National Library of Energy BETA

Sample records for advanced battery manufacturing

  1. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. PDF icon esarravt002flicker2010p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing...

  2. Advanced Battery Manufacturing Facilities and Equipment Program...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program Fact Sheet: Grid-Scale ...

  3. Advanced Battery Manufacturing Facilities and Equipment Program...

    Broader source: Energy.gov (indexed) [DOE]

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  4. Advanced Battery Manufacturing (VA)

    SciTech Connect (OSTI)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATTs products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATTs work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease

  5. Advanced Battery Materials Synthesis and Manufacturing R&D Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Battery Materials Synthesis and Manufacturing R&D Program Argonne's Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials...

  6. National Alliance for Advanced Transportation Battery Cell Manufacture...

    Open Energy Info (EERE)

    Manufacture Product: US-based consortium formed to research, develop, and mass produce lithium ion batteries. References: National Alliance for Advanced Transportation Battery Cell...

  7. Advanced Battery Manufacturing Making Strides in Oregon | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Battery Manufacturing Making Strides in Oregon Advanced Battery Manufacturing Making Strides in Oregon February 16, 2012 - 12:09pm Addthis EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program What are the key facts? Through the Recovery Act, the Department has

  8. An Update on Advanced Battery Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Battery Manufacturing An Update on Advanced Battery Manufacturing October 16, 2012 - 9:41am Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs What are the key facts? The advanced battery market is expanding dramatically in the U.S. and around the world -- from $5 billion in 2010 to nearly $50 billion in 2020, an average annual growth rate of roughly 25 percent. The Department of Energy, with strong bipartisan support, awarded $2 billion in grants to 29

  9. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...

    Broader source: Energy.gov (indexed) [DOE]

    MB) More Documents & Publications Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA Li-Ion Battery Cell Manufacturing 2010 DOE, Li-Ion Battery Cell Manufacturing

  10. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt001_es_koo_2012_p.pdf (2.94 MB) More Documents & Publications Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA Li-Ion Battery Cell Manufacturing 2010 DOE, Li-Ion Battery Cell Manufacturing

  11. Manufacturing of Protected Lithium Electrodes for Advanced Batteries |

    Broader source: Energy.gov (indexed) [DOE]

    The Office of Naval Research recently sponsored and completed the Manufacturing Fuel Cell Manhattan Project (MFCMP). Utilizing experts from industry, government, and academia, the Navy Manufacturing Technology Program's Benchmarking Best Practices Center of Excellence, in conjunction with Montana Tech, determined the major fuel cell manufacturing cost drivers, gaps, and best practices. This document, which was produced by the collective efforts of the subject matter experts, will communicate

  12. ZAP Advanced Battery Technologies JV | Open Energy Information

    Open Energy Info (EERE)

    battery manufacturer Advanced Battery Technologies focusing on manufacturing and marketing of advanced batteries for electric cars using the latest in nanotechnology....

  13. Manufacturing of Protected Lithium Electrodes for Advanced Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protected Lithium Electrodes for Advanced Batteries Manufacturing of Protected Lithium ... Solving these problems would boost domestic battery manufacturing in this globally ...

  14. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  15. Manufacturing Innovation Institute for Smart Manufacturing: Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing Manufacturing Innovation Institute for Smart Manufacturing: ...

  16. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program ...

  17. Advanced Manufacturing Office News

    SciTech Connect (OSTI)

    2013-08-08

    News stories about advanced manufacturing, events, and office accomplishments. Subscribe to receive updates.

  18. WEDNESDAY: Deputy Secretary Poneman to Speak at Nissan Advanced Battery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Facility Groundbreaking in Smyrna, TN | Department of Energy Deputy Secretary Poneman to Speak at Nissan Advanced Battery Manufacturing Facility Groundbreaking in Smyrna, TN WEDNESDAY: Deputy Secretary Poneman to Speak at Nissan Advanced Battery Manufacturing Facility Groundbreaking in Smyrna, TN May 25, 2010 - 12:00am Addthis May 25, 2010 WEDNESDAY: Deputy Secretary Poneman to Speak at Nissan Advanced Battery Manufacturing Facility Groundbreaking in Smyrna, TN Smyrna, TN - On

  19. The Advanced Manufacturing Partnership and the Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Program Office | Department of Energy The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office This presentation describes the Advanced Manufacturing Partnership from its beginning as a recommendation of the President's Council of Advisers on Science and Technology to its development and organization. The Advanced Manufacturing Partnership and the

  20. Washington: Battery Manufacturer Brings Material Production Home...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    can be used in ultracapacitors, lithium-ion batteries, and advanced lead acid batteries. ... EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo ...

  1. Advanced Vehicles Manufacturing Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects DOE-LPO_ATVM-Economic-Growth_Thumbnail.png DRIVING ECONOMIC GROWTH: ADVANCED TECHNOLOGY VEHICLES

  2. Battery Manufacturing Processes Improved by Johnson Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Johnson Controls Project Improving battery manufacturing processes can help make plug-in electric vehicles more affordable and convenient. This will help meet the government's EV...

  3. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Officer National Institute of Standards and Technology Carrie Houtman Senior Public Policy Manager Dow Chemical Overview * Advanced Manufacturing Activities * Advanced ...

  4. Battery resource assessment. Subtask II. 5. Battery manufacturing capability recycling of battery materials. Draft final report

    SciTech Connect (OSTI)

    Pemsler, P.

    1981-02-01

    Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials. Each recycle process has been designed to produce a product material which can be used directly as a raw material by the battery manufacturer. Metal recoverabilities are in the range of 93 to 95% for all processes. In each case, capital and operating costs have been developed for a recycling plant which processes 100,000 electric vehicle batteries per year. These costs have been developed based on material and energy balances, equipment lists, factored installation costs, and manpower estimates. In general, there are no technological barriers for recycling in the Nickel/Zinc, Nickel/Iron, Zinc/Chlorine and Zinc/Bromine battery systems. The recycling processes are based on essentially conventional, demonstrate technology. The lead times required to build battery recycling plants based on these processes is comparable to that of any other new plant. The total elapsed time required from inception to plant operation is approximately 3 to 5 y. The recycling process for the sodium/sulfur and lithium-aluminum/sulfide battery systems are not based on conventional technology. In particular, mechanical systems for dismantling these batteries must be developed.

  5. Advanced Manufacture of Reflectors

    Broader source: Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  6. Advanced Battery Factory | Open Energy Information

    Open Energy Info (EERE)

    Battery Factory Place: Shen Zhen City, Guangdong Province, China Product: Producers of lithium polymer batteries, established in 1958. References: Advanced Battery Factory1 This...

  7. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries

  8. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  9. Battery and Electric Drive Manufacturing Distribution Map - American...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Distribution Map - American Recovery and Reinvestment Act funding Battery ... and their components and to expand battery recycling capacity 500 million in grants ...

  10. Advanced Manufacturing Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Manufacturing Production Technician; Electro-Mechanical Technician; Electronics Maintenance Technician  

  11. Advanced Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The U.S. Department of Energy funds the research, development, and demonstration of highly ... that enable the development and demonstration of advanced manufacturing ...

  12. Advanced Lithium Ion Battery Technologies - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Advanced Lithium Ion Battery Technologies Lawrence ... improved battery life when used in the fabrication of negative silicon electrodes. ...

  13. AVTA: Battery Testing - Electric Drive and Advanced Battery and Components

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testbed | Department of Energy Battery Testing - Electric Drive and Advanced Battery and Components Testbed AVTA: Battery Testing - Electric Drive and Advanced Battery and Components Testbed The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future

  14. EnerDel Expanding Battery Manufacturing in Indiana | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EnerDel Expanding Battery Manufacturing in Indiana EnerDel Expanding Battery Manufacturing in Indiana October 5, 2010 - 2:00pm Addthis EnerDel is expanding its Mt. Comfort-based factory to produce advanced lithium-ion batteries such as this.| Photo courtesy of EnderDel EnerDel is expanding its Mt. Comfort-based factory to produce advanced lithium-ion batteries such as this.| Photo courtesy of EnderDel Lindsay Gsell What are the key facts? EnerDel uses $118 in Recovery Act funding to expand

  15. Lithium ion batteries and their manufacturing challenges

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Daniel, Claus

    2015-03-01

    There is no single lithium ion battery. With the variety of materials and electrochemical couples available, it is possible to design battery cells specific to their applications in terms of voltage, state of charge use, lifetime needs, and safety. Selection of specific electrochemical couples also facilitates the design of power and energy ratios and available energy. Integration in a large format cell requires optimized roll-to-roll electrode manufacturing and use of active materials. Electrodes are coated on a metal current collector foil in a composite structure of active material, binders, and conductive additives, requiring careful control of colloidal chemistry, adhesion, andmore » solidification. But the added inactive materials and the cell packaging reduce energy density. Furthermore, degree of porosity and compaction in the electrode can affect battery performance.« less

  16. Advanced Manufacture of Reflectors

    SciTech Connect (OSTI)

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of

  17. Secretary Chu Visits Advanced Battery Plant in Michigan, Announces New Army

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership | Department of Energy Advanced Battery Plant in Michigan, Announces New Army Partnership Secretary Chu Visits Advanced Battery Plant in Michigan, Announces New Army Partnership July 18, 2011 - 1:09pm Addthis Secretary Chu speaks at the A123 Systems lithium-ion battery manufacturing plant in Romulus, Michigan, while employees look on. | Photo Courtesy of Damien LaVera, Energy Department Secretary Chu speaks at the A123 Systems lithium-ion battery manufacturing plant in Romulus,

  18. EERE Success Story-Battery Manufacturing Processes Improved by Johnson

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controls Project | Department of Energy Manufacturing Processes Improved by Johnson Controls Project EERE Success Story-Battery Manufacturing Processes Improved by Johnson Controls Project August 6, 2015 - 1:51pm Addthis EERE Success Story—Battery Manufacturing Processes Improved by Johnson Controls Project Improving battery manufacturing processes can help make plug-in electric vehicles more affordable and convenient. This will help meet the government's EV Everywhere goal of producing

  19. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel ...

  20. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry

  1. Advanced Technology Vehicles Manufacturing Incentive Program | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles manufacturing incentive program. Advanced Technology Vehicles Manufacturing Incentive Program (1.49 MB) More Documents & Publications Advanced Technology Vehicles Manufacturing Incentive Program MEMA: Comments MEMA: Letter

  2. Advanced Qualification of Additive Manufacturing Materials Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Qualification of Additive Manufacturing Materials Workshop Advanced Qualification of Additive Manufacturing Materials Workshop WHEN: Jul 20, 2015 8:30 AM - Jul 21, 2015...

  3. Sec. Moniz Discusses Advanced Technology Vehicle Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moniz Discusses Advanced Technology Vehicle Manufacturing Loans Sec. Moniz Discusses Advanced Technology Vehicle Manufacturing Loans April 2, 2014 - 4:37pm Addthis NEWS MEDIA ...

  4. Manufacturing of Protected Lithium Electrodes for Advanced Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the largest manufacturer of rechargeable lead-acid batteries in the world and recognized as ... entirely petroleum-based > 20B battery industry PLE-based batteries provide ...

  5. BatPRO: Battery Manufacturing Cost Estimation | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BatPRO: Battery Manufacturing Cost Estimation BatPRO models a stiff prismatic pouch-type cell battery pack with cells linked in series. BatPRO models a stiff prismatic pouch-type ...

  6. Advanced Manufacturing Office At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE FY 2017 BUDGET AT-A-GLANCE The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector. What We Do The Advanced Manufacturing Offce uses an integrated approach that relies on three

  7. Battery and Electric Drive Manufacturing Distribution Map - American

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery and Reinvestment Act funding | Department of Energy Manufacturing Distribution Map - American Recovery and Reinvestment Act funding Battery and Electric Drive Manufacturing Distribution Map - American Recovery and Reinvestment Act funding This is a map of the following awardees from the American Recovery and Reinvestment Act: $1.5 billion in grants to United States-based manufacturers to produce batteries and their components and to expand battery recycling capacity $500 million in

  8. EV Everywhere Batteries Workshop - Materials Processing and Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout Session Report | Department of Energy Materials Processing and Manufacturing Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and Manufacturing Breakout Session Report Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree OHare, Chicago, IL. report_out-manufacturing_b.pdf (117.4 KB) More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion

  9. Advanced Manufacturing Office (Formerly Industrial Technologies Program) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. DOE's Advanced Manufacturing Office (85.03 KB) More Documents & Publications Innovative Manufacturing Initiative Recognition Day Manufacturing Demonstration Facilities Workshop Agenda, March 2012 Advanced Manufacturing

  10. Advanced Manufacturing Office: Smart Manufacturing Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Smart Manufacturing is a network data-driven process that combines innovative automation ... Smart Manufacturing is a network data-driven process that combines innovative automation ...

  11. Vehicle Technologies Office: Advanced Battery Development, System...

    Energy Savers [EERE]

    The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, ... manuals, which are available from the USCAR Electrochemical Energy Storage Tech Team Website. ...

  12. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors, diagnostics...

  13. Consortium for Advanced Battery Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Simulation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel ...

  14. Vehicle Technologies Office: Advanced Battery Development, System Analysis,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Testing | Department of Energy Advanced Battery Development, System Analysis, and Testing Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full battery systems. The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, and Testing

  15. US Advanced Battery Consortium USABC | Open Energy Information

    Open Energy Info (EERE)

    US Advanced Battery Consortium USABC Jump to: navigation, search Name: US Advanced Battery Consortium (USABC) Place: Southfield, Michigan Zip: 48075 Sector: Vehicles Product:...

  16. Energy Storage - Summary of the FY 2005 Batteries for Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review Energy Storage - Summary of the FY 2005 Batteries for Advanced ...

  17. USABC Development of Advanced High-Performance Batteries for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel Cells ...

  18. Overview and Progress of United States Advanced Battery Research...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Office Merit Review 2016: Overview and Progress of United States Advanced Battery Consortium (USABC) Activity United States Advanced Battery Consortium ...

  19. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle ...

  20. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery ...

  1. Overview and Progress of the Batteries for Advanced Transportation...

    Broader source: Energy.gov (indexed) [DOE]

    Activity: Batteries for Advanced Transportation Technologies (BATT) Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Batteries for Advanced ...

  2. Overview of the Batteries for Advanced Transportation Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of the Batteries for Advanced Transportation Technologies (BATT) Program BATT Program- Summary and Future Plans Overview and Progress of the Batteries for Advanced ...

  3. Development of Polymer Electrolytes for Advanced Lithium Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  4. Vehicle Technologies Office Merit Review 2016: Co-Extrusion (CoEx) for Cost Reduction of Advanced High-Energy-and-Power Battery Electrode Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by PARC at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  5. Battery Manufacturing Processes Improved by Johnson Controls Project

    Broader source: Energy.gov [DOE]

    Improving battery manufacturing processes can help make plug-in electric vehicles more affordable and convenient. This will help meet the governments EV Everywhere goal of producing by 2022 plug...

  6. Advanced Manufacturing Initiative Improves Turbine Blade Productivity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an excerpt from the Second Quarter 2011 edition of the Wind Program R&D Newsletter. The Advanced Manufacturing Initiative (AMI) at DOE's Sandia National Laboratories is working with industry to improve manufacturing processes and create U.S. jobs by improving labor productivity in wind

  7. Autogenic Pressure Reactions for Battery Materials Manufacture | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Autogenic Pressure Reactions for Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture A one-step, solvent-free reaction for producing unique electrode materials that do not need further chemical processing treatment Offers the ability to smooth current distribution at the anode surface when charging Li-ion batteries, thereby reducing the risk of lithium dendrites, short circuits and resulting fire PDF icon

  8. Secretary Chu Visits Advanced Battery Plant in Michigan, Announces...

    Energy Savers [EERE]

    What are the key facts? Thirty new manufacturing plants across the country for electric ... Thirty new manufacturing plants across the country for electric vehicle batteries and ...

  9. Webtrends Archives by Fiscal Year - Advanced Manufacturing Office...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Manufacturing Office, Webtrends archives by fiscal year. Advanced Manufacturing FY09 (2.15 MB) Advanced Manufacturing FY10 (2.13 MB) Advanced Manufacturing FY11 (2.13 MB) ...

  10. How Advanced Batteries Are Energizing the Economy

    Broader source: Energy.gov [DOE]

    Earlier today, President Obama visited Johnson Controls in Holland, Michigan to highlight how this once shuttered factory is helping rev up the advanced battery industry in the United States. This...

  11. Advanced Methods for Manufacturing Newsletter- Issue 1

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Methods for Manufacturing (AMM) newsletter includes information about selected projects pertaining to additive manufacturing, concrete technologies, and welding innovations currently funded by the Department of Energy’s Office of Nuclear Energy.

  12. Advanced Methods for Manufacturing Newsletter- Issue 2

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Methods for Manufacturing (AMM) newsletter includes information about selected projects pertaining to additive manufacturing, concrete technologies, and welding innovations currently funded by the Department of Energy’s Office of Nuclear Energy.

  13. Advanced Methods for Manufacturing Newslettter- Issue 3

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Methods for Manufacturing newsletter includes information about selected projects pertaining to additive manufacturing, concrete technologies, welding innovations and imaging techniques for design reconstruction currently funded by the Department of Energy's Office of Nuclear Energy.

  14. advanced manufacturing office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Manufacturing Office The U.S. Department of Energy (DOE) funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies. DOE has supported the development of more than 250 energy-saving industrial technologies that have been commercialized since 1976. DOE is also working to create a network of Manufacturing Innovation Institutes, each of which will create collaborative communities to target a unique technology in advanced manufacturing.

  15. advanced manufacturing office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE has supported the development of more than 250 energy-saving industrial technologies that ... collaborative communities to target a unique technology in advanced manufacturing. ...

  16. Advanced Manufacturing Office Update, November 2014 | Department...

    Office of Environmental Management (EM)

    Until then, best wishes for the rest of 2014 and happy reading. Jay Wrobel, Manager, Technical Assistance Advanced Manufacturing Office Featured Articles Better Plants Partners ...

  17. Welcome and Advanced Manufacturing Partnership (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Welcome and Advanced Manufacturing Partnership video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  18. US Advanced Battery Consortium Reissues Request for Proposal Information to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop Improved Thermal Management Systems for Li-Ion Batteries for Vehicles | Department of Energy US Advanced Battery Consortium Reissues Request for Proposal Information to Develop Improved Thermal Management Systems for Li-Ion Batteries for Vehicles US Advanced Battery Consortium Reissues Request for Proposal Information to Develop Improved Thermal Management Systems for Li-Ion Batteries for Vehicles July 7, 2016 - 2:39pm Addthis The U.S. Advanced Battery Consortium (USABC), which

  19. Advanced Lead Acid Battery Consortium | Open Energy Information

    Open Energy Info (EERE)

    Lead Acid Battery Consortium Jump to: navigation, search Name: Advanced Lead-Acid Battery Consortium Place: Durham, North Carolina Zip: 27713 Sector: Vehicles Product: The ALABC is...

  20. US Advanced Battery Consortium Reissues Request for Proposal...

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Advanced Battery Consortium (USABC), which partners with the Vehicle Technologies Office to support battery research and development projects, recently reissued a request for ...

  1. High performance anode for advanced Li batteries

    SciTech Connect (OSTI)

    Lake, Carla

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  2. EERE Success Story-Washington: Battery Manufacturer Brings Material...

    Office of Environmental Management (EM)

    ... Story-Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Project Overview Positive Impact EnerG2's new plant will produce enough advanced ...

  3. Batteries - Materials Processing and Manufacturing Breakout session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    performance safety * Organic solvent vs. dry ... Areas Being Discussed * Li metal manufacturing * Variability ... establish a transparent framework for an open forum ...

  4. Toxicity of materials used in the manufacture of lithium batteries

    SciTech Connect (OSTI)

    Archuleta, M.M.

    1994-05-01

    The growing interest in battery systems has led to major advances in high-energy and/or high-power-density lithium batteries. Potential applications for lithium batteries include radio transceivers, portable electronic instrumentation, emergency locator transmitters, night vision devices, human implantable devices, as well as uses in the aerospace and defense programs. With this new technology comes the use of new solvent and electrolyte systems in the research, development, and production of lithium batteries. The goal is to enhance lithium battery technology with the use of non-hazardous materials. Therefore, the toxicity and health hazards associated with exposure to the solvents and electrolytes used in current lithium battery research and development is evaluated and described.

  5. Advanced Drivetrain Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drivetrain Manufacturing Advanced Drivetrain Manufacturing The U.S. Department of Energy (DOE) supports advanced manufacturing techniques that are leading to the "next-generation" of more reliable, affordable, and efficient wind turbine drivetrains. As turbines continue to increase in size, each and every component must also be scaled to meet the demands for renewable energy. What is the Drivetrain? The drivetrain of a wind turbine is composed of the gearbox and the generator, the

  6. Working with SRNL - The Advanced Manufacturing Collaborative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4/2016 SEARCH SRNL GO The Advanced Manufacturing Collaborative Academia Government Industry AMC Leadership Contact AMC Home SRNL Home Working with SRNL The Advanced Manufacturing Collaborative For over 50 years, the Savannah River National Laboratory (SRNL) has been providing the science behind nuclear chemical manufacturing at the Savannah River Site (SRS), a sprawling nuclear complex that was once part of our nation's Cold War. Time has changed the mission at SRS from nuclear production for

  7. Manufacturing Leadership Council recognizes advancements at KCNSC |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Manufacturing Leadership Council recognizes advancements at KCNSC Wednesday, July 20, 2016 - 11:01am Team members from the Kansas City National Security Campus took back three Manufacturing Leadership Awards from the ceremony in Carlsbad, CA. The spotlight was shining on the Kansas City National Security Campus (KCNSC) on June 8 at the Manufacturing Leadership Awards Summit. The Manufacturing Leadership Council recognized KCNSC's achievements

  8. Washington: Battery Manufacturer Brings Material Production Home

    Broader source: Energy.gov [DOE]

    EERE-supported company, EnerG2, built a new plant to produce nano-engineered carbon materials for batteries and other energy storage devices that can be used in hybrid, electric, plug-in hybrid, and all-electric vehicles.

  9. Institute for Advanced Composites Manufacturing Innovation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Facilities » Institute for Advanced Composites Manufacturing Innovation Institute for Advanced Composites Manufacturing Innovation Institute for Advanced Composites Manufacturing Innovation Thumbnail on opening image of linked video. The Institute for Advanced Composites Manufacturing Innovation (IACMI) is a public-private partnership creating clean energy solutions and catalyzing manufacturing competitiveness across the U.S. advanced composite ecosystem. This partnership of

  10. Institute for Advanced Composites Manufacturing Innovation-Inaugural

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Facilities » Institute for Advanced Composites Manufacturing Innovation Institute for Advanced Composites Manufacturing Innovation Institute for Advanced Composites Manufacturing Innovation Thumbnail on opening image of linked video. The Institute for Advanced Composites Manufacturing Innovation (IACMI) is a public-private partnership creating clean energy solutions and catalyzing manufacturing competitiveness across the U.S. advanced composite ecosystem. This partnership of

  11. Comment submitted by Energizer Battery Manufacturing, Inc. regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by Energizer Battery Manufacturing, Inc. regarding the Energy Star Verification Testing Program

  12. Advanced manufacturing: Technology and international competitiveness

    SciTech Connect (OSTI)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  13. Advanced Blade Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blade Manufacturing Advanced Blade Manufacturing While the blades of a turbine may be one of the most recognizable features of any wind installation, they also represent one of the largest physical challenges in the manufacturing process. Turbine blades can reach up to 75 meters (250 feet) in length, and will continue to increase in size as the demand for renewable energy grows and as wind turbines are deployed offshore. Because of their size and aerodynamic complexity, wind turbine blades are

  14. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Advanced Qualification of Additive Manufacturing Materials (AM) Workshop Our goal is to define opportunities and research gaps within additive manufacturing (AM) and to engage the broader scientific/engineering community to discuss future research directions. thumbnail of thumbnail of Contact Institute Director Dr. Alexander V. Balatsky Institute for Materials Science (505) 665-0077 Email Deputy Director Dr. Jennifer S. Martinez Institute for Materials Science

  15. Advanced Methods for Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methods for Manufacturing Advanced Methods for Manufacturing The overall purpose of the AMM subprogram is to accelerate innovations that reduce the cost and schedule of constructing new nuclear plants and make fabrication of nuclear power plant components faster, cheaper, and more reliable. Based on past industry work and new stakeholder input, this effort will focus on opportunities that provide simplified, standardized, and labor-saving outcomes for manufacturing, fabrication, assembly, and

  16. Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes Electrolytes - ...

  17. Advances in Manufactured Home Energy Efficient Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 27, 2016 Advances in Manufactured ... source heat pump Cooling capacity: 18 kBtuh EER:11.0, EER: 13.0 Heating capacity (47F): ... Status * Current * Solar radiation Results - ...

  18. Advanced Manufacturing Office Peer Review Final Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE PEER REVIEW MAY 28-29, 2015 ... Difficult Materials LLC 10:10 - 10:30 am Coatings and Process Development Reduced PPG Industries, Inc. Energy Automotive ...

  19. Advanced Qualification of Additive Manufacturing Materials Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July » Advanced Qualification of Additive Manufacturing Materials Workshop Advanced Qualification of Additive Manufacturing Materials Workshop WHEN: Jul 20, 2015 8:30 AM - Jul 21, 2015 7:30 PM WHERE: La Fonda on the Plaza Santa Fe, New Mexico SPEAKER: Multiple speakers CONTACT: Caryll Blount (505) 665-3950 CATEGORY: Science TYPE: Workshop INTERNAL: Calendar Login Event Description Invited speakers from universities and research centers, both US-based and Europe-based, will provide updates on

  20. Polymers For Advanced Lithium Batteries | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es088_balsara_2011_o.pdf (682.79 KB) More Documents & Publications Development of Polymer Electrolytes for Advanced Lithium Batteries Polymers For Advanced Lithium Batteries Polymer Electrolytes for Advanced Lithium Batteries

  1. WEDNESDAY: Deputy Secretary Poneman to Speak at Nissan Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Nissan Advanced Battery Manufacturing Facility Groundbreaking in Smyrna, TN WEDNESDAY: Deputy Secretary Poneman to Speak at Nissan Advanced Battery Manufacturing Facility ...

  2. Advanced Battery Technologies Inc ABAT | Open Energy Information

    Open Energy Info (EERE)

    Product: China-based developer, manufacturer and distributer of rechargeable polymer lithium-ion (PLI) batteries. Coordinates: 45.363708, 126.314621 Show Map Loading map......

  3. Redox polymer electrodes for advanced batteries

    DOE Patents [OSTI]

    Gregg, B.A.; Taylor, A.M.

    1998-11-24

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene. 2 figs.

  4. Redox polymer electrodes for advanced batteries

    DOE Patents [OSTI]

    Gregg, Brian A.; Taylor, A. Michael

    1998-01-01

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.

  5. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Advanced Materials Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Materials Manufacturing Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Advanced Materials Manufacuturing is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other

  6. Berkeley Lab Highlights HPC at Advanced Manufacturing Event

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights HPC at Advanced Manufacturing Event Berkeley Lab Highlights HPC at Advanced Manufacturing Event September 14, 2015 Peter Nugent, Division Deputy for Scientific...

  7. Private-Public Partnerships for U.S. Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fiber Reinforced Polymer Composite Manufacturing Workshop Crystal City January 13, 2014 Private-Public Partnerships for U.S. Advanced Manufacturing Dr. Frank W. Gayle Advanced Manufacturing National Program Office www.manufacturing.gov U.S. Trade Balance of Advanced Technology 11% of U.S. GDP 12 million U.S. jobs * ~ half of U.S. Exports U.S. Trade Balance Advanced Technology Manufacturing Products ($ Billions) AMNPO Advanced Manufacturing National Program Office A White House chartered

  8. USCAR LEP ESST Advanced Manufacturing

    SciTech Connect (OSTI)

    Lazarus, L.J.

    2000-09-25

    The objective of this task was to provide processing information data summaries on powder metallurgy (PM) alloys that meet the partner requirements for the production of low mass, highly accurate, near-net-shape powertrain components. This required modification to existing ISO machinability test procedures and development of a new drilling test procedure. These summaries could then be presented in a web page format. When combined with information generated from the USCAR CRADA this would allow chemical, metallurgical, and machining data on PM alloys to be available to all engineering and manufacturing personnel that have access to in-house networks. The web page format also allows for the additions of other wrought materials, making this a valuable tool to the technical staffs.

  9. A National Strategic Plan For Advanced Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Strategic Plan For Advanced Manufacturing A National Strategic Plan For Advanced Manufacturing nstc_feb2012.pdf (849.14 KB) More Documents & Publications Report to the President on Ensuring American Leadership in Advanced Manufacturing National Network for Manufacturing Innovation: A Preliminary Design National Network for Manufacturing Innovation: A Preliminary Design

  10. Driving Economic Growth: Advanced Technology Vehicles Manufacturing

    Broader source: Energy.gov [DOE]

    With $8 billion in loans and commitments to projects that have supported the production of more than 4 million fuel-efficient cars and more than 35,000 direct jobs across eight states, the Loan Programs Office Advanced Technology Vehicles Manufacturing (ATVM) loan program has played a key role in helping the American auto industry propel the resurgence of manufacturing in the United States.

  11. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors, diagnostics and modeling Contact Institute Director Dr. Alexander V. Balatsky Institute for Materials Science (505) 665-0077 Email Deputy Director Dr. Jennifer S. Martinez Institute for Materials Science (505) 665-0045 Email Deputy Director Dr. Nathan A. Mara Institute for Materials Science (505) 667 8665 Email Institute

  12. Webtrends Archives by Fiscal Year — Advanced Manufacturing Office

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Advanced Manufacturing Office, Webtrends archives by fiscal year.

  13. Advanced Battery Manufacturing Facilities and Equipment Program

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  14. Advanced Battery Manufacturing Facilities and Equipment Program

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  15. Advanced Battery Manufacturing Facilities and Equipment Program

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Manufacture of Advanced Battery Metal Containers & Components

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Axeon Power Limited formerly Advanced Batteries Ltd ABL | Open...

    Open Energy Info (EERE)

    Advanced Batteries Ltd (ABL)) Place: Dundee, United Kingdom Zip: DD2 4UH Product: Lithium ion battery pack developer. Coordinates: 45.27939, -123.009669 Show Map Loading...

  18. Overview and Progress of United States Advanced Battery Consortium...

    Broader source: Energy.gov (indexed) [DOE]

    es097snyder2011o.pdf (691.79 KB) More Documents & Publications Overview of Battery R&D Activities United States Advanced Battery Consortium Energy Storage R&D and ARRA

  19. 3 Reasons Why Advanced Manufacturing Institutes Matter | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Why Advanced Manufacturing Institutes Matter 3 Reasons Why Advanced Manufacturing Institutes Matter February 1, 2016 - 3:06pm Addthis Watch how manufacturing Institutes like the Institute for Advanced Composites Manufacturing Innovation are revolutionizing America's clean energy economy. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs KEY FACTS National Network for Manufacturing Innovation aims to drive down the cost of advanced manufacturing technologies.

  20. USFOE: Extended Summary - Lithium ion batteries and their manufacturing challenges

    SciTech Connect (OSTI)

    Daniel, Claus

    2014-01-01

    There is no one lithium ion battery. With the variety of materials and electrochemical couples at our disposal as shown in the previous talks, we have the opportunity to design battery cells specific for their applications. Such applications require optimization of voltage, state of charge utilization, lifetime needs, and safety considerations. Electrochemical couples allow for designing power and energy ratios and available energy for the application. Integration in a large format cell requires optimized roll to roll electrode manufacturing and active material utilization. Electrodes are coated on a current collector in a composite structure comprised of active material, binders, and conductive additives which requires careful control of colloidal chemistry, adhesion, and solidification. These added inactive materials and the cell packaging reduce energy density. Degree of porosity and compaction in the electrode can impede or enhance battery performance. Pathways are explored to bring batteries from currently commercially available 100Wh/kg and 200Wh/L at $500/kWh to 250Wh/kg and 400Wh/L at $125/kWh.

  1. Laboratory Holds Advanced Manufacturing Collaborative Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    AIKEN, S.C. – EM’s Savannah River National Laboratory (SRNL) is moving closer to developing the Advanced Manufacturing Collaborative (AMC) after taking part in a workshop with South Carolina universities that focused on forming partnerships for the planned 70,000-square-foot facility.

  2. Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing

    Broader source: Energy.gov [DOE]

    Office: Advanced ManufacturingPost date: 9/15/15Original Closing Date for Applications: Jan 29, 2016 A mandatory Concept Paper is due 11/04/2015 at 5:00pm ET.

  3. EV Everywhere Batteries Workshop - Materials Processing and Manufactur...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Beyond Lithium Ion ...

  4. Electric Drive and Advanced Battery and Components Testbed (EDAB) |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss033_carlson_2012_o.pdf (1.13 MB) More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB) Electric Drive and Advanced Battery Department of Energy

    1 DOE Hydrogen and Fuel Cells Program, and

  5. Overview and Progress of United States Advanced Battery Research (USABC)

    Broader source: Energy.gov (indexed) [DOE]

    Activity | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es097_snyder_2012_o.pdf (722.2 KB) More Documents & Publications Vehicle Technologies Office Merit Review 2016: Overview and Progress of United States Advanced Battery Consortium (USABC) Activity United States Advanced Battery Consortium Overview and Progress of United States Advanced Battery Consortium (USABC) Activity

  6. Overview and Progress of the Batteries for Advanced Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy and Progress of the Batteries for Advanced Transportation Technologies Overview and Progress of the Batteries for Advanced Transportation Technologies 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es108_duong_2013_o.pdf (805.31 KB) More Documents & Publications Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress

  7. Energy Storage - Summary of the FY 2005 Batteries for Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Technologies (BATT) Research Program Annual Review | Department of Energy Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review Energy Storage - Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review This document presents a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Batteries for Advanced

  8. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries High Energy Novel Cathode Alloy Automotive Cell Develop & evaluate materials & ...

  9. Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...

    Broader source: Energy.gov (indexed) [DOE]

    Electrolytes - Interfacial and Bulk Properties and Stability Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of ...

  10. Overview of the Batteries for Advanced Transportation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    es00bduong2010o.pdf More Documents & Publications Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of...

  11. Overview and Progress of the Batteries for Advanced Transportation...

    Broader source: Energy.gov (indexed) [DOE]

    duong2013o.pdf More Documents & Publications Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the...

  12. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress...

  13. Advanced Manufacturing Office FY14 Budget At-a-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... by 25 percent over ten years and a culture of continuous improvement in energy management. ... Advanced manufacturing R&D facilities such as the Clean Energy Manufacturing Innovation ...

  14. Evaluation of advanced polymers for additive manufacturing (Technical...

    Office of Scientific and Technical Information (OSTI)

    Title: Evaluation of advanced polymers for additive manufacturing The goal of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Oak Ridge ...

  15. Advanced Manufacture of Second-Surface, Silvered Glass Reflectors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for ...

  16. Comparison of advanced battery technologies for electric vehicles

    SciTech Connect (OSTI)

    Dickinson, B.E.; Lalk, T.R.; Swan, D.H.

    1993-12-31

    Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

  17. Advances in Manufactured Home Energy Efficient Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE Building America Webinar April 27, 2016 Advances in Manufactured Home Energy Efficient Design 2 "Integrated Design" Concept * Goal: Reduce space conditioning energy use by at least 50% while holding the line on affordability * Components of the strategy as an optimized system:  Ultra-efficient thermal envelope  Low capacity, highly efficient mechanical system  Innovative distribution system  Affordable and effective ventilation 3 ID Performance in Hot, Humid Climates

  18. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5.3L gasoline engine Battery Pack Manufacturer EnerDel Model Type I EV Pack (A306) Chemistry Li-ion Cathode Mixed Oxide (Modified NMC) Anode Amorphous Hard Carbon Configuration 4 ...

  19. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Description Specification Vehicle Configuration Series PHEV Traction Motor UQM 145 kW single-speed gearbox APU UQM 145 kW 5.3L gasoline engine Battery Pack Manufacturer ...

  20. U.S. Advanced Manufacturing and Clean Energy Technology Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer Review Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 Outline * Big Picture on Manufacturing in US * Focus on Advanced Manufacturing * AMO Organization * Technical Assistance * R&D Facilities * R&D Projects * Goals for Meeting 3 Products invented here, now made

  1. Weekly Announcements from the Advanced Manufacturing Office, March 2, 2016

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Weekly Announcements from the Advanced Manufacturing Office, March 2, 2016 Weekly Announcements from the Advanced Manufacturing Office, March 2, 2016 March 3, 2016 - 9:42am Addthis From the Office of Energy Efficiency and Renewable Energy's Advanced Manufacturing Office Advanced Manufacturing Office Funded Cyclotron Road Program Announces Second Cohort of Innovators The Cyclotron Road program through Lawrence Berkeley National Laboratory, has announced the selection of

  2. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technologies and Advanced Manufacturing Webinar Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Download the presentation slides from the "Joint Fuel Cell Technologies Office and Advanced Manufacturing Office Webinar" held November 20, 2012. Joint Fuel Cell Technologies Office and Advanced Manufacturing Office Webinar Slides (1.56 MB) More Documents & Publications Hydrogen and Fuel Cell Technologies FY 2014 Budget Request Rollout to

  3. Advanced Manufacturing Office Update, January 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Office Update, January 2015 Advanced Manufacturing Office Update, January 2015 January 26, 2015 - 2:00pm Addthis In This Issue Featured Articles Expert Panel Releases Final Report on Strengthening Advanced Manufacturing in America 3D Printed Shelby Cobra Demonstrates Further Advances in Additive Manufacturing Partners in the Spotlight Legrand Energy Marathon Leads to Big Savings Better Plants Welcomes First Five Wastewater Treatment Partners Third Volvo Facility Certified

  4. Contacts for the Advanced Manufacturing Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contacts for the Advanced Manufacturing Office Contacts for the Advanced Manufacturing Office Welcome to the Advanced Manufacturing Office (AMO). Our address, email, and phone number are provided below. U.S. Department of Energy - Advanced Manufacturing Office (formerly Industrial Technologies Program) Room 5F-065, MS EE-5A 1000 Independence Ave, SW Washington, DC 20585 Phone: (202) 586-9488 Nearest Metro stop: Smithsonian (blue/orange line) Get directions Website Contact: Send us your comments,

  5. Innovative manufacturing and materials for low cost lithium ion batteries

    SciTech Connect (OSTI)

    Carlson, Steven

    2015-12-29

    This project demonstrated entirely new manufacturing process options for lithium ion batteries with major potential for improved cost and performance. These new manufacturing approaches are based on the use of the new electrode-coated separators instead of the conventional electrode-coated metal current collector foils. The key enabler to making these electrode-coated separators is a new and unique all-ceramic separator with no conventional porous plastic separator present. A simple, low cost, and high speed manufacturing process of a single coating of a ceramic pigment and polymer binder onto a re-usable release film, followed by a subsequent delamination of the all-ceramic separator and any layers coated over it, such as electrodes and metal current collectors, was utilized. A suitable all-ceramic separator was developed that demonstrated the following required features needed for making electrode-coated separators: (1) no pores greater than 100 nanometer (nm) in diameter to prevent any penetration of the electrode pigments into the separator; (2) no shrinkage of the separator when heated to the high oven heats needed for drying of the electrode layer; and (3) no significant compression of the separator layer by the high pressure calendering step needed to densify the electrodes by about 30%. In addition, this nanoporous all-ceramic separator can be very thin at 8 microns thick for increased energy density, while providing all of the performance features provided by the current ceramic-coated plastic separators used in vehicle batteries: improved safety, longer cycle life, and stability to operate at voltages up to 5.0 V in order to obtain even more energy density. The thin all-ceramic separator provides a cost savings of at least 50% for the separator component and by itself meets the overall goal of this project to reduce the cell inactive component cost by at least 20%. The all-ceramic separator also enables further cost savings by its excellent heat stability

  6. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Innovating Clean Energy Technologies in Advanced Manufacturing September 2015 Quadrennial Technology Review 6 Innovating Clean Energy Technologies in Advanced Manufacturing Issues and RDD&D Opportunities  Manufacturing affects the way products are designed, fabricated, used, and disposed; hence, manufacturing technologies have energy impacts extending beyond the industrial sector.  Life-cycle analysis is essential to assess the total energy impact of a manufactured product. 

  7. Saft America Advanced Batteries Plant Celebrates Grand Opening in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jacksonville | Department of Energy Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville September 16, 2011 - 12:30pm Addthis Department of Energy Investment Helps Support Job Creation, U.S. Economic Competitiveness and Advanced Vehicle Industry WASHINGTON, D.C. - Today, Secretary Steven Chu joined with Saft America to announce the grand opening of the company's Jacksonville, Florida,

  8. Advanced Manufacturing: Using Composites for Clean Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Manufacturing: Using Composites for Clean Energy Advanced Manufacturing: Using Composites for Clean Energy Advanced fiber-reinforced polymer composites, which combine strong fibers with tough plastics, are lighter and stronger than steel. These materials could lower overall production costs in U.S. manufacturing and ultimately drive the adoption of a new clean energy way of life. Below is the text version of the video above. The video opens with the title, "Advanced

  9. Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System

    SciTech Connect (OSTI)

    2011-12-31

    HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials’ ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, including commercial and residential buildings, data centers, and telecom facilities.

  10. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Advanced Sensors, Controls, Platforms and Modeling for Manufacturing is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between

  11. Vehicle Technologies Office Merit Review 2014: Advanced Battery Recycling

    Broader source: Energy.gov [DOE]

    Presentation given by OnTo Technology LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced battery recycling.

  12. Advanced Manufacturing Office, U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    manufacturing methods can change the landscape Advanced Manufacturing Office Innovation Can Change the World 1884: The price of aluminum was 1oz and the price of gold was 20oz. ...

  13. Advanced Manufacturing Office and Potential Technologies for...

    Broader source: Energy.gov (indexed) [DOE]

    Potential Technologies for Clean Energy Manufacturing Innovation October 8, 2014 DOEDOD Planning Workshop- Fort Worth, TX 2 1. Background on DOE and Manufacturing 2. Technical ...

  14. EERE Success Story-Battery Manufacturing Processes Improved by...

    Office of Environmental Management (EM)

    ... Photo courtesy of General Motors EERE Success Story-Battery Cathode Developed by Argonne Powers Plug-in Electric Vehicles These are how the nano-wires appear after the battery has ...

  15. Institute for Advanced Composites Manufacturing Innovation Holds Second

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membership Meeting | Department of Energy Institute for Advanced Composites Manufacturing Innovation Holds Second Membership Meeting Institute for Advanced Composites Manufacturing Innovation Holds Second Membership Meeting January 27, 2016 - 9:56am Addthis On January 13-14, the Institute for Advanced Composites Manufacturing Innovation (IACMI) held its second membership meeting near Detroit, Michigan. IACMI, headquartered in Knoxville, TN is a public-private partnership creating clean

  16. Request for Information (RFI): Advanced Manufacturing Office (AMO) Software

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tools | Department of Energy Advanced Manufacturing Office (AMO) Software Tools Request for Information (RFI): Advanced Manufacturing Office (AMO) Software Tools July 25, 2014 - 1:00pm Addthis Funding: This RFI is not a Funding Opportunity Announcement (FOA); therefore, EERE is not accepting applications at this time. Open Date: 07/25/2014 Close Date: 09/30/2014 Funding Organization: The Advanced Manufacturing Office of the Office of Energy Efficiency and Renewable Energy Funding Number:

  17. Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Technology Vehicles Manufacturing Loan Program Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program November 6, 2008 - 4:47pm Addthis On November 5, 2008, the Department of Energy issued the Interim Final Rule and accomplished writing the rule for Section 136 of EISA 2007 in approximately half of the 60-day expedited timeframe mandated by Congress. Historically, rulemaking at DOE takes 18 months. The Advanced Technology Vehicles Manufacturing Loan

  18. EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project in Dearborn, MI | Department of Energy ATVM » ATVM Environmental Compliance » EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn, MI EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn, MI February 1, 2011 EA-1834: Final Environmental Assessment Loan to Severstal Dearborn, Inc., for Advanced Technology Vehicles Manufacturing Project in Dearborn, Michigan February 18, 2011 EA-1834: Finding of No Significant

  19. Reality Check: Cheaper Batteries are GOOD for America’s Electric Vehicle Manufacturers

    Broader source: Energy.gov [DOE]

    Director of Public Affairs Dan Leistikow details how investments in battery manufacturing are on pace to employ thousands of Americans and ensure that our country can lead in a growing global industry.

  20. AMO's New Institute for Advanced Composites Manufacturing Innovation...

    Broader source: Energy.gov (indexed) [DOE]

    the National Network for Manufacturing Innovation (NNMI). The Institute will focus on lowering the cost of advanced fiber-reinforced polymer composite materials by 50 percent, ...

  1. Bandwidth Study U.S. Advanced High Strength Steel Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The study examines energy consumption and potential energy savings opportunities in advanced high strength steel manufacturing in the U.S. The study relies on multiple sources to ...

  2. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar...

    Broader source: Energy.gov (indexed) [DOE]

    the presentation slides from the "Joint Fuel Cell Technologies Office and Advanced Manufacturing Office Webinar" held November 20, 2012. PDF icon Joint Fuel Cell Technologies ...

  3. Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides

    SciTech Connect (OSTI)

    2011-12-01

    HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

  4. DOE to Provide up to $14 Million to Develop Advanced Batteries...

    Energy Savers [EERE]

    in funding for a 28 million cost-shared solicitation by the United States Advanced Battery Consortium (USABC), for plug-in hybrid electric vehicle (PHEV) battery development. ...

  5. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motor UQM 145 kW single-speed gearbox APU UQM 145 kW 5.3L gasoline engine Battery Pack Manufacturer EnerDel Model Type I EV Pack (A306) Chemistry Li-ion Cathode Mixed ...

  6. Changing the Advanced Energy Manufacturing Game in America's Heartland |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy the Advanced Energy Manufacturing Game in America's Heartland Changing the Advanced Energy Manufacturing Game in America's Heartland December 16, 2010 - 9:32am Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? Clean energy manufacturing is expanding across the Midwest. This was spurred in large part by the Advanced Energy Manufacturing Tax Credit, also known as 48C, which was part of the Recovery Act. The $2.3

  7. Berkeley Lab Highlights HPC at Advanced Manufacturing Event

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Highlights HPC at Advanced Manufacturing Event Berkeley Lab Highlights HPC at Advanced Manufacturing Event September 14, 2015 Peter Nugent, Division Deputy for Scientific Engagement in Berkeley Lab's Computational Research Division, and David Skinner, who leads NERSC's Strategic Partnerships effort, are participating this week in the third annual 2015 American Energy & Manufacturing Competitiveness Summit, where they will be discussing the increasing role of high performance computing in

  8. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives Electrolytes - Advanced ...

  9. Advancement Of Tritium Powered Betavoltaic Battery Systems

    SciTech Connect (OSTI)

    Staack, G.; Gaillard, J.; Hitchcock, D.; Peters, B.; Colon-Mercado, H.; Teprovich, J.; Coughlin, J.; Neikirk, K.; Fisher, C.

    2015-10-14

    Due to their decades-long service life and reliable power output under extreme conditions, betavoltaic batteries offer distinct advantages over traditional chemical batteries, especially in applications where frequent battery replacement is hazardous, or cost prohibitive. Although many beta emitting isotopes exist, tritium is considered ideal in betavoltaic applications for several reasons: 1) it is a “pure” beta emitter, 2) the beta is not energetic enough to damage the semiconductor, 3) it has a moderately long half-life, and 4) it is readily available. Unfortunately, the widespread application of tritium powered betavoltaics is limited, in part, by their low power output. This research targets improving the power output of betavoltaics by increasing the flux of beta particles to the energy conversion device (the p-n junction) through the use of low Z nanostructured tritium trapping materials.

  10. Advanced Materials Manufacturing and Innovative Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Major Demonstrations COAL OIL & GAS DOE Natural Gas ... Gas Separations Reaction Engineering Dense skin Bore Macro- voids Micro- voids * Leverage additive manufacturing ...

  11. Advanced Materials and Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials and Manufacturing Argonne researchers prepare silicon wafers for full-scale deposition testing of dielectric coatings for large area detectors. Argonne researchers...

  12. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To increase acceptance of additive manufacturing as a viable processing method, pathways ... Included in this Gordon style workshop will be panel discussions with the invited ...

  13. Advanced Manufacturing Office Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Microwave and Radio Frequency Workshop Manufacturing Demonstration Facility Workshop Microwave (MW) and Radio Frequency (RF) as Enabling Technologies ...

  14. Advanced Manufacturing Office Small Business Innovation Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office Small Business Innovation Research Small Business Technology ... in thermal and degradation resistance, high-performance, and lower-cost for energy systems. ...

  15. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Manufacturing Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Additive Manufacturing is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  16. Advanced Manufacturing Office Update January 2016 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partner Spotlight AMO Technology Advances Wind Turbine Research Hilton Joins Superior ... Partner Spotlight AMO Technology Advances Wind Turbine Research BAAM machine.jpg ...

  17. Advanced Manufacturing Office Update, September 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 2014 Advanced Manufacturing Office Update, September 2014 September 18, 2014 - 4:34pm Addthis In This Issue Featured Article Veterans Receive Valuable Advanced Manufacturing Training under AMO-Sponsored Internship Partners in the Spotlight Iowa Water and Wastewater Operators Seek SEP Certification in New Pilot Program Darigold Steps Up to the Better Plants Challenge Velocys Advances Small-Scale Gas-to-Liquid Technology with AMO Support HARBEC's $52,000 Annual Energy Savings under SEP

  18. Building a More Competitive American Manufacturing Industry with Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composites | Department of Energy a More Competitive American Manufacturing Industry with Advanced Composites Building a More Competitive American Manufacturing Industry with Advanced Composites January 9, 2015 - 10:21am Addthis Pictured above is the Shelby Cobra, a vehicle 3-D printed at Oak Ridge National Laboratory. Using advanced composites and 3-D printing both cut the car's weight in half and improved performance and safety. | Photo by Carlos Jones. Pictured above is the Shelby Cobra,

  19. Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturing Grants | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es098_johnson_2011_o.pdf (1.22 MB) More Documents & Publications Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants Vehicle Technologies Office: 2010 Energy Storage R&D Annual Progress Report Perfluoro Aryl Boronic Esters as Chemical Shuttle Additives

  20. New Institute for Advanced Composites Manufacturing Innovation Announced

    Broader source: Energy.gov [DOE]

    AMO's New Institute for Advanced Composites Manufacturing Innovation will Focus on Reducing Energy Use "Places like this are who we are. We create. We innovate. We build. We do it together." —President Obama, January 9, 2015

  1. 2016 NEET Advanced Methods for Manufacturing Award Summaries

    Broader source: Energy.gov [DOE]

    The Nuclear Energy Enabling Technologies Crosscutting Technology Development (NEET- CTD) Advanced Methods for Manufacturing (AMM) Award Summaries describe the research achievements and planned accomplishments for ongoing projects. This Award Summaries document will be updated annually, as needed.

  2. Advanced Blade Manufacturing Project - Final Report

    SciTech Connect (OSTI)

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  3. Advanced Technology Vehicles Manufacturing Loan Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technology Vehicles Manufacturing Loan Program Advanced Technology Vehicles Manufacturing Loan Program ATVM-Program-Application-Overview.pdf (1.52 MB) More Documents & Publications ATVM 1-Page Summary ATVM Program Overview 2015 ATVM Guidance for Applicants 11.4.14

  4. FY 2015 Advanced Methods for Manufacturing Program Review Meeting

    Broader source: Energy.gov [DOE]

    The Advanced Methods for Manufacturing (AMM) program held its annual review meeting on September 29, 2015 in Arlington, Va. The purpose of this meeting was to review the 17 currently funded projects encompassing additive manufacturing, welding and joining technologies, concrete materials and rebar innovations, surface modification and cladding processes, and imaging techniques for design reconstruction. The presentations are available here.

  5. Advanced Manufacturing pipeline brings NSC and Minority Serving

    National Nuclear Security Administration (NNSA)

    Institutions together | National Nuclear Security Administration | (NNSA) Advanced Manufacturing pipeline brings NSC and Minority Serving Institutions together Thursday, August 27, 2015 - 4:41pm In an ongoing effort to build a sustainable STEM pipeline between DOE's sites/labs and historically black colleges and universities, the National Security Campus (NSC) helped form the Advanced Manufacturing Consortium under the Minority Serving Institutes Partnership Program (MSIPP). This year MSIPP

  6. Advanced Manufacturing Office Update, July 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Advanced Manufacturing Office Update, July 2015 July 7, 2015 - 4:05pm Addthis In This Issue Featured Articles Institute for Advanced Composites Manufacturing Innovation Launched 2015 Better Buildings Summit Celebrates Continued Energy and Cost Savings DOE Recognizes High-Achieving Better Plants and Superior Energy Performance Partners AMO Peer Review Highlights Cutting-Edge Energy Efficiency Projects Partners in the Spotlight Better Plants Welcomes Six New Partners Schneider Electric Certifies

  7. Strengthening U.S. Leadership in Advanced Manufacturing | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy U.S. Leadership in Advanced Manufacturing Strengthening U.S. Leadership in Advanced Manufacturing August 10, 2012 - 3:51pm Addthis Desalination is normally an energy intensive process, but by collaborating with Energy Department's National Labs Campbell Applied Physics has found a way to make seawater drinkable while using 50 percent less energy. | Photo courtesy of Campbell Applied Physics. Desalination is normally an energy intensive process, but by collaborating with Energy

  8. Energy Department Trains Veterans in Advanced Manufacturing | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Trains Veterans in Advanced Manufacturing Energy Department Trains Veterans in Advanced Manufacturing August 15, 2014 - 11:30am Addthis Deputy Secretary of Energy Daniel Poneman addresses attendees at a ceremony at Pellissippi State Community College on August 15, 2014. | Energy Department file photo. Deputy Secretary of Energy Daniel Poneman addresses attendees at a ceremony at Pellissippi State Community College on August 15, 2014. | Energy Department file photo. NEWS

  9. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FCT and AMO Webinar 11/20/2012 eere.energy.gov Joint Fuel Cell Technologies and Advanced Manufacturing Office Webinar Department of Energy Washington, DC Sunita Satyapal Nancy Garland Jesse Adams Fuel Cell Technologies Office Robert Ivester Advanced Manufacturing Office 11/20/2012 "The process of converting raw materials, components, or parts into finished goods that meet a customer's expectations or specifications." - Businessdictionary.com, accessed 4/10/12 Agenda * Overview of Fuel

  10. Advanced Hybrid Batteries with a Magnesium Metal Anode and Spinel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LiMn₂O₄ Cathode - Joint Center for Energy Storage Research July 11, 2016, Research Highlights Advanced Hybrid Batteries with a Magnesium Metal Anode and Spinel LiMn₂O₄ Cathode Two Mg-Li dual salt hybrid electrolytes were successfully developed and can enable rechargeable Mg-LiMn2O4 batteries Scientific Achievement Two Mg-Li dual salt hybrid electrolytes were developed with excellent oxidative stability up to around 3.8 V (vs Mg/Mg2+) on a aluminum current collector, enabling the

  11. DOE Invests $20 Million in U.S. Solar Manufacturing and Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Invests 20 Million in U.S. Solar Manufacturing and Advanced Photovoltaic Technologies DOE Invests 20 Million in U.S. Solar Manufacturing and Advanced Photovoltaic Technologies ...

  12. New Institute for Advanced Composites Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Institute will focus on lowering the cost of advanced fiber-reinforced polymer composite materials by 50 percent, reducing the energy used to make composites by 75 percent, and ...

  13. Advanced Manufacture of Reflectors (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    The University of Arizona is one of the 2012 SunShot CSP R&D awardees for their advanced collectors. This fact sheet explains the motivation, description, and impact of the project.

  14. Advanced analytical electron microscopy for alkali-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qian, Danna; Ma, Cheng; Meng, Ying Shirley; More, Karren; Chi, Miaofang

    2015-01-01

    Lithium-ion batteries are a leading candidate for electric vehicle and smart grid applications. However, further optimizations of the energy/power density, coulombic efficiency and cycle life are still needed, and this requires a thorough understanding of the dynamic evolution of each component and their synergistic behaviors during battery operation. With the capability of resolving the structure and chemistry at an atomic resolution, advanced analytical transmission electron microscopy (AEM) is an ideal technique for this task. The present review paper focuses on recent contributions of this important technique to the fundamental understanding of the electrochemical processes of battery materials. A detailed reviewmore » of both static (ex situ) and real-time (in situ) studies will be given, and issues that still need to be addressed will be discussed.« less

  15. Advanced analytical electron microscopy for alkali-ion batteries

    SciTech Connect (OSTI)

    Qian, Danna; Ma, Cheng; Meng, Ying Shirley; More, Karren; Chi, Miaofang

    2015-01-01

    Lithium-ion batteries are a leading candidate for electric vehicle and smart grid applications. However, further optimizations of the energy/power density, coulombic efficiency and cycle life are still needed, and this requires a thorough understanding of the dynamic evolution of each component and their synergistic behaviors during battery operation. With the capability of resolving the structure and chemistry at an atomic resolution, advanced analytical transmission electron microscopy (AEM) is an ideal technique for this task. The present review paper focuses on recent contributions of this important technique to the fundamental understanding of the electrochemical processes of battery materials. A detailed review of both static (ex situ) and real-time (in situ) studies will be given, and issues that still need to be addressed will be discussed.

  16. Advanced Manufacturing Office FY 2017 Budget At-A-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy About Us » Advanced Manufacturing Office FY 2017 Budget At-A-Glance Advanced Manufacturing Office FY 2017 Budget At-A-Glance The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector. AMO FY17

  17. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  18. Advanced ceramic manufacturing of SiAlON exhaust valves

    SciTech Connect (OSTI)

    Bright, E.; Eckalbar, J.F.; McEntire, B.J.; Pujari, V.K.; Tricard, M.

    1996-09-01

    Norton Advanced Ceramic`s (NAC) is performing ceramic manufacturing development as part of the DOE-sponsored Advanced Ceramic Manufacturing Technology (ACMT) Program. NAC`s ACMT effort is focused on developing a cost effective manufacturing process for a ceramic exhaust valve. An industry team has been assembled to address cost reduction for this ceramic component. Technical progress made by NAC`s ACMT industry team in reducing the cost of ceramic valves is summarized within this communication. Particular emphasis is placed on describing progress in the development of intelligent processing systems for the powder processing, spray drying, and forming operations. Ceramic valve manufacturing process enhancements including continuous sintering, high-speed diamond grinding, and cost effective proof testing are summarized as well.

  19. Project Profile: Advanced Manufacture of Reflectors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacture of Reflectors Project Profile: Advanced Manufacture of Reflectors University of Arizona logo -- This project is inactive -- The University of Arizona and its partners, under the 2012 Concentrating Solar Power (CSP) SunShot R&D funding opportunity announcement (FOA), are developing technology to improve the optical accuracy and reflectivity of the self-supporting glass mirrors used in CSP collector systems. Approach The research team is working to optimize and validate a novel

  20. Electric Drive and Advanced Battery and Components Testbed (EDAB)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Feb 25 2013 Description / Specification Vehicle Configuration Series PHEV Traction Motor UQM 145 kW / single-speed gearbox APU UQM 145 kW / 5.3L gasoline engine Battery Pack Manufacturer EnerDel Model Type I EV Pack (A306) Chemistry Li-ion Cathode Mixed Oxide (Modified NMC) Anode Amorphous Hard Carbon Configuration 4 parallel strings of 96 cells Rated Capacity (Ah) 70 Nominal Voltage (V) 345 Pack mass (kg) 285 Cooling Type Passive (sealed enclosure) ESS Reference Performance Testing Results

  1. Electric Drive and Advanced Battery and Components Testbed (EDAB)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 2012 through June 6 2013 Description / Specification Vehicle Configuration Series PHEV Traction Motor UQM 145 kW / single-speed gearbox APU UQM 145 kW / 5.3L gasoline engine Battery Pack Manufacturer EnerDel Model Type I EV Pack (A306) Chemistry Li-ion Cathode Mixed Oxide (Modified NMC) Anode Amorphous Hard Carbon Configuration 4 parallel strings of 96 cells Rated Capacity (Ah) 70 Nominal Voltage (V) 345 Pack mass (kg) 285 Cooling Type Passive (sealed enclosure) ESS Reference Performance

  2. NREL Joins with A123Systems to Improve Advanced-Vehicle Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Joins with A123Systems to Improve Advanced-Vehicle Batteries Safe, powerful, and long-lasting batteries key to more fuel-efficient cars June 19, 2008 The U.S. Department of ...

  3. Advanced Manufacturing Office Update, March 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 2015 Advanced Manufacturing Office Update, March 2015 March 30, 2015 - 3:13pm Addthis In This Issue Featured Articles Better Plants Welcomes New Partners from Diverse Sectors Better Plants Challenge Partners Share Energy-Saving Solutions Harbec Receives 2014 Environmental Excellence Award from New York State AMO and Industry News Heat Exchange Materials Research Advances Accomplishments Highlighted at Critical Materials Institute Annual Peer Review Benefits of Combined Heat and Power

  4. Advanced Manufacturing Office Update, May 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 2014 Advanced Manufacturing Office Update, May 2014 May 6, 2014 - 4:00pm Addthis In This Issue Partners in the Spotlight Novelis Joins Better Plants Legrand Partners with DOE to Advance Supply Chain Energy Efficiency General Dynamics and Nissan Case Studies Highlight Benefits of Superior Energy Performance Volvo Recognized for Leadership in Energy Efficiency Schneider Electric Showcases Solar Field and SEP Implementation at Smyrna, TN, Site AMO and Industry News DOE's New Checklist Helps

  5. Wind Program Manufacturing Research Advances Processes and Reduces Costs

    Broader source: Energy.gov [DOE]

    Knowing that reducing the overall cost of wind energy begins on the factory floor, the Wind Program supports R&D efforts and funding opportunities that integrate new designs, materials, and advanced techniques into the manufacturing process, making wind a more affordable source of renewable energy for communities nationwide.

  6. Advanced Power Batteries for Renewable Energy Applications 3.09

    SciTech Connect (OSTI)

    Shane, Rodney

    2011-12-01

    This report describes the research that was completed under project title Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  7. Stationary semi-solid battery module and method of manufacture

    DOE Patents [OSTI]

    Slocum, Alexander; Doherty, Tristan; Bazzarella, Ricardo; Cross, III, James C.; Limthongkul, Pimpa; Duduta, Mihai; Disko, Jeffry; Yang, Allen; Wilder, Throop; Carter, William Craig; Chiang, Yet-Ming

    2015-12-01

    A method of manufacturing an electrochemical cell includes transferring an anode semi-solid suspension to an anode compartment defined at least in part by an anode current collector and an separator spaced apart from the anode collector. The method also includes transferring a cathode semi-solid suspension to a cathode compartment defined at least in part by a cathode current collector and the separator spaced apart from the cathode collector. The transferring of the anode semi-solid suspension to the anode compartment and the cathode semi-solid to the cathode compartment is such that a difference between a minimum distance and a maximum distance between the anode current collector and the separator is maintained within a predetermined tolerance. The method includes sealing the anode compartment and the cathode compartment.

  8. Advanced Manufacturing Office FY14 Budget At-a-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Manufacturing Office FY14 Budget At-a-Glance Advanced Manufacturing Office FY14 Budget At-a-Glance Advanced Manufacturing Office FY14 Budget At-a-Glance, a publication of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. manufacturing_ataglance_2014.pdf (202.99 KB) More Documents & Publications Advanced Manufacturing Office FY 2017 Budget At-A-Glance Advanced Manufacturing Office FY 2016 Budget At-A-Glance Advanced Manufacturing Office FY

  9. Composition and Manufacturing Effects on Electrical Conductivity of Li/FeS 2 Thermal Battery Cathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reinholz, Emilee L.; Roberts, Scott A.; Apblett, Christopher A.; Lechman, Jeremy B.; Schunk, P. Randall

    2016-06-11

    The electrical conductivity is key to the performance of thermal battery cathodes. In this work we present the effects of manufacturing and processing conditions on the electrical conductivity of Li/FeS2 thermal battery cathodes. Finite element simulations were used to compute the conductivity of three-dimensional microcomputed tomography cathode microstructures and compare results to experimental impedance spectroscopy measurements. A regression analysis reveals a predictive relationship between composition, processing conditions, and electrical conductivity; a trend which is largely erased after thermally-induced deformation. Moreover, the trend applies to both experimental and simulation results, although is not as apparent in simulations. This research is amore » step toward a more fundamental understanding of the effects of processing and composition on thermal battery component microstructure, properties, and performance.« less

  10. Overview and Progress of the Advanced Battery Materials Research (BMR) Program

    Broader source: Energy.gov (indexed) [DOE]

    Overview and Progress of the Advanced Battery Materials Research (BMR) Program Tien Q. Duong BMR Program Manager Energy Storage R&D Hybrid and Electric Systems Subprogram Department of Energy This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID: ES 108 Energy Efficiency & Renewable Energy Advanced Battery Materials Research (BMR) Program  Previously known as: - Batteries for Advanced Transportation Technologies (BATT) -

  11. Advanced Combustion Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Advanced Battery Manufacturing Making Strides in Oregon Advanced Battery Manufacturing Making Strides in Oregon February 16, 2012 - 12:09pm Addthis EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program What are the key facts? Through the Recovery Act, the Department has

  12. Process development status report for advanced manufacturing projects

    SciTech Connect (OSTI)

    Brinkman, J.R.; Homan, D.A.

    1990-03-30

    This is the final status report for the approved Advanced Manufacturing Projects for FY 1989. Five of the projects were begun in FY 1987, one in FY 1988, and one in FY 1989. The approved projects cover technology areas in welding, explosive material processing and evaluation, ion implantation, and automated manufacturing. It is expected that the successful completion of these projects well result in improved quality and/or reduced cost for components produced by Mound. Those projects not brought to completion will be continued under Process development in FY 1990.

  13. Transformational Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and

  14. Manufacture of Advanced Battery Metal Containers & Components | Department

    Broader source: Energy.gov (indexed) [DOE]

    offers preventive and predictive actions to effectively maintain pumping systems. PUMPING SYSTEMS TIP SHEET #5 Maintain Pumping Systems Effectively (September 2005) (227.89 KB) More Documents & Publications Minimize Compressed Air Leaks Determining the Right Air Quality for Your Compressed Air System Effect of Intake on Compressor Performance

    discusses how to maintain air quality in compressed air systems through proper use of equipment. COMPRESSED AIR TIP SHEET #12 Maintaining System Air

  15. Manufacture of Advanced Battery Metal Containers & Components | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt013_es_moffa_2011_p.pdf (563.21 KB

  16. Advanced Manufacturing Office Update, July 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Advanced Manufacturing Office Update, July 2014 July 14, 2014 - 4:00pm Addthis In This Issue Featured Article Cummins Achieves Dramatic Energy Savings through DOE Collaboration Partners in the Spotlight Legrand and UTC Suppliers Join Better Plants Seven Industry Partners Focus on Improving Water Efficiency in a Better Buildings Challenge Pilot Nissan, 3M, and Schneider Electric Highlight the Benefits of SEP at IETC 2014 DOE Collaboration Enables 3D Printed Car Challenge AMO and Industry News

  17. Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

  18. Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This is illustrated no more clearly than in Michigan and North Carolina. Last week, Secretary Chu toured the A123 Systems advanced battery manufacturing facility in Romulus, ...

  19. ADVANCED MANUFACTURING OFFICE HIGH VALUE ROLL TO ROLL (HV R2R...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE HIGH VALUE ROLL TO ROLL (HV R2R) WORKSHOP DECEMBER 2-3, 2015 ADVANCED MANUFACTURING OFFICE HIGH VALUE ROLL TO ROLL (HV R2R) WORKSHOP DECEMBER 2-3, ...

  20. 48C Phase II Advanced Energy Manufacturing Tax Credit Program Selections

    Broader source: Energy.gov [DOE]

    The Departments of Energy and the Treasury worked in partnership to develop, launch, and award the funds for 48C Advanced Energy Manufacturing Tax Credit program.  The Advanced Energy Manufacturing...

  1. additive manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    additive manufacturing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  2. Veterans and Others Can Apply for an AMO-sponsored Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Internship | Department of Energy Veterans and Others Can Apply for an AMO-sponsored Advanced Manufacturing Internship Veterans and Others Can Apply for an AMO-sponsored Advanced Manufacturing Internship August 15, 2014 - 3:18pm Addthis Applications are being accepted for the new Advanced Manufacturing Internship program starting today. Pellissippi State Community College in Knoxville, TN, developed the curriculum for Veterans with funding from the Advanced Manufacturing Office (AMO). The

  3. Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mohanty, D.; Hockaday, E.; Li, J.; Hensley, D. K.; Daniel, C.; Wood, D. L.

    2016-02-21

    During LIB electrode manufacturing, it is difficult to avoid the certain defects that diminish LIB performance and shorten the life span of the batteries. This study provides a systematic investigation correlating the different plausible defects (agglomeration/blisters, pinholes/divots, metal particle contamination, and non-uniform coating) in a LiNi0.5Mn0.3Co0.2O2 positive electrode with its electrochemical performance. Additionally, an infrared thermography technique was demonstrated as a nondestructive tool to detect these defects. The findings show that cathode agglomerates aggravated cycle efficiency, and resulted in faster capacity fading at high current density. Electrode pinholes showed substantially lower discharge capacities at higher current densities than baseline NMCmore » 532 electrodes. Metal particle contaminants have an extremely negative effect on performance, at higher C-rates. The electrodes with more coated and uncoated interfaces (non-uniform coatings) showed poor cycle life compared with electrodes with fewer coated and uncoated interfaces. Further, microstructural investigation provided evidence of presence of carbon-rich region in the agglomerated region and uneven electrode coating thickness in the coated and uncoated interfacial regions that may lead to the inferior electrochemical performance. In conclusion, this study provides the importance of monitoring and early detection of the electrode defects during LIB manufacturing processes to minimize the cell rejection rate after fabrication and testing.« less

  4. Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources

    SciTech Connect (OSTI)

    Mohanty, D.; Hockaday, E.; Li, J.; Hensley, D. K.; Daniel, C.; Wood, D. L.

    2016-01-01

    During LIB electrode manufacturing, it is difficult to avoid the certain defects that diminish LIB performance and shorten the life span of the batteries. This study provides a systematic investigation correlating the different plausible defects (agglomeration/blisters, pinholes/divots, metal particle contamination, and non-uniform coating) in a LiNi0.5Mn0.3Co0.2O2 positive electrode with its electrochemical performance. Additionally, an infrared thermography technique was demonstrated as a nondestructive tool to detect these defects. The findings show that cathode agglomerates aggravated cycle efficiency, and resulted in faster capacity fading at high current density. Electrode pinholes showed substantially lower discharge capacities at higher current densities than baseline NMC 532 electrodes. Metal particle contaminants have an extremely negative effect on performance, at higher C-rates. The electrodes with more coated and uncoated interfaces (non-uniform coatings) showed poor cycle life compared with electrodes with fewer coated and uncoated interfaces. Further, microstructural investigation provided evidence of presence of carbon-rich region in the agglomerated region and uneven electrode coating thickness in the coated and uncoated interfacial regions that may lead to the inferior electrochemical performance. In conclusion, this study provides the importance of monitoring and early detection of the electrode defects during LIB manufacturing processes to minimize the cell rejection rate after fabrication and testing.

  5. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Sustainable Manufacturing - Flow of Materials through Industry Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Manufacturing-Flow of Materials through Industry Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Sustainable Manufacturing-Flow of Materials through Industry is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology

  6. Layer cathode methods of manufacturing and materials for Li-ion rechargeable batteries

    DOE Patents [OSTI]

    Kang, Sun-Ho; Amine, Khalil

    2008-01-01

    A positive electrode active material for lithium-ion rechargeable batteries of general formula Li.sub.1+xNi.sub..alpha.Mn.sub..beta.A.sub..gamma.O.sub.2 and further wherein A is Mg, Zn, Al, Co, Ga, B, Zr, or Ti and 0manufacturing the same. Such an active material is manufactured by employing either a solid state reaction method or an aqueous solution method or a sol-gel method which is followed by a rapid quenching from high temperatures into liquid nitrogen or liquid helium.

  7. Materials/manufacturing element of the Advanced Turbine Systems Program

    SciTech Connect (OSTI)

    Karnitz, M.A.; Holcomb, R.S.; Wright, I.G.; Ferber, M.K.; Hoffman, E.E.

    1995-12-31

    The technology based portion of the Advanced Turbine Systems Program (ATS) contains several subelements which address generic technology issues for land-based gas-turbine systems. One subelement is the Materials/ Manufacturing Technology Program which is coordinated by DOE Oak Ridge Operations and Oak Ridge National Laboratory (ORNL). The work in this subelement is being performed predominantly by industry with assistance from universities and the national laboratories. Projects in this sub-element are aimed toward hastening the incorporation of new materials and components in gas turbines.

  8. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    SciTech Connect (OSTI)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  9. Influence of Manufacturing Processes and Microstructures on the Performance and Manufacturability of Advanced High Strength Steels

    SciTech Connect (OSTI)

    Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-10-01

    Advanced high strength steels (AHSS) are performance-based steel grades and their global material properties can be achieved with various steel chemistries and manufacturing processes, leading to various microstructures. In this paper, we investigate the influence of supplier variation and resulting microstructure difference on the overall mechanical properties as well as local formability behaviors of advanced high strength steels (AHSS). For this purpose, we first examined the basic material properties and the transformation kinetics of TRansformation Induced Plasticity (TRIP) 800 steels from three different suppliers under different testing temperatures. The experimental results show that there is a significant supplier (i.e., manufacturing process) dependency of the TRIP 800 steel mechanical and microstructure properties. Next, we examined the local formability of two commercial Dual Phase (DP) 980 steels during stamping process. The two commercial DP 980 steels also exhibit noticeably different formability during stamping process in the sense that one of them shows severe tendency for shear fracture. Microstructure-based finite element analyses are carried out next to simulate the localized deformation process with the two DP 980 microstructures, and the results suggest that the possible reason for the difference in formability lies in the morphology of the hard martensite phase in the DP microstructure.

  10. Limiting factors to advancing thermal-battery technology for naval applications

    SciTech Connect (OSTI)

    Davis, P.B.; Winchester, C.S.

    1991-10-01

    Thermal batteries are primary reserve electrochemical power sources using molten salt electrolyte which experience little effective aging while in storage or dormant deployment. Thermal batteries are primarily used in military applications, and are currently used in a wide variety of Navy devices such as missiles, torpedoes, decays, and training targets, usually as power supplies in guidance, propulsion, and Safe/Arm applications. Technology developments have increased the available energy and power density ratings by an order of magnitude in the last ten years. Present thermal batteries, using lithium anodes and metal sulfide cathodes, are capable of performing applications where only less rugged and more expensive silver oxide/zinc or silver/magnesium chloride seawater batteries could serve previously. Additionally, these batteries are capable of supplanting lithium/thionyl chloride reserve batteries in a variety of specifically optimized designs. Increases in thermal battery energy and power density capabilities are not projected to continue with the current available technology. Several battery designs are now at the edge of feasibility and safety. Since future naval systems are likely to require continued growth of battery energy and Power densities, there must be significant advances in battery technology. Specifically, anode alloy composition and new cathode materials must be investigated to allow for safe development and deployment of these high power, higher energy density batteries.

  11. Saft America Advanced Batteries Plant Celebrates Grand Opening...

    Office of Environmental Management (EM)

    They will also be used to power military hybrid vehicles and for other industrial, agricultural, and military applications. Saft expects to produce 370 megawatt hours of battery ...

  12. Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) research program annual review

    SciTech Connect (OSTI)

    None, None

    2005-08-01

    This document presents a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Batteries for Advanced Transportation Technologies (BATT) program annual review.

  13. Advanced Sensors, Controls and Platforms for manufacturing (ASCPM...

    Broader source: Energy.gov (indexed) [DOE]

    Genevieve, MO 1 billion Intel Chip fabrication plant, Hillsboro, OR 3 billion Tesla Motors dvanced battery "Gigifactory," Carson City, NV 5 billion Once operational, these ...

  14. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es025_zhang_2011_p.pdf (443.82 KB) More Documents & Publications Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives Electrolytes - Advanced Electrolyte

  15. EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the “Delphi Kokomo, IN Corporate Technology Center” (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOE’s Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the nation’s economic recovery by creating manufacturing jobs in the United States. The Delphi CTC Project would involve the construction and operation of a 10,700 square foot (ft2) utilities building containing boilers and heaters and a 70,000 ft2 engineering laboratory, as well as site improvements (roads, parking, buildings, landscaping,and lighting).

  16. East Penn Manufacturing Keeps Moving Forward After 65 Years

    Broader source: Energy.gov [DOE]

    How East Penn Manufacturing went from a small business, founded by a father and son just after the close of World War II, to an expanding manufacturer of advanced batteries for hybrid electric vehicles.

  17. Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review May 31-June 2, 2005 Berkeley, CA August 2005 U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies August 8, 2005 Dear Colleague: This document presents a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Batteries for Advanced Transportation Technologies (BATT) program annual review. The review was held at the

  18. Overview and Progress of the Advanced Battery Materials Research (BMR) Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview and Progress of the Advanced Battery Materials Research (BMR) Program Tien Q. Duong BMR Program Manager Energy Storage R&D Hybrid and Electric Systems Subprogram Department of Energy This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID: ES 108 June 9, 2016 2 Outline  Advanced Battery Materials Research (BMR) - Role - Program update  Current research emphasis - Lithium metal anode and solid electrolytes - Sulfur

  19. Chapter 6 — Innovating Clean Energy Technologies in Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE)

    This chapter examines the opportunities for improvements in energy and materials utilization within three spaces: individual manufacturing processes and unit operations; goods-producing facilities, including manufacturing business processes; and manufacturing supply chains and manufactured goods, including impacts from all phases of the product life cycle.

  20. Report to the President: Capturing a Domestic Competitive Advantage in Advanced Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    REPORT TO THE PRESIDENT CAPTURING A DOMESTIC COMPETITIVE ADVANTAGE IN ADVANCED MANUFACTURING Report of the Advanced Manufacturing Partnership Steering Committee Annex 3: Education and Workforce Development Workstream Report Executive Office of the President President's Council of Advisors on Science and Technology JULY 2012 PREFACE In June 2011, the President established the Advanced Manufacturing Partnership (AMP), which is led by a Steering Committee that operates within the framework of the

  1. Energy Department Announces $4.4 Million to Support Next-Generation Advanced Hydropower Manufacturing

    Broader source: Energy.gov [DOE]

    The Energy Department today announced $4.4 million to support the application of advanced materials and manufacturing techniques to the development of next-generation hydropower technologies.

  2. Advanced Manufacturing and Engineering Equipment at the University of Southern Indiana

    SciTech Connect (OSTI)

    Mitchell, Zane Windsor; Gordon, Scott Allen

    2014-08-04

    Department of Energy grant DE-SC0005231was awarded to the University of Southern Indiana for the purchase of Advanced Manufacturing and Engineering equipment.

  3. EVENT: 2016 DOE ADVANCED MANUFACTURING OFFICE PEER REVIEW – JUNE 14-15, 2016

    Broader source: Energy.gov [DOE]

    The Energy Efficiency and Renewable Energy’s Advanced Manufacturing Office will hold a Peer Review of its Research and Development Projects, Research and Development Facilities and Analysis...

  4. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    SciTech Connect (OSTI)

    Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

  5. Batteries: An Advanced Na-FeCl2 ZEBRA Battery for Stationary Energy Storage Application

    SciTech Connect (OSTI)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Viswanathan, Vilayanur V.; Meinhardt, Kerry D.; Engelhard, Mark H.; Sprenkle, Vincent L.

    2015-06-17

    Sodium-metal chloride batteries, ZEBRA, are considered as one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium-nickel chloride (Na-NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). In this work, a novel intermediate-temperature sodium-iron chloride (Na-FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur-based additives in Fe cathode enables Na-FeCl2 batteries can be assembled in the discharged state and operated at intermediate-temperature (<200°C). The results in this work demonstrate that intermediate-temperature Na-FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na-NiCl2 chemistry.

  6. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    SciTech Connect (OSTI)

    Sigmund, Wolfgang M.; Woan, Karran V.; Bell, Nelson Simmons

    2010-11-01

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  7. Nanotube Arrays for Advanced Lithium-ion Batteries - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IT industries by 2020. The growing market segments are searching for battery technology that can increase the power and energy densities as well as provide a higher cycle count. ...

  8. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 25, 2013 Description Specification Vehicle Configuration Series PHEV Traction Motor UQM 145 kW single-speed gearbox APU UQM 145 kW 5.3L gasoline engine Battery Pack ...

  9. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 5th 2012 Description Specification Vehicle Configuration Series PHEV Traction Motor UQM 145 kW single-speed gearbox APU UQM 145 kW 5.3L gasoline engine Battery Pack ...

  10. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 24th 2012 Description Specification Vehicle Configuration Series PHEV Traction Motor UQM 145 kW single-speed gearbox APU UQM 145 kW 5.3L gasoline engine Battery Pack ...

  11. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 17, 2012 Description Specification Vehicle Configuration Series PHEV Traction Motor UQM 145 kW single-speed gearbox APU UQM 145 kW 5.3L gasoline engine Battery Pack ...

  12. Battery Charger Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Charger Efficiency Issues with Marine and Recreational Vehicle Battery Chargers Marine and RV battery chargers differ from power tool and small appliance chargers CEC Testing assumes all variables are known - battery chemistry, battery size. This is not the case in Marine and RV applications. * The battery charger manufacturer has no influence on the selection of batteries. * The battery charger could be used to charge a single battery, single battery bank, multiple batteries or multiple

  13. Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative 1 of 1 Summary: DOE will launch a collaborative effort with industry to evaluate and scope high- impact manufacturing R&D to improve natural gas system efficiency and reduce leaks with the goal of establishing an advanced manufacturing initiative. This will include a formal request for information, public workshops, and technical analysis and will leverage technology development areas already in progress through DOE's

  14. Advanced Manufacturing Office FY 2016 Budget At-A-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 6 Budget At-A-Glance Advanced Manufacturing Office FY 2016 Budget At-A-Glance The Advanced Manufacturing Office (AMO) partners with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to create high-quality manufacturing jobs, enhance the global competitiveness of the United States, and reduce energy use by encouraging a culture of continuous enrichment in corporate energy management. AMO FY 2016 Budget

  15. AMO's New Institute for Advanced Composites Manufacturing Innovation Will Focus on Reducing Energy Use

    Broader source: Energy.gov [DOE]

    The Institute for Advanced Composites Manufacturing Innovation announced by President Obama today is a public-private consortium of 122 leading U.S. manufacturers, universities, and non-profits that will focus on advanced composites—materials that are three times as strong and twice as light as the lightest metals. These advanced materials have the potential to transform products ranging from wind turbines to automobiles. This new Innovation Institute, headquartered in Knoxville, Tennessee and led by the University of Tennessee, will receive $70 million in federal funding provided by the U.S. Department of Energy's Advanced Manufacturing Office.

  16. Advanced Manufacturing Office FY 2015 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    use by encouraging a culture of continuous improvement in corporate energy management. ... creation of Clean Energy Manufacturing Innovation Institutes consistent with the ...

  17. Advanced Manufacturing Office FY 2016 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    use by encouraging a culture of continuous enrichment in corporate energy management. ... creation of Clean Energy Manufacturing Innovation Institutes consistent with the ...

  18. Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing...

    Broader source: Energy.gov (indexed) [DOE]

    this program is available to small businesses located in Michigan who are seeking to invest and diversify in clean energy sectors, manufacturing renewable energy and energy...

  19. Innovative Manufacturing Initiative Recognition Day - Final Participan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lynn Daniels DOE Advanced Manufacturing Office Lutgard De Jonghe PolyPlus Battery Company Emmanuel De Moor Colorado School of Mines Michael Drenski Tulane University PolyRMC Chad ...

  20. DOE Invests $20 Million in U.S. Solar Manufacturing and Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaic Technologies | Department of Energy Invests $20 Million in U.S. Solar Manufacturing and Advanced Photovoltaic Technologies DOE Invests $20 Million in U.S. Solar Manufacturing and Advanced Photovoltaic Technologies February 4, 2011 - 4:10pm Addthis As part of the U.S. Department of Energy's SunShot Initiative, DOE is investing up to $20.3 million in innovative projects to strengthen the U.S. solar manufacturing industry, improve manufacturing efficiencies, and reduce costs. This

  1. Advanced battery technology for electric two-wheelers in the people's Republic of China.

    SciTech Connect (OSTI)

    Patil, P. G.; Energy Systems

    2009-07-22

    This report focuses on lithium-ion (Li-ion) battery technology applications for two- and possibly three-wheeled vehicles. The author of this report visited the People's Republic of China (PRC or China) to assess the status of Li-ion battery technology there and to analyze Chinese policies, regulations, and incentives for using this technology and for using two- and three-wheeled vehicles. Another objective was to determine if the Li-ion batteries produced in China were available for benchmarking in the United States. The United States continues to lead the world in Li-ion technology research and development (R&D). Its strong R&D program is funded by the U.S. Department of Energy and other federal agencies, such as the National Institute of Standards and Technology and the U.S. Department of Defense. In Asia, too, developed countries like China, Korea, and Japan are commercializing and producing this technology. In China, more than 120 companies are involved in producing Li-ion batteries. There are more than 139 manufacturers of electric bicycles (also referred to as E-bicycles, electric bikes or E-bikes, and electric two-wheelers or ETWs in this report) and several hundred suppliers. Most E-bikes use lead acid batteries, but there is a push toward using Li-ion battery technology for two- and three-wheeled applications. Highlights and conclusions from this visit are provided in this report and summarized.

  2. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives

    SciTech Connect (OSTI)

    Lu, XC; Xia, GG; Lemmon, JP; Yang, ZG

    2010-05-01

    The increasing penetration of renewable energy and the trend toward clean, efficient transportation have spurred growing interests in sodium-beta alumina batteries that store electrical energy via sodium ion transport across a beta ''-Al(2)O(3) solid electrolyte at elevated temperatures (typically 300-350 degrees C ). Currently, the negative electrode or anode is metallic sodium in molten state during battery operation; the positive electrode or cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). Since the groundbreaking works in the sodium-beta alumina batteries a few decades ago, encouraging progress has been achieved in improving battery performance, along with cost reduction. However, there remain issues that hinder broad applications and market penetration of the technologies. To better the Na-beta alumina technologies require further advancement in materials along with component and system design and engineering. This paper offers a comprehensive review on materials of electrodes and electrolytes for the Na-beta alumina batteries and discusses the challenges ahead for further technology improvement. (C) 2009 Published by Elsevier B.V.

  3. AGM Batteries Ltd | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: AGM Batteries Ltd Place: United Kingdom Product: Manufactures lithium-ion cells and batteries for AEA Battery Systems Ltd. References: AGM Batteries Ltd1...

  4. Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems

    Broader source: Energy.gov [DOE]

    Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems

  5. Composition and Manufacturing Effects on Electrical Properties of Li/FeS2 Thermal Battery Cathodes

    SciTech Connect (OSTI)

    Reinholz, Emilee Lolita

    2015-10-01

    The purpose of this thesis was to better understand the relationship between processing, microstructure, and electrical conductivity of LiFeS2 thermal battery cathodes.

  6. CNEEC - Batteries Tutorial by Prof. Cui

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries

  7. Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative

    Office of Environmental Management (EM)

    Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative 1 of 1 Summary: DOE will launch a collaborative effort with industry to evaluate and scope high- impact ...

  8. 48C Phase II Advanced Energy Manufacturing Tax Credit Program Fact Sheet

    Broader source: Energy.gov [DOE]

    The 48C Advanced Energy Manufacturing Tax Credit program was initiated under the American Recovery and Reinvestment Act of 2009 to support investments in projects that establish, expand or re-equip...

  9. Energy Department Announces $4.4 Million to Advance Hydropower Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department today announced a total of $4.4 million for two projects in Michigan and Pennsylvania to support the use of advanced materials and manufacturing techniques in the development of new “low-head” hydropower technologies.

  10. Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of

    Broader source: Energy.gov (indexed) [DOE]

    Electrolytes | Department of Energy es089_kerr_2011_o.pdf (1.23 MB) More Documents & Publications Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes Electrolytes - Interfacial and Bulk Properties and Stability

  11. DOE Announces Effort to Advance U.S. Wind Power Manufacturing Capacity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Effort to Advance U.S. Wind Power Manufacturing Capacity DOE Announces Effort to Advance U.S. Wind Power Manufacturing Capacity June 2, 2008 - 12:51pm Addthis MOU Launches Government-Industry Effort to Define and Develop Technologies and Siting Strategies Necessary to Achieve 20% Wind Energy by 2030 HOUSTON, TEXAS -The U.S. Department of Energy (DOE) Assistant Secretary of Energy Efficiency and Renewable Energy Andy Karsner today announced a Memorandum of Understanding

  12. Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Natural Gas Systems Manufacturing R&D Initiative Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D Initiative The following fact sheet outlines one of the Department of Energy's series of actions, partnerships, and stakeholder commitments to help modernize the nation¹s natural gas transmission and distribution systems and reduce methane emissions. DOE will launch a collaborative effort with industry to evaluate and scope high-impact

  13. Strengthening U.S. Leadership in Advanced Manufacturing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a corporate research and development contract, the National Labs work as the research arm for desalination advancement while CAP develops the technologies. When asked about the...

  14. Advanced Manufacturing Office FY 2015 Budget At-A-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 5 Budget At-A-Glance Advanced Manufacturing Office FY 2015 Budget At-A-Glance The Advanced Manufacturing Office (AMO) partners with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to create high-quality U.S. manufacturing jobs, enhance global competitiveness, and reduce energy use by encouraging a culture of continuous improvement in corporate energy management. fy15_at-a-glance_amo.pdf (494.02 KB) More

  15. Batteries

    Broader source: Energy.gov [DOE]

    From consumer electronics to laptops to vehicles, batteries are an important part of our everyday life. Learn about the Energy Department's innovative research and development in different energy storage options.

  16. Part A - Advanced turbine systems. Part B - Materials/manufacturing element of the Advanced Turbine Systems Program

    SciTech Connect (OSTI)

    Karnitz, M.A.

    1996-06-01

    The DOE Offices of Fossil Energy and Energy Efficiency and Renewable Energy have initiated a program to develop advanced turbine systems for power generation. The objective of the Advanced Turbine Systems (ATS) Program is to develop ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for utility and industrial applications. One of the supporting elements of the ATS Program is the Materials/Manufacturing Technologies Task. The objective of this element is to address the critical materials and manufacturing issues for both industrial and utility gas turbines.

  17. Deputy Secretary Poneman Attends Ground Breaking at Tennessee Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Battery Plant | Department of Energy Attends Ground Breaking at Tennessee Advanced Vehicle Battery Plant Deputy Secretary Poneman Attends Ground Breaking at Tennessee Advanced Vehicle Battery Plant May 26, 2010 - 12:00am Addthis Smyrna, TN - Today, U.S. Deputy Secretary of Energy Daniel Poneman participated in the groundbreaking ceremony for Nissan North America's advanced battery manufacturing facility in Smyrna, Tennessee. This past January the Department closed a $1.4 billion loan

  18. Final Merit Review Agenda, DOE Advanced Manufacturing Office...

    Broader source: Energy.gov (indexed) [DOE]

    ... am BREAK 10:25 - 10:45 am Ultra Efficient Combined Heat, Hydrogen, and Power System FuelCell Energy 10:45 - 11:45 am Critical Materials Hub Alex King 10:45 - 11:05 am Advanced ...

  19. AMO Announces Funding Opportunity for Low-Cost, Energy Efficient Manufacturing and Recycling of Advanced Fiber-Reinforced Polymer Composites

    Broader source: Energy.gov [DOE]

    A new Advanced Composite Manufacturing Institute, one of six National Network for Manufacturing Innovation Institutes to launch in 2014, will receive up to $70 million over five years in Energy Department funding.

  20. Advanced Cathode Material Development for PHEV Lithium Ion Batteries |

    Broader source: Energy.gov (indexed) [DOE]

    Energy catalysts and supports for PEM fuel cells, was given by Mark Debe of 3M at a February 2007 meeting on new fuel cell projects. new_fc_debe_3m.pdf (145.42 KB) More Documents & Publications Advanced Cathode Catalysts Light Weight, Low Cost PEM Fuel Cell Stacks Durable Catalysts for Fuel Cell Protection during Transient Conditions

    catalysts, was given by Piotr Zelenay of Los Alamos National laboratory at a February 2007 meeting on new fuel cell projects. new_fc_zelenay_lanl.pdf

  1. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Composite Materials Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composite Materials Chapter 6: Technology Assessments This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Composite Materials is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology assessments

  2. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Critical Materials Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Critical Materials is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  3. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Process Heating Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Heating Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Process Heating is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology assessments are

  4. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Process Intensification Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Intensification Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Process Intensification is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  5. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Roll-to-Roll Processing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roll to Roll Processing Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Roll-to-Roll Processing is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  6. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Waste Heat Recovery Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Systems Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Waste Heat Recovery Systems is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6

  7. An assessment of research and development leadership in advanced batteries for electric vehicles

    SciTech Connect (OSTI)

    Bruch, V.L.

    1994-02-01

    Due to the recently enacted California regulations requiring zero emission vehicles be sold in the market place by 1998, electric vehicle research and development (R&D) is accelerating. Much of the R&D work is focusing on the Achilles` heel of electric vehicles -- advanced batteries. This report provides an assessment of the R&D work currently underway in advanced batteries and electric vehicles in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. Although the US can be considered one of the leading countries in terms of advanced battery and electric vehicle R&D work, it lags other countries, particularly France, in producing and promoting electric vehicles. The US is focusing strictly on regulations to promote electric vehicle usage while other countries are using a wide variety of policy instruments (regulations, educational outreach programs, tax breaks and subsidies) to encourage the use of electric vehicles. The US should consider implementing additional policy instruments to ensure a domestic market exists for electric vehicles. The domestic is the largest and most important market for the US auto industry.

  8. EERE Success Story—Washington: Battery Manufacturer Brings Material Production Home

    Broader source: Energy.gov [DOE]

    EERE-supported company, EnerG2, built a new plant to produce nano-engineered carbon materials for batteries and other energy storage devices that can be used in hybrid, electric, plug-in hybrid, and all-electric vehicles.

  9. Innovation Meets Performance Demands of Advanced Lithium-ion Batteries (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advancements in high capacity and high density battery technologies have led to a growing need for battery materials with greater charge capacity and therefore stability. NREL's developments in ALD and MLD allow for thin film coatings to battery composite electrodes, which can improve battery lifespan, high charge capacity, and stability. Key Result Silicon, one of the best high-energy anode materials for Li-ion batteries, can experience capacity fade from volumetric expansion. Using ALD and MLD

  10. DOE Advanced Manufacturing Office EnPI V3.0 Webinar Transcription

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Office EnPI V3.0 Webinar Transcription December 11, 2012 Lindsay Southerland: Good Afternoon. My name is Lindsay Southerland and I'm with BCS, Incorporated. It is my pleasure to welcome you to this afternoon's webcast, which is sponsored by the U.S. Department of Energy's Advanced Manufacturing Office, or AMO for short. Today's presenters are Andre de Fontaine of AMO and Ashly Spevacek of the Project Performance Corporation. Ashly and Andre will provide an overview and

  11. China Hyper Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Battery Co Ltd Jump to: navigation, search Name: China Hyper Battery Co Ltd Place: Shenzhen, China Zip: 518048 Product: Manufacturer and exporter of batteries and battery packs....

  12. Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flow of Materials through Industry / Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 1 5 1.1 Supply chain and material flow analysis ....................................................................................... 1 6 2. Technology Assessment and Potential

  13. Isotope separation and advanced manufacturing technology. Volume 2, No. 2, Semiannual report, April--September 1993

    SciTech Connect (OSTI)

    Kan, Tehmanu; Carpenter, J.

    1993-12-31

    This is the second issue of a semiannual report for the Isotope Separation and Advanced Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives of the ISAM Program include: the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) process, and advanced manufacturing technologies which include industrial laser materials processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. Topics included in this issue are: production plant product system conceptual design, development and operation of a solid-state switch for thyratron replacement, high-performance optical components for high average power laser systems, use of diode laser absorption spectroscopy for control of uranium vaporization rates, a two-dimensional time dependent hydrodynamical ion extraction model, and design of a formaldehyde photodissociation process for carbon and oxygen isotope separation.

  14. Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    information about thin-film lithium batteries is available in full-text and on the Web. ... Additional Web Pages: Thin Films for Advanced Batteries Thin-Film Rechargeable Lithium, ...

  15. Manufacturing Innovation in the DOE

    Broader source: Energy.gov (indexed) [DOE]

    ...sitesdefaultfilesmicrositesostppcast-advanced-manufacturing-june2011.pdf. Advanced Manufacturing Office (AMO) manufacturing.energy.gov 3 Collaboration and ...

  16. Manufacturing Demonstration Facility

    Energy Savers [EERE]

    of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and ...

  17. GP Batteries International Limited | Open Energy Information

    Open Energy Info (EERE)

    International Limited is principally engaged in the development, manufacture and marketing of batteries and battery-related products. References: GP Batteries International...

  18. Aerospatiale Batteries ASB | Open Energy Information

    Open Energy Info (EERE)

    Aerospatiale Batteries ASB Jump to: navigation, search Name: Aerospatiale Batteries (ASB) Place: France Product: Research, design and manufacture of Thermal Batteries. References:...

  19. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    SciTech Connect (OSTI)

    Yakovleva, Marina

    2012-12-31

    FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  20. Advanced manufacturing

    SciTech Connect (OSTI)

    Love, Lonnie

    2014-07-14

    Lonnie Love is breaking new ground in three-dimensional printing and training the upcoming scientists and engineers whose creations may be limited only by their imaginations.

  1. Advanced manufacturing

    ScienceCinema (OSTI)

    Love, Lonnie

    2014-07-15

    Lonnie Love is breaking new ground in three-dimensional printing and training the upcoming scientists and engineers whose creations may be limited only by their imaginations.

  2. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; et al

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and themore » oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.« less

  3. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    SciTech Connect (OSTI)

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; Wang, Dapeng; Amine, Khalil; Thevuthasan, Suntharampillai

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and the oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.

  4. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    SciTech Connect (OSTI)

    Yi Jia

    2011-02-28

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remote power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.

  5. Advanced Flow Battery Electrodes: Low-cost, High-Performance 50-Year Electrode

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: Primus Power is developing zinc-based, rechargeable liquid flow batteries that could produce substantially more energy at lower cost than conventional batteries. A flow battery is similar to a conventional battery, except instead of storing its energy inside the cell it stores that energy for future use in chemicals that are kept in tanks that sit outside the cell. One of the most costly components in a flow battery is the electrode, where the electrochemical reactions actually occur. Primus Power is investigating and developing mixed-metal materials for their electrodes that could ultimately reduce the lifetime cost of flow batteries because they are more durable and long-lasting than electrodes found in traditional batteries. Using these electrodes, Primus Power’s flow batteries can be grouped together into robust, containerized storage pods for use by utilities, renewable energy developers, businesses, and campuses.

  6. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Estimating the system price of redox flow batteries for grid...

    Office of Scientific and Technical Information (OSTI)

    Estimating the system price of redox flow batteries for grid storage Citation Details ... Subject: energy storage; flow battery; grid storage; lithium-ion battery; manufacturing ...

  8. NERSC Helps Develop Next-Gen Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December ...

  9. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  10. Calendar Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wright, Randy Ben; Motloch, Chester George

    2001-03-01

    This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70°C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

  11. Cycle Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wright, Randy Ben; Motloch, Chester George

    2001-03-01

    This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70°C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

  12. Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Xuemin; Wolden, Colin A.; Ban, Chunmei; Yang, Yongan

    2015-12-03

    This work reports a new method of synthesizing anhydrous lithium sulfide (Li2S) nanocrystals and demonstrates their potential as cathode materials for advanced rechargeable batteries. Li2S is synthesized by reacting hydrogen sulfide (H2S) with lithium naphthalenide (Li-NAP), a thermodynamically spontaneous reaction that proceeds to completion rapidly at ambient temperature and pressure. The process completely removes H2S, a major industrial waste, while cogenerating 1,4-dihydronaphthalene, itself a value-added chemical that can be used as liquid fuel. The phase purity, morphology, and homogeneity of the resulting nanopowders were confirmed by X-ray diffraction and scanning electron microscopy. The synthesized Li2S nanoparticles (100 nm) were assembledmore » into cathodes, and their performance was compared to that of cathodes fabricated using commercial Li2S micropowders (1–5 μm). As a result, electrochemical analyses demonstrated that the synthesized Li2S were superior in terms of (dis)charge capacity, cycling stability, output voltage, and voltage efficiency.« less

  13. Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications.

    SciTech Connect (OSTI)

    Swain; Greg M.

    2009-04-13

    The original funding under this project number was awarded for a period 12/1999 until 12/2002 under the project title Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications. The project was extended until 06/2003 at which time a renewal proposal was awarded for a period 06/2003 until 06/2008 under the project title Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes. The work under DE-FG02-01ER15120 was initiated about the time the PI moved his research group from the Department of Chemistry at Utah State University to the Department of Chemistry at Michigan State University. This DOE-funded research was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder.

  14. Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries

    SciTech Connect (OSTI)

    Li, Xuemin; Wolden, Colin A.; Ban, Chunmei; Yang, Yongan

    2015-12-03

    This work reports a new method of synthesizing anhydrous lithium sulfide (Li2S) nanocrystals and demonstrates their potential as cathode materials for advanced rechargeable batteries. Li2S is synthesized by reacting hydrogen sulfide (H2S) with lithium naphthalenide (Li-NAP), a thermodynamically spontaneous reaction that proceeds to completion rapidly at ambient temperature and pressure. The process completely removes H2S, a major industrial waste, while cogenerating 1,4-dihydronaphthalene, itself a value-added chemical that can be used as liquid fuel. The phase purity, morphology, and homogeneity of the resulting nanopowders were confirmed by X-ray diffraction and scanning electron microscopy. The synthesized Li2S nanoparticles (100 nm) were assembled into cathodes, and their performance was compared to that of cathodes fabricated using commercial Li2S micropowders (1–5 μm). As a result, electrochemical analyses demonstrated that the synthesized Li2S were superior in terms of (dis)charge capacity, cycling stability, output voltage, and voltage efficiency.

  15. Sales and Use Tax Exclusion for Advanced Transportation and Alternative Energy Manufacturing Program

    Broader source: Energy.gov [DOE]

    To date, the Program has approved financial assistance for private entities in the following fields: electric vehicle manufacturing, solar photovoltaic manufacturing, landfill gas capture and...

  16. Office\tof\tEnergy\tEfficiency\t&\tRenewable\tEnergy Advanced\tManufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (QTR): Technology Assessment - Sustainable ManufacturingFlow of Materials Through Industry Joe Cresko - joe.cresko@ee.doe.gov Sustainable Manufacturing Workshop Portland, OR ...

  17. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Wide Bandgap Semiconductors for Power Electronics Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wide Bandgap Semiconductors for Power Electronics Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Wide Bandgap Semiconductors for Power Electronics is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR

  18. Vehicle Technologies Office Merit Review 2016: Low Cost Manufacturing of Advanced Silicon-Based Anode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Group14 at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  19. Vehicle Technologies Office Merit Review 2016: Low Cost, Structurally Advanced Novel Electrode and Cell Manufacturing

    Broader source: Energy.gov [DOE]

    Presentation given by 24M Technologies at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  20. Vehicle Technologies Office Merit Review 2016: Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Lambda Technologies at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  1. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    SciTech Connect (OSTI)

    No, author

    2013-09-29

    also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

  2. Thermal Management of Batteries in Advanced Vehicles Using Phase-Change Materials (Presentation)

    SciTech Connect (OSTI)

    Kim, G.-H.; Gonder, J.; Lustbader, J.; Pesaran, A.

    2007-12-01

    This Powerpoint presentation examines battery thermal management using PCM and concludes excellent performance in limiting peak temperatures at short period extensive battery use; although, vehicle designers will need to weigh the potential increase in mass and cost associated with adding PCM against the anticipated benefits.

  3. 2008 Annual Merit Review Results Summary - 3. Battery Development, Testing, Simulation, Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3-1 3. Battery Development, Testing, Simulation, Analysis Introduction Battery systems research focuses on testing, evaluating, and developing energy storage technologies in close collaboration with developers and the automotive industry. This work is primarily accomplished through the United States Advanced Battery Consortium (USABC), a partnership among the U.S. Department of Energy (DOE) and DaimlerChrysler, Ford, and General Motors. Working with manufacturers and the DOE national

  4. Electric Fuel Battery Corporation | Open Energy Information

    Open Energy Info (EERE)

    Fuel Battery Corporation Jump to: navigation, search Name: Electric Fuel Battery Corporation Place: Auburn, Alabama Zip: 36832 Product: Develops and manufactures BA-8180U high...

  5. American Battery Charging Inc | Open Energy Information

    Open Energy Info (EERE)

    Battery Charging Inc Jump to: navigation, search Name: American Battery Charging Inc Place: Smithfield, Rhode Island Zip: 2917 Product: Manufacturer of industrial and railroad...

  6. Cathode material for lithium batteries (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Title: Cathode material for lithium batteries A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium ...

  7. Horizon Batteries formerly Electrosource | Open Energy Information

    Open Energy Info (EERE)

    Batteries formerly Electrosource Jump to: navigation, search Name: Horizon Batteries (formerly Electrosource) Place: Texas Sector: Vehicles Product: Manufacturer of high-power,...

  8. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    SciTech Connect (OSTI)

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  9. Vehicle Technologies Office Merit Review 2014: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Optodot Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative manufacturing...

  10. Vehicle Technologies Office Merit Review 2015: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Optodot Corporation at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative manufacturing...

  11. Development of advanced manufacturing technologies for low cost hydrogen storage vessels

    SciTech Connect (OSTI)

    Leavitt, Mark; Lam, Patrick

    2014-12-29

    The U.S. Department of Energy (DOE) defined a need for low-cost gaseous hydrogen storage vessels at 700 bar to support cost goals aimed at 500,000 units per year. Existing filament winding processes produce a pressure vessel that is structurally inefficient, requiring more carbon fiber for manufacturing reasons, than would otherwise be necessary. Carbon fiber is the greatest cost driver in building a hydrogen pressure vessel. The objective of this project is to develop new methods for manufacturing Type IV pressure vessels for hydrogen storage with the purpose of lowering the overall product cost through an innovative hybrid process of optimizing composite usage by combining traditional filament winding (FW) and advanced fiber placement (AFP) techniques. A numbers of vessels were manufactured in this project. The latest vessel design passed all the critical tests on the hybrid design per European Commission (EC) 79-2009 standard except the extreme temperature cycle test. The tests passed include burst test, cycle test, accelerated stress rupture test and drop test. It was discovered the location where AFP and FW overlap for load transfer could be weakened during hydraulic cycling at 85°C. To design a vessel that passed these tests, the in-house modeling software was updated to add capability to start and stop fiber layers to simulate the AFP process. The original in-house software was developed for filament winding only. Alternative fiber was also investigated in this project, but the added mass impacted the vessel cost negatively due to the lower performance from the alternative fiber. Overall the project was a success to show the hybrid design is a viable solution to reduce fiber usage, thus driving down the cost of fuel storage vessels. Based on DOE’s baseline vessel size of 147.3L and 91kg, the 129L vessel (scaled to DOE baseline) in this project shows a 32% composite savings and 20% cost savings when comparing Vessel 15 hybrid design and the Quantum

  12. Pacific Northwest National Laboratory collaboration with Moltech Corporation to manufacture lithium polymer batteries (C/PNL/061). Final project report

    SciTech Connect (OSTI)

    Affinito, J.D.

    1996-08-01

    It was shown that all 7 of the layers of Moltech`s Li polymer battery are compatible with simultaneous, in-line, vacuum deposition onto a flexible plastic substrate via PNNL`s PML and LML technology. All the materials, including Li, could be deposited in a single pass without melting the substrate. Two problems were encountered and are discussed.

  13. The DOE Office of Energy Efficiency and Renewable Energy (EERE)'s Advanced Manufacturing Office

    Energy Savers [EERE]

    Energy Testing, Manufacturing, and Component Development Projects Testing, Manufacturing, and Component Development Projects This report covers the Wind and Water Power Technologies Office's testing, manufacturing, and component development projects for utility-scale and distributed wind energy from fiscal years 2006 to 2014. Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy (4.85 MB) More Documents & Publications Offshore Wind

  14. Final Report - Advanced MEA's for Enhanced Operating Conditions, Amenable to High Volume Manufacture

    SciTech Connect (OSTI)

    Debe, Mark K.

    2007-09-30

    This report summarizes the work completed under a 3M/DOE contract directed at advancing the key fuel cell (FC) components most critical for overcoming the polymer electrolyte membrane fuel cell (PEMFC) performance, durability & cost barriers. This contract focused on the development of advanced ion exchange membranes & electrocatalysts for PEMFCs that will enable operation under ever more demanding automotive operating conditions & the use high volume compatible processes for their manufacture. Higher performing & more durable electrocatalysts must be developed for PEMFCs to meet the power density & lifetime hours required for FC vehicles. At the same time the amount of expensive Pt catalyst must be reduced to lower the MEA costs. While these two properties are met, the catalyst must be made resistant to multiple degradation mechanisms to reach necessary operating lifetimes. In this report, we present the work focused on the development of a completely new approach to PEMFC electrocatalyts, called nanostructured thin film (NSTF) catalysts. The carbon black supports are eliminated with this new approach which eliminates the carbon corrosion issue. The thin film nature of the catalyst significantly improves its robustness against dissolution & grain growth, preserving the surface area. Also, the activity of the NSTF for oxygen reduction is improved by over 500% compared to dispersed Pt catalyts. Finally, the process for fabricating the NSTF catalysts is consistent with high volume roll-good manufacturing & extremely flexible towards the introduction of new catalyst compositions & structures. This report documents the work done to develop new multi-element NSTF catalysts with properties that exceed pure Pt, that are optimized for use with the membranes discussed below, & advance the state-of-the-art towards meeting the DOE 2010 targets for PEMFC electrocatalysts. The work completed advances the understanding of the NSTF catalyst technology, identifies new NSTF

  15. Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half

    Broader source: Energy.gov [DOE]

    Johnson Controls is working to increase energy density of vehicle batteries while reducing manufacturing costs for lithium-ion battery cells.

  16. Vehicle Technologies Office Merit Review 2015: Giga Life Cycle: Manufacture of Cells from Recycled EV Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by OnTo Technology at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Giga Life Cycle: manufacture...

  17. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Meinhardt, Kerry D.; Chang, Hee -Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-11

    Here we demonstrate for the first time that planar Na-NiCl2 batteries can be operated at an intermediate temperature of 190°C with ultra-high energy density. A specific energy density of 350 Wh/kg, which is 3 times higher than that of conventional tubular Na-NiCl2 batteries operated at 280°C, was obtained for planar Na-NiCl2 batteries operated at 190°C over a long-term cell test (1000 cycles). The high energy density and superior cycle stability are attributed to the slower particle growth of the cathode materials (NaCl and Ni) at 190°C. The results reported in this work demonstrate that planar Na-NiCl2 batteries operated at anmore » intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.« less

  18. NRELs Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles (Fact Sheet), Innovation Impact: Transportation, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles With average U.S. gasoline prices hovering in the $3 to $4 per gallon range and higher fuel economy standards taking effect, drivers and automakers are thinking more about electric vehicles, hybrid electric vehicles, and plug-in hybrids. But before more Americans switch to electric-drive vehicles, automakers need batteries that can deliver the range, performance, reliability, price, and safety that drivers

  19. Stay informed with current announcements from the Advanced Manufacturing Office (AMO).

    Broader source: Energy.gov [DOE]

    Lawrence Livermore National Laboratory Leads DOE’s New HPC for Manufacturing Program Lawrence Livermore National Laboratory (LLNL) is collaborating with Lawrence Berkeley and Oak Ridge National Laboratories (LBNL and ORNL) to lead a new US Department of Energy (DOE) program designed to fund and foster public-private R&D projects that enhance US competitiveness in clean energy manufacturing. The High Performance Computing for Manufacturing Program (HPC4Mfg) was announced by David Danielson, DOE assistant secretary for Energy Efficiency and Renewable Energy, during the third annual American Energy and Manufacturing Competitiveness Summit (AEMC).

  20. Manufacturing Demonstration Facility Workshop Videos | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Demonstration Facility Workshop Videos Manufacturing Demonstration Facility Workshop Videos Dr. Leo Christodoulou, Program Manager, EERE Advanced Manufacturing ...

  1. Si composite electrode with Li metal doping for advanced lithium-ion battery

    SciTech Connect (OSTI)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent

    2015-12-15

    A silicon electrode is described, formed by combining silicon powder, a conductive binder, and SLMP.TM. powder from FMC Corporation to make a hybrid electrode system, useful in lithium-ion batteries. In one embodiment the binder is a conductive polymer such as described in PCT Published Application WO 2010/135248 A1.

  2. IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS

    SciTech Connect (OSTI)

    Xiaodi Huang; Richard Gertsch

    2005-02-04

    Michigan Technological University, together with The Robbins Group, Advanced Ceramic Research, Advanced Ceramic Manufacturing, and Superior Rock Bits, evaluated a new process and a new material for producing drill bit inserts and disc cutters for the mining industry. Difficulties in the material preparation stage slowed the research initially. Prototype testing of the drill bit inserts showed that the new inserts did not perform up to the current state of the art. Due to difficulties in the prototype production of the disc cutters, the disc cutter was manufactured but not tested. Although much promising information was obtained as a result of this project, the objective of developing an effective means for producing rock drill bits and rock disc cutters that last longer, increase energy efficiency and penetration rate, and lower overall production cost was not met.

  3. EA-1723: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Application White Marsh, Maryland and Wixom, Michigan

    Broader source: Energy.gov [DOE]

    DOE’s Proposed Action is to provide GM with $105,387,000 in financial assistance in a cost sharing arrangement to facilitate construction and operation of a manufacturing facility to produce electric motor components and assemble an electric drive unit. This Proposed Action through the Vehicle Technologies Program will accelerate the development and production of electric-drive vehicle systems and reduce the United States’ consumption of petroleum. This Proposed Action will also meaningfully assist in the nation’s economic recovery by creating manufacturing jobs in the United States in accordance with the objectives of the Recovery Act.

  4. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    SciTech Connect (OSTI)

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  5. Bandwidth Study U.S. Advanced High Strength Steel Manufacturing, Draft

    Broader source: Energy.gov [DOE]

    Energy bandwidth studies can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities in manufacturing. This bandwidth study is one of a series...

  6. Teaming Up to Apply Advanced Manufacturing Methods to Wind Turbine Production

    Office of Energy Efficiency and Renewable Energy (EERE)

    Last spring, a 3D-printed replica Shelby Cobra, manufactured at Oak Ridge National Laboratory (ORNL), visited the U.S. Department of Energy (DOE) headquarters in Washington, DC. Now, DOE’s Wind...

  7. In-situ Spectroscopic and Structural Studies of Electrode Materials for Advanced Battery Applications

    SciTech Connect (OSTI)

    Daniel A Scherson

    2013-03-14

    Techniques have been developed and implemented to gain insight into fundamental factors that affect the performance of electrodes in Li and Li-ion batteries and other energy storage devices. These include experimental strategies for monitoring the Raman scattering spectra of single microparticles of carbon and transition metal oxides as a function of their state of charge. Measurements were performed in electrolytes of direct relevance to Li and Li-Ion batteries both in the static and dynamic modes. In addition, novel strategies were devised for performing conventional experiments in ultrahigh vacuum environments under conditions which eliminate effects associated with presence of impurities, using ultrapure electrolytes, both of the polymeric and ionic liquid type that display no measurable vapor pressure. Also examined was the reactivity of conventional non aqueous solvent toward ultrapure Li films as monitored in ultrahigh vacuum with external reflection Fourier transform infrared spectroscopy. Also pursued were efforts toward developing applying Raman-scattering for monitoring the flow of charge of a real Li ion battery. Such time-resolved, spatially-resolved measurements are key to validating the results of theoretical simulations involving real electrode structures.

  8. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Combined Heat and Power Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Platforms and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial

  9. Standard Missile Block IV battery

    SciTech Connect (OSTI)

    Martin, J.

    1996-11-01

    During the 1980`s a trend in automatic primary battery technologies was the replacement of silver-zinc batteries by thermal battery designs. The Standard missile (SM 2) Block IV development is a noteworthy reversal of this trend. The SM2, Block IV battery was originally attempted as a thermal battery with multiple companies attempting to develop a thermal battery design. These attempts resulted in failure to obtain a production thermal battery. A decision to pursue a silver-zinc battery design resulted in the development of a battery to supply the SM 2, Block IV (thermal battery design goal) and also the projected power requirements of the evolving SM 2, Block IVA in a single silver-zinc battery design. Several advancements in silver-zinc battery technology were utilized in this design that improve the producibility and extend the boundaries of silver-zinc batteries.

  10. Fully Coupled Simulation of Lithium Ion Battery Cell Performance

    SciTech Connect (OSTI)

    Trembacki, Bradley L.; Murthy, Jayathi Y.; Roberts, Scott Alan

    2015-09-01

    Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulated and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.

  11. Advanced Models and Controls for Prediction and Extension of Battery Lifetime (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Pesaran, A.

    2014-02-01

    Predictive models of capacity and power fade must consider a multiplicity of degradation modes experienced by Li-ion batteries in the automotive environment. Lacking accurate models and tests, lifetime uncertainty must presently be absorbed by overdesign and excess warranty costs. To reduce these costs and extend life, degradation models are under development that predict lifetime more accurately and with less test data. The lifetime models provide engineering feedback for cell, pack and system designs and are being incorporated into real-time control strategies.

  12. Overview of the DOE Advanced Battery R&D Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery R&D Program David Howell, Program Manager Hybrid Electric Systems Vehicle Technologies Office June 16, 2014 VEHICLE TECHNOLOGIES OFFICE 2 2013 Sales Set Record  46 EDV models were available for sale * 575,000 Sales  ~97,000 PEVs Sold. The top 6 models represent 95% of the sales : * Volt (23,094) * Leaf (22,610) * Model S (19,400) * Prius PHEV (12,088) * Cmax Energi (7,154) * Fusion Energi (6,089) Over 3.1 million EDVs on the road Jan.1, 2014 - 100,000 200,000 300,000 400,000

  13. Laser Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Impact > Advanced Laser Manufacturing Tools Deliver Higher Performance Click to ... Advanced Laser Manufacturing Tools Deliver Higher Performance In a research lab looking ...

  14. Vehicle Technologies Office Merit Review 2015: Advanced In-Situ Diagnostic Techniques for Battery Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Brookhaven National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced in...

  15. Vehicle Technologies Office Merit Review 2015: Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Lambda Technologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced drying process...

  16. LEXEL Battery Shenzhen Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    LEXEL Battery Shenzhen Co Ltd Jump to: navigation, search Name: LEXEL Battery (Shenzhen) Co., Ltd. Place: China Product: China-based manufacturer, marketer and researcher of...

  17. Shenzhen Mottcell Battery Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Technology Co, Ltd Place: China Product: China-based manufacturer of cylindrical Lithium Iron Phopshate and Lithium ion batteries. References: Shenzhen Mottcell Battery...

  18. NREL: Energy Storage - NREL's Battery Life Predictive Model Helps...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (EV) manufacturers, solar and wind energy generation companies, and utilities-need to know how to use batteries most effectively. As investment in large-scale battery energy ...

  19. Kung Long Batteries Industrial Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Kung Long Batteries Industrial Co Ltd Jump to: navigation, search Name: Kung Long Batteries Industrial Co Ltd Place: Nantou, Taiwan Product: Manufacturer of more than 200 types of...

  20. High Energy Batteries India Ltd | Open Energy Information

    Open Energy Info (EERE)

    Energy Batteries India Ltd Jump to: navigation, search Name: High Energy Batteries (India) Ltd Place: Chennai, Andhra Pradesh, India Zip: 600096 Product: Manufacturer of...

  1. Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Gallego, Nidia C; Contescu, Cristian I; Meyer III, Harry M; Howe, Jane Y; Meisner, Roberta Ann; Payzant, E Andrew; Lance, Michael J; Yoon, Steve; Denlinger, Matthew; Wood III, David L

    2014-01-01

    Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

  2. Manufacturing Innovation in the DOE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Innovation in the DOE January 13, 2014 Mark Johnson Director Advanced Manufacturing Office manufacturing.energy.gov Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 What is Advanced Manufacturing? A family of activities that: * Depend on the use and coordination of information, automation, computation, software, sensing, and networking; and/or * Make use of cutting edge materials and emerging capabilities. Advanced Manufacturing involves both: * New ways to

  3. Advanced Lithium Battery Cathodes Using Dispersed Carbon Fibers as the Current Collector

    SciTech Connect (OSTI)

    Martha, Surendra K; Kiggans, Jim; Nanda, Jagjit; Dudney, Nancy J

    2011-01-01

    To fabricate LiFePO4 battery cathodes, highly conductive carbon fibers of 10-20 m in diameter have been used to replace a conventional aluminum (Al) foil current collector. This disperses the current collector throughout the cathode sheet and increases the contact area with the LiFePO4 (LFP) particles. In addition, the usual organic binder plus carbon-black can be replaced by a high temperature binder of <5 weight % carbonized petroleum pitch (P-pitch). Together these replacements increase the specific energy density and energy per unit area of the electrode. Details of the coating procedure, characterization and approach for maximizing the energy density are discussed. In a side-by-side comparison with conventional cathodes sheets of LFP on Al foil, the carbon fiber composite cathodes have a longer cycle life, higher thermal stability, and high capacity utilization with little sacrifice of the rate performance.

  4. Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

  5. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery | Department

    Broader source: Energy.gov (indexed) [DOE]

    Download the presentation slides from the DOE Fuel Cell Technologies Office webinar, "Advanced Electrocatalysts for PEM Fuel Cell," held February 12, 2013. Advanced Electrocatalysts for PEM Fuel Cells Webinar Slides (11.2 MB) More Documents & Publications Catalysis Working Group Meeting: January 2015 Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading Fuel Cells: Just a Dream - or Future Reality of Energy

    2 DOE Hydrogen and Fuel Cells Program and Vehicle

  6. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  7. Internal Short Circuit Device Helps Improve Lithium-Ion Battery Design (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    NREL's emulation tool helps manufacturers ensure the safety and reliability of electric vehicle batteries.

  8. Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid

    SciTech Connect (OSTI)

    Sally Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

    2012-08-01

    The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the

  9. Anti-Idling Battery for Truck Applications

    SciTech Connect (OSTI)

    Keith Kelly

    2011-09-30

    In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

  10. Progress in Modeling and Simulation of Batteries

    SciTech Connect (OSTI)

    Turner, John A

    2016-01-01

    Modeling and simulation of batteries, in conjunction with theory and experiment, are important research tools that offer opportunities for advancement of technologies that are critical to electric motors. The development of data from the application of these tools can provide the basis for managerial and technical decision-making. Together, these will continue to transform batteries for electric vehicles. This collection of nine papers presents the modeling and simulation of batteries and the continuing contribution being made to this impressive progress, including topics that cover: * Thermal behavior and characteristics * Battery management system design and analysis * Moderately high-fidelity 3D capabilities * Optimization Techniques and Durability As electric vehicles continue to gain interest from manufacturers and consumers alike, improvements in economy and affordability, as well as adoption of alternative fuel sources to meet government mandates are driving battery research and development. Progress in modeling and simulation will continue to contribute to battery improvements that deliver increased power, energy storage, and durability to further enhance the appeal of electric vehicles.

  11. Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Manufacturing is how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Manufacturing is the lifeblood of the American economy -- providing jobs

  12. East Penn Manufacturing Co Grid-Scale Energy Storage Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    East Penn Manufacturing Co Grid-Scale Energy Storage Demonstration Using UltraBattery(tm) ... UltraBattery(tm) modules integrated in a turnkey Battery Energy Storage System (BESS). ...

  13. Development of Advanced Manufacturing Methods for Warm White LEDs for General Lighting

    SciTech Connect (OSTI)

    Deshpande, Anirudha; Kolodin, Boris; Jacob, Cherian; Chowdhury, Ashfaqul; Kuenzler, Glenn; Sater, Karen; Aesram, Danny; Glaettli, Steven; Gallagher, Brian; Langer, Paul; Setlur, Anant; Beers, Bill

    2012-03-31

    GE Lighting Solutions will develop precise and efficient manufacturing techniques for the remote phosphor platform of warm-white LED products. In volume, this will be demonstrated to drive significant materials, labor and capital productivity to achieve a maximum possible 53% reduction in overall cost. In addition, the typical total color variation for these white LEDs in production will be well within the ANSI bins and as low as a 4-step MacAdam ellipse centered on the black body curve. Achievement of both of these objectives will be demonstrated while meeting a performance target of > 75 lm/W for a warm-white LED and a reliability target of <30% lumen drop / <2-step MacAdam ellipse shift, estimated over 50,000 hrs.

  14. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Battery Testing - DC Fast Charging's Effects on PEV Batteries AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following

  15. Next generation grinding spindle for cost-effective manufacture of advanced ceramic components

    SciTech Connect (OSTI)

    Kovach, J.A.; Laurich, M.A.

    2000-01-01

    Finish grinding of advanced structural ceramics has generally been considered an extremely slow and costly process. Recently, however, results from the High-Speed, Low-Damage (HSLD) program have clearly demonstrated that numerous finish-process performance benefits can be realized by grinding silicon nitride at high wheel speeds. A new, single-step, roughing-process capable of producing high-quality silicon nitride parts at high material removal rates while dramatically reducing finishing costs has been developed.

  16. Vehicle Technologies Office Merit Review 2016: Advanced Polyolefin Separators for Li-Ion Batteries Used in Vehicle Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Entek at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  17. Vehicle Technologies Office Merit Review 2016: Overview and Progress of United States Advanced Battery Consortium (USABC) Activity

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by USABC at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  18. Vehicle Technologies Office Merit Review 2016: Development of Advanced High-Performance Batteries for 12V Start Stop Vehicle Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Maxwell at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  19. Enterprise Assessments Targeted Review, Management of the Safety-Related 480 Volt Diesel Bus Battery-Backed Power System of the Idaho National Laboratory Advanced Test Reactor –October 2015

    Broader source: Energy.gov [DOE]

    Targeted Review of the Management of the Safety-Related 480 Volt Diesel Bus Battery-Backed Power System of the Idaho National Laboratory Advanced Test Reactor at the Idaho Site

  20. Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  1. Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  2. Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Fact Sheet: Carbon-Enhanced Lead-Acid Batteries (October 2012...

    Office of Environmental Management (EM)

    In 1997, researchers made two important advancements to lead-acid batteries. First, the Japan Storage Battery Company showed that adding carbon to the battery dramatically reduces ...

  4. Implementation of a TMP Advanced Quality Control System at a Newsprint Manufacturing Plant

    SciTech Connect (OSTI)

    Sebastien Kidd

    2006-02-14

    This project provided for the implementation of an advanced, model predictive multi-variant controller that works with the mill that has existing distributed control system. The method provides real time and online predictive models and modifies control actions to maximize quality and minimize energy costs. Using software sensors, the system can predict difficult-to-measure quality and process variables and make necessary process control decisions to accurately control pulp quality while minimizing electrical usage. This method of control has allowed Augusta Newsprint Company to optimize the operation of its Thermo Mechanical Pulp mill for lower energy consumption and lower pulp quality variance.

  5. Designation Order No. 00-12.00 to the Executive Director of Loan Programs and Director of the Advanced Technology Vehicles Manufacturing Incentive Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-30

    Secretary or Energy designates each of the Executive Director of Loan Programs and the Director of the Advanced Technology Vehicles Manufacturing Incentive Program, as their designee, as the term is used in the Internal Revenue Manual, Part 11, Chapter 3, Section 29.6, acting separately to request tax delinquency account status and other tax related information from the Internal Revenue Service, pursuant to 26 U .S.C. 6103(1)(3), for applicants to the Department's Advanced Technology Vehicles Manufacturing Incentive Program under Section 136 of the Energy Independence and Security Act of2007 (P. L. 110-140), as amended.

  6. Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity

    Broader source: Energy.gov [DOE]

    Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the research area that is examining new battery materials and addressing fundamental chemical and mechanical instability issues in batteries.

  7. VP 100: President Obama Hails Electric-Vehicle Battery Plant | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy President Obama Hails Electric-Vehicle Battery Plant VP 100: President Obama Hails Electric-Vehicle Battery Plant July 15, 2010 - 5:05pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this project do? Puts the U.S. in position to produce 40 percent of the world's supply of advanced batteries by 2015 - up from it's current level of 2 percent Makes us less dependent on foreign oil Creates jobs in an emerging sector of manufacturing The

  8. Industrialization of Biology. A Roadmap to Accelerate the Advanced Manufacturing of Chemicals

    SciTech Connect (OSTI)

    Friedman, Douglas C.

    2015-09-01

    The report stresses the need for efforts to inform the public of the nature of industrial biotechnology and of its societal benefits, and to make sure that concerns are communicated effectively between the public and other stakeholders. In addition to scientific advances, a number of governance and societal factors will influence the industrialization of biology. Industry norms and standards need to be established in areas such as read/write accuracy for DNA, data and machine technology specifications, and organism performance in terms of production rates and yields. An updated regulatory regime is also needed to accelerate the safe commercialization of new host organisms, metabolic pathways, and chemical products, and regulations should be coordinated across nations to enable rapid, safe, and global access to new technologies and products.

  9. Obama Administration Launches $26 Million Multi-Agency Competition to Strengthen Advanced Manufacturing Clusters Across the Nation

    Broader source: Energy.gov [DOE]

    Fourteen Federal Agencies Collaborate to Enhance Global Competitiveness of U.S. Manufacturers and Create Jobs

  10. Smart Manufacturing Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Manufacturing Innovation Smart Manufacturing Innovation Addthis Find out how advanced technologies developed by our latest institute will make U.S. manufacturing more productive, energy efficient, and competitive. Learn more about advanced manufacturing

  11. Advanced Technology Development Program for Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report

    SciTech Connect (OSTI)

    Jon P. Christophersen; Ira Bloom; Edward V. Thomas; Kevin L. Gering; Gary L. Henriksen; Vincent S. Battaglia; David Howell

    2006-07-01

    The Advanced Technology Development Program has completed performance testing of the second generation of lithium-ion cells (i.e., Gen 2 cells). The 18650-size Gen 2 cells, with a baseline and variant chemistry, were distributed over a matrix consisting of three states-of-charge (SOCs) (60, 80, and 100% SOC), four temperatures (25, 35, 45, and 55°C), and three life tests (calendar-, cycle-, and accelerated-life). The calendar- and accelerated-life cells were clamped at an open-circuit voltage corresponding to the designated SOC and were subjected to a once-per-day pulse profile. The cycle-life cells were continuously pulsed using a profile that was centered around 60% SOC. Life testing was interrupted every four weeks for reference performance tests (RPTs), which were used to quantify changes in cell degradation as a function of aging. The RPTs generally consisted of C1/1 and C1/25 static capacity tests, a low-current hybrid pulse power characterization test, and electrochemical impedance spectroscopy. The rate of cell degradation generally increased with increasing test temperature, and SOC. It was also usually slowest for the calendar-life cells and fastest for the accelerated-life cells. Detailed capacity-, power-, and impedance-based performance results are reported.

  12. USABC Development of 12 Volt Battery for Start-Stop Application: Preprint

    SciTech Connect (OSTI)

    Tataria, H.; Gross, O.; Bae, C.; Cunningham, B.; Barnes, J. A.; Deppe, J.; Neubauer, J.

    2015-02-01

    Global automakers are accelerating the development of fuel efficient vehicles, as a part of meeting regional regulatory CO2 emissions requirements. The micro hybrid vehicles with auto start-stop functionality are considered economical solutions for the stringent European regulations. Flooded lead acid batteries were initially considered the most economical solution for idle-stop systems. However, the dynamic charge acceptance (DCA) at lower state-of-charge (SOC) was limiting the life of the batteries. While improved lead-acid batteries with AGM and VRLA features have improved battery longevity, they do not last the life of the vehicle. The United States Advanced Battery Consortium (or USABC, a consortium of GM, Ford, and Chrysler) analyzed energy storage needs for a micro hybrid automobile with start-stop capability, and with a single power source. USABC has analyzed the start-stop behaviors of many drivers and has developed the requirements for the start-stop batteries (Table 3). The testing procedures to validate the performance and longevity were standardized and published. The guideline for the cost estimates calculations have also been provided, in order to determine the value of the newly developed modules. The analysis effort resulted in a set of requirements which will help the battery manufacturers to develop a module to meet the automotive Original Equipment Manufacturers (OEM) micro hybrid vehicle requirements. Battery developers were invited to submit development proposals and two proposals were selected for 50% cost share with USABC/DOE.

  13. The Advanced High-Temperature Reactor (AHTR) for Producing Hydrogen to Manufacture Liquid Fuels

    SciTech Connect (OSTI)

    Forsberg, C.W.; Peterson, P.F.; Ott, L.

    2004-10-06

    Conventional world oil production is expected to peak within a decade. Shortfalls in production of liquid fuels (gasoline, diesel, and jet fuel) from conventional oil sources are expected to be offset by increased production of fuels from heavy oils and tar sands that are primarily located in the Western Hemisphere (Canada, Venezuela, the United States, and Mexico). Simultaneously, there is a renewed interest in liquid fuels from biomass, such as alcohol; but, biomass production requires fertilizer. Massive quantities of hydrogen (H2) are required (1) to convert heavy oils and tar sands to liquid fuels and (2) to produce fertilizer for production of biomass that can be converted to liquid fuels. If these liquid fuels are to be used while simultaneously minimizing greenhouse emissions, nonfossil methods for the production of H2 are required. Nuclear energy can be used to produce H2. The most efficient methods to produce H2 from nuclear energy involve thermochemical cycles in which high-temperature heat (700 to 850 C) and water are converted to H2 and oxygen. The peak nuclear reactor fuel and coolant temperatures must be significantly higher than the chemical process temperatures to transport heat from the reactor core to an intermediate heat transfer loop and from the intermediate heat transfer loop to the chemical plant. The reactor temperatures required for H2 production are at the limits of practical engineering materials. A new high-temperature reactor concept is being developed for H2 and electricity production: the Advanced High-Temperature Reactor (AHTR). The fuel is a graphite-matrix, coated-particle fuel, the same type that is used in modular high-temperature gas-cooled reactors (MHTGRs). The coolant is a clean molten fluoride salt with a boiling point near 1400 C. The use of a liquid coolant, rather than helium, reduces peak reactor fuel and coolant temperatures 100 to 200 C relative to those of a MHTGR. Liquids are better heat transfer fluids than gases

  14. Ultralife Corporation formerly Ultralife Batteries Inc | Open...

    Open Energy Info (EERE)

    14513 Product: New Jersey-based developer and manufacturer of standard and customised lithium primary, lithium ion and lithium polymer rechargeable batteries. References:...

  15. China BAK Battery Inc | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 518119 Product: Guangdong- based manufacturer of standard and customized Lithium Ion rechargeable batteries. Coordinates: 22.546789, 114.112556 Show Map Loading...

  16. Vehicle Technologies Office Merit Review 2016: Process Development and Scale-Up of Advanced Active Battery Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  17. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S

    SciTech Connect (OSTI)

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-06-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions and conditions within such cells. Furthermore, this review explores the critical role Li-salts play in ensuring in these batteries viability.

  18. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-06-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions andmore » conditions within such cells. Furthermore, this review explores the critical role Li-salts play in ensuring in these batteries viability.« less

  19. Lithium Salts for Advanced Lithium Batteries: Li-metal, Li-O2, and Li-S

    SciTech Connect (OSTI)

    Younesi, Reza; Veith, Gabriel M; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-01-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions and conditions within such cells. This review explores the critical role Li-salts play in ensuring in these batteries viability.

  20. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    SciTech Connect (OSTI)

    Liby, Alan L; Rogers, Hiram

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  1. Approaches to Evaluating and Improving Lithium-Ion Battery Safety...

    Office of Scientific and Technical Information (OSTI)

    Conference: Approaches to Evaluating and Improving Lithium-Ion Battery Safety. Citation ... presentation at the Advanced Automotive Batteries Conference held February 4-8, 2013 in ...

  2. Longer Life Lithium Ion Batteries with Silicon Anodes - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Longer Life Lithium Ion Batteries with Silicon Anodes Lawrence Berkeley National ... Researchers have developed a new technology to advance the life of lithium-ion batteries. ...

  3. Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...

    Broader source: Energy.gov (indexed) [DOE]

    for Low-Cost Lithium-Ion Batteries Vehicle Technologies Office Merit Review 2014: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries Vehicle Technologies ...

  4. Advanced Manufacturing Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... sector Gap "Valley of Death" (Risk Spike) DOE Energy ... capability for the United States * Impactful: Has a ... or products: * Production rate * Processes established * ...

  5. Advanced Methods for Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R. Shane Johnson Deputy Assistant Secretary for Science and Technology Innovation (NE-4) December 11, 2015 Gateway for Accelerated Innovation in Nuclear GAIN 2 Accelerating Nuclear ...

  6. Innovative Manufacturing Initiative Project Selections

    Broader source: Energy.gov [DOE]

    The Department announced nearly $23 million for 12 projects across the country to advance technologies aimed at helping American manufacturers dramatically increase the energy efficiency of their manufacturing facilities, lower costs, and develop new manufacturing technologies.

  7. SBIR/STTR FY15 Phase 1 Release 2 Awards Announced—Includes Fuel Cell-Battery Electric Hybrid Truck and Fuel Cell Manufacturing Quality Control Processes

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has announced the 2015 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 2 Awards, including projects demonstrating fuel cell-battery electric hybrid trucks and developing a real-time, in-line optical detector for the measurement of fuel cell membrane thickness.

  8. Solving the Big Data (BD) Problem in Advanced Manufacturing (Subcategory for work done at Georgia Tech. Study Process and Design Factors for Additive Manufacturing Improvement)

    SciTech Connect (OSTI)

    Clark, Brett W.; Diaz, Kimberly A.; Ochiobi, Chinaza Darlene; Paynabar, Kamran

    2015-09-01

    3D printing originally known as additive manufacturing is a process of making 3 dimensional solid objects from a CAD file. This ground breaking technology is widely used for industrial and biomedical purposes such as building objects, tools, body parts and cosmetics. An important benefit of 3D printing is the cost reduction and manufacturing flexibility; complex parts are built at the fraction of the price. However, layer by layer printing of complex shapes adds error due to the surface roughness. Any such error results in poor quality products with inaccurate dimensions. The main purpose of this research is to measure the amount of printing errors for parts with different geometric shapes and to analyze them for finding optimal printing settings to minimize the error. We use a Design of Experiments framework, and focus on studying parts with cone and ellipsoid shapes. We found that the orientation and the shape of geometric shapes have significant effect on the printing error. From our analysis, we also determined the optimal orientation that gives the least printing error.

  9. Batteries: Overview of Battery Cathodes

    SciTech Connect (OSTI)

    Doeff, Marca M

    2010-07-12

    electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet

  10. NREL Battery Testing Capabilities Get a Boost - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Testing Capabilities Get a Boost February 5, 2010 Photo of a Test engineer standing next to a camera showing a thermal image of a battery being tested. Enlarge image Engineer Dirk Long uses thermal imaging equipment to capture a battery's infrared fingerprint to diagnose its behavior. NREL soon will be ramping up testing as the battery industry uses stimulus funding to enhance batteries used in advanced vehicles. Credit: Pat Corkery Batteries are the heart of today's advanced electric

  11. Battery system

    DOE Patents [OSTI]

    Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

    2013-08-27

    A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

  12. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Direct Thermal Energy Conversion Materials, Devices, and Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology

  13. Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional Information...

  14. California Lithium Battery, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage

  15. Progress of DOE Materials, Manufacturing Process R&D, and ARRA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit ...

  16. Progress of DOE Materials, Manufacturing Process R&D, and ARRA...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants Vehicle Technologies Office: 2010 Energy Storage R&D ...

  17. Vice President Biden Announces Plan to Put One Million Advanced...

    Office of Environmental Management (EM)

    which produces advanced lithium-ion battery systems for electric vehicles, grid ... Advancing innovative vehicle and battery technologies through increased R&D: Increased ...

  18. Vehicle Technologies Office Merit Review 2015: Daikin Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daikin Advanced Lithium Ion Battery Technology High Voltage Electrolyte Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion Battery Technology High ...

  19. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations (Presentation), Clean Energy Manufacturing Analysis Center (CMAC), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Automo&ve Lithium---ion Ba1ery (LIB) Supply Chain and U.S. Compe&&veness Considera&ons Donald Chung, Emma Elgqvist, S hriram Santhanagopalan, CEMAC With contribu,ons from experts at the U.S. Department of Energy, Argonne Na,onal Laboratory, the Na,onal Renewable Energy Laboratory, and Industry Partners June 2, 2015 NREL/PR---6A50---63354 Contract No. DE---AC36---08GO28308 June 2015 CEMAC ▪ Clean Energy Manufacturing Analysis Center ▪ ManufacturingCleanEnergy.org DISCLAIMER

  20. Battery Company Puts New Nanowire Technology into Production

    Broader source: Energy.gov [DOE]

    A battery company supported by the Vehicle Technologies Office (VTO) has an agreement to manufacture silicon nanowire material for lithium-ion batteries on a commercial scale for the first time....

  1. Union Suppo Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Suppo Battery Co Ltd Jump to: navigation, search Name: Union Suppo Battery Co Ltd Place: Shenyang, China Zip: 110015 Product: Liaoning-based manufacturer of rechargeable NiMH...

  2. Manufacturing Innovation Topics Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Manufacturing Office (AMO) and the Office of the Secretary of Defense Manufacturing Technology Program (OSD ManTech) will host a workshop to discuss AMO's recent Request for Information (RFI) on Clean Energy Manufacturing Topic Areas as well as the recent areas of interest announced by OSD ManTech for a new Manufacturing Innovation Institute on October 8-9, 2014 in Fort Worth, TX.

  3. EA-1869: Supplement to General Motors Corp., Electric Vehicle/Battery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE/EA-1723-S1)

    Broader source: Energy.gov [DOE]

    Based on the analysis in the Environmental Assessment DOE determined that its proposed action, to award a federal grant to General Motors to establish an electric motor components manufacturing and electric drive assembly facility would result in no significant adverse impacts.

  4. Fact Sheet: Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Fact sheet describing President Obama's proposed changes to advanced vehicle tax credits as part of the Administration's Fiscal Year 2016 Revenue Proposals.

  5. Vehicle Technologies Office Merit Review 2015: Development of Advanced High-Performance Batteries for 12V Start Stop Vehicle Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Maxwell at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  6. Notice of Intent (NOI): Clean Energy Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Notice of Intent (NOI): Clean Energy Manufacturing Innovation ...

  7. DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will provide up to $14 million in funding for a $28 million cost-shared solicitation by the United States Advanced...

  8. Third Annual American Energy and Manufacturing Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and included showpieces highlighting advanced composites manufacturing and large scale additive manufacturing. Image: Photo courtesy of Attlee Photography View All Galleries

  9. EaglePicher Horizon Batteries LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Place: Dearborn, Michigan Zip: MI 48126 Product: Joint Venture developing, manufacturing and distributing a breakthrough, high performance sealed lead-acid battery....

  10. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... this composite anode exhibits the best performance so far in lithium-ion batteries, while retaining an economical cost and compatibility with existing manufacturing ...

  11. Lio Energy Systems Coda Automotive Lishen Battery JV | Open Energy...

    Open Energy Info (EERE)

    Tianjin, Tianjin Municipality, China Zip: 300384 Product: China-based electric car and energy storage battery systems manufacturer. Coordinates: 39.231831, 117.878502 Show...

  12. NREL: Technology Transfer - NREL's Battery Life Predictive Model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL 32696 Companies that rely on batteries for enhanced energy efficiency-including electric vehicle (EV) manufacturers, solar and wind energy generation companies, and...

  13. Contour Energy Systems formerly CFX Battery | Open Energy Information

    Open Energy Info (EERE)

    claims to have developed novel fluorine-based battery chemistries, nano-materials science and manufacturing processes. Coordinates: 34.13361, -117.905879 Show Map Loading...

  14. Steps to Commercialization: Nickel Metal Hydride Batteries |...

    Broader source: Energy.gov (indexed) [DOE]

    funds cutting-edge research on a broad range of topics ranging from advanced battery construction to the modeling of industrial processes and supercomputer simulation of...

  15. Vehicle Technologies Office: Exploratory Battery Materials Research...

    Broader source: Energy.gov (indexed) [DOE]

    for future battery chemistries. They research a number of areas that contribute to this body of knowledge: Advanced cell chemistries that promise higher energy density than...

  16. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. Clean Energy Manufacturing Initiative: http://www1.eere.energy.gov/energymanufacturing

  17. Sustainable Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR DOE Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR Sustainable Manufacturing: Definitions ...

  18. Review of storage battery system cost estimates

    SciTech Connect (OSTI)

    Brown, D.R.; Russell, J.A.

    1986-04-01

    Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

  19. Promising Magnesium Battery Research at ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ electrochemical/XAS cell with annotations. b) Drawing and c) photograph of the assembled cell. Alternatives to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery life, and to do that they're going to have to find

  20. Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale

    SciTech Connect (OSTI)

    Pesaran, A. A.; Markel, T.; Tataria, H. S.; Howell, D.

    2009-07-01

    Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium.

  1. Recent advances on the understanding of structural and composition evolution of LMR cathodes for Li-ion batteries

    SciTech Connect (OSTI)

    Yan, Pengfei; Zheng, Jianming; Xiao, Jie; Wang, Chong-Min; Zhang, Jiguang

    2015-06-08

    Lithium-rich, magnesium-rich (LMR) cathode materials have been regarded as one of the very promising cathodes for Li-ion battery applications. However, their practical application is still limited by several challenges, especially by their limited electrochemical stability rate capability. In this work, we present recent progresses on the understanding of the structural and composition evolution of LMR cathode materials with emphasis being placed on the correlation between structural/chemical evolution and electrochemical properties. In particular, using Li [Li0.2Ni0.2Mn0.6O2 as a typical example, we clearly illustrate the structural characteristics of the pristine materials and their dependence on the materials processing history, cycling induced structural degradation/chemical partition and their correlation with degradation of electrochemical performance. The fundamental understanding obtained in this work may also guide the design and preparation of new cathode materials based on ternary system of transitional metal oxide.

  2. Recent advances on the understanding of structural and composition evolution of LMR cathodes for Li-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yan, Pengfei; Zheng, Jianming; Xiao, Jie; Wang, Chong-Min; Zhang, Jiguang

    2015-06-08

    Lithium-rich, magnesium-rich (LMR) cathode materials have been regarded as one of the very promising cathodes for Li-ion battery applications. However, their practical application is still limited by several challenges, especially by their limited electrochemical stability rate capability. In this work, we present recent progresses on the understanding of the structural and composition evolution of LMR cathode materials with emphasis being placed on the correlation between structural/chemical evolution and electrochemical properties. In particular, using Li [Li0.2Ni0.2Mn0.6O2 as a typical example, we clearly illustrate the structural characteristics of the pristine materials and their dependence on the materials processing history, cycling induced structuralmore » degradation/chemical partition and their correlation with degradation of electrochemical performance. The fundamental understanding obtained in this work may also guide the design and preparation of new cathode materials based on ternary system of transitional metal oxide.« less

  3. Lead-acid battery companies join forces with Argonne National Laboratory to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enhance battery performance | Argonne National Laboratory Lead-acid battery companies join forces with Argonne National Laboratory to enhance battery performance September 1, 2016 Tweet EmailPrint Exploring the unrealized potential of lead batteries is the goal of a new collaboration between the U.S. Department of Energy's Argonne National Laboratory and two leading lead recycling and lead battery manufacturing companies, RSR Technologies and East Penn Manufacturing. The collaboration will

  4. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST » MST Research Programs » Additive Manufacturing Additive Manufacturing A method allowing unparalleled manufacturing control, data visualization, and high-value parts repair. Through additive manufacturing, Los Alamos is developing materials for the future. Taking complex manufacturing challenges from design to fabrication. A science and engineering approach for additive manufacturing solutions. Get Expertise John Carpenter Technical Staff Member Metallurgy Email Division Leader Materials

  5. Notice of Intent (NOI): Clean Energy Manufacturing Innovation Institute on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing | Department of Energy Notice of Intent (NOI): Clean Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Notice of Intent (NOI): Clean Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing December 11, 2014 - 11:30am Addthis The purpose of

  6. Additive Manufacturing: Pursuing the Promise | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Manufacturing: Pursuing the Promise Additive Manufacturing: Pursuing the Promise Fact sheet overviewing additive manufacturing techniques that are projected to exert a profound impact on manufacturing. Additive Manufacturing: Pursuing the Promise (1.42 MB) More Documents & Publications Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry Fiber Reinforced Polymer Composite Manufacturing Workshop A National Strategic Plan For Advanced Manufacturing

  7. Advanced Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Manufacturing Office 13 Selectees Announced for High Performance Computing for Manufacturing Program 13 Selectees Announced for High Performance Computing for Manufacturing Program EERE, in partnership with Lawrence Livermore National Laboratory (LLNL), announced the second round of selections for the High Performance Computing for Manufacturing ("HPC4Mfg") Program. Thirteen projects were selected to receive nearly $3.8 million for manufacturers to use high-performance

  8. Battery Charger Efficiency

    Energy Savers [EERE]

    Battery Chargers Marine and RV battery chargers differ from power tool and small appliance chargers CEC Testing assumes all variables are known - battery chemistry, battery size. ...

  9. Advanced Vehicles Group: Center for Transportation Technologies and Systems

    SciTech Connect (OSTI)

    Not Available

    2008-08-01

    Describes R&D in advanced vehicle systems and components (e.g., batteries) by NREL's Advanced Vehicles Group.

  10. Battery Calorimetry Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calorimetry Laboratory - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  11. Clean Energy Manufacturing Initiative

    SciTech Connect (OSTI)

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  12. AEA Battery Systems Ltd | Open Energy Information

    Open Energy Info (EERE)

    United Kingdom Zip: KW14 7XW Product: Designs, manufactures and supplies specialist lithium-ion high performance cells and batteries. Coordinates: 36.482929, -94.323563 Show...

  13. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by ensuring critical feedback from the production phase to invention and discovery. Additive manufacturing is just one of several technologies advanced by the Energy...

  14. Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Office (AMO) manufacturing.energy.gov 3 Morning Agenda 9:00am - 9:05am Welcome Mark Johnson Director, Advanced Manufacturing Office 9:05am - 9:20am Clean Energy Manufacturing Initiative David Danielson Assistant Secretary Energy Efficiency and Renewable Energy 9:20am - 9:50am Advanced Manufacturing Office Overview and Review of RFI Results Mark Johnson Director, Advanced Manufacturing Office 9:50am - 10:30am Panel Discussion: DOE Perspectives Mark Shuart, Advanced

  15. Slideshow: Innovation in the Manufacturing Sector

    Broader source: Energy.gov [DOE]

    Learn how advanced technologies are helping manufacturers reduce waste, increase productivity and become leaders in the clean energy economy.

  16. Battery and Electric Drive Awardee List from American Recovery and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reinvestment Act funding | Department of Energy Awardee List from American Recovery and Reinvestment Act funding Battery and Electric Drive Awardee List from American Recovery and Reinvestment Act funding This is a list of the awardees from American Recovery and Reinvestment Act funding: $1.5 billion in grants to United States-based manufacturers to produce batteries and their components and to expand battery recycling capacity $500 million in grants to United States-based manufacturers to

  17. Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.' -Edited excerpt from Medical Applications of Non-medical ...

  18. Vehicle Technologies Office Merit Review 2016: Dramatically Improve the Safety Performance of Li Ion Battery Separators and Reduce the Manufacturing Cost Using UV Curing and High Precision Coating Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Miltec UV International at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  19. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    SciTech Connect (OSTI)

    Harry Littleton; John Griffin

    2011-07-31

    This project was a subtask of Energy Saving Melting and Revert Reduction Technology (“Energy SMARRT”) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy saving estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU’s/year and 6.46 trillion BTU’s/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).

  20. Nanostructured Anodes for Lithium-Ion Batteries - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Find More Like This Return to Search Nanostructured Anodes for Lithium-Ion Batteries New Anodes for Lithium-ion Batteries Increase Energy Density Four-Fold...

  1. A Review of Battery Life-Cycle Analysis. State of Knowledge and Critical Needs

    SciTech Connect (OSTI)

    Sullivan, J. L.; Gaines, L.

    2010-10-01

    This report examines battery life-cycle assessments with a focus on cradle-to-gate (CTG) energy and greenhouse gas (GHG) and criteria emissions. This includes battery manufacturing and as the production of materials that make up batteries. The report covers both what is known about battery life cycles, as well as what needs to be established for better environmental evaluations.

  2. Fact Sheet: Accelerating the Development and Deployment of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles ... draws propulsion energy using a traction battery with at least four kilowatt hours of ...

  3. Fact Sheet: Accelerating the Development and Deployment of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    including Battery Electric and Fuel Cell Electric Vehicles Fact Sheet: Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and ...

  4. NREL: Energy Storage - NREL Kicks Off Next Phase of Advanced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cycle of batteries while improving their performance, safety, lifespan, and cost. Advanced battery technologies are essential to boost electric drive vehicle performance and ...

  5. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2015-01-13

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  6. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  7. Vehicle Technologies Office Research Partner Requests Proposals for Battery Cell Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    The US Advanced Battery Consortium is accepting proposals for projects that will develop advanced battery cells using active materials from recycled, end-of-vehicle life lithium-ion batteries. USABC collaborates with the Vehicle Technologies Office to conduct research and development on batteries for vehicles.

  8. Revolutionizing Clean Energy Technology with Advanced Composites

    SciTech Connect (OSTI)

    Hockfield, Susan; Holliday Jr, Charles O.; Markell, Brad

    2015-01-13

    Energy conservation and manufacturing leaders discuss manufacturing products with advance composites to revolutionize the future with clean energy technology.

  9. Battery Calendar Life Estimator Manual Modeling and Simulation

    SciTech Connect (OSTI)

    Jon P. Christophersen; Ira Bloom; Ed Thomas; Vince Battaglia

    2012-10-01

    The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

  10. Battery Life Estimator Manual Linear Modeling and Simulation

    SciTech Connect (OSTI)

    Jon P. Christophersen; Ira Bloom; Ed Thomas; Vince Battaglia

    2009-08-01

    The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

  11. KAir Battery

    Broader source: Energy.gov [DOE]

    KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

  12. Energy 101: Clean Energy Manufacturing

    SciTech Connect (OSTI)

    2015-07-09

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  13. Explore Careers in Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Explore Careers in Manufacturing The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a transformation in U.S. manufacturing. The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a

  14. Materials cost evaluation report for high-power Li-ion batteries.

    SciTech Connect (OSTI)

    Henriksen, G. L.; Amine, K.; Liu, J.

    2003-01-10

    The U.S. Department of Energy (DOE) is the lead federal agency in the partnership between the U.S. automobile industry and the federal government to develop fuel cell electric vehicles (FCEVs) and hybrid electric vehicles (HEVs) as part of the FreedomCAR Partnership. DOE's FreedomCAR and Vehicle Technologies Office sponsors the Advanced Technology Development (ATD) Program--involving 5 of its national laboratories--to assist the industrial developers of high-power lithium-ion batteries to overcome the barriers of cost, calendar life, and abuse tolerance so that this technology can be rendered practical for use in HEV and FCEV applications under the FreedomCAR Partnership. In the area of cost reduction, Argonne National Laboratory (ANL) is working to identify and develop advanced anode, cathode, and electrolyte components that can significantly reduce the cost of the cell chemistry, while simultaneously extending the calendar life and enhancing the inherent safety of this electrochemical system. The material cost savings are quantified and tracked via the use of a cell and battery design model that establishes the quantity of each material needed in the production of batteries that are designed to meet the requirements of a minimum-power-assist HEV battery or a maximum-power-assist HEV battery for the FreedomCAR Partnership. Similar models will be developed for FEV batteries when the requirements for those batteries are finalized. In order to quantify the material costs relative to the FreedomCAR battery cost goals, ANL uses (1) laboratory cell performance data, (2) its battery design model and (3) battery manufacturing process yields to create battery-level material cost models. Using these models and industry-supplied material cost information, ANL assigns battery-level material costs for different cell chemistries. These costs can then be compared with the battery cost goals to determine the probability of meeting the goals with these cell chemistries. As can be

  15. GM Li-Ion Battery Pack Manufacturing

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. GM Li-Ion Battery Pack Manufacturing

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  17. Lithium battery

    SciTech Connect (OSTI)

    Ikeda, H.; Nakaido, S.; Narukara, S.

    1983-08-16

    In a lithium battery having a negative electrode formed with lithium as active material and the positive electrode formed with manganese dioxide, carbon fluoride or the like as the active material, the discharge capacity of the negative electrode is made smaller than the discharge capacity of the positive electrode, whereby a drop in the battery voltage during the final discharge stage is steepened, and prevents a device using such a lithium battery as a power supply from operating in an unstable manner, thereby improving the reliability of such device.

  18. US-ABC Collaborates to Lower Cost of Electric Drive Batteries

    Broader source: Energy.gov [DOE]

    The U.S. Advanced Battery Consortium (US-ABC) is a group that funds electrochemical storage research and development.

  19. EERE Success Story—US-ABC Collaborates to Lower Cost of Electric Drive Batteries

    Broader source: Energy.gov [DOE]

    The U.S. Advanced Battery Consortium (US-ABC) is a group that funds electrochemical storage research and development.

  20. NERSC Helps Develop Next-Gen Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December 18, 2012 Contact: Linda Vu, lvu@lbl.gov, +1 510 495 2402 XBD201110-01310.jpg Kristin Persson To reduce the United States' reliance on foreign oil and lower consumer energy costs, the Department of Energy (DOE) is bringing together five national laboratories, five universities and four private firms to revolutionize

  1. Polymers For Advanced Lithium Batteries

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Flow battery

    DOE Patents [OSTI]

    Lipka, Stephen M.; Swartz, Christopher R.

    2016-02-23

    An electrolyte system for a flow battery has an anolyte including [Fe(CN).sub.6].sup.3- and [Fe(CN).sub.6].sup.4- and a catholyte including Fe.sup.2+ and Fe.sup.3+.

  3. Integrated Manufacturing for Advanced MEAs

    SciTech Connect (OSTI)

    Emory S. De Castro; Yu-Min Tsou; Mark G. Roelofs; Olga Polevaya

    2007-03-30

    This program addressed a two-pronged goal for developing fuel cell components: lowering of precious metal content in membrane electrode assemblies (MEAs), thereby reducing the fuel cell cost, and creating MEAs that can operate at 120oC and 25% RH whereby the system efficiency and effectiveness is greatly improved. In completing this program, we have demonstrated a significant reduction in precious metal while at the same time increasing the power output (achieved 2005 goal of 0.6g/Kw). We have also identified a technology that allows for one step fabrication of MEAs and appears to be a feasible path toward achieving DOE’s 2010 targets for precious metal and power (approaches 0.2g/Kw). Our team partner Du Pont invented a new class of polymer electrolyte membrane that has sufficient stability and conductivity to demonstrate feasibility for operation at 120 oC and low relative humidity. Through the course of this project, the public has benefited greatly from numerous presentations and publications on the technical understanding necessary to achieve these goals.

  4. Advanced Materials Manufacturing (AMM) Session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and complementary experimentalcomputational materials data - Provide an accessible brain trust of professionals highly skilled in computational materials techniques, such as ...

  5. Bipolar battery

    DOE Patents [OSTI]

    Kaun, Thomas D.

    1992-01-01

    A bipolar battery having a plurality of cells. The bipolar battery includes: a negative electrode; a positive electrode and a separator element disposed between the negative electrode and the positive electrode, the separator element electrically insulating the electrodes from one another; an electrolyte disposed within at least one of the negative electrode, the positive electrode and the separator element; and an electrode containment structure including a cup-like electrode holder.

  6. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology (August 2013) | Department of Energy Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013) East Penn Manufacturing, through its subsidary Ecoult, has designed and constructed an energy storage facility consisting of an array of UltraBattery modules integrated in a turnkey battery energy storage system. The UltraBattery technology is a significant

  7. AMO Requests Technical Topics Suitable for a Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Institute AMO Requests Technical Topics Suitable for a Manufacturing Innovation Institute April 17, 2014 - 12:23pm Addthis The Advanced Manufacturing Office...

  8. Modeling the Performance and Cost of Lithium-Ion Batteries for...

    Office of Scientific and Technical Information (OSTI)

    National Laboratory for lithium-ion battery packs used in automotive transportation. ... calculated by accounting for every step in the lithium-ionbattery manufacturing process. ...

  9. Predictive Models of Li-ion Battery Lifetime (Presentation) Smith...

    Office of Scientific and Technical Information (OSTI)

    Predictive Models of Li-ion Battery Lifetime (Presentation) Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A. 25 ENERGY STORAGE; 33 ADVANCED PROPULSION...

  10. Oak Ridge Manufacturing Demonstration Facility (MDF)

    Broader source: Energy.gov [DOE]

    The Manufacturing Demonstration Facility (MDF) is a collabora­tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

  11. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  12. Robotic thermal battery pellet fabrication

    SciTech Connect (OSTI)

    Kimbler, D.L.; Townsend, A.S.; Walton, R.D.; Jones, C.W.

    1985-03-01

    Thermal battery manufacturing at the General Electric Neutron Devices Department (GEND) is a sequence of operations involving materials processing, component manufacture, and assembly. These operations, for the most part, have been manually performed although some operations have been computer- or fixture-assisted. The high labor intensity and the need for process consistency in these operations made the conversion to a robotic work cell appealing in that it could increase productivity while allowing the reassignment of highly-trained workers to other duties. An Alpha robot (Microbot, Inc.) was coupled with a Hewlett-Packard HP-9816 microcomputer, and custom software was developed to control the thermal battery manufacturing process. The software provided a menu-driven main program with feedback at virtually every step to allow technicians with little or no computer experience to operate the system. Previously, one or two workers were assigned to each of several industrial presses used in the manufacture of thermal batteries. With the introduction of a robotic operator and a microcomputer process control, one worker alone could support two to three presses, thus freeing as many as five workers to be assigned to other labor intensive duties. The production rate of the robotic work cell was approximately the same as the manual method, but the consistency of production and yield showed significant improvement.

  13. Celgard and Entek - Battery Separator Development | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. es_08_tataria.pdf (2.24 MB) More Documents & Publications USABC Battery Separator Development Overview and Progress of United States Advanced Battery Consortium (USABC) Activity Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries

  14. New Imaging Technique Shows Nanoscale Workings of Rechargeable Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Imaging Technique Shows Nanoscale Workings of Rechargeable Batteries There's a new tool in the push to engineer rechargeable batteries that last longer and charge more quickly. An X-ray microscopy technique recently developed at Advanced Light Source has given scientists the ability to image nanoscale changes inside lithium-ion battery particles as they charge and discharge. ← Previous Next →

  15. Report to the President on Ensuring American Leadership in Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing | Department of Energy Report to the President on Ensuring American Leadership in Advanced Manufacturing Report to the President on Ensuring American Leadership in Advanced Manufacturing pcast_june2011.pdf (975.42 KB) More Documents & Publications Report to the President on Capturing Domestic Competitive Advantage in Advanced Manufacturing A National Strategic Plan For Advanced Manufacturing The Advanced Manufacturing Partnership and the Advanced Manufacturing National

  16. Performance of the Lester battery charger in electric vehicles

    SciTech Connect (OSTI)

    Vivian, H.C.; Bryant, J.A.

    1984-04-15

    Tests were performed on an improved battery charger manufactured by Lester Electrical of Nebraska, Inc. This charger was installed in a South Coast Technology Rabbit No. 4, which was equipped with lead-acid batteries produced by ESB Company. The primary purpose of the testing was to develop test methodologies for battery charger evaluation. To this end tests were developed to characterize the charger in terms of its charge algorithm and to assess the effects of battery initial state of charge and temperature on charger and battery efficiency. Tests showed this charger to be a considerable improvement in the state of the art for electric vehicle chargers.

  17. Organic Cathode Materials for Rechargeable Batteries

    SciTech Connect (OSTI)

    Cao, Ruiguo; Qian, Jiangfeng; Zhang, Jiguang; Xu, Wu

    2015-06-28

    This chapter will primarily focus on the advances made in recent years and specify the development of organic electrode materials for their applications in rechargeable lithium batteries, sodium batteries and redox flow batteries. Four various organic cathode materials, including conjugated carbonyl compounds, conducting polymers, organosulfides and free radical polymers, are introduced in terms of their electrochemical performances in these three battery systems. Fundamental issues related to the synthesis-structure-activity correlations, involved work principles in energy storage systems, and capacity fading mechanisms are also discussed.

  18. FACT SHEET: 48C MANUFACTURING TAX CREDITS

    Broader source: Energy.gov [DOE]

    The Advanced Energy Manufacturing Tax Credit Program is helping build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment. On February 7,...

  19. AMO Hosted Workshop on Composite Manufacturing

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Advanced Manufacturing Office will host a workshop on Fiber Reinforced Polymer Composite Manufacturing on January 13, 2014 at the Hilton Crystal City in Arlington, VA.

  20. Iron Edison Battery Company | Open Energy Information

    Open Energy Info (EERE)

    is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced Nickel-iron (Ni-Fe) battery technology. Vastly out-lasting the 7...