National Library of Energy BETA

Sample records for advanced biofuels usa

  1. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    SciTech Connect (OSTI)

    Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

    2012-01-01

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

  2. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Energy Savers [EERE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap Workshop Innovative Topics for Advanced Biofuels...

  3. Advanced Cellulosic Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Biofuels Advanced Cellulosic Biofuels Breakout Session 2-B: NewEmerging Pathways Advanced Cellulosic Biofuels Dr. Robert Graham, Chief Executive Officer and Chairman,...

  4. Renewable Chemicals and Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Advanced Biofuels & Policy—Brett Lund, Executive Vice President, General Counsel and Secretary, Gevo Inc.

  5. A Prospective Target for Advanced Biofuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Prospective Target for Advanced Biofuel Production A Prospective Target for Advanced Biofuel Production Print Thursday, 02 February 2012 13:34 The sesquiterpene bisabolene was...

  6. ABPDU - Advanced Biofuels Process Demonstration Unit

    SciTech Connect (OSTI)

    None

    2011-01-01

    Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

  7. E2 Advanced Biofuel Market Report 2014 1 E2 ADVANCED BIOFUEL MARKET REPORT 2014

    E-Print Network [OSTI]

    E2 Advanced Biofuel Market Report 2014 1 E2 ADVANCED BIOFUEL MARKET REPORT 2014 #12;E2 | Environmental Entrepreneurs E2 Advanced Biofuel Market Report 2014 2 Executive Summary E2's fourth annual Advanced Biofuel Market Report catalogs the growths and challenges in the advanced biofuel industry

  8. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Broader source: Energy.gov (indexed) [DOE]

    webinarcarbohydratesproduction.pdf More Documents & Publications Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates...

  9. Financing Advanced Biofuels, Biochemicals And Biopower In Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Afternoon...

  10. Partnering with Industry to Develop Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Breakout Session IA—Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Partnering with Industry to Develop Advanced Biofuels David C. Carroll, President and Chief Executive Officer, Gas Technology Institute

  11. Analysis of advanced biofuels.

    SciTech Connect (OSTI)

    Dec, John E.; Taatjes, Craig A.; Welz, Oliver; Yang, Yi

    2010-09-01

    Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

  12. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels...

  13. National Alliance for Advanced Biofuels and Bioproducts Synopsis...

    Office of Environmental Management (EM)

    Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) This Synopsis of the NAABB Full Final...

  14. Cellulosic Biofuels: Expert Views on Prospects for Advancement: Supplementary Material

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Cellulosic Biofuels: Expert Views on Prospects for Advancement: Supplementary Material Erin Baker Keywords: Biofuels; Technology R&D; Uncertainty; Environmental policy 2 #12;1 Introduction This paper contains supplementary material for "Cellulosic Biofuels: Expert Views on Prospects for Advancement

  15. Advanced Drop-In Biofuels Initiative Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roundtable - USDADOEDONDOT-FAA Advanced Drop-In Biofuels Initiative Agenda May 18, 2012 8:00 a.m. - 5:00 p.m. Jefferson Auditorium U.S. Department of Agriculture South Building...

  16. Advanced and Cellulosic Biofuels and Biorefineries: State of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics...

  17. California: Advanced 'Drop-In' Biofuels Power the Navy's Green...

    Energy Savers [EERE]

    Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvania Fueling the Navy's Great Green Fleet with Advanced Biofuels Cellana, Inc.'s Kona Demonstration Facility is working...

  18. Growing the renewable chemicals and advanced biofuels cluster in MN

    E-Print Network [OSTI]

    Levinson, David M.

    Growing the renewable chemicals and advanced biofuels cluster in MN #12;Renewable Chemical Value% Reduction 60% Reduction 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Gasoline Corn Ethanol Advanced Biofuel Cellulosic Biofuel Corn Ethanol 20% GHG Reduction Compared to gasoline: Advanced Biofuel 50% GHG Reduction e

  19. National Advanced Biofuels Consortium (NABC), Biofuels for Advancing America (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Introduction to the National Advanced Biofuels Consortium, a collaboration between 17 national laboratory, university, and industry partners that is conducting cutting-edge research to develop infrastructure-compatible, sustainable, biomass-based hydrocarbon fuels.

  20. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

  1. National Advanced Biofuels Consortium Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOriginMaterials byNatasha Campbell About Us Natasha 6 3

  2. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ebinarbiooilsupgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Thermochemical Conversion Proceeses to Aviation Fuels...

  3. Navigating Roadblocks on the Path to Advanced Biofuels Deployment

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2–C: Navigating Roadblocks on the Path to Advanced Biofuels Deployment Andrew Held, Senior Director of Feedstock Development, Virent, Inc.

  4. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...

    Energy Savers [EERE]

    Carbohydrates Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates DOE report-out presentation at the CTAB webinar on carbohydrates. ctabwebinarcarbohydrates...

  5. Workshop on Conversion Technologies for Advanced Biofuels - Bio...

    Energy Savers [EERE]

    Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading Challenge 2 Logistics and Compatibility with Existing Infrastructure Throughout Supply Chain...

  6. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    focus on specific biofuel production technologies. The nextinterested in. If the biofuel production technology itselffor existing and new biofuel production technologies. Their

  7. Cellulosic Biofuels: Expert Views on Prospects for Advancement and Jeffrey Keisler

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Cellulosic Biofuels: Expert Views on Prospects for Advancement Erin Baker and Jeffrey Keisler funding and the likelihood of achieving advances in cellulosic biofuel technologies. While in collecting more information on this technology. Keywords: Biofuels; Technology R&D; Uncertainty

  8. As corn-based biofuels reach their practical limits, advanced algae-based biofuels are poised to supply

    E-Print Network [OSTI]

    Reisslein, Martin

    SEMTE abstract As corn-based biofuels reach their practical limits, advanced algae-based biofuels of Energy, General Electric, Algenol Biofuels, and Southern Company. Currently a post-doctoral fellow working for Algenol Biofuels, Dr. Lively is expanding his expertise in gas and liquid separations

  9. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect (OSTI)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  10. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    12): p. Koplow, D. , Biofuels – At What Cost? : GovernmentResulting from the Biomass to Biofuels Workshop Sponsored byN. , Growing Energy: How biofuels can help end America's oil

  11. Navigating Roadblocks on the Path to Advanced Biofuels Deployment

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2–C: Navigating Roadblocks on the Path to Advanced Biofuels Deployment Arunas Chesonis, Chief Executive Officer and Chairman of the Board, Sweetwater Energy

  12. Obama Administration Announces New Investments to Advance Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and additional cost reductions in the industry. Advancing Commercial-Scale Drop-In Biofuel Substitutes for Diesel and Jet Fuel In his Blueprint for a Secure Energy Future...

  13. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect (OSTI)

    Soloiu, Valentin

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuelsâ?? combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  14. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    that can be made from biomass feedstocks including butanol,biofuels rely upon biomass feedstocks, they will be subjectfrom domestically available biomass feedstocks under certain

  15. Questions, Answers and Clarifications Commercial Scale Advanced Biofuels Production Facilities Solicitation

    E-Print Network [OSTI]

    Questions, Answers and Clarifications Commercial Scale Advanced Biofuels Production Facilities biofuels production facility? A.1 An existing biofuels facility is an existing facility that, as of the application due date of PON-13-601, produces (or did produce) biofuels in California. Q.2 Must an eligible

  16. Estimates of the Global Indirect Energy-Use Emission Impacts of USA Biofuel Policy

    SciTech Connect (OSTI)

    Oladosu, Gbadebo A [ORNL

    2012-01-01

    This paper evaluates the indirect energy-use emission implications of increases in the use of biofuels in the USA between 2001 and 2010 as mandates within a dynamic global computable general equilibrium model. The study incorporates explicit markets for biofuels, petroleum and other fossil fuels, and accounts for interactions among all sectors of an 18-region global economy. It considers bilateral trade, as well as the dynamics of capital allocation and investment. Simulation results show that the biofuel mandates in the USA generate an overall reduction in global energy use and emissions over the simulation period from 2001 to 2030. Consequently, the indirect energy-use emission change or emission leakage under the mandate is negative. That is, global emission reductions are larger than the direct emission savings from replacing petroleum with biofuels under the USA RFS2 over the last decade. Under our principal scenario this enhanced the direct emission reduction from biofuels by about 66%. The global change in lifecycle energy-use emissions for this scenario was estimated to be about 93 million tons of CO2e in 2010, 45 million tons of CO2e in 2020, and an increase of 5 million tons of CO2e in 2030, relative to the baseline scenario. Sensitivity results of six alternative scenarios provided additional insights into the pattern of the regional and global effects of biofuel mandates on energy-use emissions.

  17. Fueling the Navy's Great Green Fleet with Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    From transporting the oil necessary to fuel jets and vehicles to supplying battery packs to infantry, energy plays a central role in almost everything the U.S. military does. Because of this reliance, it’s imperative that the military cultivate energy sources that are not subject to the whims of outside nations. While renewables like solar are playing a large role in this effort, advanced biofuels produced domestically are rapidly becoming another choice for transportation fuel.

  18. EA-1940: Proposed Federal Loan Guarantee for Montana Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Montana Advanced Biofuels (MAB) submitted an application to DOE for a Federal loan guarantee to support construction of a multi-feedstock biorefinery that would produce approximately 115 million gallons per year of ethanol in Great Falls, Montana. The biorefinery would utilize renewable biomass in the form of barley and wheat to produce ethanol and other by-products, including wheat gluten, barley bran, and barley meal. NOTE: The EA is cancelled because the applicant withdrew from the program.

  19. Property:RenewableFuelStandard/AdvancedBiofuel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to: navigation,PowerAdvancedBiofuel Jump to: navigation,

  20. Property:RenewableFuelStandard/UndifferentiatedAdvancedBiofuel | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to: navigation,PowerAdvancedBiofuelEnergy

  1. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    SciTech Connect (OSTI)

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  2. Partnering with Industry to Advance Biofuels and Bioproducts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility, a biochemical pilot plant and partnership facility containing equipment and lab space for pretreatement, enzymatic hydrolysis, fermentation, compositional analysis, and downstream processing. For more than 30 years, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has been at the leading edge of research and technology advancements to develop renewable fuels and bioproducts. NREL works to develop cost-competitive alternatives to conventional transportation fuels and value-added biobased chemicals that can be used to manufacture clothing, plastics, lubricants, and other products. NREL is developing technologies and processes to produce a range of sustainable, energy-dense advanced biofuels that are compatible with our existing transportation fuel infrastructure. As part of that effort, NREL's National Bioenergy Center has entered into more than 90 collaborations in the past five years with companies ranging in size from start-ups to those that appear on Fortune magazine's Fortune 100 list. The new Integrated Biorefinery Research Facility (IBRF) showcases NREL's commitment to collaboration and to meeting the nation's biofuels and bioproducts development and deployment goals. Designed to speed the growth of the biofuels and bioproducts industries, the IBRF is a unique $33.5 million pilot facility capable of supporting a variety of projects. The IBRF is available to industry partners who work with NREL through cooperative research and development, technical, and analytical service agreements. With 27,000 ft2 of high bay space, the IBRF provides industry partners with the opportunity to operate, test, and develop their own biorefining technology and equipment.

  3. Biofuels

    SciTech Connect (OSTI)

    Kalluri, Udaya

    2014-05-02

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  4. Biofuels

    ScienceCinema (OSTI)

    Kalluri, Udaya

    2014-05-23

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  5. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli

    E-Print Network [OSTI]

    Bokinsky, Gregory

    One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical ...

  6. Obama Administration Announces New Investments to Advance Biofuels...

    Energy Savers [EERE]

    energy efficiency, and speeding development of biofuels and other alternatives. Domestic oil and gas production has increased each year the President has been in office. At the...

  7. Advanced Biofuels (and Bio-products) Process Demonstration Unit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels (and Bio-products) Process Demonstration Unit Todd Pray, PhD, MBA March 25, 2015 Biochemical Conversion Area DOE Bioenergy Technologies Office (BETO) Project Peer Review...

  8. Switchgrass Cultivar/Ecotype Selection and Management for Biofuels in the Upper Southeast USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lemus, Rocky; Parrish, David J.; Wolf, Dale D.

    2014-01-01

    Switchgrass ( Panicum virgatum L.), a perennial warm-season grass indigenous to the eastern USA, has potential as a biofuels feedstock. The objective of this study was to investigate the performance of upland and lowland switchgrass cultivars under different environments and management treatments. Four cultivars of switchgrass were evaluated from 2000 to 2001 under two management regimes in plots established in 1992 at eight locations in the upper southeastern USA. Two management treatments included 1) a single annual harvest (in late October to early November) and a single application of 50?kg N/ha/yr and 2) two annual harvests (in midsummer andmore »November) and a split application of 100?kg?N/ha/yr. Biomass yields averaged 15?Mg/ha/yr and ranged from 10 to 22?Mg/ha/yr across cultivars, managements, locations, and years. There was no yield advantage in taking two harvests of the lowland cultivars (Alamo and Kanlow). When harvested twice, upland cultivars (Cave-in-Rock and Shelter) provided yields equivalent to the lowland ecotypes. Tiller density was 36% lower in stands cutting only once per year, but the stands appeared vigorous after nine years of such management. Lowland cultivars and a one-cutting management (after the tops have senesced) using low rates of applied N (50?kg/ha) are recommended. « less

  9. BioEnergy Landscape: From Photosynthesis to Fossil Fuels to Advanced Biofuels

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    BioEnergy Landscape: From Photosynthesis to Fossil Fuels to Advanced Biofuels - Fundamentals for substitution of fossil fuels since they are natural extensions of fossil fuels, and the existing energy in transportation to replace fossil fuels. Energy is the cause for all processes across all space and time scales

  10. Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Rokhsar, Daniel

    2011-04-28

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  11. Medical and biofuel advances possible with new gene regulation tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion Measurement of MuonMediationMedical and biofuel

  12. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in...

  13. SciTech Connect: "biofuels"

    Office of Scientific and Technical Information (OSTI)

    biofuels" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "biofuels" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  14. Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries

    Broader source: Energy.gov [DOE]

    Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Bioenergy Project Finance Mechanisms—Mark Riedy, Counsel, Kilpatrick, Townsend & Stockton LLP

  15. National Alliance for Advanced Biofuels and Bioproducts Synopsis...

    Broader source: Energy.gov (indexed) [DOE]

    of construction. Th is will include developing low-cost methods that purify intermediate crude oil streams. A major NAABB advancement was the development and demonstration of a...

  16. Renewable Enhanced Feedstocks for Advanced Biofuels and Bioproducts (REFABB)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTIRegulatoryResidential SavingsEnergyof

  17. National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOriginMaterials byNatasha Campbell About Us Natasha

  18. National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOriginMaterials byNatasha Campbell About Us

  19. Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced PetroleumDepartment|

  20. Advanced Drop-In Biofuels Initiative Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOfficeAcqguide18pt0Department ofHigh EfficiencyAdvanced Drop-In

  1. Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -Energy CostsEnergy City ofPlug-in1: Advanced2:Melissa

  2. Genetic resources for advanced biofuel production described with the Gene Ontology

    SciTech Connect (OSTI)

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, Joao C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.

  3. Genetic resources for advanced biofuel production described with the Gene Ontology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, Joao C.; Mukhopadhyay, Biswarup; Tyler, Brett M.

    2014-10-10

    Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergymore »production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.« less

  4. BETO Seeks Stakeholder Input on the Use of Advanced Biofuel Blends...

    Broader source: Energy.gov (indexed) [DOE]

    engines to improve compatibility when operated with high-octane biofuel blends The market impact of increasing the consumption of biofuels in the small engine market Mechanisms...

  5. Production of Advanced Biofuels via Liquefaction Hydrothermal Liquefaction Reactor Design: April 5, 2013

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLEDSpeeding accessSpeedingPATENTS- 05TheAdvanced Biofuels

  6. Iowa NSF EPSCoR is a statewide program funded by NSF and the State of Iowa dedicated to making Iowa a leader in advanced biofuels, wind energy and energy

    E-Print Network [OSTI]

    Casavant, Tom

    to making Iowa a leader in advanced biofuels, wind energy and energy efficiency. Summer internships are open

  7. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect (OSTI)

    Bai, Xuemei; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  8. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Li-Ion Polymer Battery Cell Manufacturing Plant in USA Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  9. Dynamic Modeling of Learning in Emerging Energy Industries: The Example of Advanced Biofuels in the United States: Preprint

    SciTech Connect (OSTI)

    Vimmerstedt, Laura J.; Bush, Brian W.; Peterson, Steven O.

    2015-09-03

    This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry. The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.

  10. Engineering the Surface of Bacillus subtilis to Degrade Lignocellulose for Biofuel Production

    E-Print Network [OSTI]

    Anderson, Timothy David

    2013-01-01

    Synthesis of three advanced biofuels from ionic liquid-Synthesis of three advanced biofuels from ionic liquid-C. Somerville. 2009. Cellulosic biofuels. Annual review of

  11. BETO Ranks High in Biofuels Digest's Top 125 in the Advanced...

    Office of Environmental Management (EM)

    person in the bioeconomy. BETO partners with the U.S. Department of Agriculture on Biomass Research and Development. Each year, Biofuels Digest, a widely read online...

  12. Partnering with Industry to Advance Biofuels, NREL's Integrated Biorefinery Research Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility and its availability to biofuels' industry partners who want to operate, test, and develop biorefining technology and equipment.

  13. FACTSHEET: Energy Department Investments in Biofuels Innovation...

    Broader source: Energy.gov (indexed) [DOE]

    is working to catalyze breakthroughs in innovative biofuel technologies and advance biofuels production at refineries across the country. Rather than sending 1 billion each day...

  14. Engineering the Surface of Bacillus subtilis to Degrade Lignocellulose for Biofuel Production

    E-Print Network [OSTI]

    Anderson, Timothy David

    2013-01-01

    of second generation biofuel technologies. Bioresourceas biocatalysts in the biofuel industry. Advances in appliedas biocatalysts in the biofuel industry. Adv Appl Microbiol

  15. Manipulation of the Carbon Storage Regulator System for Metabolite Remodeling and Biofuel Production in Escherichia coli

    E-Print Network [OSTI]

    2012-01-01

    metabolite remodeling and biofuel production in Escherichiathrough engineered biofuel pathways. A) Overexpression ofPP, Keasling JD: Advanced biofuel production in microbes.

  16. Manipulation of the Carbon Storage Regulator System for Metabolite Remodeling and Biofuel Production in Escherichia coli

    E-Print Network [OSTI]

    2012-01-01

    remodeling and biofuel production in Escherichia coli.JD: Advanced biofuel production in microbes. Biotechnol JJM, Gonzalez R: Biofuel production in Escherichia coli: the

  17. Economic Assessment ofEconomic Assessment of BiofuelBiofuel Support PoliciesSupport Policies

    E-Print Network [OSTI]

    Economic Assessment ofEconomic Assessment of BiofuelBiofuel Support PoliciesSupport Policies Press Sugar cane Maize Rape oil Sugar beet Wheat Brazil USA EU EU EU US$/lgasolineequivalent Year, fuel type oil 40 55 #12;How Effective areHow Effective are BiofuelsBiofuels Support Policies?Support Policies

  18. Legislating Biofuels in the United States

    E-Print Network [OSTI]

    Legislating Biofuels in the United States Wendy Clark National Renewable Energy Laboratory Golden, Colorado, USA 2008 SAE Biofuels Specifications and Performance Symposium July 7-9, 2008, Paris NREL PR-540 Legislate Biofuels? · Plentiful U.S. biomass resources: energy crops, agricultural and forestry residues

  19. Dynamic Modeling of Learning in Emerging Energy Industries: The Example of Advanced Biofuels in the United States; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Peterson, Steve; Bush, Brian; Vimmerstedt, Laura

    2015-07-19

    This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry. The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.

  20. The Impact of Advanced Biofuels on Aviation Emissions and Operations in the U.S.

    E-Print Network [OSTI]

    Winchester, N.

    We analyze the economic and emissions impacts on U.S. commercial aviation of the Federal Aviation Administration’s renewable jet fuel goal when met using advanced fermentation (AF) fuel from perennial grasses. These fuels ...

  1. Biofuels: Microbially Generated Methane and

    E-Print Network [OSTI]

    Wood, Thomas K.

    ) and methane (CH4) from renewable biomass has the potential to con- tribute to reducing dependence on fossilBiofuels: Microbially Generated Methane and Hydrogen Michael J McAnulty, Pennsylvania State, USA James G Ferry, Pennsylvania State University, University Park, Pennsylvania, USA The production

  2. Biofuel Basics

    Broader source: Energy.gov [DOE]

    Biofuels are liquid or gaseous fuels produced from biomass. Most biofuels are used for transportation, but some are used as fuels to produce electricity. The expanded use of biofuels offers an array of benefits for our energy security, economic growth, and environment.

  3. Sustainable Production of Biofuels Rick Gustafson

    E-Print Network [OSTI]

    Brown, Sally

    Sustainable Production of Biofuels Rick Gustafson School of Environmental and Forest Sciences Electricity ­ co-product #12;Net emission #12;#12;ConclusionConclusion ·Regional Sustainable Biofuels Industry College of the Environment #12;Advanced Hardwood Biofuels Northwest http://ahb-nw.com/ #12;Sustainable

  4. California: Cutting-Edge Biofuels Research and Entrepreneurship...

    Energy Savers [EERE]

    viable processes for advanced biofuels and biochemical production from grasses, algae, wood, gases, and agriculturalindustrialmunicipal waste leading to efficient...

  5. Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office (BETO) supports the development of technologies to sustainably grow and convert algae into advanced biofuels and bioproducts. Biofuels produced from algae have attracted...

  6. Diagram of the Biofuel Production Process (SPORL -Alcohol Production):Introduction: The Northwest Advanced Renewables Alliance (NARA) is an organization

    E-Print Network [OSTI]

    Collins, Gary S.

    Pretreatment for Cellulosic Ethanol Production: Technology and Energy Consumption Evaluation." BioresourceDiagram of the Biofuel Production Process (SPORL - Alcohol Production):Introduction: The Northwest production industry in the Northwest United States. One of NARA's goals is to develop a production process

  7. Advanced Biofuels Workshop

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, August 27,(Million

  8. Lifecycle Analyses of Biofuels

    E-Print Network [OSTI]

    Delucchi, Mark

    2006-01-01

    08 Lifecycle Analyses of Biofuels Draft Report (May be citedLIFECYCLE ANALYSES OF BIOFUELS Draft manuscript (may belifecycle analysis (LCA) of biofuels for transportation has

  9. BETO Live Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results

    Office of Energy Efficiency and Renewable Energy (EERE)

    Dr. Jose Olivares of Los Alamos National Laboratory will present the results of algal biofuels research conducted by the National Alliance for Advanced Biofuels and Bioproducts (NAABB). NAABB is...

  10. Department of Energy to Invest Nearly $18 Million for Advanced...

    Office of Environmental Management (EM)

    Department of Energy to Invest Nearly 18 Million for Advanced Biofuels User Facility Department of Energy to Invest Nearly 18 Million for Advanced Biofuels User Facility March...

  11. Biofuels and Agriculture

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Biofuels and Agriculture Biofuels and Agriculture A Factsheet for Farmers American farmers have "biofuels" like ethanol and biodiesel mean that new markets are opening up. These can provide extra farm as growing markets for other biofuels like biodiesel. What are biofuels? Biofuels (short for "biomass fuels

  12. Secretary Moniz Announces New Biofuels Projects to Drive Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the advanced biofuels industry comes from harvesting its raw material or feedstock - the wood, grass or agricultural waste it converts to fuel - and delivering it from the field...

  13. President Obama Announces Major Initiative to Spur Biofuels Industry...

    Energy Savers [EERE]

    years in partnership with the private sector to produce advanced drop-in aviation and marine biofuels to power military and commercial transportation. The initiative responds to a...

  14. Biofuels Overview CLIMATETECHBOOK

    E-Print Network [OSTI]

    Page | 1 May 2009 Biofuels Overview CLIMATETECHBOOK What are Biofuels? A biofuel is defined as any dependence on petroleum-based fuels, biofuels are gaining increasing attention as one possible solution. Biofuels offer a way to produce transportation fuels from renewable sources or waste materials and to help

  15. International Conference on Advanced Ceramics and Composites, January 2007, Daytona FL, USA

    E-Print Network [OSTI]

    Yildiz, Bilge

    Proc. 31st International Conference on Advanced Ceramics and Composites, January 2007, Daytona FL design of electrodes with improved #12;Proc. 31st International Conference on Advanced Ceramics

  16. Biofuels and Transportation

    E-Print Network [OSTI]

    Minnesota, University of

    Biofuels and Transportation Impacts and Uncertainties Some Observations of a Reformed Ethanol and Logistics Symposium 3 Topics · Why Biofuels · Ethanol Economics · Ethanol Transportation Equipment Biofuels? · National Security · Reduce Imports of oil · Peak Oil · Replace Fossil Resources

  17. Lifecycle Analyses of Biofuels

    E-Print Network [OSTI]

    Delucchi, Mark

    2006-01-01

    Balances for a Range of Biofuel Options, Project Number8. F UELCYCLE EMISSIONS FOR BIOFUEL VEHICLES IN DIFFERENTch. and LEM % ch. For a few biofuel lifecycles there can be

  18. Refinement of weed risk assessments for biofuels using Camelina sativa as a model species

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Refinement of weed risk assessments for biofuels using Camelina sativa as a model species Philip B and Environmental Sciences, Montana State University, PO Box 173120, Bozeman, MT 59717-3120, USA Summary 1. Biofuel. However, concerns have been raised on the invasiveness of biofuel feedstocks. Estimating invasion

  19. Strategic Perspectives on Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    Plenary V: Biofuels and Sustainability: Acknowledging Challenges and Confronting MisconceptionsQuantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG EmissionsLee R. Lynd,...

  20. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    biofuels production facilities and infrastructure by providing essential biofuels data, tools, and information to all stakeholders * The Bioenergy Atlas tools provide interactive...

  1. Algal Biofuels Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Strategy Report on Workshop Results and Recent Work Roxanne Dempsey Technology Manager 2 Algal Biofuels Strategy Session Agenda-Report on Workshop Results and Recent...

  2. DuPont’s Journey to Build a Global Cellulosic BioFuel Business Enterprise

    Office of Energy Efficiency and Renewable Energy (EERE)

    Plenary I: Progress in Advanced Biofuels DuPont’s Journey to Build a Global Cellulosic BioFuel Business Enterprise William Provine, Director–Science and Technology External Affairs, DuPont

  3. Cellu-WHAT?-sic: Communicating the Biofuels Message to Local Stakeholders

    Broader source: Energy.gov [DOE]

    Breakout Session 3D—Building Market Confidence and Understanding III: Engaging Key Audiences in Bioenergy Cellu-WHAT?-sic: Communicating the Biofuels Message to Local Stakeholders Matt Merritt, Director, Public Relations, POET–DSM Advanced Biofuels

  4. DuPont's Journey to Build a Global Cellulosic BioFuel Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise Plenary I: Progress in Advanced...

  5. Performance of Biofuels and Biofuel Blends | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT PDepartment ofPerformanceof Biofuels and

  6. Market Drivers for Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market Drivers for Biofuels Market Drivers for Biofuels This presentation, entitled "Market Drivers for Biofuels," was given at the Third Annual MSW to Biofuels Summit in February,...

  7. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01

    standards for biofuel production make little economic sense.to biofuels. While the biofuel production and consumptionand further increases in biofuel production are driven pri-

  8. of Biofuels Sustainable Feedstocks

    E-Print Network [OSTI]

    The Next Generation of Biofuels Sustainable Feedstocks Cost-Competitive Options #12;Photos courtesy the evolutionary code for an entirely new generation of biofuels capable of transforming the American automobile biofuels at a cost competitive with that of gasoline. Equally important, they are using crops

  9. Innovative Topics for Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment of Energy InNovember 25,Research

  10. Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications, and the Role of Research

    SciTech Connect (OSTI)

    none,

    2009-10-27

    The Biomass Research and Development Board (Board) commissioned an economic analysis of feedstocks to produce biofuels. The Board seeks to inform investments in research and development needed to expand biofuel production. This analysis focuses on feedstocks; other interagency teams have projects underway for other parts of the biofuel sector (e.g., logistics). The analysis encompasses feedstocks for both conventional and advanced biofuels from agriculture and forestry sources.

  11. Georgia Biofuel Directory A directory of Georgia industries that use biofuels.

    E-Print Network [OSTI]

    Georgia Biofuel Directory · A directory of Georgia industries that use biofuels. · Completed in May _________________________________________________________________ 3 Biofuels_____________________________________________________________________ 4 Biofuel Use in Georgia that Burn Self-Generated Biofuels as of May 2003__ 4 Chart 1.0 Biofuel Use from Contacted

  12. Current trends in the Advanced Bioindustry

    Broader source: Energy.gov [DOE]

    Afternoon Plenary Session: Current Trends in the Advanced Bioindustry State of Technology—Michael McAdams, President, Advanced Biofuels Association

  13. Biofuels Market Opportunities

    Broader source: Energy.gov [DOE]

    Breakout Session 2C—Fostering Technology Adoption II: Expanding the Pathway to Market Biofuels Market Opportunities John Eichberger, Vice President Government Relations, National Association of Convenience Stores

  14. future science group 5ISSN 1759-726910.4155/BFS.12.76 2013 Future Science Ltd Special FocuS: advanced FeedStockS For advanced bioFuelS

    E-Print Network [OSTI]

    -scale bioenergy production The success and sustainability of the biofuel industry is highly dependent upon production, especially for grassy biomass crops and agricultural residues [9,10]. The bulk densities of loose agricultural residue or prairie energy crops range from 50 to 100 kg dry matter m-3 , while the bulk densities

  15. Algal Biofuels Fact Sheet

    SciTech Connect (OSTI)

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  16. Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel

    E-Print Network [OSTI]

    Biofuel Supply Chain Infrastructure Optimizing the Evolution of Cellulosic Biofuel Center infrastructure. Cellulosic-based ad- vanced biofuel has a target of 21 billion gallons by 2022 and requires into a national economic model of biofuel sustainability. Cellulosic biomass relocates the demand

  17. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01

    the biofuel production and consumption exhibited signi?cantBiofuels The biofuels production and consumption is closelysystem of the fuel production and consumption beginning with

  18. Bioproducts and Biofuels - Growing Together! | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts and Biofuels - Growing Together Bioproducts and Biofuels - Growing Together Breakout Session 2B-Integration of Supply Chains II: Bioproducts-Enabling Biofuels and...

  19. Fungible and Compatible Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fungible and Compatible Biofuels Fungible and Compatible Biofuels The purpose of this study is to summarize the various barriers to more widespread distribution of biofuels through...

  20. On mitigating emissions leakage under biofuel policies

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D

    2015-01-01

    that are applicable to biofuel policies and beyond. Thisso marginal land for biofuel crops is limited. EnergyIndirect emissions of biofuel policies Figure 1 provides a

  1. ON THE INDIRECT EFFECT OF BIOFUEL

    E-Print Network [OSTI]

    Zilberman, D; Barrows, G; Hochman, G; Rajagopal, D

    2013-01-01

    and H. de Gorter. 2011. Biofuel Policies and Carbon Leakage.Environmental Impact of Biofuel Policies. Energy Policy.sions and Uncertainty for Biofuel Policies. Energy Policy.

  2. Cassava, a potential biofuel crop in China

    E-Print Network [OSTI]

    Jansson, C.

    2010-01-01

    Cassava, a potential biofuel crop in China Christer Janssoncassava; bioethanol; biofuel; metabolic engineering; Chinathe potentials of cassava in the biofuel sector and point to

  3. ON THE INDIRECT EFFECT OF BIOFUEL

    E-Print Network [OSTI]

    Zilberman, D; Barrows, G; Hochman, G; Rajagopal, D

    2013-01-01

    chain. Assume that biofuel production includes two stages:the ILUC of biofuel production in the LCA assessment. Theof their output to biofuel production. For simplicity, we

  4. ENERGY AND WATER OPTIMIZATION IN BIOFUEL PLANTS Ignacio E. Grossmann*

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 ENERGY AND WATER OPTIMIZATION IN BIOFUEL PLANTS Ignacio E. Grossmann* , Mariano Martín Center, PA 15213, USA Abstract In this paper we address the topic of energy and water optimization, we propose a strategy based on mathematical programming techniques to model and optimize

  5. Sandia's Biofuels Program

    SciTech Connect (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-22

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  6. Sandia's Biofuels Program

    ScienceCinema (OSTI)

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-24

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  7. GLOBAL BIOFUELS OUTLOOK MAELLE SOARES PINTO

    E-Print Network [OSTI]

    GLOBAL BIOFUELS OUTLOOK 2010-2020 MAELLE SOARES PINTO DIRECTOR BIOFUELS EUROPE & AFRICA WORLD BIOFUELS MARKETS, ROTTERDAM MARCH 23, 2011 #12;Presentation Overview · Global Outlook ­ Biofuels Mandates in 2010 ­ Total Biofuels Supply and Demand ­ Regional Supply and Demand Outlook to 2020 ­ Biofuels

  8. Bioproducts and Biofuels – Growing Together!

    Broader source: Energy.gov [DOE]

    Breakout Session 2B—Integration of Supply Chains II: Bioproducts—Enabling Biofuels and Growing the Bioeconomy Bioproducts and Biofuels – Growing Together! Andrew Held, Senior Director, Deployment and Engineering, Virent, Inc.

  9. BioFuels Atlas (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.

    2011-02-01

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  10. Transportation Biofuels in the US A Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    a greater focus on specific biofuel production technologies.differences for certain biofuel feedstocks as well as policy24 Biofuel

  11. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01

    Biofuel alternatives to ethanol: pumping the microbialtechnologies that enable biofuel production. Decades of workstrategy for producing biofuel. Although ethanol currently

  12. World Biofuels Study

    SciTech Connect (OSTI)

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very rapidly over the next two decades, provided policymakers stay the course with their policy goals. This project relied on a scenario-based analysis to study global biofuel markets. Scenarios were designed to evaluate the impact of different policy proposals and market conditions. World biofuel supply for selected scenarios is shown in Figure 1. The reference case total biofuel production increases from 12 billion gallons of ethanol equivalent in 2005 to 54 billion gallons in 2020 and 83 billion gallons in 2030. The scenarios analyzed show volumes ranging from 46 to 64 billion gallons in 2020, and from about 72 to about 100 billion gallons in 2030. The highest production worldwide occurs in the scenario with high feedstock availability combined with high oil prices and more rapid improvements in cellulosic biofuel conversion technologies. The lowest global production is found in the scenario with low feedstock availability, low oil prices and slower technology progress.

  13. Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels

    E-Print Network [OSTI]

    Jones, Andrew; O'Hare, Michael; Farrell, Alexander

    2007-01-01

    Biofuel Boundaries: Estimating the Medium-Term SupplyAugust 22, 2007 Biofuel Boundaries: Estimating the Medium-significant amount of liquid biofuel (equivalent to 30-100%

  14. Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels

    E-Print Network [OSTI]

    Jones, Andrew; O'Hare, Michael; Farrell, Alexander

    2007-01-01

    sizable increases in biofuel production need not result ina reasonable level of biofuel production that avoids pushing26 Appendix A - Biofuel Production

  15. The Ecological Impact of Biofuels

    E-Print Network [OSTI]

    Kammen, Daniel M.

    The Ecological Impact of Biofuels Joseph E. Fargione,1 Richard J. Plevin,2 and Jason D. Hill3 1 land-use change Abstract The ecological impact of biofuels is mediated through their effects on land, air, and water. In 2008, about 33.3 million ha were used to produce food- based biofuels

  16. Danielle Goldtooth Paper #6 -Biofuels

    E-Print Network [OSTI]

    Lega, Joceline

    Jon Kroc Danielle Goldtooth IS 195A Paper #6 - Biofuels Green Dreams In the modern era science has. Biofuels are increasingly becoming viable alternatives to gasoline, diesel, and other non-renewable fuels." There are still many issues that must be dealt with before the production of biofuels is energy-efficient enough

  17. Biofuel and Bioenergy implementation scenarios

    E-Print Network [OSTI]

    Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By André of this project are to provide structured and clear data on the availability and performance of biofuels

  18. Multiphase Flow Modeling of Biofuel Production Processes

    SciTech Connect (OSTI)

    D. Gaston; D. P. Guillen; J. Tester

    2011-06-01

    As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant advantages over other biomass processing methods with respect to separations. These 'green' alternatives employ a hybrid medium that, when operated supercritically, offers the prospect of tunable physicochemical properties. Solubility can be rapidly altered and phases partitioned selectively to precipitate or dissolve certain components by altering temperature or pressure in the near-critical region. The ability to tune the solvation properties of water in the highly compressible near-critical region facilitates partitioning of products or by-products into separate phases to separate and purify products. Since most challenges related to lipid extraction are associated with the industrial scale-up of integrated extraction systems, the new modeling capability offers the prospect of addressing previously untenable scaling issues.

  19. Biofuel impacts on water.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  20. PNNL Aviation Biofuels

    SciTech Connect (OSTI)

    Plaza, John; Holladay, John; Hallen, Rich

    2014-10-23

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  1. Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits

    E-Print Network [OSTI]

    Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

    2009-01-01

    10, 2008). Wiebe K. 2008. Biofuels: Implications for naturalcountries. Sustainable Biofuels and Human Securitydistribution implications of biofuels. Sustainable Biofuels

  2. Measurements and predictions of the radiation characteristics of biofuel-producing microorganisms

    E-Print Network [OSTI]

    Heng, Ri-Liang

    2015-01-01

    Biofuel Production frommicroalgal biofuel production [1]. . . . . . . . . . . . . .2 ?xation and biofuel production”, Journal of Quantitative

  3. Using Biofuel Tracers to Study Alternative Combustion Regimes

    E-Print Network [OSTI]

    Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

    2006-01-01

    Section B (NIMB) Using Biofuel Tracers to Study Alternativeinjection. We investigate biofuel HCCI combustion, and use

  4. Geek-Up[7.8.2011]: Cyanobacteria, Biofuels and Next-Generation Batteries

    Broader source: Energy.gov [DOE]

    This edition of the Geek-Up highlights the potential boost that cyanobacteria could deliver to biofuels and examines how computer design tools are advancing the next generation of electric drive vehicle batteries.

  5. On mitigating emissions leakage under biofuel policies

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D

    2015-01-01

    Article Steven T. Berry. Biofuels policy and the empiricaluse change impacts of biofuels in the gtap-bio framework.Genomics of cellulosic biofuels. Nature, 454(7206):841–845,

  6. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01

    Gri?ths, and Jane E. Ihrig. Biofuels impact on crop and foodimplications of U.S. biofuels policies in an integrated par-Second generation biofuels: Economics and policies. Energy

  7. Biofuel Feedstock Inter-Island Transportation

    E-Print Network [OSTI]

    Biofuel Feedstock Inter-Island Transportation Prepared for the U.S. Department of Energy Office Biofuels Feedstocks Hawaii Natural Energy Institute Desktop Study October 2012 Photographs, from left ........................................................................... 11 Options for liquid biofuel feedstock transport ...........................................................................

  8. Complexity and Systems Biology of Microbial Biofuels

    E-Print Network [OSTI]

    Rand, David

    Complexity and Systems Biology of Microbial Biofuels 20-24 June 2011 (All and issues Theme: Biofuel systems and issues (Chair: Nigel Burroughs) 13 (Bielefeld) Biofuels from algae- challenges for industrial levels

  9. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01

    Linda Nostbakken. Will biofuel mandates raise food prices?impacts of alternative biofuel and energy policies. WorkingJust. The welfare economics of a biofuel tax credit and the

  10. BioFuels Atlas Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Kristi Moriarity's presentation on NREL's BioFuels Atlas from the May 12, 2011, Clean Cities and Biomass Program State webinar.

  11. Biofuels and Renewable Energy Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Conventional Renewable Energy Wind Power Hydro Power Power System INL Home Biofuels and Renewable Energy Renewable energy resources are expected to play major role in...

  12. Webinar: Algal Biofuels Consortium Releases Groundbreaking Research...

    Energy Savers [EERE]

    Algal Biofuels Consortium Releases Groundbreaking Research Results Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results Dr. Jose Olivares of Los Alamos...

  13. United Biofuels Private Limited | Open Energy Information

    Open Energy Info (EERE)

    United Biofuels Private Limited Jump to: navigation, search Name: United Biofuels Private Limited Place: Tamil Nadu, India Sector: Biomass Product: India-based owner and operator...

  14. Better Enzymes for Biofuels and Green Chemistry

    E-Print Network [OSTI]

    Better Enzymes for Biofuels and Green Chemistry: Solving the Cofactor Imbalance Problem Imbalances for the production of biofuels or other valuable chemicals. Though several research groups have re

  15. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01

    energy markets: the German biodiesel market. DARE Discussioncosts and bene?ts of biodiesel and ethanol biofuels.Keywords: Biofuels; Ethanol; Biodiesel JEL Codes: Q16; Q42

  16. In-Vessel Retention Technology Development and Use for Advanced PWR Designs in the USA and Korea

    SciTech Connect (OSTI)

    T.G. Theofanous; S.J. Oh; J.H. Scobel

    2004-05-18

    In-Vessel Retention (IVR) of molten core debris by means of external reactor vessel flooding is a cornerstone of severe accident management for Westinghouse's AP600 (advanced passive light water reactor) design. The case for its effectiveness (made in previous work by the PI) has been thoroughly documented, reviewed as part of the licensing certification, and accepted by the US Nuclear Regulatory Commission. A successful IVR would terminate a severe accident, passively, with the core in a stable, coolable configuration (within the lower head), thus avoiding the largely uncertain accident evolution with the molten debris on the containment floor. This passive plant design has been upgraded by Westinghouse to the AP1000, a 1000 MWe plant very similar to the AP600. The severe accident management approach is very similar too, including In-Vessel Retention as the cornerstone feature, and initial evaluations indicated that this would be feasible at the higher power as well. A similar strategy is adopted in Korea for the APR1400 plant. The overall goal of this project is to provide experimental data and develop the necessary basic understanding so as to allow the robust extension of the AP600 In-Vessel Retention strategy for severe accident management to higher power reactors, and in particular, to the AP1000 advanced passive design.

  17. Biofuel-Food Market Interactions:A Review of Modeling Approaches and Findings

    SciTech Connect (OSTI)

    Oladosu, Gbadebo A [ORNL; Msangi, Siwa [International Food and Policy Research Institute (IFPRI)

    2013-01-01

    The interaction between biofuels and food markets remains a policy issue for a number of reasons. There is a continuing need to understand the role of biofuels in the recent spikes in global food prices. Also, there is an ongoing discussion of changes to biofuel policy as a means to cope with severe weather-induced crop losses. Lastly, there are potential interactions between food markets and advanced biofuels, although most of the latter are expected to be produced from non-food feedstocks. This study reviews the existing literature on the food market impacts of biofuels. Findings suggest that initial conclusions attributing most of the spike in global food prices between 2005 and 2008 to biofuels have been revised. Instead, a multitude of factors, in addition to biofuels, converged during the period. Quantitative estimates of the impacts of biofuels on food markets vary significantly due to differences in modeling approaches, geographical scope, and assumptions about a number of crucial factors. In addition, many studies do not adequately account for the effects of macroeconomic changes, adverse weather conditions and direct market interventions during the recent food price spikes when evaluating the role of biofuels.

  18. Property:RenewableFuelStandard/RenewableBiofuel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to: navigation,PowerAdvancedBiofuel JumpRenewableBiofuel

  19. Bioproducts to Enable Biofuels Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Bioenergy Technologies Office (BETO) is hosting the one-day Bioproducts to Enable Biofuels Workshop on July 16, 2015, in Westminster, Colorado. BETO is seeking to collect information from key industry, university, and national laboratory stakeholders, regarding the challenges associated with the coproduction of biomass derived chemicals and products alongside biofuels.

  20. National Algal Biofuels Technology Roadmap

    SciTech Connect (OSTI)

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  1. Advancing Commercialization of Algal Biofuels through Increased...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    through Increased Biomass Productivity and Technical Integration March 25, 2015 Algae Platform Review David Anton, Ph.D., Chief Operating Officer Cellana, LLC This...

  2. Breakthrough: Using Microbes to Make Advanced Biofuels

    SciTech Connect (OSTI)

    Keasling, Jay

    2012-01-01

    Jay Keasling, Berkeley Lab's Associate Director for Bioscience and the CEO of DOE's Joint BioEnergy Institute (JBEI), explains how special strains of microbes can convert the biomass of non-food crops and agricultural waste into fuels for cars, trucks and jet planes. Keasling's research team at JBEI has developed E.coli that can digest switchgrass and convert the plant sugars into gasoline, diesel or jet fuel, not unlike the process by which beer is brewed.

  3. Advanced Cellulosic Biofuels - Leveraging Ensyn's Commercially...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to % Yields from VGO (ratio of yields) Gasoline + Diesel Diesel Gasoline Decant Oil Upstream Downstream Crude Oil Diesel Gasoline RFO 15 Refinery Coprocessing vs...

  4. Breakthrough: Using Microbes to Make Advanced Biofuels

    ScienceCinema (OSTI)

    Keasling, Jay

    2013-05-29

    Jay Keasling, Berkeley Lab's Associate Director for Bioscience and the CEO of DOE's Joint BioEnergy Institute (JBEI), explains how special strains of microbes can convert the biomass of non-food crops and agricultural waste into fuels for cars, trucks and jet planes. Keasling's research team at JBEI has developed E.coli that can digest switchgrass and convert the plant sugars into gasoline, diesel or jet fuel, not unlike the process by which beer is brewed.

  5. Advanced Biofuels Industry Roundtable - List of Participants

    Office of Environmental Management (EM)

    Jeff Hazle - American Fuel & Petrochemical Manufacturers David Hazlebeck - Global Algae Innovations Inc. Scott Hedderich - Renewable Energy Group Pendse Hemant - Forest...

  6. Cross-cutting Technologies for Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy eere.energy.gov 2 Cross-cutting Technology Areas: Feedstock Supply and Logistics growth, harvesting, delivery Analysis economic, life-cycle, resource...

  7. Conversion Technologies for Advanced Biofuels ? Carbohydrates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for host organism in the presentence of limited six carbon sugars Identify cellular transporters and regulators required for maximum sugar to hydrocarbon conversion ...

  8. Conversion Technologies for Advanced Biofuels ? Carbohydrates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Report-Out Webinar February 9, 2012 Mike Ladisch, Ph.D. Purdue University Energy Efficiency & Renewable Energy eere.energy.gov 2 Michael R. Ladisch Distinguished...

  9. A Prospective Target for Advanced Biofuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion Batteries PrintA New SolarA Present . . . AndSystemA

  10. Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NRELDepartmentJune 2,2-13)536 AlternativeEfficiency, and

  11. Production of Advanced Biofuels via Liquefaction - Hydrothermal

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding access toSmall Reactor forPatents -SciTech

  12. Butamax Advanced Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:PontiacInformationAssessmentExplorationButteBuschModels

  13. Conversion Technologies for Advanced Biofuels - Carbohydrates Production

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartmentEnergy comparingDeep JanuaryDepartment of Energy

  14. Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartmentEnergy comparingDeep JanuaryDepartment of

  15. U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets

    E-Print Network [OSTI]

    Noble, James S.

    May 2012 U.S. Biofuels Baseline and Impact of E-15 Expansion on Biofuel Markets FAPRI-MU Report #02 for agricultural and biofuel markets.1 That baseline assumes current biofuel policy, including provisions credit expired, as scheduled, at the end of 2011. The additional tax credit for cellulosic biofuel

  16. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect (OSTI)

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  17. Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:BajoBelpowerBiocar JumpSued GmbH JumpGMediaBiofuels

  18. Sandia Energy - Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni >ScientificAppliedBiofuels Home Analysis Final

  19. Engineering microbes to produce biofuels

    SciTech Connect (OSTI)

    Wackett, LP

    2011-06-01

    The current biofuels landscape is chaotic. It is controlled by the rules imposed by economic forces and driven by the necessity of finding new sources of energy, particularly motor fuels. The need is bringing forth great creativity in uncovering new candidate fuel molecules that can be made via metabolic engineering. These next generation fuels include long-chain alcohols, terpenoid hydrocarbons, and diesel-length alkanes. Renewable fuels contain carbon derived from carbon dioxide. The carbon dioxide is derived directly by a photosynthetic fuel-producing organism(s) or via intermediary biomass polymers that were previously derived from carbon dioxide. To use the latter economically, biomass depolymerization processes must improve and this is a very active area of research. There are competitive approaches with some groups using enzyme based methods and others using chemical catalysts. With the former, feedstock and end-product toxicity loom as major problems. Advances chiefly rest on the ability to manipulate biological systems. Computational and modular construction approaches are key. For example, novel metabolic networks have been constructed to make long-chain alcohols and hydrocarbons that have superior fuel properties over ethanol. A particularly exciting approach is to implement a direct utilization of solar energy to make a usable fuel. A number of approaches use the components of current biological systems, but re-engineer them for more direct, efficient production of fuels.

  20. Nebraska shows potential to produce biofuel crops

    Broader source: Energy.gov [DOE]

    Researchers are searching for ways to change how American farmers and consumers think about biofuels.

  1. Roundtable on Sustainable Biofuels Certification Readiness Study

    E-Print Network [OSTI]

    Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas Inc agency thereof. #12;1 RSB Certification Readiness Study: Hawaii Biofuel Projects Prepared For Hawaii

  2. Roundtable on Sustainable Biofuels Certification Readiness Study

    E-Print Network [OSTI]

    Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable (item 2) Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas: Hawaii Biofuel Projects Prepared For Hawaii Natural Energy Institute School of Ocean Earth Sciences

  3. Aviation Sustainable Biofuels: An Asian Airline Perspective

    E-Print Network [OSTI]

    Aviation Sustainable Biofuels: An Asian Airline Perspective Dr Mark Watson Head of Environmental Affairs, Cathay Pacific Airways Ltd, Hong Kong Aviation Biofuels Session World Biofuels Markets, Rotterdam 24 March 2011 #12;Aviation Biofuels in Asia: Current Status · Focus on "2nd generation" sustainable

  4. Advanced Photon Source Upgrade Project

    ScienceCinema (OSTI)

    Mitchell, John; Gibson, Murray; Young, Linda; Joachimiak, Andrzej

    2013-04-19

    Upgrade to Advanced Photon Source announced by Department Of Energy. Read more: http://go.usa.gov/ivZ

  5. Biofuels: 1995 project summaries

    SciTech Connect (OSTI)

    NONE

    1996-01-01

    Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

  6. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01

    Conversion of biomass to biofuels has been the subject ofdiesel transport fuels with biofuels by 2010 [4]. Owing tobelieved that future biofuels will, by necessity, originate

  7. National Algal Biofuels Technology Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Algal Biofuels Technology Roadmap National Algal Biofuels Technology Roadmap The U.S. Department of Energy (DOE) Biomass Program's National Algal Biofuels Technology...

  8. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    E-Print Network [OSTI]

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01

    Microalgae Producing Biofuels Euntaek Lee, Ri-Liang Heng,Microalgae Producing Biofuels”, Journal of Quantitativeconverted into liquid biofuels [50–53]. On the other hand,

  9. Model estimates food-versus-biofuel trade-off

    E-Print Network [OSTI]

    Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

    2009-01-01

    D. 2008. Income distribution implica- tions of biofuels.Sustainable Biofuels and Human Security Conference,of Food and Agriculture 2008: Biofuels: Prospects, risks and

  10. Creating Markets for Green Biofuels: Measuring and improving environmental performance

    E-Print Network [OSTI]

    Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

    2007-01-01

    2004). Growing Energy: How Biofuels Can Help End America'sCreating Markets For Green Biofuels Kalaitzandonakes, N. ,166. Lancaster, C. (2006). Biofuels assurance schemes and

  11. Assessments of biofuel sustainability: air pollution and health impacts

    E-Print Network [OSTI]

    Tsao, Chi-Chung

    2012-01-01

    of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U.Use of US croplands for biofuels increases greenhouse gasesovercome carbon savings from biofuels in Brazil. Proc. Natl.

  12. Can feedstock production for biofuels be sustainable in California?

    E-Print Network [OSTI]

    Kaffka, Stephen R.

    2009-01-01

    tolife.org/biofuels. [US EPA] US Environmental Protection1–9. The path forward for biofuels and biomaterials. Scienceof individual assessment of biofuels. EMPA, Technology and

  13. Wastewater Reclamation and Biofuel Production Using Algae | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wastewater Reclamation and Biofuel Production Using Algae Wastewater Reclamation and Biofuel Production Using Algae Breakout Session 2-A: The Future of Algae-Based Biofuels...

  14. Improving the Way We Harvest & Deliver Biofuels Crops | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steven Thomas Feedstocks Technology Manager, Bioenergy Technologies Office VIDEOS ON BIOFUEL BASICS The basics of biofuels technology explained in Energy 101: Biofuels. Insight...

  15. Model estimates food-versus-biofuel trade-off

    E-Print Network [OSTI]

    Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

    2009-01-01

    D. 2007. Challenge of biofuel: Filling the tank withoutaddition to policies such as biofuel subsidies and mandates.Whereas biofuel subsidies and man- dates increase the

  16. Assessments of biofuel sustainability: air pollution and health impacts

    E-Print Network [OSTI]

    Tsao, Chi-Chung

    2012-01-01

    Land clearing and the biofuel carbon debt. Science 2008,of reactive nitrogen during biofuel ethanol production.of reactive nitrogen during biofuel ethanol production.

  17. Genetic and biotechnological approaches for biofuel crop improvement.

    E-Print Network [OSTI]

    Vega-Sánchez, Miguel E; Ronald, Pamela C

    2010-01-01

    Plant genetic engineering for biofuel production: towardsbiomass feedstocks for biofuel production. Genome Biol 2008,3:354-359. 25. Fairless D: Biofuel: the little shrub that

  18. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01

    2007) Cellulosic ethanol: biofuel researchers prepare toBiofuel alternatives to ethanol: pumping the microbial welltechnologies that enable biofuel production. Decades of work

  19. Sandia Energy - Biofuels Blend Right In: Researchers Show Ionic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Home Renewable Energy Energy Transportation Energy Biofuels...

  20. Model estimates food-versus-biofuel trade-off

    E-Print Network [OSTI]

    Rajagapol, Deepak; Sexton, Steven; Hochman, Gal; Roland-Holst, David; Zilberman, David D

    2009-01-01

    associ- ated with biofuel production and model the effectspolicymakers blame biofuel production mandates for the foodfood crisis struck as biofuel production, driven largely by

  1. Plant and microbial research seeks biofuel production from lignocellulose

    E-Print Network [OSTI]

    Bartley, Laura E; Ronald, Pamela C

    2009-01-01

    sugar yields for biofuel production. Nat Biotechnol 25(7):research seeks biofuel production from lignocellulose A keylignocellulosic biofuel production and highlight scientific

  2. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01

    and estimate that biofuel production in 2007 increased fuelcompetitive. About 50% of biofuel production costs come fromelasticity is above 8.5, biofuel production meets the RFS2

  3. The Economics of Trade, Biofuel, and the Environment

    E-Print Network [OSTI]

    Hochman, Gal; Sexton, Steven; Zilberman, David D.

    2010-01-01

    agriculture and in biofuel production that improve feedstockagricultural or biofuel production, requires a tax paymentemissions from biofuel production increases. Therefore, the

  4. Creating Markets for Green Biofuels: Measuring and improving environmental performance

    E-Print Network [OSTI]

    Turner, Brian T.; Plevin, Richard J.; O'Hare, Michael; Farrell, Alexander E.

    2007-01-01

    case studies of specific biofuel production pathways using aenvironmental impacts of biofuel production and use are notimpacts. In addition, biofuel production facilities can use

  5. Engineering microbial biofuel tolerance and export using efflux pumps

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01

    pathways for biofuel production because the engineeredincrease the yield of a biofuel production strain. Resultsalso enhanced biofuel production. Two pumps consistently

  6. Assessments of biofuel sustainability: air pollution and health impacts

    E-Print Network [OSTI]

    Tsao, Chi-Chung

    2012-01-01

    the indirect effects of biofuel production on biodiversity:to incremental Brazilian biofuel production of 39 billionChair Accelerating biofuel production has been promoted as

  7. Can feedstock production for biofuels be sustainable in California?

    E-Print Network [OSTI]

    Kaffka, Stephen R.

    2009-01-01

    extent of po- tential biofuel production in California areglobal increases in biofuel production have raised ques-for sustainable biofuel production. This discussion has been

  8. Energy and Greenhouse Impacts of Biofuels: A Framework for Analysis

    E-Print Network [OSTI]

    Kammen, Daniel M.; Farrell, Alexander E.; Plevin, Richard J.; Jones, Andrew D.; Nemet, Gregory F.; Delucchi, Mark A.

    2008-01-01

    The rapid rise in biofuel production is driven by governmentprices. Globally, biofuel production is dominated bysoybeans) and current biofuel production processes are many

  9. Genetic and biotechnological approaches for biofuel crop improvement.

    E-Print Network [OSTI]

    Vega-Sánchez, Miguel E; Ronald, Pamela C

    2010-01-01

    engineering for biofuel production: towards affordablebiomass feedstocks for biofuel production. Genome Biol 2008,sugar yields for biofuel production. Nat Biotechnol 2007,

  10. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01

    technologies that enable biofuel production. Decades of workefficient systems for biofuel production. The current rangeprimary challenge in biofuel production is achieving yields

  11. High biofuel production of Botryococcus braunii using optimized cultivation strategies

    E-Print Network [OSTI]

    Yu, Wei

    2014-01-01

    release from agro-biofuel production negates global warmingcultivation and biofuel production (www.lyxia.com).engineering for biofuel production: towards affordable

  12. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01

    technologies that enable biofuel production. Decades of workefficient systems for biofuel production. The current rangeprimary challenge in biofuel production is achieving yields

  13. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    E-Print Network [OSTI]

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01

    2 fixation and biofuel production”, Journal of Quantitativeunder open raceway pond for biofuel production”, Bioresourceof microalgae for biofuel production be- tween 400 and 750

  14. Transportation Biofuels in the US A Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    focus on specific biofuel production technologies. The nextinterested in. If the biofuel production technology itselffor existing and new biofuel production technologies. Their

  15. Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels

    E-Print Network [OSTI]

    Jones, Andrew; O'Hare, Michael; Farrell, Alexander

    2007-01-01

    O'Hare M, Kammen DM. 2006. Biofuels Can Contribute to EnergyN. 2004. Growing Energy: How Biofuels Can Help End America’sService Koplow D. 2006. Biofuels - At What Cost? Governement

  16. International Trade of Biofuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  17. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  18. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being applied to algal biofuels processes. Analysts are also testing algal fuel properties to measure energy content and ensure compatibility with existing fueling infrastructure. (5) Cross-Cutting Analysis - NREL scientists and engineers are conducting rigorous techno-economic analyses of algal biofuels processes. In addition, they are performing a full life cycle assessment of the entire algae-to-biofuels process.

  19. Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges

    SciTech Connect (OSTI)

    Stiles, Dennis L.; Jones, Susan A.; Orth, Rick J.; Saffell, Bernard F.; Zhu, Yunhua

    2008-02-28

    The purpose of this report is to assemble the information needed to estimate the significance of the opportunity for producing biofuels in the region as well as the associated challenges. The report reviews the current state of the industry, the biomass resources that are available within current production practices, and the biofuels production technology that is available within the marketplace. The report also identifys the areas in which alternative approaches or strategies, or technologoical advances, might offer an opportunity to expand the Nortwest biofuels industry beyond its current state.

  20. F.O. Licht's 17th Annual World Ethanol & Biofuels Conference

    Broader source: Energy.gov [DOE]

    The F.O. Licht's 17th Annual World Ethanol & Biofuels Conference will be held on November 3–6, 2014, in Budapest, Hungary. Valerie Reed, Deputy Director of the Bioenergy Technolgies Office will be serving on two panels: "Maintaining Next Generation Investments in the Years Ahead" on November 4 and "Putting Together a Constant Supply of Feedstocks for Advanced and Cellulosic Biofuels, Biochemicals and Aviation Fuels" on November 5.

  1. Importance of systems biology in engineering microbes for biofuel production

    E-Print Network [OSTI]

    Mukhopadhyay, Aindrila

    2011-01-01

    TS, Steen E, Keasling JD: Biofuel Alternatives to ethanol:in engineering microbes for biofuel production Aindrila

  2. Methods for the economical production of biofuel from biomass

    DOE Patents [OSTI]

    Hawkins, Andrew C; Glassner, David A; Buelter, Thomas; Wade, James; Meinhold, Peter; Peters, Matthew W; Gruber, Patrick R; Evanko, William A; Aristidou, Aristos A; Landwehr, Marco

    2013-04-30

    Methods for producing a biofuel are provided. Also provided are biocatalysts that convert a feedstock to a biofuel.

  3. New Neutrinos Algal Biofuels

    E-Print Network [OSTI]

    , Los Alamos played an important role developing major computing advances, such as parallel processing) HEAVY HITTER SOLAR SYSTEM SURPRISE REACTION TO FUKUSHIMA GREENHOUSE GANG SOLVAY CENTENNIAL 1663 los

  4. Property:RenewableFuelStandard/CellulosicBiofuel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to: navigation,PowerAdvancedBiofuel Jump

  5. Vehicle Technologies Office Merit Review 2014: Performance of Biofuels and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobsAdvanced Engine Combustion Simulation |Biofuel Blends |

  6. Winning the Biofuel Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Winning the Biofuel Future Winning the Biofuel Future March 7, 2011 - 4:44pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy Today, the Department announced that a...

  7. A New Biofuels Technology Blooms in Iowa

    Broader source: Energy.gov [DOE]

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative...

  8. Supramolecular self-assembled chaos: polyphenolic lignin's barrier to cost-effective lignocellulosic biofuels

    E-Print Network [OSTI]

    Achyuthan, Komandoor

    2014-01-01

    thereby  cost-­? effective  biofuels  production.   PMID:  effective  lignocellulosic  biofuels.   Achyuthan  KE,  effective   lignocellulosic  biofuels.  Post-­?synthesis  

  9. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01

    The  United  States'  Biofuel  Policies   and  Compliance  Water  Impacts  of  Biofuel  Extend  Beyond   Irrigation."  for  assessing  sustainable  biofuel  production."  

  10. Measuring and moderating the water resource impact of biofuel production and trade

    E-Print Network [OSTI]

    Fingerman, Kevin Robert

    2012-01-01

    sustainable  biofuel  production."  Ecotoxicology  Dimensions  in  Biofuel   Production.  Rome,  Italy,  UN  resource impact of biofuel production and trade By Kevin

  11. ON THE INDIRECT EFFECT OF BIOFUEL

    E-Print Network [OSTI]

    Zilberman, D; Barrows, G; Hochman, G; Rajagopal, D

    2013-01-01

    Biofuels Increases Green- house Gases through Emissions frombased on the amount of green- house gas emissions (GHGE) of

  12. Legislating Biofuels in the United States (Presentation)

    SciTech Connect (OSTI)

    Clark, W.

    2008-07-01

    Legislation supporting U.S. biofuels production can help to reduce petroleum consumption and increase the nation's energy security.

  13. Energy 101: Feedstocks for Biofuels and More

    Office of Energy Efficiency and Renewable Energy (EERE)

    See how organic materials are used to create biofuels, reducing dependence on foreign oil and creating jobs.

  14. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01

    cost of the government mandated biofuels supports should be compared to government involvement in conventional oil drilling,

  15. On mitigating emissions leakage under biofuel policies

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D

    2015-01-01

    than 1:1 replacement of oil products with biofuel, which isshow how different oil products are affected differently

  16. Algal Biofuels Research Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

  17. On mitigating emissions leakage under biofuel policies

    E-Print Network [OSTI]

    Rajagopal, D

    2015-01-01

    Biofuel (and renewable energy) policies are multi-objective.renewable fuels standard: Economic and greenhouse gas implications. Energy Policy,

  18. A New Biofuels Technology Blooms in Iowa

    SciTech Connect (OSTI)

    Mathisen, Todd; Bruch, Don

    2010-01-01

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  19. Potential for Biofuels from Algae (Presentation)

    SciTech Connect (OSTI)

    Pienkos, P. T.

    2007-11-15

    Presentation on the potential for biofuels from algae presented at the 2007 Algae Biomass Summit in San Francisco, CA.

  20. A New Biofuels Technology Blooms in Iowa

    ScienceCinema (OSTI)

    Mathisen, Todd; Bruch, Don;

    2013-05-29

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  1. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    E-Print Network [OSTI]

    Ngan, Chew Yee

    2014-01-01

    regulation pathway for biofuels production Chew Yee Ngan ,regulation pathway for biofuels production Chew Yee Ngan,for the development of biofuels. Biofuels are produced from

  2. School of Engineering and Science Algae Biofuels

    E-Print Network [OSTI]

    Fisher, Frank

    School of Engineering and Science Algae Biofuels BY: Alessandro Faldi, Ph.D. Section Head is algae- based biofuels, which we believe could be a meaningful part of the energy mix in the future. Algae biofuels have potential to be an economically viable, low-net carbon transportation fuel

  3. Biofuels and bio-products derived from

    E-Print Network [OSTI]

    Ginzel, Matthew

    NEED Biofuels and bio- products derived from lignocellulosic biomass (plant materials) are part improve the energy and carbon efficiencies of biofuels production from a barrel of biomass using chemical and thermal catalytic mechanisms. The Center for Direct Catalytic Conversion of Biomass to Biofuels IMPACT

  4. Can biofuels justify current transport policies?

    E-Print Network [OSTI]

    Can biofuels justify current transport policies? Jérémie Mercier IARU Climate Congress - Copenhagen is growing 2) Today biofuels bring little or no greenhouse gas benefits 3) We need to change #12;IARU Climate;IARU Climate Congress, Copenhagen, 11th March 2009 - Jérémie Mercier 4 Biofuels consumption growing

  5. Oil To Biofuels Case Study Objectives

    E-Print Network [OSTI]

    Auerbach, Scott M.

    Oil To Biofuels Case Study Objectives - Critically evaluate the nature of certain societal", and the consequences of various sources. - How could this diagram be modified through the use of biofuels? Research. - What are biomass and biofuels? How are they used, what are their benefits and negative consequences

  6. How sustainable are current transport biofuels?

    E-Print Network [OSTI]

    How sustainable are current transport biofuels? Jérémie Mercier 7th BIEE Academic Conference biofuels and what is expected from them? 2) Sustainability impacts of agrofuels and the UK certification Conference - Oxford 24th September 2008 1) What are current transport biofuels and what is expected from them

  7. Mascoma Announces Major Cellulosic Biofuel Technology Breakthrough

    E-Print Network [OSTI]

    Mascoma Announces Major Cellulosic Biofuel Technology Breakthrough Lebanon, NH - May 7, 2009 bioprocessing, or CBP, a low-cost processing strategy for production of biofuels from cellulosic biomass. CBP much, much closer to billions of gallons of low cost cellulosic biofuels," said Michigan State

  8. SEE ALSO SIDEBARS: RECOURCES SOLARRESOURCES BIOMASS & BIOFUELS

    E-Print Network [OSTI]

    Kammen, Daniel M.

    373 SEE ALSO SIDEBARS: RECOURCES · SOLARRESOURCES · BIOMASS & BIOFUELS Engineered and Artificial, and the production of liquid biofuels for transportation is growing rapidly. However, both traditional biomass energy and crop-based biofuels technologies have negative environmental and social impacts. The overall research

  9. Ultra Soy of America DBA USA Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S. EPAEnergyUltra High Temperature Jump

  10. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    key issues for research. Energy Policy, 2000. 28(9): p. 625-energy technology. Energy Policy, 2006. 34(3): p. 256-276.carbon lock-in. Energy Policy, 2000. 28(12): p. Koplow, D. ,

  11. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    ethanol as a blending agent for gasoline to increase octaneof ethanol as a blending agent in gasoline highlights someis sold as a blending agent for gasoline up to levels of 10%

  12. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    Technology Program - http://www.oit.doe.gov/ Office of Science - http://www.science.doe.gov/ Basic Energy

  13. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    The bumpy road of biomass gasification in the Netherlands:rise again) of biomass gasification for power production in

  14. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    support for ethanol and biodiesel in the United States.Biodiesel ..and $1.8 billion for biodiesel production [9]. The third

  15. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    eighty-five percent ethanol (E85). This equipment generallyof E85 actually result in increased ethanol consumption? 2.Gallons of E85 or less than 1% of ethanol sold that year.

  16. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    Energy Security 35Strengthening America's Energy Security Reducing GasolineAnd Innovation Will Lead To Energy Security. President Bush

  17. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    studies Figure 4: Net Energy and Petroleum input from select23 Figure 4: Net Energy and Petroleum input from select~ 5 quads of fuel energy). Besides petroleum reduction and

  18. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    SciTech Connect (OSTI)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  19. Tailoring next-generation biofuels and their combustion in next-generation engines.

    SciTech Connect (OSTI)

    Gladden, John Michael; Wu, Weihua; Taatjes, Craig A.; Scheer, Adam Michael; Turner, Kevin M.; Yu, Eizadora T.; O'Bryan, Greg; Powell, Amy Jo; Gao, Connie W. [Massachusetts Institute of Technology, Cambridge, MA] [Massachusetts Institute of Technology, Cambridge, MA

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  20. Secretary Chu Announces up to $30 Million for Research to Advance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    projects that support the development of advanced biofuels that will be able to replace gasoline or diesel without requiring special upgrades or changes to the vehicle or fueling...

  1. DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion

    Office of Scientific and Technical Information (OSTI)

    Combustion Engines Bunting, Bruce G ORNL; Bunce, Michael ORNL 02 PETROLEUM; 04 OIL SHALES AND TAR SANDS; 10 SYNTHETIC FUELS; 33 ADVANCED PROPULSION SYSTEMS; BIOFUELS;...

  2. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect (OSTI)

    Sastri, B.; Lee, A.

    2008-09-15

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

  3. Advances in Cryptology --Proceedings of CRYPTO '2003 (17 --21 august 2003, Santa Barbara, California, USA) D. Boneh Ed. SpringerVerlag, LNCS 2729, pages 226--246.

    E-Print Network [OSTI]

    Nguyen, Phong Q.

    is the presence of de­ cryption failures: with standard parameters, validly generated ciphertexts may fail, California, USA) D. Boneh Ed. Springer­Verlag, LNCS 2729, pages 226--246. The Impact of Decryption Failures­key cryptosystems in that, with standard parameters, validly generated ciphertexts can fail to decrypt. This a

  4. Biofuels in Oregon and Washington

    E-Print Network [OSTI]

    's Office of Energy Efficiency and Renewable Energy, Office of Biomass Programs Prepared by Pacific within the Office of Energy Efficiency and Renewable Energy, particularly Mr. Zia Haq, for co- fundingPNNL-17351 Biofuels in Oregon and Washington A Business Case Analysis of Opportunities

  5. National Algal Biofuels Technology Roadmap

    E-Print Network [OSTI]

    National Algal Biofuels Technology Roadmap MAY 2010 BIOMASS PROGRAM #12;#12;U.S. DOE 2010. National Ferrell Office of Energy Efficiency and Renewable Energy Office of the Biomass Program (202)586-5340 john.ferrell@ee.doe)586-5340 valerie.sarisky-reed@ee.doe.gov Roadmap Editors: Daniel Fishman,1 Rajita Majumdar,1 Joanne Morello,2 Ron

  6. YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF

    E-Print Network [OSTI]

    YOKAYO BIOFUELS, INC. GRANT FOR IMPROVEMENTS AND EXPANSION OF AN EXISTING FACILITY INITIAL STUDY-11-601) to expand an existing biofuels production facility (Yokayo Biofuels, Inc.) located at 350 Orr: THE PROPOSED PROJECT: Yokayo Biofuels, Inc. is an existing biofuels facility located at 350 Orr Springs Road

  7. #LabChat Q&A: Biofuels of the Future, Sept. 26 at 2 pm EDT

    Broader source: Energy.gov [DOE]

    Our biofuels experts can answer your questions about biofuels, bioenergy and the next generation of fuel.

  8. Engineering of bacterial methyl ketone synthesis for biofuels

    E-Print Network [OSTI]

    Goh, Ee-Been

    2012-01-01

    ketone synthesis for biofuels Ee-Been Goh†† 1,3 , Edward E.microbes for use as biofuels, such as fatty acid ethylother fatty acid-derived biofuels, such as fatty acid ethyl

  9. Better Enzymes for Biofuels and Green Chemistry: Solving the

    E-Print Network [OSTI]

    RESEARCH HIGHLIGHTS Better Enzymes for Biofuels and Green Chemistry: Solving the Cofactor Imbalance Better Enzymes for Biofuels and Green Chemistry: Solving the Cofactor Imbalance Problem Global-rational protein engineering approaches to drive industrial biocatalysis forward. Better Enzymes for Biofuels

  10. Energy and Greenhouse Impacts of Biofuels: A Framework for Analysis

    E-Print Network [OSTI]

    Kammen, Daniel M.; Farrell, Alexander E.; Plevin, Richard J.; Jones, Andrew D.; Nemet, Gregory F.; Delucchi, Mark A.

    2008-01-01

    Greenhouse Gas Impacts of Biofuels Wang, M. (2001) "Energy & Greenhouse Gas Impacts of Biofuels Fuels and MotorLifecycle Analysis of Biofuels." Report UCD-ITS-RR-06-08.

  11. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01

    that the introduction of biofuels reduces global fossil fuele?ects of introducing biofuels using the cartel-of-nationsthe e?ect of introducing biofuels under a competitive fuel

  12. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01

    of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U.S. (2006) Bonkers about biofuels. Nat. Biotechnol. 24, 755–Schubert, C. (2006) Can biofuels finally take center stage?

  13. Transportation Biofuels in the US A Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    12): p. Koplow, D. , Biofuels – At What Cost? : GovernmentResulting from the Biomass to Biofuels Workshop Sponsored byN. , Growing Energy: How biofuels can help end America's oil

  14. A Review of DOE Biofuels Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Review of DOE Biofuels Program A Review of DOE Biofuels Program Presentation given by the Biomass Program's Zia Haq at NIST's 4th International Conference on Biofuels Standards...

  15. Defossiling Fuel: How Synthetic Biology Can Transform Biofuel Production

    E-Print Network [OSTI]

    Defossiling Fuel: How Synthetic Biology Can Transform Biofuel Production David F. Savage , Jeffrey through natural intermediates to final molecule is long, and biofuel production is perhaps the ultimate engineering, economic, political, and environmental realities. Are biofuels sustainable? Consider U

  16. NextSTEPS White Paper: Three Routes Forward for Biofuels

    E-Print Network [OSTI]

    California at Davis, University of

    NextSTEPS White Paper: Three Routes Forward for Biofuels: Incremental, Transitional, and Leapfrog NOT CITE #12;Three Routes Forward for Biofuels: Incremental, Transitional, and Leapfrog 2 Contents ......................................................................................................................................12 1.a. The Need for Low Carbon Biofuels

  17. Energy Department Helping Lower Biofuel Costs for the Nation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Helping Lower Biofuel Costs for the Nation Energy Department Helping Lower Biofuel Costs for the Nation January 29, 2015 - 9:31am Addthis Biofuels are produced in...

  18. Plant and microbial research seeks biofuel production from lignocellulose

    E-Print Network [OSTI]

    Bartley, Laura E; Ronald, Pamela C

    2009-01-01

    sugar yields for biofuel production. Nat Biotechnol 25(7):Plant and microbial research seeks biofuel production fromA key strategy for biofuel produc- tion is making use of the

  19. High biofuel production of Botryococcus braunii using optimized cultivation strategies

    E-Print Network [OSTI]

    Yu, Wei

    2014-01-01

    W. N2O release from agro-biofuel production negates globalcultivation and biofuel production (www.lyxia.com).183 (2001) Amin S. Review on biofuel oil and gas production

  20. Engineering microbial biofuel tolerance and export using efflux pumps

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01

    Biology 2011 3 Engineering biofuel tolerance using ef?uxPublishers Limited Engineering biofuel tolerance using ef?uxFigure 2 When grown with biofuel, strains with bene?cial

  1. The Economics of Trade, Biofuel, and the Environment

    E-Print Network [OSTI]

    Hochman, Gal; Sexton, Steven; Zilberman, David D.

    2010-01-01

    prices. The reason: demand for biofuel increases, and ?rst-The Economics of Trade, Biofuel, and the Environment GalThe Economics of Trade, Biofuel, and the Environment ? Gal

  2. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01

    Paper 1099 The Effect of Biofuel on the International Oilby author(s). The e?ect of biofuel on the international oilto quantify the impact of biofuel on fuel markets, assuming

  3. Quantitative Analysis of Biofuel Sustainability, Including Land...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    life cycle analysis of biofuels continue to improve 2 Feedstock Production Feedstock Logistics, Storage and Transportation Feedstock Conversion Fuel Transportation and...

  4. Cassava, a potential biofuel crop in China

    E-Print Network [OSTI]

    Jansson, C.

    2010-01-01

    18-673389 Keywords: cassava; bioethanol; biofuel; metabolicRecently, cassava-derived bioethanol production has beenbenefits compared to other bioethanol- producing crops in

  5. Biofuels: Review of Policies and Impacts

    E-Print Network [OSTI]

    Janda, Karel; Kristoufek, Ladislav; Zilberman, David

    2011-01-01

    relationship between prices of fossil fuels, biofuels andglobal fossil fuel consumption and international fuel priceson fossil fuels in the lower and higher crude oil price

  6. Researching profitable and sustainable biofuels | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from DOE Center studies carbon cycling, water quality and greenhouse gas emissions in biofuel cropping systems Research could significantly shorten time to harvest perennial crops...

  7. Nanotechnology and algae biofuels exhibits open July 26 at the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology and algae biofuels exhibits open July 26 Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum The Bradbury Science Museum is...

  8. DOE Announces Additional Steps in Developing Sustainable Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Developing Sustainable Biofuels Industry DOE Announces Additional Steps in Developing Sustainable Biofuels Industry October 7, 2008 - 4:14pm Addthis Releases Results from...

  9. Second-Generation Biofuels from Multi-Product Biorefineries Combine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Second-Generation Biofuels from Multi-Product...

  10. Cellu-WHAT?-sic: Communicating the Biofuels Message to Local...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellu-WHAT?-sic: Communicating the Biofuels Message to Local Stakeholders Cellu-WHAT?-sic: Communicating the Biofuels Message to Local Stakeholders Breakout Session 3D-Building...

  11. DOE Announces Webinars on Biofuel Affordability and Tools for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Affordability and Tools for Evaluating Tribal Energy Efficiency DOE Announces Webinars on Biofuel Affordability and Tools for Evaluating Tribal Energy Efficiency May 20,...

  12. Single, Key Gene Discovery Could Streamline Production of Biofuels...

    Energy Savers [EERE]

    Single, Key Gene Discovery Could Streamline Production of Biofuels Single, Key Gene Discovery Could Streamline Production of Biofuels August 11, 2011 - 3:51pm Addthis WASHINGTON,...

  13. Five Harvesting Technologies are Making Biofuels More Competitive...

    Energy Savers [EERE]

    Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace March 17,...

  14. Milestone Reached: New Process Reduces Cost and Risk of Biofuel...

    Energy Savers [EERE]

    Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from...

  15. Solazyme Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvani...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solazyme Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvania Solazyme Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvania August 6, 2010 - 2:00pm Addthis A...

  16. President Obama Announces Major Initiative to Spur Biofuels Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    President Obama Announces Major Initiative to Spur Biofuels Industry and Enhance America's Energy Security President Obama Announces Major Initiative to Spur Biofuels Industry and...

  17. Brazil's Biofuels Scenario: What are the Main Drivers Which will...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brazil's Biofuels Scenario: What are the Main Drivers Which will Shape Investments in the Long Term? Brazil's Biofuels Scenario: What are the Main Drivers Which will Shape...

  18. Simulation Approaches for Drop-in Biofuels | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation Approaches for Drop-in Biofuels Biofuels are an important part of our country's plan to develop diverse sources of clean and renewable energy. These alternative fuels...

  19. Current Challenges in Commercially Producing Biofuels from Lignocellul...

    Office of Scientific and Technical Information (OSTI)

    Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass Citation Details In-Document Search Title: Current Challenges in Commercially Producing Biofuels...

  20. Electrolytic Methods as a Cost and Energy Effective Alternative of Harvesting Algae for Biofuel 

    E-Print Network [OSTI]

    Morrison, Taylor 1986-

    2012-08-30

    METHODS AS A COST AND ENERGY EFFECTIVE ALTERNATIVE OF HARVESTING ALGAE FOR BIOFUEL A Thesis by TAYLOR LEE MORRISON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of Energy through the National Alliance for Advanced Biofuels and Bioproducts. The Texas A&M campus facilities available were Dr. Ron Lacey?s micro-algae lab, Dr. Nikolov?s bio-separations lab and Dr. Karthi?s water quality lab. The offsite facility...

  1. Chapter 18: Understanding the Developing Cellulosic Biofuels Industry through Dynamic Modeling

    SciTech Connect (OSTI)

    Newes, E.; Inman, D.; Bush, B.

    2011-01-01

    The purpose of this chapter is to discuss a system dynamics model called the Biomass Scenario Model (BSM), which is being developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the burgeoning cellulosic biofuels industry in the United States. The model has also recently been expanded to include advanced conversion technologies and biofuels (i.e., conversion pathways that yield biomass-based gasoline, diesel, jet fuel, and butanol), but we focus on cellulosic ethanol conversion pathways here. The BSM uses a system dynamics modeling approach (Bush et al., 2008) built on the STELLA software platform.

  2. BROAD USA Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuels Brasil Jump to: navigation,BROAD USA Inc Jump

  3. LIFE CYCLE ASSESSMENT OF BIOFUEL SUGARCANE PRODUCED

    E-Print Network [OSTI]

    Ma, Lena

    LIFE CYCLE ASSESSMENT OF BIOFUEL SUGARCANE PRODUCED IN MINERAL SOILS IN FLORIDA 1/11/2013 Technical Report Prepared by: Jose-Luis Izursa #12;LIFE CYCLE ASSESSMENT OF BIOFUEL SUGARCANE PRODUCED IN MINERAL.............................................................................................. 10 3.3. Life Cycle Impact Assessment Methodology and Impact Categories

  4. LIFE CYCLE ASSESSMENT OF BIOFUEL SUGARCANE

    E-Print Network [OSTI]

    Ma, Lena

    LIFE CYCLE ASSESSMENT OF BIOFUEL SUGARCANE PRODUCED IN ORGANIC SOILS IN FLORIDA 1/15/2013 Technical Report Prepared by: Jose-Luis Izursa #12;LIFE CYCLE ASSESSMENT OF BIOFUEL SUGARCANE PRODUCED IN ORGANIC.............................................................................................. 10 3.3. Life Cycle Impact Assessment Methodology and Impact Categories

  5. Algal Biofuels Strategy Workshop- Fall Event

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy's (DOE) Bioenergy Technologies Office's (BETO's) Algae Program hosted the Algal Biofuels Strategy Workshop at Arizona State University on November 19-20, 2013, to discuss the research and development (R&D) needed to achieve affordable, scalable, and sustainable algae-based biofuels.

  6. United Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S.UnifinPark,Unitech Printed CircuitBiofuels

  7. Producing biofuels using polyketide synthases

    DOE Patents [OSTI]

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  8. Piedmont Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | Open EnergyPhoenicia, NewPicket Lake,VermelhoBiofuels Jump

  9. Mead Biofuel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation, searchScotland JumpPlantationBiofuel Jump to: navigation,

  10. Integrity Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimenMakingBiofuels Jump to: navigation, search Name: Integrity

  11. Vercipia Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZUtility RatesComercio eVercipia Biofuels Jump to:

  12. SG Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy|GasRugbyRuthtonSENDECO2Biofuels Jump

  13. CPS Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources JumpCIA-The World FactbookCNCOPCPS Biofuels

  14. Cobalt Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to: navigation, searchClover HillCobalt Biofuels Jump to:

  15. Sandia National Laboratories: Research: Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque Albuquerque HousingBiofuels Overcoming challenges to make

  16. Near-zero emissions combustor system for syngas and biofuels

    SciTech Connect (OSTI)

    Yongho, Kim [Los Alamos National Laboratory; Rosocha, Louis [Los Alamos National Laboratory

    2010-01-01

    A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. In this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on research necessary to develop a novel, high-efficiency, low-emissions (near-zero, or as low as reasonably achievable), advanced combustion technology for electricity and heat production from biofuels and fuels derived from MSW. For any type of combustion technology, including the advanced technology of this project, two problems of special interest must be addressed: developing and optimizing the combustion chambers and the systems for igniting and sustaining the fuel-burning process. For MSW in particular, there are new challenges over gaseous or liquid fuels because solid fuels must be ground into fine particulates ({approx} 10 {micro}m diameter), fed into the advanced combustor, and combusted under plasma-assisted conditions that are quite different than gaseous or liquid fuels. The principal idea of the combustion chamber design is to use so-called reverse vortex gas flow, which allows efficient cooling of the chamber wall and flame stabilization in the central area of the combustor (Tornado chamber). Considerable progress has been made in design ing an advanced, reverse vortex flow combustion chamber for biofuels, although it was not tested on biofuels and a system that could be fully commercialized has never been completed.

  17. Potential Land Use Implications of a Global Biofuels Industry

    E-Print Network [OSTI]

    Gurgel, Angelo C.

    In this paper we investigate the potential production and implications of a global biofuels industry. We

  18. EPA and RFS2: Market Impacts of Biofuel Mandate

    E-Print Network [OSTI]

    Noble, James S.

    July 2012 EPA and RFS2: Market Impacts of Biofuel Mandate Waiver Options The EPA is required by law to implement biofuel use mandates and it has proposed to waive the cellulosic biofuels other than cellulosic biofuels. If other mandates are decreased, then that imperative to replace

  19. US Biofuels Baseline and impact of extending the

    E-Print Network [OSTI]

    Noble, James S.

    June 2011 US Biofuels Baseline and impact of extending the $0.45 ethanol blenders baseline projections for agricultural and biofuel markets.1 That baseline assumed current biofuel policy for cellulosic biofuels was assumed to expire at the end of 2012. This report compares a slightly modified

  20. Special Seminar Realizing the Full Potential of Algal Biofuels

    E-Print Network [OSTI]

    Garfunkel, Eric

    of Algal Biofuels Dr. Ronald R. Chance Senior Scientific Advisor, Physical Sciences Algenol Biofuels Fort: Although biofuels have great potential as lower-carbon-footprint, drop-in fuels for existing transportation, economic viability, and achievable reduction in carbon footprint. A cyanobacteria-based biofuels system

  1. VIEWLS Final recommendations report Shift Gear to Biofuels

    E-Print Network [OSTI]

    VIEWLS Final recommendations report 1 Shift Gear to Biofuels Results and recommendations from the VIEWLS project November 2005 #12;Shift Gear to Biofuels Final report of the VIEWLS project 2 #12;Shift Gear to Biofuels Final report of the VIEWLS project 3 Preface Biofuels are fuels made from

  2. III. Commercial viability of second generation biofuel technology27

    E-Print Network [OSTI]

    29 III. Commercial viability of second generation biofuel technology27 The previous chapters focused on first generation biofuels. In this chapter we focus on second generation biofuels, specifically biofuels derived from cellulosic or lignocellulosic conversion. Advocates for the development of cellulosic

  3. Essays on the Economics of Climate Change, Biofuel and Food Prices

    E-Print Network [OSTI]

    Seguin, Charles

    2012-01-01

    1999. K. Collins. The role of biofuels and other factors inan underproduction of biofuels, but when it does, secondis the promotion of biofuels as alternatives to fossil

  4. Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels

    E-Print Network [OSTI]

    Gopal, Anand Raja

    2011-01-01

    Criteria for Sustainable Biofuel Production. RSB, pages 1–and Tyner, W. (2008b). Impact of Biofuel Production on WorldClifford, P. (2009). Assessing Biofuel Crop Invasiveness: A

  5. Modeling Poplar Growth as a Short Rotation Woody Crop for Biofuels

    E-Print Network [OSTI]

    Hart, Quinn James

    2014-01-01

    a Short Rotation Woody Crop for Biofuels Q. J. Hart 1,? , O.for cellulosic derived biofuels. The ability to accuratelycrops for bioenergy and biofuels applications. In vitro

  6. Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change

    E-Print Network [OSTI]

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

    2015-01-01

    of U.S. Croplands for Biofuels Increases Greenhouse GasesLife-Cycle Assessment of Biofuels. Environmental Science &cellulosic ethanol. Biotechnol Biofuels 6 (1), 51. Elliott,

  7. The Joint BioEnergy Institute (JBEI): Developing New Biofuels by Overcoming Biomass Recalcitrance

    E-Print Network [OSTI]

    Scheller, Henrik Vibe; Singh, Seema; Blanch, Harvey; Keasling, Jay D.

    2010-01-01

    JD (2009) Producing biofuels using polyketide synthases.JBEI): Developing New Biofuels by Overcoming Biomassthe next-generation of biofuels— liquid fuels derived from

  8. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    E-Print Network [OSTI]

    Kuk Lee, Sung

    2010-01-01

    of microbial hosts for biofuels production. Metab Eng 2008,delivers next-generation biofuels. Nat Biotechnol 27.furfural (HMF). Biotechnol Biofuels 2008, 1:12. 40. Trinh

  9. Versatile microbial surface-display for environmental remediation and biofuels production

    E-Print Network [OSTI]

    Hawkes, Daniel S

    2008-01-01

    engineering microbes for biofuels production. Science 315,xenobiotics remediation and biofuels production. TargetP. putida JS444 E. coli Biofuels Production Cellobiose

  10. A model for improving microbial biofuel production using a synthetic feedback loop

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01

    for improving microbial biofuel production using a synthetica model for microbial biofuel production where a syntheticcell viability and biofuel yields. Although microbes can be

  11. Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium

    E-Print Network [OSTI]

    Goyal, Garima

    2011-01-01

    Biomass for Efficient Biofuel Production Using YeastBiomass for Efficient Biofuel Production Using YeastConsortium for efficient biofuel production: A New Candidate

  12. Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production

    E-Print Network [OSTI]

    Hollister, E.B.

    2012-01-01

    carboxylate platform for biofuel production E.B. Hollisterbiomass conversion and biofuel production. Keywords: mixedbiomass conversion and biofuel production. Materials and

  13. A model for improving microbial biofuel production using a synthetic feedback loop

    E-Print Network [OSTI]

    Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

    2010-01-01

    Steen E, Keasling JD (2008) Biofuel alternatives to ethanol:gene expression. Microbial biofuel production is one areaet al. 2008). Typical biofuel production processes start

  14. Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change

    E-Print Network [OSTI]

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

    2015-01-01

    Impacts of United States Biofuel Policies: The Importance ofcoproduct substitution in the biofuel era. Agribusiness 27 (CGE: assessing the EU biofuel mandates with the MIRAGE-BioF

  15. Control and Optimization of Light Transfer in Photobioreactors Used for Biofuel Production

    E-Print Network [OSTI]

    Kandilian, Razmig

    2014-01-01

    sp. used for fixation and biofuel produc- tion”, Journal ofas feedstocks for biofuel production: per- spectives andPhotobioreactors Used for Biofuel Production A dissertation

  16. The in vitro characterization of heterologously expressed enzymes to inform in vivo biofuel production optimization

    E-Print Network [OSTI]

    Garcia, David Ernest

    2013-01-01

    enzymes to inform in vivo biofuel production optimization Byenzymes to inform in vivo biofuel production optimization byE & Keasling JD (2008) Biofuel alternatives to ethanol:

  17. Construction of a rice glycoside hydrolase phylogenomic database and identification of targets for biofuel research.

    E-Print Network [OSTI]

    Sharma, Rita; Cao, Peijian; Jung, Ki-Hong; Sharma, Manoj K; Ronald, Pamela C

    2013-01-01

    fication of targets for biofuel research. Front. Plant Sci.identification of targets for biofuel research Rita Sharmawall modification. Keywords: biofuel, cell wall, database,

  18. Measurements and predictions of the radiation characteristics of biofuel-producing microorganisms

    E-Print Network [OSTI]

    Heng, Ri-Liang

    2015-01-01

    Biofuel Production fromFigures Lifecycle diagram of microalgal biofuel production [used for CO 2 ?xation and biofuel production”, Journal of

  19. Switchgrass is a promising, high-yielding crop for California biofuel

    E-Print Network [OSTI]

    2011-01-01

    both as forage and as a biofuel crop, switchgrass may bepanic grass grown as a biofuel in southern England. Bioresfor switchgrass for biofuel systems. Biomass Bioenergy 30:

  20. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    E-Print Network [OSTI]

    Wohlbach, Dana J.

    2011-01-01

    fermenting fungi for enhanced biofuel production Dana J.fermenting fungi for enhanced biofuel production Dana J.fermenting fungi for enhanced biofuel production Dana J.

  1. For switchgrass cultivated as biofuel in California, invasiveness limited by several steps

    E-Print Network [OSTI]

    DiTomaso, Joseph M; Barney, Jacob N; Mann, J Jeremiah; Kyser, Guy

    2013-01-01

    United States. In selecting biofuel crops, a balance must bethe degree of risk that a biofuel crop (including cultivarsthe risk potential of biofuel crops: qualitative and

  2. Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries

    E-Print Network [OSTI]

    Morrow, III, William R.

    2013-01-01

    Criteria for Sustainable Biofuel Production, Version 2.0.sustainability concepts in biofuel supply chain management:of switchgrass-for-biofuel systems. Biomass & Bioenergy,

  3. Energy and Greenhouse Gas Impacts of Biofuels: A Framework for Analysis

    E-Print Network [OSTI]

    Kammen, Daniel M.; Farrell, Alexander E; Plevin, Richard J; Jones, Andrew; Nemet, Gregory F; Delucchi, Mark

    2008-01-01

    The rapid rise in biofuel production is driven by governmentprices. Globally, biofuel production is dominated bysoybeans) and current biofuel production processes are many

  4. Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium

    E-Print Network [OSTI]

    Goyal, Garima

    2011-01-01

    for Efficient Biofuel Production Using Yeast Consortium Afor Efficient Biofuel Production Using Yeast Consortium byConsortium for efficient biofuel production: A New Candidate

  5. A model for improving microbial biofuel production using a synthetic feedback loop

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01

    for improving microbial biofuel production using a synthetica model for microbial biofuel production where a syntheticloop that limits biofuel production. These toxic effects may

  6. The in vitro characterization of heterologously expressed enzymes to inform in vivo biofuel production optimization

    E-Print Network [OSTI]

    Garcia, David Ernest

    2013-01-01

    to inform in vivo biofuel production optimization By Davidto inform in vivo biofuel production optimization by Davidability to increase biofuel production titers. Taking a step

  7. Essays on the Economics of Climate Change, Biofuel and Food Prices

    E-Print Network [OSTI]

    Seguin, Charles

    2012-01-01

    negative impacts that biofuel production might have on foodbrought about by biofuel production. Non-convexities inlook at the optimal biofuel production when it competes for

  8. Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits

    E-Print Network [OSTI]

    Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

    2009-01-01

    associated with biofuel production, including environmental3. Water use in biofuel production. Fig. 4. Water embeddedthe water consumed in biofuel production. By some estimates,

  9. Engineering the Surface of Bacillus subtilis to Degrade Lignocellulose for Biofuel Production

    E-Print Network [OSTI]

    Anderson, Timothy David

    2013-01-01

    Hydrolysis and Biofuel Production. Industrial & EngineeringDegrade Lignocellulose for Biofuel Production A dissertationLignocellulose for Biofuel Production by Timothy David

  10. Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change

    E-Print Network [OSTI]

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

    2015-01-01

    an increase in biofuel production. According to several;emissions from ILUC. Biofuel production also affects foodfrom increased biofuel production. AEZ- EF takes the GTAP

  11. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    E-Print Network [OSTI]

    Kuk Lee, Sung

    2010-01-01

    economically viable biofuel production, all aspects of thesemany challenges on biofuel production [1,3 ,28-30]. Some ofhigh-flux reactions. Biofuel production efforts can benefit

  12. Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels

    E-Print Network [OSTI]

    Gopal, Anand Raja

    2011-01-01

    for Sustainable Biofuel Production. RSB, pages 1–29. [Birur2008b). Impact of Biofuel Production on World AgriculturalPolicies for Biofuel Production. Conservation Biology, 22(

  13. A model for improving microbial biofuel production using a synthetic feedback loop

    E-Print Network [OSTI]

    Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

    2010-01-01

    expression. Microbial biofuel production is one area whereal. 2008). Typical biofuel production processes start withwith uncertainty in the biofuel production rate. Our ?ndings

  14. National Geo-Database for Biofuel Simulations and Regional Analysis of Biorefinery Siting Based on Cellulosic Feedstock Grown on Marginal Lands

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01

    The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. ARRA support for this project and to the PNNL Joint Global Change Research Institute enabled us to create an advanced computing infrastructure to execute millions of simulations, conduct post-processing calculations, store input and output data, and visualize results. These computing resources included two components installed at the Research Data Center of the University of Maryland. The first resource was 'deltac': an 8-core Linux server, dedicated to county-level and state-level simulations and PostgreSQL database hosting. The second resource was the DOE-JGCRI 'Evergreen' cluster, capable of executing millions of simulations in relatively short periods. ARRA funding also supported a PhD student from UMD who worked on creating the geodatabases and executing some of the simulations in this study. Using a physically based classification of marginal lands, we simulated production of cellulosic feedstocks from perennial mixtures grown on these lands in the US Midwest. Marginal lands in the western states of the US Midwest appear to have significant potential to supply feedstocks to a cellulosic biofuel industry. Similar results were obtained with simulations of N-fertilized perennial mixtures. A detailed spatial analysis allowed for the identification of possible locations for the establishment of 34 cellulosic ethanol biorefineries with an annual production capacity of 5.6 billion gallons. In summary, we have reported on the development of a spatially explicit national geodatabase to conduct biofuel simulation studies and provided simulation results on the potential of perennial cropping systems to serve as feedstocks for the production of cellulosic ethanol. To accomplish this, we have employed sophisticated spatial analysis methods in combination with the process-based biogeochemical model EPIC. The results of this study will be submitted to the USDOE Bioenergy Knowledge Discovery Framework as a way to contribute to the development of a sustainable bioenergy industry. This work provided the opportunity to test the hypothesis that marginal lands can serve as sources of cellulosic feedstocks and thus contribute to avoid potential conflicts between bioenergy and food production systems. This work, we believe, opens the door for further analysis on the characteristics of cellulosic feedstocks as major contributors to the development of a sustainable bioenergy economy.

  15. Report on the workshop "Decay spectroscopy at CARIBU: advanced fuel cycle applications, nuclear structure and astrophysics". 14-16 April 2011, Argonne National Laboratory, USA.

    SciTech Connect (OSTI)

    Kondev, F.; Carpenter, M.P.; Chowdhury, P.; Clark, J.A.; Lister, C.J.; Nichols, A.L.; Swewryniak, D.

    2011-10-06

    A workshop on 'Decay Spectroscopy at CARIBU: Advanced Fuel Cycle Applications, Nuclear Structure and Astrophysics' will be held at Argonne National Laboratory on April 14-16, 2011. The aim of the workshop is to discuss opportunities for decay studies at the Californium Rare Isotope Breeder Upgrade (CARIBU) of the ATLAS facility with emphasis on advanced fuel cycle (AFC) applications, nuclear structure and astrophysics research. The workshop will consist of review and contributed talks. Presentations by members of the local groups, outlining the status of relevant in-house projects and availabile equipment, will also be organized. time will also be set aside to discuss and develop working collaborations for future decay studies at CARIBU. Topics of interest include: (1) Decay data of relevance to AFC applications with emphasis on reactor decay heat; (2) Discrete high-resolution gamma-ray spectroscopy following radioactive decya and related topics; (3) Calorimetric studies of neutron-rich fission framgents using Total ABsorption Gamma-Ray Spectrometry (TAGS) technique; (4) Beta-delayed neutron emissions and related topics; and (5) Decay data needs for nuclear astrophysics.

  16. Biofuels: A Solution for Climate Change

    SciTech Connect (OSTI)

    Woodward, S.

    1999-10-04

    Our lives are linked to weather and climate, and to energy use. Since the late 1970s, the U.S. Department of Energy (DOE) has invested in research and technology related to global climate change. DOE's Office Fuels Development (OFD) manages the National Biofuels Program and is the lead technical advisor on the development of biofuels technologies in the United States. Together with industry and other stakeholders, the program seeks to establish a major biofuels industry. Its goals are to develop and commercialize technologies for producing sustainable, domestic, environmentally beneficial, and economically viable fuels from dedicated biomass feedstocks.

  17. Traffic lights for crop-based biofuels

    E-Print Network [OSTI]

    Phalan, Ben

    stream_source_info Phalan_311010.pdf.txt stream_content_type text/plain stream_size 11462 Content-Encoding UTF-8 stream_name Phalan_311010.pdf.txt Content-Type text/plain; charset=UTF-8 Traffic lights for crop-based biofuels Ben... if it reduces the number of pedestrians killed and injured. How is this relevant to biofuels? There are many different kinds of biofuels, including some with considerable potential to generate cleaner energy and boost rural economies, but also others which...

  18. National Geo-Database for Biofuel Simulations and Regional Analysis

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01

    The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies; (2) model biomass productivity and associated environmental impacts of annual cellulosic feedstocks; (3) simulate production of perennial biomass feedstocks grown on marginal lands; and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. We used the EPIC (Environmental Policy Integrated Climate) model to simulate biomass productivity and environmental impacts of annual and perennial cellulosic feedstocks across much of the USA on both croplands and marginal lands. We used data from LTER and eddy-covariance experiments within the study region to test the performance of EPIC and, when necessary, improve its parameterization. We investigated three scenarios. In the first, we simulated a historical (current) baseline scenario composed mainly of corn-, soybean-, and wheat-based rotations as grown existing croplands east of the Rocky Mountains in 30 states. In the second scenario, we simulated a modified baseline in which we harvested corn and wheat residues to supply feedstocks to potential cellulosic ethanol biorefineries distributed within the study area. In the third scenario, we simulated the productivity of perennial cropping systems such as switchgrass or perennial mixtures grown on either marginal or Conservation Reserve Program (CRP) lands. In all cases we evaluated the environmental impacts (e.g., soil carbon changes, soil erosion, nitrate leaching, etc.) associated with the practices. In summary, we have reported on the development of a spatially explicit national geodatabase to conduct biofuel simulation studies and provided initial simulation results on the potential of annual and perennial cropping systems to serve as feedstocks for the production of cellulosic ethanol. To accomplish this, we have employed sophisticated spatial analysis methods in combination with the process-based biogeochemical model EPIC. This work provided the opportunity to test the hypothesis that marginal lands can serve as sources of cellulosic feedstocks and thus contribute to avoid potential conflicts between bioenergy and food production systems. This work, we believe, opens the door for further analysis on the characteristics of cellulosic feedstocks as major contributors to the development of a sustainable bioenergy economy.

  19. Metabolomics of Clostridial Biofuel Production

    SciTech Connect (OSTI)

    Rabinowitz, Joshua D; Aristilde, Ludmilla; Amador-Noguez, Daniel

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars (xylose or arabinose) to C. acetobutylicum revealed that, as expected, glucose was preferred, with the pentose sugar selectively assimilated into the pentose phosphate pathway (PPP). Simultaneous feeding of xylose and arabinose revealed an unexpected hierarchy among these pentose sugars, with arabinose utilized preferentially over xylose. Pentose catabolism occurred via the phosphoketolase pathway (PKP), an alternative route of pentose catabolism that directly converts xylulose-5-phosphate into acetyl-phosphate and glyceraldehyde-3-phosphate. Taken collectively, these findings reveal two hierarchies in Clostridial pentose metabolism: xylose is subordinate to arabinose, and the PPP is used less than the PKP. Thus, in addition to massively expanding the available data on Clostridial metabolism, we identified three key regulatory points suitable for targeting in future bioengineering efforts: phosphofructokinase for enhancing fermentation, the pyruvate-oxaloacetate node for controlling solventogenesis, and the phosphoketolase reaction for driving pentose catabolism.

  20. A Dynamic Simulation of the Indirect Land Use Implications of Recent Biofuel Production and Use in the United States.

    SciTech Connect (OSTI)

    Oladosu, Gbadebo A; Kline, Keith L

    2013-01-01

    The global indirect land use change (ILUC) implications of biofuel use in the United States of America (USA) from 2001 to 2010 are evaluated with a dynamic general equilibrium model. The effects of biofuels production on agricultural land area vary by year; from a net expansion of 0.17 ha per 1000 gallons produced (2002) to a net contraction of 0.13 ha per 1000 gallons (2018) in Case 1 of our simulation. In accordance with the general narrative about the implications of biofuel policy, agricultural land area increased in many regions of the world. However, oil-export dependent economies experienced agricultural land contraction because of reductions in their revenues. Reducing crude oil imports is a major goal of biofuel policy, but the land use change implications have received little attention in the literature. Simulations evaluating the effects of doubling supply elasticities for land and fossil resources show that these parameters can significantly influence the land use change estimates. Therefore, research that provides empirically-based and spatially-detailed agricultural land-supply curves and capability to project future fossil energy prices is critical for improving estimates of the effects of biofuel policy on land use.

  1. GREET Life-Cycle Analysis of Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J Han, MQ Wang. "Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States." 2013. Biotechnology for Biofuels, 6:141. * Z...

  2. Webinar: Biofuels for the Environment and Communities

    Broader source: Energy.gov [DOE]

    The Energy Department (DOE) will present a live webinar titled “Biofuels for the Environment and Communities” on Wednesday April 22, 2015, from 1:00 p.m. to 2:00 p.m. Eastern Daylight Time.

  3. Biofuels in Minnesota: A Success Story

    Broader source: Energy.gov [DOE]

    This PDF provides a Minnesota biofuels success story. It shows the timeline of state actions, the number of biodiesel plants in the state, production and consumption rates, and the NextGen Energy Initiative.

  4. Energy 101: Feedstocks for Biofuels and More

    Office of Energy Efficiency and Renewable Energy (EERE)

    See how organic materials like corn stover, wheat straw, and woody plants are being used to create homegrown biofuels in the United States—all while reducing our dependence on foreign oil and creating jobs in rural America.

  5. Overview of Governor's Biofuels Coalition and Updates

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Stacey Simms (Colorado Governor's Energy Office) provided an update on Biofuels in Colorado.

  6. FUNGIBLE AND COMPATIBLE BIOFUELS: LITERATURE SEARCH, SUMMARY...

    Office of Scientific and Technical Information (OSTI)

    and distribution of bio-fuels, in support of a renewable fuels standard and possible future low-carbon fuel standards. These barriers can be classified into several categories,...

  7. Future of Liquid Biofuels for APEC Economies

    SciTech Connect (OSTI)

    Milbrandt, A.; Overend, R. P.

    2008-05-01

    This project was initiated by APEC Energy Working Group (EWG) to maximize the energy sector's contribution to the region's economic and social well-being through activities in five areas of strategic importance including liquid biofuels production and development.

  8. ON THE INDIRECT EFFECT OF BIOFUEL

    E-Print Network [OSTI]

    Zilberman, D; Barrows, G; Hochman, G; Rajagopal, D

    2013-01-01

    that the lower the direct LCA of biofuel, the lesser theEconomists have found that LCA has multi- ple flaws (Khannahave reservations about the use of LCA as a major regulatory

  9. Bioproducts to Enable Biofuels Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts to Enable Biofuels Workshop Department of Energy Bioenergy Technologies Office Westin, Westminster July 16th, 2015 Time Event Speaker 8:30 a.m. - 8:35 a.m. Welcome...

  10. Biofuels: Anywhere, anytime | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for diesel fuel that can be used alone or in blends to power vehicles or generators. Biofuels: Anywhere, anytime By Jared Sagoff * August 2, 2012 Tweet EmailPrint Five questions...

  11. Algal Biofuels Strategy Workshop – Spring Event

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy’s Bioenergy Technologies Office’s (BETO’s) Algae Program hosted an algal biofuel strategy workshop on March 26–27, 2014, in Charleston, South Carolina. The workshop objective was to convene stakeholders to engage in discussion on strategies over the next 5 to 10 years to achieve affordable, scalable, and sustainable algal biofuels.

  12. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    SciTech Connect (OSTI)

    Buell, Carol Robin [Michigan State University; Childs, Kevin L [Michigan State University

    2013-05-07

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or �clearing house� for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

  13. National Microalgae Biofuel Production Potential and Resource Demand

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard; Huesemann, Michael H.; Lane, Leonard J.

    2011-04-14

    Microalgae continue to receive global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution national resource and oil production assessment that brings to bear fundamental research questions of where open pond microalgae production can occur, how much land and water resource is required, and how much energy is produced. Our study suggests under current technology microalgae have the potential to generate 220 billion liters/year of oil, equivalent to 48% of current U.S. petroleum imports for transportation fuels. However, this level of production would require 5.5% of the land area in the conterminous U.S., and nearly three times the volume of water currently used for irrigated agriculture, averaging 1,421 L water per L of oil. Optimizing the selection of locations for microalgae production based on water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, Southeastern Seaboard, and areas adjacent to the Great Lakes, shows a 75% reduction in water demand to 350 L per L of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target, and utilizing some 25% of the current irrigation consumptive water demand for the U. S. These results suggest that, with proper planning, adequate land and water are available to meet a significant portion of the U.S. renewable fuel goals.

  14. Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries

    E-Print Network [OSTI]

    Morrow, III, William R.

    2013-01-01

    for Sustainable Biofuel Production, Version 2.0. 2010,risk to future biofuel production, a risk that will likely

  15. The second Pacific basin biofuels workshop: Volume 1, Report

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    Biomass is the most flexible renewable energy resource in Hawaii. Today it provides the state with cost-effective fuel for electrical generation and for thermal energy used in sugarcane processing; tomorrow it will provide feedstock to produce liquid and gaseous fuels, which will help meet Hawaii's transportation energy needs. With optimal growing conditions year round and a strong economy based in part on sugarcane and pineapple cultivation, Hawaii is an ideal place to develop fuels from biomass. In November 1984, the Hawaii Natural Energy Institute (HNEI) held the First Pacific Basin BioFuels Workshop. The Plan for Action resulting from this workshop led to significant new program efforts that addressed the advancement of biomass research, development, and use. The Second Pacific Basin BioFuels Workshop was held at the Kauai Resort Hotel in Kapaa, Kauai, April 22-24, 1987. Before and after the workshop, HNEI conducted field visits to biomass energy facilities and test sites on Hawaii, Maui, Oahu, and Kauai. The workshop consisted of presentations, discussion groups, and plenary sessions on growth and yield, conversion, end use, institutional issues, and other topics. The final session focused on recommendations for a Plan for Action update.

  16. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  17. New Biofuel Technology to Diversify U.S. Energy Portfolio | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIXConcentratingInstitutionalEnergy Biofuel Technology to

  18. Engineering microbial biofuel tolerance and export using efflux pumps

    E-Print Network [OSTI]

    Dunlop, Mary

    2012-01-01

    biofuel production. Two pumps consistently survived thethe native E. coli pump Molecular Systems Biology 2011 3biofuel tolerance using ef?ux pumps MJ Dunlop et al A A.

  19. Biofuels News, Spring/Summer 2001, Vol. 4, No. 2

    SciTech Connect (OSTI)

    Tuttle, J.

    2001-07-13

    Newsletter for the DOE biofuels program. This issue contains articles on the National Energy Policy Plan, national energy policy, the proposed budget for biofuels, and new faces at DOE.

  20. Metabolic Engineering of oleaginous yeast for the production of biofuels

    E-Print Network [OSTI]

    Tai, Mitchell

    2012-01-01

    The past few years have introduced a flurry of interest over renewable energy sources. Biofuels have gained attention as renewable alternatives to liquid transportation fuels. Microbial platforms for biofuel production ...

  1. Unintended Environmental Consequences of a Global Biofuels Program

    E-Print Network [OSTI]

    Melillo, Jerry M.

    Biofuels are being promoted as an important part of the global energy mix to meet the climate change challenge. The environmental costs of biofuels produced with current technologies at small scales have been studied, but ...

  2. Biofuels: Helping to Move the Industry to the Next Level

    Broader source: Energy.gov [DOE]

    In our committment to tripling biofuel production in the next 12 years, we've in the past two years announced 40 projects and over $850 million to projects focused on cellulosic biofuels and next generation hydrocarbon fuels.

  3. A Realistic Technology and Engineering Assessment of Algae Biofuel Production

    E-Print Network [OSTI]

    Quinn, Nigel

    microalgae biofuel technologies for both oil and biogas production, provides an initial assessment of the US or wastewater treatment, (2) biofuel outputs--either biogas only or biogas plus oil, and (3) farm size

  4. Algal Biofuels Strategy: Report on Workshop Results and Recent Work

    Broader source: Energy.gov [DOE]

    Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy Algal Biofuels Strategy: Report on Workshop Results and Recent Work Roxanne Dempsey, Technology Manager, Bioenergy Technologies Office, U.S. Department of Energy

  5. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01

    Biofuel on the International Oil Market Gal Hochman, Deepakof biofuel on the international oil market ? Gal Hochman,are dominated by cartel of oil-rich countries, and that

  6. Video: A New Biofuels Technology Blooms in Iowa

    Broader source: Energy.gov [DOE]

    Cellulosic biofuels made from agricultural residue have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative...

  7. Biofuels are Helping Your Pocketbook and Our Environment

    SciTech Connect (OSTI)

    2009-10-28

    This fact sheet describes some of the financial and environmental benefits of biofuels and dispells myths about ethanol production.

  8. Biomass and Biofuels: Technology and Economic Overview (Presentation)

    SciTech Connect (OSTI)

    Aden, A

    2007-05-23

    Presentation on biomass and biofuels technology and economics presented at Pacific Northwest National Laboratory, May 23, 2007.

  9. Sustainability for the Global Biofuels Industry: Minimizing Risks...

    Energy Savers [EERE]

    Opportunities Webinar Transcript Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing Opportunities Webinar Transcript Webinar transcript....

  10. Sustainability for the Global Biofuels Industry Minimizing Risks...

    Energy Savers [EERE]

    Industry Minimizing Risks and Maximizing Opportunities Sustainability for the Global Biofuels Industry Minimizing Risks and Maximizing Opportunities Conservation International...

  11. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    E-Print Network [OSTI]

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01

    Biochemical composition of microalgae from the green algalof Selected Photosynthetic Microalgae Producing Biofuelsof Selected Photosyn- thetic Microalgae Producing Biofuels”,

  12. Biofuels from Bacteria Is PNNL Biochemist’s Goal (DOE Pulse Profile)

    SciTech Connect (OSTI)

    Wiley, Julie G.; Manke, Kristin L.

    2012-01-02

    When you ask Mary Lipton what her strengths are, she quickly responds with her personality type. 'I'm an Expressive,' she says, aptly punctuating her words with her hands. 'The plus side is that I communicate and collaborate well, and I look at the bigger picture. On the other hand, I don't concentrate on details. But I can incorporate the details into a larger vision.' Regardless of how they are perceived, these traits have served Lipton well as a scientist at Pacific Northwest National Laboratory. She's nationally recognized for applying new mass spectrometry-based technologies to characterize environmental microbes and microbial communities, particularly for their use in generating biofuels. 'I work on biofuels because at some point, everyone pays for the high cost of fuel. It affects all of us, whether directly at the gas pump or by higher food and materials costs,' says Lipton. Lipton categorizes her biofuels research area as environmental proteomics, which she defines as the application of advanced protein-based techniques to understanding environmental and biological systems. But she's quick to note that environmental proteomics doesn't just aid development of new biofuels, but also helps further understanding of the impact of climate change and the use of organisms for bioremediation.

  13. California Policy Should Distinguish Biofuels by Differential Global Warming Effects

    E-Print Network [OSTI]

    Kammen, Daniel M.

    California Policy Should Distinguish Biofuels by Differential Global Warming Effects by Richard J: _______________________________________ Date #12;California Policy Should Distinguish Biofuels by Differential Global Warming Effects Richard J, 2006 #12;#12;ABSTRACT California Policy Should Distinguish Biofuels by Differential Global Warming

  14. Climate impacts of a large-scale biofuels expansion*

    E-Print Network [OSTI]

    Climate impacts of a large-scale biofuels expansion* Willow Hallgren, C. Adam Schlosser, Erwan impacts of a large-scale biofuels expansion Willow Hallgren,1 C. Adam Schlosser,1 Erwan Monier,1 David March 2013. [1] A global biofuels program will potentially lead to intense pressures on land supply

  15. Media Framing and Public Attitudes Toward Biofuels Ashlie Delshad

    E-Print Network [OSTI]

    Media Framing and Public Attitudes Toward Biofuels Ashlie Delshad Department of Political Science between media framing and public opinion on the issue of biofuels--transportation fuels made from plants, animal products, or organic waste. First, the paper investigates how media framing of biofuels has

  16. Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM

    E-Print Network [OSTI]

    Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

  17. Battery electric vehicles, hydrogen fuel cells and biofuels. Which will

    E-Print Network [OSTI]

    1 Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? ICEPT considered are: improved internal combustion engine vehicles (ICEVs) powered by biofuels, battery electric. All three fuels considered (i.e.: biofuels, electricity and hydrogen) are in principle compatible

  18. FULLY FUNDED DEPARTMENT OF ENERGY BIOFUELS RESEARCH INTERNSHIP

    E-Print Network [OSTI]

    Wildermuth, Mary C

    FULLY FUNDED DEPARTMENT OF ENERGY BIOFUELS RESEARCH INTERNSHIP AT PACIFIC NORTHWEST NATIONAL LABORATORY Position Description The overall project objective is to utilize marine microalgae for biofuels (i.e., lipids for biodiesel or jet biofuel) production. The student will set up a series

  19. Nottingham Business School Biofuels Market and Policy Governance

    E-Print Network [OSTI]

    Evans, Paul

    Nottingham Business School Biofuels Market and Policy Governance The last decade has seen a dramatic growth in the global production and consumption of biofuels, as a rapidly- rising number triggered growing concerns about the downsides from different types of biofuel. This, in turn, presents

  20. International Symposium Transport and Air Pollution Session 6: Biofuels 2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1Sth International Symposium Transport and Air Pollution Session 6: Biofuels 2 Determination of VOC components in the exhaust of light vehicles fuelled with different biofuels F. Gazier 1,4*, A. De/bende 1 of the emissions shows changes with the composition of the biofuel in the levels of hydrocarbons, aromatic

  1. Recycling Water: one step to making algal biofuels a reality

    E-Print Network [OSTI]

    Fay, Noah

    Recycling Water: one step to making algal biofuels a reality Manuel Vasquez, Juan Sandoval acquisition of solar power, nuclear power, and biofuels to diversify the country's domestic energy profile, the chemical make-up of biofuels allows them to be readily converted into their petroleum counterparts making

  2. September 2010 FAPRI-MU US Biofuels, Corn Processing,

    E-Print Network [OSTI]

    Noble, James S.

    September 2010 FAPRI-MU US Biofuels, Corn Processing, Distillers Grains, Fats, Switchgrass-882-4256 or the US Department of Education, Office of Civil Rights. #12;1 Overview of FAPRI-MU Biofuels, Corn listed here represent US biofuel, corn processing, distillers grains, fats, switchgrass, and corn stover

  3. Global Assessments and Guidelines for Sustainable Liquid Biofuel

    E-Print Network [OSTI]

    -GHG environmental impacts of OKEO Chapter 6 Social impacts of liquid biofuel production OEKO Chapter 7 Next), Morelia/Mexico Appendix H Background data for global non-GHG envi- ronmental impacts of biofuels OEKO G Water footprints of biofuel cropping systems in Mexico Red Mexicana de Bioenergía (REMBIO

  4. Biofuels' Time of Transition Achieving high performance in a world

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Biofuels' Time of Transition Achieving high performance in a world of increasing fuel diversity #12;2 Table of contents #12;3 Introduction Up close: Highlights of Accenture's first biofuels study An evolving biofuels industry 1 Consumer influence Guest commentary on land-use change In focus: The food

  5. Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices

    E-Print Network [OSTI]

    Boyer, Edmond

    Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices A. Zebda1,2 , S. Cosnier1 the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal further developments. Following recent developments in nano- and biotechnology, state-of-the-art biofuel

  6. Invitation/Program Technology Watch Day on Future Biofuels

    E-Print Network [OSTI]

    Invitation/Program Technology Watch Day on Future Biofuels and 4. TMFB International Workshop;International Research Centers Focussing on Future Biofuels are Presenting Their Research Approaches and Current Concerning Future Biofuels DBFZ ­ Deutsches Biomasseforschungszentrum M. Seiffert, F. Mueller-Langer German

  7. Global Biofuel Production and Food Security: Implications for Asia Pacific

    E-Print Network [OSTI]

    Global Biofuel Production and Food Security: Implications for Asia Pacific 56th AARES Annual Conference Fremantle, Western Australia 7-10 February 2012 William T. Coyle #12;Global Biofuel Production and Food Security: Making the Connection --Past analysis and the evidence about biofuels and spiking

  8. The Impact of Biofuel Mandates on Land Use Suhail Ahmad

    E-Print Network [OSTI]

    The Impact of Biofuel Mandates on Land Use by Suhail Ahmad B.E., Avionics Engineering National, Technology and Policy Program #12;#12;3 The Impact of Biofuel Mandates on Land Use by Suhail Ahmad Submitted of Master of Science in Technology and Policy ABSTRACT The use of biofuels in domestic transportation sector

  9. For discussion purposes only Biofuel and Poverty Nexus

    E-Print Network [OSTI]

    For discussion purposes only Biofuel and Poverty Nexus in Asia 13th Poverty and Environment Partnership Meeting Myo Thant Manila, 11 June 2008 #12;For discussion purposes only Interest in Biofuels has and policies · Number of countries · Different biofuel feedstock · Research on second generation technology #12

  10. REVIEW PAPER Microalgae as second generation biofuel. A review

    E-Print Network [OSTI]

    Boyer, Edmond

    REVIEW PAPER Microalgae as second generation biofuel. A review Nirbhay Kumar Singh & Dolly Wattal not require arable land for cultivation. Biofuel is regarded as a proven clean energy source and several biofuel has been known for several years and is frequently modified and upgraded. In view of this

  11. ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR

    E-Print Network [OSTI]

    Pennycook, Steve

    ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR SELECTED COUNTRIES Keith L. Kline Gbadebo A Government or any agency thereof. #12;ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR SELECTED COUNTRIES To Support the DOE study of Worldwide Potential to Produce Biofuels with a focus on U.S. Imports Keith L

  12. Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion

    E-Print Network [OSTI]

    Singh, Anup

    Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion Rajiv Bharadwaj such as cellulases and hemicellulases is a limiting and costly step in the conversion of biomass to biofuels. Lignocellulosic (LC) biomass is an abundant and potentially carbon-neutral resource for production of biofuels

  13. RESEARCH ARTICLE A model for improving microbial biofuel production using

    E-Print Network [OSTI]

    Dunlop, Mary

    RESEARCH ARTICLE A model for improving microbial biofuel production using a synthetic feedback loop be compared. We propose a model for microbial biofuel production where a synthetic control system is used, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production

  14. Global biofuel drive raises risk of eviction for African farmers

    E-Print Network [OSTI]

    alternatives to oil, global biofuel production trebled between 2003 and 2007 and is forecast to double again to the research, said that the allocation of land for biofuel production by government projects or wealthy have forced millions into poverty. Dr Molony said: "The threat that increased biofuel production poses

  15. USDA Biofuels Strategic Production Report June 23, 2010

    E-Print Network [OSTI]

    USDA Biofuels Strategic Production Report June 23, 2010 1 A USDA Regional Roadmap to Meeting the field that can enhance various models for biofuel production, identify challenges and opportunities;USDA Biofuels Strategic Production Report June 23, 2010 2 Over the last 60 years, the percentage

  16. Impacts of Climate Change on Biofuels Production

    SciTech Connect (OSTI)

    Melillo, Jerry M.

    2014-04-30

    The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and consideration of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.

  17. Biofuel Feedstock Assessment For Selected Countries

    SciTech Connect (OSTI)

    Kline, Keith L; Oladosu, Gbadebo A; Wolfe, Amy K; Perlack, Robert D; Dale, Virginia H; McMahon, Matthew

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

  18. Biofuel Feedstock Assessment for Selected Countries

    SciTech Connect (OSTI)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

  19. Irrigation Resources to Grow Biofuel:Irrigation Resources to Grow Biofuel: A National Overview with Role of

    E-Print Network [OSTI]

    Scott, Christopher

    1 Irrigation Resources to Grow Biofuel:Irrigation Resources to Grow Biofuel: A National Overview about the water and land potentially used forabout the water and land potentially used for biofuel Dry Beans Other small Wheat Barley Pasture Other Crops Other Hay Potatoes Veggies Silage corn Berries

  20. Overview for the Biofuels Unit This set of three laboratory experiments introduces students to biofuels. These labs,

    E-Print Network [OSTI]

    Overview for the Biofuels Unit This set of three laboratory experiments introduces students to biofuels. These labs, which can be run in three consecutive weeks, give students the opportunity to explore the chemical properties of biofuels from three different perspectives. During the first week students

  1. Obama Administration Announces New Investments to Advance Biofuels...

    Broader source: Energy.gov (indexed) [DOE]

    specifications for jet fuel and shipboard diesel using a variety of non-food biomass feedstocks, waste-based materials and algae. These projects may support new plant...

  2. Advanced Biofuels from Cellulose via Genetic Engineering of Clostridiu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    kg from 2010-2013. By eliminating the aeration step, anaerobic pathway has less CapEx comparing to aerobic pathway (compressor, small reactor, mass transfer). Isoprene...

  3. Integrated Biorefinery Research Facility: Advancing Biofuels Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    The Integrated Biorefinery Research Facility (IBRF) at the National Renewable Energy Laboratory (NREL) expands NREL's cellulosic ethanol research and development and collaboration capabilities.

  4. National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Synopsis of the NAABB Full Final Report highlights the scope, accomplishments, and recommendations of the NAABB research effort, including the four cost-reducing innovations.

  5. Advanced Biofuels: How Scientists are Engineering Bacteria to...

    Office of Environmental Management (EM)

    synthesize its sugars. They first pre-treat the biomass with an ionic liquid (molten salt) to dissolve it, then use the E.coli to both digest the dissolved biomass and produce...

  6. The Impact of Advanced Biofuels on Aviation Emissions and

    E-Print Network [OSTI]

    . In all cases, as renewable jet fuel represents around 1.4% of total fuel consumed by commercial aviation, the goal has a small impact on aviation operations and emissions relative to a case without the renewable for Global Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR

  7. Genome-Enabled Advancement of Biomass to Biofuel Technology

    SciTech Connect (OSTI)

    Patrick O'Mullan, PhD

    2010-11-11

    Unlike Saccharomyces and even E. coli, the fundamental microbiology and biochemistry of Clostridium phytofermentans was largely unknown. The genus Clostridia is quite diverse and general methods to manipulate and characterize them often need to be developed. As anaerobes, they often don�t behave the way more classically studied microbes will in fermentation processes. The results from these studies have allowed: 1) A fundamental understanding of the fermentation cycle in C. phytofermentans 2) Requirements to maximize ethanol yield in a fermentation process 3) An understanding of the critical growth and nutritional parameters required to ferment biomass to ethanol 4) Identification of key targets or genes to modify in order increase or improve any of the key traits of C. phytofermentans 5) The development of a genetic system to transform and manipulate the microbe Without these achievements, an industrially significant process for biomass fermentation to ethanol would not be economically possible. The development of a fermentation process with economic return on investment can be successfully developed with the technical learning achieved

  8. advanced_biofuels_pathways_webinar_alt_text.doc | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    advancedbiofuelspathwayswebinaralttext.doc advancedbiofuelspathwayswebinaralttext.doc advancedbiofuelspathwayswebinaralttext.doc advancedbiofuelspathwayswebinara...

  9. Obama Administration Announces New Investments to Advance Biofuels...

    Broader source: Energy.gov (indexed) [DOE]

    Breakthroughs ARPA-E Energy Innovation Summit Electric Power Electric Power Home Smart Grid Storage Energy Sources Energy Sources Home Fossil Nuclear Renewable Energy Renewable...

  10. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Breaking the Barriers to Cellulosic EtOH OBP and SC publish technology roadmap in 2006 Report concludes biomass recalcitrance is the core barrier to processing...

  11. Conversion Technologies for Advanced Biofuels ? Bio-Oil Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    stability and quality metrics for bio-oil Identify and minimize bio-oil impurities (ash elements, chlorides, water) that reduce the performance of downstream upgrading...

  12. Conversion Technologies for Advanced Biofuels ? Bio-Oil Upgrading

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Fellow Pacific Northwest National Laboratory 1974 - present PNNL B.S. in Chemistry from Montana State University M.B.A. in Operations and Systems Analysis from the...

  13. National Alliance for Advanced Biofuels and Bioproducts Synopsis...

    Office of Environmental Management (EM)

    In 2010, the NAABB was formed to further understand the impacts of algae on overall biomass and liquid transportation fuel production. The consortium consisted of 39 partner...

  14. National Advanced Biofuels Consortium Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartmentSites KDF SocialAdministratorNSIDCNat i o N a l Pa r k

  15. Advanced Biofuels Cost of Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOfficeAcqguide18pt0Department of Energy 2

  16. Advanced Biofuels Industry Roundtable - List of Participants | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOfficeAcqguide18pt0Department of Energy 2of Energy

  17. Biodiesel and the Advanced Biofuel Market | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy|Make Fuels and Chemicals | DepartmentBiodiesel

  18. National Alliance for Advanced Biofuels and Bioproducts Synopsis (NAABB)

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgram | DepartmentEnergy6 3 9 12 6 3 9 12 6 3Final

  19. Biofuel Advanced Research and Development LLC BARD | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLC JumpBiofame Consulting Group Co

  20. Conversion Technologies for Advanced Biofuels - Bio-Oil Production |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartmentEnergy comparingDeep January

  1. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartmentEnergy comparingDeep JanuaryDepartment of Energy at

  2. Cross-cutting Technologies for Advanced Biofuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartmentEnergyEvery Thanksgiving,is designed

  3. DOE Perspectives on Advanced Hydrocarbon-based Biofuels | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department ofRefrigeratorsDepartment ofHeat Pump ModelsEnergy

  4. GM's Perspective on Advanced Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive Compensation References: FARWashers | Department ofOctober0032

  5. Obama Administration Announces New Investments to Advance Biofuels Industry

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |nEfficiencyand Conservation Projectsand

  6. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyofTheDepartment ofReport : HealthWorkshop

  7. Obama Administration Announces New Investments to Advance Biofuels Industry

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|in the subsurface isProjectSystemU.S. SmallCoordinationand

  8. Secretary Chu Announces Nearly $80 Million Investment for Advanced Biofuels

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|inWestMay 13, 2015reportsDepartment ofNext

  9. UPDATED: Energy Department Announces New Advance in Biofuel Technology |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedof Energy FishMANAGEMENTAMERICA

  10. Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDay 12:was createdNobel Prize winnerAdeleAmerica

  11. Innovative Topics for Advanced Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 | Department ofInfrastructureDepartment ofInnovative

  12. Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950DepartmentWaveWind(NREL)Zappos.comDepartment of

  13. Sandia Energy - Assessing the Economic Potential of Advanced Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni >ScientificApplied Turbulent

  14. IOL: Africa's big plans for biofuel Africa's big plans for biofuel

    E-Print Network [OSTI]

    IOL: Africa's big plans for biofuel Africa's big plans for biofuel By Clare Byrne Visitors for the production of fuel crops. http://www.iol.co.za/general/news/newsprint.php?art_id=nw20071106135542969C112694&sf= (1 of 3) [11/11/2008 11:48:04 AM] http://www.iol.co.za/index.php?set_id=1&click_id=31&art

  15. Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products

    E-Print Network [OSTI]

    Achyuthan, Komandoor

    2013-01-01

    Analyses of the Biofuels-Critical Phytochemical Coniferylscreening; monolignols; biofuels 1. Introduction Plantfacing cost-effective biofuels [3]. Lignin analyses will

  16. Development of a microbial process for the conversion of carbon dioxide and electricity to higher alcohols as biofuels

    E-Print Network [OSTI]

    Li, Han

    2013-01-01

    Li H, Cann AF, Liao JC: Biofuels: biomolecular engineeringthe predominant portion of biofuels produced currently, itof biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A

  17. Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales

    E-Print Network [OSTI]

    Lewis, Sarah M

    2014-01-01

    D. Land availability for biofuel production. Environ. Sci.of land available for biofuel production. Environ. Sci.so marginal land for biofuel crops is limited. Energy Policy

  18. Radiation Characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. Used For CO2 Fixation and Biofuel Production

    E-Print Network [OSTI]

    Berberoglu, Halil; Gomez, Pedro; Pilon, Laurent

    2009-01-01

    For CO 2 Fixation and Biofuel Production Halil Berberoglufor CO 2 mitigation and biofuel productions namely (i)this technology”, (2) culture of biofuel producing algae is

  19. Radiation Characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. Used For CO2 Fixation and Biofuel Production

    E-Print Network [OSTI]

    Berberoglu, Halil; Gomez, Pedro; Pilon, Laurent

    2009-01-01

    CO 2 Fixation and Biofuel Production Halil Berberoglu + ,2 mitigation and biofuel productions namely (i) Botryococcusfor CO 2 ?xation and biofuel production over the spectral

  20. Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales

    E-Print Network [OSTI]

    Lewis, Sarah M

    2014-01-01

    availability for biofuel production. Environ. Sci. Technol.of land available for biofuel production. Environ. Sci.the Potential for Biofuel Production on Marginal Lands:

  1. Development of a microbial process for the conversion of carbon dioxide and electricity to higher alcohols as biofuels

    E-Print Network [OSTI]

    Li, Han

    2013-01-01

    EI, Liao JC. Direct biofuel production from carbon dioxide.for biohydrogen and biofuel production. Curr Opin Biotechnolin regulating the biofuel production gene. The system is

  2. Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7, 2011 |1 DOEAssurance forReview Quality Work

  3. Performance of Biofuels and Biofuel Blends | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT PDepartment ofPerformance

  4. Socio-economic dynamics of biofuel

    E-Print Network [OSTI]

    production from coconut oil. - Bioethanol is mainly produced from cassava and sugarcane. Thailand for agricultural staples such as palm oil for the production of biofuel also threatens to crowd out their use promoted as a solution for energy self- sufficiency and reducing greenhouse gas emissions, the production

  5. Integrated Biorefineries: Biofuels, Biopower, and Bioproducts

    SciTech Connect (OSTI)

    2013-05-06

    This fact sheet describes integrated biorefineries and the Program's work with them. A crucial step in developing the U.S. bioindustry is to establish integrated biorefineries capable of efficiently converting a broad range of biomass feedstocks into affordable biofuels, biopower, and other bioproducts.

  6. Biofuels and Sustainability Reports January 2010

    E-Print Network [OSTI]

    Pennycook, Steve

    and Sustainability Reports Biofuels, generally defined as liquid fuels derived from biological mate- rials, can be made from plants, vegetable oils, forest products, or waste materials. The raw materials can be grown specifically for fuel pur- poses, or can be the residues or wastes of existing supply and con- sumption chains

  7. Liquid Biofuels Strategies and Policies in selected

    E-Print Network [OSTI]

    , Kenya 34 Figure 10 Palm oil processing 41 Figure 11 Strategic national choices on biofuels development Ecosystems ­ Africa EU European Union FAO Food and Agricultural Organisation FDI Foreign Direct Investment.2.2 The risks of depending on Climate Change Market Systems and Foreign Direct Investment 16 2.2.3 Risks from

  8. Biofuel Plant, Clearfield County, PA Human Dimensions

    E-Print Network [OSTI]

    Omiecinski, Curtis

    to communicate effectively with stakeholders affected by natural resource and envi ronmental change issuesBiofuel Plant, Clearfield County, PA Human Dimensions of Natural Resources and the Environment Intercollege DualTitle Program For more information, please contact: Human Dimensions of Natural Resources

  9. Configuration Management: A Critical Analysis of Applications Using the 8-Step Problem Solving Method L.L. Fletcher, PhD, SIDC, Advanced Space Operations School, Colorado Springs, CO, USA.

    E-Print Network [OSTI]

    Johnson, Chris

    , 50th Space Wing, Air Force Space Command, Schriever AFB, CO, USA. C.W. Johnson, Ph.D.; Department previous studies to apply an 8 Step Problem Solving Model. This is a standard process based on Boyd's OODA

  10. 2 million tons per year: A performing biofuels supply chain for

    E-Print Network [OSTI]

    1 2 million tons per year: A performing biofuels supply chain for EU aviation NOTE It is understood that in the context of this text the term "biofuel(s) use in aviation" categorically implies "sustainably produced biofuel(s)" according to the EU legislation. June 2011 #12;2 This technical paper was drafted

  11. National Algal Biofuels Technology Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOriginMaterials byNatasha Campbell About Us Natasha 6

  12. Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7, 2011 |1 DOEAssurance forReview Quality WorkDepartment

  13. Overview of Aviation Fuel Markets for Biofuels Stakeholders

    SciTech Connect (OSTI)

    Davidson, C.; Newes, E.; Schwab, A.; Vimmerstedt, L.

    2014-07-01

    This report is for biofuels stakeholders interested the U.S. aviation fuel market. Jet fuel production represents about 10% of U.S. petroleum refinery production. Exxon Mobil, Chevron, and BP top producers, and Texas, Louisiana, and California are top producing states. Distribution of fuel primarily involves transport from the Gulf Coast to other regions. Fuel is transported via pipeline (60%), barges on inland waterways (30%), tanker truck (5%), and rail (5%). Airport fuel supply chain organization and fuel sourcing may involve oil companies, airlines, airline consortia, airport owners and operators, and airport service companies. Most fuel is used for domestic, commercial, civilian flights. Energy efficiency has substantially improved due to aircraft fleet upgrades and advanced flight logistic improvements. Jet fuel prices generally track prices of crude oil and other refined petroleum products, whose prices are more volatile than crude oil price. The single largest expense for airlines is jet fuel, so its prices and persistent price volatility impact industry finances. Airlines use various strategies to manage aviation fuel price uncertainty. The aviation industry has established goals to mitigate its greenhouse gas emissions, and initial estimates of biojet life cycle greenhouse gas emissions exist. Biojet fuels from Fischer-Tropsch and hydroprocessed esters and fatty acids processes have ASTM standards. The commercial aviation industry and the U.S. Department of Defense have used aviation biofuels. Additional research is needed to assess the environmental, economic, and financial potential of biojet to reduce greenhouse gas emissions and mitigate long-term upward price trends, fuel price volatility, or both.

  14. Energy and Greenhouse Gas Impacts of Biofuels: A Framework for Analysis

    E-Print Network [OSTI]

    Kammen, Daniel M.; Farrell, Alexander E; Plevin, Richard J; Jones, Andrew; Nemet, Gregory F; Delucchi, Mark

    2008-01-01

    Greenhouse Gas Impacts of Biofuels Wang, M. (2001) "Energy & Greenhouse Gas Impacts of Biofuels Fuels and MotorLifecycle Analysis of Biofuels." Report UCD-ITS-RR-06-08.

  15. Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries

    E-Print Network [OSTI]

    Morrow, III, William R.

    2013-01-01

    impact study of the EU Biofuels Mandate. 2010: p. 1-125.Indirect Emissions from Biofuels: How Important? Science,of U.S. Croplands for Biofuels Increases Greenhouse Gases

  16. Agricultural expansion induced by biofuels: Comparing predictions of market?equilibrium models to historical trends

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2011-01-01

    of Food and Agriculture - Biofuels: Prospects, risks andISBN 069112051X. C Hausman. Biofuels and Land Use Change:Use of US croplands for biofuels increases greenhouse gases

  17. BIOENERGY/BIOFUELS/BIOCHEMICALS Chromatographic determination of 1, 4-b-xylooligosaccharides

    E-Print Network [OSTI]

    California at Riverside, University of

    BIOENERGY/BIOFUELS/BIOCHEMICALS Chromatographic determination of 1, 4-b For the majority of lignocellulosic feedstocks for produc- tion of bioethanol and other biofuels, heteroxylans activity [22] or further hydrolyzed into fermentable sugars as platform molecules for biofuels [23

  18. Life of Sugar: Developing Lifecycle Methods to Evaluate the Energy and Environmental Impacts of Sugarcane Biofuels

    E-Print Network [OSTI]

    Gopal, Anand Raja

    2011-01-01

    75 My View on the use of Biofuels in Low Carbon FuelCLCAs of Byproduct-based Biofuels . . . . . . . 49 5 FullLCA GHG Emissions of Biofuels using various Co-product

  19. Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production

    E-Print Network [OSTI]

    Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production Transportation Energy The Issue Algae biofuels directly address the Energy Commission's Public Interest Energy Research fuels more carbonintensive than conventional biofuels. Critics of this study argue that alternative

  20. Utilization of Ash Fractions from Alternative Biofuels used in Power Plants

    E-Print Network [OSTI]

    Utilization of Ash Fractions from Alternative Biofuels used in Power Plants PSO Project No. 6356 July 2008 Renewable Energy and Transport #12;2 Utilization of Ash Fractions from Alternative Biofuels)...............................................................................7 2. Production of Ash Products from Mixed Biofuels

  1. Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities

    E-Print Network [OSTI]

    Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

  2. Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S....

  3. Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial

    E-Print Network [OSTI]

    Boyer, Edmond

    Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial ainsi que des exemples d'applications industrielles. Abstract -- Transformation of Sorbitol to Biofuels and biodiesel production led to first generation biofuels. Nowadays, research is focused on lignocellulosic

  4. Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford and P. Westerhoff

    E-Print Network [OSTI]

    Hall, Sharon J.

    Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford to global warming. Biofuel from phototrophic microbes like algae and bacteria provides a viable substitute improves biofuel sustainability by refining phosphorus recycling. Biomass Production Residual Biomass

  5. Biofuel policy must evaluate environmental, food security and energy goals to maximize net benefits

    E-Print Network [OSTI]

    Sexton, Steven E; Rajagapol, Deepak; Hochman, Gal; Zilberman, David D; Roland-Holst, David

    2009-01-01

    conse- quences: How the U.S. biofuel tax credit with a man-Land clearing and the biofuel carbon debt. Science 319:1235–D. 2007. Challenge of biofuel: Filling the tank without

  6. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    E-Print Network [OSTI]

    Gasch, Audrey P.

    Comparative genomics of xylose-fermenting fungi for enhanced biofuel production Dana J. Wohlbacha creates specific challenges for microbial biofuel production from cellulosic material. Although engineered | transcriptomics Biofuel production from cellulosic material uses available sub- strates without competing

  7. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    E-Print Network [OSTI]

    Wohlbach, Dana J.

    2011-01-01

    fungi for enhanced biofuel production Dana J. Wohlbach 1,2 ,fungi for enhanced biofuel production Dana J. Wohlbach 1,2 ,fungi for enhanced biofuel production Dana J. Wohlbach 1,2 ,

  8. Assessing Habitat for Avian Species in Assessing Habitat for Avian Species in an Integrated Forage/Biofuels an Integrated Forage/Biofuels

    E-Print Network [OSTI]

    Gray, Matthew

    in an Integrated Forage/Biofuels an Integrated Forage/Biofuels Management System Management System in the Midin NWSG mixes beneficial to forage, biofuels production, and wildlife habitatp , 3. identify wildlife habitat benefits associated with varying forage and biofuels management strategies 4. identify optimum

  9. National Biofuels Action Plan, October 2008

    SciTech Connect (OSTI)

    none,

    2008-10-01

    To help industry achieve the aggressive national goals, Federal agencies will need to continue to enhance their collaboration. The Biomass Research and Development (R&D) Board was created by Congress in the Biomass Research and Development Act of 2000. The National Biofuels Action Plan outlines areas where interagency cooperation will help to evolve bio-based fuel production technologies from promising ideas to competitive solutions.

  10. Tees Valley Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)ModelTalbottsInformationOpenTees Valley Biofuels Jump

  11. Milestone Reached: New Process Reduces Cost and Risk of Biofuel...

    Broader source: Energy.gov (indexed) [DOE]

    cellulosic ethanol. Addthis Related Articles Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading Refining Bio-Oil alongside Petroleum...

  12. Energy and Greenhouse Impacts of Biofuels: A Framework for Analysis

    E-Print Network [OSTI]

    Kammen, Daniel M.; Farrell, Alexander E.; Plevin, Richard J.; Jones, Andrew D.; Nemet, Gregory F.; Delucchi, Mark A.

    2008-01-01

    Roundtable – Energy & Greenhouse Gas Impacts of Biofuelsin Emissions, Energy Use, and Greenhouse Gases,” Journal ofRoundtable – Energy & Greenhouse Gas Impacts of Biofuels

  13. Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS;...

    Office of Scientific and Technical Information (OSTI)

    Level Panel of Experts on Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS; PRODUCTION; AGRICULTURE; ENERGY POLICY; SOCIO-ECONOMIC FACTORS; SUSTAINABLE DEVELOPMENT;...

  14. BETO Announces June Webinar: Algal Biofuels Consortium Releases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Articles DOE Announces Webinars on Algal Biofuels Consortium Research Results, Solar Energy Maps, and More BETO Deputy Director Publishes Commentary on Development of...

  15. Department of Energy Announces $24 Million for Algal Biofuels...

    Broader source: Energy.gov (indexed) [DOE]

    industry. (DOE funding: up to 9 million) National Algal Biofuels Technology Roadmap Despite algae's potential, many technical and economic challenges must be overcome...

  16. Importance of systems biology in engineering microbes for biofuel...

    Office of Scientific and Technical Information (OSTI)

    Importance of systems biology in engineering microbes for biofuel production Citation Details In-Document Search Title: Importance of systems biology in engineering microbes for...

  17. Importance of systems biology in engineering microbes for biofuel production

    E-Print Network [OSTI]

    Mukhopadhyay, Aindrila

    2011-01-01

    pharmaceuticals by engineered microbes. Nat Chem Biol 2006,K, Dubchak IL, Arkin AP: The Microbes Online Web site forbiology in engineering microbes for biofuel production

  18. USDA & DOE Release National Biofuels Action Plan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    plan detailing the collaborative efforts of Federal agencies to accelerate the development of a sustainable biofuels industry. "Federal leadership can provide the vision...

  19. Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysis to Make Biofuels and Bioproducts The Bioenergy Technologies Office works with industry to develop pathways that use heat, pressure, and catalysis to convert domestic,...

  20. Transportation Biofuels in the US A Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01

    that can be made from biomass feedstocks including butanol,biofuels rely upon biomass feedstocks, they will be subjectfrom domestically available biomass feedstocks under certain