National Library of Energy BETA

Sample records for advanced battery manufacturing

  1. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon arravt002esflicker2012p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing...

  2. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon arravt002esflicker2011p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing...

  3. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  4. Advanced Battery Manufacturing (VA)

    SciTech Connect (OSTI)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATTs products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATTs work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

  5. Advanced Battery Manufacturing Facilities and Equipment Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt002_es_flicker_2012_p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  6. Advanced Battery Manufacturing Facilities and Equipment Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt002_es_flicker_2011_p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013)

  7. Advanced Battery Manufacturing Facilities and Equipment Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon esarravt002_flicker_2010_p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  8. Advanced Battery Materials Synthesis and Manufacturing R&D Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Battery Materials Synthesis and Manufacturing R&D Program Argonne's Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials...

  9. National Alliance for Advanced Transportation Battery Cell Manufacture...

    Open Energy Info (EERE)

    Manufacture Product: US-based consortium formed to research, develop, and mass produce lithium ion batteries. References: National Alliance for Advanced Transportation Battery Cell...

  10. Manufacturing of Protected Lithium Electrodes for Advanced Batteries

    Broader source: Energy.gov [DOE]

    Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water, and Lithium-Sulfur Batteries

  11. Advanced Battery Manufacturing Making Strides in Oregon | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Battery Manufacturing Making Strides in Oregon Advanced Battery Manufacturing Making Strides in Oregon February 16, 2012 - 12:09pm Addthis EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program What are the key facts? Through the Recovery Act, the Department has

  12. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Li-Ion Polymer Battery Cell Manufacturing Plant in USA Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  13. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Li-Ion Polymer Battery Cell Manufacturing Plant in USA Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt001_es_koo_2012_p.pdf More Documents & Publications Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA Li-Ion Battery Cell Manufacturing 2010 DOE, Li-Ion Battery Cell Manufacturing

  14. ZAP Advanced Battery Technologies JV | Open Energy Information

    Open Energy Info (EERE)

    battery manufacturer Advanced Battery Technologies focusing on manufacturing and marketing of advanced batteries for electric cars using the latest in nanotechnology....

  15. Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries Larry Atkins Exide Technologies June 7, 2010 Project ID # ARRAVT004 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 * Begin Negotiation - Aug 2009 * Start Project - Dec 2009 * Project Finish - Dec 2012 * Percent complete - 12% (effective Mar 2010) * Advanced Battery Production Capacity - (Domestic) to Enable

  16. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely that the next step will be accomplished through a combination of joint venture partnering and licensing of the technology.

  17. Manufacturing Innovation Institute for Smart Manufacturing: Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing Manufacturing Innovation Institute for Smart...

  18. Advanced Manufacturing Office News

    SciTech Connect (OSTI)

    2013-08-08

    News stories about advanced manufacturing, events, and office accomplishments. Subscribe to receive updates.

  19. Advanced Manufacturing Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Workshop: Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Venue: The 2nd Global Congress on Microwave Energy Applications (2GCMEA) July 25, 2012 Long Beach Hilton Long Beach, CA Advanced Manufacturing Office U.S. Department of Energy Rob Ivester Acting Deputy Program Manager, Advanced Manufacturing Office Advanced Manufacturing Office Advanced Manufacturing Office Agenda Time Activity 2:00-2:30 PM Opening Session - AMO o Presentation of Industry

  20. Autogenic Pressure Reactions for Battery Materials Manufacture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Autogenic Pressure Reactions for Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture A one-step, solvent-free...

  1. Innovative Manufacturing Initiative Recognition Day, Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office (AMO) | Department of Energy Day, Advanced Manufacturing Office (AMO) Innovative Manufacturing Initiative Recognition Day, Advanced Manufacturing Office (AMO) PDF icon imi_recogitionday_leo_june2012.pdf More Documents & Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry

  2. Washington: Battery Manufacturer Brings Material Production Home...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    can be used in ultracapacitors, lithium-ion batteries, and advanced lead acid batteries. ... EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo ...

  3. Secretary Chu Visits Advanced Battery Plant in Michigan, Announces...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... And when it comes to advanced battery and vehicle innovation, development and ... Manufacturing A123 Systems Moves From the Lab to the Assembly Line Annette's Journey

  4. Manufacturing Innovation Institute for Smart Manufacturing: Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensors, Controls, Platforms, and Modeling for Manufacturing | Department of Energy Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing September 23, 2015 - 2:38pm Addthis Posted Date: Sep 15, 2015 Original Closing Date for Applications: Jan 29, 2016 A mandatory Concept Paper is due

  5. Advanced Vehicles Manufacturing Projects | Department of Energy

    Energy Savers [EERE]

    Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects DOE-LPO_ATVM-Economic-Growth_Thumbnail.png DRIVING ECONOMIC GROWTH: ADVANCED TECHNOLOGY VEHICLES

  6. Battery Manufacturing Processes Improved by Johnson Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Johnson Controls Project Improving battery manufacturing processes can help make plug-in electric vehicles more affordable and convenient. This will help meet the government's EV...

  7. Battery resource assessment. Subtask II. 5. Battery manufacturing capability recycling of battery materials. Draft final report

    SciTech Connect (OSTI)

    Pemsler, P.

    1981-02-01

    Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials. Each recycle process has been designed to produce a product material which can be used directly as a raw material by the battery manufacturer. Metal recoverabilities are in the range of 93 to 95% for all processes. In each case, capital and operating costs have been developed for a recycling plant which processes 100,000 electric vehicle batteries per year. These costs have been developed based on material and energy balances, equipment lists, factored installation costs, and manpower estimates. In general, there are no technological barriers for recycling in the Nickel/Zinc, Nickel/Iron, Zinc/Chlorine and Zinc/Bromine battery systems. The recycling processes are based on essentially conventional, demonstrate technology. The lead times required to build battery recycling plants based on these processes is comparable to that of any other new plant. The total elapsed time required from inception to plant operation is approximately 3 to 5 y. The recycling process for the sodium/sulfur and lithium-aluminum/sulfide battery systems are not based on conventional technology. In particular, mechanical systems for dismantling these batteries must be developed.

  8. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Workshop Manufacturing Demonstration Facilities Workshop, March 12, 2012 Report to the President on Capturing Domestic Competitive Advantage in Advanced Manufacturing...

  9. Advanced Battery Factory | Open Energy Information

    Open Energy Info (EERE)

    Battery Factory Place: Shen Zhen City, Guangdong Province, China Product: Producers of lithium polymer batteries, established in 1958. References: Advanced Battery Factory1 This...

  10. EV Everywhere Batteries Workshop - Materials Processing and Manufactur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Processing and Manufacturing Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and Manufacturing Breakout Session Report Breakout session...

  11. Advanced Manufacture of Reflectors

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  12. WEDNESDAY: Deputy Secretary Poneman to Speak at Nissan Advanced Battery

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturing Facility Groundbreaking in Smyrna, TN | Department of Energy May 25, 2010 WEDNESDAY: Deputy Secretary Poneman to Speak at Nissan Advanced Battery Manufacturing Facility Groundbreaking in Smyrna, TN Smyrna, TN - On Wednesday, May 26, 2010, U.S. Deputy Secretary of Energy Daniel Poneman will speak at the groundbreaking ceremony for Nissan North America's advanced battery manufacturing facility in Smyrna, Tennessee. In January, the Department of Energy closed its $1.4 billion loan

  13. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI has recently commercialized.

  14. Washington: Battery Manufacturer Brings Material Production Home |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Battery Manufacturer Brings Material Production Home Washington: Battery Manufacturer Brings Material Production Home November 8, 2013 - 12:00am Addthis EnerG2, supported by American Recovery and Reinvestment Act (ARRA) funds from EERE, built a new plant to produce nano-engineered carbon materials for batteries and other energy storage devices that can be used in hybrid, electric, plug-in hybrid, and all-electric vehicles. EnerG2's proprietary Carbon Technology Platform

  15. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  16. Advanced Materials Manufacturing (AMM) Session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eric Miller Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Fuel Cells Technology Office (FTCO) DOE and DoD Multi-topic Workshop Advanced Materials Manufacturing (AMM) Session Fort Worth, TX October 9, 2014 Advanced Materials Manufacturing (AMM) Institute Stakeholders Workshop Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 WELCOME & THANK YOU! from your friendly support staff: Eric Miller, David Forrest, Fred Crowson, Jessica Savell...

  17. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the ...

  18. Advanced Materials Manufacturing and Innovative Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...) - Challenges: * Manufacturing Methodology MUST be Able to Deliver Required ... Research Opportunities & Challenges Advanced Materials Manufacturing & Innovative ...

  19. Advanced Manufacturing Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Manufacturing Production Technician; Electro-Mechanical Technician; Electronics Maintenance Technician

  20. Consortium for Advanced Battery Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Simulation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  1. Advanced Methods for Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scientists Computational Resources and Multi- Physics Modeling & Simulation Knowledge & ... Manufacturing Methods R&D Test Bed ... loops, process development...

  2. Advanced Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Advanced Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers

  3. EnerDel Expanding Battery Manufacturing in Indiana | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EnerDel Expanding Battery Manufacturing in Indiana EnerDel Expanding Battery Manufacturing in Indiana October 5, 2010 - 2:00pm Addthis EnerDel is expanding its Mt. Comfort-based factory to produce advanced lithium-ion batteries such as this.| Photo courtesy of EnderDel EnerDel is expanding its Mt. Comfort-based factory to produce advanced lithium-ion batteries such as this.| Photo courtesy of EnderDel Lindsay Gsell What are the key facts? EnerDel uses $118 in Recovery Act funding to expand

  4. Li-Ion Battery Cell Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Li-Ion Battery Cell Manufacturing Li-Ion Battery Cell Manufacturing 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt001_es_eun_2011_p.pdf More Documents & Publications 2010 DOE, Li-Ion Battery Cell Manufacturing Construction of a Li Ion Battery (LIB) Cathode Production Plant in Elyria, Ohio Process for Low Cost Domestic Production of LIB Cathode Materials

  5. Advanced Manufacture of Reflectors

    SciTech Connect (OSTI)

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square a unique capability. The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test and alignment of trough or dish reflectors. Ten full size (2.5 m2) cylindrically curved reflectors, molded in 950 seconds and measured with the laser test facility, show shape repeatability to 0.5 mrad rms. These replicas met the Phase I Go/No-Go targets for speed (1000 sec), accuracy (< 5 mrad) and reproducibility (< 2 mrad). Our research and tests show that the hoped-for improvements in mirror reflectivity achievable with titania antisoil coatings are not very effective in dry climates and are therefore unlikely to be economically worthwhile, and that glass with iron in the Fe+3 state to achieve very low absorption cannot be made economically by the float process.

  6. How Advanced Batteries Are Energizing the Economy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Thanks in part to a $300 million grant through the Recovery Act, Johnson Controls has been able to retool a shuttered plant in Holland, Michigan to produce high-tech advanced batteries. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Creates quality manufacturing jobs Positions America as a leader in the advanced battery industry Earlier today, President Obama visited Johnson Controls in Holland, Michigan to highlight how this once

  7. EERE Success Story-Battery Manufacturing Processes Improved by Johnson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controls Project | Department of Energy Manufacturing Processes Improved by Johnson Controls Project EERE Success Story-Battery Manufacturing Processes Improved by Johnson Controls Project August 6, 2015 - 1:51pm Addthis EERE Success Story—Battery Manufacturing Processes Improved by Johnson Controls Project Improving battery manufacturing processes can help make plug-in electric vehicles more affordable and convenient. This will help meet the government's EV Everywhere goal of producing

  8. Battery Manufacturing Processes Improved by Johnson Controls Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Manufacturing Processes Improved by Johnson Controls Project Battery Manufacturing Processes Improved by Johnson Controls Project August 6, 2015 - 1:51pm Addthis Battery Manufacturing Processes Improved by Johnson Controls Project Improving battery manufacturing processes can help make plug-in electric vehicles more affordable and convenient. This will help meet the government's EV Everywhere goal of producing by 2022 plug-in electric vehicles that are as affordable for

  9. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel...

  10. Transformational Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery...

  11. Advanced Technology Vehicles Manufacturing Incentive Program | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles manufacturing incentive program. PDF icon Advanced Technology Vehicles Manufacturing Incentive Program More Documents & Publications Advanced Technology Vehicles Manufacturing Incentive Program MEMA: Comments MEMA: Letter

  12. Advanced Qualification of Additive Manufacturing Materials Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Qualification of Additive Manufacturing Materials Workshop Advanced Qualification of Additive Manufacturing Materials Workshop WHEN: Jul 20, 2015 8:30 AM - Jul 21, 2015...

  13. Manufacturing of Protected Lithium Electrodes for Advanced Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the largest manufacturer of rechargeable lead-acid batteries in the world and recognized as ... entirely petroleum-based > 20B battery industry PLE-based batteries provide ...

  14. EV Everywhere Batteries Workshop - Materials Processing and Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout Session Report | Department of Energy Materials Processing and Manufacturing Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and Manufacturing Breakout Session Report Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree OHare, Chicago, IL. PDF icon report_out-manufacturing_b.pdf More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion

  15. Advanced Manufacturing Office Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office Overview Advanced Manufacturing Office Overview PDF icon mw_rf_workshop_july2012.pdf More Documents & Publications Microwave and Radio Frequency Workshop Manufacturing Demonstration Facility Workshop Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

  16. Advanced Manufacturing Office: Smart Manufacturing Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Smart Manufacturing is a network data-driven process that combines innovative automation ... Smart Manufacturing is a network data-driven process that combines innovative automation ...

  17. Overview and Progress of United States Advanced Battery Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview and Progress of United States Advanced Battery Consortium (USABC) Activity United States Advanced Battery Consortium Advanced Technology Vehicle Lab Benchmarking - Level 2 ...

  18. Advanced Battery Materials Characterization: Success stories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Advanced Battery Materials Characterization: Success stories from the ...

  19. advanced manufacturing office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Manufacturing Office The U.S. Department of Energy (DOE) funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies....

  20. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors, diagnostics...

  1. USABC Development of Advanced High-Performance Batteries for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel Cells...

  2. US Advanced Battery Consortium USABC | Open Energy Information

    Open Energy Info (EERE)

    US Advanced Battery Consortium USABC Jump to: navigation, search Name: US Advanced Battery Consortium (USABC) Place: Southfield, Michigan Zip: 48075 Sector: Vehicles Product:...

  3. Overview and Progress of the Batteries for Advanced Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity 2012 DOE Hydrogen...

  4. Development of Polymer Electrolytes for Advanced Lithium Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  5. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation PDF icon vss033carlson2011o.pdf More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Electric Drive and Advanced Battery...

  6. Energy Storage - Summary of the FY 2005 Batteries for Advanced...

    Energy Savers [EERE]

    Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review Energy Storage - Summary of the FY 2005 Batteries for Advanced ...

  7. Vehicle Technologies Office: Advanced Battery Development, System Analysis,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Testing | Department of Energy Battery Development, System Analysis, and Testing Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full battery systems. The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, and Testing activity

  8. Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Separator | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt009_es_rumierz_2011_p.pdf More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator EA 1713: Final Environmental Assessment

  9. Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Separator | Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon esarravt009_rumierz_2010_p.pdf More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator FY 2012 Annual Progress Report for Energy Storage R&D

  10. Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Separator | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt009_es_rumierz_2012_p.pdf More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator EA 1713: Final Environmental Assessment

  11. Webtrends Archives by Fiscal Year - Advanced Manufacturing Office...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Manufacturing Office, Webtrends archives by fiscal year. Microsoft Office document icon Advanced Manufacturing FY09 Microsoft Office document icon Advanced Manufacturing ...

  12. Batteries - Materials Processing and Manufacturing Breakout session

    Broader source: Energy.gov (indexed) [DOE]

    the Other Technical Areas Being Discussed * Li metal manufacturing * Variability in cell manufacturing -intrinsic reduction and aging differences in pack? * Understanding of...

  13. How Advanced Batteries Are Energizing the Economy

    Broader source: Energy.gov [DOE]

    Earlier today, President Obama visited Johnson Controls in Holland, Michigan to highlight how this once shuttered factory is helping rev up the advanced battery industry in the United States. This...

  14. EERE Success Story-Washington: Battery Manufacturer Brings Material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production Home | Department of Energy Battery Manufacturer Brings Material Production Home EERE Success Story-Washington: Battery Manufacturer Brings Material Production Home November 8, 2013 - 12:00am Addthis EnerG2, supported by American Recovery and Reinvestment Act (ARRA) funds from EERE, built a new plant to produce nano-engineered carbon materials for batteries and other energy storage devices that can be used in hybrid, electric, plug-in hybrid, and all-electric vehicles. EnerG2's

  15. Advanced Methods for Manufacturing Newslettter- Issue 3

    Broader source: Energy.gov [DOE]

    The Advanced Methods for Manufacturing newsletter includes information about selected projects pertaining to additive manufacturing, concrete technologies, welding innovations and imaging techniques for design reconstruction currently funded by the Department of Energy's Office of Nuclear Energy.

  16. advanced manufacturing office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Manufacturing Office The U.S. Department of Energy (DOE) funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies. DOE has supported the development of more than 250 energy-saving industrial technologies that have been commercialized since 1976. DOE is also working to create a network of Manufacturing Innovation Institutes, each of which will create collaborative communities to target a unique technology in advanced manufacturing.

  17. Advanced Manufacturing Initiative Improves Turbine Blade Productivity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an excerpt from the Second Quarter 2011 edition of the Wind Program R&D Newsletter. The Advanced Manufacturing Initiative (AMI) at DOE's Sandia National Laboratories is working with industry to improve manufacturing processes and create U.S. jobs by improving labor productivity in wind turbine blade

  18. Driving Economic Growth: Advanced Technology Vehicles Manufacturing |

    Office of Environmental Management (EM)

    Department of Energy Driving Economic Growth: Advanced Technology Vehicles Manufacturing Driving Economic Growth: Advanced Technology Vehicles Manufacturing With $8 billion in loans and commitments to projects that have supported the production of more than 4 million fuel-efficient cars and more than 35,000 direct jobs across eight states, the Advanced Technology Vehicles Manufacturing (ATVM) loan program has played a key role in helping the American auto industry propel the resurgence of

  19. Advanced Lead Acid Battery Consortium | Open Energy Information

    Open Energy Info (EERE)

    Lead Acid Battery Consortium Jump to: navigation, search Name: Advanced Lead-Acid Battery Consortium Place: Durham, North Carolina Zip: 27713 Sector: Vehicles Product: The ALABC is...

  20. High performance anode for advanced Li batteries

    SciTech Connect (OSTI)

    Lake, Carla

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASIs Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASIs patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  1. Advanced Manufacturing Office | Department of Energy

    Energy Savers [EERE]

    Advanced Manufacturing Office ISO 50001SEP Pilot Program - Applications Due 182016 ISO 50001SEP Pilot Program - Applications Due 182016 The U.S. DOE invites applications for...

  2. Welcome and Advanced Manufacturing Partnership (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Welcome and Advanced Manufacturing Partnership video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  3. Advanced Manufacturing Office Update, July 2015

    Broader source: Energy.gov [DOE]

    Institute for Advanced Composites Manufacturing Innovation Launched The Institute for Advanced Composites Manufacturing Innovation (IACMI) was officially launched last week with the signature of a Cooperative Agreement with the not-for-profit organization established by the University of Tennessee Research Foundation. IACMI, The Composites Institute hosted an initial meeting with Consortium Members in mid-June in Knoxville, Tennessee.

  4. Advanced Drivetrain Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drivetrain Manufacturing Advanced Drivetrain Manufacturing The U.S. Department of Energy (DOE) supports advanced manufacturing techniques that are leading to the "next-generation" of more reliable, affordable, and efficient wind turbine drivetrains. As turbines continue to increase in size, each and every component must also be scaled to meet the demands for renewable energy. What is the Drivetrain? The drivetrain of a wind turbine is composed of the gearbox and the generator, the

  5. Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes Electrolytes - ...

  6. Comment submitted by Energizer Battery Manufacturing, Inc. regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by Energizer Battery Manufacturing, Inc. regarding the Energy Star Verification Testing Program

  7. Polymers For Advanced Lithium Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es088_balsara_2011_o.pdf More Documents & Publications Development of Polymer Electrolytes for Advanced Lithium Batteries Polymers For Advanced Lithium Batteries Polymer Electrolytes for Advanced Lithium Batteries

  8. Electric Drive and Advanced Battery and Components Testbed (EDAB) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss033_carlson_2011_o.pdf More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery

  9. Advanced manufacturing: Technology and international competitiveness

    SciTech Connect (OSTI)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  10. Redox polymer electrodes for advanced batteries

    DOE Patents [OSTI]

    Gregg, Brian A. (Golden, CO); Taylor, A. Michael (Golden, CO)

    1998-01-01

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.

  11. Redox polymer electrodes for advanced batteries

    DOE Patents [OSTI]

    Gregg, B.A.; Taylor, A.M.

    1998-11-24

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene. 2 figs.

  12. Advanced Battery Technologies Inc ABAT | Open Energy Information

    Open Energy Info (EERE)

    Product: China-based developer, manufacturer and distributer of rechargeable polymer lithium-ion (PLI) batteries. Coordinates: 45.363708, 126.314621 Show Map Loading map......

  13. Agenda Advanced Methods for Manufacturing Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda Advanced Methods for Manufacturing Workshop September 29, 2015 Lockheed Martin 2021 Crystal Drive Arlington, Virginia 8:30 Safety, Security and Housekeeping Dr. Scott Anderson 8:45 - 10:45 2012 Projects, 30 minutes with questions Lockheed Martin - Direct manufacturing of Nuclear Power components EPRI - Innovative Manufacturing Process for Nuclear power Plant Components Purdue - Modular Connection Technologies for SC Walls INL - Monitoring and Control of Hybrid Laser-GMAW Process 10:45 -

  14. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Advanced Qualification of Additive Manufacturing Materials (AM) Workshop Our goal is to define opportunities and research gaps within additive manufacturing (AM) and to engage the broader scientific/engineering community to discuss future research directions. thumbnail of thumbnail of Contact Institute Director Dr. Alexander V. Balatsky Institute for Materials Science (505) 665-0077 Email Deputy Director Dr. Jennifer S. Martinez Institute for Materials Science

  15. Advanced Blade Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blade Manufacturing Advanced Blade Manufacturing While the blades of a turbine may be one of the most recognizable features of any wind installation, they also represent one of the largest physical challenges in the manufacturing process. Turbine blades can reach up to 75 meters (250 feet) in length, and will continue to increase in size as the demand for renewable energy grows and as wind turbines are deployed offshore. Because of their size and aerodynamic complexity, wind turbine blades are

  16. Advanced Methods for Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methods for Manufacturing Advanced Methods for Manufacturing The overall purpose of the AMM subprogram is to accelerate innovations that reduce the cost and schedule of constructing new nuclear plants and make fabrication of nuclear power plant components faster, cheaper, and more reliable. Based on past industry work and new stakeholder input, this effort will focus on opportunities that provide simplified, standardized, and labor-saving outcomes for manufacturing, fabrication, assembly, and

  17. Advanced Qualification of Additive Manufacturing Materials Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July » Advanced Qualification of Additive Manufacturing Materials Workshop Advanced Qualification of Additive Manufacturing Materials Workshop WHEN: Jul 20, 2015 8:30 AM - Jul 21, 2015 7:30 PM WHERE: La Fonda on the Plaza Santa Fe, New Mexico SPEAKER: Multiple speakers CONTACT: Caryll Blount (505) 665-3950 CATEGORY: Science TYPE: Workshop INTERNAL: Calendar Login Event Description Invited speakers from universities and research centers, both US-based and Europe-based, will provide updates on

  18. Berkeley Lab Highlights HPC at Advanced Manufacturing Event

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights HPC at Advanced Manufacturing Event Berkeley Lab Highlights HPC at Advanced Manufacturing Event September 14, 2015 Peter Nugent, Division Deputy for Scientific...

  19. The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office

    Broader source: Energy.gov [DOE]

    This presentation describes the Advanced Manufacturing Partnership from its beginning as a recommendation of the President's Council of Advisers on Science and Technology to its development and organization.

  20. Private-Public Partnerships for U.S. Advanced Manufacturing

    Energy Savers [EERE]

    Fiber Reinforced Polymer Composite Manufacturing Workshop Crystal City January 13, 2014 Private-Public Partnerships for U.S. Advanced Manufacturing Dr. Frank W. Gayle Advanced Manufacturing National Program Office www.manufacturing.gov U.S. Trade Balance of Advanced Technology 11% of U.S. GDP 12 million U.S. jobs * ~ half of U.S. Exports U.S. Trade Balance Advanced Technology Manufacturing Products ($ Billions) AMNPO Advanced Manufacturing National Program Office A White House chartered

  1. Axeon Power Limited formerly Advanced Batteries Ltd ABL | Open...

    Open Energy Info (EERE)

    Advanced Batteries Ltd (ABL)) Place: Dundee, United Kingdom Zip: DD2 4UH Product: Lithium ion battery pack developer. Coordinates: 45.27939, -123.009669 Show Map Loading...

  2. USCAR LEP ESST Advanced Manufacturing

    SciTech Connect (OSTI)

    Lazarus, L.J.

    2000-09-25

    The objective of this task was to provide processing information data summaries on powder metallurgy (PM) alloys that meet the partner requirements for the production of low mass, highly accurate, near-net-shape powertrain components. This required modification to existing ISO machinability test procedures and development of a new drilling test procedure. These summaries could then be presented in a web page format. When combined with information generated from the USCAR CRADA this would allow chemical, metallurgical, and machining data on PM alloys to be available to all engineering and manufacturing personnel that have access to in-house networks. The web page format also allows for the additions of other wrought materials, making this a valuable tool to the technical staffs.

  3. Overview and Progress of United States Advanced Battery Research (USABC)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activity | Department of Energy Research (USABC) Activity Overview and Progress of United States Advanced Battery Research (USABC) Activity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es097_snyder_2012_o.pdf More Documents & Publications Overview and Progress of United States Advanced Battery Consortium (USABC) Activity United States Advanced Battery Consortium Advanced Technology Vehicle Lab

  4. Manufacture of Advanced Battery Metal Containers & Components

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Manufacturing and Materials for Low-Cost Lithium-Ion Batteries Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es136_carlson_2012_p.pdf More Documents & Publications Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries Vehicle Technologies Office Merit Review 2014: Innovative Manufacturing

  6. A National Strategic Plan For Advanced Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Strategic Plan For Advanced Manufacturing A National Strategic Plan For Advanced Manufacturing PDF icon nstc_feb2012.pdf More Documents & Publications Report to the President on Ensuring American Leadership in Advanced Manufacturing National Network for Manufacturing Innovation: A Preliminary Design National Network for Manufacturing Innovation: A Preliminary Design

  7. Institute for Advanced Composites Manufacturing Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  8. Advanced Materials and Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials and Manufacturing Argonne researchers prepare silicon wafers for full-scale deposition testing of dielectric coatings for large area detectors. Argonne researchers prepare silicon wafers for full-scale deposition testing of dielectric coatings for large area detectors. Argonne's award-winning expertise in the creation and analysis of novel materials contributes to wide-ranging advances that improve industrial processes and manufactured products, saving energy and reducing waste. Many

  9. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors, diagnostics and modeling Contact Institute Director Dr. Alexander V. Balatsky Institute for Materials Science (505) 665-0077 Email Deputy Director Dr. Jennifer S. Martinez Institute for Materials Science (505) 665-0045 Email Deputy Director Dr. Nathan A. Mara Institute for Materials Science (505) 667 8665 Email Institute

  10. Weekly Announcements from the Advanced Manufacturing Office, March 2, 2016

    Broader source: Energy.gov [DOE]

    Summary of weekly announcements from the Office of Energy Efficiency and Renewable Energy's Advanced Manufacturing Office

  11. Webtrends Archives by Fiscal Year — Advanced Manufacturing Office

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Advanced Manufacturing Office, Webtrends archives by fiscal year.

  12. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Additive Manufacturing Technology Assessment

    Office of Environmental Management (EM)

    6: Innovating Clean Energy Technologies in Advanced Manufacturing Technology Assessments Additive Manufacturing Advanced Materials Manufacturing Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials

  13. 3 Reasons Why Advanced Manufacturing Institutes Matter | Department of

    Energy Savers [EERE]

    Energy Reasons Why Advanced Manufacturing Institutes Matter 3 Reasons Why Advanced Manufacturing Institutes Matter February 1, 2016 - 3:06pm Addthis Watch how manufacturing Institutes like the Institute for Advanced Composites Manufacturing Innovation are revolutionizing America's clean energy economy. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs KEY FACTS National Network for Manufacturing Innovation aims to drive down the cost of advanced manufacturing

  14. USFOE: Extended Summary - Lithium ion batteries and their manufacturing challenges

    SciTech Connect (OSTI)

    Daniel, Claus

    2014-01-01

    There is no one lithium ion battery. With the variety of materials and electrochemical couples at our disposal as shown in the previous talks, we have the opportunity to design battery cells specific for their applications. Such applications require optimization of voltage, state of charge utilization, lifetime needs, and safety considerations. Electrochemical couples allow for designing power and energy ratios and available energy for the application. Integration in a large format cell requires optimized roll to roll electrode manufacturing and active material utilization. Electrodes are coated on a current collector in a composite structure comprised of active material, binders, and conductive additives which requires careful control of colloidal chemistry, adhesion, and solidification. These added inactive materials and the cell packaging reduce energy density. Degree of porosity and compaction in the electrode can impede or enhance battery performance. Pathways are explored to bring batteries from currently commercially available 100Wh/kg and 200Wh/L at $500/kWh to 250Wh/kg and 400Wh/L at $125/kWh.

  15. Overview and Progress of the Batteries for Advanced Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies (BATT) Activity | Department of Energy Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es108_duong_2012_o.pdf More Documents & Publications Overview and Progress of the Exploratory Technology Research Activity: Batteries for Advanced

  16. Nanotube Arrays for Advanced Lithium-ion Batteries - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Nanotube Arrays for Advanced Lithium-ion Batteries National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary The development of high-power, high-energy, long-life, and low-cost rechargeable batteries is critical for the next-generation electric and hybrid electric vehicles. Among various battery

  17. Electric Drive and Advanced Battery and Components Testbed (EDAB) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss033_carlson_2012_o.pdf More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB) Electric Drive and Advanced Battery

  18. Energy Storage - Summary of the FY 2005 Batteries for Advanced

    Office of Environmental Management (EM)

    Transportation Technologies (BATT) Research Program Annual Review | Department of Energy Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review Energy Storage - Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review This document presents a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Batteries for Advanced

  19. Overview of the Batteries for Advanced Transportation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    es00bduong2010o.pdf More Documents & Publications Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of...

  20. Overview of the Batteries for Advanced Transportation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. PDF icon es15srinivasan.pdf More Documents & Publications Overview of the Batteries for Advanced Transportation Technologies (BATT) Program BATT Program- Summary and...

  1. Overview and Progress of the Batteries for Advanced Transportation...

    Broader source: Energy.gov (indexed) [DOE]

    duong2013o.pdf More Documents & Publications Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the...

  2. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Cathode Material Development for PHEV Lithium Ion Batteries High Energy Novel Cathode Alloy Automotive Cell Develop & evaluate materials & additives that enhance thermal ...

  3. Overview and Progress of United States Advanced Battery Consortium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consortium (USABC) Activity Overview and Progress of United States Advanced Battery Consortium (USABC) Activity 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

  4. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress...

  5. Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytes - Interfacial and Bulk Properties and Stability Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of ...

  6. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting PDF icon vss033carlson2012o.pdf More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office Merit...

  7. Comparison of advanced battery technologies for electric vehicles

    SciTech Connect (OSTI)

    Dickinson, B.E.; Lalk, T.R.; Swan, D.H.

    1993-12-31

    Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

  8. 2010 DOE, Li-Ion Battery Cell Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE, Li-Ion Battery Cell Manufacturing 2010 DOE, Li-Ion Battery Cell Manufacturing 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon esarravt001_eun_2010_p.pdf More Documents & Publications USABC Program Highlights Li-Ion Battery Cell Manufacturing Process for Low Cost Domestic Production of LIB Cathode Materials

  9. Advanced Methods for Manufacturing Newsletter - Issue 2 | Department of

    Energy Savers [EERE]

    Energy Methods for Manufacturing Newsletter - Issue 2 Advanced Methods for Manufacturing Newsletter - Issue 2 The Advanced Methods for Manufacturing (AMM) newsletter includes information about selected projects pertaining to additive manufacturing, concrete technologies, and welding innovations currently funded by the Department of Energy's Office of Nuclear Energy. PDF icon NEET-Advanced Methods for Manufacturing-Newsletter Issue 2.pdf More Documents & Publications FY 2015 Advanced

  10. Advanced Manufacturing Office FY 2015 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of industry-specific and cross- cutting manufacturing technologies to ... come together to develop and leverage cutting-edge cross-cutting advanced manufacturing ...

  11. Advanced Manufacturing Office, U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... NSF Engineering Research Centers NSF IUCR Centers NSF IUCR Centers SBIRSTTR SBIRSTTR NIST Manufacturing Extension Partnership NIST Manufacturing Extension Partnership Advanced ...

  12. Advanced Manufacturing Office Peer Review Final Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE PEER REVIEW MAY 28-29, 2015 Washington Marriott Wardman Park 2660 Woodley Road NW Washington, DC 20008 FINAL AGENDA Day 1 (May 28) 8:00 - 8:45 am Peer Reviewer Briefing Breakfast Mark Johnson, Isaac Chan, Mark Shuart, and Jay Wrobel, DOE-AMO 8:45 - 9:00 am BREAK 8:00 - 9:00 am REGISTRATION FOR ATTENDEES 9:00 - 9:30 am Welcome and AMO Overview Mark Johnson, DOE-AMO 9:30 - 9:50 am Sustainable Manufacturing via Multi-Scale Third Wave Systems Inc. Physics-Based Process

  13. Overview and Progress of United States Advanced Battery Consortium (USABC)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activity | Department of Energy Consortium (USABC) Activity Overview and Progress of United States Advanced Battery Consortium (USABC) Activity 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es097_snyder_2011_o.pdf More Documents & Publications Overview of Battery R&D Activities United States Advanced Battery Consortium Energy Storage R&D and ARRA

  14. Overview of the Batteries for Advanced Transportation Technologies (BATT)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy 10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es00b_duong_2010_o.pdf More Documents & Publications Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the Exploratory Technology Research Activity: Batteries for Advanced Transportation Technologies (BATT) Overview and Progress of the Batteries

  15. New INL High Energy Battery Test Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA Electric Drive Component Manufacturing: ...

  16. Polymers For Advanced Lithium Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es088_balsara_2012_p.pdf More Documents & Publications Polymers For Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries Interfacial Behavior of Electrolytes

  17. Advanced Manufacturing Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Office ISO 50001/SEP Pilot Program - Applications Due 1/8/2016 ISO 50001/SEP Pilot Program - Applications Due 1/8/2016 The U.S. DOE invites applications for a pilot program to help companies implement ISO 50001 and the Superior Energy Performance (SEP) program across multiple facilities throughout North America and worldwide. This pilot program is in partnership with the Commission for Environmental Cooperation and national energy agencies in Canada, Mexico, and the United

  18. U.S. Advanced Manufacturing and Clean Energy Technology Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer Review Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 Outline * Big Picture on Manufacturing in US * Focus on Advanced Manufacturing * AMO Organization * Technical Assistance * R&D Facilities * R&D Projects * Goals for Meeting 3 Products invented here, now made

  19. Teaming Up to Apply Advanced Manufacturing Methods to Wind Turbine

    Energy Savers [EERE]

    Production | Department of Energy Teaming Up to Apply Advanced Manufacturing Methods to Wind Turbine Production Teaming Up to Apply Advanced Manufacturing Methods to Wind Turbine Production February 1, 2016 - 4:13pm Addthis A view of the Big Area Additive Manufacturing machine that will 3D print molds used to manufacture wind turbine blades. Photo courtesy of Oak Ridge National Laboratory. A view of the Big Area Additive Manufacturing machine that will 3D print molds used to manufacture wind

  20. AMO's New Institute for Advanced Composites Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Advanced Composites Manufacturing Innovation Will Focus on Reducing Energy Use AMO's New Institute for ... on advanced composites-materials that are three times as ...

  1. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Cell Technologies and Advanced Manufacturing Webinar Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Download the presentation slides from the "Joint Fuel Cell Technologies Office and Advanced Manufacturing Office Webinar" held November 20, 2012. PDF icon Joint Fuel Cell Technologies Office and Advanced Manufacturing Office Webinar Slides More Documents & Publications Hydrogen and Fuel Cell Technologies FY 2014 Budget Request Rollout to

  2. New Institute for Advanced Composites Manufacturing Innovation Announced |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Institute for Advanced Composites Manufacturing Innovation Announced New Institute for Advanced Composites Manufacturing Innovation Announced January 12, 2015 - 2:00pm Addthis AMO's New Institute for Advanced Composites Manufacturing Innovation will Focus on Reducing Energy Use "Places like this are who we are. We create. We innovate. We build. We do it together." -President Obama, January 9, 2015 The Institute for Advanced Composites Manufacturing Innovation

  3. Contacts for the Advanced Manufacturing Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contacts for the Advanced Manufacturing Office Contacts for the Advanced Manufacturing Office Welcome to the Advanced Manufacturing Office (AMO). Our address, email, and phone number are provided below. U.S. Department of Energy - Advanced Manufacturing Office (formerly Industrial Technologies Program) Room 5F-065, MS EE-5A 1000 Independence Ave, SW Washington, DC 20585 Phone: (202) 586-9488 Nearest Metro stop: Smithsonian (blue/orange line) Get directions Website Contact: Send us your comments,

  4. Advanced Manufacturing Office and Potential Technologies for Clean Energy Manufacturing Innovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Energy Efficiency and Renewable Energy eere.energy.gov Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov Advanced Manufacturing Office and Potential Technologies for Clean Energy Manufacturing Innovation October 8, 2014 DOE/DOD Planning Workshop- Fort Worth, TX 2 1. Background on DOE and Manufacturing 2. Technical Assistance 3. R & D Projects 4. Manufacturing R & D Facilities 5. Workshop Meta-Questions and Ground Rules Status Quo: Products invented here,

  5. Vehicle Technologies Office: Advanced Battery Development, System...

    Broader source: Energy.gov (indexed) [DOE]

    To learn how batteries are used in plug-in electric vehicles, visit the Alternative Fuels Data Center's page on batteries. Through the USABC, VTO supports a variety of research, ...

  6. Saft America Advanced Batteries Plant Celebrates Grand Opening in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jacksonville | Department of Energy Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville September 16, 2011 - 12:30pm Addthis Department of Energy Investment Helps Support Job Creation, U.S. Economic Competitiveness and Advanced Vehicle Industry WASHINGTON, D.C. - Today, Secretary Steven Chu joined with Saft America to announce the grand opening of the company's Jacksonville, Florida,

  7. Expanding U.S.-based Lithium-ion Battery Manufacturing | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy U.S.-based Lithium-ion Battery Manufacturing Expanding U.S.-based Lithium-ion Battery Manufacturing 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt003_es_kamischke_2012_p.pdf More Documents & Publications Expanding U.S.-based Lithium-ion Battery Manufacturing EA-1710: Finding of No Significant Impact Recovery Act Expanding the First Significant U.S. … Based Manufacturing

  8. Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System

    SciTech Connect (OSTI)

    2011-12-31

    HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, including commercial and residential buildings, data centers, and telecom facilities.

  9. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing

    Office of Environmental Management (EM)

    6: Innovating Clean Energy Technologies in Advanced Manufacturing September 2015 Quadrennial Technology Review 6 Innovating Clean Energy Technologies in Advanced Manufacturing Issues and RDD&D Opportunities  Manufacturing affects the way products are designed, fabricated, used, and disposed; hence, manufacturing technologies have energy impacts extending beyond the industrial sector.  Life-cycle analysis is essential to assess the total energy impact of a manufactured product. 

  10. Advanced Methods for Manufacturing Newsletter - Issue 1 | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy The Advanced Methods for Manufacturing (AMM) newsletter includes information about selected projects pertaining to additive manufacturing, concrete technologies, and welding innovations currently funded by the Department of Energy's Office of Nuclear Energy. PDF icon NEET-Advanced Methods fo Manufacturing Newsletter - Issue 1.pdf More Documents & Publications FY 2015 Advanced Methods for Manufacturing Program Review Meeting 2015 NEET Crosscutting Award Summaries 2013 Annual DOE-NE

  11. Sec. Moniz Discusses Advanced Technology Vehicle Manufacturing Loans |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Discusses Advanced Technology Vehicle Manufacturing Loans Sec. Moniz Discusses Advanced Technology Vehicle Manufacturing Loans April 2, 2014 - 4:37pm Addthis NEWS MEDIA CONTACT (202) 586-4940 Washington D.C. - U.S. Secretary of Energy Ernest Moniz today highlighted key improvements to the Department's Advanced Technology Vehicles Manufacturing (ATVM) Loan Program at the Motor & Equipment Manufacturers Association (MEMA) Legislative Summit. The ATVM Loan Program plays

  12. Vehicle Technologies Office Merit Review 2014: Advanced Battery Recycling

    Broader source: Energy.gov [DOE]

    Presentation given by OnTo Technology LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced battery recycling.

  13. Working on Advanced Battery Technologies With National Labs ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working on Advanced Battery Technologies With National Labs Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in...

  14. Advanced Manufacturing: Using Composites for Clean Energy | Department of

    Energy Savers [EERE]

    Energy Advanced Manufacturing: Using Composites for Clean Energy Advanced Manufacturing: Using Composites for Clean Energy Advanced fiber-reinforced polymer composites, which combine strong fibers with tough plastics, are lighter and stronger than steel. These materials could lower overall production costs in U.S. manufacturing and ultimately drive the adoption of a new clean energy way of life. Below is the text version of the video above. The video opens with the title, "Advanced

  15. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Advanced Sensors, Controls, Platforms and Modeling for Manufacturing is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between

  16. Quantitative Electrochemical TEM to Study Alloying for Advanced Battery

    Office of Scientific and Technical Information (OSTI)

    Anodes. (Conference) | SciTech Connect Conference: Quantitative Electrochemical TEM to Study Alloying for Advanced Battery Anodes. Citation Details In-Document Search Title: Quantitative Electrochemical TEM to Study Alloying for Advanced Battery Anodes. Abstract not provided. Authors: Zavadil, Kevin Robert ; Liu, Yang ; Kotula, Paul Gabriel ; Jungjohann, Katherine Leigh ; Hahn, Nathan Publication Date: 2014-02-01 OSTI Identifier: 1141149 Report Number(s): SAND2014-1392C 503568 DOE Contract

  17. Overview of the Batteries for Advanced Transportation Technologies (BATT)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es_15_srinivasan.pdf More Documents & Publications Overview of the Batteries for Advanced Transportation Technologies (BATT) Program BATT Program- Summary and Future Plans Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity

  18. Advanced Manufacturing Office FY 2017 Budget At-A-Glance | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and ...

  19. Advanced Manufacturing Office, U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    manufacturing methods can change the landscape Advanced Manufacturing Office Innovation Can Change the World 1884: The price of aluminum was 1oz and the price of gold was 20oz. ...

  20. Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides

    SciTech Connect (OSTI)

    2011-12-01

    HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The teams innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

  1. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steven J. Visco, CEO & CTO, PolyPlus Battery Company U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 28-29, 2015 Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries Contract Number EE0005757 PolyPlus/Corning/Johnson Controls Inc. Project Period: 9/01/2012 to 8/31/2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective The

  2. AMO's New Institute for Advanced Composites Manufacturing Innovation Will

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Focus on Reducing Energy Use | Department of Energy for Advanced Composites Manufacturing Innovation Will Focus on Reducing Energy Use AMO's New Institute for Advanced Composites Manufacturing Innovation Will Focus on Reducing Energy Use January 12, 2015 - 12:40pm Addthis Places like this are who we are. We create. We innovate. We build. We do it together. -President Obama, January 9, 2015 The Institute for Advanced Composites Manufacturing Innovation is a public-private consortium of 122

  3. Institute for Advanced Composites Manufacturing Innovation Holds Second

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Membership Meeting | Department of Energy Institute for Advanced Composites Manufacturing Innovation Holds Second Membership Meeting Institute for Advanced Composites Manufacturing Innovation Holds Second Membership Meeting January 27, 2016 - 9:56am Addthis On January 13-14, the Institute for Advanced Composites Manufacturing Innovation (IACMI) held its second membership meeting near Detroit, Michigan. IACMI, headquartered in Knoxville, TN is a public-private partnership creating clean

  4. Request for Information (RFI): Advanced Manufacturing Office (AMO) Software

    Energy Savers [EERE]

    Tools | Department of Energy Advanced Manufacturing Office (AMO) Software Tools Request for Information (RFI): Advanced Manufacturing Office (AMO) Software Tools July 25, 2014 - 1:00pm Addthis Funding: This RFI is not a Funding Opportunity Announcement (FOA); therefore, EERE is not accepting applications at this time. Open Date: 07/25/2014 Close Date: 09/30/2014 Funding Organization: The Advanced Manufacturing Office of the Office of Energy Efficiency and Renewable Energy Funding Number:

  5. Advanced Manufacturing Office Update, January 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2015 Advanced Manufacturing Office Update, January 2015 January 26, 2015 - 2:00pm Addthis In This Issue Featured Articles Expert Panel Releases Final Report on Strengthening Advanced Manufacturing in America 3D Printed Shelby Cobra Demonstrates Further Advances in Additive Manufacturing Partners in the Spotlight Legrand Energy Marathon Leads to Big Savings Better Plants Welcomes First Five Wastewater Treatment Partners Third Volvo Facility Certified to Superior Energy Performance Honda

  6. Designing the Future of Advanced Composites Manufacturing | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Designing the Future of Advanced Composites Manufacturing Designing the Future of Advanced Composites Manufacturing June 24, 2015 - 4:46pm Addthis Left: Gary Bertoline, Dean of Purdue Polytechnic Institute; Kelly Visconti, Technology Manager for the U.S. Department of Energy Advanced Manufacturing Office; John Dennis, Mayor of West Lafayette; Mitch Daniels, President of Purdue University; R. Byron Pipes, John Leighton Bray Distinguished Professor of Engineering; Victor Smith, Indiana

  7. EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing

    Office of Environmental Management (EM)

    Project in Dearborn, MI | Department of Energy ATVM » ATVM Environmental Compliance » EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn, MI EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn, MI February 1, 2011 EA-1834: Final Environmental Assessment Loan to Severstal Dearborn, Inc., for Advanced Technology Vehicles Manufacturing Project in Dearborn, Michigan February 18, 2011 EA-1834: Finding of No Significant

  8. Advanced Manufacturing Office FY14 Budget At-a-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... are all critical parts of the President's effort to accelerate advanced manufacturing and engage colleges and universities and small and medium-sized business enterprises (SMEs). ...

  9. Advanced Sensors, Controls and Platforms for manufacturing (ASCPM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and government For more information about AMP, visit http:www.manufacturing.govamp.html 5 What is ASCPM? Advanced networked systems that combine sensors, data, models, and ...

  10. U.S. Advanced Manufacturing and Clean Energy Technology Challenges

    Energy Savers [EERE]

    U.S. Advanced Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer ... & Programs: Pilar Thomas * Office of Nuclear Energy: Martha Shields, Alison Hahn, ...

  11. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufactur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... from publicly available module price data rather than the calculations described in endnote 78. Acronyms AMO Advanced Manufacturing Office (of the Department of Energy) IUPAC ...

  12. Advanced Manufacture of Second-Surface, Silvered Glass Reflectors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems PDF icon cspreviewmeeting042313angel.pdf More Documents & ...

  13. AVTA: Battery Testing- Electric Drive and Advanced Battery and Components Testbed

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The AVTA runs the Electric Drive and Advanced Battery and Components Testbed to capture batteries’ real-world performance. The Testbed simulates battery charging as well as on-road driving. Researchers run the Testbed on a daily basis on cycles that represent typical driving and charging patterns. This research was conducted by Idaho National Laboratory.

  14. Advancement Of Tritium Powered Betavoltaic Battery Systems

    SciTech Connect (OSTI)

    Staack, G.; Gaillard, J.; Hitchcock, D.; Peters, B.; Colon-Mercado, H.; Teprovich, J.; Coughlin, J.; Neikirk, K.; Fisher, C.

    2015-10-14

    Due to their decades-long service life and reliable power output under extreme conditions, betavoltaic batteries offer distinct advantages over traditional chemical batteries, especially in applications where frequent battery replacement is hazardous, or cost prohibitive. Although many beta emitting isotopes exist, tritium is considered ideal in betavoltaic applications for several reasons: 1) it is a pure beta emitter, 2) the beta is not energetic enough to damage the semiconductor, 3) it has a moderately long half-life, and 4) it is readily available. Unfortunately, the widespread application of tritium powered betavoltaics is limited, in part, by their low power output. This research targets improving the power output of betavoltaics by increasing the flux of beta particles to the energy conversion device (the p-n junction) through the use of low Z nanostructured tritium trapping materials.

  15. Advanced Lithium Ion Battery Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Find More Like This Return to Search Advanced Lithium Ion Battery Technologies Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryScientists at Berkeley Lab have invented highly conductive polymer binder materials that significantly improve the viability of using silicon as an electrode material in lithium ion batteries. They have also combined lithium metal with the Berkeley Lab

  16. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives Electrolytes - Advanced ...

  17. Changing the Advanced Energy Manufacturing Game in America's Heartland |

    Office of Environmental Management (EM)

    Department of Energy Advanced Energy Manufacturing Game in America's Heartland Changing the Advanced Energy Manufacturing Game in America's Heartland December 16, 2010 - 9:32am Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? Clean energy manufacturing is expanding across the Midwest. This was spurred in large part by the Advanced Energy Manufacturing Tax Credit, also known as 48C, which was part of the Recovery Act. The $2.3

  18. Evaluation of advanced polymers for additive manufacturing (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Technical Report: Evaluation of advanced polymers for additive manufacturing Citation Details In-Document Search Title: Evaluation of advanced polymers for additive manufacturing The goal of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Oak Ridge National Laboratory (ORNL) and PPG Industries, Inc. was to evaluate the feasibility of using conventional coatings chemistry and technology to build up material layer-by-layer. The

  19. Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance, Low-Cost CSP Collector Systems | Department of Energy Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems PDF icon csp_review_meeting_042313_angel.pdf More Documents &

  20. Berkeley Lab Highlights HPC at Advanced Manufacturing Event

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights HPC at Advanced Manufacturing Event Berkeley Lab Highlights HPC at Advanced Manufacturing Event September 14, 2015 Peter Nugent, Division Deputy for Scientific Engagement in Berkeley Lab's Computational Research Division, and David Skinner, who leads NERSC's Strategic Partnerships effort, are participating this week in the third annual 2015 American Energy & Manufacturing Competitiveness Summit, where they will be discussing the increasing role of high performance computing in

  1. Stay informed with current announcements from the Advanced Manufacturing

    Energy Savers [EERE]

    Office (AMO). | Department of Energy Stay informed with current announcements from the Advanced Manufacturing Office (AMO). Stay informed with current announcements from the Advanced Manufacturing Office (AMO). September 30, 2015 - 11:30am Addthis Lawrence Livermore National Laboratory Leads DOE's New HPC for Manufacturing Program Lawrence Livermore National Laboratory (LLNL) is collaborating with Lawrence Berkeley and Oak Ridge National Laboratories (LBNL and ORNL) to lead a new US

  2. Institute for Advanced Composites Manufacturing Innovation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Facilities » Institute for Advanced Composites Manufacturing Innovation Institute for Advanced Composites Manufacturing Innovation Institute Partners Covering 34 states, a consortium of 122 companies, nonprofits, universities, and research laboratories is partnering with the federal government to create a manufacturing hub focused on U.S. leadership in next-generation materials. Click on a state to view the partners working in that area. Thumbnail on opening image of linked video.

  3. USABC Development of Advanced High-Performance Batteries for EV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es138_karditsas_2012_p.pdf More Documents & Publications FY 2011 Annual Progress Report for Energy Storage R&D FY 2012 Annual Progress Report for Energy Storage R&D U.S.

  4. Advanced Manufacturing Office At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Computing for Manufacturing R&D assists U.S. industry with their most ... Innovation that includes more than 100 industry, SME, and academic partners and members. ...

  5. Advanced Manufacturing Office Small Business Innovation Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office Small Business Innovation Research Small Business Technology ... in thermal and degradation resistance, high-performance, and lower-cost for energy systems. ...

  6. Advanced Manufacturing Office (Formerly Industrial Technologies Program)

    Broader source: Energy.gov [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  7. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Sustainable Nanomaterials Workshop Nanocomposite Materials for Lithium-Ion Batteries Advanced Manufacturing Office, U.S. Department of Energy...

  8. Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Grants | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es098_johnson_2011_o.pdf More Documents & Publications Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants Vehicle Technologies Office: 2010 Energy Storage R&D Annual Progress Report Perfluoro Aryl Boronic Esters as Chemical Shuttle Additives

  9. Advanced Manufacturing Office Update, September 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 2014 Advanced Manufacturing Office Update, September 2014 September 18, 2014 - 4:34pm Addthis In This Issue Featured Article Veterans Receive Valuable Advanced Manufacturing Training under AMO-Sponsored Internship Partners in the Spotlight Iowa Water and Wastewater Operators Seek SEP Certification in New Pilot Program Darigold Steps Up to the Better Plants Challenge Velocys Advances Small-Scale Gas-to-Liquid Technology with AMO Support HARBEC's $52,000 Annual Energy Savings under SEP

  10. Building a More Competitive American Manufacturing Industry with Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composites | Department of Energy a More Competitive American Manufacturing Industry with Advanced Composites Building a More Competitive American Manufacturing Industry with Advanced Composites January 9, 2015 - 10:21am Addthis Pictured above is the Shelby Cobra, a vehicle 3-D printed at Oak Ridge National Laboratory. Using advanced composites and 3-D printing both cut the car's weight in half and improved performance and safety. | Photo by Carlos Jones. Pictured above is the Shelby Cobra,

  11. Advanced Cathode Material Development for PHEV Lithium Ion Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es006_gardner_2011_p.pdf More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries High Energy Novel Cathode / Alloy Automotive Cell Develop & evaluate materials & additives that enhance thermal & overcharge abuse

  12. Advanced Manufacturing Office Update, July 2014 | Department...

    Office of Environmental Management (EM)

    ... The winner, Michele Ano of Italy, will receive a 5,000 cash prize and see his concept built from scratch at the International Manufacturing Technology Show in September 2014. ...

  13. Office of Energy Efficiency & Renewable Energy Advanced Manufacturing Office

    Energy Savers [EERE]

    Office of Energy Efficiency & Renewable Energy Advanced Manufacturing Office Quadrennial Technology Review (QTR): Technology Assessment - Sustainable Manufacturing/Flow of Materials Through Industry Joe Cresko - joe.cresko@ee.doe.gov Sustainable Manufacturing Workshop Portland, OR January 6, 2016 2 Quadrennial Technology Review-2015 hOp://www.energy.gov/quadrennial-technology-review-2015 The QTR is a comprehensive assessment of science and energy technology R&D opportuniHes to address

  14. Advanced Blade Manufacturing Project - Final Report

    SciTech Connect (OSTI)

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  15. Advanced Technology Vehicles Manufacturing Loan Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technology Vehicles Manufacturing Loan Program Advanced Technology Vehicles Manufacturing Loan Program PDF icon ATVM-Program-Application-Overview.pdf More Documents & Publications ATVM Program Overview 2015 ATVM Guidance for Applicants 11.4.14 ATVM Interim Final Rule Correction

  16. FY 2015 Advanced Methods for Manufacturing Program Review Meeting

    Broader source: Energy.gov [DOE]

    The Advanced Methods for Manufacturing (AMM) program held its annual review meeting on September 29, 2015 in Arlington, Va. The purpose of this meeting was to review the 17 currently funded projects encompassing additive manufacturing, welding and joining technologies, concrete materials and rebar innovations, surface modification and cladding processes, and imaging techniques for design reconstruction. The presentations are available here.

  17. Advanced Manufacturing Office Update, January 2015 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Articles Expert Panel Releases Final Report on Strengthening Advanced Manufacturing in America 3D Printed Shelby Cobra Demonstrates Further Advances in Additive Manufacturing Partners in the Spotlight Legrand Energy Marathon Leads to Big Savings Better Plants Welcomes First Five Wastewater Treatment Partners Third Volvo Facility Certified to Superior Energy Performance Honda Recognizes Bridgestone Facility with Three Environmental Achievement Awards AMO and Industry News Save the Date for the

  18. Advanced Manufacturing Office Update January 2016 | Department of Energy

    Office of Environmental Management (EM)

    Update January 2016 Advanced Manufacturing Office Update January 2016 February 2, 2016 - 4:36pm Addthis In this Issue Partner Spotlight AMO Technology Advances Wind Turbine Research Hilton Joins Superior Energy Performance Partners AMO Success Stories Innovators Find a Home with Cyclotron Road Manufacturing Industry's Role in Grid Modernization The Future of Robotics Scholars IACMI Announces Summer Internship Program A Message from the Director Johnson_280x210.jpg Dear friends of AMO, The

  19. Purdue, GE Collaborate On Advanced Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purdue, GE to collaborate on advanced manufacturing to enable faster, efficient brilliant factories Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Purdue, GE to collaborate on advanced manufacturing to enable faster, efficient brilliant factories WEST LAFAYETTE, Ind. - Purdue University announced Thursday (Dec. 4,

  20. Energy Department Trains Veterans in Advanced Manufacturing | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Trains Veterans in Advanced Manufacturing Energy Department Trains Veterans in Advanced Manufacturing August 15, 2014 - 11:30am Addthis Deputy Secretary of Energy Daniel Poneman addresses attendees at a ceremony at Pellissippi State Community College on August 15, 2014. | Energy Department file photo. Deputy Secretary of Energy Daniel Poneman addresses attendees at a ceremony at Pellissippi State Community College on August 15, 2014. | Energy Department file photo. NEWS MEDIA CONTACT

  1. Advanced Manufacture of Reflectors (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    The University of Arizona is one of the 2012 SunShot CSP R&D awardees for their advanced collectors. This fact sheet explains the motivation, description, and impact of the project.

  2. New Institute for Advanced Composites Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Institute will focus on lowering the cost of advanced fiber-reinforced polymer composite materials by 50 percent, reducing the energy used to make composites by 75 percent, and ...

  3. A National Strategic Plan For Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and is in the public domain (see 17 U.S.C. 105). ... President on Ensuring American Leadership in Advanced ... this vital sector and challenges to its continuing health. ...

  4. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energys Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  5. Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  6. Advanced Cathode Material Development for PHEV Lithium Ion Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es006_gardner_2010_o.pdf More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress Report Vehicle Technologies Office Merit Review 2014: High Energy Novel Cathode / Alloy Automotive Cell

  7. Secretary Chu Visits Advanced Battery Plant in Michigan, Announces New Army Partnership

    Broader source: Energy.gov [DOE]

    Thirty new manufacturing plants across the country for electric vehicle batteries and components including A123 in Michigan were supported through the Recovery Act, meaning well have the capacity to manufacture enough batteries and components for 500,000 electric vehicles annually by 2015.

  8. Advanced ceramic manufacturing of SiAlON exhaust valves

    SciTech Connect (OSTI)

    Bright, E.; Eckalbar, J.F.; McEntire, B.J.; Pujari, V.K.; Tricard, M.

    1996-09-01

    Norton Advanced Ceramic`s (NAC) is performing ceramic manufacturing development as part of the DOE-sponsored Advanced Ceramic Manufacturing Technology (ACMT) Program. NAC`s ACMT effort is focused on developing a cost effective manufacturing process for a ceramic exhaust valve. An industry team has been assembled to address cost reduction for this ceramic component. Technical progress made by NAC`s ACMT industry team in reducing the cost of ceramic valves is summarized within this communication. Particular emphasis is placed on describing progress in the development of intelligent processing systems for the powder processing, spray drying, and forming operations. Ceramic valve manufacturing process enhancements including continuous sintering, high-speed diamond grinding, and cost effective proof testing are summarized as well.

  9. Advanced Manufacturing Office, U.S. Department of Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Office, U.S. Department of Energy Advanced Manufacturing Office, U.S. Department of Energy PDF icon Workshop Overview - Leo Christodoulou, DOE Advanced Manufacturing Office More Documents & Publications Sustainable Nanomaterials Workshop Innovative Manufacturing Initiative Recognition Day, Advanced Manufacturing Office (AMO) Innovative Manufacturing Initiative Recognition Day

  10. Project Profile: Advanced Manufacture of Reflectors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacture of Reflectors Project Profile: Advanced Manufacture of Reflectors University of Arizona logo The University of Arizona and its partners, under the 2012 Concentrating Solar Power (CSP) SunShot R&D funding opportunity announcement (FOA), are developing technology to improve the optical accuracy and reflectivity of the self-supporting glass mirrors used in CSP collector systems. Approach The research team is working to optimize and validate a novel glass-molding technique that

  11. Advanced Manufacturing Office Update, November 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 2014 Advanced Manufacturing Office Update, November 2014 November 13, 2014 - 12:00pm Addthis In This Issue Featured Articles Better Plants Partners Celebrated at National Conference World's First 3D Printed Car Shows Additive Manufacturing Has Come of Age Partners in the Spotlight Schneider Electric Achieves Superior Energy Performance at Five Facilities O'Fallon Casting, Oshkosh Corporation, Oregon Freeze Dry, and Richmond Industries Join Better Plants Holcim (US) Inc. Steps up to the

  12. Advanced Power Batteries for Renewable Energy Applications 3.09

    SciTech Connect (OSTI)

    Shane, Rodney

    2011-12-01

    This report describes the research that was completed under project title Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  13. Advanced Manufacturing Office Update, March 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 2015 Advanced Manufacturing Office Update, March 2015 March 30, 2015 - 3:13pm Addthis In This Issue Featured Articles Better Plants Welcomes New Partners from Diverse Sectors Better Plants Challenge Partners Share Energy-Saving Solutions Harbec Receives 2014 Environmental Excellence Award from New York State AMO and Industry News Heat Exchange Materials Research Advances Accomplishments Highlighted at Critical Materials Institute Annual Peer Review Benefits of Combined Heat and Power

  14. Stationary semi-solid battery module and method of manufacture

    DOE Patents [OSTI]

    Slocum, Alexander; Doherty, Tristan; Bazzarella, Ricardo; Cross, III, James C.; Limthongkul, Pimpa; Duduta, Mihai; Disko, Jeffry; Yang, Allen; Wilder, Throop; Carter, William Craig; Chiang, Yet-Ming

    2015-12-01

    A method of manufacturing an electrochemical cell includes transferring an anode semi-solid suspension to an anode compartment defined at least in part by an anode current collector and an separator spaced apart from the anode collector. The method also includes transferring a cathode semi-solid suspension to a cathode compartment defined at least in part by a cathode current collector and the separator spaced apart from the cathode collector. The transferring of the anode semi-solid suspension to the anode compartment and the cathode semi-solid to the cathode compartment is such that a difference between a minimum distance and a maximum distance between the anode current collector and the separator is maintained within a predetermined tolerance. The method includes sealing the anode compartment and the cathode compartment.

  15. Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Grants | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es098_johnson_2012_o.pdf More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report FY 2012 Annual Progress Report for Energy Storage R&D Toda Material/Component Production Facilities

  16. Process development status report for advanced manufacturing projects

    SciTech Connect (OSTI)

    Brinkman, J.R.; Homan, D.A.

    1990-03-30

    This is the final status report for the approved Advanced Manufacturing Projects for FY 1989. Five of the projects were begun in FY 1987, one in FY 1988, and one in FY 1989. The approved projects cover technology areas in welding, explosive material processing and evaluation, ion implantation, and automated manufacturing. It is expected that the successful completion of these projects well result in improved quality and/or reduced cost for components produced by Mound. Those projects not brought to completion will be continued under Process development in FY 1990.

  17. Manufacture of Advanced Battery Metal Containers & Components | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt013_es_lauinger_2012

  18. Manufacture of Advanced Battery Metal Containers & Components | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt013_es_moffa_2011

  19. An Update on Advanced Battery Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in 2020, an average annual growth rate of roughly 25 percent. Earlier this year, the Toyota Prius became the third best-selling vehicle in the world. Virtually every major...

  20. Wind Program Manufacturing Research Advances Processes and Reduces Costs |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Tower sections being installed for a 2-MW wind turbine. Knowing that reducing the overall cost of wind energy begins on the factory floor, the Department of Energy's (DOE's) Wind Program supports research and development efforts and funding opportunities that integrate new designs, materials, and advanced techniques into the manufacturing process, making wind a more affordable source of renewable energy for communities nationwide. Numerous facilities specializing in the

  1. Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

  2. 48C Phase II Advanced Energy Manufacturing Tax Credit Program Selections

    Broader source: Energy.gov [DOE]

    The Departments of Energy and the Treasury worked in partnership to develop, launch, and award the funds for 48C Advanced Energy Manufacturing Tax Credit program.  The Advanced Energy Manufacturing...

  3. Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mohanty, D.; Hockaday, E.; Li, J.; Hensley, D. K.; Daniel, C.; Wood, D. L.

    2016-02-21

    During LIB electrode manufacturing, it is difficult to avoid the certain defects that diminish LIB performance and shorten the life span of the batteries. This study provides a systematic investigation correlating the different plausible defects (agglomeration/blisters, pinholes/divots, metal particle contamination, and non-uniform coating) in a LiNi0.5Mn0.3Co0.2O2 positive electrode with its electrochemical performance. Additionally, an infrared thermography technique was demonstrated as a nondestructive tool to detect these defects. The findings show that cathode agglomerates aggravated cycle efficiency, and resulted in faster capacity fading at high current density. Electrode pinholes showed substantially lower discharge capacities at higher current densities than baseline NMCmore » 532 electrodes. Metal particle contaminants have an extremely negative effect on performance, at higher C-rates. The electrodes with more coated and uncoated interfaces (non-uniform coatings) showed poor cycle life compared with electrodes with fewer coated and uncoated interfaces. Further, microstructural investigation provided evidence of presence of carbon-rich region in the agglomerated region and uneven electrode coating thickness in the coated and uncoated interfacial regions that may lead to the inferior electrochemical performance. In conclusion, this study provides the importance of monitoring and early detection of the electrode defects during LIB manufacturing processes to minimize the cell rejection rate after fabrication and testing.« less

  4. NREL Joins with A123Systems to Improve Advanced-Vehicle Batteries - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL Joins with A123Systems to Improve Advanced-Vehicle Batteries Safe, powerful, and long-lasting batteries key to more fuel-efficient cars June 19, 2008 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) and A123Systems have teamed up to support the battery-maker's effort to develop safe, less expensive, more powerful, and longer lasting batteries for hybrid-electric vehicles. The Laboratory and the battery-maker have signed a three-year,

  5. Layer cathode methods of manufacturing and materials for Li-ion rechargeable batteries

    DOE Patents [OSTI]

    Kang, Sun-Ho; Amine, Khalil

    2008-01-01

    A positive electrode active material for lithium-ion rechargeable batteries of general formula Li.sub.1+xNi.sub..alpha.Mn.sub..beta.A.sub..gamma.O.sub.2 and further wherein A is Mg, Zn, Al, Co, Ga, B, Zr, or Ti and 0manufacturing the same. Such an active material is manufactured by employing either a solid state reaction method or an aqueous solution method or a sol-gel method which is followed by a rapid quenching from high temperatures into liquid nitrogen or liquid helium.

  6. Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturers | Department of Energy Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers September 16, 2011 - 11:05am Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs Today's New York Times includes a story about loans the Department of Energy has issued for electric vehicle manufacturing. The story says that the price of advanced batteries

  7. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    SciTech Connect (OSTI)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  8. Influence of Manufacturing Processes and Microstructures on the Performance and Manufacturability of Advanced High Strength Steels

    SciTech Connect (OSTI)

    Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-10-01

    Advanced high strength steels (AHSS) are performance-based steel grades and their global material properties can be achieved with various steel chemistries and manufacturing processes, leading to various microstructures. In this paper, we investigate the influence of supplier variation and resulting microstructure difference on the overall mechanical properties as well as local formability behaviors of advanced high strength steels (AHSS). For this purpose, we first examined the basic material properties and the transformation kinetics of TRansformation Induced Plasticity (TRIP) 800 steels from three different suppliers under different testing temperatures. The experimental results show that there is a significant supplier (i.e., manufacturing process) dependency of the TRIP 800 steel mechanical and microstructure properties. Next, we examined the local formability of two commercial Dual Phase (DP) 980 steels during stamping process. The two commercial DP 980 steels also exhibit noticeably different formability during stamping process in the sense that one of them shows severe tendency for shear fracture. Microstructure-based finite element analyses are carried out next to simulate the localized deformation process with the two DP 980 microstructures, and the results suggest that the possible reason for the difference in formability lies in the morphology of the hard martensite phase in the DP microstructure.

  9. Advanced Manufacturing Office FY14 Budget At-a-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy FY14 Budget At-a-Glance Advanced Manufacturing Office FY14 Budget At-a-Glance Advanced Manufacturing Office FY14 Budget At-a-Glance, a publication of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. PDF icon manufacturing_ataglance_2014.pdf More Documents & Publications Advanced Manufacturing Office FY 2016 Budget At-A-Glance Advanced Manufacturing Office FY 2015 Budget At-A-Glance Bioenergy Technologies FY14 Budget At-a

  10. Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review May 31-June 2, 2005 Berkeley, CA August 2005 U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies August 8, 2005 Dear Colleague: This document presents a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Batteries for Advanced Transportation Technologies (BATT) program annual review. The review was held at the

  11. EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the Delphi Kokomo, IN Corporate Technology Center (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOEs Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the nations economic recovery by creating manufacturing jobs in the United States. The Delphi CTC Project would involve the construction and operation of a 10,700 square foot (ft2) utilities building containing boilers and heaters and a 70,000 ft2 engineering laboratory, as well as site improvements (roads, parking, buildings, landscaping,and lighting).

  12. ADVANCED MANUFACTURING OFFICE HIGH VALUE ROLL TO ROLL (HV R2R) WORKSHOP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DECEMBER 2-3, 2015 | Department of Energy ADVANCED MANUFACTURING OFFICE HIGH VALUE ROLL TO ROLL (HV R2R) WORKSHOP DECEMBER 2-3, 2015 ADVANCED MANUFACTURING OFFICE HIGH VALUE ROLL TO ROLL (HV R2R) WORKSHOP DECEMBER 2-3, 2015 PDF icon Draft Agenda More Documents & Publications WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW WORKSHOP: HIGH VALUE ROLL TO ROLL (HV R2R) MANUFACTURING INNOVATION, DECEMBER 2-3, 2015 2015 AMO Peer Review Agenda

  13. East Penn Manufacturing Keeps Moving Forward After 65 Years

    Broader source: Energy.gov [DOE]

    How East Penn Manufacturing went from a small business, founded by a father and son just after the close of World War II, to an expanding manufacturer of advanced batteries for hybrid electric vehicles.

  14. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    SciTech Connect (OSTI)

    Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

  15. Report to the President: Capturing a Domestic Competitive Advantage in Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REPORT TO THE PRESIDENT CAPTURING A DOMESTIC COMPETITIVE ADVANTAGE IN ADVANCED MANUFACTURING Report of the Advanced Manufacturing Partnership Steering Committee Annex 2: Shared Infrastructure and Facilities Workstream Report Executive Office of the President President's Council of Advisors on Science and Technology JULY 2012 PREFACE In June 2011, the President established the Advanced Manufacturing Partnership (AMP), which is led by a Steering Committee that operates within the framework of the

  16. Report to the President: Capturing a Domestic Competitive Advantage in Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REPORT TO THE PRESIDENT CAPTURING A DOMESTIC COMPETITIVE ADVANTAGE IN ADVANCED MANUFACTURING Report of the Advanced Manufacturing Partnership Steering Committee Annex 3: Education and Workforce Development Workstream Report Executive Office of the President President's Council of Advisors on Science and Technology JULY 2012 PREFACE In June 2011, the President established the Advanced Manufacturing Partnership (AMP), which is led by a Steering Committee that operates within the framework of the

  17. Summary of the FY 2005 Batteries for Advanced Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Current Collectors 90.53 12 G. Smith Molecular Modeling Electrolytes and ... for lithium batteries 88.37 17 D. Wheeler Design, Optimization, and Fabrication of Li-ion ...

  18. Saft America Advanced Batteries Plant Celebrates Grand Opening...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the next generation of energy-saving electric cars and trucks with state-of-the-art batteries will help Americans save money at the pump and improve the nation's energy security." ...

  19. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    SciTech Connect (OSTI)

    Sigmund, Wolfgang M.; Woan, Karran V.; Bell, Nelson Simmons

    2010-11-01

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  20. Advanced Manufacturing and Engineering Equipment at the University of Southern Indiana

    SciTech Connect (OSTI)

    Mitchell, Zane Windsor; Gordon, Scott Allen

    2014-08-04

    Department of Energy grant DE-SC0005231was awarded to the University of Southern Indiana for the purchase of Advanced Manufacturing and Engineering equipment.

  1. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufactur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... (http:www.energy.goveereamostatic-sankey-diagram-proces... (http:www.energy.goveereamodynamic-manufacturing-energy-... Engineering Scoping Study of Thermoelectric ...

  2. Purdue, GE Collaborate On Advanced Manufacturing | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to GE transformational." Providing more detail on the partnership's focus on digitalization, decentralization and democratization in manufacturing, Abhijit Deshmukh, the...

  3. Battery Charger Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Charger Efficiency Issues with Marine and Recreational Vehicle Battery Chargers Marine and RV battery chargers differ from power tool and small appliance chargers CEC Testing assumes all variables are known - battery chemistry, battery size. This is not the case in Marine and RV applications. * The battery charger manufacturer has no influence on the selection of batteries. * The battery charger could be used to charge a single battery, single battery bank, multiple batteries or multiple

  4. Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative

    Energy Savers [EERE]

    Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative 1 of 1 Summary: DOE will launch a collaborative effort with industry to evaluate and scope high- impact manufacturing R&D to improve natural gas system efficiency and reduce leaks with the goal of establishing an advanced manufacturing initiative. This will include a formal request for information, public workshops, and technical analysis and will leverage technology development areas already in progress through DOE's

  5. Advanced Manufacturing Office FY 2015 Budget At-A-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 5 Budget At-A-Glance Advanced Manufacturing Office FY 2015 Budget At-A-Glance The Advanced Manufacturing Office (AMO) partners with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to create high-quality U.S. manufacturing jobs, enhance global competitiveness, and reduce energy use by encouraging a culture of continuous improvement in corporate energy management. PDF icon fy15_at-a-glance_amo.pdf More

  6. Advanced Manufacturing Office FY 2016 Budget At-A-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy FY 2016 Budget At-A-Glance Advanced Manufacturing Office FY 2016 Budget At-A-Glance The Advanced Manufacturing Office (AMO) partners with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to create high-quality manufacturing jobs, enhance the global competitiveness of the United States, and reduce energy use by encouraging a culture of continuous enrichment in corporate energy management. PDF icon AMO FY

  7. Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing...

    Broader source: Energy.gov (indexed) [DOE]

    this program is available to small businesses located in Michigan who are seeking to invest and diversify in clean energy sectors, manufacturing renewable energy and energy...

  8. Advanced Manufacturing Office FY 2016 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office uses an integrated approach that relies on three ... Generation Manufacturing Research and Development (R&D) ... and replicable quantitative analysis and ...

  9. Wind Program Manufacturing Research Advances Processes and Reduces...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Wind Program's recent Taller Hub Heights to Access Higher Wind Resources and Lower the ... Energy Department Announces 2 Million to Support Manufacturing of Taller Wind Turbine ...

  10. Advanced battery technology for electric two-wheelers in the people's Republic of China.

    SciTech Connect (OSTI)

    Patil, P. G.; Energy Systems

    2009-07-22

    This report focuses on lithium-ion (Li-ion) battery technology applications for two- and possibly three-wheeled vehicles. The author of this report visited the People's Republic of China (PRC or China) to assess the status of Li-ion battery technology there and to analyze Chinese policies, regulations, and incentives for using this technology and for using two- and three-wheeled vehicles. Another objective was to determine if the Li-ion batteries produced in China were available for benchmarking in the United States. The United States continues to lead the world in Li-ion technology research and development (R&D). Its strong R&D program is funded by the U.S. Department of Energy and other federal agencies, such as the National Institute of Standards and Technology and the U.S. Department of Defense. In Asia, too, developed countries like China, Korea, and Japan are commercializing and producing this technology. In China, more than 120 companies are involved in producing Li-ion batteries. There are more than 139 manufacturers of electric bicycles (also referred to as E-bicycles, electric bikes or E-bikes, and electric two-wheelers or ETWs in this report) and several hundred suppliers. Most E-bikes use lead acid batteries, but there is a push toward using Li-ion battery technology for two- and three-wheeled applications. Highlights and conclusions from this visit are provided in this report and summarized.

  11. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives

    SciTech Connect (OSTI)

    Lu, XC; Xia, GG; Lemmon, JP; Yang, ZG

    2010-05-01

    The increasing penetration of renewable energy and the trend toward clean, efficient transportation have spurred growing interests in sodium-beta alumina batteries that store electrical energy via sodium ion transport across a beta ''-Al(2)O(3) solid electrolyte at elevated temperatures (typically 300-350 degrees C ). Currently, the negative electrode or anode is metallic sodium in molten state during battery operation; the positive electrode or cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). Since the groundbreaking works in the sodium-beta alumina batteries a few decades ago, encouraging progress has been achieved in improving battery performance, along with cost reduction. However, there remain issues that hinder broad applications and market penetration of the technologies. To better the Na-beta alumina technologies require further advancement in materials along with component and system design and engineering. This paper offers a comprehensive review on materials of electrodes and electrolytes for the Na-beta alumina batteries and discusses the challenges ahead for further technology improvement. (C) 2009 Published by Elsevier B.V.

  12. AGM Batteries Ltd | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: AGM Batteries Ltd Place: United Kingdom Product: Manufactures lithium-ion cells and batteries for AEA Battery Systems Ltd. References: AGM Batteries Ltd1...

  13. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufactur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 5 For the manufacture of printed flexible organic photovoltaics (OPV) used in solar cells, the VTT Technical Research Centre (of Finland) has developed an R2R wet deposition ...

  14. Institute for Advanced Composites Manufacturing Innovation-Inaugural

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Members Meeting Innovation-Inaugural Members Meeting - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  15. Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytes | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es089_kerr_2011_o.pdf More Documents & Publications Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes Electrolytes - Interfacial and Bulk Properties and Stability

  16. Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytes | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es089_kerr_2012_p.pdf More Documents & Publications Electrolytes - Interfacial and Bulk Properties and Stability Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes

  17. 48C Phase II Advanced Energy Manufacturing Tax Credit Program Fact Sheet

    Broader source: Energy.gov [DOE]

    The 48C Advanced Energy Manufacturing Tax Credit program was initiated under the American Recovery and Reinvestment Act of 2009 to support investments in projects that establish, expand or re-equip...

  18. Strengthening U.S. Leadership in Advanced Manufacturing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a corporate research and development contract, the National Labs work as the research arm for desalination advancement while CAP develops the technologies. When asked about the...

  19. Advanced Manufacturing Office Update, May 2014 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partners with DOE to Advance Supply Chain Energy Efficiency General Dynamics and Nissan Case Studies Highlight Benefits of Superior Energy Performance Volvo Recognized for ...

  20. DOE Announces Effort to Advance U.S. Wind Power Manufacturing Capacity |

    Energy Savers [EERE]

    Department of Energy Effort to Advance U.S. Wind Power Manufacturing Capacity DOE Announces Effort to Advance U.S. Wind Power Manufacturing Capacity June 2, 2008 - 12:51pm Addthis MOU Launches Government-Industry Effort to Define and Develop Technologies and Siting Strategies Necessary to Achieve 20% Wind Energy by 2030 HOUSTON, TEXAS -The U.S. Department of Energy (DOE) Assistant Secretary of Energy Efficiency and Renewable Energy Andy Karsner today announced a Memorandum of Understanding

  1. Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Natural Gas Systems Manufacturing R&D Initiative Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D Initiative The following fact sheet outlines one of the Department of Energy's series of actions, partnerships, and stakeholder commitments to help modernize the nation¹s natural gas transmission and distribution systems and reduce methane emissions. DOE will launch a collaborative effort with industry to evaluate and scope high-impact

  2. Advanced Manufacturing pipeline brings NSC and Minority Serving

    National Nuclear Security Administration (NNSA)

    Institutions together | National Nuclear Security Administration Manufacturing pipeline brings NSC and Minority Serving Institutions together | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library

  3. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    SciTech Connect (OSTI)

    Yakovleva, Marina

    2012-12-31

    FMC Lithium Division has successfully completed the project Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  4. Advanced Manufacturing Office in DOE Multimaterial Joining Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steve Sikirica Multi-Material Joining Workshop Rosemount, IL July 23, 2012 Advanced ... added * 11% of U.S. GDP * 12 million U.S. jobs * 60% of U.S. engineering and science jobs ...

  5. California Lithium Battery, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    26 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+)

  6. Deputy Secretary Poneman Attends Ground Breaking at Tennessee Advanced

    Energy Savers [EERE]

    Vehicle Battery Plant | Department of Energy Attends Ground Breaking at Tennessee Advanced Vehicle Battery Plant Deputy Secretary Poneman Attends Ground Breaking at Tennessee Advanced Vehicle Battery Plant May 26, 2010 - 12:00am Addthis Smyrna, TN - Today, U.S. Deputy Secretary of Energy Daniel Poneman participated in the groundbreaking ceremony for Nissan North America's advanced battery manufacturing facility in Smyrna, Tennessee. This past January the Department closed a $1.4 billion loan

  7. AMO Announces Funding Opportunity for Low-Cost, Energy Efficient Manufacturing and Recycling of Advanced Fiber-Reinforced Polymer Composites

    Broader source: Energy.gov [DOE]

    A new Advanced Composite Manufacturing Institute, one of six National Network for Manufacturing Innovation Institutes to launch in 2014, will receive up to $70 million over five years in Energy Department funding.

  8. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Composite Materials Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composite Materials Chapter 6: Technology Assessments This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Composite Materials is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology assessments

  9. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Critical Materials Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Critical Materials is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  10. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Process Intensification Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Intensification Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Process Intensification is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  11. Veterans and Others Can Apply for an AMO-sponsored Advanced Manufacturing Internship

    Broader source: Energy.gov [DOE]

    Applications are being accepted for the new Advanced Manufacturing Internship program starting today. Pellissippi State Community College in Knoxville, TN, developed the curriculum for Veterans with funding from the Advanced Manufacturing Office (AMO). The new course will engage 20 students for three semesters, provide access to 3-D printers, and supplement the classwork with paid internships at Oak Ridge National Laboratory and local companies. A ceremony was held today, Friday, August 15th, to recognize the first 24 participants in the pilot internship program.

  12. DOE Advanced Manufacturing Office EnPI V3.0 Webinar Transcription

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Office EnPI V3.0 Webinar Transcription December 11, 2012 Lindsay Southerland: Good Afternoon. My name is Lindsay Southerland and I'm with BCS, Incorporated. It is my pleasure to welcome you to this afternoon's webcast, which is sponsored by the U.S. Department of Energy's Advanced Manufacturing Office, or AMO for short. Today's presenters are Andre de Fontaine of AMO and Ashly Spevacek of the Project Performance Corporation. Ashly and Andre will provide an overview and

  13. China Hyper Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Battery Co Ltd Jump to: navigation, search Name: China Hyper Battery Co Ltd Place: Shenzhen, China Zip: 518048 Product: Manufacturer and exporter of batteries and battery packs....

  14. Electric Drive Semiconductor Manufacturing (EDSM) Center | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt030_ape_prusia_2012_p.pdf More Documents & Publications Electric Drive Semiconductor Manufacturing (EDSM) Center Electric Drive Semiconductor Manufacturing (EDSM) Center Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA

  15. Isotope separation and advanced manufacturing technology. Volume 2, No. 2, Semiannual report, April--September 1993

    SciTech Connect (OSTI)

    Kan, Tehmanu; Carpenter, J.

    1993-12-31

    This is the second issue of a semiannual report for the Isotope Separation and Advanced Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives of the ISAM Program include: the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) process, and advanced manufacturing technologies which include industrial laser materials processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. Topics included in this issue are: production plant product system conceptual design, development and operation of a solid-state switch for thyratron replacement, high-performance optical components for high average power laser systems, use of diode laser absorption spectroscopy for control of uranium vaporization rates, a two-dimensional time dependent hydrodynamical ion extraction model, and design of a formaldehyde photodissociation process for carbon and oxygen isotope separation.

  16. Manufacturing

    Office of Environmental Management (EM)

    Flow of Materials through Industry / Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 1 5 1.1 Supply chain and material flow analysis ....................................................................................... 1 6 2. Technology Assessment and Potential

  17. Aerospatiale Batteries ASB | Open Energy Information

    Open Energy Info (EERE)

    Aerospatiale Batteries ASB Jump to: navigation, search Name: Aerospatiale Batteries (ASB) Place: France Product: Research, design and manufacture of Thermal Batteries. References:...

  18. GP Batteries International Limited | Open Energy Information

    Open Energy Info (EERE)

    International Limited is principally engaged in the development, manufacture and marketing of batteries and battery-related products. References: GP Batteries International...

  19. Overview of the DOE Advanced Battery R&D Program

    Energy Savers [EERE]

    Overview of the DOE Advanced Battery R&D Program David Howell, Program Manager Hybrid Electric Systems Vehicle Technologies Office June 16, 2014 VEHICLE TECHNOLOGIES OFFICE 2 2013 Sales Set Record  46 EDV models were available for sale * 575,000 Sales  ~97,000 PEVs Sold. The top 6 models represent 95% of the sales : * Volt (23,094) * Leaf (22,610) * Model S (19,400) * Prius PHEV (12,088) * Cmax Energi (7,154) * Fusion Energi (6,089) Over 3.1 million EDVs on the road Jan.1, 2014 -

  20. Advanced manufacturing

    ScienceCinema (OSTI)

    Love, Lonnie

    2014-07-15

    Lonnie Love is breaking new ground in three-dimensional printing and training the upcoming scientists and engineers whose creations may be limited only by their imaginations.

  1. Advanced manufacturing

    SciTech Connect (OSTI)

    Love, Lonnie

    2014-07-14

    Lonnie Love is breaking new ground in three-dimensional printing and training the upcoming scientists and engineers whose creations may be limited only by their imaginations.

  2. Fact Sheet: Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FACT SHEET Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles President Obama's proposed changes to advanced vehicle tax credits as part of the Administration's Fiscal Year 2016 Revenue Proposals: 1 Provide a Tax Credit for the Production of Advanced Technology Vehicles Current Law A tax credit is allowed for plug-in electric drive motor vehicles. A plug-in electric drive motor vehicle is a vehicle that has at

  3. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; et al

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and themore » oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.« less

  4. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    SciTech Connect (OSTI)

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; Wang, Dapeng; Amine, Khalil; Thevuthasan, Suntharampillai

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laserassisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materialslayered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and the oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.

  5. Revitalizing American Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revitalizing American Manufacturing Revitalizing American Manufacturing September 13, 2010 - 5:30pm Addthis A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer Granholm at the opening of their Livonia, MI plant. The plant will develop and manufacture advanced batteries systems for electric vehicles. | Department of Energy Photo | A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer

  6. Selected Activities of the Office of Energy Efficiency and Renewable Energy's Advanced Manufacturing Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AUDIT REPORT Selected Activities of the Office of Energy Efficiency and Renewable Energy's Advanced Manufacturing Office OAS-RA-14-04 June 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 June 17, 2014 MEMORANDUM FOR THE ASSISTANT SECRETARY FOR ENERGY EFFICIENCY AND RENEWABLE ENERGY FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit

  7. Improving Steam System Performance: A Sourcebook for Industry, Second Edition (Book) (Revised), Advanced Manufacturing Office (AMO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam System Performance: A Sourcebook for Industry Second Edition The Office of Energy Efficiency and Renewable Energy (EERE) invests in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. IMPROVING STEAM SYSTEM PERFORMANCE: A SOURCEBOOK FOR INDUSTRY ACKNOWLEDGMENTS Improving Steam System Performance: A Sourcebook for Industry was developed for the U.S. Department of Energy's (DOE) Advanced Manufacturing Office (AMO), formerly

  8. Advanced Manufacturing Office: Case Study - The Challenge: Improving Sewage Pump System Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Municipal Sewage System Process: Sewage Pumping System: Pump System Technology: Downsized pump, direct on-line pump controls Project Profile SIC: 4952 Products: Sewage Pumping Location: Trumbull, Connecticut Showcase Team Leaders: Paul Kallmeyer, Town of Trumbull Three employees in the wastewater treatment department. Town of Trumbull U.S. Department of Energy - Energy Efficiency and Renewable Energy Advanced Manufacturing Office Case Study - The Challenge: Improving Sewage Pump System

  9. Advanced Manufacturing Office: Case Study - The Challenge: Improving Ventilation System Energy Efficiency in a Textile Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cotton Fabric Process: Facility Ventilation System: Ventilation Fans Technology: Variable Frequency Drives (VFDs) Project Profile U.S. Department of Energy - Energy Efficiency and Renewable Energy Advanced Manufacturing Office Case Study - The Challenge: Improving Ventilation System Energy Efficiency in a Textile Plant Summary Company Background Project Overview Project Team The Systems Approach Project Implementation Results Lessons Learned Summary In an effort to improve ventilation system

  10. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    SciTech Connect (OSTI)

    Yi Jia

    2011-02-28

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remote power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.

  11. Advanced Flow Battery Electrodes: Low-cost, High-Performance 50-Year Electrode

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: Primus Power is developing zinc-based, rechargeable liquid flow batteries that could produce substantially more energy at lower cost than conventional batteries. A flow battery is similar to a conventional battery, except instead of storing its energy inside the cell it stores that energy for future use in chemicals that are kept in tanks that sit outside the cell. One of the most costly components in a flow battery is the electrode, where the electrochemical reactions actually occur. Primus Power is investigating and developing mixed-metal materials for their electrodes that could ultimately reduce the lifetime cost of flow batteries because they are more durable and long-lasting than electrodes found in traditional batteries. Using these electrodes, Primus Powers flow batteries can be grouped together into robust, containerized storage pods for use by utilities, renewable energy developers, businesses, and campuses.

  12. Energy Department to Launch New Energy Innovation Hub Focused on Advanced Batteries and Energy Storage

    Broader source: Energy.gov [DOE]

    R&D to Lead to Longer-Lasting, More Powerful, Less Expensive Batteries for Vehicles and Electric Grid Applications

  13. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop: Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Workshop Date: July 25, 2012, 2:00 - 5:30 PM Venue: The 2 nd World Congress on Microwave Energy Applications July 23-27, 2012, Hilton Long Beach, Long Beach, CA http://www.mrs.org/2gcmea-2012/ PURPOSE The purpose of this workshop is to provide input that can help DOE strategically assess the potential for electrotechnologies such as microwave (MW) and radio frequency (RF) energy to impact

  14. Final Merit Review Agenda, DOE Advanced Manufacturing Office, Peer Review, May 6-7, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE ADVANCED MANUFACTURING OFFICE PEER REVIEW MAY 6-7, 2014 FINAL AGENDA Day 1 (May 6) Washington Marriott West End Ballroom A/B/C 1221 22nd Street NW, Washington, DC 20037 8:30 - 9:45 am Peer Reviewer Briefing Breakfast Mark Johnson, Isaac Chan, Mark Shuart, and Jay Wrobel, DOE-AMO 9:45 - 10:00 am BREAK 9:00 - 10:00 am REGISTRATION FOR ATTENDEES 10:00 - 10:30 am Welcome and AMO Overview (Organization, Strategies and Initiatives) Mark Johnson, DOE-AMO 10:30 - 10:50 am Paired Straight Hearth

  15. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries

    SciTech Connect (OSTI)

    Li, Xuemin; Wolden, Colin A.; Ban, Chunmei; Yang, Yongan

    2015-12-03

    This work reports a new method of synthesizing anhydrous lithium sulfide (Li2S) nanocrystals and demonstrates their potential as cathode materials for advanced rechargeable batteries. Li2S is synthesized by reacting hydrogen sulfide (H2S) with lithium naphthalenide (Li-NAP), a thermodynamically spontaneous reaction that proceeds to completion rapidly at ambient temperature and pressure. The process completely removes H2S, a major industrial waste, while cogenerating 1,4-dihydronaphthalene, itself a value-added chemical that can be used as liquid fuel. The phase purity, morphology, and homogeneity of the resulting nanopowders were confirmed by X-ray diffraction and scanning electron microscopy. The synthesized Li2S nanoparticles (100 nm) were assembled into cathodes, and their performance was compared to that of cathodes fabricated using commercial Li2S micropowders (15 ?m). As a result, electrochemical analyses demonstrated that the synthesized Li2S were superior in terms of (dis)charge capacity, cycling stability, output voltage, and voltage efficiency.

  17. Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Xuemin; Wolden, Colin A.; Ban, Chunmei; Yang, Yongan

    2015-12-03

    This work reports a new method of synthesizing anhydrous lithium sulfide (Li2S) nanocrystals and demonstrates their potential as cathode materials for advanced rechargeable batteries. Li2S is synthesized by reacting hydrogen sulfide (H2S) with lithium naphthalenide (Li-NAP), a thermodynamically spontaneous reaction that proceeds to completion rapidly at ambient temperature and pressure. The process completely removes H2S, a major industrial waste, while cogenerating 1,4-dihydronaphthalene, itself a value-added chemical that can be used as liquid fuel. The phase purity, morphology, and homogeneity of the resulting nanopowders were confirmed by X-ray diffraction and scanning electron microscopy. The synthesized Li2S nanoparticles (100 nm) were assembledmore » into cathodes, and their performance was compared to that of cathodes fabricated using commercial Li2S micropowders (1–5 μm). As a result, electrochemical analyses demonstrated that the synthesized Li2S were superior in terms of (dis)charge capacity, cycling stability, output voltage, and voltage efficiency.« less

  18. Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications.

    SciTech Connect (OSTI)

    Swain; Greg M.

    2009-04-13

    The original funding under this project number was awarded for a period 12/1999 until 12/2002 under the project title Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications. The project was extended until 06/2003 at which time a renewal proposal was awarded for a period 06/2003 until 06/2008 under the project title Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes. The work under DE-FG02-01ER15120 was initiated about the time the PI moved his research group from the Department of Chemistry at Utah State University to the Department of Chemistry at Michigan State University. This DOE-funded research was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder.

  19. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    SciTech Connect (OSTI)

    No, author

    2013-09-29

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GMs Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

  20. Sales and Use Tax Exclusion for Advanced Transportation and Alternative Energy Manufacturing Program

    Broader source: Energy.gov [DOE]

    To date, the Program has approved financial assistance for private entities in the following fields: electric vehicle manufacturing, solar photovoltaic manufacturing, landfill gas capture and...

  1. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Wide Bandgap Semiconductors for Power Electronics Technology Assessment

    Energy Savers [EERE]

    Wide Bandgap Semiconductors for Power Electronics Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Wide Bandgap Semiconductors for Power Electronics is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR

  2. 2008 Annual Merit Review Results Summary - 3. Battery Development, Testing, Simulation, Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3-1 3. Battery Development, Testing, Simulation, Analysis Introduction Battery systems research focuses on testing, evaluating, and developing energy storage technologies in close collaboration with developers and the automotive industry. This work is primarily accomplished through the United States Advanced Battery Consortium (USABC), a partnership among the U.S. Department of Energy (DOE) and DaimlerChrysler, Ford, and General Motors. Working with manufacturers and the DOE national

  3. Horizon Batteries formerly Electrosource | Open Energy Information

    Open Energy Info (EERE)

    Batteries formerly Electrosource Jump to: navigation, search Name: Horizon Batteries (formerly Electrosource) Place: Texas Sector: Vehicles Product: Manufacturer of high-power,...

  4. Electric Fuel Battery Corporation | Open Energy Information

    Open Energy Info (EERE)

    Fuel Battery Corporation Jump to: navigation, search Name: Electric Fuel Battery Corporation Place: Auburn, Alabama Zip: 36832 Product: Develops and manufactures BA-8180U high...

  5. American Battery Charging Inc | Open Energy Information

    Open Energy Info (EERE)

    Battery Charging Inc Jump to: navigation, search Name: American Battery Charging Inc Place: Smithfield, Rhode Island Zip: 2917 Product: Manufacturer of industrial and railroad...

  6. Vehicle Technologies Office Merit Review 2015: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Optodot Corporation at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative manufacturing...

  7. Vehicle Technologies Office Merit Review 2014: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Optodot Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative manufacturing...

  8. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    SciTech Connect (OSTI)

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: 2016 CAF standards. Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: Functionality of new lightweighting materials to meet present safety requirements. Manufacturability using new lightweighting materials. Cost reduction for the development and use of new lightweighting materials. The automotive industrys future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: Establish design criteria methodology to identify the best materials for lightweighting. Employ state-of-the-art design tools for optimum material development for their specific applications. Match new manufacturing technology to production volume. Address new process variability with new production-ready processes.

  9. Pacific Northwest National Laboratory collaboration with Moltech Corporation to manufacture lithium polymer batteries (C/PNL/061). Final project report

    SciTech Connect (OSTI)

    Affinito, J.D.

    1996-08-01

    It was shown that all 7 of the layers of Moltech`s Li polymer battery are compatible with simultaneous, in-line, vacuum deposition onto a flexible plastic substrate via PNNL`s PML and LML technology. All the materials, including Li, could be deposited in a single pass without melting the substrate. Two problems were encountered and are discussed.

  10. Development of advanced manufacturing technologies for low cost hydrogen storage vessels

    SciTech Connect (OSTI)

    Leavitt, Mark; Lam, Patrick

    2014-12-29

    The U.S. Department of Energy (DOE) defined a need for low-cost gaseous hydrogen storage vessels at 700 bar to support cost goals aimed at 500,000 units per year. Existing filament winding processes produce a pressure vessel that is structurally inefficient, requiring more carbon fiber for manufacturing reasons, than would otherwise be necessary. Carbon fiber is the greatest cost driver in building a hydrogen pressure vessel. The objective of this project is to develop new methods for manufacturing Type IV pressure vessels for hydrogen storage with the purpose of lowering the overall product cost through an innovative hybrid process of optimizing composite usage by combining traditional filament winding (FW) and advanced fiber placement (AFP) techniques. A numbers of vessels were manufactured in this project. The latest vessel design passed all the critical tests on the hybrid design per European Commission (EC) 79-2009 standard except the extreme temperature cycle test. The tests passed include burst test, cycle test, accelerated stress rupture test and drop test. It was discovered the location where AFP and FW overlap for load transfer could be weakened during hydraulic cycling at 85°C. To design a vessel that passed these tests, the in-house modeling software was updated to add capability to start and stop fiber layers to simulate the AFP process. The original in-house software was developed for filament winding only. Alternative fiber was also investigated in this project, but the added mass impacted the vessel cost negatively due to the lower performance from the alternative fiber. Overall the project was a success to show the hybrid design is a viable solution to reduce fiber usage, thus driving down the cost of fuel storage vessels. Based on DOE’s baseline vessel size of 147.3L and 91kg, the 129L vessel (scaled to DOE baseline) in this project shows a 32% composite savings and 20% cost savings when comparing Vessel 15 hybrid design and the Quantum baseline all filament wound vessel. Due to project timing, there was no additional time available to fine tune the design to improve the load transfer between AFP and FW. Further design modifications will likely help pass the extreme temperature cycle test, the remaining test that is critical to the hybrid design.

  11. Final Report - Advanced MEA's for Enhanced Operating Conditions, Amenable to High Volume Manufacture

    SciTech Connect (OSTI)

    Debe, Mark K.

    2007-09-30

    This report summarizes the work completed under a 3M/DOE contract directed at advancing the key fuel cell (FC) components most critical for overcoming the polymer electrolyte membrane fuel cell (PEMFC) performance, durability & cost barriers. This contract focused on the development of advanced ion exchange membranes & electrocatalysts for PEMFCs that will enable operation under ever more demanding automotive operating conditions & the use high volume compatible processes for their manufacture. Higher performing & more durable electrocatalysts must be developed for PEMFCs to meet the power density & lifetime hours required for FC vehicles. At the same time the amount of expensive Pt catalyst must be reduced to lower the MEA costs. While these two properties are met, the catalyst must be made resistant to multiple degradation mechanisms to reach necessary operating lifetimes. In this report, we present the work focused on the development of a completely new approach to PEMFC electrocatalyts, called nanostructured thin film (NSTF) catalysts. The carbon black supports are eliminated with this new approach which eliminates the carbon corrosion issue. The thin film nature of the catalyst significantly improves its robustness against dissolution & grain growth, preserving the surface area. Also, the activity of the NSTF for oxygen reduction is improved by over 500% compared to dispersed Pt catalyts. Finally, the process for fabricating the NSTF catalysts is consistent with high volume roll-good manufacturing & extremely flexible towards the introduction of new catalyst compositions & structures. This report documents the work done to develop new multi-element NSTF catalysts with properties that exceed pure Pt, that are optimized for use with the membranes discussed below, & advance the state-of-the-art towards meeting the DOE 2010 targets for PEMFC electrocatalysts. The work completed advances the understanding of the NSTF catalyst technology, identifies new NSTF-ternary catalyst materials for higher performance, documents enhanced durability under multiple types of accelerated tests by factors of 10x to 50x over conventional catalysts, & demonstrates their performance & durability in large area MEA FC stack tests. The PEMFC ion exchange membrane is the other key functioning FC component on which work was completed. While improvements have been made to standard PFSA type membranes, they still require humidification to achieve adequate proton conductivity & so their use at elevated temperatures & drier operating conditions is limited. Membranes with increased durability & conductivity under hotter, drier conditions allow the use of FC's in many applications, particularly automotive. Towards this goal, 2 approaches were pursued in the work reported here. The first part was designed for immediate application at drier conditions & operating temperatures between 85C and 120C, focused on the development of a membrane based on a low equivalent weight (EW), perfluorinated sulfonic acid (PFSA) ionomer for good ionic conductivity at low humidification, & the use of stabilizing additives for improved oxidative stability. The ionomer used was developed at 3M & has a shorter acid containing side-chain than the Nafion ionomer. This ionomer also has a higher T? & higher modulus than that of a Nafion membrane of the same EW, allowing lower EW ionomers to be prepared with very good mechanical properties. In addition, more than 50 stabilizing additives were evaluated in ex-situ, Fentons tests & more than 10 of these were incorporated into membranes & evaluated in accelerated FC tests. This work led to thin (25-30 micron) cast membranes with substantially improved conductivity & durability under simulated automotive conditions, compared to membranes currently available. The 2nd body of membrane work was focused on developing & characterizing 3 approaches for making new PEM's for operation under hot (>120C) & dry (dew point <80C) FC conditions: inorganic materials with enhanced proton conductivity, polymer matrices swollen with low molecular weight fluorinated acids & proton conducting ionic liquids. New materials developed show the promise of the development of new membranes with even better characteristics under demanding FC operating conditions, further improving the efficiency & viability of FC systems.

  12. Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half

    Broader source: Energy.gov [DOE]

    Johnson Controls is working to increase energy density of vehicle batteries while reducing manufacturing costs for lithium-ion battery cells.

  13. NRELs Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles (Fact Sheet), Innovation Impact: Transportation, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles With average U.S. gasoline prices hovering in the $3 to $4 per gallon range and higher fuel economy standards taking effect, drivers and automakers are thinking more about electric vehicles, hybrid electric vehicles, and plug-in hybrids. But before more Americans switch to electric-drive vehicles, automakers need batteries that can deliver the range, performance, reliability, price, and safety that drivers

  14. Vehicle Technologies Office Merit Review 2015: Giga Life Cycle: Manufacture of Cells from Recycled EV Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by OnTo Technology at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Giga Life Cycle: manufacture...

  15. Si composite electrode with Li metal doping for advanced lithium-ion battery

    DOE Patents [OSTI]

    Liu, Gao; Xun, Shidi; Battaglia, Vincent

    2015-12-15

    A silicon electrode is described, formed by combining silicon powder, a conductive binder, and SLMP.TM. powder from FMC Corporation to make a hybrid electrode system, useful in lithium-ion batteries. In one embodiment the binder is a conductive polymer such as described in PCT Published Application WO 2010/135248 A1.

  16. Office\tof\tEnergy\tEfficiency\t&\tRenewable\tEnergy Advanced\tManufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    potenYal and enabling science of key technologies out to ... thin- and thick-film substrate producAon; mulAlayer alignment * Sustainable Manufacturing Materials for ...

  17. ADVANCED MANUFACTURING OFFICE HIGH VALUE ROLL TO ROLL (HV R2R...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WORKSHOP DECEMBER 2-3, 2015 PDF icon Draft Agenda More Documents & Publications WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW WORKSHOP: HIGH VALUE ROLL TO ROLL (HV...

  18. EA-1723: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Application White Marsh, Maryland and Wixom, Michigan

    Broader source: Energy.gov [DOE]

    DOE’s Proposed Action is to provide GM with $105,387,000 in financial assistance in a cost sharing arrangement to facilitate construction and operation of a manufacturing facility to produce electric motor components and assemble an electric drive unit. This Proposed Action through the Vehicle Technologies Program will accelerate the development and production of electric-drive vehicle systems and reduce the United States’ consumption of petroleum. This Proposed Action will also meaningfully assist in the nation’s economic recovery by creating manufacturing jobs in the United States in accordance with the objectives of the Recovery Act.

  19. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    SciTech Connect (OSTI)

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  20. Advanced Manufacturing Office: Case Study - The Challenge: Improving the Performance of a Waste-To-Energy Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refuse Systems Process: Resource Recovery (Solid Waste- to-Energy) System: Induced Draft Fan Technology: VFD Retrofit Project Profile SIC: 4953 Products: Electricity, waste reduction Southeast Resource Recovery Facility U.S. Department of Energy - Energy Efficiency and Renewable Energy Advanced Manufacturing Office Case Study - The Challenge: Improving the Performance of a Waste-To-Energy Facility Summary Plant Overview Project Background Project Team The Old System Project Implementation The

  1. In-situ Spectroscopic and Structural Studies of Electrode Materials for Advanced Battery Applications

    SciTech Connect (OSTI)

    Daniel A Scherson

    2013-03-14

    Techniques have been developed and implemented to gain insight into fundamental factors that affect the performance of electrodes in Li and Li-ion batteries and other energy storage devices. These include experimental strategies for monitoring the Raman scattering spectra of single microparticles of carbon and transition metal oxides as a function of their state of charge. Measurements were performed in electrolytes of direct relevance to Li and Li-Ion batteries both in the static and dynamic modes. In addition, novel strategies were devised for performing conventional experiments in ultrahigh vacuum environments under conditions which eliminate effects associated with presence of impurities, using ultrapure electrolytes, both of the polymeric and ionic liquid type that display no measurable vapor pressure. Also examined was the reactivity of conventional non aqueous solvent toward ultrapure Li films as monitored in ultrahigh vacuum with external reflection Fourier transform infrared spectroscopy. Also pursued were efforts toward developing applying Raman-scattering for monitoring the flow of charge of a real Li ion battery. Such time-resolved, spatially-resolved measurements are key to validating the results of theoretical simulations involving real electrode structures.

  2. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Combined Heat and Power Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Platforms and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial

  3. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Materials for Harsh Service Conditions Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology

  4. Advanced Models and Controls for Prediction and Extension of Battery Lifetime (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Pesaran, A.

    2014-02-01

    Predictive models of capacity and power fade must consider a multiplicity of degradation modes experienced by Li-ion batteries in the automotive environment. Lacking accurate models and tests, lifetime uncertainty must presently be absorbed by overdesign and excess warranty costs. To reduce these costs and extend life, degradation models are under development that predict lifetime more accurately and with less test data. The lifetime models provide engineering feedback for cell, pack and system designs and are being incorporated into real-time control strategies.

  5. Vehicle Technologies Office Merit Review 2015: Advanced In-Situ Diagnostic Techniques for Battery Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Brookhaven National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced in...

  6. Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Gallego, Nidia C; Contescu, Cristian I; Meyer III, Harry M; Howe, Jane Y; Meisner, Roberta Ann; Payzant, E Andrew; Lance, Michael J; Yoon, Steve; Denlinger, Matthew; Wood III, David L

    2014-01-01

    Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

  7. Fully Coupled Simulation of Lithium Ion Battery Cell Performance

    SciTech Connect (OSTI)

    Trembacki, Bradley L.; Murthy, Jayathi Y.; Roberts, Scott Alan

    2015-09-01

    Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulated and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.

  8. In Texas, Energy Sec. Moniz to Echo President’s State of the Union Call to Foster Advanced Manufacturing and Innovation

    Broader source: Energy.gov [DOE]

    Secretary of Energy Ernest Moniz will travel to Austin and San Antonio, Texas to highlight the President’s State of the Union Address and the Administration’s efforts to foster innovation and advanced manufacturing

  9. Kung Long Batteries Industrial Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Kung Long Batteries Industrial Co Ltd Jump to: navigation, search Name: Kung Long Batteries Industrial Co Ltd Place: Nantou, Taiwan Product: Manufacturer of more than 200 types of...

  10. High Energy Batteries India Ltd | Open Energy Information

    Open Energy Info (EERE)

    Energy Batteries India Ltd Jump to: navigation, search Name: High Energy Batteries (India) Ltd Place: Chennai, Andhra Pradesh, India Zip: 600096 Product: Manufacturer of...

  11. Shenzhen Mottcell Battery Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Technology Co, Ltd Place: China Product: China-based manufacturer of cylindrical Lithium Iron Phopshate and Lithium ion batteries. References: Shenzhen Mottcell Battery...

  12. LEXEL Battery Shenzhen Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    LEXEL Battery Shenzhen Co Ltd Jump to: navigation, search Name: LEXEL Battery (Shenzhen) Co., Ltd. Place: China Product: China-based manufacturer, marketer and researcher of...

  13. Advanced Lithium Battery Cathodes Using Dispersed Carbon Fibers as the Current Collector

    SciTech Connect (OSTI)

    Martha, Surendra K; Kiggans, Jim; Nanda, Jagjit; Dudney, Nancy J

    2011-01-01

    To fabricate LiFePO4 battery cathodes, highly conductive carbon fibers of 10-20 m in diameter have been used to replace a conventional aluminum (Al) foil current collector. This disperses the current collector throughout the cathode sheet and increases the contact area with the LiFePO4 (LFP) particles. In addition, the usual organic binder plus carbon-black can be replaced by a high temperature binder of <5 weight % carbonized petroleum pitch (P-pitch). Together these replacements increase the specific energy density and energy per unit area of the electrode. Details of the coating procedure, characterization and approach for maximizing the energy density are discussed. In a side-by-side comparison with conventional cathodes sheets of LFP on Al foil, the carbon fiber composite cathodes have a longer cycle life, higher thermal stability, and high capacity utilization with little sacrifice of the rate performance.

  14. Vehicle Technologies Office Merit Review 2015: Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Lambda Technologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced drying process...

  15. Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte

    Broader source: Energy.gov [DOE]

    Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

  16. Manufacturing Innovation in the DOE

    Office of Environmental Management (EM)

    Manufacturing Innovation in the DOE January 13, 2014 Mark Johnson Director Advanced Manufacturing Office manufacturing.energy.gov Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 What is Advanced Manufacturing? A family of activities that: * Depend on the use and coordination of information, automation, computation, software, sensing, and networking; and/or * Make use of cutting edge materials and emerging capabilities. Advanced Manufacturing involves both: * New ways to

  17. Sustainable Manufacturing

    Energy Savers [EERE]

    Principal Investigator (Presenter): Dr. Troy D. Marusich , CTO Washington, D.C. May 6-7, 2014 Third Wave Systems Inc. U.S. DOE Advanced Manufacturing Office Peer Review Meeting This presentation does not contain any proprietary, confidential, or otherwise restricted information. o Project Objective  What are you trying to do?  Develop and demonstrate a new manufacturing-informed design paradigm to dramatically improve manufacturing productivity, quality, and costs of machined components

  18. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  19. Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid

    SciTech Connect (OSTI)

    Sally Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

    2012-08-01

    The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the Simulated Honda Civic HEV Profile (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditionsit is recommended that life studies be conducted on these technologies under such conditions.

  20. Internal Short Circuit Device Helps Improve Lithium-Ion Battery Design (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    NREL's emulation tool helps manufacturers ensure the safety and reliability of electric vehicle batteries.

  1. Anti-Idling Battery for Truck Applications

    SciTech Connect (OSTI)

    Keith Kelly

    2011-09-30

    In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

  2. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Battery Testing - DC Fast Charging's Effects on PEV Batteries AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following

  3. Development of Advanced Manufacturing Methods for Warm White LEDs for General Lighting

    SciTech Connect (OSTI)

    Deshpande, Anirudha; Kolodin, Boris; Jacob, Cherian; Chowdhury, Ashfaqul; Kuenzler, Glenn; Sater, Karen; Aesram, Danny; Glaettli, Steven; Gallagher, Brian; Langer, Paul; Setlur, Anant; Beers, Bill

    2012-03-31

    GE Lighting Solutions will develop precise and efficient manufacturing techniques for the remote phosphor platform of warm-white LED products. In volume, this will be demonstrated to drive significant materials, labor and capital productivity to achieve a maximum possible 53% reduction in overall cost. In addition, the typical total color variation for these white LEDs in production will be well within the ANSI bins and as low as a 4-step MacAdam ellipse centered on the black body curve. Achievement of both of these objectives will be demonstrated while meeting a performance target of > 75 lm/W for a warm-white LED and a reliability target of <30% lumen drop / <2-step MacAdam ellipse shift, estimated over 50,000 hrs.

  4. Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  5. Manufacturing Demonstration Facility

    Office of Environmental Management (EM)

    ORNL is managed by UT-Battelle for the US Department of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and Environmental Sciences Directorate May 6-7, 2014 Washington, DC This presentation does not include proprietary, confidential, or otherwise restricted information. Outline * Manufacturing Demonstration Facility * Impacts with Industry - Metal additive manufacturing - Polymer additive

  6. Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity

    Broader source: Energy.gov [DOE]

    Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the research area that is examining new battery materials and addressing fundamental chemical and mechanical instability issues in batteries.

  7. Battery Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  8. VP 100: President Obama Hails Electric-Vehicle Battery Plant | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy President Obama Hails Electric-Vehicle Battery Plant VP 100: President Obama Hails Electric-Vehicle Battery Plant July 15, 2010 - 5:05pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this project do? Puts the U.S. in position to produce 40 percent of the world's supply of advanced batteries by 2015 - up from it's current level of 2 percent Makes us less dependent on foreign oil Creates jobs in an emerging sector of manufacturing The

  9. Designation Order No. 00-12.00 to the Executive Director of Loan Programs and Director of the Advanced Technology Vehicles Manufacturing Incentive Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-30

    Secretary or Energy designates each of the Executive Director of Loan Programs and the Director of the Advanced Technology Vehicles Manufacturing Incentive Program, as their designee, as the term is used in the Internal Revenue Manual, Part 11, Chapter 3, Section 29.6, acting separately to request tax delinquency account status and other tax related information from the Internal Revenue Service, pursuant to 26 U .S.C. 6103(1)(3), for applicants to the Department's Advanced Technology Vehicles Manufacturing Incentive Program under Section 136 of the Energy Independence and Security Act of2007 (P. L. 110-140), as amended.

  10. Obama Administration Launches $26 Million Multi-Agency Competition to Strengthen Advanced Manufacturing Clusters Across the Nation

    Broader source: Energy.gov [DOE]

    Fourteen Federal Agencies Collaborate to Enhance Global Competitiveness of U.S. Manufacturers and Create Jobs

  11. Lithium Salts for Advanced Lithium Batteries: Li-metal, Li-O2, and Li-S

    SciTech Connect (OSTI)

    Younesi, Reza; Veith, Gabriel M; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-01-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions and conditions within such cells. This review explores the critical role Li-salts play in ensuring in these batteries viability.

  12. USABC Development of 12 Volt Battery for Start-Stop Application: Preprint

    SciTech Connect (OSTI)

    Tataria, H.; Gross, O.; Bae, C.; Cunningham, B.; Barnes, J. A.; Deppe, J.; Neubauer, J.

    2015-02-01

    Global automakers are accelerating the development of fuel efficient vehicles, as a part of meeting regional regulatory CO2 emissions requirements. The micro hybrid vehicles with auto start-stop functionality are considered economical solutions for the stringent European regulations. Flooded lead acid batteries were initially considered the most economical solution for idle-stop systems. However, the dynamic charge acceptance (DCA) at lower state-of-charge (SOC) was limiting the life of the batteries. While improved lead-acid batteries with AGM and VRLA features have improved battery longevity, they do not last the life of the vehicle. The United States Advanced Battery Consortium (or USABC, a consortium of GM, Ford, and Chrysler) analyzed energy storage needs for a micro hybrid automobile with start-stop capability, and with a single power source. USABC has analyzed the start-stop behaviors of many drivers and has developed the requirements for the start-stop batteries (Table 3). The testing procedures to validate the performance and longevity were standardized and published. The guideline for the cost estimates calculations have also been provided, in order to determine the value of the newly developed modules. The analysis effort resulted in a set of requirements which will help the battery manufacturers to develop a module to meet the automotive Original Equipment Manufacturers (OEM) micro hybrid vehicle requirements. Battery developers were invited to submit development proposals and two proposals were selected for 50% cost share with USABC/DOE.

  13. Ultralife Corporation formerly Ultralife Batteries Inc | Open...

    Open Energy Info (EERE)

    14513 Product: New Jersey-based developer and manufacturer of standard and customised lithium primary, lithium ion and lithium polymer rechargeable batteries. References:...

  14. China BAK Battery Inc | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 518119 Product: Guangdong- based manufacturer of standard and customized Lithium Ion rechargeable batteries. Coordinates: 22.546789, 114.112556 Show Map Loading...

  15. Overview and Progress of the Applied Battery Research (ABR) Activity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the Exploratory Technology Research Activity: Batteries for...

  16. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    SciTech Connect (OSTI)

    Liby, Alan L; Rogers, Hiram

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  17. Batteries: Overview of Battery Cathodes

    SciTech Connect (OSTI)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

  18. Innovative Manufacturing Initiative Project Selections

    Broader source: Energy.gov [DOE]

    The Department announced nearly $23 million for 12 projects across the country to advance technologies aimed at helping American manufacturers dramatically increase the energy efficiency of their manufacturing facilities, lower costs, and develop new manufacturing technologies.

  19. NREL Battery Testing Capabilities Get a Boost - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Battery Testing Capabilities Get a Boost February 5, 2010 Photo of a Test engineer standing next to a camera showing a thermal image of a battery being tested. Enlarge image Engineer Dirk Long uses thermal imaging equipment to capture a battery's infrared fingerprint to diagnose its behavior. NREL soon will be ramping up testing as the battery industry uses stimulus funding to enhance batteries used in advanced vehicles. Credit: Pat Corkery Batteries are the heart of today's advanced

  20. Battery system

    DOE Patents [OSTI]

    Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

    2013-08-27

    A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

  1. Solving the Big Data (BD) Problem in Advanced Manufacturing (Subcategory for work done at Georgia Tech. Study Process and Design Factors for Additive Manufacturing Improvement)

    SciTech Connect (OSTI)

    Clark, Brett W.; Diaz, Kimberly A.; Ochiobi, Chinaza Darlene; Paynabar, Kamran

    2015-09-01

    3D printing originally known as additive manufacturing is a process of making 3 dimensional solid objects from a CAD file. This ground breaking technology is widely used for industrial and biomedical purposes such as building objects, tools, body parts and cosmetics. An important benefit of 3D printing is the cost reduction and manufacturing flexibility; complex parts are built at the fraction of the price. However, layer by layer printing of complex shapes adds error due to the surface roughness. Any such error results in poor quality products with inaccurate dimensions. The main purpose of this research is to measure the amount of printing errors for parts with different geometric shapes and to analyze them for finding optimal printing settings to minimize the error. We use a Design of Experiments framework, and focus on studying parts with cone and ellipsoid shapes. We found that the orientation and the shape of geometric shapes have significant effect on the printing error. From our analysis, we also determined the optimal orientation that gives the least printing error.

  2. Nanocomposite Materials for Lithium-Ion Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanocomposite Materials for Lithium-Ion Batteries Nanocomposite Materials for Lithium-Ion Batteries PDF icon nanocomposite_materials_li_ion.pdf More Documents & Publications Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress Report Energy Storage R&D and ARRA

  3. Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional Information...

  4. California Lithium Battery, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage

  5. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Direct Thermal Energy Conversion Materials, Devices, and Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology

  6. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations (Presentation), Clean Energy Manufacturing Analysis Center (CMAC), NREL (National Renewable Energy Laboratory)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automo&ve Lithium---ion Ba1ery (LIB) Supply Chain and U.S. Compe&&veness Considera&ons Donald Chung, Emma Elgqvist, S hriram Santhanagopalan, CEMAC With contribu,ons from experts at the U.S. Department of Energy, Argonne Na,onal Laboratory, the Na,onal Renewable Energy Laboratory, and Industry Partners June 2, 2015 NREL/PR---6A50---63354 Contract No. DE---AC36---08GO28308 June 2015 CEMAC ▪ Clean Energy Manufacturing Analysis Center ▪ ManufacturingCleanEnergy.org DISCLAIMER

  7. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations (Presentation), Clean Energy Manufacturing Analysis Center (CMAC), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Automo&ve Lithium---ion Ba1ery (LIB) Supply Chain and U.S. Compe&&veness Considera&ons Donald Chung, Emma Elgqvist, S hriram Santhanagopalan, CEMAC With contribu,ons from experts at the U.S. Department of Energy, Argonne Na,onal Laboratory, the Na,onal Renewable Energy Laboratory, and Industry Partners June 2, 2015 NREL/PR---6A50---63354 Contract No. DE---AC36---08GO28308 June 2015 CEMAC ▪ Clean Energy Manufacturing Analysis Center ▪ ManufacturingCleanEnergy.org DISCLAIMER

  8. Vehicle Technologies Office Merit Review 2015: Development of Advanced High-Performance Batteries for 12V Start Stop Vehicle Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Maxwell at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  9. Fact Sheet: Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles

    Broader source: Energy.gov [DOE]

    Fact sheet describing President Obama's proposed changes to advanced vehicle tax credits as part of the Administration's Fiscal Year 2016 Revenue Proposals.

  10. Vehicle Technologies Office Merit Review 2014: Advanced in situ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced in situ Diagnostic Techniques for Battery Materials Vehicle Technologies Office Merit Review 2014: Advanced in situ Diagnostic Techniques for Battery Materials ...

  11. Vehicle Technologies Office Merit Review 2015: Daikin Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daikin Advanced Lithium Ion Battery Technology High Voltage Electrolyte Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion Battery Technology High ...

  12. Enterprise Assessments Targeted Review, Management of the Safety-Related 480 Volt Diesel Bus Battery-Backed Power System of the Idaho National Laboratory Advanced Test Reactor …October 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review of the Management of the Safety-Related 480 Volt Diesel Bus Battery-Backed Power System of the Idaho National Laboratory Advanced Test Reactor at the Idaho Site October 2015 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms

  13. East Penn Manufacturing Co Grid-Scale Energy Storage Demonstration Using

    Office of Environmental Management (EM)

    East Penn Manufacturing Co Grid-Scale Energy Storage Demonstration Using UltraBattery(tm) Technology Project Description East Penn Manufacturing will design and construct an energy storage facility consisting of an array of UltraBattery(tm) modules integrated in a turnkey Battery Energy Storage System (BESS). In addition to the UltraBatteries(tm), the BESS will include a power conditioning system, a master programmable controller, and a battery monitoring system. The UltraBattery(tm) is a

  14. Union Suppo Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Suppo Battery Co Ltd Jump to: navigation, search Name: Union Suppo Battery Co Ltd Place: Shenyang, China Zip: 110015 Product: Liaoning-based manufacturer of rechargeable NiMH...

  15. EA-1869: Supplement to General Motors Corp., Electric Vehicle/Battery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE/EA-1723-S1)

    Broader source: Energy.gov [DOE]

    Based on the analysis in the Environmental Assessment DOE determined that its proposed action, to award a federal grant to General Motors to establish an electric motor components manufacturing and electric drive assembly facility would result in no significant adverse impacts.

  16. Manufacturing Innovation Topics Workshop

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office (AMO) and the Office of the Secretary of Defense Manufacturing Technology Program (OSD ManTech) will host a workshop to discuss AMO's recent Request for Information (RFI) on Clean Energy Manufacturing Topic Areas as well as the recent areas of interest announced by OSD ManTech for a new Manufacturing Innovation Institute on October 8-9, 2014 in Fort Worth, TX.

  17. DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will provide up to $14 million in funding for a $28 million cost-shared solicitation by the United States Advanced...

  18. New Battery Testing Facility Could Boost Future of Electric Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Testing Facility Could Boost Future of Electric Vehicles For more information contact: e:mail: Public Affairs Golden, Colo., April 21, 1998 — A new, state-of-the-art battery testing facility could give a boost to battery manufacturers and the growing electric and hybrid electric vehicle industry. The Battery Thermal Test Facility at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) will help design better battery modules and packs for the vehicles of the

  19. Vehicle Technologies Office: Exploratory Battery Materials Research...

    Broader source: Energy.gov (indexed) [DOE]

    for future battery chemistries. They research a number of areas that contribute to this body of knowledge: Advanced cell chemistries that promise higher energy density than...

  20. Steps to Commercialization: Nickel Metal Hydride Batteries |...

    Broader source: Energy.gov (indexed) [DOE]

    funds cutting-edge research on a broad range of topics ranging from advanced battery construction to the modeling of industrial processes and supercomputer simulation of...

  1. Block Copolymer Separators for Lithium Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Block Copolymer Separators for Lithium Batteries Block Copolymer Separators for Lithium Batteries 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es088_balsara_2010_p.pdf More Documents & Publications Polymer Electrolytes for Advanced Lithium Batteries Polymers For Advanced Lithium Batteries Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries

  2. EaglePicher Horizon Batteries LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Place: Dearborn, Michigan Zip: MI 48126 Product: Joint Venture developing, manufacturing and distributing a breakthrough, high performance sealed lead-acid battery....

  3. NREL: Technology Transfer - NREL's Battery Life Predictive Model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL 32696 Companies that rely on batteries for enhanced energy efficiency-including electric vehicle (EV) manufacturers, solar and wind energy generation companies, and...

  4. Lio Energy Systems Coda Automotive Lishen Battery JV | Open Energy...

    Open Energy Info (EERE)

    Tianjin, Tianjin Municipality, China Zip: 300384 Product: China-based electric car and energy storage battery systems manufacturer. Coordinates: 39.231831, 117.878502 Show...

  5. Contour Energy Systems formerly CFX Battery | Open Energy Information

    Open Energy Info (EERE)

    claims to have developed novel fluorine-based battery chemistries, nano-materials science and manufacturing processes. Coordinates: 34.13361, -117.905879 Show Map Loading...

  6. Review of storage battery system cost estimates

    SciTech Connect (OSTI)

    Brown, D.R.; Russell, J.A.

    1986-04-01

    Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

  7. USABC Battery Separator Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es007_smith_2011_p.pdf More Documents & Publications USABC Battery Separator Development Overview and Progress of United States Advanced Battery Consortium (USABC) Activity Celgard and Entek - Battery Separator Development

  8. USABC Battery Separator Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es007_smith_2010_o.pdf More Documents & Publications USABC Battery Separator Development Celgard and Entek - Battery Separator Development Overview and Progress of United States Advanced Battery Consortium (USABC) Activity

  9. Recent advances on the understanding of structural and composition evolution of LMR cathodes for Li-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yan, Pengfei; Zheng, Jianming; Xiao, Jie; Wang, Chong-Min; Zhang, Jiguang

    2015-06-08

    Lithium-rich, magnesium-rich (LMR) cathode materials have been regarded as one of the very promising cathodes for Li-ion battery applications. However, their practical application is still limited by several challenges, especially by their limited electrochemical stability rate capability. In this work, we present recent progresses on the understanding of the structural and composition evolution of LMR cathode materials with emphasis being placed on the correlation between structural/chemical evolution and electrochemical properties. In particular, using Li [Li0.2Ni0.2Mn0.6O2 as a typical example, we clearly illustrate the structural characteristics of the pristine materials and their dependence on the materials processing history, cycling induced structuralmore » degradation/chemical partition and their correlation with degradation of electrochemical performance. The fundamental understanding obtained in this work may also guide the design and preparation of new cathode materials based on ternary system of transitional metal oxide.« less

  10. Recent advances on the understanding of structural and composition evolution of LMR cathodes for Li-ion batteries

    SciTech Connect (OSTI)

    Yan, Pengfei; Zheng, Jianming; Xiao, Jie; Wang, Chong-Min; Zhang, Jiguang

    2015-06-08

    Lithium-rich, magnesium-rich (LMR) cathode materials have been regarded as one of the very promising cathodes for Li-ion battery applications. However, their practical application is still limited by several challenges, especially by their limited electrochemical stability rate capability. In this work, we present recent progresses on the understanding of the structural and composition evolution of LMR cathode materials with emphasis being placed on the correlation between structural/chemical evolution and electrochemical properties. In particular, using Li [Li0.2Ni0.2Mn0.6O2 as a typical example, we clearly illustrate the structural characteristics of the pristine materials and their dependence on the materials processing history, cycling induced structural degradation/chemical partition and their correlation with degradation of electrochemical performance. The fundamental understanding obtained in this work may also guide the design and preparation of new cathode materials based on ternary system of transitional metal oxide.

  11. Lithium Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size

  12. Promising Magnesium Battery Research at ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ electrochemical/XAS cell with annotations. b) Drawing and c) photograph of the assembled cell. Alternatives to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery life, and to do that they're going to have to find

  13. Notice of Intent (NOI): Clean Energy Manufacturing Innovation...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing" (DE-FOA-0001263). This is a Notice of...

  14. The President's Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The President's Manufacturing Initiative The President's Manufacturing Initiative Presentation prepared by Dale Hall for the Roadmap Workshop on Manufacturing R&D for the Hydrogen Economy. PDF icon mfg_wkshp_hall.pdf More Documents & Publications The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office Roadmap on Manufacturing R&D for the Hydrogen Economy Manufacturing R&D for the Hydrogen Economy Roadmap Workshop

  15. Upcoming Clean Energy Manufacturing Initiative (CEMI) Southeast...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Showcase innovations in clean energy technology manufacturing and advanced manufacturing ... The Southeast Regional Summit is free of charge and open to the public. Register to attend ...

  16. Clean Energy Manufacturing Initiative: Technology Research and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative: Technology Research and Development Clean Energy ... The Office of Nuclear Energy's Advanced Methods for Manufacturing subprogram accelerates ...

  17. Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale

    SciTech Connect (OSTI)

    Pesaran, A. A.; Markel, T.; Tataria, H. S.; Howell, D.

    2009-07-01

    Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium.

  18. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. Clean Energy Manufacturing Initiative: http://www1.eere.energy.gov/energymanufacturing

  19. Smart Manufacturing Institute Industry Day Workshop Proceedings |

    Office of Environmental Management (EM)

    Department of Energy Workshops » Smart Manufacturing Institute Industry Day Workshop Proceedings Smart Manufacturing Institute Industry Day Workshop Proceedings Workshop Proceedings PDF icon Smart Manufacturing Industry Day: Workshop Proceedings PDF icon Final Agenda PDF icon NNMI Industry Day: Smart Manufacturing AMO Overview, Mark Johnson, Director, DOE Advanced Manufacturing Office PDF icon Smart Manufacturing Innovation Institute: Overview, Goals and Activities, Isaac Chan, Program

  20. Follow-up on the Department of Energy's Implementation of the Advanced Batteries and Hybrid Components Program Funded under the American Recovery and Reinvestment Act, OAS-RA-L-12-05

    Office of Environmental Management (EM)

    Follow-up on the Department of Energy's Implementation of the Advanced Batteries and Hybrid Components Program Funded under the American Recovery and Reinvestment Act OAS-RA-L-12-05 July 2012 Department of Energy Washington, DC 20585 July 10, 2012 MEMORANDUM FOR THE DIRECTOR, NATIONAL ENERGY TECHNOLOGY LABORATORY FROM: Joanne Hill, Director Central Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Follow-up on the Department of Energy's Implementation of the

  1. AEA Battery Systems Ltd | Open Energy Information

    Open Energy Info (EERE)

    United Kingdom Zip: KW14 7XW Product: Designs, manufactures and supplies specialist lithium-ion high performance cells and batteries. Coordinates: 36.482929, -94.323563 Show...

  2. Advanced Vehicles Group: Center for Transportation Technologies and Systems

    SciTech Connect (OSTI)

    Not Available

    2008-08-01

    Describes R&D in advanced vehicle systems and components (e.g., batteries) by NREL's Advanced Vehicles Group.

  3. Notice of Intent (NOI): Clean Energy Manufacturing Innovation Institute on

    Energy Savers [EERE]

    Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing | Department of Energy Notice of Intent (NOI): Clean Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Notice of Intent (NOI): Clean Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing December 11, 2014 - 11:30am Addthis The purpose of

  4. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST » MST Research Programs » Additive Manufacturing Additive Manufacturing A method allowing unparalleled manufacturing control, data visualization, and high-value parts repair. Through additive manufacturing, Los Alamos is developing materials for the future. Taking complex manufacturing challenges from design to fabrication. A science and engineering approach for additive manufacturing solutions. Get Expertise John Carpenter Technical Staff Member Metallurgy Email Division Leader Materials

  5. SUSTAINABLE MANUFACTURING WORKSHOP

    Broader source: Energy.gov (indexed) [DOE]

    SUSTAINABLE MANUFACTURING WORKSHOP JANUARY 6-7, 2016 University Place Hotel & Conference Center, Portland, OR Overall Workshop Purpose To gather input from stakeholders on future opportunities and technical challenges facing development and scale-up of transformative technologies, processes, and equipment for sustainable manufacturing. The Department of Energy's Advanced Manufacturing Office (AMO) also seeks individual input on performance metrics and identification of key problem sets to be

  6. SUSTAINABLE MANUFACTURING WORKSHOP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SUSTAINABLE MANUFACTURING WORKSHOP JANUARY 6-7, 2016 University Place Hotel & Conference Center, Portland, OR 1 | P a g e Overall Workshop Purpose To gather input from stakeholders on future opportunities and technical challenges facing development and scale-up of transformative technologies, processes, and equipment for sustainable manufacturing. The Department of Energy's Advanced Manufacturing Office (AMO) also seeks individual input on performance metrics and identification of key

  7. Revitalize American Manufacturing Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revitalize American Manufacturing Act - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  8. Clean Energy Manufacturing Initiative

    SciTech Connect (OSTI)

    2013-04-01

    The initiative will strategically focus and rally EEREs clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  9. DOE to Provide Nearly $20 Million to Further Development of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    20 Million to Further Development of Advanced Batteries for Plug-in Hybrid Electric Vehicles DOE to Provide Nearly 20 Million to Further Development of Advanced Batteries for ...

  10. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by ensuring critical feedback from the production phase to invention and discovery. Additive manufacturing is just one of several technologies advanced by the Energy...

  11. Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Manufacturing Office (AMO) manufacturing.energy.gov 3 Morning Agenda 9:00am - 9:05am Welcome Mark Johnson Director, Advanced Manufacturing Office 9:05am - 9:20am Clean Energy Manufacturing Initiative David Danielson Assistant Secretary Energy Efficiency and Renewable Energy 9:20am - 9:50am Advanced Manufacturing Office Overview and Review of RFI Results Mark Johnson Director, Advanced Manufacturing Office 9:50am - 10:30am Panel Discussion: DOE Perspectives Mark Shuart, Advanced

  12. Lithium Iron Phosphate Composites for Lithium Batteries | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Lithium Iron Phosphate Composites for Lithium Batteries Technology available for licensing: Inexpensive, electrochemically active phosphate compounds with high functionality for high-power and high-energy lithium batteries Suite of inexpensively manufactured lithium iron composite materials that can reduce manufacturing costs by 50%. Simple compound preparation that uses inexpensive precursors. Eliminates need for carbon coating. PDF icon lithium_composites

  13. KAir Battery

    Broader source: Energy.gov [DOE]

    KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

  14. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2015-01-13

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  15. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  16. A Review of Battery Life-Cycle Analysis. State of Knowledge and Critical Needs

    SciTech Connect (OSTI)

    Sullivan, J. L.; Gaines, L.

    2010-10-01

    This report examines battery life-cycle assessments with a focus on cradle-to-gate (CTG) energy and greenhouse gas (GHG) and criteria emissions. This includes battery manufacturing and as the production of materials that make up batteries. The report covers both what is known about battery life cycles, as well as what needs to be established for better environmental evaluations.

  17. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    SciTech Connect (OSTI)

    Harry Littleton; John Griffin

    2011-07-31

    This project was a subtask of Energy Saving Melting and Revert Reduction Technology (“Energy SMARRT”) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy saving estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU’s/year and 6.46 trillion BTU’s/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).

  18. Battery Calendar Life Estimator Manual Modeling and Simulation

    SciTech Connect (OSTI)

    Jon P. Christophersen; Ira Bloom; Ed Thomas; Vince Battaglia

    2012-10-01

    The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

  19. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manufacturing and national security To realize additive manufacturing's potential as a disruptive technology for Los Alamos National Laboratory's national security missions,...

  20. Revolutionizing Clean Energy Technology with Advanced Composites

    SciTech Connect (OSTI)

    Hockfield, Susan; Holliday Jr, Charles O.; Markell, Brad

    2015-01-13

    Energy conservation and manufacturing leaders discuss manufacturing products with advance composites to revolutionize the future with clean energy technology.

  1. EERE Success Story—Battery Company Puts New Nanowire Technology into Production

    Broader source: Energy.gov [DOE]

    A battery company supported by the Vehicle Technologies Office (VTO) has an agreement to manufacture silicon nanowire material for lithium-ion batteries on a commercial scale for the first time. ...

  2. Battery Calorimetry Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calorimetry Laboratory - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  3. Battery Charger Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vs. Marine Batteries Cell Phone Battery Marine Battery Banks don't look like power tools ... loads (Refrigerators, COfire alarm systems, bilge pumps). * Chargers function as ...

  4. United States Advanced Battery Consortium

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  5. GM Li-Ion Battery Pack Manufacturing

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  6. GM Li-Ion Battery Pack Manufacturing

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  7. GM Li-Ion Battery Pack Manufacturing

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Sustainable Manufacturing

    Energy Savers [EERE]

    Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR DOE Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR Sustainable Manufacturing: Definitions  Numerous definitions and descriptions exist for sustainable manufacturing: * US Department of Commerce, 2009 * NACFAM, 2009 * NIST, 2010 * US-EPA, 2012 * ASME, 2011, 2013 * NSF 2013 * ISM, 2014  Sustainable manufacturing offers a new way of producing functionally superior products using innovative sustainable

  9. Bipolar battery

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1992-01-01

    A bipolar battery having a plurality of cells. The bipolar battery includes: a negative electrode; a positive electrode and a separator element disposed between the negative electrode and the positive electrode, the separator element electrically insulating the electrodes from one another; an electrolyte disposed within at least one of the negative electrode, the positive electrode and the separator element; and an electrode containment structure including a cup-like electrode holder.

  10. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... * Internships, Apprenticeships, Co-ops & Job Shadowing in STEM fields * Technical ... - Satisfy the PCAST report recommendation to create an integrated private...

  11. Explore Careers in Manufacturing | Department of Energy

    Office of Environmental Management (EM)

    Manufacturing Explore Careers in Manufacturing The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a transformation in U.S. manufacturing. The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a

  12. NERSC Helps Develop Next-Gen Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December 18, 2012 Contact: Linda Vu, lvu@lbl.gov, +1 510 495 2402 XBD201110-01310.jpg Kristin Persson To reduce the United States' reliance on foreign oil and lower consumer energy costs, the Department of Energy (DOE) is bringing together five national laboratories, five universities and four private firms to revolutionize

  13. Manufacturing Supply Chain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supply Chain - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  14. Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing- Informed Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing ADVANCED MANUFACTURING OFFICE Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing- Informed Design Improving Product and Manufacturing Process Design through a More Accurate and Widely Applicable Modeling Framework. This project aims to fll the knowledge gap between upstream design and downstream manufacturing processes by developing a manufacturing-informed design framework enabled by multi-scale, physics-based process models. This framework

  15. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austins thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  16. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery

    Energy Savers [EERE]

    Technology (August 2013) | Department of Energy Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013) East Penn Manufacturing, through its subsidary Ecoult, has designed and constructed an energy storage facility consisting of an array of UltraBattery modules integrated in a turnkey battery energy storage system. The UltraBattery technology is a significant

  17. Predictive Models of Li-ion Battery Lifetime (Presentation) Smith...

    Office of Scientific and Technical Information (OSTI)

    Predictive Models of Li-ion Battery Lifetime (Presentation) Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A. 25 ENERGY STORAGE; 33 ADVANCED PROPULSION...

  18. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery...

    Broader source: Energy.gov (indexed) [DOE]

    East Penn Manufacturing, through its subsidary Ecoult, has designed and constructed an energy storage facility consisting of an array of UltraBattery modules integrated in a ...

  19. Performance of the Lester battery charger in electric vehicles

    SciTech Connect (OSTI)

    Vivian, H.C.; Bryant, J.A.

    1984-04-15

    Tests were performed on an improved battery charger manufactured by Lester Electrical of Nebraska, Inc. This charger was installed in a South Coast Technology Rabbit No. 4, which was equipped with lead-acid batteries produced by ESB Company. The primary purpose of the testing was to develop test methodologies for battery charger evaluation. To this end tests were developed to characterize the charger in terms of its charge algorithm and to assess the effects of battery initial state of charge and temperature on charger and battery efficiency. Tests showed this charger to be a considerable improvement in the state of the art for electric vehicle chargers.

  20. AMO Requests Technical Topics Suitable for a Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Institute AMO Requests Technical Topics Suitable for a Manufacturing Innovation Institute April 17, 2014 - 12:23pm Addthis The Advanced Manufacturing Office...

  1. Organic Cathode Materials for Rechargeable Batteries

    SciTech Connect (OSTI)

    Cao, Ruiguo; Qian, Jiangfeng; Zhang, Jiguang; Xu, Wu

    2015-06-28

    This chapter will primarily focus on the advances made in recent years and specify the development of organic electrode materials for their applications in rechargeable lithium batteries, sodium batteries and redox flow batteries. Four various organic cathode materials, including conjugated carbonyl compounds, conducting polymers, organosulfides and free radical polymers, are introduced in terms of their electrochemical performances in these three battery systems. Fundamental issues related to the synthesis-structure-activity correlations, involved work principles in energy storage systems, and capacity fading mechanisms are also discussed.

  2. Iron Edison Battery Company | Open Energy Information

    Open Energy Info (EERE)

    is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced Nickel-iron (Ni-Fe) battery technology. Vastly out-lasting the 7...

  3. Progress of DOE Materials, Manufacturing Process R&D, and ARRA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D, and ARRA Battery Manufacturing Grants Vehicle Technologies Office: 2010 Energy Storage R&D Annual Progress Report Perfluoro Aryl Boronic Esters as Chemical Shuttle Additives

  4. Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries Vehicle Technologies Office Merit Review 2014: Innovative...

  5. Oak Ridge Manufacturing Demonstration Facility (MDF)

    Broader source: Energy.gov [DOE]

    The Manufacturing Demonstration Facility (MDF) is a collabora­tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

  6. Applying the Battery Ownership Model in Pursuit of Optimal Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE ...

  7. Report to the President on Ensuring American Leadership in Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing | Department of Energy Report to the President on Ensuring American Leadership in Advanced Manufacturing Report to the President on Ensuring American Leadership in Advanced Manufacturing PDF icon pcast_june2011.pdf More Documents & Publications Report to the President on Capturing Domestic Competitive Advantage in Advanced Manufacturing A National Strategic Plan For Advanced Manufacturing The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program

  8. Vehicle Technologies Office: AVTA - Battery Testing Data | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Battery Testing Data Vehicle Technologies Office: AVTA - Battery Testing Data For plug-in electric vehicles to achieve widespread market adoption, vehicle batteries must have excellent real-world performance. Through the Advanced Vehicle Testing Activity, the Vehicle Technologies Office supports work to test vehicles, including battery packs, in on-road, real-world conditions. The procedure manuals for the pack-level testing are available from the USCAR Electrochemical Energy Storage

  9. Plug-in Hybrid Battery Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Hybrid Battery Development Plug-in Hybrid Battery Development 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es_05_ashtiani.pdf More Documents & Publications USABC PHEV Battery Development Project USABC HEV and PHEV Programs Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB)

  10. Vehicle Technologies Office Research Partner Requests Proposals for Battery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Development | Department of Energy Research Partner Requests Proposals for Battery Cell Development Vehicle Technologies Office Research Partner Requests Proposals for Battery Cell Development February 24, 2015 - 1:44pm Addthis The U.S. Advanced Battery Consortium (USABC), which partners with the Vehicle Technologies Office to support battery research and development projects, recently issued a request for proposal information. The request is focusing on projects that would develop

  11. Celgard and Entek - Battery Separator Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Entek - Battery Separator Development Celgard and Entek - Battery Separator Development 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es_08_tataria.pdf More Documents & Publications USABC Battery Separator Development Overview and Progress of United States Advanced Battery Consortium (USABC) Activity Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Bat

  12. Transformative Battery Technology at the National Labs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs January 17, 2012 - 10:45am Addthis Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's Batteries for Advanced Transportation Technologies Program where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs

  13. Germanium Oxide Nanoparticlesfor Superior Battery Electrodes - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Germanium Oxide Nanoparticlesfor Superior Battery Electrodes Brookhaven National Laboratory Contact BNL About This Technology Technology Marketing Summary Compared to the graphite found in some batteries, similar elements such as tin, silicon, and germanium have much higher theoretical capacities for lithium ions, making them strong candidates for electrode materials. These new amorphous germanium

  14. Batteries for Large Scale Energy Storage

    SciTech Connect (OSTI)

    Soloveichik, Grigorii L.

    2011-07-15

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with ?-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  15. CRADA final report: Technical assessment of roll-to-roll operation of lamination process, thermal treatment, and alternative carbon fiber precursors for low-cost, high-efficiency manufacturing of flow battery stacks and other energy devices

    SciTech Connect (OSTI)

    Daniel, Claus; Madden, Thomas; Wood, III, David L; Muth, Thomas R.; Warrington, Curtis; Ozcan, Soydan; Manson, Hunter; Tekinalp, Halil L.; Smith, Mark A.; Lu, Yuan; Loretz, Jeremy

    2015-09-23

    Among the various stationary-storage technologies under development, redox flow batteries (RFBs) offer the greatest potential to deliver inexpensive, scalable, and efficient grid-scale electrical-energy storage. Unlike traditional sealed batteries, in a flow battery power and energy are decoupled. Cell area and cell count in the stack determine the device power, and the chemical storage volume determines the total energy. Grid-scale energy-storage applications require megawatt-scale devices, which require the assembly of hundreds of large-area, bipolar cells per power plant. The cell-stack is the single system component with the largest impact on capital cost (due to the large number of highly engineered components) and operating costs (determined by overall round-trip efficiency).

  16. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations

    Broader source: Energy.gov [DOE]

    This Clean Energy Manufacturing Analysis Center report is intended to provide credible, objective analysis regarding the regional competitiveness contexts of manufacturing lithium-­ion batteries ...

  17. FACT SHEET: 48C MANUFACTURING TAX CREDITS

    Broader source: Energy.gov [DOE]

    The Advanced Energy Manufacturing Tax Credit Program is helping build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment.On February 7,...

  18. AMO Hosted Workshop on Composite Manufacturing

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Advanced Manufacturing Office will host a workshop on Fiber Reinforced Polymer Composite Manufacturing on January 13, 2014 at the Hilton Crystal City in Arlington, VA.

  19. QTR Webinar: Chapter 8- Industry and Manufacturing

    Broader source: Energy.gov [DOE]

    The DOE EERE Advanced Manufacturing Office hosted a QTR webinar to obtain input from Leaders in Academia, Industry, and Government on Chapter 8, Industry and Manufacturing, and the associated Technology Assessments.

  20. CUBICON Materials that Outperform Lithium-Ion Batteries - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Advanced Materials Advanced Materials Find More Like This Return to Search CUBICON Materials that Outperform Lithium-Ion Batteries Brookhaven National Laboratory Contact BNL About This Technology Micrograph of CUBICON material. Micrograph of CUBICON material. Technology Marketing Summary The demand for batteries to meet high-power and high-energy system applications has resulted in substantial research and development activities. Lithium-ion batteries are a chief contender today, but

  1. 2008 Annual Merit Review Results Summary - 4. Exploratory Battery Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4-1 4. Exploratory Battery Research Introduction Long-term research addresses the chemical instabilities that impede the development of advanced batteries. Researchers focus on synthesizing components into battery cells and determining failure modes, while maintaining strengths in materials synthesis and evaluation, advanced diagnostics, and improved electrochemical model development. Goals include developing a better understanding of why systems fail, creating models that predict system failure

  2. Flexible Thin Film Solid State Lithium Ion Batteries - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Flexible Thin Film Solid State Lithium Ion Batteries National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Batteries are electrochemical cells which store and supply electrical energy as a product of a chemical reaction. In their simplest conceptualization, batteries have two electrodes, one that supplies electrons by virtue of an

  3. Nanostructured Anodes for Lithium-Ion Batteries - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Nanostructured Anodes for Lithium-Ion Batteries New Anodes for Lithium-ion Batteries Increase Energy Density Four-Fold Savannah River National Laboratory Contact SRNL About This Technology Technology Marketing Summary Savannah River Nuclear Solutions (SRNS), managing contractor of the Savannah River Site (SRS) for the Department of Energy, has developed new anodes for lithium-ion batteries

  4. Manufacturing Glossary

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing...

  5. OUT Success Stories: Battery Electricity Storage for Quality Power

    SciTech Connect (OSTI)

    Recca, L.

    2000-08-31

    A 3.5-megawatt valve-regulated lead-acid (VRLA) battery system installed at a lead recycling plant in California provides one hour of energy storage for both peak-shaving and uninterruptible power. It incorporates improvements in battery materials, manufacturing processes, and quality control.

  6. enhance US composites manufacturing competitiveness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enhance US composites manufacturing competitiveness - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  7. Solid Lithium Ion Conducting Electrolytes Suitable for Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processes - Energy Innovation Portal Energy Storage Energy Storage Find More Like This Return to Search Solid Lithium Ion Conducting Electrolytes Suitable for Manufacturing Processes Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryThe lithium ion battery found in electronics like cell phones uses liquid electrolytes associated with shorter battery life; this material is also a safety hazard if it is overheated or overcharged. Batteries with solid

  8. Development and Testing of an UltraBattery-Equipped Honda Civic

    SciTech Connect (OSTI)

    Donald Karner

    2012-04-01

    The UltraBattery retrofit project DP1.8 and Carbon Enriched project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy (DOE) and the Advanced Lead Acid Battery Consortium (ALABC), are to demonstrate the suitability of advanced lead battery technology in Hybrid Electrical Vehicles (HEVs).

  9. Potential use of battery packs from NCAP tested vehicles.

    SciTech Connect (OSTI)

    Lamb, Joshua; Orendorff, Christopher J.

    2013-10-01

    Several large electric vehicle batteries available to the National Highway Traffic Safety Administration are candidates for use in future safety testing programs. The batteries, from vehicles subjected to NCAP crashworthiness testing, are considered potentially damaged due to the nature of testing their associated vehicles have been subjected to. Criteria for safe shipping to Sandia is discussed, as well as condition the batteries must be in to perform testing work. Also discussed are potential tests that could be performed under a variety of conditions. The ultimate value of potential testing performed on these cells will rest on the level of access available to the battery pack, i.e. external access only, access to the on board monitoring system/CAN port or internal electrical access to the battery. Greater access to the battery than external visual and temperature monitoring would likely require input from the battery manufacturer.

  10. Manufacturing Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Advanced Manufacturing Office; John Dennis, Mayor of West Lafayette; Mitch Daniels, President of Purdue University; R. Byron Pipes, John Leighton Bray Distinguished...

  11. Clean Energy Manufacturing Innovation Institute for Composites...

    Broader source: Energy.gov (indexed) [DOE]

    Date: 06192014 Full applications are due. Funding Organization: The Advanced Manufacturing Office of the Office of Energy Efficiency and Renewable Energy Funding Number:...

  12. Manufacturing Energy and Carbon Footprint References

    Broader source: Energy.gov (indexed) [DOE]

    References AMO (Advanced Manufacturing Office), EERE (Energy Efficiency and Renewable Energy). 2012. Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators. ...

  13. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Deli; Wang, Jie; He, Huan; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wu, Zexing; Liu, Hongfang

    2015-12-30

    Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of CoxFe3–xO4 hollow spheres supported by carbon nanotubes via an impregnation–reduction–oxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, we directly visualize themore » particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. As a result, this study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion.« less

  14. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries

    SciTech Connect (OSTI)

    Wang, Deli; Wang, Jie; He, Huan; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wu, Zexing; Liu, Hongfang

    2015-12-30

    Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of CoxFe3xO4 hollow spheres supported by carbon nanotubes via an impregnationreductionoxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, we directly visualize the particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. As a result, this study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion.

  15. X-Ray Tools for Battery Development and Testing: Case Studies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Tools for Battery Development and Testing: Case Studies Case studies of the use of X-ray techniques for battery development and testing at the Advanced Photon Source PDF icon...

  16. Second use of transportation batteries: Maximizing the value of batteries for transportation and grid services

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Kintner-Meyer, Michael CW

    2010-09-30

    Plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are expected to gain significant market share over the next decade. The economic viability for such vehicles is contingent upon the availability of cost-effective batteries with high power and energy density. For initial commercial success, government subsidies will be highly instrumental in allowing PHEVs to gain a foothold. However, in the long-term, for electric vehicles to be commercially viable, the economics have to be self-sustaining. Towards the end of battery life in the vehicle, the energy capacity left in the battery is not sufficient to provide the designed range for the vehicle. Typically, the automotive manufacturers indicated the need for battery replacement when the remaining energy capacity reaches 70-80%. There is still sufficient power (kW) and energy capacity (kWh) left in the battery to support various grid ancillary services such as balancing, spinning reserve, load following services. As renewable energy penetration increases, the need for such balancing services is expected to increase. This work explores optimality for the replacement of transportation batteries to be subsequently used for grid services. This analysis maximizes the value of an electric vehicle battery to be used as a transportation battery (in its first life) and then as a resource for providing grid services (in its second life). The results are presented across a range of key parameters, such as depth of discharge (DOD), number of batteries used over the life of the vehicle, battery life in vehicle, battery state of health (SOH) at end of life in vehicle and ancillary services rate. The results provide valuable insights for the automotive industry into maximizing the utility and the value of the vehicle batteries in an effort to either reduce the selling price of EVs and PHEVs or maximize the profitability of the emerging electrification of transportation.

  17. Piezonuclear battery

    DOE Patents [OSTI]

    Bongianni, Wayne L.

    1992-01-01

    A piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material (.sup.252 Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluorethylene.

  18. WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW PDF icon Sustainable Manufacturing Workshop Agenda.pdf PDF icon AMO Sustainable Manufacturing Workshop Overview.pdf More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop ITP Chemicals: Industrial Feedstock Flexibility Workshop Results, December 2009 Process Intensification Workshop - September 29-30, 2015 Advanced

  19. Ex Parte Meeting with DOE and Navigant Consulting on Battery Charger Energy

    Energy Savers [EERE]

    | Department of Energy with DOE and Navigant Consulting on Battery Charger Energy Ex Parte Meeting with DOE and Navigant Consulting on Battery Charger Energy Ex parte guidance for Association of Home Appliance Manufacturers on battery charger energy efficiency standards PDF icon Microsoft Word - AHAM Letter Exparte 122310.doc More Documents & Publications DOE - BCS TSD comments ISSUANCE 2015-07-30: Energy Conservation Program: Energy Conservation Standards for Battery Chargers,

  20. Battery Company Puts New Nanowire Technology into Production | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Company Puts New Nanowire Technology into Production Battery Company Puts New Nanowire Technology into Production June 11, 2015 - 4:23pm Addthis These are how the nano-wires appear after the battery has gone through 10 charge-discharge cycles. These are how the nano-wires appear after the battery has gone through 10 charge-discharge cycles. A battery company supported by the Vehicle Technologies Office (VTO) has an agreement to manufacture silicon nanowire material for lithium-ion

  1. NREL: Innovation Impact - Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy...

  2. Manufacturing Demonstration Facilities Workshop, March 12, 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Demonstration Facilities Workshop, March 12, 2012 Manufacturing Demonstration Facilities Workshop, March 12, 2012 PDF icon mdf_workshop_presentation_march2012.pdf More Documents & Publications Manufacturing Demonstration Facility Workshop Microwave and Radio Frequency Workshop Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

  3. Industrial & Manufacturing Processes | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial & Manufacturing Processes Developing technologies, processes for optimal manufacturing As the world increasingly demands technological goods, companies are strained to optimize their manufacturing processes and manage waste and materials recycling. As part of Argonne's mission to contribute to a sustainable world, our scientists are creating next-generation catalysts, processes, coatings and technologies that will advance industrial development and output without compromising

  4. Redox Flow Batteries: An Engineering Perspective

    SciTech Connect (OSTI)

    Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

    2014-10-01

    Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

  5. Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing ADVANCED MANUFACTURING OFFICE Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Development of an Open Architecture, Widely Applicable Smart Manufacturing Platform While many U.S. manufacturing operations utilize optimization for individual unit processes, smart manufacturing (SM) systems that integrate manufacturing intelligence in real time across an entire production operation are rare in large companies and virtually

  6. Advanced Reciprocating Engine Systems

    Broader source: Energy.gov [DOE]

    The Advanced Reciprocating Engine Systems (ARES) program is designed to promote separate but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the...

  7. Vehicle Technologies Office Merit Review 2014: Advanced in situ Diagnostic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Techniques for Battery Materials | Department of Energy Advanced in situ Diagnostic Techniques for Battery Materials Vehicle Technologies Office Merit Review 2014: Advanced in situ Diagnostic Techniques for Battery Materials Presentation given by Brookhaven National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced in situ diagnostic techniques for battery materials. PDF icon

  8. Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Technology - High Voltage Electrolyte | Department of Energy Daikin Advanced Lithium Ion Battery Technology - High Voltage Electrolyte Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion Battery Technology - High Voltage Electrolyte Presentation given by Daikin America at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion battery technology - high

  9. HPC4Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Deborah May, Lawrence Livermore National Laboratory U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28-29, 2015 LLNL-PRES-792637 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC This presentation does not contain any proprietary, confidential, or otherwise restricted information. * Energy intensive processes and

  10. Contribution to Nanotechnology Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shares Nano 50 award for directed assembly September 3, 2008 Contribution to Nanotechnology Manufacturing LOS ALAMOS, New Mexico, September 3, 2008-A team of scientists spanning three institutions, including Los Alamos National Laboratory, has discovered a more efficient way of fusing charge-carrying electrical contacts to tiny "nanowires" of silicon to create the nanotechnology at the heart of potential future advances in modern electronics, sensing, and energy collection. Nanotech

  11. Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications

    SciTech Connect (OSTI)

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

  12. Optima Batteries | Open Energy Information

    Open Energy Info (EERE)

    Optima Batteries Jump to: navigation, search Name: Optima Batteries Place: Milwaukee, WI Website: www.optimabatteries.com References: Optima Batteries1 Information About...

  13. Advanced Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  14. Advanced Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  15. Advanced Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  16. Manufacturing Demonstration Facilities Workshop Agenda, March 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Demonstration Facilities Workshop Marriott Springhill Suites O'Hare - Chicago, IL March 12, 2012 Objectives  Introduce the manufacturing community to the U.S. DOE Advanced Manufacturing Office (AMO) program vision and its goals.  Explain the proposed mechanics of the Manufacturing Demonstration Facility (MDF) concept and the objectives of this particular anticipated effort.  Encourage discussion among potential organizations that have the relevant expertise, facilities and

  17. Welcome! Presentation: Fiber Reinforced Polymer Composite Manufacturing Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 | Energy Efficiency and Renewable Energy eere.energy.gov Mark Johnson Director Advanced Manufacturing Office manufacturing.energy.gov Breakout Instructions January 13, 2014 Advanced Manufacturing Office (AMO) manufacturing.energy.gov 6 Breakout Objectives Let's dig deeper: * Manufacturing Process Technologies - Blue Teams A and B (e.g. lay-up techniques, out of the autoclave, novel cure techniques, resin infusion, pultrusion, SMC, tooling, machining) * Enabling Technologies and Approaches -

  18. 2008 Annual Merit Review Results Summary - 3. Battery Development, Testing,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulation, Analysis | Department of Energy 3. Battery Development, Testing, Simulation, Analysis 2008 Annual Merit Review Results Summary - 3. Battery Development, Testing, Simulation, Analysis DOE Vehicle Technologies Annual Merit Review PDF icon 2008_merit_review_3.pdf More Documents & Publications 2008 Annual Merit Review Results Summary - 2. Applied Battery Research 2008 Annual Merit Review Results Summary - 5. Advanced Power Electronics 2008 Annual Merit Review Results Summary -

  19. 2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Matthew Shirk; Tyler Gray; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energys Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  20. Commercial Electric Vehicle (EV) Development and Manufacturing Program

    SciTech Connect (OSTI)

    Leeve, Dion

    2014-06-30

    Navistar with the Department of Energys assistance undertook this effort to achieve the project objectives as listed in the next section. A wholly owned subsidiary of Navistar, Workhorse Sales Corporation was the original grant awardee and upon their discontinuation as a standalone business entity, Navistar assumed the role of principal investigator. The intent of the effort, as part of the American Recovery and Reinvestment Act (ARRA) was to produce zero emission vehicles that could meet the needs of the marketplace while reducing carbon emissions to zero. This effort was predicated upon the assumption that concurrent development activities in the lithium ion battery industry investigations would significantly increase their production volumes thus leading to substantial reductions in their manufacturing costs. As a result of this development effort much was learned about the overall system compatibility between the electric motor, battery pack, and charging capabilities. The original system was significantly revised and improved during the execution of this development effort. The overall approach that was chosen was to utilize a British zero emissions, class 2 truck that had been developed for their market, homologate it and modify it to meet the product requirements as specified in the grant details. All of these specific goals were achieved. During the course of marketing and selling the product valuable information was obtained as relates to customer expectations, price points, and product performance expectations, specifically those customer expectations about range requirements in urban delivery situations. While the grant requirements specified a range of 100 miles on a single charge, actual customer usage logs indicate a range of 40 miles or less is typical for their applications. The price point, primarily due to battery pack costs, was significantly higher than the mass market could bear. From Navistars and the overall industrys perspective, valuable insights and lessons into this all-electric vehicle propulsion were gained during the performance of this effort and can be revisited when battery chemistry and technology advance to the point of more suitable economic viability. Additionally, another goal of the ARRA act and this specific grant was to manufacture the product in the, at that time, economically depressed Northwest Indiana area. Navistar chose a location in Wakarusa, Indiana which fulfilled this requirement. Navistar was and continues to be committed to alternative fuel and propulsion options as an industry leader in the medium and heavy duty truck industry.