-95ID113358 made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional developments were needed to improve the process and make it more functional in industrial environments. The current project focused on eight tasks listed as follows: Task 1--Computational Model for the Process and Data Base to Support the Model; Task 2--Casting Dimensional Accuracy; Task 3--Pattern Production; Task 4--Improved Pattern Materials; Task 5--Coating Control; Task 6--In-Plant Case Studies; Task 7--Energy and the Environmental Data; and Task 8--Technology Transfer. This report summarizes the work done on all tasks in the period of October 1, 1999 through September 30, 2004. The results obtained in each task and subtask are summarized in this Executive Summary and details are provided in subsequent sections of the report.

  2. Coal and Biomass to Liquids

    Broader source: Energy.gov [DOE]

    Over the last several decades, the Office of Fossil Energy performed RD&D activities that made significant advancements in the areas of coal conversion to liquid fuels and chemicals. Technology...

  3. Overview of the Batteries for Advanced Transportation Technologies (BATT)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy 10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es00b_duong_2010_o.pdf More Documents & Publications Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the Exploratory Technology Research Activity: Batteries for Advanced Transportation Technologies (BATT) Overview and Progress of the Batteries

  4. Idaho National Laboratory Testing of Advanced Technology Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss021_francfort_2012_o.pdf More Documents & Publications Idaho National Laboratory Testing of Advanced Technology Vehicles Vehicle Technologies Office Merit Review 2014: Idaho National Laboratory Testing of Advanced Technology Vehicles AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing

  5. Advanced Natural Gas Engine Technology for Heavy Duty Vehicles | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Natural Gas Engine Technology for Heavy Duty Vehicles Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Natural gas engine technology has evolved to meet the requirements of HD vehicle applications. PDF icon deer09_kamel.pdf More Documents & Publications Light-Duty Diesel Market Potential in North America The Potential of GTL Diesel to Meet Future Exhaust Emission Limits Advances in Diesel Engine Technologies for European Passenger Vehicles

  6. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing

    Office of Environmental Management (EM)

    6: Innovating Clean Energy Technologies in Advanced Manufacturing September 2015 Quadrennial Technology Review 6 Innovating Clean Energy Technologies in Advanced Manufacturing Issues and RDD&D Opportunities  Manufacturing affects the way products are designed, fabricated, used, and disposed; hence, manufacturing technologies have energy impacts extending beyond the industrial sector.  Life-cycle analysis is essential to assess the total energy impact of a manufactured product. 

  7. Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on

  8. DOE Projects to Advance Environmental Science and Technology | Department

    Office of Environmental Management (EM)

    of Energy Projects to Advance Environmental Science and Technology DOE Projects to Advance Environmental Science and Technology August 19, 2009 - 1:00pm Addthis Washington, DC - The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has selected nine new projects targeting environmental tools and technology for shale gas and coalbed methane (CBM) production. NETL's goals for these projects are to improve management of water resources, water usage, and water disposal, and

  9. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 1, Final technical report, October 1, 1991--September 30, 1994

    SciTech Connect (OSTI)

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1994-12-31

    The overall objective of this project was to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrated coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. Heterofunctional solvents were the most effective in swelling coals. Also solvent blends such as isopropanol/water were more effective than pure solvents alone. Impregnating slurry catalysts simultaneously during coal swelling showed that better uptake was achieved with nonswelling solvent and higher impregnation temperature. Some enhancement in initial coal conversion was seen liquefying SO{sub 2}-treated Black Thunder coal with slurry catalysts, and also when hydrogen donor liquefaction solvents were used. Noncatalytic reactions showed no benefit from SO{sub 2} treatment. Coupling coal swelling and SO{sub 2} treatment with slurry catalysts was also not beneficial, although high conversion was seen with continuous operation and long residence time, however, similar high conversion was observed with untreated coal. SO{sub 2} treatment is not economically attractive unless it provides about 17% increase in coal reactivity. In most cases, the best results were obtained when the coal was untreated and the slurry catalyst was added directly into the reactor. Foster Wheeler`s ASCOT process had better average liquid yields than either Wilsonville`s vacuum tower/ROSE combination or delayed coking process. This liquid product also had good quality.

  10. Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development

    SciTech Connect (OSTI)

    Stephenson, M.

    1994-03-01

    Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

  11. Sec. Chu Announces the First Auto Loans for Advanced Technologies

    SciTech Connect (OSTI)

    Secretary Chu

    2009-07-16

    Energy Secretary Steven Chu announced $8 billion in conditional loan commitments for the development of innovative, advanced vehicle technologies that will create thousands of green jobs while helping reduce the nations dangerous dependence on foreign oil. The first three auto loans for advanced technologies were awarded to Ford Motor Company, Nissan Motors and Tesla Motors.

  12. Sec. Chu Announces the First Auto Loans for Advanced Technologies

    ScienceCinema (OSTI)

    Secretary Chu

    2010-09-01

    Energy Secretary Steven Chu announced $8 billion in conditional loan commitments for the development of innovative, advanced vehicle technologies that will create thousands of green jobs while helping reduce the nation?s dangerous dependence on foreign oil. The first three auto loans for advanced technologies were awarded to Ford Motor Company, Nissan Motors and Tesla Motors.

  13. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading |

    Office of Environmental Management (EM)

    Department of Energy Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. PDF icon ctab_webinar_bio_oils_upgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Thermochemical Conversion Proceeses to Aviation Fuels

  14. UPDATED: Energy Department Announces New Advance in Biofuel Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy UPDATED: Energy Department Announces New Advance in Biofuel Technology UPDATED: Energy Department Announces New Advance in Biofuel Technology March 7, 2011 - 12:00am Addthis U.S. Energy Secretary Steven Chu today congratulated a team of researchers at the Department's BioEnergy Science Center who have achieved yet another advance in the drive toward next generation biofuels: using bacteria to convert plant matter directly into isobutanol, which can be burned in regular

  15. Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Energy Efficiency and Reduced Emissions in Engines | Department of Energy Advanced Nanolubricants for Improved Energy Efficiency and Reduced Emissions in Engines Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants for Improved Energy Efficiency and Reduced Emissions in Engines Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced

  16. Vehicle Technologies Office Merit Review 2014: Advanced in situ Diagnostic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Techniques for Battery Materials | Department of Energy Advanced in situ Diagnostic Techniques for Battery Materials Vehicle Technologies Office Merit Review 2014: Advanced in situ Diagnostic Techniques for Battery Materials Presentation given by Brookhaven National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced in situ diagnostic techniques for battery materials. PDF icon

  17. Water-Efficient Technology Opportunity: Advanced Cooling Tower Controls |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Cooling Tower Controls Water-Efficient Technology Opportunity: Advanced Cooling Tower Controls The Federal Energy Management Program (FEMP) identified advanced cooling tower controls as a water-saving technology that is relevant to the federal sector, is commercially available, and offers significant water-savings potential. This overview provides agencies with key information to deploy innovative products and systems that may otherwise be overlooked. It also

  18. Vehicle Technologies Office: Advanced Battery Development, System Analysis,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Testing | Department of Energy Battery Development, System Analysis, and Testing Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full battery systems. The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, and Testing activity

  19. Development of Advanced Combustion Technologies for Increased Thermal

    Office of Environmental Management (EM)

    Efficiency | Department of Energy of Advanced Combustion Technologies for Increased Thermal Efficiency Development of Advanced Combustion Technologies for Increased Thermal Efficiency Investigation of fuel effects on low-temperature combustion, particularly HCCI / PCCI combustion PDF icon deer09_gehrke.pdf More Documents & Publications The Role of Advanced Combustion in Improving Thermal Efficiency Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar Fuel Effects

  20. Chapter 4: Advancing Clean Electric Power Technologies

    Broader source: Energy.gov (indexed) [DOE]

    dioxide power cycles, hybrid systems matching renewables with nuclear or fossil, and energy storage. Advanced capabilities in materials, computing, and manufacturing can...

  1. Removing mercury from coal emissions: options for ash-friendly technologies

    SciTech Connect (OSTI)

    Sager, J.

    2009-07-01

    The article gives a brief description of techniques to remove mercury emitted from coal-fired power plants and discusses environmental considerations associated with the effect of emission controls on coal fly ash. Techniques covered include use of injected mercury sorbents (activated carbon, metal oxide catalysts, MerCAP{trademark} and MercScreen{trademark}) and fuel cleaning. Technologies currently being researched are mentioned. 8 refs.

  2. Coal-Derived Liquids to Enable HCCI Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal-Derived Liquids to Enable HCCI Technology Coal-Derived Liquids to Enable HCCI Technology Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_shade.pdf More Documents & Publications Opportunities for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. -- An

  3. Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing

  4. Ramping-up Investments in Advanced Vehicle Technologies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies August 10, 2011 - 5:06pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Accelerates the development and deployment of next-generation vehicle technologies. Helps improve vehicle fuel efficiency and create quality jobs. Today, Secretary Chu announced the selection of 40 projects across 15 states to receive

  5. Overview of the Batteries for Advanced Transportation Technologies (BATT)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es_15_srinivasan.pdf More Documents & Publications Overview of the Batteries for Advanced Transportation Technologies (BATT) Program BATT Program- Summary and Future Plans Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity

  6. Partnerships Help Advance Small Modular Reactor Technology | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Partnerships Help Advance Small Modular Reactor Technology Partnerships Help Advance Small Modular Reactor Technology March 5, 2012 - 12:00pm Addthis WASHINGTON, D.C. - DOE recently announced three public-private partnerships to develop deployment plans for small modular nuclear reactor (SMR) technologies at Savannah River Site (SRS) facilities near Aiken, S.C. Read the full story on the Memorandums of Agreement to help leverage SRS land assets, energy facilities and nuclear expertise

  7. Upcoming Funding Opportunity to Advance Low-Impact Hydropower Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy to Advance Low-Impact Hydropower Technologies Upcoming Funding Opportunity to Advance Low-Impact Hydropower Technologies March 18, 2015 - 11:27am Addthis On March 18, EERE's Water Power Program announced a Notice of Intent to issue a funding opportunity titled "Research and Development of Innovative Technologies for Low Impact Hydropower Development." This funding will support the research and development of new innovations in hydropower drivetrain and civil

  8. Renaissance in Flow-Cell Technologies: Recent Advancements and Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities | Department of Energy Renaissance in Flow-Cell Technologies: Recent Advancements and Future Opportunities Renaissance in Flow-Cell Technologies: Recent Advancements and Future Opportunities Presentation by Mike Perry, United Technologies Research Center, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC. PDF icon flowcells2012_perry.pdf More Documents & Publications Flow Cells for Energy Storage Workshop Summary Report Energy Storage

  9. EERE Success Story-New Advanced Refrigeration Technology Provides Clean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Low Utility Bills for Supermarkets | Department of Energy Advanced Refrigeration Technology Provides Clean Energy, Low Utility Bills for Supermarkets EERE Success Story-New Advanced Refrigeration Technology Provides Clean Energy, Low Utility Bills for Supermarkets July 16, 2015 - 2:23pm Addthis Oak Ridge National Laboratory's (ORNL's) Brian Fricke tests Hillphoenix's Advansor Refrigeration System in ORNL's state-of-the-art Building Technologies Research & Integration Center

  10. Fuels and Lubricants to Support Advanced Diesel Engine Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lubricants to Support Advanced Diesel Engine Technology Fuels and Lubricants to Support Advanced Diesel Engine Technology 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_baranescu.pdf More Documents & Publications New Diesel Feedstocks and Future Fuels Future Engine Fluids Technologies: Durable, Fuel-Efficient, and Emissions-Friendly New Feedstocks and Replacement Fuel Diesel Engine Challenges

  11. Green Racing: Accelerating the Use of Advanced Technologies & Renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels, Developing Market Acceptance | Department of Energy Racing: Accelerating the Use of Advanced Technologies & Renewable Fuels, Developing Market Acceptance Green Racing: Accelerating the Use of Advanced Technologies & Renewable Fuels, Developing Market Acceptance 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss033_jehlik_2010_p.pdf More Documents & Publications Green Racing

  12. Demonstrating Optimum HCCI Combustion with Advanced Control Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Optimum HCCI Combustion with Advanced Control Technology Demonstrating Optimum HCCI Combustion with Advanced Control Technology Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_killingsworth.pdf More Documents & Publications Control-Oriented Modeling for

  13. SEMATECH: A Model for Advancing Solar Technology | Department of Energy

    Energy Savers [EERE]

    SEMATECH: A Model for Advancing Solar Technology SEMATECH: A Model for Advancing Solar Technology May 24, 2011 - 11:22am Addthis SEMATECH brings 14 companies together to help them share and collaborate in their most expensive and difficult manufacturing development projects. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs One of the hardest parts for start-up companies producing an emerging technology is the cost to test and develop more efficient

  14. Advancing Fuel Cell Technology at Los Alamos | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technology at Los Alamos Advancing Fuel Cell Technology at Los Alamos July 26, 2013 - 12:00am Addthis From fuel cell electric vehicles to portable power, Los Alamos National Laboratory has been a pioneer in advancing offer alternatives that will reduce the nation's energy and petroleum requirements, as well as decrease U.S. greenhouse gas emissions. Los Alamos' technology has enabled the manufacture of polymer electrolyte membrane fuel cells with one-tenth the platinum content of

  15. New Advanced Refrigeration Technology Provides Clean Energy, Low Utility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bills for Supermarkets | Department of Energy Advanced Refrigeration Technology Provides Clean Energy, Low Utility Bills for Supermarkets New Advanced Refrigeration Technology Provides Clean Energy, Low Utility Bills for Supermarkets July 16, 2015 - 2:23pm Addthis Oak Ridge National Laboratory's (ORNL's) Brian Fricke tests Hillphoenix's Advansor Refrigeration System in ORNL's state-of-the-art Building Technologies Research & Integration Center (BTRIC) user facility; Photo Credit: Oak

  16. PNNL Advances Hydrogen-Fueled Vehicle Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PNNL Advances Hydrogen-Fueled Vehicle Technologies PNNL Advances Hydrogen-Fueled Vehicle Technologies July 26, 2013 - 12:00am Addthis Through multiple projects, Pacific Northwest National Laboratory (PNNL) is improving the performance and decreasing the cost of hydrogen fuel production and fuel cell technologies. PNNL's research is developing new materials-like a durable, high-performance cathode support-and improving the manufacturing processes by using a "drop-on-demand" process to

  17. Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels

    Office of Environmental Management (EM)

    7: Advancing Systems and Technologies to Produce Cleaner Fuels September 2015 Quadrennial Technology Review 7 Advancing Systems and Technologies to Produce Cleaner Fuels Issues and RDD&D Opportunities  Fossil fuels account for 82% of total U.S. primary energy use.  Each fuel has strengths and weaknesses in relation to energy security, economic competitiveness, and environmental responsibility identified in Chapter 1.  Low-cost fuels can contribute to economic prosperity. Oil and gas

  18. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies

    Office of Environmental Management (EM)

    8: Advancing Clean Transportation and Vehicle Systems and Technologies September 2015 Quadrennial Technology Review 8 Advancing Clean Transportation and Vehicle Systems and Technologies Issues and RDD&D Opportunities  Transportation accounts for 10% of U.S. gross domestic product and provides essential services throughout the economy and for quality of life. It also represents 70% of all U.S. petroleum use and 27% of U.S. greenhouse gas (GHG) emissions.  Research opportunities to

  19. Advanced Technology Vehicle Lab Benchmarking- Level 1

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Neutron Imaging of Advanced Engine Technologies

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  1. Neutron Imaging of Advanced Engine Technologies

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Assessment of coal technology options and implications for the State of Hawaii

    SciTech Connect (OSTI)

    Carlson, J.L.; Elcock, D.; Elliott, T.J.

    1993-12-01

    The mandate of this research report was to provide the state of Hawaii with an assessment of the potential opportunities and drawbacks of relying on coal-fired generating technologies to diversify its fuel mix and satisfy future electric power requirements. This assessment was to include a review of existing and emerging coal-based power technologies-including their associated costs, environmental impacts, land use, and infrastructure requirements-to determine the range of impacts likely to occur if such systems were deployed in Hawaii. Coupled with this review, the report was also to (1) address siting and safety issues as they relate to technology choice and coal transport, (2) consider how environmental costs associated with coal usage are included in the integrated resource planning (ERP) process, and (3) develop an analytical tool from which the Department of Business, Economic Development & Tourism of the State of Hawaii could conduct first-order comparisons of power plant selection and siting. The prepared report addresses each element identified above. However, available resources and data limitations limited the extent to which particular characteristics of coal use could be assessed. For example, the technology profiles are current but not as complete regarding future developments and cost/emissions data as possible, and the assessment of coal technology deployment issues in Hawaii was conducted on an aggregate (not site-specific) basis. Nonetheless, the information and findings contained in this report do provide an accurate depiction of the opportunities for and issues associated with coal utilization in the state of Hawaii.

  3. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Additive Manufacturing Technology Assessment

    Office of Environmental Management (EM)

    6: Innovating Clean Energy Technologies in Advanced Manufacturing Technology Assessments Additive Manufacturing Advanced Materials Manufacturing Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials

  4. Coal fueled diesel system for stationary power applications-technology development

    SciTech Connect (OSTI)

    1995-08-01

    The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

  5. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Composite Materials Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composite Materials Chapter 6: Technology Assessments This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Composite Materials is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology assessments

  6. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Critical Materials Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Critical Materials is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  7. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Process Intensification Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Intensification Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Process Intensification is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  8. Low-rank coal research: Volume 1, Control technology, liquefaction, and gasification: Final report

    SciTech Connect (OSTI)

    Weber, G.F.; Collings, M.E.; Schelkoph, G.L.; Steadman, E.N.; Moretti, C.J.; Henke, K.R.; Rindt, J.R.; Hetland, M.D.; Knudson, C.L.; Willson, W.G.

    1987-04-01

    Volume I contains articles on SO/sub x//NO/sub x/ control, waste management, low-rank direct liquefaction, hydrogen production from low-rank coals, and advanced wastewater treatment. These articles have been entered individually into EDB and ERA. (LTN)

  9. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    SciTech Connect (OSTI)

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  10. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    SciTech Connect (OSTI)

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  11. How can environmental regulations promote clean coal technology adoption in APEC developing economies?

    SciTech Connect (OSTI)

    2007-11-15

    The study examines both existing and emerging regulatory frameworks in order to determine which type of regulations that would be most effective at promoting clean coal technology adoption in development Asia Pacific Economic Co-operation (APEC) economies and would be practical to implement. regulations targeting air emissions; regulations targeting water use; and regulations concerning coal combustion by-products. When considering the potential effect of existing and new environmental regulations on the adoption of clean coal the analysis of technologies was organised into three categories: environmental control technologies; high efficiency coal combustion technologies; and carbon dioxide capture and storage (CCS). To target the recommendations towards APEC economies that would benefit the most from this analysis, the study focused on developing and transition APEC economies that are expected to rely on coal for a large part of their future generating capacity. These economies include China, Indonesia, the Philippines, the Russian Federation, Thailand, and Vietnam. ACARP provided funding to this study, under Project C15078. 10 figs., 14 tabs., 10 apps.

  12. Energy Department Announces Awards to Projects Advancing Innovative Clean

    Energy Savers [EERE]

    Coal Technology | Department of Energy Awards to Projects Advancing Innovative Clean Coal Technology Energy Department Announces Awards to Projects Advancing Innovative Clean Coal Technology July 26, 2012 - 1:00pm Addthis Washington, D.C. - As part of President Obama's all-of-the-above approach to American energy, the Energy Department announced today the selection of eight projects to advance the development of transformational oxy-combustion technologies capable of high-efficiency,

  13. Energy Department Announces Awards to Projects Advancing Innovative Clean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Technology | Department of Energy Awards to Projects Advancing Innovative Clean Coal Technology Energy Department Announces Awards to Projects Advancing Innovative Clean Coal Technology July 26, 2012 - 11:37am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of President Obama's all-of-the-above approach to American energy, the Energy Department announced today the selection of eight projects to advance the development of transformational oxy-combustion technologies

  14. OVERVIEW OF THE ZECA (ZERO EMISSION COAL ALLIANCE) TECHNOLOGY

    SciTech Connect (OSTI)

    H. ZIOCK; K. LACKNER

    2000-12-01

    We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Although we focus on coal, the basic approach is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without the need for the combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells, which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end-products of the sequestration process are stable, naturally-occurring minerals. Sufficient high quality ultramafic deposits exist to easily handle all the world's coal.

  15. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Broader source: Energy.gov (indexed) [DOE]

    The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry ... The standard procedures and test specifications are used to test and collect data from ...

  16. Advanced Diesel Engine Technology Development for HECC

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  17. Advanced Membrane Technology for Hydrocarbon Separations

    SciTech Connect (OSTI)

    2004-07-01

    This factsheet describes a research project whose goal is to develop and demonstrate a membrane technology for superior, robust, low-cost natural gas dehydration.

  18. Coal liquefaction technology. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-09-01

    The bibliography contains citations concerning the technologies and processes for converting coal to liquid chemicals and fuels. Topics include materials characterization of liquefaction processes, catalysis, pyrolysis, depolymerization, coprocessing, and integrated liquefaction. Also discussed are liquid fuel use in automobiles and power generation, low-temperature carbonization technology, multi-stage liquefaction, cost benefit analysis, and commercialization of liquefaction technology. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  19. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  20. Measurement and modeling of advanced coal conversion processes, Volume I, Part 1. Final report, September 1986--September 1993

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.

    1995-09-01

    The objective of this program was the development of a predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. The foundation to describe coal specific conversion behavior was AFR`s Functional Group and Devolatilization, Vaporization and Crosslinking (DVC) models, which had been previously developed. The combined FG-DVC model was integrated with BYU`s comprehensive two-dimensional reactor model for combustion and coal gasification, PCGC-2, and a one-dimensional model for fixed-bed gasifiers, FBED-1. Progress utilizing these models is described.

  1. Advanced Technology & Discovery at Niskayuna | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology & Discovery at Niskayuna Technology & Discovery at Niskayuna Capture the momentum behind leading-edge technologies from advanced manufacturing to supercomputing at GE's research headquarters. Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Featured Technologies Controls Controls at GE are used in

  2. Market Acceptance of Advanced Automotive Technologies (MA3T) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acceptance of Advanced Automotive Technologies (MA3T) Model (Oak Ridge National Laboratory) Objectives Forecasts sales of competing vehicle technologies among consumer segments. Analyzes how technology, infrastructure, consumer behavior, and policy affect sales of new technologies and determines the resulting societal, environmental and economic impacts. Key Attributes & Strengths MA3T can be used to investigate the societal benefits, costs, and employment impacts of market transitions

  3. Proceedings of the advanced research and technology development direct utilization, instrumentation and diagnostics contractors' review meeting

    SciTech Connect (OSTI)

    Geiling, D.W. ); Goldberg, P.M. )

    1990-01-01

    The 1990 Advanced Research and Technology Development (AR TD) Direct Utilization, and Instrumentation and Diagnostics Contractors Review Meeting was held September 16--18, 1990, at the Hyatt at Chatham Center in Pittsburgh, PA. The meeting was sponsored by the US Department of Energy (DOE), Office of Fossil Energy, and the Pittsburgh and Morgantown Energy Technology Centers. Each year the meeting provides a forum for the exchange of information among the DOE AR TD contractors and interested parties. This year's meeting was hosted by the Pittsburgh Energy Technology Center and was attended by 120 individuals from industry, academia, national laboratories, and other governmental agencies. Papers were presented on research addressing coal surface, science, devolatilization and combustion, ash behavior, emission controls for gases particulates, fluid bed combustion and utilization in diesels and turbines. Individual reports are processed separately for the data bases.

  4. Vehicle Technologies Office Merit Review 2015: Advanced Packaging Technologies and Designs

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  5. Advance Energy Technologies: Proposed Penalty (2013-CE-5302)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Advance Energy Technologies, Inc. failed to certify walk-in cooler or freezer (WICFs) components as compliant with the energy conservation standards.

  6. Working on Advanced Battery Technologies With National Labs ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working on Advanced Battery Technologies With National Labs Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in...

  7. Seven Universities Selected To Conduct Advanced Turbine Technology Studies

    Broader source: Energy.gov [DOE]

    Seven universities have been selected by the U.S. Department of Energy to conduct advanced turbine technology studies under the Office of Fossil Energy's University Turbine Systems Research Program.

  8. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting vss063bazzi2012o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project...

  9. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...

    Office of Environmental Management (EM)

    Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. PDF icon ctabwebinarbiooilsupgrading.p...

  10. JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal

    SciTech Connect (OSTI)

    Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

    2009-03-29

    The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

  11. Advanced Membrane Separation Technologies for Energy Recovery

    SciTech Connect (OSTI)

    2009-05-01

    This factsheet describes a research project whose goal is to develop novel materials for use in membrane separation technologies for the recovery of waste energy and water from industrial process streams.

  12. ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Opportunities for the Metal Casting Industry | Department of Energy Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry PDF icon advancedmeltingtechnologies.pdf More Documents & Publications ITP Metal Casting: Theoretical/Best Practice Energy Use in Metalcasting Operations ITP Metal Casting: Energy and

  13. Fact Sheet: Advanced Implementation of Energy Storage Technologies -

    Energy Savers [EERE]

    Community Energy Storage for Grid Support (August 2013) | Department of Energy Advanced Implementation of Energy Storage Technologies - Community Energy Storage for Grid Support (August 2013) Fact Sheet: Advanced Implementation of Energy Storage Technologies - Community Energy Storage for Grid Support (August 2013) Detroit Edison (DTE) will design, build, and demonstrate Community Energy Storage (CES) systems in their service territory. The CES is designed to improve electricity service to

  14. ORNL Crowdsourcing Site Advances Building Technologies Ideas to the Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy ORNL Crowdsourcing Site Advances Building Technologies Ideas to the Market ORNL Crowdsourcing Site Advances Building Technologies Ideas to the Market September 24, 2015 - 4:09pm Addthis James White, Rod Stucker and James Rowland, winners of DOE's inaugural Buildings Crowdsourcing Community Campaign, joined GE Appliance’s Venkat Venkatakrishnan and DOE Assistant Secretary David Danielson for a panel discussion at EERE Industry Day at ORNL. Image: ORNL. James White,

  15. Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Concentrating Solar Power Systems | Department of Energy Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems This is a presentation by Yiping Liu from Sporian Microsystems at the 2013 SunShot Concentrating Solar Power Program Review. PDF icon sporian_microsystems_usrey_public.pdf More Documents & Publications Advanced

  16. Advanced Thermoelectric Materials and Generator Technology for Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat at GM | Department of Energy Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Overview of design, fabrication, integration, and test of working prototype TEG for engine waste heat recovery on Suburban test vehicle, and continuing investigation of skutterudite materials systems PDF icon meisner.pdf More Documents & Publications Advanced Thermoelectric

  17. Technological Advancements Paving the Way for Geothermal Growth |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technological Advancements Paving the Way for Geothermal Growth Technological Advancements Paving the Way for Geothermal Growth February 12, 2013 - 2:47pm Addthis Preliminary results show an increase in 2012 year-end geothermal capacity Washington, D.C. (Geothermal Energy Association) - As the Geothermal Energy Association (GEA) prepares to release its annual development report at the State of the Geothermal Energy Industry Briefing on February 26 in Washington,

  18. Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Machinery R&D Annual Progress Report | Department of Energy Power Electronics and Electric Machinery R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress Report PDF icon 2008_apeem_report.pdf More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices

  19. Fact Sheet: Advanced Implementation of Energy Storage Technologies -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Energy Storage for Grid Support (August 2013) | Department of Energy Advanced Implementation of Energy Storage Technologies - Community Energy Storage for Grid Support (August 2013) Fact Sheet: Advanced Implementation of Energy Storage Technologies - Community Energy Storage for Grid Support (August 2013) Detroit Edison (DTE) will design, build, and demonstrate Community Energy Storage (CES) systems in their service territory. The CES is designed to improve electricity service to

  20. Characterization and Development of Advanced Heat Transfer Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_11_kelly.pdf More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies Advanced Power Electronics and Electric Machines Compact, Light-Weight, Single-Phase, Liquid-Cooled Cold Plate

  1. Users Perspective on Advanced Fuel Cell Bus Technology | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Users Perspective on Advanced Fuel Cell Bus Technology Users Perspective on Advanced Fuel Cell Bus Technology Presentation at DOE & DOT Joint Fuel Cell Bus Workshop, Washington, DC, June 7, 2010 PDF icon buswksp10_eudybouwkamp.pdf More Documents & Publications Joint Fuel Cell Bus Workshop Summary Report Fuel Cell Buses Fuel Cell Buses in U.S. Transit Fleets: Current Status 2008

  2. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research, Development and Deployment | Department of Energy Recognizes Leaders in Advanced Vehicle Research, Development and Deployment Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research, Development and Deployment June 25, 2014 - 11:33am Addthis The DOE's Vehicle Technologies Office supports a variety of research, development, and deployment efforts in partnership with our national laboratories and private partners. The success of these projects relies on the hard

  3. Technology Advancements for Next Generation Falling Particle Receivers.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Technology Advancements for Next Generation Falling Particle Receivers. Citation Details In-Document Search Title: Technology Advancements for Next Generation Falling Particle Receivers. Abstract not provided. Authors: Ho, Clifford K. ; Gill, David Dennis ; Jeter, S. ; Abdel-Khalik, S. ; Sadowski, D. ; Siegel, Nathan Phillip ; Al-Ansary, H. ; Amsbeck, L. ; Buck, R. ; Gobereit, B. ; Christian, Joshua Mark Publication Date: 2013-09-01 OSTI Identifier: 1140577

  4. Hot New Advances in Water Heating Technology | Department of Energy

    Energy Savers [EERE]

    Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency

  5. Energy Department Invests $60 Million to Advance Nuclear Technology |

    Office of Environmental Management (EM)

    Department of Energy 0 Million to Advance Nuclear Technology Energy Department Invests $60 Million to Advance Nuclear Technology June 5, 2015 - 11:18am Addthis News Media Contact 202-586-4940 WASHINGTON - Today, the Energy Department announced more than $60 million in nuclear energy research and infrastructure enhancement awards. Sixty-eight projects from across the country were selected based on their potential to create scientific breakthroughs that both help strengthen the nation's energy

  6. Energy Department Invests $67 Million to Advanced Nuclear Technology |

    Office of Environmental Management (EM)

    Department of Energy 7 Million to Advanced Nuclear Technology Energy Department Invests $67 Million to Advanced Nuclear Technology August 20, 2014 - 12:00pm Addthis News Media Contact 202-586-4940 WASHINGTON - Building on President Obama's Climate Action Plan and the Administration's efforts to expand clean energy innovation, the Energy Department announced today nearly $67 million in nuclear energy research and infrastructure enhancement awards. 83 projects were selected from across the

  7. NREL to Advance Technologies for Microgrid Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL to Advance Technologies for Microgrid Projects NREL to Advance Technologies for Microgrid Projects October 15, 2015 - 3:51pm Addthis NREL will test microgrid controllers developed by EPRI and GE using its megawatt-scale power hardware-in-the-loop capability, which is part of the Energy System Integration Facility. NREL will test microgrid controllers developed by EPRI and GE using its megawatt-scale power hardware-in-the-loop capability, which is part of the Energy System Integration

  8. Vehicle Technologies Office: Fuel Effects on Advanced Combustion |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Efficiency & Emissions » Vehicle Technologies Office: Fuel Effects on Advanced Combustion Vehicle Technologies Office: Fuel Effects on Advanced Combustion More than 90 percent of transportation relies on petroleum-based fuels: gasoline and diesel. While alternative fuels and plug-in electric vehicles offer great promise to reduce America's petroleum consumption, petroleum-based fuels are likely to play a substantial role for years to come. However, the sources

  9. DOE Seeking Proposals to Advance Distributed Wind Turbine Technology and

    Office of Environmental Management (EM)

    Manufacturing | Department of Energy Seeking Proposals to Advance Distributed Wind Turbine Technology and Manufacturing DOE Seeking Proposals to Advance Distributed Wind Turbine Technology and Manufacturing December 30, 2014 - 11:04am Addthis On December 29, the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) released a third round of Requests for Proposals (RFPs) under DOE's Distributed Wind Competitiveness Improvement Project (CIP). The CIP aims to help U.S.

  10. Vehicle Technologies Office: Advanced Combustion Engines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy You are here Home » Fuel Efficiency & Emissions » Vehicle Technologies Office: Advanced Combustion Engines Vehicle Technologies Office: Advanced Combustion Engines Researchers take laser-based velocity measurements at the Sandia National Laboratory's Combustion Research Facility. Researchers take laser-based velocity measurements at the Sandia National Laboratory's Combustion Research Facility. Improving the efficiency of internal combustion engines is one of the most promising

  11. U.S. Advanced Manufacturing and Clean Energy Technology Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer Review Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 Outline * Big Picture on Manufacturing in US * Focus on Advanced Manufacturing * AMO Organization * Technical Assistance * R&D Facilities * R&D Projects * Goals for Meeting 3 Products invented here, now made

  12. EIS-0282: McIntosh Unit 4 TCFB Demonstration Project, Clean Coal Technology Program, Lakeland, Florida (also see EIS-0304)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The proposed project, selected under DOE’s Clean Coal Technology Program, would demonstrate both Pressurized Circulating Fluidized Bed (PCFB) and Topped PCFB technologies. The proposed project would involve the construction and operation of a nominal 238 MWe (megawatts of electric power) combined-cycle power plant designed to burn a range of low- to high-sulfur coals.

  13. Advanced Technology Vehicle Lab Benchmarking - Level 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Vehicle Lab Benchmarking - Level 1 2014 U.S. DOE Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting Kevin Stutenberg - Principal Investigator Argonne National Laboratory June 17, 2014 Project ID # VSS030 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Overview  Timeline - Benchmarking at ANL started in 1998 - FY13 & FY14 Completed Testing: * 10 vehicles tested in FY13, 4 in FY14 * Thermal impact

  14. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    SciTech Connect (OSTI)

    Liby, Alan L; Rogers, Hiram

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  15. Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report

    Broader source: Energy.gov [DOE]

    This report describes the progress made in the research and development projects supported by the Advanced Combustion Engine subprogram within the DOE Vehicle Technologies Office in 2014. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  16. International prospects for clean coal technologies (Focus on Asia)

    SciTech Connect (OSTI)

    Gallaspy, D.T.

    1997-12-31

    The purpose of this paper is to propose Asia as a focus market for commercialization of CCT`s; describe the principles for successful penetration of CCT`s in the international market; and summarize prospects for CCT`s in Asia and other international markets. The paper outlines the following: Southern Company`s clean coal commitment; acquisition of Consolidated Electric Power Asia (CEPA); the prospects for CCT`s internationally; requirements for CCT`s widespread commercialization; CEPA`s application of CCT`s; and gas turbine power plants as a perfect example of a commercialization driver.

  17. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    SciTech Connect (OSTI)

    Shen, Chen

    2014-01-20

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions. The nickel based Alloy 282 is selected for this project because it is one of the leading candidate materials for the high temperature/pressure section of an A-USC steam turbine. The methods developed in the project are expected to be applicable to other metal alloys in similar steam/oxidation environments. The major developments are: ? failure mechanism and microstructural characterization ? atomistic and first principles modeling of crack tip oxygen embrittlement ? modeling of gamma prime microstructures and mesoscale microstructure-defect interactions ? microstructure and damage-based creep prediction ? multi-scale crack growth modeling considering oxidation, viscoplasticity and fatigue The technology developed in this project is expected to enable more accurate prediction of long service life of advanced alloys for A-USC power plants, and provide faster and more effective materials design, development, and implementation than current state-of-the-art computational and experimental methods. This document is a final technical report for the project, covering efforts conducted from January 2011 to January 2014.

  18. Advanced NDE Technologies for Powder Metal Components

    SciTech Connect (OSTI)

    Martin, P; Haskins, J; Thomas, G; Dolan, K

    2003-05-01

    Nondestructive evaluation encompasses numerous technologies that assess materials and determine important properties. This paper demonstrates the applicability of several of these technologies to the field of powder metallurgy. The usual application of nondestructive evaluation is to detect and quantify defects in fully sintered product. But probably its most appealing role is to sense problems earlier in the manufacturing process to avoid making defects at all. Also nondestructive evaluation can be incorporated into the manufacturing processes to monitor important parameters and control the processes to produce defect free product. Nondestructive evaluation can characterize powders, evaluate components in the green state, monitor the sintering process, and inspect the final component.

  19. Advanced Water Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water We're developing ways to purify and conserve this vital resource. Take a look at our work. Home > Innovation > Water Innovation 24/7: We're Always Open At GE Global Research, we work around the clock and across the globe to build, power, move and cure the world. Click the image... Read More » Reverse Osmosis (RO) Membrane Technology Purifies Water GE's Reverse Osmosis (RO) Membrane technology addresses industrial waste water treatment and recycling needs, purifying water... Read

  20. Advanced Technology Vehicles Manufacturing Loan Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technology Vehicles Manufacturing Loan Program Advanced Technology Vehicles Manufacturing Loan Program PDF icon ATVM-Program-Application-Overview.pdf More Documents & Publications ATVM Program Overview 2015 ATVM Guidance for Applicants 11.4.14 ATVM Interim Final Rule Correction

  1. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect (OSTI)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  2. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Thomas Lynch

    2004-01-07

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

  3. Ames Laboratory to lead new consortium to advance refrigeration technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | The Ames Laboratory Laboratory to lead new consortium to advance refrigeration technology Ames Laboratory will be the home of a new research consortium for the discovery and development of more environmentally friendly and energy-efficient refrigeration technologies, sponsored by DOE's Office of Energy Efficiency and Renewable Energy (EERE). The consortium, named CaloriCoolTM, will pursue the development of alternative forms of refrigeration technologies, called caloric cooling, in

  4. Advanced Lithium Ion Battery Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Find More Like This Return to Search Advanced Lithium Ion Battery Technologies Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryScientists at Berkeley Lab have invented highly conductive polymer binder materials that significantly improve the viability of using silicon as an electrode material in lithium ion batteries. They have also combined lithium metal with the Berkeley Lab

  5. Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The APEEM subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and

  6. Advanced Aerodynamic Technologies for Improving Fuel Economy in Ground

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles | Department of Energy Aerodynamic Technologies for Improving Fuel Economy in Ground Vehicles Advanced Aerodynamic Technologies for Improving Fuel Economy in Ground Vehicles Low-Cost Aerodynamic Drag Reduction Devices for Tractor-Trailer Trucks Reduce Fuel Consumption Heavy vehicles lose a tremendous amount of energy from wind resistance, braking, and rolling resistance. Such non-engine losses can account for about a 45% decrease in efficiency. The need for technologies to reduce

  7. Advanced Refrigerant-Based Cooling Technologies for Information &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Communications Infrastructure | Department of Energy Refrigerant-Based Cooling Technologies for Information & Communications Infrastructure Advanced Refrigerant-Based Cooling Technologies for Information & Communications Infrastructure Data Center Heat Exchanger with Increased Cooling Efficiency Reduces Energy Usage Between 2005 and 2010 electricity consumption in the information and communication technology (ICT) sector rose by 36% in the United States. The energy consumed by a data

  8. Advancing Technology Readiness: Wave Energy Testing and Demonstration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technology Readiness: Wave Energy Testing and Demonstration Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm Addthis Northwest Energy Innovations, in partnership with the Northwest National Marine Renewable Energy Center (NNMREC), verified the functionality of the Wave Energy Technology - New Zealand (WET-NZ) device through wave tank testing and controlled open-sea deployment of a 1:2 scale device off the coast of Oregon. This

  9. EERE Success Story-Advancing Technology Readiness: Wave Energy Testing

    Office of Environmental Management (EM)

    and Demonstration | Department of Energy Technology Readiness: Wave Energy Testing and Demonstration EERE Success Story-Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm Addthis Northwest Energy Innovations, in partnership with the Northwest National Marine Renewable Energy Center (NNMREC), verified the functionality of the Wave Energy Technology - New Zealand (WET-NZ) device through wave tank testing and controlled open-sea deployment of a 1:2

  10. The development of coal-based technologies for Department of Defense facilities: Phase 1 final report. Volume 1: Technical report

    SciTech Connect (OSTI)

    Miller, B.G.; Morrison, J.L.; Pisupati, S.V.

    1997-01-31

    The first phase of a three-phase project investigating the development of coal-based technologies for Department of Defense facilities has been completed. The objectives of the project are to: decrease DOD`s dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase 1 activities were focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water mixtures (MCWMs) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. The specific objective in Phase 1 was to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWM or DMC. This was achieved through a project consisting of fundamental, pilot-sale, and demonstration-scale activities investigating coal beneficiation and preparation, and MCWM and DMC combustion performance. In addition, detailed engineering designs and an economic analysis were conducted for a boiler located at the Naval Surface Warfare Center, near Crane, Indiana. Results are reported on MCWM and DMC combustion performance evaluation; engineering design; and cost/economic analysis.

  11. Advanced lost foam from casting technology

    SciTech Connect (OSTI)

    Bates, C. E.; Littleton, H. E.; Askeland, D.; Griffin, J.; Miller, B. A.; Sheldon, D. S.

    1996-05-01

    Previous research made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional research was needed to improve the process and make it more functional in an industrial environment. The current project focused on five areas listed as follows: Task 1: Precision Pattern Production Task 2: Pattern Coating Consistency Task 3: Sand Fill and Compaction Effects Task 4: Pattern Gating Task 5: Mechanical Properties of Castings. This report summarizes the work done under the current contract in all five areas in the period of October 1, 1994 through December 31, 1995. Twenty-eight (28) companies jointly participate in the project. These companies represent a variety of disciplines, including pattern designers, pattern producers, coating manufacturers, plant design companies, compaction equipment manufacturers, casting producers, and casting buyers.

  12. Enhancement of surface properties for coal beneficiation. Final report

    SciTech Connect (OSTI)

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  13. Environmental development plan: coal liquefaction

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    This Environmental Development plan (EDP) examines environmental concerns that are being evaluated for the technologies in DOE's Coal Liquefaction Program. It identifies the actions that are planned or underway to resolve these concerns while the technologies are being developed. Research is scheduled on the evaluation and mitigation of potential environmental impacts. This EDP updates the FY 1977 Coal Liquefaction Program EDP. Chapter II describes the DOE Coal Liquefaction Program and focuses on the Solvent Refined Coal (SRC), H-Coal, and Exxon donor solvent (EDS) processes because of their relatively advanced R and D stages. The major unresolved environmental concerns associated with the coal liquefaction subactivities and projects are summarized. The concerns were identified in the 1977 EDP's and research was scheduled to lead to the resolution of the concerns. Much of this research is currently underway. The status of ongoing and planned research is shown in Table 4-1.

  14. Brazil advances subsea technology in Marlim pilot

    SciTech Connect (OSTI)

    Not Available

    1993-03-29

    Petroleum Brasileiro SA has extended several water depth records for subsea technology during a pilot project in giant Marlim oil field in the Campos basin off Brazil. Petrobras finished the 10 well Marlim pilot last December. The field's pilot phase was intended to begin early production and enable Petrobras to gather more reservoir data. Ten satellite wells, including two prepilot wells, were completed during the Marlim pilot phase with guidelineless (GLL) wet christmas trees designed and fabricated by FMC Corp., Houston, and CBV Industrial Mechanic SA, Rio de Janeiro. The subsea wells are producing 52,000 b/d of oil and 21.19 MMCfd of gas in water depths of 1,847-2,562 ft. Marlim pilot well flow is routed to a permanent semisubmersible floating production system (FPS). Oil moves from the FPS to a monobuoy that offloads to a shuttle tanker. In addition to marking the first successful uses of purpose-built GLL wet trees, FMC said the Marlim pilot project allowed GLL subsea technology to evolve from conceptual status into a proven deepwater completion method. The paper describes the project.

  15. Impact of Technological Change and Productivity on the Coal Market

    Reports and Publications (EIA)

    2000-01-01

    This paper examines the components of past gains in productivity, including regional shifts, the exit of less productive producers, and technological progress Future prospects for continuing productivity gains at sustained, but lower, rates of improvement are discussed.

  16. Technology advances keeping LNG cost-competitive

    SciTech Connect (OSTI)

    Bellow, E.J. Jr.; Ghazal, F.P.; Silverman, A.J.; Myers, S.D.

    1997-06-02

    LNG plants, often very expensive in the past, will in the future need to cost less to build and operate and yet maintain high safety and reliability standards, both during construction and operation. Technical advancements, both in the process and in equipment scaling, manufacturing, and metallurgy, will provide much of the impetus for the improved economics. Although world energy demand is predicted to grow on average of about 2% annually over the next decade, LNG is expected to contribute an increasing portion of this growth with annual growth rates averaging about 7%. This steep growth increase will be propelled mainly by the environmentally friendlier burning characteristics of natural gas and the strong industrial growth in Asian and pacific Rim countries. While LNG is emerging as the fuel of choice for developing economies, its delivered cost to consumers will need to stay competitive with alternate energy supplies if it is to remain in front. The paper discusses LNG process development, treating process, equipment developments (man heat exchanger, compressors, drivers, and pressure vessels), and economy of scale.

  17. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

  18. Recent advances in lithium ion technology

    SciTech Connect (OSTI)

    Levy, S.C.

    1995-01-01

    Lithium ion technology is based on the use of lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells (1) and in 1983 for ambient temperature systems (2) it was not until Sony Energytech announced a new lithium ion rechargeable cell containing a lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these cells have the high energy density, high voltage and fight weight of metallic lithium systems plus a very long cycle life, but without the disadvantages of dendrite formation on charge and the safety considerations associated with metallic lithium.

  19. Advances in amorphous silicon photovoltaic technology

    SciTech Connect (OSTI)

    Carlson, D.E.; Rajan, K.; Arya, R.R.; Willing, F.; Yang, L.

    1998-10-01

    With the advent of new multijunction thin film solar cells, amorphous silicon photovoltaic technology is undergoing a commercial revival with about 30 megawatts of annual capacity coming on-line in the next year. These new {ital a}{endash}Si multijunction modules should exhibit stabilized conversion efficiencies on the order of 8{percent}, and efficiencies over 10{percent} may be obtained in the next several years. The improved performance results from the development of amorphous and microcrystalline silicon alloy films with improved optoelectronic properties and from the development of more efficient device structures. Moreover, the manufacturing costs for these multijunction modules using the new large-scale plants should be on the order of {dollar_sign}1 per peak watt. These new modules may find widespread use in solar farms, photovoltaic roofing, as well as in traditional remote applications. {copyright} {ital 1998 Materials Research Society.}

  20. Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels | Hydrogen Production and Delivery Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Advancing Systems and Technologies to Produce Cleaner Fuels Technology Assessments Bioenergy Conversion Biomass Feedstocks and Logistics Gas Hydrates Research and Development Hydrogen Production and Delivery Natural Gas Delivery Infrastructure Offshore Safety and Spill Reduction Unconventional Oil and Gas ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Hydrogen Production and Delivery Chapter 7: Technology Assessments Introduction to the