National Library of Energy BETA

Sample records for advanced case final

  1. Advanced Distillation Final Report

    SciTech Connect (OSTI)

    Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode


    The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were

  2. Advanced Accelerator Concepts Final Report

    SciTech Connect (OSTI)

    Wurtele, Jonathan S.


    A major focus of research supported by this Grant has been on the ALPHA antihydrogen trap. We first trapped antihydrogen in 2010 and soon thereafter demonstrated trapping for 1000s. We now have observed resonant quantum interactions with antihydrogen. These papers in Nature and Nature Physics report the major milestones in anti-atom trapping. The success was only achieved through careful work that advanced our understanding of collective dynamics in charged particle systems, the development of new cooling and diagnostics, and in- novation in understanding how to make physics measurements with small numbers of anti-atoms. This research included evaporative cooling, autoresonant excitation of longitudinal motion, and centrifugal separation. Antihydrogen trapping by ALPHA is progressing towards the point when a important theories believed by most to hold for all physical systems, such as CPT (Charge-Parity-Time) invariance and the Weak Equivalence Principle (matter and antimatter behaving the same way under the influence of gravity) can be directly tested in a new regime. One motivation for this test is that most accepted theories of the Big Bang predict that we should observe equal amounts of matter and antimatter. However astrophysicists have found very little antimatter in the universe. Our experiment will, if successful over the next seven years, provide a new test of these ideas. Many earlier detailed and beautiful tests have been made, but the trapping of neutral antimatter allows us to explore the possibility of direct, model-independent tests. Successful cooling of the anti atoms, careful limits on systematics and increased trapping rates, all planned for our follow-up experiment (ALPHA-II) will reach unrivaled precision. CPT invariance implies that the spectra of hydrogen and antihydrogen should be identical. Spectra can be measured in principle with great precision, and any di#11;erences we might observe would revolutionize fundamental physics. This is the

  3. Advanced Manufacturing Office Peer Review Final Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE PEER REVIEW MAY 28-29, 2015 ... Difficult Materials LLC 10:10 - 10:30 am Coatings and Process Development Reduced PPG Industries, Inc. Energy Automotive ...

  4. Advanced Enzymes and Mixtures-final-sm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enzyme mixtures to meet biorefinery conditions lowers conversion costs of lignocellulosic biomass to biofuel Genes are synthesized and expressed in an appropriate expression host, typically in E. Coli. Each enzyme is screened for activity across a range of temperatures, pH and biorefinery relevant conditions. An enzyme mixture developed by Sandia researchers that functions optimally at 70 °C and 20% of the ionic liquid 1-ethyl-3-methylimidazolium acetate. Biofuels: Advanced Enzymes and Mixtures

  5. Advanced lubrication systems and materials. Final report

    SciTech Connect (OSTI)

    Hsu, S.


    This report described the work conducted at the National Institute of Standards and Technology under an interagency agreement signed in September 1992 between DOE and NIST for 5 years. The interagency agreement envisions continual funding from DOE to support the development of fuel efficient, low emission engine technologies in terms of lubrication, friction, and wear control encountered in the development of advanced transportation technologies. However, in 1994, the DOE office of transportation technologies was reorganized and the tribology program was dissolved. The work at NIST therefore continued at a low level without further funding from DOE. The work continued to support transportation technologies in the development of fuel efficient, low emission engine development. Under this program, significant progress has been made in advancing the state of the art of lubrication technology for advanced engine research and development. Some of the highlights are: (1) developed an advanced high temperature liquid lubricant capable of sustaining high temperatures in a prototype heat engine; (2) developed a novel liquid lubricant which potentially could lower the emission of heavy duty diesel engines; (3) developed lubricant chemistries for ceramics used in the heat engines; (4) developed application maps for ceramic lubricant chemistry combinations for design purpose; and (5) developed novel test methods to screen lubricant chemistries for automotive air-conditioning compressors lubricated by R-134a (Freon substitute). Most of these findings have been reported to the DOE program office through Argonne National Laboratory who manages the overall program. A list of those reports and a copy of the report submitted to the Argonne National Laboratory is attached in Appendix A. Additional reports have also been submitted separately to DOE program managers. These are attached in Appendix B.

  6. Advanced wind turbine design studies: Advanced conceptual study. Final report

    SciTech Connect (OSTI)

    Hughes, P; Sherwin, R


    In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

  7. Advanced Imaging Catheter: Final Project Report

    SciTech Connect (OSTI)

    Krulevitch, P; Colston, B; DaSilva, L; Hilken, D; Kluiwstra, J U; Lee, A P; London, R; Miles, R; Schumann, D; Seward, K; Wang, A


    Minimally invasive surgery (MIS) is an approach whereby procedures conventionally performed with large and potentially traumatic incisions are replaced by several tiny incisions through which specialized instruments are inserted. Early MIS, often called laparoscopic surgery, used video cameras and laparoscopes to visualize and control the medical devices, which were typically cutting or stapling tools. More recently, catheter-based procedures have become a fast growing sector of all surgeries. In these procedures, small incisions are made into one of the main arteries (e.g. femoral artery in the thigh), and a long thin hollow tube is inserted and positioned near the target area. The key advantage of this technique is that recovery time can be reduced from months to a matter of days. In the United States, over 700,000 catheter procedures are performed annually representing a market of over $350 million. Further growth in this area will require significant improvements in the current catheter technology. In order to effectively navigate a catheter through the tortuous vessels of the body, two capabilities must exist: imaging and positioning. In most cases, catheter procedures rely on radiography for visualization and manual manipulation for positioning of the device. Radiography provides two-dimensional, global images of the vasculature and cannot be used continuously due to radiation exposure to both the patient and physician. Intravascular ultrasound devices are available for continuous local imaging at the catheter tip, but these devices cannot be used simultaneously with therapeutic devices. Catheters are highly compliant devices, and manipulating the catheter is similar to pushing on a string. Often, a guide wire is used to help position the catheter, but this procedure has its own set of problems. Three characteristics are used to describe catheter maneuverability: (1) pushability -- the amount of linear displacement of the distal end (inside body) relative to

  8. Geothermal Exploration Techniques a Case Study. Final Report...

    Open Energy Info (EERE)

    Techniques a Case Study. Final Report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Exploration Techniques a Case Study. Final Report...

  9. Engineering development of advanced froth flotation. Volume 2, Final report

    SciTech Connect (OSTI)

    Ferris, D.D.; Bencho, J.R.; Torak, E.R.


    This report is an account of findings related to the Engineering and Development of Advanced Froth Flotation project. The results from benchscale and proof-of-concept (POC) level testing are presented and the important results from this testing are used to refine a conceptual design and cost estimate for a 20 TPH Semi-Works Facility incorporating the final proposed technology.

  10. Case Western Reserve University's Institute for Advanced Materials...

    Open Energy Info (EERE)

    Reserve University's Institute for Advanced Materials Jump to: navigation, search Name: The Institute for Advanced Materials at Case Western Reserve University Address: 2061...

  11. Building America New Homes Case Study: Advanced Extended Plate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Homes Case Study: Advanced Extended Plate and Beam Wall System in a Cold-Climate House Building America New Homes Case Study: Advanced Extended Plate and Beam Wall System in a ...

  12. Comparison of Advanced Distillation Control Methods, Final Technical Report

    SciTech Connect (OSTI)

    Dr. James B. Riggs


    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.

  13. Advanced Distributor Products: Case Closure (2010-SE-0304)

    Broader source: [DOE]

    DOE closed this case against Advanced Distributor Products without civil penalty after ADP provided information that the non-compliant products were not sold in the United States.

  14. Economic assessment of advanced flue gas desulfurization processes. Final report

    SciTech Connect (OSTI)

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.


    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  15. MHD Advanced Power Train Phase I, Final Report, Volume 6

    SciTech Connect (OSTI)

    A. R. Jones


    Under contract to the Department of Energy, Westinghouse has prepared the definition of a program plan for the development of an MHD Advanced Power Train (APT). The scope of work of this contract includes conceptual designs of early commercial MHD/steam electric plants (topping/bottoming) ranging from 200 to 1000 Mw(e). These plant designs were prepared during 1982 and made use of a system analysis model that provides performance and design information and economic estimates. In early April 1984, DOE requested westinghouse to perform special studies under the existing APT contract to aid the Department in evaluating MHD program options. Two tasks were defined by DOE: the first task was to evaluate an 80 MW(t) integrated test system (with steam electric bottoming cycle) for installation at the CDIF in Butte, Montana; the second task was to investigate placing a 50 MW(e) MHD topping stage onto an existing steam electric plant (as a retrofit). This volume of the final report documents the results of these special studies. Highlights of the studies were presented orally to DOE on May 15, 1984.

  16. Advanced fuel cells for transportation applications. Final report

    SciTech Connect (OSTI)


    This Research and Development (R and D) contract was directed at developing an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The objective of this project was to develop a low-cost high-efficiency long-life lubrication-free integrated compressor/expander utilizing scroll technology. The goal of this compressor/expander was to be capable of providing compressed air over the flow and pressure ranges required for the operation of 50 kW PEM fuel cells in transportation applications. The desired ranges of flow, pressure, and other performance parameters were outlined in a set of guidelines provided by DOE. The project consisted of the design, fabrication, and test of a prototype compressor/expander module. The scroll CEM development program summarized in this report has been very successful, demonstrating that scroll technology is a leading candidate for automotive fuel cell compressor/expanders. The objectives of the program are: develop an integrated scroll CEM; demonstrate efficiency and capacity goals; demonstrate manufacturability and cost goals; and evaluate operating envelope. In summary, while the scroll CEM program did not demonstrate a level of performance as high as the DOE guidelines in all cases, it did meet the overriding objectives of the program. A fully-integrated, low-cost CEM was developed that demonstrated high efficiency and reliable operation throughout the test program. 26 figs., 13 tabs.

  17. SUMMARY OF FINAL RULES Item Subject FAR Case

    Broader source: (indexed) [DOE]

    SUMMARY OF FINAL RULES Item Subject FAR Case FAC 56-Miscellaneous I. Women-Owned Small Business Program 2010-015 II. Proper Use and Management of Cost-Reimbursement Contracts...

  18. Final Scientific Report - Wireless and Sensing Solutions Advancing Industrial Efficiency

    SciTech Connect (OSTI)

    Budampati, Rama; McBrady, Adam; Nusseibeh, Fouad


    The project team's goal for the Wireless and Sensing Solution Advancing Industrial Efficiency award (DE-FC36-04GO14002) was to develop, demonstrate, and test a number of leading edge technologies that could enable the emergence of wireless sensor and sampling systems for the industrial market space. This effort combined initiatives in advanced sensor development, configurable sampling and deployment platforms, and robust wireless communications to address critical obstacles in enabling enhanced industrial efficiency.

  19. Advanced austenitic alloys for fossil power systems. CRADA final report

    SciTech Connect (OSTI)

    Swindeman, R.W.; Cole, N.C.; Canonico, D.A.; Henry, J.F.


    In 1993, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory and ABB Combustion Engineering t examine advanced alloys for fossil power systems. Specifically, the use of advanced austenitic stainless steels for superheater/reheater construction in supercritical boilers was examined. The strength of cold-worked austenitic stainless steels was reviewed and compared to the strength and ductility of advanced austenitic stainless steels. The advanced stainless steels were found to retain their strength to very long times at temperatures where cold-worked standard grades of austenitic stainless steels became weak. Further, the steels exhibited better long-time stability than the stabilized 300 series stainless steels in either the annealed or cold worked conditions. Type 304H mill-annealed tubing was provided to ORNL for testing of base metal and butt welds. The tubing was found to fall within range of expected strength for 304H stainless steel. The composite 304/308 stainless steel was found to be stronger than typical for the weldment. Boiler tubing was removed from a commercial boiler for replacement by newer steels, but restraints imposed by the boiler owners did not permit the installation of the advanced steels, so a standard 32 stainless steel was used as a replacement. The T91 removed from the boiler was characterized.


    SciTech Connect (OSTI)

    Albrecht H. Mayer


    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

  1. Final Merit Review Agenda, DOE Advanced Manufacturing Office...

    Broader source: (indexed) [DOE]

    ... am BREAK 10:25 - 10:45 am Ultra Efficient Combined Heat, Hydrogen, and Power System FuelCell Energy 10:45 - 11:45 am Critical Materials Hub Alex King 10:45 - 11:05 am Advanced ...

  2. Cooperative Research and Development for Advanced Materials in Advanced Industrial Gas Turbines Final Technical Report

    SciTech Connect (OSTI)

    Ramesh Subramanian


    Evaluation of the performance of innovative thermal barrier coating systems for applications at high temperatures in advanced industrical gas turbines.

  3. Advanced radiant combustion system. Final report, September 1989--September 1996

    SciTech Connect (OSTI)

    Sullivan, J.D.; Carswell, M.G.; Long, F.S.


    Results of the Advanced Radiant Combustion System (ARCS) project are presented in this report. This work was performed by Alzeta Corporation as prime contractor under a contract to the U.S. Department of Energy Office of Industrial Technologies as part of a larger DOE program entitled Research Program for Advanced Combustion Systems. The goals of the Alzeta ARCS project were to (a) Improve the high temperature performance characteristics of porous surface ceramic fiber burners, (b) Develop an Advanced Radiant Combustion System (ARCS) that combines combustion controls with an advanced radiant burner, and (c) Demonstrate the advanced burner and controls in an industrial application. Prior to the start of this project, Alzeta had developed and commercialized a porous surface radiant burner, the Pyrocore{trademark} burner. The product had been commercially available for approximately 5 years and had achieved commercial success in a number of applications ranging from small burners for commercial cooking equipment to large burners for low temperature industrial fluid heating applications. The burner was not recommended for use in applications with process temperatures above 1000{degrees}F, which prevented the burner from being used in intermediate to high temperature processes in the chemical and petroleum refining industries. The interest in increasing the maximum use temperature of the burner was motivated in part by a desire to expand the number of applications that could use the Pyrocore product, but also because many of the fluid sensitive heating applications of interest would benefit from the distributed flux characteristic of porous surface burners. Background information on porous surface radiant burners, and a discussion of advantages that would be provided by an improved product, are presented in Section 2.

  4. Advanced steel reheat furnaces: Research and development. Final report

    SciTech Connect (OSTI)

    Nguyen, Q.; Koppang, R.; Maly, P.; Moyeda, D.; Li, X.


    The purpose of this report is to present the results of two phases of a three-phase project to develop and evaluate an Advanced Steel Reheat Furnace (SSRF) concept which incorporates two proven and commercialized technologies, oxy-fuel enriched air (OEA) combustion and gas reburning (GR). The combined technologies aim to improve furnace productivity with higher flame radiant heat transfer in the heating zones of a steel reheat furnace while controlling potentially higher NOx emissions from these zones. The project was conducted under a contract sponsored by the Department of Energy (DOE). Specifically, this report summarizes the results of a modeling study and an experimental study to define and evaluate the issues which affect the integration and performance of the combined technologies. Section 2.0 of the report describes the technical approach uses in the development and evaluation of the advanced steel reheat furnace. Section 3.0 presents results of the modeling study applied to a model steel furnace. Experimental validation of the modeling results obtained from EER`s Fuel Evaluation Facility (FEF) pilot-scale furnace discussed in Section 4.0. Section 5.0 provides an economic evaluation on the cost effectiveness of the advanced reheat furnace concept. Section 6.0 concludes the report with recommendations on the applicability of the combined technologies of steel reheat furnaces.

  5. Advanced Thermionic Technology Program: summary report. Volume 2. Final report

    SciTech Connect (OSTI)

    Not Available


    This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This Program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. The technology has previously been developed for astronautical applications. Volume 2 (Part C) concentrates on the progress made in developing and fabricating the ''current generation'' of chemical vapor deposited hot shell thermionic converters and is addressed to those primarily concerned with today's capabilities in terrestrial thermionic technology. 30 refs., 83 figs.

  6. Advanced steelmaking processes for rotor forgings. Final report

    SciTech Connect (OSTI)

    Steiner, J.E.; Busby, P.E.; Jaffee, R.I.; Murphy, E.L.; Newhouse, D.L.; Wriedt, H.A.


    A survey was conducted to assess the current status and trends in advanced steelmaking for the production of large low-alloy steel ingots for large steam-turbine and generator-rotor forgings. The study reviews the essential chemistry of steelmaking and describes the equipment and processes that are state of the art or in development. Pertinent emerging technologies are reviewed. Emphasis is on processes related to steel refining and the casting of large ingots. The advantages and limitations, effects on quality, and economics of the processes are discussed.

  7. Prototype design of an advanced ceramic receiver. Final report

    SciTech Connect (OSTI)

    Not Available


    The purpose of the activities described in this report is to investigate an advanced gas receiver design concept. The advanced gas reactor design concept utilizes a translucent ceramic tube packed with a solar absorbing, porous material. A gas is pumped through the tube and is heated to a high temperature by direct solar energy incident on the tube surface. The basic energy exchange mechanisms are the transfer of the incoming solar flux through the translucent tube, the absorption of the solar energy by the packing material, and the convective transfer of the absorbed solar energy from the packing material to the gas. The approach taken for this activity was to develop a conceptual design of a commercial size receiver, investigate critical design elements of the commercial receiver, develop a preliminary design of a prototype, and identify the appropriate facility for testing the prototype. In order to develop the conceptual design of the commercial size receiver a thermo/hydraulic numerical model of the tube was devised. This model yields predictions of the thermal performance of the tube along with estimates of the tube pressure drops. A detailed description of the model is given in section IIIA of this report. Using the model it was possible to establish an optimum tube diameter and length for a commercial size receiver. With the tube dimensions known it was then possible to perform design studies to determine tube stresses and attachment schemes.

  8. Center for Advanced Biofuel Systems (CABS) Final Report

    SciTech Connect (OSTI)

    Kutchan, Toni M.


    One of the great challenges facing current and future generations is how to meet growing energy demands in an environmentally sustainable manner. Renewable energy sources, including wind, geothermal, solar, hydroelectric, and biofuel energy systems, are rapidly being developed as sustainable alternatives to fossil fuels. Biofuels are particularly attractive to the U.S., given its vast agricultural resources. The first generation of biofuel systems was based on fermentation of sugars to produce ethanol, typically from food crops. Subsequent generations of biofuel systems, including those included in the CABS project, will build upon the experiences learned from those early research results and will have improved production efficiencies, reduced environmental impacts and decreased reliance on food crops. Thermodynamic models predict that the next generations of biofuel systems will yield three- to five-fold more recoverable energy products. To address the technological challenges necessary to develop enhanced biofuel systems, greater understanding of the non-equilibrium processes involved in solar energy conversion and the channeling of reduced carbon into biofuel products must be developed. The objective of the proposed Center for Advanced Biofuel Systems (CABS) was to increase the thermodynamic and kinetic efficiency of select plant- and algal-based fuel production systems using rational metabolic engineering approaches grounded in modern systems biology. The overall strategy was to increase the efficiency of solar energy conversion into oils and other specialty biofuel components by channeling metabolic flux toward products using advanced catalysts and sensible design:1) employing novel protein catalysts that increase the thermodynamic and kinetic efficiencies of photosynthesis and oil biosynthesis; 2) engineering metabolic networks to enhance acetyl-CoA production and its channeling towards lipid synthesis; and 3) engineering new metabolic networks for the

  9. Field testing advanced geothermal turbodrill (AGT). Phase 1 final report

    SciTech Connect (OSTI)

    Maurer, W.C.; Cohen, J.H.


    Maurer Engineering developed special high-temperature geothermal turbodrills for LANL in the 1970s to overcome motor temperature limitations. These turbodrills were used to drill the directional portions of LANL`s Hot Dry Rock Geothermal Wells at Fenton Hill, New Mexico. The Hot Dry Rock concept is to drill parallel inclined wells (35-degree inclination), hydraulically fracture between these wells, and then circulate cold water down one well and through the fractures and produce hot water out of the second well. At the time LANL drilled the Fenton Hill wells, the LANL turbodrill was the only motor in the world that would drill at the high temperatures encountered in these wells. It was difficult to operate the turbodrills continuously at low speed due to the low torque output of the LANL turbodrills. The turbodrills would stall frequently and could only be restarted by lifting the bit off bottom. This allowed the bit to rotate at very high speeds, and as a result, there was excessive wear in the bearings and on the gauge of insert roller bits due to these high rotary speeds. In 1998, Maurer Engineering developed an Advanced Geothermal Turbodrill (AGT) for the National Advanced Drilling and Excavation Technology (NADET) at MIT by adding a planetary speed reducer to the LANL turbodrill to increase its torque and reduce its rotary speed. Drilling tests were conducted with the AGT using 12 1/2-inch insert roller bits in Texas Pink Granite. The drilling tests were very successful, with the AGT drilling 94 ft/hr in Texas Pink Granite compared to 45 ft/hr with the LANL turbodrill and 42 ft/hr with a rotary drill. Field tests are currently being planned in Mexico and in geothermal wells in California to demonstrate the ability of the AGT to increase drilling rates and reduce drilling costs.

  10. MHD Advanced Power Train Phase I, Final Report, Volume 7

    SciTech Connect (OSTI)

    A. R. Jones


    This appendix provides additional data in support of the MHD/Steam Power Plant Analyses reported in report Volume 5. The data is in the form of 3PA/SUMARY computer code printouts. The order of presentation in all four cases is as follows: (1) Overall Performance; (2) Component/Subsystem Information; (3) Plant Cost Accounts Summary; and (4) Plant Costing Details and Cost of Electricity.

  11. Advanced Concept Exploration for Fast Ignition Science Program, Final Report

    SciTech Connect (OSTI)

    Stephens, Richard Burnite; McLean, Harry M.; Theobald, Wolfgang; Akli, Kramer U.; Beg, Farhat N.; Sentoku, Yasuhiko; Schumacher, Douglass W.; Wei, Mingsheng


    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends critically on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density

  12. Advanced direct coal liquefaction concepts. Final report, Volume 2

    SciTech Connect (OSTI)

    Berger, D.J.; Parker, R.J.; Simpson, P.L.


    Integration of innovative steps into new advanced processes have the potential to reduce costs for producing liquid fuels. In this program, objective is to develop a new approach to liquefaction that generates an all distillate product slate at a reduced cost of about US$25/barrel of crude oil equivalent. A Counterflow Reactor was developed in cooperation with GfK mbH, Germany. Advantages are low hydrogen recycle rates and low feed preheating requirements. Coal/heavy oil slurry is injected into the top of the reactor while the recycle gas and make up hydrogen is introduced into the bottom; hydrogenation products are withdrawn from the top. PU study resulted in distillable oil yields up to 74 wt % on feed (dry ash free) from coprocessing feed slurries containing 40 wt % Vesta subbituminous coal and 60 wt % Cold Lake heavy vacuum tower bottoms. Technologies developed separately by CED and ARC were combined. A 1-kg/hr integrated continuous flow bench scale unit was constructed at the ARC site in Devon, Alberta, based on modifications to a unit at Nisku, Alberta (the modified unit was used in the preliminary economic evaluation).

  13. Environmental assessment of advanced thin film manufacturing process. Final report

    SciTech Connect (OSTI)

    Cunningham, D.W.; Mopas, E.; Skinner, D.; McGuire, L.; Strehlow, M.


    This report describes work performed by BP Solar, Inc., to provide an extensive preproduction analysis of waste-stream abatement at its plant in Fairfield, California. During the study, numerous technologies were thoroughly evaluated, which allowed BP Solar to select systems that outperformed the stringent federal and state regulations. The main issues were originally perceived to be controlling cadmium compound releases to both air and wastewater to acceptable levels and adopting technologies for air and water waste streams in an efficient, cost-effective manner. BP Solar proposed high-efficiency, reliable control equipment that would reduce air-contaminant emission levels below levels of concern. Cadmium telluride dust is successfully controlled with high-efficiency (>99.9%) bag-in/bag-out filters. For air abatement, carbon canisters provide efficient VOC reduction, and wastewater pretreatment is required per federal pretreatment standards. BP Solar installed a cadmium-scavenging ion exchange system and electrowinning system capable of removing cadmium to <10 ppb (local publicly-owned-treatment-works limits for cadmium is 30 ppb). BP Solar plans to maximize potential reuse of rinse waters by phasing in additional wastewater treatment technologies. Finally, the work to date has identified the areas that need to be revisited as production scales up to ensure that all health, safety, and environmental goals are met.

  14. Development of Advanced Polymeric Reflector for CSP Applications - Final Report

    SciTech Connect (OSTI)

    Treglio, Richard, T; Boyle, Keith, A; Henderson, Hildie


    This project attempted to deposit extremely thick and dense protective barrier onto a mirror film stack with a PET substrate. The target thickness was very high for thin film products; particularly since large areas and long production lengths of film are needed to make the final product economic. The technical investigations in this project centered on maintaining a quality barrier (i.e. dense film) while evaporating alumina with a high deposition rate onto a low cost PET substrate. The project found that the proposed configuration, particularly direct ion bombardment, provides too narrow a solution space to effectively and economically produce the ASRM attempted. The initial project goals were met when depositing on a limited width and at a modest rate. However, expanding to wide deposition at aggressive deposition rates did not produce consistent film quality. Economic viability drives the process to maximize deposition rate. The current system configuration has a limiting upper rate threshold that does not appear economically viable. For future work, alternate approaches seem needed to address the challenges encountered in the scale-up phase of this project.

  15. LIDAR Thomson scattering for advanced tokamaks. Final report

    SciTech Connect (OSTI)

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G.


    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured.

  16. Advanced membrane separation technology for biosolvents. Final CRADA report.

    SciTech Connect (OSTI)

    Snyder, S. W.; Energy Systems


    Argonne and Vertec Biosolvents investigated the stability and perfonnance for a number of membrane systems to drive the 'direct process' for pervaporation-assisted esterification to produce lactate esters. As outlined in Figure 1, the target is to produce ammonium lactate by fennentation. After purification and concentration, ammonium lactate is reacted with ethanol to produce the ester. Esterification is a reversible reaction so to drive the reaction forward, the produced ammonia and water must be rapidly separated from the product. The project focused on selecting pervaporation membranes with (1) acid functionality to facilitate ammonia separation and (2) temperature stability to be able to perform that reaction at as high a temperature as possible (Figure 2). Several classes of commercial membrane materials and functionalized membrane materials were surveyed. The most promising materials were evaluated for scale-up to a pre-commercial application. Over 4 million metric tons per year of solvents are consumed in the U.S. for a wide variety of applications. Worldwide the usage exceeds 10 million metric tons per year. Many of these, such as the chlorinated solvents, are environmentally unfriendly; others, such as the ethylene glycol ethers and N Methyl Pyrrolidone (NMP), are toxic or teratogenic, and many other petroleum-derived solvents are coming under increasing regulatory restrictions. High performance, environmentally friendly solvents derived from renewable biological resources have the potential to replace many of the chlorinated and petrochemical derived solvents. Some of these solvents, such as ethyl lactate; d-limonene, soy methyl esters, and blends ofthese, can give excellent price/perfonnance in addition to the environmental and regulatory compliance benefits. Advancement of membrane technologies, particularly those based on pervaporation and electrodialysis, will lead to very efficient, non-waste producing, and economical manufacturing technologies for

  17. Norcal Prototype LNG Truck Fleet: Final Data Report. Advanced Technology Vehicle Evaluation: Advanced Vehicle Testing Activity

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Data Report Norcal Prototype LNG Truck Fleet: Final Data Report By Kevin Chandler, Battelle Ken Proc, National Renewable Energy Laboratory February 2005 This report provides detailed data and analyses from the U.S. Department of Energy's evaluation of prototype liquefied natural gas (LNG) waste transfer trucks operated by Norcal Waste Systems, Inc. The final report for this evaluation, published in July 2004, is available from the Alternative Fuels Data Center at or by

  18. OTEC Advanced Composite Cold Water Pipe: Final Technical Report

    SciTech Connect (OSTI)

    Dr. Alan Miller; Matthew Ascari


    Ocean Thermal Energy Conversion can exploit natural temperature gradients in the oceans to generate usable forms of energy (for example, cost-competitive baseload electricity in tropical regions such as Hawaii) free from fossil fuel consumption and global warming emissions.The No.1 acknowledged challenge of constructing an OTEC plant is the Cold Water Pipe (CWP), which draws cold water from 1000m depths up to the surface, to serve as the coolant for the OTEC Rankine cycle. For a commercial-scale plant, the CWP is on the order of 10m in diameter.This report describes work done by LMSSC developing the CWP for LM MS2 New Ventures emerging OTEC business. The work started in early 2008 deciding on the minimum-cost CWP architecture, materials, and fabrication process. In order to eliminate what in previous OTEC work had been a very large assembly/deployment risk, we took the innovative approach of building an integral CWP directly from theOTEC platform and down into the water. During the latter half of 2008, we proceeded to a successful small-scale Proof-of-Principles validation of the new fabrication process, at the Engineering Development Lab in Sunnyvale. During 2009-10, under the Cooperative Agreement with the US Dept. of Energy, we have now successfully validated key elements of the process and apparatus at a 4m diameter scale suitable for a future OTEC Pilot Plant. The validations include: (1) Assembly of sandwich core rings from pre-pultruded hollow 'planks,' holding final dimensions accurately; (2) Machine-based dispensing of overlapping strips of thick fiberglass fabric to form the lengthwise-continuous face sheets, holding accurate overlap dimensions; (3) Initial testing of the fabric architecture, showing that the overlap splices develop adequate mechanical strength (work done under a parallel US Naval Facilities Command program); and (4) Successful resin infusion/cure of 4m diameter workpieces, obtaining full wet-out and a non-discernable knitline between

  19. Final report on LDRD project : advanced optical trigger systems.

    SciTech Connect (OSTI)

    Roose, Lars D.; Hadley, G. Ronald; Mar, Alan; Serkland, Darwin Keith; Geib, Kent Martin; Sullivan, Charles Thomas; Keeler, Gordon Arthur; Bauer, Thomas M.; Peake, Gregory Merwin; Loubriel, Guillermo Manuel; Montano, Victoria A.


    Advanced optically-activated solid-state electrical switch development at Sandia has demonstrated multi-kA/kV switching and the path for scalability to even higher current/power. Realization of this potential requires development of new optical sources/switches based on key Sandia photonic device technologies: vertical-cavity surface-emitting lasers (VCSELs) and photoconductive semiconductor switch (PCSS) devices. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been used to trigger multiple filaments, but they are difficult to scale and manufacture with the required uniformity. In VCSEL arrays, adjacent lasers utilize identical semiconductor material and are lithographically patterned to the required dimensions. We have demonstrated multiple-line filament triggering using VCSEL arrays to approximate line generation. These arrays of uncoupled circular-aperture VCSELs have fill factors ranging from 2% to 30%. Using these arrays, we have developed a better understanding of the illumination requirements for stable triggering of multiple-filament PCSS devices. Photoconductive semiconductor switch (PCSS) devices offer advantages of high voltage operation (multi-kV), optical isolation, triggering with laser pulses that cannot occur accidentally in nature, low cost, high speed, small size, and radiation hardness. PCSS devices are candidates for an assortment of potential applications that require multi-kA switching of current. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been demonstrated to trigger multiple filaments, but they


    SciTech Connect (OSTI)

    David Sloan; Woodrow Fiveland


    The goal of this DOE Vision-21 project work scope was to develop an integrated suite of software tools that could be used to simulate and visualize advanced plant concepts. Existing process simulation software did not meet the DOE's objective of ''virtual simulation'' which was needed to evaluate complex cycles. The overall intent of the DOE was to improve predictive tools for cycle analysis, and to improve the component models that are used in turn to simulate equipment in the cycle. Advanced component models are available; however, a generic coupling capability that would link the advanced component models to the cycle simulation software remained to be developed. In the current project, the coupling of the cycle analysis and cycle component simulation software was based on an existing suite of programs. The challenge was to develop a general-purpose software and communications link between the cycle analysis software Aspen Plus{reg_sign} (marketed by Aspen Technology, Inc.), and specialized component modeling packages, as exemplified by industrial proprietary codes (utilized by ALSTOM Power Inc.) and the FLUENT{reg_sign} computational fluid dynamics (CFD) code (provided by Fluent Inc). A software interface and controller, based on an open CAPE-OPEN standard, has been developed and extensively tested. Various test runs and demonstration cases have been utilized to confirm the viability and reliability of the software. ALSTOM Power was tasked with the responsibility to select and run two demonstration cases to test the software--(1) a conventional steam cycle (designated as Demonstration Case 1), and (2) a combined cycle test case (designated as Demonstration Case 2). Demonstration Case 1 is a 30 MWe coal-fired power plant for municipal electricity generation, while Demonstration Case 2 is a 270 MWe, natural gas-fired, combined cycle power plant. Sufficient data was available from the operation of both power plants to complete the cycle configurations. Three runs

  1. Summary of the Advanced Reactor Design Criteria (ARDC) Phase 1 Activities, including the development of the Final Report and the Advanced Reactor Technology Training

    SciTech Connect (OSTI)

    Holbrook, Mark R.


    Provide summary of the Phase 1 activities (Develop Final Report and Conduct Advanced Reactor Technology Training) that were completed in Fiscal Year 2015.

  2. Final Report -Regulatory and Utility Solutions to Advance SunShot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative Goals | Department of Energy Regulatory and Utility Solutions to Advance SunShot Initiative Goals Final Report -Regulatory and Utility Solutions to Advance SunShot Initiative Goals Awardee: Interstate Renewable Energy Council (IREC) Location: Latham, NY Subprogram: Soft Costs Funding Program: Solar Projects to Reduce Market Barriers and Non-Hardware Balance of System Costs IREC's work over the past three years under the United States Department of Energy SunShot award

  3. Final Technical Report - Advanced Optical Sensors to Minimize Energy Consumption in Polymer Extrusion Processes

    SciTech Connect (OSTI)

    Susan J. Foulk


    Project Objective: The objectives of this study are to develop an accurate and stable on-line sensor system to monitor color and composition on-line in polymer melts, to develop a scheme for using the output to control extruders to eliminate the energy, material and operational costs of off-specification product, and to combine or eliminate some extrusion processes. Background: Polymer extrusion processes are difficult to control because the quality achieved in the final product is complexly affected by the properties of the extruder screw, speed of extrusion, temperature, polymer composition, strength and dispersion properties of additives, and feeder system properties. Extruder systems are engineered to be highly reproducible so that when the correct settings to produce a particular product are found, that product can be reliably produced time after time. However market conditions often require changes in the final product, different products or grades may be processed in the same equipment, and feed materials vary from lot to lot. All of these changes require empirical adjustment of extruder settings to produce a product meeting specifications. Optical sensor systems that can continuously monitor the composition and color of the extruded polymer could detect process upsets, drift, blending oscillations, and changes in dispersion of additives. Development of an effective control algorithm using the output of the monitor would enable rapid corrections for changes in materials and operating conditions, thereby eliminating most of the scrap and recycle of current processing. This information could be used to identify extruder systems issues, diagnose problem sources, and suggest corrective actions in real-time to help keep extruder system settings within the optimum control region. Using these advanced optical sensor systems would give extruder operators real-time feedback from their process. They could reduce the amount of off-spec product produced and

  4. Newman Unit 1 advanced solar repowering advanced conceptual design. Final report

    SciTech Connect (OSTI)


    The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical power generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)

  5. Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect (OSTI)

    Sussman, Alan


    This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work focused on software tools for coupling parallel software components built using the Common Component Architecture (CCA) APIs. Those tools are based on the Maryland InterComm software framework that has been used in multiple computational science applications to build large-scale simulations of complex physical systems that employ multiple separately developed codes.

  6. Advanced SO/sub 2/ control by-product utilization laboratory evaluation: Final report

    SciTech Connect (OSTI)

    Not Available


    This report presents the results of an investigation into the utilization potential of by-products from the following advanced SO/sub 2/ control processes: Atmospheric Fluidized Bed Combustion; Calcium Spray Drying; Limestone Furnace Injection; Sodium Sorbent Injection; and Calcium Sorbent Injection. Utilization applications identified as potentially feasible (from both technical and market perspectives) in the preliminary investigation (EPRI CS-5269) were evaluated through small-scale laboratory testing. The applications considered were primarily low to medium technology process and medium to high volume use applications. The laboratory test results were evaluated in concert with by-product physical, chemical and extract characteristics (developed during EPRI Research Project 2708-1) and a market assessment. Then, an economic evaluation was performed for each utilization application based upon a typical or hypothetical by-product marketing situation in which an advanced SO/sub 2/ control by-product could be substituted for a competing material on a local project or in a local product. Finally, based on the major factors considered in this project (laboratory characterization, technical feasibility evaluation, and economic and market assessments), the utilization potential for each application considered was rated as high, medium or low, and future research needs were identified. The following utilization applications were found to have a high potential for the majority of the calcium-based advanced SO/sub 2/ control by-products: road base, soil and sludge stabilization and grout applications. 76 refs., 18 figs., 70 tabs.

  7. Advanced turbine systems program -- Conceptual design and product development. Final report

    SciTech Connect (OSTI)


    This Final Technical Report presents the accomplishments on Phase 2 of the Advanced Turbine Systems (ATS). The ATS is an advanced, natural gas fired gas turbine system that will represent a major advance on currently available industrial gas turbines in the size range of 1--20 MW. This report covers a market-driven development. The Market Survey reported in Section 5 identified the customer`s performance needs. This market survey used analyses performed by Solar turbine Incorporated backed up by the analyses done by two consultants, Research Decision Consultants (RDC) and Onsite Energy Corporation (Onsite). This back-up was important because it is the belief of all parties that growth of the ATS will depend both on continued participation in Solar`s traditional oil and gas market but to a major extent on a new market. This new market is distributed electrical power generation. Difficult decisions have had to be made to meet the different demands of the two markets. Available resources, reasonable development schedules, avoidance of schedule or technology failures, probable acceptance by the marketplace, plus product cost, performance and environmental friendliness are a few of the complex factors influencing the selection of the Gas Fired Advanced Turbine System described in Section 3. Section 4 entitled ``Conversion to Coal`` was a task which addresses the possibility of a future interruption to an economic supply of natural gas. System definition and analysis is covered in Section 6. Two major objectives were met by this work. The first was identification of those critical technologies that can support overall attainment of the program goals. Separate technology or component programs were begun to identify and parameterize these technologies and are described in Section 7. The second objective was to prepare parametric analyses to assess performance sensitivity to operating variables and to select design approaches to meet the overall program goals.

  8. Building America Case study: Advanced Controls Improve Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced controls improve the energy performance of combi systems. Combi energy effciency ... The controls improve effciency by allowing the system to operate at lower average return ...

  9. Building America Case study: Advanced Controls Improve Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced controls improve the energy performance of combi systems. Combi energy effciency is largely a factor of (1) the water temperature returning to the heating plant from the ...

  10. Advances in the Design of the SuperB Final Doublet

    SciTech Connect (OSTI)

    Paoloni, E.; Carmignani, N.; Pilo, F.; Bettoni, S.; Fabbricatore, P.; Farinon, S.; Musenich, R.; Bosi, F.; Biagini, M.E.; Raimondi, P.; Sullivan, M.; /SLAC


    SuperB is an asymmetric energy e{sup +}e{sup -} collider operating at the {Upsilon}(4S) peak with a design peak luminosity of 10{sup 36} Hz/cm{sup 2} to be built in Italy in the very near future. The design luminosity is almost a factor hundred higher than that of the present generation comparable facilities. To get the design luminosity a novel collision scheme, the so called 'large Piwinski angle with crab waist', has been designed. The scheme requires a short focus final doublet to reduce the vertical beta function down to {beta}*{sub y} = 0.2mm at the interaction point (IP). The final doublet will be composed by a set of permanent and superconducting (SC) quadrupoles. The SC quadrupole doublets QD0/QF1 will be placed as close to the IP as possible. This layout is critical because the space available for the doublets is very small. An advanced design of the quadrupole has been developed, based on the so-called helical coil concept. The paper discusses the design concept, the construction and the results of test of a model of the superconducting quadrupole based on NbTi technology. Future developments are also presented.

  11. Final Report Full-Scale Test of DWPF Advanced Liquid-Level and Density Measurement Bubblers

    SciTech Connect (OSTI)

    Duignan, M.R.; Weeks, G.E.


    As requested by the Technical Task Request (1), a full-scale test was carried out on several different liquid-level measurement bubblers as recommended from previous testing (2). This final report incorporates photographic evidence (Appendix B) of the bubblers at different stages of testing, along with the preliminary results (Appendix C) which were previously reported (3), and instrument calibration data (Appendix D); while this report contains more detailed information than previously reported (3) the conclusions remain the same. The test was performed under highly prototypic conditions from November 26, 1996 to January 23, 1997 using the full-scale SRAT/SME tank test facilities located in the 672-T building at TNX. Two different types of advanced bubblers were subjected to approximately 58 days of slurry operation; 14 days of which the slurry was brought to boiling temperatures.The test showed that the large diameter tube bubbler (2.64 inches inside diameter) operated successfully throughout the2-month test by not plugging with the glass-frit ladened slurry which was maintained at a minimum temperature of 50 deg Cand several days of boiling temperatures. However, a weekly blow-down with air or water is recommended to minimize the slurry which builds up.The small diameter porous tube bubbler (0.62 inch inside diameter; water flow {gt} 4 milliliters/hour = 1.5 gallons/day) operated successfully on a daily basis in the glass-frit ladened slurry which was maintained at a minimum temperature of 50 degrees C and several days of boiling temperatures. However, a daily blow-down with air, or air and water, is necessary to maintain accurate readings.For the small diameter porous tube bubbler (0.62 inch inside diameter; water flow {gt} 4 milliliters/hour = 1.5 gallons/day) there were varying levels of success with the lower water-flow tubes and these tubes would have to be cleaned by blowing with air, or air and water, several times a day to maintain them plug free. This

  12. Final LDRD report : advanced materials for next generation high-efficiency thermochemistry.

    SciTech Connect (OSTI)

    Ambrosini, Andrea; Miller, James Edward; Allendorf, Mark D.; Coker, Eric Nicholas; Ermanoski, Ivan; Hogan, Roy E.,; McDaniel, Anthony H.


    Despite rapid progress, solar thermochemistry remains high risk; improvements in both active materials and reactor systems are needed. This claim is supported by studies conducted both prior to and as part of this project. Materials offer a particular large opportunity space as, until recently, very little effort apart from basic thermodynamic analysis was extended towards understanding this most fundamental component of a metal oxide thermochemical cycle. Without this knowledge, system design was hampered, but more importantly, advances in these crucial materials were rare and resulted more from intuition rather than detailed insight. As a result, only two basic families of potentially viable solid materials have been widely considered, each of which has significant challenges. Recent efforts towards applying an increased level of scientific rigor to the study of thermochemical materials have provided a much needed framework and insights toward developing the next generation of highly improved thermochemically active materials. The primary goal of this project was to apply this hard-won knowledge to rapidly advance the field of thermochemistry to produce a material within 2 years that is capable of yielding CO from CO2 at a 12.5 % reactor efficiency. Three principal approaches spanning a range of risk and potential rewards were pursued: modification of known materials, structuring known materials, and identifying/developing new materials for the application. A newly developed best-of-class material produces more fuel (9x more H2, 6x more CO) under milder conditions than the previous state of the art. Analyses of thermochemical reactor and system efficiencies and economics were performed and a new hybrid concept was reported. The larger case for solar fuels was also further refined and documented.

  13. Final Report - Advanced MEA's for Enhanced Operating Conditions, Amenable to High Volume Manufacture

    SciTech Connect (OSTI)

    Debe, Mark K.


    This report summarizes the work completed under a 3M/DOE contract directed at advancing the key fuel cell (FC) components most critical for overcoming the polymer electrolyte membrane fuel cell (PEMFC) performance, durability & cost barriers. This contract focused on the development of advanced ion exchange membranes & electrocatalysts for PEMFCs that will enable operation under ever more demanding automotive operating conditions & the use high volume compatible processes for their manufacture. Higher performing & more durable electrocatalysts must be developed for PEMFCs to meet the power density & lifetime hours required for FC vehicles. At the same time the amount of expensive Pt catalyst must be reduced to lower the MEA costs. While these two properties are met, the catalyst must be made resistant to multiple degradation mechanisms to reach necessary operating lifetimes. In this report, we present the work focused on the development of a completely new approach to PEMFC electrocatalyts, called nanostructured thin film (NSTF) catalysts. The carbon black supports are eliminated with this new approach which eliminates the carbon corrosion issue. The thin film nature of the catalyst significantly improves its robustness against dissolution & grain growth, preserving the surface area. Also, the activity of the NSTF for oxygen reduction is improved by over 500% compared to dispersed Pt catalyts. Finally, the process for fabricating the NSTF catalysts is consistent with high volume roll-good manufacturing & extremely flexible towards the introduction of new catalyst compositions & structures. This report documents the work done to develop new multi-element NSTF catalysts with properties that exceed pure Pt, that are optimized for use with the membranes discussed below, & advance the state-of-the-art towards meeting the DOE 2010 targets for PEMFC electrocatalysts. The work completed advances the understanding of the NSTF catalyst technology, identifies new NSTF

  14. Energy conserving site design case study: Shenandoah, Georgia. Final report

    SciTech Connect (OSTI)

    Not Available


    The case study examines the means by which energy conservation can be achieved at an aggregate community level by using proper planning and analytical techniques for a new town, Shenandoah, Georgia, located twenty-five miles southwest of Atlanta's Hartsfield International Airport. A potentially implementable energy conservation community plan is achieved by a study team examining the land use options, siting characteristics of each building type, alternate infrastructure plans, possible decentralized energy options, and central utility schemes to determine how community energy conservation can be achieved by use of pre-construction planning. The concept for the development of mixed land uses as a passively sited, energy conserving community is based on a plan (Level 1 Plan) that uses the natural site characteristics, maximizes on passive energy siting requirement, and allows flexibility for the changing needs of the developers. The Level 2 Plan is identical with Level 1 plan plus a series of decentraized systems that have been added to the residential units: the single-family detached, the apartments, and the townhouses. Level 3 Plan is similar to the Level 1 Plan except that higher density dwellings have been moved to areas adjacent to central site. The total energy savings for each plan relative to the conventional plan are indicated. (MCW)

  15. Advanced wind turbine near-term product development. Final technical report

    SciTech Connect (OSTI)



    In 1990 the US Department of Energy initiated the Advanced Wind Turbine (AWT) Program to assist the growth of a viable wind energy industry in the US. This program, which has been managed through the National Renewable Energy Laboratory (NREL) in Golden, Colorado, has been divided into three phases: (1) conceptual design studies, (2) near-term product development, and (3) next-generation product development. The goals of the second phase were to bring into production wind turbines which would meet the cost goal of $0.05 kWh at a site with a mean (Rayleigh) windspeed of 5.8 m/s (13 mph) and a vertical wind shear exponent of 0.14. These machines were to allow a US-based industry to compete domestically with other sources of energy and to provide internationally competitive products. Information is given in the report on design values of peak loads and of fatigue spectra and the results of the design process are summarized in a table. Measured response is compared with the results from mathematical modeling using the ADAMS code and is discussed. Detailed information is presented on the estimated costs of maintenance and on spare parts requirements. A failure modes and effects analysis was carried out and resulted in approximately 50 design changes including the identification of ten previously unidentified failure modes. The performance results of both prototypes are examined and adjusted for air density and for correlation between the anemometer site and the turbine location. The anticipated energy production at the reference site specified by NREL is used to calculate the final cost of energy using the formulas indicated in the Statement of Work. The value obtained is $0.0514/kWh in January 1994 dollars. 71 figs., 30 tabs.

  16. Microsoft Word - Advanced Components_Final_v2_0.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Advanced Components Table 1: Examples of power electronic ... that can be sited at system or industrial interfaces. ... Combustion gas turbines, which range from one MW to several ...

  17. Advanced cogeneration and absorption chillers potential for service to Navy bases. Final report

    SciTech Connect (OSTI)

    Andrews, J.W.; Butcher, T.A.; Leigh, R.W.; McDonald, R.J.; Pierce, B.L.


    The US military uses millions of Btu`s of thermal energy to heat, cool and deliver process thermal energy to buildings on military bases, much of which is transmitted through a pipeline system incorporating thousands of miles of pipe. Much of this pipeline system is in disrepair and is nearing the end of its useful life, and the boilers which supply it are old and often inefficient. In 1993, Brookhaven National Laboratory (BNL) proposed to SERDP a three-year effort to develop advanced systems of coupled diesel cogenerators and absorption chillers which would be particularly useful in providing a continuation of the services now provided by increasingly antiquated district systems. In mid-February, 1995, BNL learned that all subsequent funding for our program had been canceled. BNL staff continued to develop the Program Plan and to adhere to the requirements of the Execution Plan, but began to look for ways in which the work could be made relevant to Navy and DoD energy needs even without the extensive development plan formerly envisioned. The entire program was therefore re-oriented to look for ways in which small scale cogeneration and absorption chilling technologies, available through procurement rather than development, could provide some solutions to the problem of deteriorated district heating systems. The result is, we believe, a striking new approach to the provision of building services on military bases: in many cases, serious study should be made of the possibility that the old district heating system should be removed or abandoned, and small-scale cogenerators and absorption chillers should be installed in each building. In the remainder of this Summary, we develop the rationale behind this concept and summarize our findings concerning the conditions under which this course of action would be advisable and the economic benefits which will accrue if it is followed. The details are developed in the succeeding sections of the report.

  18. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 1, Final report

    SciTech Connect (OSTI)

    Cuccio, J.C.; Brehm, P.; Fang, H.T.


    Emphasis of this program is to develop and demonstrate ceramics life prediction methods, including fast fracture, stress rupture, creep, oxidation, and nondestructive evaluation. Significant advancements were made in these methods and their predictive capabilities successfully demonstrated.

  19. Advanced emissions control development project. Phase I final report appendices, November 1, 1993--February 29, 1996

    SciTech Connect (OSTI)

    Farthing, G.A.


    Appendices are presented on the Advanced Emissions Control Development Project on the following: wet scrubber sampling and analysis; DBA/lime chemical analysis; limestone forced oxidation chemical analysis; benchmarking on baghouse conditions, electrostatic precipitators, and wet scrubber conditions.

  20. Microsoft Word - Advanced Components_Final_v2_0.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appendix B3: A Systems View of the Modern Grid ADVANCED COMPONENTS Conducted by the National Energy Technology Laboratory for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability March 2007 Office of Electricity Delivery and Energy Reliability Page B3-1 Modern Grid Systems View: Appendix B3 v2.0 Advanced Components TABLE OF CONTENTS Executive Summary........................................................................2 Current

  1. Microsoft Word - Advanced Control Methods_Final_v2_0.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appendix B4: A Systems View of the Modern Grid ADVANCED CONTROL METHODS Conducted by the National Energy Technology Laboratory for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability March 2007 Office of Electricity Delivery and Energy Reliability Page B4-1 Modern Grid Systems View: Appendix B4 v2.0 Advanced Control Methods TABLE OF CONTENTS Executive Summary .................................................................................. 2 Current

  2. Building America New Homes Case Study: Advanced Extended Plate and Beam

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wall System in a Cold-Climate House | Department of Energy New Homes Case Study: Advanced Extended Plate and Beam Wall System in a Cold-Climate House Building America New Homes Case Study: Advanced Extended Plate and Beam Wall System in a Cold-Climate House A zero energy ready home was recently completed that features an innovative wall system. This highly insulated (high-R) light-frame wall system, called the extended plate and beam, is for use above grade in residential buildings. The

  3. Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report

    SciTech Connect (OSTI)

    William Anderson; James Tulenko; Bradley Rearden; Gary Harms


    The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

  4. Condition monitoring through advanced sensor and computational technology : final report (January 2002 to May 2005).

    SciTech Connect (OSTI)

    Kim, Jung-Taek; Luk, Vincent K.


    The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties.

  5. Department of Energy Issues Final $12.5 Billion Advanced Nuclear Energy Loan Guarantee Solicitation

    Broader source: [DOE]

    WASHINGTON D.C. — Today, the Department of Energy issued the Advanced Nuclear Energy Projects loan guarantee solicitation, which provides as much as $12.5 billion to support innovative nuclear energy projects as a part of the Administration’s all-of-the-above energy strategy.

  6. Low-rank coal research: Volume 2, Advanced research and technology development: Final report

    SciTech Connect (OSTI)

    Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.


    Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

  7. Final Week of National Energy Action Month Features Technological Advances in Clean Energy and DOE Support of Scientific Research

    Broader source: [DOE]

    WASHINGTON—Department of Energy officials will attend events across the country next week to highlight the clean energy technological advances and scientific initiatives supported by DOE. During the final week of National Energy Action Month, senior DOE officials will participate in events from San Francisco to North Carolina to Washington. Throughout October, Secretary of Energy Ernest Moniz and other Department officials are participating in events to emphasize the important role that the Administration’s all-of-the-above energy strategy plays in strengthening America’s economic, environmental and national security future.

  8. Experimental study of the Self-Advancing Miner for coal (SAM). Final technical report

    SciTech Connect (OSTI)

    Douglas, S.B.


    The design, fabrication, and field testing of the Rapidex Self-Advancing Miner (SAM) are discussed in detail. The SAM concept utilizes a unique conical screw geometry to excavate coal by first slotting the face and then breaking free the weakened material between slots. Field tests proved that the technique works well in coal and that the SAM does self advance along the face. Using the experimental data obtained, full scale estimates are made for four mining applications. Longwall mining with SAM cutterheads appears the most feasible and offers many operational advantages, including improved dust control. Other key SAM features are increased cutting efficiency, improved face control to minimize slabbing, and low methane emission and risk of face ignitions.

  9. Advanced turbine systems phase II - conceptual design and product development. Final report, August 1993--July 1996

    SciTech Connect (OSTI)


    The National Energy Strategy (NES) calls for a balanced program of greater energy efficiency, use of alternative fuels, and the environmentally responsible development of all U.S. energy resources. Consistent with the NES, a Department of Energy (DOE) program has been created to develop Advanced Turbine Systems (ATS). The technical ATS requirements are based upon two workshops held in Greenville, SC that were sponsored by DOE and hosted by Clemson University. The objective of this 8-year program, managed jointly by DOE`s Office of Fossil Energy, and, Office of Conservation and Renewable Energy, is to develop natural-gas-fired base load power plants that will have cycle efficiencies greater than 60%, lower heating value (LHV), be environmentally superior to current technology, and also be cost competitive. The program will include work to transfer advanced technology to the coal- and biomass-fueled systems being developed in other DOE programs.

  10. Advanced turbine systems program. Final report, August 3, 1993--August 31, 1996

    SciTech Connect (OSTI)


    Six tasks were approved under the Advanced Turbine Systems (ATS) extension program. The six tasks include the following: Task 5.0 -- Market Study. The objective of the market study task is to focus on distributed generation prospects for an industrial ATS, using the Allison ATS family as the primary gas turbine systems. Task 6.0 -- Gas Fired Advanced Turbine System (GFATS) Definition and Analysis. Task 8.01 -- Castcool{reg_sign} Blades Fabrication Process Development. Task 8.04 -- ATS Low Emission Combustion System. Task 8.07 -- Ceramic Vane Design and Evaluation. Task 9.0 -- Program Management. Each of these tasks is described, progress is discussed, and results are given.

  11. Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report

    SciTech Connect (OSTI)

    Mugerwa, Michael


    Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).

  12. Final Technical Report: Advanced Measurement and Analysis of PV Derate Factors.

    SciTech Connect (OSTI)

    King, Bruce Hardison; Burton, Patrick D.; Hansen, Clifford; Jones, Christian Birk


    The Advanced Measurement and Analysis of PV Derate Factors project focuses on improving the accuracy and reducing the uncertainty of PV performance model predictions by addressing a common element of all PV performance models referred to as “derates”. Widespread use of “rules of thumb”, combined with significant uncertainty regarding appropriate values for these factors contribute to uncertainty in projected energy production.

  13. Final Report for "Center for Technology for Advanced Scientific Component Software"

    SciTech Connect (OSTI)

    Svetlana Shasharina


    The goal of the Center for Technology for Advanced Scientific Component Software is to fundamentally changing the way scientific software is developed and used by bringing component-based software development technologies to high-performance scientific and engineering computing. The role of Tech-X work in TASCS project is to provide an outreach to accelerator physics and fusion applications by introducing TASCS tools into applications, testing tools in the applications and modifying the tools to be more usable.

  14. Synchrophasor Technology Advancement in ARRA Projects: Final Report from the American Recovery and Reinvestment Act Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancement of Synchrophasor Technology in ARRA Projects │ ii ACKNOWLEDGMENTS This report was sponsored by the U.S. Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE) and prepared by the Oak Ridge National Laboratory (ORNL). The effort was directed and supported by DOE Senior Advisor Joseph Paladino and DOE Program Managers Philip N. Overholt and Deborah Haught. The authors of this report were Jose R. Gracia (ORNL), Marcus A. Young, II, Ph.D. (ORNL), D. Tom

  15. Studies of dynamic contact of ceramics and alloys for advanced heat engines. Final report

    SciTech Connect (OSTI)

    Gaydos, P.A.; Dufrane, K.F.


    Advanced materials and coatings for low heat rejection engines have been investigated for almost a decade. Much of the work has concentrated on the critical wear interface between the piston ring and cylinder liner. Simplified bench tests have identified families of coatings with high temperature wear performance that could meet or exceed that of conventional engine materials at today`s operating temperatures. More recently, engine manufacturers have begun to optimize material combinations and manufacturing processes so that the materials not only have promising friction and wear performance but are practical replacements for current materials from a materials and manufacturing cost standpoint. In this study, the advanced materials supplied by major diesel engine manufacturers were evaluated in an experimental apparatus that simulates many of the in-cylinder conditions of a low heat rejection diesel engine. Results include ring wear factors and average dynamic friction coefficients measured at intervals during the test. These results are compared with other advanced materials tested in the past as well as the baseline wear of current engines. Both fabricated specimens and sections of actual ring and cylinder liners were used in the testing. Observations and relative friction and wear performance of the individual materials are provided.

  16. Development of advanced magnetic resonance sensor for industrial applications. Final report

    SciTech Connect (OSTI)

    De Los Santos, A.


    Southwest Research Institute (SwRI) and various subcontractors, in a cooperative agreement with the DOE, have developed and tested an advanced magnetic resonance (MR) sensor for several industrial applications and made various market surveys. The original goal of the program was to develop an advanced moisture sensor to allow more precise and rapid control of drying processes so that energy and/or product would not be wasted. Over the course of the program, it was shown that energy savings were achievable but in many processes the return in investment did not justify the cost of a magnetic resonance sensor. However, in many processes, particularly chemical, petrochemical, paper and others, the return in investment can be very high as to easily justify the cost of a magnetic resonance sensor. In these industries, substantial improvements in product yield, quality, and efficiency in production can cause substantial energy savings and reductions in product wastage with substantial environmental effects. The initial applications selected for this program included measurement of corn gluten at three different points and corn germ at one point in an American Maize corn processing plant. During the initial phases (I and II) of this program, SwRI developed a prototype advanced moisture sensor utilizing NMR technology capable of accurately and reliably measuring moisture in industrial applications and tested the sensor in the laboratory under conditions simulating on-line products in the corn wet milling industry. The objective of Phase III was to test the prototype sensor in the plant environment to determine robustness, reliability and long term stability. Meeting these objectives would permit extended field testing to improve the statistical database used to calibrate the sensor and subject the sensor to true variations in operating conditions encountered in the process rather than those which could only be simulated in the laboratory.

  17. Advancements in sensing and perception using structured lighting techniques :an LDRD final report.

    SciTech Connect (OSTI)

    Novick, David Keith; Padilla, Denise D.; Davidson, Patrick A. Jr.; Carlson, Jeffrey J.


    This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Advancements in Sensing and Perception using Structured Lighting Techniques''. There is an ever-increasing need for robust, autonomous ground vehicles for counterterrorism and defense missions. Although there has been nearly 30 years of government-sponsored research, it is undisputed that significant advancements in sensing and perception are necessary. We developed an innovative, advanced sensing technology for national security missions serving the Department of Energy, the Department of Defense, and other government agencies. The principal goal of this project was to develop an eye-safe, robust, low-cost, lightweight, 3D structured lighting sensor for use in broad daylight outdoor applications. The market for this technology is wide open due to the unavailability of such a sensor. Currently available laser scanners are slow, bulky and heavy, expensive, fragile, short-range, sensitive to vibration (highly problematic for moving platforms), and unreliable for outdoor use in bright sunlight conditions. Eye-safety issues are a primary concern for currently available laser-based sensors. Passive, stereo-imaging sensors are available for 3D sensing but suffer from several limitations : computationally intensive, require a lighted environment (natural or man-made light source), and don't work for many scenes or regions lacking texture or with ambiguous texture. Our approach leveraged from the advanced capabilities of modern CCD camera technology and Center 6600's expertise in 3D world modeling, mapping, and analysis, using structured lighting. We have a diverse customer base for indoor mapping applications and this research extends our current technology's lifecycle and opens a new market base for outdoor 3D mapping. Applications include precision mapping, autonomous navigation, dexterous manipulation, surveillance and

  18. Technical analysis of US Army Weapons Systems and related advanced technologies of military interest. Final report

    SciTech Connect (OSTI)


    This report summarizes the activities and accomplishments of an US Army technology security project designed to identify and develop effective policy guidelines for militarily critical technologies in specific Army systems and in broad generic technology areas of military interest, Individual systems analyses are documented in separate Weapons Systems Technical Assessments (WSTAs) and the general generic technology areas are evaluated in the Advanced Technology Assessment Reports (ATARs), However, specific details of these assessments are not addressed here, only recommendations regarding aspects of the defined approach, methodology, and format are provided and discussed.

  19. Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992

    SciTech Connect (OSTI)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F.; Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C.; Hu, W.; Zou, Y.; Chen, W.; Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R.


    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  20. Advanced power conversion based on the Aerocapacitor{trademark}. Final report

    SciTech Connect (OSTI)

    Roark, D.


    This report summarizes work performed under contract No. DE-FC07-94ID13283, {open_quotes}Advanced Power Conversion Based on the Aerocapacitors{trademark}.{close_quotes} Under this contract high power density, high energy density, organic electrolyte Aerocapacitors{trademark} were developed and characterized for power conversion applications. Pilot facilities for manufacturing prototype AA-size Aerocapacitors{trademark} were put in place. The low ESR and good frequency response of these devices show that they are ideal components for high discharge rate and low to moderate frequency (< 10 kHz) applications such as power conversion.


    SciTech Connect (OSTI)

    Gupta, Manish; Baer, Douglas


    The objective of this work is to capture the potential of real-time monitoring and overcome the challenges of harsh industrial environments, Los Gatos Research (LGR) is fabricating, deploying, and commercializing advanced laser-based gas sensors for process control monitoring in industrial furnaces (e.g. electric arc furnaces). These sensors can achieve improvements in process control, leading to enhanced productivity, improved product quality, and reduced energy consumption and emissions. The first sensor will utilize both mid-infrared and near-infrared lasers to make rapid in-situ measurements of industrial gases and associated temperatures in the furnace off-gas. The second sensor will make extractive measurements of process gases. During the course of this DOE project, Los Gatos Research (LGR) fabricated, tested, and deployed both in-situ tunable diode laser absorption spectrometry (TDLAS) analyzers and extractive Off-Axis Integrated Cavity Output Spectroscopy (Off-Axis ICOS) analyzers.

  2. Innovative grinding wheel design for cost-effective machining of advanced ceramics. Phase I, final report

    SciTech Connect (OSTI)

    Licht, R.H.; Ramanath, S.; Simpson, M.; Lilley, E.


    Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics. This program was a cooperative effort involving three Norton groups representing a superabrasive grinding wheel manufacturer, a diamond film manufacturing division and a ceramic research center. The program was divided into two technical tasks, Task 1, Analysis of Required Grinding Wheel Characteristics, and Task 2, Design and Prototype Development. In Task 1 we performed a parallel path approach with Superabrasive metal-bond development and the higher technical risk, CVD diamond wheel development. For the Superabrasive approach, Task 1 included bond wear and strength tests to engineer bond-wear characteristics. This task culminated in a small-wheel screening test plunge grinding sialon disks. In Task 2, an improved Superabrasive metal-bond specification for low-cost machining of ceramics in external cylindrical grinding mode was identified. The experimental wheel successfully ground three types of advanced ceramics without the need for wheel dressing. The spindle power consumed by this wheel during test grinding of NC-520 sialon is as much as to 30% lower compared to a standard resin bonded wheel with 100 diamond concentration. The wheel wear with this improved metal bond was an order of magnitude lower than the resin-bonded wheel, which would significantly reduce ceramic grinding costs through fewer wheel changes for retruing and replacements. Evaluation of ceramic specimens from both Tasks 1 and 2 tests for all three ceramic materials did not show evidence of unusual grinding damage. The novel CVD-diamond-wheel approach was incorporated in this program as part of Task 1. The important factors affecting the grinding performance of diamond wheels made by CVD coating preforms were determined.

  3. Advanced direct liquefaction concepts for PETC generic units. Final report, Phase I

    SciTech Connect (OSTI)


    The Advanced Concepts for Direct Coal Liquefaction program was initiated by the Department of Energy in 1991 to develop technologies that could significantly reduce the cost of producing liquid fuels by the direct liquefaction of coal. The advanced 2-stage liquefaction technology that was developed at Wilsonville over the past 10 years has contributed significantly toward decreasing the cost of producing liquids from coal to about $33/bbl. It remains, however, the objective of DOE to further reduce this cost to a level more competitive with petroleum based products. This project, among others, was initiated to investigate various alternative approaches to develop technologies that might ultimately lead to a 25 % reduction in cost of product. In this project a number of novel concepts were investigated, either individually or in a coupled configuration that had the potential to contribute toward meeting the DOE goal. The concepts included mature technologies or ones closely related to them, such as coal cleaning by oil agglomeration, fluid coking and distillate hydrotreating and dewaxing. Other approaches that were either embryonic or less developed were chemical pretreatment of coal to remove oxygen, and dispersed catalyst development for application in the 2-stage liquefaction process. This report presents the results of this project. It is arranged in four sections which were prepared by participating organizations responsible for that phase of the project. A summary of the overall project and the principal results are given in this section. First, however, an overview of the process economics and the process concepts that were developed during the course of this program is presented.

  4. Definition of the development program for an MHD advanced power train. Volume I. Final report

    SciTech Connect (OSTI)

    Clark, J.P.; Hals, F.A.; Noble, J.H.; Muller, D.J.; Willis, P.A.


    The MHD power train designs in the APT program are all aimed at early commercial use of MHD, and thus not representative of more advanced and mature MHD power systems. Accordingly, the power train design approaches in Task 2 as well as the MHD power plant designs in Task 1 were selected for early use and based on present status and experience gained in MHD technology development. Naturally, significant improvements and advancements of MHD technology can be expected after its commercial introduction like that experienced for any other new technology. The information developed in Task 1 of the APT program provided basic information for use in the subsequent task activities reported on here. One important conclusion from the work conducted in Task 1 was the selection of supersonic channel operation at a peak magnetic field strength of about 4.5 Tesla for first commercial use. An important result from the continued MHD generator performance studies conducted as part of Task 2 and reported on here was that the supersonic channel design also offers efficient operation at part load. The MHD generator channel operation at part load was found to shift to transonic and subsonic operation to maintain high efficiency as load decreases. Furthermore, the performance sensitivity analyses in Task 2 substantiated that net MHD power output (MHD generator gross power minus compressor power for oxygen production and compression of the oxygen-enriched combustion air to peak cycle pressure) is reached at the oxidizer/fuel equivalence ratio of 0.9 initially selected in Task 1, although the highest flame temperature and electrical conductivity of the gases produced in the combustor occur at a lower stoichiometry. 48 figs., 41 tabs.

  5. Final Report - Advanced Conceptual Models for Unsaturated and Two-Phase Flow in Fractured Rock

    SciTech Connect (OSTI)

    Nicholl, Michael J.


    The Department of Energy Environmental Management Program is faced with two major issues involving two-phase flow in fractured rock; specifically, transport of dissolved contaminants in the Vadose Zone, and the fate of Dense Nonaqueous Phase Liquids (DNAPLs) below the water table. Conceptual models currently used to address these problems do not correctly include the influence of the fractures, thus leading to erroneous predictions. Recent work has shown that it is crucial to understand the topology, or ''structure'' of the fluid phases (air/water or water/DNAPL) within the subsurface. It has also been shown that even under steady boundary conditions, the influence of fractures can lead to complex and dynamic phase structure that controls system behavior, with or without the presence of a porous rock matrix. Complicated phase structures within the fracture network can facilitate rapid transport, and lead to a sparsely populated and widespread distribution of concentrated contaminants; these qualities are highly difficult to describe with current conceptual models. The focus of our work is to improve predictive modeling through the development of advanced conceptual models for two-phase flow in fractured rock.

  6. Cost estimates for near-term depolyment of advanced traffic management systems. Final report

    SciTech Connect (OSTI)

    Stevens, S.S.; Chin, S.M.


    The objective of this study is to provide cost est engineering, design, installation, operation and maintenance of Advanced Traffic Management Systems (ATMS) in the largest 75 metropolitan areas in the United States. This report gives estimates for deployment costs for ATMS in the next five years, subject to the qualifications and caveats set out in following paragraphs. The report considers infrastructure components required to realize fully a functional ATMS over each of two highway networks (as discussed in the Section describing our general assumptions) under each of the four architectures identified in the MITRE Intelligent Vehicle Highway Systems (IVHS) Architecture studies. The architectures are summarized in this report in Table 2. Estimates are given for eight combinations of highway networks and architectures. We estimate that it will cost between $8.5 Billion (minimal network) and $26 Billion (augmented network) to proceed immediately with deployment of ATMS in the largest 75 metropolitan areas. Costs are given in 1992 dollars, and are not adjusted for future inflation. Our estimates are based partially on completed project costs, which have been adjusted to 1992 dollars. We assume that a particular architecture will be chosen; projected costs are broken by architecture.

  7. Advanced emissions control development project. Phase I, Final report, November 1, 1993--February 19, 1996

    SciTech Connect (OSTI)


    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESP`s), fabric filters (baghouse), and wet flue gas desulfurization. B&W`s Clean Environment Development Facility (CEDF) and the AECDP equipment combined to form a state-of-the-art facility for integrated evaluation of combustion and post-combustion emissions control options. Phase 1 activities were primarily aimed at providing a reliable, representative test facility for conducting air toxic emissions control development work later in the project. This report summarizes the AECDP Phase I activities which consisted of the design, installation, shakedown, verification, and air toxics benchmarking of the AECDP facility. All verification and air toxic tests were conducted with a high sulfur, bituminous Ohio coal.


    SciTech Connect (OSTI)

    Turchi, P


    This project enhanced our theoretical capabilities geared towards establishing the basic science of a high-throughput protocol for the development of advanced nuclear fuel that should couple modern computational materials modeling and simulation tools, fabrication and characterization capabilities, and targeted high throughput performance testing experiments. The successful conclusion of this ER project allowed us to upgrade state-of-the-art modeling codes, and apply these modeling tools to ab initio energetics and thermodynamic assessments of phase diagrams of various mixtures of actinide alloys, propose a tool for optimizing composition of complex alloys for specific properties, predict diffusion behavior in diffusion couples made of actinide and transition metals, include one new equation in the LLNL phase-field AMPE code, and predict microstructure evolution during alloy coring. In FY11, despite limited funding, the team also initiated an experimental activity, with collaboration from Texas A&M University by preparing samples of nuclear fuels in bulk forms and for diffusion couple studies and metallic matrices, and performing preliminary characterization.

  9. Advanced Technology Development Program for Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report

    SciTech Connect (OSTI)

    Jon P. Christophersen; Ira Bloom; Edward V. Thomas; Kevin L. Gering; Gary L. Henriksen; Vincent S. Battaglia; David Howell


    The Advanced Technology Development Program has completed performance testing of the second generation of lithium-ion cells (i.e., Gen 2 cells). The 18650-size Gen 2 cells, with a baseline and variant chemistry, were distributed over a matrix consisting of three states-of-charge (SOCs) (60, 80, and 100% SOC), four temperatures (25, 35, 45, and 55°C), and three life tests (calendar-, cycle-, and accelerated-life). The calendar- and accelerated-life cells were clamped at an open-circuit voltage corresponding to the designated SOC and were subjected to a once-per-day pulse profile. The cycle-life cells were continuously pulsed using a profile that was centered around 60% SOC. Life testing was interrupted every four weeks for reference performance tests (RPTs), which were used to quantify changes in cell degradation as a function of aging. The RPTs generally consisted of C1/1 and C1/25 static capacity tests, a low-current hybrid pulse power characterization test, and electrochemical impedance spectroscopy. The rate of cell degradation generally increased with increasing test temperature, and SOC. It was also usually slowest for the calendar-life cells and fastest for the accelerated-life cells. Detailed capacity-, power-, and impedance-based performance results are reported.

  10. Advanced Neutron Source enrichment study -- Volume 1: Main report. Final report, Revision 12/94

    SciTech Connect (OSTI)

    Bari, R.A.; Ludewig, H.; Weeks, J.


    A study has been performed of the impact on performance of using low enriched uranium (20% {sup 235}U) or medium enriched uranium (35% {sup 235}U) as an alternative fuel for the Advanced Neutron Source, which is currently designed to use uranium enriched to 93% {sup 235}U. Higher fuel densities and larger volume cores were evaluated at the lower enrichments in terms of impact on neutron flux, safety, safeguards, technical feasibility, and cost. The feasibility of fabricating uranium silicide fuel at increasing material density was specifically addressed by a panel of international experts on research reactor fuels. The most viable alternative designs for the reactor at lower enrichments were identified and discussed. Several sensitivity analyses were performed to gain an understanding of the performance of the reactor at parametric values of power, fuel density, core volume, and enrichment that were interpolations between the boundary values imposed on the study or extrapolations from known technology. Volume 2 of this report contains 26 appendices containing results, meeting minutes, and fuel panel presentations.

  11. Design, fabrication, and certification of advanced modular PV power systems. Final technical progress report

    SciTech Connect (OSTI)

    Lambarski, T.; Minyard, G.


    Solar Electric Specialties Company (SES) has completed a two and a half year effort under the auspices of the US Department of Energy (DOE) PVMaT (Photovoltaic Manufacturing Technology) project. Under Phase 4A1 of the project for Product Driven System and Component Technology, the SES contract ``Design, Fabrication and Certification of Advanced Modular PV Power Systems`` had the goal to reduce installed system life cycle costs through development of certified (Underwriters Laboratories or other listing) and standardized prototype products for two of the product lines, MAPPS{trademark} (Modular Autonomous PV Power Supply) and Photogensets{trademark}. MAPPS are small DC systems consisting of Photovoltaic modules, batteries and a charge controller and producing up to about a thousand watt-hours per day. Photogensets are stand-alone AC systems incorporating a generator as backup for the PV in addition to a DC-AC inverter and battery charger. The program tasks for the two-year contract consisted of designing and fabricating prototypes of both a MAPPS and a Photogenset to meet agency listing requirements using modular concepts that would support development of families of products, submitting the prototypes for listing, and performing functionality testing at Sandia and NREL. Both prototypes were candidates for UL (Underwriters Laboratories) listing. The MAPPS was also a candidate for FM (Factory Mutual) approval for hazardous (incendiary gases) locations.

  12. Advancing Chemistry with the Lanthanide and Actinide Elements Final Report, September 2013

    SciTech Connect (OSTI)

    Evans, William John


    The objective of this research is to use the unique chemistry available from complexes of the lanthanides and actinides, as well as related heavy metals such as scandium, yttrium, and bismuth to advance chemistry in energy-related areas. The lanthanides and actinides have a combination of properties in terms of size, charge, electropositive character, and f valence orbitals that provides special opportunities to probe reactivity and catalysis in ways not possible with the other metals in the periodic table. We seek to discover reaction pathways and structural types that reveal new options in reaction chemistry related to energy. Identification of new paradigms in structure and reactivity should stimulate efforts to develop new types of catalytic processes that at present are not under consideration because either the transformation or the necessary intermediates are unknown. This project is one half of my laboratory’s DOE research which was split 50:50 between Catalysis and Heavy Element Chemistry programs in 2010. Hence, this report is for a half-project.

  13. High-speed, low-damage grinding of advanced ceramics Phase 1. Final report

    SciTech Connect (OSTI)

    Kovach, J.A.; Malkin, S.


    In manufacture of structural ceramic components, grinding costs can comprise up to 80% of the entire manufacturing cost. Most of these costs arise from the conventional multi-step grinding process with numerous grinding wheels and additional capital equipment, perishable dressing tools, and labor. In an attempt to reduce structural ceramic grinding costs, a feasibility investigation was undertaken to develop a single step, roughing-finishing process suitable for producing high-quality silicon nitride ceramic parts at high material removal rates at lower cost than traditional, multi-stage grinding. This feasibility study employed combined use of laboratory grinding tests, mathematical grinding models, and characterization of resultant material surface condition. More specifically, this Phase 1 final report provides a technical overview of High-Speed, Low-Damage (HSLD) ceramic grinding and the conditions necessary to achieve the small grain depths of cut necessary for low damage grinding while operating at relatively high material removal rates. Particular issues addressed include determining effects of wheel speed and material removal rate on resulting mode of material removal (ductile or brittle fracture), limiting grinding forces, calculation of approximate grinding zone temperatures developed during HSLD grinding, and developing the experimental systems necessary for determining HSLD grinding energy partition relationships. In addition, practical considerations for production utilization of the HSLD process are also discussed.

  14. Advanced Turbine System (ATS): Task 1, System scoping and feasibility study. Final report

    SciTech Connect (OSTI)

    van der Linden, S.


    Present GT(Gas Turbine) Systems are available to achieve 52% (LHV) thermal efficiencies, plants in construction will be capable of 54%, and the goal of this study is to identify incentives, technical issues, and resource requirements to develop natural gas-and coal-compatible ATS which would have a goal of 60% or greater based on LHV. The prime objective of this project task is to select a natural gas-fired ATS (Advanced Turbine System) that could be manufactured and marketed should development costs not be at issue with the goals of: (1) Coal of electricity 10% below 1991 vintage power plants in same market class and size. (2) Expected performance 60% efficiency and higher, (3) Emission levels, NO{sub x} < 10 ppM (0.15 lb/MW-h), CO < 20 ppM (0.30 lb/MW-h), and UHC < 20 ppM (0.30 lb/MW-h). ABB screening studies have identified the gas-fueled combined cycle as the most promising full scale solution to achieve the set goals for 1988--2002. This conclusion is based on ABB`s experience level, as well as the multi-step potential of the combined cycle process to improve in many component without introducing radical changes that might increase costs and lower RAM. The technical approach to achieve 60% or better thermal efficiency will include increased turbine inlet temperatures, compressor intercooling, as well a improvements in material, turbine cooling technology and the steam turbine. Use of improved component efficiencies will achieve gas-fired cycle performance of 61.78%. Conversion to coal-firing will result in system performance of 52.17%.

  15. Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report

    SciTech Connect (OSTI)


    The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

  16. Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report

    SciTech Connect (OSTI)


    Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting storage

  17. Final Project Report "Advanced Concept Exploration For Fast Ignition Science Program"

    SciTech Connect (OSTI)

    STEPHENS, Richard B.; McLEAN, Harry M.; THEOBALD, Wolfgang; AKLI, Kramer; BEG, Farhat N.; SENTOKU, Yasuiko; SCHUMACHER, Douglas; WEI, Mingsheng S.


    The Fast Ignition (FI) Concept for Inertial Confinement Fusion has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using the laser (or heavy ion beam or Z pinch) drive pulse (10’s of ns) to create a dense fuel and a second, much shorter (~10 ps) high intensity pulse to ignite a small region of it. There are two major physics issues concerning this concept; controlling the laser-induced generation of large electron currents and their propagation through high density plasmas. This project has addressed these two significant scientific issues in Relativistic High Energy Density (RHED) physics. Learning to control relativistic laser matter interaction (and the limits and potential thereof) will enable a wide range of applications. While these physics issues are of specific interest to inertial fusion energy science, they are also important for a wide range of other HED phenomena, including high energy ion beam generation, isochoric heating of materials, and the development of high brightness x-ray sources. Generating, controlling, and understanding the extreme conditions needed to advance this science has proved to be challenging: Our studies have pushed the boundaries of physics understanding and are at the very limits of experimental, diagnostic, and simulation capabilities in high energy density laboratory physics (HEDLP). Our research strategy has been based on pursuing the fundamental physics underlying the Fast Ignition (FI) concept. We have performed comprehensive study of electron generation and transport in fast-ignition targets with experiments, theory, and numerical modeling. A major issue is that the electrons produced in these experiments cannot be measured directly—only effects due to their transport. We focused mainly on x-ray continuum photons from bremsstrahlung

  18. Percutaneous Irreversible Electroporation of Locally Advanced Pancreatic Carcinoma Using the Dorsal Approach: A Case Report

    SciTech Connect (OSTI)

    Scheffer, Hester J. Melenhorst, Marleen C. A. M.; Vogel, Jantien A.; Tilborg, Aukje A. J. M. van; Nielsen, Karin Kazemier, Geert; Meijerink, Martijn R.


    Irreversible electroporation (IRE) is a novel image-guided ablation technique that is increasingly used to treat locally advanced pancreatic carcinoma (LAPC). We describe a 67-year-old male patient with a 5 cm stage III pancreatic tumor who was referred for IRE. Because the ventral approach for electrode placement was considered dangerous due to vicinity of the tumor to collateral vessels and duodenum, the dorsal approach was chosen. Under CT-guidance, six electrodes were advanced in the tumor, approaching paravertebrally alongside the aorta and inferior vena cava. Ablation was performed without complications. This case describes that when ventral electrode placement for pancreatic IRE is impaired, the dorsal approach could be considered alternatively.

  19. Final safety evaluation report related to the certification of the Advanced Boiling Water Reactor design. Supplement 1

    SciTech Connect (OSTI)


    This report supplements the final safety evaluation report (FSER) for the US Advanced Boiling Water Reactor (ABWR) standard design. The FSER was issued by the US Nuclear Regulatory Commission (NRC) staff as NUREG-1503 in July 1994 to document the NRC staff`s review of the US ABWR design. The US ABWR design was submitted by GE Nuclear Energy (GE) in accordance with the procedures of Subpart B to Part 52 of Title 10 of the Code of Federal Regulations. This supplement documents the NRC staff`s review of the changes to the US ABWR design documentation since the issuance of the FSER. GE made these changes primarily as a result of first-of-a-kind-engineering (FOAKE) and as a result of the design certification rulemaking for the ABWR design. On the basis of its evaluations, the NRC staff concludes that the confirmatory issues in NUREG-1503 are resolved, that the changes to the ABWR design documentation are acceptable, and that GE`s application for design certification meets the requirements of Subpart B to 10 CFR Part 52 that are applicable and technically relevant to the US ABWR design.

  20. Analysis of the applicability and probable cost effectiveness of advancing longwall-mining systems in the United States. Final technical report. [Advance vs retreat

    SciTech Connect (OSTI)

    Hill, F.E.; Peake, C.V.; Sharkey, A.


    In the first phase of this study it was concluded that there are a number of advancing longwall systems that might well be applicable in the United States and, furthermore, meet the health and safety requirements of MSHA, state inspectors, operating management, and unions. Comparative analyses showed that only two of the advancing-type systems evaluated in the Phase I report failed to approach or better, economically, the typical retreating method in at least some conditions; the others appeared to warrant further attention. And if the mining plan could be worked out to allow for a switch from advancing to retreating after the early years of mining, then almost any combination of advancing and retreating would provide a better return on investment, or in our terms, have a higher net present value than would a typical retreating system. The reason for this lies in the higher initial production rates of the advancing systems and in the lower operating cost and higher ultimate productivity of a retreating system once it is established. After analyzing the advantages and disadvantages of the various advancing longwall systems for a trial program it became apparent that the modified Z System offered the best combination of economic potential and lack of conflict with US mining laws. The major attraction of the modified Z system is that it provides separate roadways to the face for intake air, exhaust air and a beltway. Thus regulatory approval of the ventilation system should not be a major obstacle. The Kaiser Steel Corporation agreed to cooperate with the development of a specification for a trial of the system at its Sunnyside Mine in Utah. The specification was developed for one longwall face to mine a series of panels at Sunnyside.

  1. Prioritized List of Research Needs to support MRWFD Case Study Flowsheet Advancement

    SciTech Connect (OSTI)

    Law, Jack Douglas; Soelberg, Nicholas Ray


    In FY-13, a case study evaluation was performed of full recycle technologies for both the processing of light-water reactor (LWR) used nuclear fuels as well as fast reactor (FR) fuel in the full recycle option. This effort focused on the identification of the case study processes and the initial preparation of material balance flowsheets for the identified technologies. In identifying the case study flowsheets, it was decided that two cases would be developed: one which identifies the flowsheet as currently developed and another near-term target flowsheet which identifies the flowsheet as envisioned within two years, pending the results of ongoing research. The case study focus is on homogeneous aqueous recycle of the U/TRU resulting from the processing of LWR fuel as feed for metal fuel fabrication. The metal fuel is utilized in a sodium-cooled fast reactor, and the used fast reactor fuel is processed using electrochemical separations. The recovered U/TRU from electrochemical separations is recycled to fuel fabrication and the fast reactor. Waste streams from the aqueous and electrochemical processing are treated and prepared for disposition. Off-gas from the separations and waste processing are also treated. As part of the FY-13 effort, preliminary process unknowns and research needs to advance the near-term target flowsheets were identified. In FY-14, these research needs were updated, expanded and prioritized. This report again updates the prioritized list of research needs based upon results to date in FY-15. The research needs are listed for each of the main portions of the flowsheet: 1) Aqueous headend, 2) Headend tritium pretreatment off-gas, 3) Aqueous U/Pu/Np recovery, 4) Aqueous TRU product solidification, 5) Aqueous actinide/lanthanide separation, 6) Aqueous off-gas treatment, 7) Aqueous HLW management, 8) Treatment of aqueous process wastes, 9) E-chem actinide separations, 10) E-chem off-gas, 11) E-chem HLW management. The identified research needs

  2. Final Report: DE- FC36-05GO15063, Fundamental Studies of Advanced High-Capacity, Reversible Metal Hydrides

    SciTech Connect (OSTI)

    Jensen, Craig; McGrady, Sean; Severa, Godwin; Eliseo, Jennifer; Chong, Marina


    The project was component of the US DOE, Metal Hydride Center of Excellence (MHCoE). The Sandia National Laboratory led center was established to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE/FreedomCAR 2010 and 2015 system targets for hydrogen storage materials. Our approach entailed a wide variety of activities ranging from synthesis, characterization, and evaluation of new candidate hydrogen storage materials; screening of catalysts for high capacity materials requiring kinetics enhancement; development of low temperature methods for nano-confinement of hydrides and determining its effects on the kinetics and thermodynamics of hydrides; and development of novel processes for the direct re-hydrogenation of materials. These efforts have resulted in several advancements the development of hydrogen storage materials. We have greatly extended the fundamental knowledge about the highly promising hydrogen storage carrier, alane (AlH₃), by carrying out the first crystal structure determinations and the first determination of the heats of dehydrogenation of β–AlH₃ and γ-AlD₃. A low-temperature homogenous organometallic approach to incorporation of Al and Mg based hydrides into carbon aerogels has been developed that that allows high loadings without degradation of the nano-porous scaffold. Nano-confinement was found to significantly improve the dehydrogenation kinetics but not effect the enthalpy of dehydrogenation. We conceived, characterized, and synthesized a novel class of potential hydrogen storage materials, bimetallic borohydrides. These novel compounds were found to have many favorable properties including release of significant amounts of hydrogen at moderate temperatures (75-190ºC). However, in situ IR studies in tandem with thermal gravimetric analysis have shown that about 0.5 equivalents of diborane are released during the dehydrogenation making re

  3. Building America Case Study: Advanced Boiler Load Monitoring Controllers, Chicago, Illinois (Fact Sheet)

    SciTech Connect (OSTI)



    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  4. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    SciTech Connect (OSTI)

    Smith, V.E.


    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  5. TGLF Recalibration for ITER Standard Case Parameters FY2015: Theory and Simulation Performance Target Final Report

    SciTech Connect (OSTI)

    Candy, J.


    flows that fit the GYRO simulations, the parameters of the model had to be tuned to each case. A physics basis for the zonal flow model was lacking. Electron energy transport at short wavelength: A secondary issue – the high-k electron energy flux – was initially assumed to be independent of the zonal flow effect. However, detailed studies of the fluctuation spectra from recent multiscale (electron and ion scale) GYRO simulations provided a critical new insight into the role of zonal flows. The multiscale simulations suggested that advection by the zonal flows strongly suppressed electron-scale turbulence. Radial shear of the zonal ExB fluctuation could not compete with the large electron-scale linear growth rate, but the kx-mixing rate of the ExB advection could. This insight led to a preliminary new model for the way zonal flows saturate both electron and ion-scale turbulence. It was also discovered that the strength of the zonal ExB velocity could be computed from the linear growth rate spectrum. The new saturation model (SAT1), which replaces the original model (SAT0), was fit to the multiscale GYRO simulations as well as the ion-scale GYRO simulations used to calibrate the original SAT0 model. Thus, SAT1 captures the physics of both multiscale electron transport and zonal-flow stabilization. In future work, it the SAT1 model will require significant further testing and (expensive) calibration with nonlinear multiscale gyrokinetic simulations over a wider variety of plasma conditions – certainly more than the small set of scans about a single C-Mod L-mode discharge. We believe the SAT1 model holds great promise as a physics-based model of the multiscale turbulent transport in fusion devices. Correction to ITER performance predictions: Finally, the impact of the SAT1model on the ITER hybrid case is mixed. Without the electron-scale contribution to the fluxes, the Dimits shift makes a significant improvement in the predicted fusion power as originally

  6. Final Report on "Development and Testing of Advanced Accelerator Structures and Technologies at 11.424 GHz"

    SciTech Connect (OSTI)

    Gold, Steven H.


    This is the final report on the research program ?Development and Testing of Advanced Accelerator Structures and Technologies at 11.424 GHz,? which was carried out by the Naval Research Laboratory (NRL) under Interagency Agreement DE?AI02?01ER41170 with the Department of Energy. The period covered by this report is 15 July 2010 ? 14 July 2013. The program included two principal tasks. Task 1 involved a study of the key physics issues related to the use of high gradient dielectric-loaded accelerating (DLA) structures in rf linear accelerators and was carried out in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC. Task 2 involved a study of high power active microwave pulse compressors and was carried out in collaboration with Omega-P, Inc. and the Institute of Applied Physics of the Russian Academy of Sciences in Nizhny Novgorod. The studies under Task 1 were focused on rf-induced multipactor and breakdown in externally driven DLA structures at the 200-ns timescale. Suppression of multipactor and breakdown are essential to the practical application of dielectric structures in rf linear accelerators. The structures that were studied were developed by ANL and Euclid Techlabs and their performance was evaluated at high power in the X-band Magnicon Laboratory at NRL. Three structures were designed, fabricated, and tested, and the results analyzed in the first two years of the program: a clamped quartz traveling-wave (TW) structure, a externally copper-coated TW structure, and an externally copper-coated dielectric standing-wave (SW) structure. These structures showed that rf breakdown could be largely eliminated by eliminating dielectric joints in the structures, but that the multipactor loading was omnipresent. In the third year of the program, the focus of the program was on multipactor suppression using a strong applied axial magnetic field, as proposed by Chang et al. [C. Chang et al., J. Appl. Phys. 110, 063304 (2011).], and a

  7. Boulder Wind Power Advanced Gearless Drivetrain: Cooperative Research and Development Final Report, CRADA Number CRD-12-00463

    SciTech Connect (OSTI)

    Cotrell, J.


    The Boulder Wind Power (BWP) Advanced Gearless Drivetrain Project explored the application of BWP's innovative, axial-gap, air-core, permanent-magnet direct-drive generator in offshore wind turbines. The objective of this CRADA is to assess the benefits that result from reduced towerhead mass of BWP's technology when used in 6 MW offshore turbines installed on a monopile or a floating spar foundation.

  8. Measurement and modeling of advanced coal conversion processes, Volume I, Part 1. Final report, September 1986--September 1993

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.


    The objective of this program was the development of a predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. The foundation to describe coal specific conversion behavior was AFR`s Functional Group and Devolatilization, Vaporization and Crosslinking (DVC) models, which had been previously developed. The combined FG-DVC model was integrated with BYU`s comprehensive two-dimensional reactor model for combustion and coal gasification, PCGC-2, and a one-dimensional model for fixed-bed gasifiers, FBED-1. Progress utilizing these models is described.

  9. Existing Homes Retrofit Case Study: Consortium for Advanced Residential Buildings (CARB), Washington, D.C.

    SciTech Connect (OSTI)


    This is a Building America fact sheet describing Consortium for Advanced Residential Buildiings (CARB) whole building retrofit process to renovate a 145-year-old home in Washington, D.C.

  10. Parallel Computation Chemistry Using Constraints: Final Report, LDRD 97-0301, Case 3504140000

    SciTech Connect (OSTI)

    Todd D. Plantenga


    Computer modeling to estimate material properties, design chem/bio sensors, and evaluate protein-protein interactions all require solving force field equations for molecular structures that contain tens of thousands of covalently connected atoms. Potential energy minimization is a key step in the calculation, but stiff covalent bonding forces make optimization difficult and expensive. This two-year LDRD developed two classes of advanced minimization algorithms that were specialized for chemistry applications and distributed computing machines. The project led to two successful algorithms that were implemented in three Sandia computational chemistry codes to support various users.

  11. Ten case history studies of energy efficiency improvements in pulp and paper mills. Final report

    SciTech Connect (OSTI)

    Not Available


    The ten technologies chosen for case history development are: sonic sootblowing in boilers, boiler operation on oil-water emulsified fuel, energy efficient motors, computerized control of excess air for boilers, boiler control and load allocation, driving of waste-activated sludge by multiple effect evaporation, pre-drying of hog fuel, lime kiln computerization, heat wheel for process heat recovery, and organic Rankine bottoming cycle for thermomechanical pulping heat recovery. For each case study, there is given: the company name, employee contact, plant summary, a description of the energy consuming process and of the energy-saving action, an assessment of energy savings, and the decision process leading to the adoption of the measure. A data summary for discounted cash flow analysis is tabulated for each case. (LEW)

  12. Final Report for SERDP Project RC-1649: Advanced Chemical Measurements of Smoke from DoD-prescribed Burns

    SciTech Connect (OSTI)

    Johnson, Timothy J.; Weise, David; Lincoln, E. N.; Sams, Robert L.; Cameron, Melanie; Veres, Patrick; Yokelson, Robert J.; Urbanski, Shawn; Profeta, Luisa T.; Williams, S.; Gilman, Jessica; Kuster, W. C.; Akagi, Sheryl; Stockwell, Chelsea E.; Mendoza, Albert; Wold, Cyle E.; Warneke, Carsten; de Gouw, Joost A.; Burling, Ian R.; Reardon, James; Schneider, Matthew D.; Griffith, David WT; Roberts, James M.


    Objectives: Project RC-1649, “Advanced Chemical Measurement of Smoke from DoD-prescribed Burns” was undertaken to use advanced instrumental techniques to study in detail the particulate and vapor-phase chemical composition of the smoke that results from prescribed fires used as a land management tool on DoD bases, particularly bases in the southeastern U.S. The statement of need (SON) called for “(1) improving characterization of fuel consumption” and “(2) improving characterization of air emissions under both flaming and smoldering conditions with respect to volatile organic compounds, heavy metals, and reactive gases.” The measurements and fuels were from several bases throughout the southeast (Camp Lejeune, Ft. Benning, and Ft. Jackson) and were carried out in collaboration and conjunction with projects 1647 (models) and 1648 (particulates, SW bases). Technical Approach: We used an approach that featured developing techniques for measuring biomass burning emission species in both the laboratory and field and developing infrared (IR) spectroscopy in particular. Using IR spectroscopy and other methods, we developed emission factors (EF, g of effluent per kg of fuel burned) for dozens of chemical species for several common southeastern fuel types. The major measurement campaigns were laboratory studies at the Missoula Fire Sciences Laboratory (FSL) as well as field campaigns at Camp Lejeune, NC, Ft. Jackson, SC, and in conjunction with 1648 at Vandenberg AFB, and Ft. Huachuca. Comparisons and fusions of laboratory and field data were also carried out, using laboratory fuels from the same bases. Results: The project enabled new technologies and furthered basic science, mostly in the area of infrared spectroscopy, a broadband method well suited to biomass burn studies. Advances in hardware, software and supporting reference data realized a nearly 20x improvement in sensitivity and now provide quantitative IR spectra for potential detection of ~60 new

  13. Applications of organo-calcium chemistry to control contaminant aromatic hydrocarbons in advanced coal gasification processes: Final technical progress report

    SciTech Connect (OSTI)

    Longwall, J.P.; Chang, C.C.S.; Lai, C.K.S.; Chen, P.; Hajaligol, M.R.; Peters, W.A.


    The broad goal of this contract was to provide quantitative understanding of the thermal reactions of aromatics contaminants with calcium oxide under conditions pertinent to their in situ or out-board reduction or elimination from advanced coal gasification process and waste streams. Specific objectives were formalized into the following four tasks: cracking of fresh coal pyrolysis tar, benzene cracking, CaO deactivation behavior, and preliminary economic implications. The approach primarily involved laboratory scale measurements of rates and extents of feed conversion, and of quality indices or compositions of the resulting products, when pure aromatic compounds or newly formed coal pyrolysis tars undergo controlled extents of thermal treatment with CaO of known preparation history. 70 refs., 54 figs., 7 tabs.

  14. Stackable middleware services for advanced multimedia applications. Final report for period July 14, 1999 - July 14, 2001

    SciTech Connect (OSTI)

    Feng, Wu-chi; Crawfis, Roger, Weide, Bruce


    In this project, the authors propose the research, development, and distribution of a stackable component-based multimedia streaming protocol middleware service. The goals of this stackable middleware interface include: (1) The middleware service will provide application writers and scientists easy to use interfaces that support their visualization needs. (2) The middleware service will support a variety of image compression modes. Currently, many of the network adaptation protocols for video have been developed with DCT-based compression algorithms like H.261, MPEG-1, or MPEG-2 in mind. It is expected that with advanced scientific computing applications that the lossy compression of the image data will be unacceptable in certain instances. The middleware service will support several in-line lossless compression modes for error-sensitive scientific visualization data. (3) The middleware service will support two different types of streaming video modes: one for interactive collaboration of scientists and a stored video streaming mode for viewing prerecorded animations. The use of two different streaming types will allow the quality of the video delivered to the user to be maximized. Most importantly, this service will happen transparently to the user (with some basic controls exported to the user for domain specific tweaking). In the spirit of layered network protocols (like ISO and TCP/IP), application writers should not have to know a large amount about lower level network details. Currently, many example video streaming players have their congestion management techniques tightly integrated into the video player itself and are, for the most part, ''one-off'' applications. As more networked multimedia and video applications are written in the future, a larger percentage of these programmers and scientist will most likely know little about the underlying networking layer. By providing a simple, powerful, and semi-transparent middleware layer, the successful

  15. Case studies of thermal energy storage (TES) systems: Evaluation and verification of system performance. Final report

    SciTech Connect (OSTI)

    Akbari, H.; Sezgen, O.


    We have developed two case studies to review and analyze energy performance of thermal energy storage CMS systems in commercial buildings. Our case studies considered two partial ice storage systems in Northern California. For each case, we compiled historical data on TES design, installation, and operation. This information was further enhanced by data obtained through interviews with the building owners and operators. The performance and historical data of the TES systems and their components were grouped into issues related to design, installation, operation, and maintenance of the systems. Our analysis indicated that (1) almost all problems related to the operation of TES and non-TES systems could be traced back to the design of the system, and (2) the identified problems were not unique to the TES systems. There were as many original problems with ``conventional`` HVAC systems and components as with TES systems. Judging from the problems related to non-TES components identified in these two case studies, it is reasonable to conclude that conventional systems have as many problems as TES systems, but a failure, in a TES system may have a more dramatic impact on thermal comfort and electricity charges. The objective of the designers of the TES systems in the case-study buildings was to design just-the-right-size systems so that both the initial investment and operating costs would be minimized. Given such criteria, a system is typically designed only for normal and steady-state operating conditions-which often precludes due consideration to factors such as maintenance, growth in the needed capacity, ease of the operation, and modularity of the systems. Therefore, it is not surprising to find that these systems, at least initially, did not perform to the design intent and expectation and that they had to go through extended periods of trouble-shooting.

  16. An advanced economizer controller for dual-duct air-handling systems -- with a case application

    SciTech Connect (OSTI)

    Liu, M.; Claridge, D.E.; Park, B.Y.


    A heating penalty is expected when economizers are applied to dual-duct air-handling systems. The heating penalty can be even higher than the cooling savings when the hot airflow is higher than the cold airflow. To avoid the excessive heating penalty, advanced economizers are developed in this paper. The application of the advanced economizer has resulted in savings of $7,000/yr in one 95,000-ft{sup 2} (8,800-m{sup 2}) school building since 1993. The impacts of cold and hot deck settings on the energy consumption are also discussed.

  17. Development of the prototype Munitions Case Moisture Meter, Model ORNL-1. Final report

    SciTech Connect (OSTI)

    Agouridis, D.C.; Gayle, T.M.; Griest, W.H.


    There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental results on empty cccs in laboratory conditions demonstrate satisfactory performance of the instrument. Additional work is needed to bring the prototype to its optimum usefulness and accuracy for field measurements. This includes: Calibration of the meter scale with full-up munitions; Data and evaluation procedures to adjust the performance of the meter for different environmental conditions such as temperature and humidity; and Studies of the dielectric properties of moist ccc materials, as a function of frequency and temperature, are needed for adjustment of the meter for optimal performance.

  18. 2007 Wholesale Power Rate Case Final Proposal : Market Price Forecast Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.


    This study presents BPA's market price forecasts for the Final Proposal, which are based on AURORA modeling. AURORA calculates the variable cost of the marginal resource in a competitively priced energy market. In competitive market pricing, the marginal cost of production is equivalent to the market-clearing price. Market-clearing prices are important factors for informing BPA's power rates. AURORA was used as the primary tool for (a) estimating the forward price for the IOU REP Settlement benefits calculation for fiscal years (FY) 2008 and 2009, (b) estimating the uncertainty surrounding DSI payments and IOU REP Settlements benefits, (c) informing the secondary revenue forecast and (d) providing a price input used for the risk analysis. For information about the calculation of the secondary revenues, uncertainty regarding the IOU REP Settlement benefits and DSI payment uncertainty, and the risk run, see Risk Analysis Study WP-07-FS-BPA-04.

  19. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 2: Appendices

    SciTech Connect (OSTI)

    Not Available


    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  20. Lithium-vanadium advanced blanket development. ITER final report on U.S. contribution: Task T219/T220

    SciTech Connect (OSTI)

    Smith, D.L.; Mattas, R.F.


    The objective of this task is to develop the required data base and demonstrate the performance of a liquid lithium-vanadium advanced blanket design. The task has two main activities related to vanadium structural material and liquid lithium system developments. The vanadium alloy development activity included four subtasks: (1.1) baseline mechanical properties of non irradiated base metal and weld metal joints; (1.2) compatibility with liquid lithium; (1.3) material irradiation tests; and (1.4) development of material manufacturing and joining methods. The lithium blanket technology activity included four subtasks: (2.1) electrical insulation development and testing for liquid metal systems; (2.2) MHD pressure drop and heat transfer study for self-cooled liquid metal systems; (2.3) chemistry of liquid lithium; and (2.4) design, fabrication and testing of ITER relevant size blanket mockups. A summary of the progress and results obtained during the period 1995 and 1996 in each of the subtask areas is presented in this report.

  1. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 1: Main report

    SciTech Connect (OSTI)

    Not Available


    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  2. Advanced Load Identification and Management for Buildings: Cooperative Research and Development Final Report, CRADA Number: CRD-11-422

    SciTech Connect (OSTI)

    Gentile-Polese, L.


    The goal of this CRADA work is to support Eaton Innovation Center (Eaton) efforts to develop advanced load identification, management technologies, and solutions to reduce building energy consumption by providing fine granular visibility of energy usage information and safety protection of miscellaneous electric loads (MELs) in commercial and residential buildings. MELs load identification and prediction technology will be employed in a novel 'Smart eOutlet*' to provide critical intelligence and information to improve the capability and functionality of building load analysis and design tools and building power management systems. The work scoped in this CRADA involves the following activities: development and validation of business value proposition for the proposed technologies through voice of customer investigation, market analysis, and third-party objective assessment; development and validation of energy saving impact as well as assessment of environmental and economic benefits; 'smart eOutlet' concept design, prototyping, and validation; field validation of the developed technologies in real building environments. (*Another name denoted as 'Smart Power Strip (SPS)' will be used as an alternative of the name 'Smart eOutlet' for a clearer definition of the product market position in future work.)

  3. Performance Evaluation of Advanced Retrofit Roof Technologies Using Field-Test Data Phase Three Final Report, Volume 2

    SciTech Connect (OSTI)

    Biswas, Kaushik; Childs, Phillip W.; Atchley, Jerald Allen


    This article presents some miscellaneous data from two low-slope and two steep-slope experimental roofs. The low-slope roofs were designed to compare the performance of various roof coatings exposed to natural weatherization. The steep-slope roofs contained different combinations of phase change material, rigid insulation, low emittance surface and above-sheathing ventilation, with standing-seam metal panels on top. The steep-slope roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. This article describes phase three (3) of a study that began in 2009 to evaluate the energy benefits of a sustainable re-roofing technology utilizing standing-seam metal roofing panels combined with energy efficient features like above-sheathing-ventilation (ASV), phase change material (PCM) and rigid insulation board. The data from phases 1 and 2 have been previously published and reported [Kosny et al., 2011; Biswas et al., 2011; Biswas and Childs, 2012; Kosny et al., 2012]. Based on previous data analyses and discussions within the research group, additional test roofs were installed in May 2012, to test new configurations and further investigate different components of the dynamic insulation systems. Some experimental data from phase 3 testing from May 2012 to December 2013 and some EnergyPlus modeling results have been reported in volumes 1 and 3, respectively, of the final report [Biswas et al., 2014; Biswas and Bhandari, 2014].

  4. Installation and Final Testing of an On-Line, Multi-Spectrometer Fission Product Monitoring System (FPMS) to Support Advanced Gas Reactor (AGR) Fuel Testing and Qualification in the Advanced Test Reactor

    SciTech Connect (OSTI)

    J. K. Hartwell; D. M. Scates; M. W. Drigert; J. B. Walter


    The US Department of Energy (DOE) is initiating tests of reactor fuel for use in an Advanced Gas Reactor (AGR). The AGR will use helium coolant, a low-power-density ceramic core, and coated-particle fuel. A series of eight (8) fuel irradiation tests are planned for the Idaho National Laboratory’s (INL’s) Advanced Test Reactor (ATR). One important measure of fuel performance in these tests is quantification of the fission gas releases over the nominal 2-year duration of each irradiation experiment. This test objective will be met using the AGR Fission Product Monitoring System (FPMS) which includes seven (7) on-line detection stations viewing each of the six test capsule effluent lines (plus one spare). Each station incorporates both a heavily-shielded high-purity germanium (HPGe) gamma-ray spectrometer for quantification of the isotopic releases, and a NaI(Tl) scintillation detector to monitor the total count rate and identify the timing of the releases. The AGR-1 experiment will begin irradiation after October 1, 2006. To support this experiment, the FPMS has been completely assembled, tested, and calibrated in a laboratory at the INL, and then reassembled and tested in its final location in the ATR reactor basement. This paper presents the details of the equipment performance, the control and acquisition software, the test plan for the irradiation monitoring, and the installation in the ATR basement. Preliminary on-line data may be available by the Conference date.

  5. Advanced regenerative thermal oxidation (RTO) technology for air toxics control - selected case histories

    SciTech Connect (OSTI)

    Seiwert, J.J. Jr.


    Advanced design regenerative thermal oxidation (RTO) systems have been developed and are in commercial scale use for control of process emissions containing air toxics (HAPs) and VOCs. High operating temperatures coupled with high thermal energy recovery efficiencies inherent with RTO technology provide for high destruction efficiencies while minimizing formation of objectionable combustion byproducts. These results are achieved with low system operating costs. This paper covers development of advanced design commercial RTO systems for control of air emissions from several important commercial processes: total reduced sulfur (TRS) and other HAPs/VOC emissions from pulp mill processes. Chlorinated organics and other HAPs/VOC emissions from pharmaceutical manufacturing operations. The data presented represent the first commercial scale application of RTO technology to abate emissions from these processes. Particular design features required for each specific process, in order to provide reliable, safe and effective systems, are reviewed. Emissions abatement performance, as well as operational data, are presented for the systems.

  6. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 1, Final technical report, October 1, 1991--September 30, 1994

    SciTech Connect (OSTI)

    Curtis, C.W.; Gutterman, C.; Chander, S.


    The overall objective of this project was to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrated coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. Heterofunctional solvents were the most effective in swelling coals. Also solvent blends such as isopropanol/water were more effective than pure solvents alone. Impregnating slurry catalysts simultaneously during coal swelling showed that better uptake was achieved with nonswelling solvent and higher impregnation temperature. Some enhancement in initial coal conversion was seen liquefying SO{sub 2}-treated Black Thunder coal with slurry catalysts, and also when hydrogen donor liquefaction solvents were used. Noncatalytic reactions showed no benefit from SO{sub 2} treatment. Coupling coal swelling and SO{sub 2} treatment with slurry catalysts was also not beneficial, although high conversion was seen with continuous operation and long residence time, however, similar high conversion was observed with untreated coal. SO{sub 2} treatment is not economically attractive unless it provides about 17% increase in coal reactivity. In most cases, the best results were obtained when the coal was untreated and the slurry catalyst was added directly into the reactor. Foster Wheeler`s ASCOT process had better average liquid yields than either Wilsonville`s vacuum tower/ROSE combination or delayed coking process. This liquid product also had good quality.

  7. Advancing Understanding of the Role of Belowground Processes in Terrestrial Carbon Sinks trhrough Ground-Penetrating Radar. Final Report

    SciTech Connect (OSTI)

    Day, Frank P.


    scanning events; however, it appears to lack sufficient accuracy at small scales. Knowledge of soil conditions and their effects on GPR wave propagation and reception are paramount for the collection of useful data. Strong familiarity with the software and equipment is both important and necessary for GPR use in estimating coarse root biomass. GPR must be utilized at low soil moisture levels in order to accurately represent existing coarse root structures. Our results from Disney Wilderness Preserve highlight the need for a strong understanding of the limitations of GPR, specifically knowledge of root structures (saw palmetto rhizomes) or environmental factors (low moisture content) that may hinder its application within a given system. The 3D modeling of course roots with GPR appears quite promising, as it has become more accurate and precise as the software has advanced and become more robust, but there is still a need for more precision before it will likely be able to model anything more than simple root systems comprised mostly of large diameter roots. Our results from Kennedy Space Center suggest that there are legacy effects from CO2 fertilization in the form of more root mass providing a greater capacity for aboveground plant regrowth following fire, even 7 years after treatment ended.

  8. ORNL Evaluation of Electrabel Safety Cases for Doel 3 / Tihange 2: Final Report

    SciTech Connect (OSTI)

    Bass, Bennett Richard; Dickson, Terry L.; Gorti, Sarma B.; Klasky, Hilda B.; Nanstad, Randy K.; Sokolov, Mikhail A.; Williams, Paul T.; Server, W. L.


    Oak Ridge National Laboratory (ORNL) performed a detailed technical review of the 2015 Electrabel (EBL) Safety Cases prepared for the Belgium reactor pressure vessels (RPVs) at Doel 3 and Tihange 2 (D3/T2). The Federal Agency for Nuclear Control (FANC) in Belgium commissioned ORNL to provide a thorough assessment of the existing safety margins against cracking of the RPVs due to the presence of almost laminar flaws found in each RPV. Initial efforts focused on surveying relevant literature that provided necessary background knowledge on the issues related to the quasilaminar flaws observed in D3/T2 reactors. Next, ORNL proceeded to develop an independent quantitative assessment of the entire flaw population in the two Belgian reactors according to the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI, Appendix G, Fracture Toughness Criteria for Protection Against Failure, New York (1992 and 2004). That screening assessment of all EBL-characterized flaws in D3/T2 used ORNL tools, methodologies, and the ASME Code Case N-848, Alternative Characterization Rules for QuasiLaminar Flaws . Results and conclusions from the ORNL flaw acceptance assessments of D3/T2 were compared with those from the 2015 EBL Safety Cases. Specific findings of the ORNL evaluation of that part of the EBL structural integrity assessment focusing on stability of the flaw population subjected to primary design transients include the following: ORNL s analysis results were similar to those of EBL in that very few characterized flaws were found not compliant with the ASME (1992) acceptance criterion. ORNL s application of the more recent ASME Section XI (2004) produced only four noncompliant flaws, all due to LOCAs. The finding of a greater number of non-compliant flaws in the EBL screening assessment is due principally to a significantly more restrictive (conservative) criterion for flaw size acceptance used by EBL. ORNL s screening assessment results

  9. Final Report for High Latitude Climate Modeling: ARM Takes Us Beyond Case Studies

    SciTech Connect (OSTI)

    Russell, Lynn M


    The main thrust of this project was to devise a method by which the majority of North Slope of Alaska (NSA) meteorological and radiometric data, collected on a daily basis, could be used to evaluate and improve global climate model (GCM) simulations and their parameterizations, particularly for cloud microphysics. Although the standard ARM Program sensors for a less complete suite of instruments for cloud and aerosol studies than the instruments on an intensive field program such as the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC), the advantage they offer lies in the long time base and large volume of data that covers a wide range of meteorological and climatological conditions. The challenge has been devising a method to interpret the NSA data in a practical way, so that a wide variety of meteorological conditions in all seasons can be examined with climate models. If successful, climate modelers would have a robust alternative to the usual “case study” approach (i.e., from intensive field programs only) for testing and evaluating their parameterizations’ performance. Understanding climate change on regional scales requires a broad scientific consideration of anthropogenic influences that goes beyond greenhouse gas emissions to also include aerosol-induced changes in cloud properties. For instance, it is now clear that on small scales, human-induced aerosol plumes can exert microclimatic radiative and hydrologic forcing that rivals that of greenhouse gas–forced warming. This project has made significant scientific progress by investigating what causes successive versions of climate models continue to exhibit errors in cloud amount, cloud microphysical and radiative properties, precipitation, and radiation balance, as compared with observations and, in particular, in Arctic regions. To find out what is going wrong, we have tested the models' cloud representation over the full range of meteorological conditions found in the Arctic using the ARM

  10. Energy conserving site design: Greenbrier case study, Chesapeake, Virginia. Final report

    SciTech Connect (OSTI)

    Not Available


    A specific case study of project planning for energy conservation for a major planned unit development at the 3000-acre Greenbrier development site in Chesapeake, Virginia, is summarized. The research suggests that very considerable reductions in energy conservation can be achieved within the confines of private-sector land development and residential construction with increased incremental costs of $200.00 to $3150.00 per dwelling unit. It is hypothesized that energy consumption at Greenbrier can be reduced by one-half with an average annual savings of 21,275 kWh per residential unit, using state-of-the-art technology with careful planning and control. This represents an annual savings $750.00 per unit at the current utility rate of 3.5 cents per kWh. These savings can be achieved through reduction in heating and cooling loads and application of more-efficient heating and cooling of the remaining loads. The reduction in loads are achieved by redesign of the land plan to include a higher percentage of south-facing lots, use of vegetation to modify microclimate, decreases in air infiltration, the use of 2 x 6 framing, better insulation, and the use of an insulated slab-on-grade foundation. Further energy savings can be expected by increased efficiencies in mechanical systems used for space heating and cooling and domestic hot water. When applied to the single-family portion of Greenbrier, containing 541 dwelling units, these options reduce the total end-use energy consumption 54.7%. This reduction represents an annual savings of $432,800.00 for an initial capital investment of $1.7 million.

  11. Technology Solutions Case Study: Advanced Boiler Load Monitoring Controls, Chicago, Illinois

    SciTech Connect (OSTI)


    Most of Chicago’s older multifamily housing stock is heated by centrally metered steam or hydronic systems. The cost of heat is typically absorbed into the owner’s operating cost and is then passed to tenants. Central boilers typically have long service lifetimes; the incentive for retrofit system efficiency upgrades is greater than equipment replacement for the efficiency-minded owner. System improvements as the “low-hanging fruit” are familiar, from improved pipe insulation to aftermarket controls such as outdoor temperature reset (OTR) or lead/lag controllers for sites with multiple boilers. Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. In this project, the Building America team Partnership for Advanced Residential Retrofit (PARR) installed and monitored an ALM aftermarket controller, the M2G from Greffen Systems, at two Chicago area multifamily buildings with existing OTR control. Results show that energy savings depend on the degree to which boilers are oversized for their load, represented by cycling rates. Also, savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, oversized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less oversized boilers at another site showed muted savings.

  12. Final Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    352 Regulatory and Utility Solutions to Advance SunShot Initiative Goals Interstate Renewable Energy Council, Inc. FINAL REPORT Project Title: "Regulatory and Utility Solutions to Advance SunShot Initiative Goals" Covering Period: 09/01/11 through 02/28/15 Date of Report: 04/20/2015 Recipient: Interstate Renewable Energy Council, Inc. (IREC) Award Number: DE-EE0005352 Working Partners: Keyes, Fox & Wiedman LLP Michael T. Sheehan Sherwood Associates, Inc. Kris Mayes Law Firm (KMLF)

  13. Implications for advanced safeguards derived from PR&PP case study results

    SciTech Connect (OSTI)

    Boyer, Brian D


    The proliferation resistance and physical protection (PR and PP) working group produced a case study on the Example Sodium Fast Reactor (ESFR). The ESFR is a hypothetical nuclear energy system consisting of four sodium-cooled fast reactors of medium size collocated with an on-site dry fuel storage facility and a spent fuel reprocessing facility using pyroprocessing technology. This study revealed how safeguards would be applied at such site consisting of integrated multiple fuel cycle facilities and the implications of what safeguards technology and safeguards concepts would need to be adapted and developed to safeguard successfully this Generation IV nuclear energy system concept. The major safeguards concepts driving our safeguards analysis are timeliness goals and material quantity goals. Because the fresh transuranic (TRU) fuel to be produced in the ESFR fuel fabrication facility contains plutonium, the ESFR will be reprocessing, using in the reactor, and storing material on site that will have IAEA defined 'direct-use material' in it with stringent timeliness goals and material quantity goals that drive the safeguards implementation. Specifically, the TRU fresh fuel, pyroprocessing in process material, LWR spent fuel sent to the ESFR, and TRU spent fuel will contain plutonium. This material will need to be verified at interim intervals four times per year because the irradiated direct-use material, as defined previously, has three-month timeliness goals and 8 kg material quantity goals for plutonium. The TRU in-process material is, of course, irradiated direct-use material as defined by the IAEA. Keeping the plutonium and uranium together with TRu products should provide a radiation barrier. this radiation barrier slows down the ability to reprocess the fuel. Furthermore, the reprocessing technique, if it has some intrinsic proliferation resistance, will need major modifications to be able to separate plutonium from the uranium and TRU mixture. The ESFR design

  14. Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications, Phase 1. Final report

    SciTech Connect (OSTI)

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Wilkens, C.A.; Yeckley, R.L.


    The program goals were to develop and demonstrate significant improvements in processing methods, process controls and non-destructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1,370{degrees}C. The program focused on a Si{sub 3}N{sub 4}-4% Y{sub 2}O{sub 3} high temperature ceramic composition and hot-isostatic-pressing as the method of densification. Stage I had as major objectives: (1) comparing injection molding and colloidal consolidation process routes, and selecting one route for subsequent optimization, (2) comparing the performance of water milled and alcohol milled powder and selecting one on the basis of performance data, and (3) adapting several NDE methods to the needs of ceramic processing. The NDE methods considered were microfocus X-ray radiography, computed tomography, ultrasonics, NMR imaging, NMR spectroscopy, fluorescent liquid dye penetrant and X-ray diffraction residual stress analysis. The colloidal consolidation process route was selected and approved as the forming technique for the remainder of the program. The material produced by the final Stage II optimized process has been given the designation NCX 5102 silicon nitride. According to plan, a large number of specimens were produced and tested during Stage III to establish a statistically robust room temperature tensile strength database for this material. Highlights of the Stage III process demonstration and resultant database are included in the main text of the report, along with a synopsis of the NCX-5102 aqueous based colloidal process. The R and D accomplishments for Stage I are discussed in Appendices 1--4, while the tensile strength-fractography database for the Stage III NCX-5102 process demonstration is provided in Appendix 5. 4 refs., 108 figs., 23 tabs.


    SciTech Connect (OSTI)



    In order to reduce the current excesses of plutonium (both weapon grade and reactor grade) and other transuranium elements, a concept of inert matrix fuel (IMF) has been proposed for an uranium free transmutation of fissile actinides which excludes continuous uranium-plutonium conversion in thermal reactors and advanced systems. Magnesium oxide (MgO) is a promising candidate for inert matrix (IM) materials due to its high melting point (2827 C), high thermal conductivity (13 W/K {center_dot} m at 1000 C), good neutronic properties, and irradiation stability However, MgO reacts with water and hydrates easily, which prevents it from being used in light water reactors (LWRs) as an IM. To improve the hydration resistance of MgO-based inert matrix materials, Medvedev and coworkers have recently investigated the introduction of a secondary phase that acts as a hydration barrier. An MgO-ZrO{sub 2} composite was specifically studied and the results showed that the composite exhibited improved hydration resistance than pure MgO. However, ZrO{sub 2} is insoluble in most acids except HF, which is undesirable for fuel reprocessing. Moreover, the thermal conductivity of ZrO{sub 2} is low and typically less than 3 W {center_dot} m{sup -1} {center_dot} K{sup -1} at 1000 C. In search for an alternative composite strategy, Nd{sub 2}Zr{sub 2}O{sub 7}, an oxide compound with pyrochlore structure, has been proposed recently as a corrosion resistant phase, and MgO-Nd{sub 2}Zr{sub 2}O{sub 7} composites have been investigated as potential IM materials. An adequate thermal conductivity of 6 W {center_dot} m{sup -} 1 {center_dot} K{sup -1} at 1000 C for the MgO-Nd{sub 2}Zr{sub 2}O{sub 7} composite with 90 vol% MgO was recently calculated and reported. Other simulations proposed that the MgO-pyrochlore composites could exhibit higher radiation stability than previously reported. Final optimization of the composite microstructure was performed on the 70 vol% MgO-Nd{sub 2}Zr{sub 2}O{sub 7

  16. National Alliance for Advanced Biofuels and Bioproducts Synopsis...

    Energy Savers [EERE]

    National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report In 2010, ...

  17. Development of Advanced CdTe Solar Cells Based on High Temperature Corning Glass Substrates: Cooperative Research and Development Final Report, CRADA Number CRD-10-373

    SciTech Connect (OSTI)

    Barnes, T.


    NREL has developed advanced processes for CdTe solar cells, but because of the temperature limitations of conventional soda lime glass, many of these processes have not been transferred to manufacturing. Corning is developing high temperature substrate glasses that are believed to be manufacturable and will lead to lower $/watt modules costs. The purpose of this CRADA is to evaluate these glasses in the advanced NREL processes. In addition, the CRADA seeks to develop manufacturable processes for transparent conductive oxide layers based on cadmium stannate.

  18. EIS-0290: Final Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Impact Statement EIS-0290: Final Environmental Impact Statement Advanced Mixed Waste Treatment Project (AMWTP) The AMWTP Final EIS assesses the potential ...

  19. Advanced Containment System

    DOE Patents [OSTI]

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru


    An advanced containment system for containing buried waste and associated leachate. The advanced containment system comprises a plurality of casing sections with each casing section interlocked to an adjacent casing section. Each casing section includes a complementary interlocking structure that interlocks with the complementary interlocking structure on an adjacent casing section. A barrier filler substantially fills the casing sections and may substantially fill the spaces of the complementary interlocking structure to form a substantially impermeable barrier. Some of the casing sections may include sensors so that the casing sections and the zone of interest may be remotely monitored after the casing sections are emplaced in the ground.

  20. Draft Advanced Fossil Solicitation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal loan guarantee solicitation announcement -- Advanced Fossil Energy Projects. Microsoft Word - Draft Advanced Fossil Solicitation Final Draft.1 (383.34 KB) More Documents & ...

  1. Application of Robust Design and Advanced Computer Aided Engineering Technologies: Cooperative Research and Development Final Report, CRADA Number CRD-04-143

    SciTech Connect (OSTI)

    Thornton, M.


    Oshkosh Corporation (OSK) is taking an aggressive approach to implementing advanced technologies, including hybrid electric vehicle (HEV) technology, throughout their commercial and military product lines. These technologies have important implications for OSK's commercial and military customers, including fleet fuel efficiency, quiet operational modes, additional on-board electric capabilities, and lower thermal signature operation. However, technical challenges exist with selecting the optimal HEV components and design to work within the performance and packaging constraints of specific vehicle applications. SK desires to use unique expertise developed at the Department of Energy?s (DOE) National Renewable Energy Laboratory (NREL), including HEV modeling and simulation. These tools will be used to overcome technical hurdles to implementing advanced heavy vehicle technology that meet performance requirements while improving fuel efficiency.

  2. Proof-of-concept of moving through casing resistivity apparatus. Final report, October 1, 1989--January 31, 1993

    SciTech Connect (OSTI)

    Vail, W.B.; Momii, S.T.


    ParaMagnetic Logging, Inc. (PML) demonstrated for the first time during 1990 in a Test Well located in Forth Worth, Texas that formation resistivity could be measured, in-principle, from within cased wells with the Through Casing Resistivity Tool (TCRT) designed and built by PML. Early results from this first instrument provided the impetus to investigate measurements methods to increase data acquisition rates and mechanical designs to improve vertical resolution which were implemented in the second experimental version of the TCRT. PML investigated the design requirements for a tool that could continuously move upward within a cased well. It was found that although such measurements can be done, various interfering signals, including those identified as due to the Triboelectric Effect, would mask the weak borehole casing signals if standard wirelines and components from the industry are utilized which limit the amount of electrical current delivered to the well. Extensive laboratory measurements were performed with the Moving Test Jig to investigate the properties of the Triboelectric Effect. Successful methods of measurement were devised to achieve acceptable performance objectives and to overcome problems with the Triboelectric Effect. One such method is called the Slider Method of Measurement.

  3. Atmospheric sciences transfer between research advances and energy-policy assessments (ASTRAEA). Final report, 1 April 1996--31 December 1997

    SciTech Connect (OSTI)

    Slinn, W.G.N.


    Consistent with the prime goal of the ASTRAEA project, as given in its peer-reviewed proposal, this final report is an informal report to DOE managers about a perceived DOE management problem, specifically, lack of vision in DOE`s Atmospheric Chemistry Program (ACP). After presenting a review of relevant, current literature, the author suggests a framework for conceiving new visions for ACP, namely, multidisciplinary research for energy policy, tackling tough (e.g., nonlinear) problems as a team, ahead of political curves. Two example visions for ACP are then described, called herein the CITIES Project (the Comprehensive Inventory of Trace Inhalants from Energy Sources Project) and the OCEAN Project (the Ocean-Circulation Energy-Aerosol Nonlinearities Project). Finally, the author suggests methods for DOE to provide ACP with needed vision.

  4. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993

    SciTech Connect (OSTI)

    Smith, V.E.


    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  5. Cost effective machining and inspection of structural ceramic components for advanced high temperature application. Final CRADA report for CRADA number Y-1292-0151

    SciTech Connect (OSTI)

    Abbatiello, L.A.; Haselkorn, M.


    This Cooperative Research and Development Agreement (CRADA) was a mutual research and development (R and D) effort among the participants to investigate a range of advanced manufacturing technologies for two silicon nitride (Si{sub 3}N{sub 4}) ceramic materials. The general objective was to identify the most cost-effective part manufacturing processes for the ceramic materials of interest. The focus was determining the relationship between material removal rates, surface quality, and the structural characteristics of each ceramic resulting from three innovative processes. These innovated machining processes were studied using silicon nitride advanced materials. The particular (Si{sub 3}N{sub 4}) materials of interest were sintered GS-44 from the Norton Company, and reaction-bonded Ceraloy 147-3. The processes studied included the following activities: (1) direct laser machining; (2) rotary ultrasonic machining; and (3) diamond abrasive grinding, including both resinoid and vitreous-bonded grinding wheels. Both friable and non-friable diamond types were included within the abrasive grinding study. The task also conducted a comprehensive survey of European experience in use of ceramic materials, principally aluminum oxide. Originally, the effort of this task was to extend through a prototype manufacturing demonstration of selected engine components. During the execution of this program, however changes were made to the scope of the project, altering the goals. The Program goal became only the development of assessment of their impacts on product strength and surface condition.

  6. Engineering Foundation Conference: Advances in optics for biotechnology, medicine, and surgery, Kona Surf Resort and Conference Center, Kailua-Kona, Hawaii, August 1-6, 1999. Final report

    SciTech Connect (OSTI)

    Yodh, Arjun; Sevick-Muraca, Eva; Benaron, David


    The intent of the conference was to gather a group of cross-disciplinary investigators from universities, medical schools, national laboratories, industry, and government in order to highlight future applications and technology of the optical sciences in biotechnology, medicine, and surgery. The session chairs brought new participants and speakers to the conference who were not regular attendees of the OSA and SPIE conferences. Attendees included a good number of graduate and post-doctoral students who tended to join the more senior members in organized and spontaneous afternoon activities. A critique of the conference is given which discusses things that worked well and things that could have been better, focusing on costs, funding, and speaker cancellations. Sessions were held on the following topics: Photodynamic therapy: fundamental and clinical studies; Frontiers in spectroscopy; Photon migration; Advances in tissue microscopy, dyes and reporters; Advances in cell microscopy: spectroscopy and micromanipulation; Laser-tissue interactions: therapeutic interventions; and Optics for biotechnology. Along with the program and participant lists, nearly 50 poster presentations are included.

  7. Development of advanced, dry, SO{sub x}/NO{sub x} emission control technologies for high-sulfur coal. Final report, April 1, 1993--December 31, 1994

    SciTech Connect (OSTI)

    Amrhein, G.T.


    Dry Scrubbing is a common commercial process that has been limited to low- and medium-sulfur coal applications because high-sulfur coal requires more reagent than can be efficiently injected into the process. Babcock & Wilcox has made several advances that extend dry scrubbing technologies to higher sulfur coals by allowing deposit-free operation at low scrubber exit temperatures. This not only increases the amount of reagent that can be injected into the scrubber, but also increases SO{sub 2} removal efficiency and sorbent utilization. The objectives of this project were to demonstrate, at pilot scale, that advanced, dry-scrubbing-based technologies can attain the performance levels specified by the 1990 Clean Air Act Amendments for SO{sub 2} and NO{sub x} emissions while burning high-sulfur coal, and that these technologies are economically competitive with wet scrubber systems. The use of these technologies by utilities in and around Ohio, on new or retrofit applications, will ensure the future of markets for high-sulfur coal by creating cost effective options to coal switching.

  8. Development of an advanced, continuous mild gasification process for the production of co-products (Task 1), Volume 1. Final report

    SciTech Connect (OSTI)

    Knight, R.A.; Gissy, J.L.; Onischak, M.; Babu, S.P.; Carty, R.H.; Duthie, R.G.; Wootten, J.M.


    Under US DOE sponsorship, a project team consisting of the Institute of Gas Technology, Peabody Holding Company, and Bechtel Group, Inc. has been developing an advanced, mild gasification process to process all types of coal and to produce solid and condensable liquid co-products that can open new markets for coal. The three and a half year program (September 1987 to June 1991) consisted of investigations in four main areas. These areas are: (1) Literature Survey of Mild Gasification Processes, Co-Product Upgrading and Utilization, and Market Assessment; (2) Mild Gasification Technology Development: Process Research Unit Tests Using Slipstream Sampling; (3) Bench-Scale Char Upgrading Study; (4) Mild Gasification Technology Development: System Integration Studies. In this report, the literature and market assessment of mild gasification processes are discussed.

  9. Development of a polysilicon process based on chemical vapor deposition of dichlorosilane in an advanced Siemen's reactor. Final report, October 11, 1982-May 21, 1983

    SciTech Connect (OSTI)

    McCormick, J.R.; Arvidson, A.N.; Sawyer, D.H.; Muller, D.M.


    Dichlorosilane (DCS) was used as the feedstock for an advanced decomposition reactor for silicon production. The advanced reactor had a cool bell jar wall temperature, 300/sup 0/C, when compared to Siemen's reactors previously used for DCS decomposition by Hemlock Semiconductor Corporation. Previous reactors had bell jar wall temperatures of approximately 750/sup 0/C. The cooler wall temperature allows higher DCS flow rates and concentrations. A silicon deposition rate of 2.28 gm/hr-cm was achieved with power consumption of 59 kWh/kg. Interpretation of data suggests that a 2.8 gm/hr-cm deposition rate is possible. The 2.8 gm/hr-cm deposition rate surpasses the goal of 2.0 gm/hr-cm. Power consumption and conversion should approach the program goals of 60 kWh/kg and 40%. Screening of lower cost materials of construction was done as a separate program segment. Stainless Steel (304 and 316), Hastalloy B, Monel 400 and 1010-1020 Carbon Steel were placed individually in an experimental scale reactor. Silicon was deposited from trichlorosilane feedstock. The resultant silicon was analyzed for electrically active and metallic impurities as well as carbon. No material contributed significant amounts of electrically active or metallic impurities, but all contributed carbon. Single crystal growth could not be maintained in most zone refining evaluations. No material need be excluded from consideration for use in construction of decomposition reactor components for production of photovoltaic grade silicon; however, further evaluation and the use of the low carbon alloys is considered essential.

  10. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system: Phase 2, Final report, May 1, 1983-July 31, 1984

    SciTech Connect (OSTI)


    KRW Energy Systems Inc. is engaged in the development of a pressurized, fluidized-bed, gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally acceptable production of low- and medium-Btu fuel gas from a variety of fossilized, carbonaceous feedstocks for electrical power generation, substitute natural gas, chemical feedstocks, and industrial fuels. This report covers Phase II of the contract period (May 1, 1983 to July 31, 1984) and is a continuation of the work performed in 1983 and reported in the Phase I final report, FE-19122-30. Included is work performed in fiscal 1983 to 1984 on PDU testing, process analysis, cold flow scaleup facility, process and component engineering and design, and laboratory support studies.

  11. Electric Drive Dynamic Thermal System Model for Advanced Vehicle Propulsion Technologies: Cooperative Research and Development Final Report, CRADA Number CRD-09-360

    SciTech Connect (OSTI)

    Bennion, K.


    Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the dependence of the U.S. transportation sector on petroleum. However, to penetrate the market, these electric drive technologies must enable vehicle solutions that are economically viable. The push to make critical electric drivesystems smaller, lighter, and more cost-effective brings respective challenges associated with heat removal and system efficiency. In addition, the wide application of electric drive systems to alternative propulsion technologies ranging from integrated starter generators, to hybrid electric vehicles, to full electric vehicles presents challenges in terms of sizing critical components andthermal management systems over a range of in-use operating conditions. This effort focused on developing a modular modeling methodology to enable multi-scale and multi-physics simulation capabilities leading to generic electric drive system models applicable to alternative vehicle propulsion configurations. The primary benefit for the National Renewable Energy Laboratory (NREL) is the abilityto define operating losses with the respective impact on component sizing, temperature, and thermal management at the component, subsystem, and system level. However, the flexible nature of the model also allows other uses related to evaluating the impacts of alternative component designs or control schemes depending on the interests of other parties.

  12. Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.


    Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

  13. Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications Phase II. Final report

    SciTech Connect (OSTI)

    Pujari, V.J.; Tracey, D.M.; Foley, M.R.


    The research program had as goals the development and demonstration of significant improvements in processing methods, process controls, and nondestructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1370{degrees}C. In Phase I of the program a process was developed that resulted in a silicon nitride - 4 w% yttria HIP`ed material (NCX 5102) that displayed unprecedented strength and reliability. An average tensile strength of 1 GPa and a strength distribution following a 3-parameter Weibull distribution were demonstrated by testing several hundred buttonhead tensile specimens. The Phase II program focused on the development of methodology for colloidal consolidation producing green microstructure which minimizes downstream process problems such as drying, shrinkage, cracking, and part distortion during densification. Furthermore, the program focused on the extension of the process to gas pressure sinterable (GPS) compositions. Excellent results were obtained for the HIP composition processed for minimal density gradients, both with respect to room-temperature strength and high-temperature creep resistance. Complex component fabricability of this material was demonstrated by producing engine-vane prototypes. Strength data for the GPS material (NCX-5400) suggest that it ranks very high relative to other silicon nitride materials in terms of tensile/flexure strength ratio, a measure of volume quality. This high quality was derived from the closed-loop colloidal process employed in the program.

  14. Analytical and experimental evaluation of joining silicon nitride to metal and silicon carbide to metal for advanced heat engine applications. Final report

    SciTech Connect (OSTI)

    Kang, S.; Selverian, J.H.; O`Neil, D.; Kim, H.; Kim, K.


    This report summarizes the results of Phase 2 of Analytical and Experimental Evaluation of Joining Silicon Nitride to Metal and Silicon Carbide to Metal for Advanced Heat Engine Applications. A general methodology was developed to optimize the joint geometry and material systems for 650{degrees}C applications. Failure criteria were derived to predict the fracture of the braze and ceramic. Extensive finite element analyses (FEA) were performed to examine various joint geometries and to evaluate the affect of different interlayers on the residual stress state. Also, material systems composed of coating materials, interlayers, and braze alloys were developed for the program based on the chemical stability and strength of the joints during processing, and service. The FEA results were compared with experiments using two methods: (1) an idealized strength relationship of the ceramic, and (2) a probabilistic analysis of the ceramic strength (NASA CARES). The results showed that the measured strength of the joint reached 30--80% of the strength predicted by FEA. Also, potential high-temperature braze alloys were developed and evaluated for the high-temperature application of ceramic-metal joints. 38 tabs, 29 figs, 20 refs.

  15. Light Water Reactor Sustainability Program Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study

    SciTech Connect (OSTI)

    Curtis Smith; David Schwieder; Cherie Phelan; Anh Bui; Paul Bayless


    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced “RISMC toolkit” that enables more accurate representation of NPP safety margin. This report describes the RISMC methodology demonstration where the Advanced Test Reactor (ATR) was used as a test-bed for purposes of determining safety margins. As part of the demonstration, we describe how both the thermal-hydraulics and probabilistic safety calculations are integrated and used to quantify margin management strategies.


    SciTech Connect (OSTI)

    Nathan Jerred; Troy Howe; Adarsh Rajguru; Dr. Steven Howe


    -based systems. The second scenario allows for the production of electrical power, which is then available for electric-based propulsion. Additionally, once at location the production of electrical power can be dedicated to the payload’s communication system for data transfer. Ultimately, the proposed dual-mode propulsion platform capitalizes on the benefits of two types of propulsion methods – the thrust of thermal propulsion ideal for quick orbital maneuvers and the specific impulse of electric propulsion ideal for efficient inter-planetary travel. Previous versions of this RTR-based concept have been studied for various applications [NETS 1-3]. The current version of this concept is being matured through a NASA Innovative Advanced Concepts (NIAC) Phase I grant, awarded for FY 2014. In this study the RTR concept is being developed to deliver a 6U CubeSat payload to the orbit of the Saturnian moon - Enceladus. Additionally, this study will develop an entire mission architecture for Enceladus targeting a total allowable launch mass of 1,000 kg.

  17. ATVM Interim Final Rule Correction | Department of Energy

    Broader source: (indexed) [DOE]

    A few corrections to the final rule regarding fuel economy numbers. ATVM Interim Final Rule Correction More Documents & Publications Updated Guidance For Applicants To Advanced...

  18. EA-1769: Final Environmental Assessment and Finding of No Significant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Final Environmental Assessment and Finding of No Significant Impact EA-1769: Final Environmental Assessment and Finding of No Significant Impact Houston Advanced Research...

  19. Final base case community analysis: Indian Springs, Nevada for the Clark County socioeconomic impact assessment of the proposed high- level nuclear waste repository at Yucca Mountain, Nevada

    SciTech Connect (OSTI)


    This document provides a base case description of the rural Clark County community of Indian Springs in anticipation of change associated with the proposed high-level nuclear waste repository at Yucca Mountain. As the community closest to the proposed site, Indian Springs may be seen by site characterization workers, as well as workers associated with later repository phases, as a logical place to live. This report develops and updates information relating to a broad spectrum of socioeconomic variables, thereby providing a `snapshot` or `base case` look at Indian Springs in early 1992. With this as a background, future repository-related developments may be analytically separated from changes brought about by other factors, thus allowing for the assessment of the magnitude of local changes associated with the proposed repository. Given the size of the community, changes that may be considered small in an absolute sense may have relatively large impacts at the local level. Indian Springs is, in many respects, a unique community and a community of contrasts. An unincorporated town, it is a small yet important enclave of workers on large federal projects and home to employees of small- scale businesses and services. It is a rural community, but it is also close to the urbanized Las Vega Valley. It is a desert community, but has good water resources. It is on flat terrain, but it is located within 20 miles of the tallest mountains in Nevada. It is a town in which various interest groups diverge on issues of local importance, but in a sense of community remains an important feature of life. Finally, it has a sociodemographic history of both surface transience and underlying stability. If local land becomes available, Indian Springs has some room for growth but must first consider the historical effects of growth on the town and its desired direction for the future.

  20. Final Technical Report on Radioxenon Event Analysis

    SciTech Connect (OSTI)

    Ely, James H.; Cooper, Matthew W.; Hayes, James C.; Heimbigner, Tom R.; McIntyre, Justin I.; Schrom, Brian T.


    This is a final deliverable report for the Advanced Spectral Analysis for Radioxenon project with a focus on radioxenon event categorization.

  1. Advanced Blade Manufacturing Project - Final Report

    SciTech Connect (OSTI)



    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  2. Advanced cryogenics for cutting tools. Final report

    SciTech Connect (OSTI)

    Lazarus, L.J.


    The purpose of the investigation was to determine if cryogenic treatment improved the life and cost effectiveness of perishable cutting tools over other treatments or coatings. Test results showed that in five of seven of the perishable cutting tools tested there was no improvement in tool life. The other two tools showed a small gain in tool life, but not as much as when switching manufacturers of the cutting tool. The following conclusions were drawn from this study: (1) titanium nitride coatings are more effective than cryogenic treatment in increasing the life of perishable cutting tools made from all cutting tool materials, (2) cryogenic treatment may increase tool life if the cutting tool is improperly heat treated during its origination, and (3) cryogenic treatment was only effective on those tools made from less sophisticated high speed tool steels. As a part of a recent detailed investigation, four cutting tool manufacturers and two cutting tool laboratories were queried and none could supply any data to substantiate cryogenic treatment of perishable cutting tools.

  3. Advanced Enzymes and Mixtures-final-sm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biorefinery conditions lowers conversion costs of lignocellulosic biomass to biofuel Genes are synthesized and expressed in an appropriate expression host, typically in E. Coli. ...

  4. Advanced coal liquefaction. Final project report

    SciTech Connect (OSTI)


    Molecular level liquid phase separation was explored using modified microporous ceramic membranes with pore size reduced from 40{Angstrom} via chemical vapor deposition. At room temperature, membranes with pore sizes <30{Angstrom} were sufficient to achieve >97% rejection of naphthyl-bibenzyl-methane (NBBM) in toluene, likely attributed to the hindrance effect of NBBM through the porous avenue of the membrane. The rejection diminished dramatically as the temperature was increased. The permeance of the mixture was substantially lower than that of the solvent resulted from the interference by the solute through the transport avenue. Also, it was found that the rejection increases along with the transmembrane pressure increase, probably attributed to the pore size distribution of the membrane. The smaller pore sizes become accessible to the solvent while rejecting the solute at the higher pressure. In addition to size-based separation, active transport of molecules through an appropriate pore size at 300-400{degrees}C was observed, as a result of interaction with the surface. Decomposition of NBBM took place at 400{degrees}C in a modified membrane packed with the catalyst synthesized using the similar protocol as membranes. The separation property of this membrane at 400{degrees}C was analyzed indirectly based upon the reaction product distribution.

  5. Synchrophasor Technology Advancement in ARRA Projects: Final...

    Broader source: (indexed) [DOE]

    ... Connecting PMUs that are strategically located across the power grid with high-speed ... improve the grid's efficiency, and prevent or more quickly recover from outages. ...

  6. Final Optics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    final optics Final Optics Schematic layout of NIF's final optics assembly (FOA). The suite of optics for one beamline is on the right. The final optics assemblies (FOAs) are the last element of the main laser system and the first of the target area systems. Each FOA contains four integrated optics modules (IOMs) that incorporate beam conditioning, frequency conversion, focusing, diagnostic sampling, and debris shielding capabilities into a single compact assembly. These optics are shown in the

  7. Case Studies of integrated hydrogen systems. International Energy Agency Hydrogen Implementing Agreement, Final report for Subtask A of task 11 - Integrated Systems

    SciTech Connect (OSTI)

    Schucan, T.


    Within the framework of the International Energy Agency Hydrogen Implementing Agreement, Task 11 was undertaken to develop tools to assist in the design and evaluation of existing and potential hydrogen demonstration projects. Emphasis was placed on integrated systems, from input energy to hydrogen end use. Included in the PDF document are the Executive Summary of the final report and the various case studies. The activities of task 11 were focused on near- and mid-term applications, with consideration for the transition from fossil-based systems to sustainable hydrogen energy systems. The participating countries were Canada, Italy, Japan, the Netherlands, Spain, Switzerland and the United States. In order for hydrogen to become a competitive energy carrier, experience and operating data need to be generated and collected through demonstration projects. A framework of scientific principles, technical expertise, and analytical evaluation and assessment needed to be developed to aid in the design and optimization of hydrogen demonstration projects to promote implementation. The task participants undertook research within the framework of three highly coordinated subtasks that focused on the collection and critical evaluation of data from existing demonstration projects around the world, the development and testing of computer models of hydrogen components and integrated systems, and the evaluation and comparison of hydrogen systems. While the Executive Summary reflects work on all three subtasks, this collection of chapters refers only to the work performed under Subtask A. Ten projects were analyzed and evaluated in detail as part of Subtask A, Case Studies. The projects and the project partners were: Solar Hydrogen Demonstration Project, Solar-Wasserstoff-Bayern, Bayernwerk, BMW, Linde, Siemens (Germany); Solar Hydrogen Plant on Residential House, M. Friedli (Switzerland); A.T. Stuart Renewable Energy Test Site; Stuart Energy Systems (Canada); PHOEBUS Juelich

  8. Final Proposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  9. Advanced Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design » Design for Efficiency » Advanced House Framing Advanced House Framing Two-story home using advanced framing techniques. Two-story home using advanced framing techniques. Advanced house framing, sometimes called optimum value engineering (OVE), refers to framing techniques designed to reduce the amount of lumber used and waste generated in the construction of a wood-framed house. These techniques boost energy efficiency by replacing lumber with insulation material while maintaining the

  10. Advanced Fossil Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Advanced-Fossil-Fact-Sheet-FINAL.pdf More Documents & Publications CO2 Conference Presentation POWER-GEN Conference Presentation National Coal Council Presentation...

  11. Georgia Power- Advanced Solar Initiative

    Broader source: [DOE]

    Note: According to Georgia Power's website, the Advanced Solar Initiative's final program guidelines are due to be published on June 25th and the bidding period for is expected to open on July 10,...


    Office of Scientific and Technical Information (OSTI)

    FINAL REPORT Analytical and Elemental Analysis of Air and Soil Samples Facility and Public ... Information 4 Background 5 Stormwater Pollution 5 Erosion and Sediment Control Workshop ...


    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RELEASE AWARDEE: ____________________________________________________ The work under Award No. DE-__________________________, dated ______________, between the United States of America (represented by the Department of Energy, National Energy Technology Laboratory, and the undersigned awardee, having been completed and finally accepted , and in consideration of Final Payment thereunder, the United States of America, its officers, agents and employees are hereby released from all liabilities,

  14. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    SciTech Connect (OSTI)

    Not Available


    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  15. Advanced Nuclear Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects ADVANCED NUCLEAR ENERGY 1 PROJECT in 1 LOCATION 2,200 MW GENERATION CAPACITY 17,200,000 MWh PROJECTED ANNUAL GENERATION * 10,000,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 * Calculated using the project's and NREL Technology specific capacity factors. For cases in which NREL's capacity

  16. Final Report

    SciTech Connect (OSTI)

    Biros, George


    This the final report for the project "Large-Scale Optimization for Bayesian Inference in Complex Systems," for the work in the group of the co-PI George Biros.

  17. Final Report

    SciTech Connect (OSTI)

    DeTar, Carleton


    This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.

  18. Final Report

    SciTech Connect (OSTI)

    Gurney, Kevin R


    This document constitutes the final report under DOE grant DE-FG-08ER64649. The organization of this document is as follows: first, I will review the original scope of the proposed research. Second, I will present the current draft of a paper nearing submission to Nature Climate Change on the initial results of this funded effort. Finally, I will present the last phase of the research under this grant which has supported a Ph.D. student. To that end, I will present the graduate student’s proposed research, a portion of which is completed and reflected in the paper nearing submission. This final work phase will be completed in the next 12 months. This final workphase will likely result in 1-2 additional publications and we consider the results (as exemplified by the current paper) high quality. The continuing results will acknowledge the funding provided by DOE grant DE-FG-08ER64649.

  19. Final Report

    SciTech Connect (OSTI)

    Agosta, Charles C.


    This grant resulted in three distinct scientific advances, the most important being the discovery of a inhomogeneous superconducting state first predicted over 40 years ago. Two graduate students received PhDs as a result of this grant, and a major US high magnetic field facility was rebuilt.

  20. Final Proposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Residential Exchange Program FY 16-17 ASC Utility...

  1. Comment Listing Response to Draft REEE Solicitation FINAL | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Comment Listing Response to Draft REEE Solicitation FINAL Comment Listing Response to Draft REEE Solicitation FINAL Comment ListingResponse_REEE Solicitation_final.pdf (566.28 KB) More Documents & Publications Draft Advanced Fossil Energy Projects Solicitation Public Comments Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation DOE-LPO_Email-Update_001_Through_11

  2. Advanced Gasificatioin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Gasification Research Team Members Key Contacts Advanced Gasification Carbon feedstock gasification is a promising pathway for high-efficiency, low-pollutant power generation and chemical production. The inability, however, to meet a number of operational goals could create roadblocks to widespread acceptance and commercialization of advanced gasification technologies. We must, for example, achieve gasifier online availability of 85-95 percent in utility applications, and 95 percent for

  3. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to ... development of large-scale Ni-based superalloy castings for power plant applications. ...

  4. Final Report

    SciTech Connect (OSTI)

    Cooke, Stephen


    Uranium-containing and thorium-containing compounds have been produced using a laser ablation source. Spectral transitions from these compounds in the 6 GHz to 18 GHz frequency region have been recorded using advanced techniques in Fourier transform microwave spectroscopy. The pure rotational spectrum of thorium (II) oxide is particularly strong and rotational transitions have been observed in highly excited vibrational states. These measurements have allowed a further characterization of the molecules potential energy well.

  5. Case Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Case Studies Case Studies The following case studies will be included in the HEP report. Final case studies are due January 7, 2013. Lattice Gauge Theories - Lead: Doug Toussaint Simulations for Cosmic Frontier Experiments - Leads: Peter Nugent & Andrew Connelly Cosmic Microwave Background Data Analysis - Lead: Julian Borrill Cosmological Simulations - Lead: Salman Habib Plasma Accelerator Simulation Using Laser and Particle Beam Drivers - Leads: Cameron Geddes & Frank Tsung Community

  6. Final Report

    SciTech Connect (OSTI)

    Marchant, Gary E.


    This is the final report of a two year project entitled "Governing Nanotechnology Risks and Benefits in the Transition to Regulation: Innovative Public and Private Approaches." This project examined the role of new governance or "soft law" mechanisms such as codes of conduct, voluntary programs and partnership agreements to manage the risks of emerging technologies such as nanotechnology. A series of published or in publication papers and book chapters are attached.

  7. Final Report - Novel Contact Materials for Improved Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Contact Materials for Improved Performance CdTe Solar Cells Final Report - Novel ... Program: Foundational Program to Advance Cell Efficiency (F-PACE) Principal ...

  8. Final Report

    SciTech Connect (OSTI)

    R Paul Drake


    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves.

  9. Design, build, develop and test a fieldworthy spiral tool and packer for casing repair. Final report, March 15, 1992--March 3, 1993

    SciTech Connect (OSTI)

    Koster, C.


    A new method for sealing casing is under research and development by Nu-Bore Systems. The method involves internally lining a section of the wellbore with a multi-layer spiral wrapping of a high strength, corrosion resistant metal interleaved with a high bond strength, resilient epoxy. The high strength metal is preferably a copper based alloy hardened to a very high strength in order to resist the internal and external pressures of downhole environments. The epoxy adhesive formulation is one that forms a bond between the steel inner wall of the casing and copper alloy strip. The copper alloy strip spiral wraps are interleaved with epoxy, and the whole system provides a high level of outward directed spring force and, thus, resists both internal and externally directed forces. In this report, the cost savings to the nation`s energy program was estimated to be in the range of hundreds of millions of dollars per year, and the method was judged technically feasible once certain well defined engineering obstacles are Overcome. The objective of this program is to develop a joint between packer segments that is easily assembled before lowering downhole and easily disassembled after the sealing job is done. In addition, this tool joint must expand uniformly as though it were a part of the rubber and must not fail under the relatively high pressure of the epoxy cure cycle. The overall goal of the work was to design, build, develop, and test a spiral tool and packer into a single universal tool that can repair casings with diameters varying from 4.5 to 7 inches.

  10. Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Scientific Computing Research Advanced Scientific Computing Research Discovering, ... The DOE Office of Science's Advanced Scientific Computing Research (ASCR) program ...

  11. Gills Onions Advanced Energy Recovery System | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gills Onions Advanced Energy Recovery System The Business Case for Fuel Cells 2010: Why Top Companies are Purchasing Fuel Cells Today Fuel Cell Power Plants Biofuel Case Study - ...

  12. IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy; Work Package 1 Final Report

    SciTech Connect (OSTI)

    Schwabe, P.; Lensink, S.; Hand, M.


    The lifetime cost of wind energy is comprised of a number of components including the investment cost, operation and maintenance costs, financing costs, and annual energy production. Accurate representation of these cost streams is critical in estimating a wind plant's cost of energy. Some of these cost streams will vary over the life of a given project. From the outset of project development, investors in wind energy have relatively certain knowledge of the plant's lifetime cost of wind energy. This is because a wind energy project's installed costs and mean wind speed are known early on, and wind generation generally has low variable operation and maintenance costs, zero fuel cost, and no carbon emissions cost. Despite these inherent characteristics, there are wide variations in the cost of wind energy internationally, which is the focus of this report. Using a multinational case-study approach, this work seeks to understand the sources of wind energy cost differences among seven countries under International Energy Agency (IEA) Wind Task 26 - Cost of Wind Energy. The participating countries in this study include Denmark, Germany, the Netherlands, Spain, Sweden, Switzerland, and the United States. Due to data availability, onshore wind energy is the primary focus of this study, though a small sample of reported offshore cost data is also included.

  13. Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan. Final report, May 1, 1995--November 30, 1997

    SciTech Connect (OSTI)

    Garg, S.K.; Combs, J.; Pritchett, J.W.


    The principal purpose of this case study of the Sumikawa Geothermal Field is to document and to evaluate the use of drilling logs, surface and downhole geophysical measurements, chemical analyses and pressure transient data for the assessment of a high temperature volcanic geothermal field. This comprehensive report describes the work accomplished during FY 1993-1996. A brief review of the geological and geophysical surveys at the Sumikawa Geothermal Field is presented (Section 2). Chemical data, consisting of analyses of steam and water from Sumikawa wells, are described and interpreted to indicate compositions and temperatures of reservoir fluids (Section 3). The drilling information and downhole pressure, temperature and spinner surveys are used to determine feedzone locations, pressures and temperatures (Section 4). Available injection and production data from both slim holes and large-diameter wells are analyzed to evaluate injectivity/productivity indices and to investigate the variation of discharge rate with borehole diameter (Section 5). New interpretations of pressure transient data from several wells are discussed (Section 6). The available data have been synthesized to formulate a conceptual model for the Sumikawa Geothermal Field (Section 7).

  14. Advanced Containment System

    DOE Patents [OSTI]

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru


    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  15. Advanced Containment System

    DOE Patents [OSTI]

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru


    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  16. Final Report

    SciTech Connect (OSTI)

    Webb, Robert C.; Kamon, Teruki; Toback, David; Safonov, Alexei; Dutta, Bhaskar; Dimitri, Nanopoulos; Pope, Christopher; White, James


    Overview The High Energy Physics Group at Texas A&M University is submitting this final report for our grant number DE-FG02-95ER40917. This grant has supported our wide range of research activities for over a decade. The reports contained here summarize the latest work done by our research team. Task A (Collider Physics Program): CMS & CDF Profs. T. Kamon, A. Safonov, and D. Toback co-lead the Texas A&M (TAMU) collider program focusing on CDF and CMS experiments. Task D: Particle Physics Theory Our particle physics theory task is the combined effort of Profs. B. Dutta, D. Nanopoulos, and C. Pope. Task E (Underground Physics): LUX & NEXT Profs. R. Webb and J. White(deceased) lead the Xenon-based underground research program consisting of two main thrusts: the first, participation in the LUX two-phase xenon dark matter search experiment and the second, detector R&D primarily aimed at developing future detectors for underground physics (e.g. NEXT and LZ).

  17. Water Management in Mature Oil Fields using Advanced Particle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Management in Mature Oil Fields using Advanced Particle Gels Final Report Contract ... 91 6.6.8 Resistance to Water Flow after Gel Placement in Conduits ...

  18. Bringing Advanced Computational Techniques to Energy Research

    SciTech Connect (OSTI)

    Mitchell, Julie C


    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  19. Final Report for DE-SC0002298 Agency Number: DE-PS02-09ER09-01 An Advanced Network and distributed Storage Laboratory (ANDSL) for Data Intensive Science

    SciTech Connect (OSTI)

    Livny, Miron


    The original intent of this project was to build and operate an Advanced Network and Distributed Storage Laboratory (ANDSL) for Data Intensive Science that will prepare the Open Science Grid (OSG) community for a new generation of wide area communication capabilities operating at a 100Gb rate. Given the significant cut in our proposed budget we changed the scope of the ANDSL to focus on the software aspects of the laboratory – workload generators and monitoring tools and on the offering of experimental data to the ANI project. The main contributions of our work are twofold: early end-user input and experimental data to the ANI project and software tools for conducting large scale end-to-end data placement experiments.

  20. advanced manufacutring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manufacutring - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  1. Advanced Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Manufacturing Office 13 Selectees Announced for High Performance Computing for Manufacturing Program 13 Selectees Announced for High Performance Computing for Manufacturing Program EERE, in partnership with Lawrence Livermore National Laboratory (LLNL), announced the second round of selections for the High Performance Computing for Manufacturing ("HPC4Mfg") Program. Thirteen projects were selected to receive nearly $3.8 million for manufacturers to use high-performance

  2. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R.


    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  3. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    had more section loss in the high water flue gas de-sulfurized condition (FGD) with 20% H2O and without FGD cases. The scale morphologies were 3-layer structures of Fe-Cr-O-S near...

  4. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    SciTech Connect (OSTI)

    Amoroso, J. W.; Marra, J. C.


    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  5. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    SciTech Connect (OSTI)

    Amoroso, J. W.; Marra, J. C.


    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  6. National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) This Synopsis of the NAABB Full Final Report highlights the scope, accomplishments, and recommendations of the NAABB research effort, including the four cost-reducing innovations. naabb_synopsis_report.pdf (8.39 MB) More Documents & Publications National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final

  7. National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report | Department of Energy Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) Final Report In 2010, the NAABB was formed to further understand the impacts of algae on overall biomass and liquid transportation fuel production. The consortium consisted of 39 partner institutions and primarily focused on feedstock supply, feedstock logistics, and conversion/production pathways. The NAABB

  8. Tiger LDRD final report

    SciTech Connect (OSTI)

    Steich, D J; Brugger, S T; Kallman, J S; White, D A


    This final report describes our efforts on the Three-Dimensional Massively Parallel CEM Technologies LDRD project (97-ERD-009). Significant need exists for more advanced time domain computational electromagnetics modeling. Bookkeeping details and modifying inflexible software constitute a vast majority of the effort required to address such needs. The required effort escalates rapidly as problem complexity increases. For example, hybrid meshes requiring hybrid numerics on massively parallel platforms (MPPs). This project attempts to alleviate the above limitations by investigating flexible abstractions for these numerical algorithms on MPPs using object-oriented methods, providing a programming environment insulating physics from bookkeeping. The three major design iterations during the project, known as TIGER-I to TIGER-III, are discussed. Each version of TIGER is briefly discussed along with lessons learned during the development and implementation. An Application Programming Interface (API) of the object-oriented interface for Tiger-III is included in three appendices. The three appendices contain the Utilities, Entity-Attribute, and Mesh libraries developed during the project. The API libraries represent a snapshot of our latest attempt at insulated the physics from the bookkeeping.

  9. Advanced Metering Infrastructure

    SciTech Connect (OSTI)


    The report provides an overview of the development of Advanced Metering Infrastructure (AMI). Metering has historically served as the cash register for the utility industry. It measured the amount of energy used and supported the billing of customers for that usage. However, utilities are starting to look at meters in a whole different way, viewing them as the point of contact with customers in supporting a number of operational imperatives. The combination of smart meters and advanced communications has opened up a variety of methods for utilities to reduce operating costs while offering new services to customers. A concise look is given at what's driving interest in AMI, the components of AMI, and the creation of a business case for AMI. Topics covered include: an overview of AMI including the history of metering and development of smart meters; a description of the key technologies involved in AMI; a description of key government initiatives to support AMI; an evaluation of the current market position of AMI; an analysis of business case development for AMI; and, profiles of 21 key AMI vendors.

  10. BP-12 Final Proposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rate Case Elements Step by Step Inactive Rate Cases BP-16 Rate Case BP-14 Rate Case BP-12 Rate Case REP-12 Proceeding Rate Information Residential Exchange Program Surplus Power...

  11. Hydroprocessing SRC. Final technical report

    SciTech Connect (OSTI)

    Bronfenbrenner, J.C.; Garg, D.; Harris, C.F.; Znaimer, S.


    Catalyst activity and aging rate were studied in ICRC's process development unit (PDU) and at the Wilsonville Advanced Coal Liquefaction Facility under SRC-I Demonstration Plant hydroprocessing conditions. Similar studies using both high- and low-conversion modes were conducted by The Lummus Company. The studies determined variations in SRC conversion, hydrocarbon gas production, hydrogen consumption, and heteroatom removal. Samples of spent catalyst were analyzed to ascertain the reasons for catalyst deactivation. Finally, the ICRC PDU hydroprocessing results were compared with those generated at Lummus and Wilsonville pilot plants.

  12. Virtualized Network Control. Final Report

    SciTech Connect (OSTI)

    Ghani, Nasir


    This document is the final report for the Virtualized Network Control (VNC) project, which was funded by the United States Department of Energy (DOE) Office of Science. This project was also informally referred to as Advanced Resource Computation for Hybrid Service and TOpology NEtworks (ARCHSTONE). This report provides a summary of the project's activities, tasks, deliverable, and accomplishments. It also provides a summary of the documents, software, and presentations generated as part of this projects activities. Namely, the Appendix contains an archive of the deliverables, documents, and presentations generated a part of this project.

  13. Updated Guidance For Applicants To Advanced Technology Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Loan Program | Department of Energy Updated Guidance For Applicants To Advanced Technology Vehicles Manufacturing Loan Program Updated Guidance For Applicants To Advanced Technology Vehicles Manufacturing Loan Program Updated Guidance For Applicants To Advanced Technology Vehicles Manufacturing Loan Program (150.99 KB) More Documents & Publications ATVM Guidance for Applicants 11.4.14 Advanced Technology Vehicles Manufacturing Loan Program ATVM Loan Program Interim Final

  14. Advanced Manufacturing Office Update, January 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Office Update, January 2015 Advanced Manufacturing Office Update, January 2015 January 26, 2015 - 2:00pm Addthis In This Issue Featured Articles Expert Panel Releases Final Report on Strengthening Advanced Manufacturing in America 3D Printed Shelby Cobra Demonstrates Further Advances in Additive Manufacturing Partners in the Spotlight Legrand Energy Marathon Leads to Big Savings Better Plants Welcomes First Five Wastewater Treatment Partners Third Volvo Facility Certified

  15. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    SciTech Connect (OSTI)

    Liby, Alan L; Rogers, Hiram


    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  16. Advanced InSAR Techniques for Geothermal Exploration and Production...

    Open Energy Info (EERE)

    how these techniques are being used for different stages of geothermal exploration and management. In both cases, multiple advanced InSAR techniques were used to quantify...

  17. Final Technical Report - Center for Technology for Advanced Scientific...

    Office of Scientific and Technical Information (OSTI)

    that has been used in multiple computational science applications to build large-scale simulations of complex physical systems that employ multiple separately developed codes. ...


    SciTech Connect (OSTI)



    Z-PINCH PHYSICS RADIATION FROM WIRE ARRAYS. This report describes the theory support of DTRA's Plasma Radiation Source (PRS) program carried out by NRL's Radiation Hydrodynamics Branch (Code 6720) in FY 2002. Included is work called for in DTRA MIPR 02-2045M - ''Plasma Radiation Theory Support'' and in DOE's Interagency Agreement DE-AI03-02SF22562 - ''Spectroscopic and Plasma Theory Support for Sandia National Laboratories High Energy Density Physics Campaign''. Some of this year's work was presented at the Dense Z-Pinches 5th International Conference held June 23-28 in Albuquerque, New Mexico. A common theme of many of these presentations was a demonstration of the importance of correctly treating the radiation physics for simulating Plasma Radiation Source (PRS) load behavior and diagnosing load properties, e.g, stagnation temperatures and densities. These presentations are published in the AIP Conference Proceedings and, for reference, they are included in Section 1 of this report. Rather than describe each of these papers in the Executive Summary, they refer to the abstracts that accompany each paper. As a testament to the level of involvement and expertise that the Branch brings to DTRA as well as the general Z-Pinch community, eight first-authored presentations were contributed at this conference as well as a Plenary and an Invited Talk. The remaining four sections of this report discuss subjects either not presented at the conference or requiring more space than allotted in the Proceedings.

  19. Final Technical Report Advanced Solar Resource Modeling and Analysis.

    SciTech Connect (OSTI)

    Hansen, Clifford


    The SunShot Initiative coordinates research, development, demonstration, and deployment activities aimed at dramatically reducing the total installed cost of solar power. The SunShot Initiative focuses on removing critical technical and non-technical barriers to installing and integrating solar energy into the electricity grid. Uncertainty in projected power and energy production from solar power systems contributes to these barriers by increasing financial risks to photovoltaic (PV) deployment and by exacerbating the technical challenges to integration of solar power on the electricity grid.

  20. Advanced Klystrons for High Efficiency Accelerator Systems - Final Report

    SciTech Connect (OSTI)

    Read, Michael; Ives, Robert Lawrence


    This program explored tailoring of RF pulses used to drive accelerator cavities. Simulations indicated that properly shaping the pulse risetime to match accelerator cavity characteristics reduced reflected power and increased total efficiency. Tailoring the pulse requires a high power, gridded, klystron to shape the risetime while also controlling the beam current. The Phase I program generated a preliminary design of a gridded electron gun for a klystron producing 5-10 MW of RF power. This required design of a segmented cathode using Controlled Porosity Reservoir cathodes to limit power deposition on the grid. The program was successful in computationally designing a gun producing a high quality electron beam with grid control. Additional analysis of pulse tailoring indicated that technique would only be useful for cavity drive pulses that were less than approximately 2-3 times the risetime. Otherwise, the efficiency gained during the risetime of the pulse became insignificant when considering the efficiency over the entire pulse. Consequently, it was determined that a Phase II program would not provide sufficient return to justify the cost. Never the less, other applications for a high power gridded gun are currently being pursued. This klystron, for example, would facilitate development inverse Comptom x-ray sources by providing a high repetition rate (10 -100 kHz) RF source.

  1. Advanced Nuclear Final Solicitation Fact Sheet_Dec-2014

    Office of Environmental Management (EM)

    ... is "reconverted" from enriched UF6 gas from enrichment plants; (2) formation of UO2 pellets from UO2 powder through compaction and sintering; and(3) fuel assembly (i.e. insertion ...

  2. Final report for the Advanced Natural Gas Vehicle Project

    SciTech Connect (OSTI)

    John Wozniak


    The project objective was to develop the technologies necessary to prototype a dedicated compressed natural gas (CNG) powered, mid-size automobile with operational capabilities comparable to gasoline automobiles. A system approach was used to design and develop the engine, gas storage system and vehicle packaging. The 2.4-liter DOHC engine was optimized for natural gas operation with high-compression pistons, hardened exhaust valves, a methane-specific catalytic converter and multi-point gaseous injection. The chassis was repackaging to increase space for fuel storage with a custom-designed, cast-aluminum, semi-trailing arm rear suspension system, a revised flat trunk sheet-metal floorpan and by equipping the car with run-flat tires. An Integrated Storage system (ISS) was developed using all-composite, small-diameter cylinders encapsulated within a high-strength fiberglass shell with impact-absorbing foam. The prototypes achieved the target goals of a city/highway driving range of 300 miles, ample trunk capacity, gasoline vehicle performance and ultra low exhaust emissions.

  3. Advanced concepts for controlled combustion in engines. Final report

    SciTech Connect (OSTI)

    Oppenheim, A.K.


    Studies carried out at the University of California, Berkeley, over a period of four years were concerned with fluid mechanical properties of turbulent pulsed jet plumes - systems that are of particular relevance to the initiation and control of combustion in engines. The eventual purpose of this program was to provide a rational background for a fundamental refinement of stratified charge diesel engines - the development of a combustion system where the formation of pollutants is minimized, fuel economy is maximized, while fuel tolerance is optimized. The results demonstrated that this goal is attainable by means of appropriate Pulsed Jet Combustion (PJC) generators. The exothermic process of combustion is executed thereby in the form of a fireball taking place in a stratified charge generated by turbulent plumes of a PJC system.

  4. Intergovernmental Advanced Stationary PEM Fuel Cell System Demonstration Final Report

    SciTech Connect (OSTI)

    Rich Chartrand


    A program to complete the design, construction and demonstration of a PEMFC system fuelled by Ethanol, LPG or NG for telecom applications was initiated in October 2007. Early in the program the economics for Ethanol were shown to be unfeasible and permission was given by DOE to focus on LPG only. The design and construction of a prototype unit was completed in Jun 2009 using commercially available PEM FC stack from Ballard Power Systems. During the course of testing, the high pressure drop of the stack was shown to be problematic in terms of control and stability of the reformer. Also, due to the power requirements for air compression the overall efficiency of the system was shown to be lower than a similar system using internally developed low pressure drop FC stack. In Q3 2009, the decision was made to change to the Plug power stack and a second prototype was built and tested. Overall net efficiency was shown to be 31.5% at 3 kW output. Total output of the system is 6 kW. Using the new stack hardware, material cost reduction of 63% was achieved over the previous Alpha design. During a November 2009 review meeting Plug Power proposed and was granted permission, to demonstrate the new, commercial version of Plug Power's telecom system at CERL. As this product was also being tested as part of a DOE Topic 7A program, this part of the program was transferred to the Topic 7A program. In Q32008, the scope of work of this program was expanded to include a National Grid demonstration project of a micro-CHP system using hightemperature PEM technology. The Gensys Blue system was cleared for unattended operation, grid connection, and power generation in Aug 2009 at Union College in NY state. The system continues to operate providing power and heat to Beuth House. The system is being continually evaluated and improvements to hardware and controls will be implemented as more is learned about the system's operation. The program is instrumental in improving the efficiency and reducing costs of PEMFC based power systems using LPG fuel and continues to makes steps towards meeting DOE's targets. Plug Power would like to thank DOE for their support of this program.

  5. Final LDRD report : advanced plastic scintillators for neutron detection.

    SciTech Connect (OSTI)

    Vance, Andrew L.; Mascarenhas, Nicholas; O'Bryan, Greg; Mrowka, Stanley


    This report summarizes the results of a one-year, feasibility-scale LDRD project that was conducted with the goal of developing new plastic scintillators capable of pulse shape discrimination (PSD) for neutron detection. Copolymers composed of matrix materials such as poly(methyl methacrylate) (PMMA) and blocks containing trans-stilbene (tSB) as the scintillator component were prepared and tested for gamma/neutron response. Block copolymer synthesis utilizing tSBMA proved unsuccessful so random copolymers containing up to 30% tSB were prepared. These copolymers were found to function as scintillators upon exposure to gamma radiation; however, they did not exhibit PSD when exposed to a neutron source. This project, while falling short of its ultimate goal, demonstrated the possible utility of single-component, undoped plastics as scintillators for applications that do not require PSD.


    Office of Legacy Management (LM)

    ... U S A r m y Raymond Moore, MD Donald Smith, DVM USPHS, Medical Officer USPHS, V e t e ... Ranch 2 1 Schur z 0709 - - - 2 1 3 4 2 Seyler R e s e r v o i r 1 1 Smith C r e e k Ranch ...

  7. EA-1985: Final Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Assessment EA-1985: Final Environmental Assessment Virginia Offshore Wind Technology Advancement Project on the Atlantic Outer Continental Shelf Offshore Virginia DOE is proposing to fund Virginia Electric and Power Company's Virginia Offshore Wind Technology Advancement Project (VOWTAP). The proposed VOWTAP project consists of design, construction and operation of a 12 megawatt offshore wind facility located approximately 24 nautical miles off the coast of Virginia Beach, VA

  8. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program ...

  9. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk


    health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries

  10. Sandia Energy - Advanced Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Research & Development Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Advanced Research & Development Advanced Research & DevelopmentCoryne...

  11. ATVM Loan Program Interim Final Rule (November 12, 2008) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Loan Program Interim Final Rule (November 12, 2008) ATVM Loan Program Interim Final Rule (November 12, 2008) Advanced Technology Vehicles Manufacturing Incentive Program ATVM Loan Program Interim Final Rule (130.09 KB) More Documents & Publications Automotive Trade Policy Council: Proposed Interim Final Rule Updated Guidance For Applicants To Advanced Technology Vehicles Manufacturing Loan Program ATVM Guidance for Applicants 11.4.14

  12. Advanced drilling systems study.

    SciTech Connect (OSTI)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis


    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  13. Full Final Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REPOR FULL FINAL REPOR T T SECTION III SECTION III FULL FINAL REPORT SECTION III Individual Project Summaries Table of Contents Algal Biology ..................................................................................................3 Cultivation ...................................................................................................41 Harvesting and Extraction .............................................................................65 Fuel Conversion

  14. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, July--September 1993

    SciTech Connect (OSTI)


    The objectives of this study are to: Develop a baseline design and two alternative designs for indirect liquefaction using advanced F-T technology. The baseline design uses Illinois No. 6 Eastern Coal and conventional refining. There is an alternative refining case using ZSM-5 treatment of the vapor stream from the slurry F-T reactor and an alternative coal case using Western coal from the Powder River Basin. Prepare the capital and operating costs for the baseline design and the alternatives. Individual plant costs for the alternative cases will be prorated on capacity, wherever possible, from the baseline case. Develop a process flowsheet simulation (PFS) model. During the period of this report, a Topical Report summarizing the Baseline Case design was drafted and issued to DOE/PETC for review and release approval. Major effort was spent on the Alternate Upgrading and Refining Case. Its design specifications were finalized, and material and utility balances completed. Initial capital cost estimates were developed. A Topical Report, summarizing the Alternative (ZSM-5) Upgrading and Refining Case design, is being drafted. Under Task 4, some of the individual plant models were expanded and enhanced. An overall ASPEN/SP process simulation model was developed for the Baseline Design Case by combining the individual models of Areas 100, 200 and 300. In addition, a separate model for the simplified product refining area, Area 300, of the Alternate Upgrading and Refining case was developed. Under Task 7, cost and schedule control was the primary activity. A technical paper entitled ``Baseline Design/Economics for Advanced Fischer-Tropsch Technology`` was presented in the DOE/PETC`s Annual Contractors Review Conference, held at Pittsburgh, Pennsylvania, on September 27-29, 1993. A contract amendment was submitted to include the Kerr McGee ROSE unit in the Baseline design case and to convert the PFS models from the ASPEN/SP to ASPEN/Plus software code.

  15. Advanced Manufacturing Office News

    SciTech Connect (OSTI)


    News stories about advanced manufacturing, events, and office accomplishments. Subscribe to receive updates.

  16. Final Scientific Technical Report...

    Office of Scientific and Technical Information (OSTI)

    ... on BAS, only 10% of commercial buildings utilize advanced monitoring and controls 1. ... potential that automation and monitoring systems can offer, there is a need for ...

  17. Final Report: Performance Engineering Research Institute

    SciTech Connect (OSTI)

    Mellor-Crummey, John


    This document is a final report about the work performed for cooperative agreement DE-FC02-06ER25764, the Rice University effort of Performance Engineering Research Institute (PERI). PERI was an Enabling Technologies Institute of the Scientific Discovery through Advanced Computing (SciDAC-2) program supported by the Department of Energy's Office of Science Advanced Scientific Computing Research (ASCR) program. The PERI effort at Rice University focused on (1) research and development of tools for measurement and analysis of application program performance, and (2) engagement with SciDAC-2 application teams.

  18. REP-12 Final Proposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  19. Application of the LBB regulatory approach to the steamlines of advanced WWER 1000 reactor

    SciTech Connect (OSTI)

    Kiselyov, V.A.; Sokov, L.M.


    The LBB regulatory approach adopted in Russia in 1993 as an extra safety barrier is described for advanced WWER 1000 reactor steamline. The application of LBB concept requires the following additional protections. First, the steamline should be a highly qualified piping, performed in accordance with the applicable regulations and guidelines, carefully screened to verify that it is not subjected to any disqualifying failure mechanism. Second, a deterministic fracture mechanics analysis and leak rate evaluation have been performed to demonstrate that postulated through-wall crack that yields 95 1/min at normal operation conditions is stable even under seismic loads. Finally, it has been verified that the leak detection systems are sufficiently reliable, diverse and sensitive, and that adequate margins exist to detect a through wall crack smaller than the critical size. The obtained results are encouraging and show the possibility of the application of the LBB case to the steamline of advanced WWER 1000 reactor.

  20. Advanced Nuclear Energy Projects Solicitation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Solicitation Advanced Nuclear Energy Projects Solicitation INFORMATIONAL MATERIALS ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION Solicitation and Supplements I, II, and III (January 19, 2016). Applicants should review the final solicitation and all supplements before submitting an application. The full download above contains the following documents listed below: Solicitation (December 10, 2014) Supplement I regarding Scope of Projects Eligible for the Solicitation (June 23, 2015)

  1. Final Project Report

    SciTech Connect (OSTI)

    Wang, Qiang; Dandy, David S.


    This is the final technical report of the DOE project DE-FG02-07ER46448 awarded to Colorado State University.

  2. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Characteristics of U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" "Structural and ...

  3. DOE Final Report

    SciTech Connect (OSTI)

    Hinzman, Larry D.; Long, James; Newby, Greg B.


    This final report contains a summary of work accomplished in the establishment of a Climate Data Center at the International Arctic Research Center, University of Alaska Fairbanks.

  4. National Science Bowl Finals

    ScienceCinema (OSTI)



    National Science Bowl finals and awards at the National Building Museum in Washington D.C. Monday 5/3/2010

  5. Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Technology Vehicles Manufacturing Loan Program Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program November 6, 2008 - 4:47pm Addthis On November 5, 2008, the Department of Energy issued the Interim Final Rule and accomplished writing the rule for Section 136 of EISA 2007 in approximately half of the 60-day expedited timeframe mandated by Congress. Historically, rulemaking at DOE takes 18 months. The Advanced Technology Vehicles Manufacturing Loan

  6. EA-1678: Nissan North America, Inc., Advanced Technology Electric Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Plant in Smyrna, TN | Department of Energy ATVM » ATVM Environmental Compliance » EA-1678: Nissan North America, Inc., Advanced Technology Electric Vehicle Manufacturing Plant in Smyrna, TN EA-1678: Nissan North America, Inc., Advanced Technology Electric Vehicle Manufacturing Plant in Smyrna, TN November 2, 2009 EA-1678: Final Environmental Assessment Loan To Nissan North America, Inc., for Advanced Technology Electric Vehicle Manufacturing Project in Smyrna, Tennessee

  7. EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project in Dearborn, MI | Department of Energy ATVM » ATVM Environmental Compliance » EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn, MI EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn, MI February 1, 2011 EA-1834: Final Environmental Assessment Loan to Severstal Dearborn, Inc., for Advanced Technology Vehicles Manufacturing Project in Dearborn, Michigan February 18, 2011 EA-1834: Finding of No Significant

  8. Large Scale Computing and Storage Requirements for Advanced Scientific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Research: Target 2014 Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2014 ASCRFrontcover.png Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research An ASCR / NERSC Review January 5-6, 2011 Final Report Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research, Report of the Joint ASCR / NERSC Workshop conducted January 5-6, 2011 Goals This workshop is being

  9. Advanced Combustion FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q: What is advanced combustion? A: State-of-the-art, coal-fired boilers use air for the ... Q: What could an advanced combustion power plant look like? A: An oxy-combustion power ...

  10. Advanced Conversion Roadmap Workshop

    Broader source: (indexed) [DOE]

    Conversion Technologies for Advanced Biofuels - Biomass Program Introduction ... has renewed the urgency for developing sustainable biofuels, bioproducts, and biopower. ...