National Library of Energy BETA

Sample records for advanced automotive technologies

  1. Market Acceptance of Advanced Automotive Technologies (MA3T) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acceptance of Advanced Automotive Technologies (MA3T) Model (Oak Ridge National Laboratory) Objectives Forecasts sales of competing vehicle technologies among consumer segments. Analyzes how technology, infrastructure, consumer behavior, and policy affect sales of new technologies and determines the resulting societal, environmental and economic impacts. Key Attributes & Strengths MA3T can be used to investigate the societal benefits, costs, and employment impacts of market transitions

  2. Advanced Automotive Technologies annual report to Congress, fiscal year 1996

    SciTech Connect (OSTI)

    1998-03-01

    This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy`s Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation.

  3. Advanced Thermoelectric Materials and Generator Technology for Automotive

    Broader source: Energy.gov (indexed) [DOE]

    Waste Heat at GM | Department of Energy Overview of design, fabrication, integration, and test of working prototype TEG for engine waste heat recovery on Suburban test vehicle, and continuing investigation of skutterudite materials systems meisner.pdf (1.94 MB) More Documents & Publications Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical and Thermal

  4. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    SciTech Connect (OSTI)

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  5. Progress Report for Advanced Automotive Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 1999 FY 1999 FY 1999 FY 1999 Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Office of

  6. Vehicle Technologies Office: Graduate Automotive Technology Education (GATE)

    Broader source: Energy.gov [DOE]

    DOE established the Graduate Automotive Technology Education (GATE) Centers of Excellence to provide future generations of engineers and scientists with knowledge and skills in advanced automotive...

  7. Vehicle Technologies Office: Graduate Automotive Technology Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology ...

  8. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies | Lightweight Automotive Materials Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweight Automotive Materials Chapter 8: Technology Assessments Introduction to the Technology/System Overview of vehicle lightweighting Reducing vehicle weight affects transportation energy consumption by improving efficiency. Upwards of 85% of the energy in fuel is lost to thermal and mechanical inefficiency in the drivetrain 1 while the remaining 12-15% is used to overcome the tractive forces that resist forward motion. 2 Of these tractive forces, vehicle weight most significantly affects

  9. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D ...

  10. TODAY: Secretary Chu and Senator Stabenow to Announce Advanced Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Loan for Michigan Manufacturer | Department of Energy Senator Stabenow to Announce Advanced Automotive Technology Loan for Michigan Manufacturer TODAY: Secretary Chu and Senator Stabenow to Announce Advanced Automotive Technology Loan for Michigan Manufacturer July 13, 2011 - 12:00am Addthis Washington, D.C. - Today, U.S. Energy Secretary Steven Chu will join U.S. Senators Carl Levin and Debbie Stabenow on a conference call to make an announcement regarding an advanced automotive

  11. Automotive Turbocharging: Industrial Requirements and Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharging: Industrial Requirements and Technology Developments Automotive Turbocharging: Industrial Requirements and Technology Developments Significant improvements in ...

  12. Innovative Drivetrains in Electric Automotive Technology Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drivetrains in Electric Automotive Technology Education (IDEATE) Innovative Drivetrains in Electric Automotive Technology Education (IDEATE) 2012 DOE Hydrogen and Fuel Cells ...

  13. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop ...

  14. Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Technology Competition (AVTC) program is an engineering education program managed by Argonne National Laboratory for the U.S. Department of Energy in partnership with Natural Resources Canada and the U.S. and Canadian auto industries.

  15. Thermoelectrics: The New Green Automotive Technology | Department...

    Broader source: Energy.gov (indexed) [DOE]

    (5.35 MB) More Documents & Publications Automotive Thermoelectric Generators and HVAC Vehicular Thermoelectrics: A New Green Technology Thermoelectrics: The New Green Automotive

  16. Final report: U.S. competitive position in automotive technologies

    SciTech Connect (OSTI)

    Albert, Michael B.; Cheney, Margaret; Thomas, Patrick; Kroll, Peter

    2002-09-30

    Patent data are presented and analyzed to assess the U.S. competitive position in eleven advanced automotive technology categories, including automotive fuel cells, hydrogen storage, advanced batteries, hybrid electric vehicles and others. Inventive activity in most of the technologies is found to be growing at a rapid pace, particularly in advanced batteries, automotive fuel cells and ultracapacitors. The U.S. is the clear leader in automotive fuel cells, on-board hydrogen storage and light weight materials. Japan leads in advanced batteries, hybrid electric vehicles, ultracapacitors, and appears to be close to overtaking the U.S. in other areas of power electronics.

  17. An Analysis of Energy Savings Possible Through Advances in Automotive Tooling Technology

    SciTech Connect (OSTI)

    Rick Schmoyer, RLS

    2004-12-03

    The use of lightweight and highly formable advanced materials in automobile and truck manufacturing has the potential to save fuel. Advances in tooling technology would promote the use of these materials. This report describes an energy savings analysis performed to approximate the potential fuel savings and consequential carbon-emission reductions that would be possible because of advances in tooling in the manufacturing of, in particular, non-powertrain components of passenger cars and heavy trucks. Separate energy analyses are performed for cars and heavy trucks. Heavy trucks are considered to be Class 7 and 8 trucks (trucks rated over 26,000 lbs gross vehicle weight). A critical input to the analysis is a set of estimates of the percentage reductions in weight and drag that could be achieved by the implementation of advanced materials, as a consequence of improved tooling technology, which were obtained by surveying tooling industry experts who attended a DOE Workshop, Tooling Technology for Low-Volume Vehicle Production, held in Seattle and Detroit in October and November 2003. The analysis is also based on 2001 fuel consumption totals and on energy-audit component proportions of fuel use due to drag, rolling resistance, and braking. The consumption proportions are assumed constant over time, but an allowance is made for fleet growth. The savings for a particular component is then the product of total fuel consumption, the percentage reduction of the component, and the energy audit component proportion. Fuel savings estimates for trucks also account for weight-limited versus volume-limited operations. Energy savings are assumed to be of two types: (1) direct energy savings incurred through reduced forces that must be overcome to move the vehicle or to slow it down in braking. and (2) indirect energy savings through reductions in the required engine power, the production and transmission of which incur thermodynamic losses, internal friction, and other

  18. Graduate Automotive Technology Education (GATE) Initiative Awards |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Graduate Automotive Technology Education (GATE) Initiative Awards Graduate Automotive Technology Education (GATE) Initiative Awards September 8, 2011 - 11:46am Addthis Graduate Automotive Technology Education (GATE) Initiative Awards DOE's Graduate Automotive Technology Education (GATE) initiative will award $6.4 million over the course of five years to support seven Centers of Excellence at American colleges, universities, and university-affiliated research

  19. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Electrical ...

  20. PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR 2009 DOE Hydrogen Program and ...

  1. Penn State DOE Graduate Automotive Technology Education (Gate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Penn State DOE Graduate Automotive Technology Education (Gate) Program for In-Vehicle, High-Power Energy Storage Systems Penn State DOE Graduate Automotive Technology Education ...

  2. Fact #868: April 13, 2015 Automotive Technology Has Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles - Dataset Fact 868: April 13, 2015 Automotive Technology Has Improved ...

  3. Looking From A Hilltop: Automotive Propulsion System Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Looking From A Hilltop: Automotive Propulsion System Technology Looking From A Hilltop: Automotive Propulsion System Technology Outlook for global fuel economy requirements and ...

  4. Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive Inverter with New 900 Volt ...

  5. Vehicle Technologies Office Merit Review 2014: ICME Guided Development of Advanced Cast Aluminum Alloys For Automotive Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Ford at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ICME guided development of advanced cast...

  6. Graduate Automotive Technology Education (GATE) Center

    SciTech Connect (OSTI)

    Jeffrey Hodgson; David Irick

    2005-09-30

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its sixth year of operation. During this period the Center has involved thirteen GATE Fellows and ten GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center's focus area: hybrid drive trains and control systems. Eighteen GATE students have graduated, and three have completed their course work requirements. Nine faculty members from three departments in the College of Engineering have been involved in the GATE Center. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as internships, equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $4,000,000. Problem areas are discussed in the hope that future activities may benefit from the operation of the current program.

  7. Advanced vehicle technology analysis and evaluation activities

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    FY 2007 annual progress report evaluating the technologies and performance characteristics of advanced automotive powertrain components and subsystems in an integrated vehicle systems context.

  8. Vehicle Technologies Office Merit Review 2016: ICME Guided Development of Advanced Cast Aluminum Alloys for Automotive Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Ford at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Propulsion Materials

  9. Development of Thermoelectric Technology for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement. deer08_gundlach.pdf (1 MB) More Documents & Publications Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry Develop Thermoelectric

  10. Vehicle Technologies Office Merit Review 2015: ICME Guided Development of Advanced Cast Aluminum Alloys for Automotive Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ICME guided development of...

  11. Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inverter with New 900 Volt Silicon Carbide MOSFET Technology | Department of Energy 88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Presentation given by Cree at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about 88 kilowatt automotive inverter with new

  12. Engaging the Next Generation of Automotive Engineers through...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition Engaging the Next Generation of Automotive Engineers through Advanced Vehicle ...

  13. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy ... Engineering and Materials for Automotive Thermoelectric Applications Electrical and ...

  14. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ace_45_yang.pdf (1.15 MB) More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Solid-State Energy Conversion Overview

  15. Vehicle Technologies Office Merit Review 2016: 88 Kilowatt Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inverter with New 900 Volt Silicon Carbide MOSFET Technology | Department of Energy 88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Vehicle Technologies Office Merit Review 2016: 88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Presentation given by Cree at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Electric Drive Systems

  16. PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ti_01_anstrom.pdf (1.33 MB) More Documents & Publications IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS Vehicle Technologies Office Merit Review 2015: Penn State DOE Graduate

  17. Third annual report to Congress on the automotive technology development program

    SciTech Connect (OSTI)

    Not Available

    1982-03-01

    The Automotive Propulsion Research and Development Act of 1978 focused on advancing the technology of automotive propulsion systems. In formulating the Act, Congress found that: (1) existing automobiles do not meet the Nation's long-term environmental and energy goals; (2) insufficient resources are being devoted to research and development (R and D) on advanced automobile propulsion systems; (3) with sufficient R and D, alternatives to existing systems could meet long-term goals at reasonable cost; and (4) expanded R and D would complement and stimulate corresponding private sector efforts. Because of the Nation's energy problems, Congress felt that advanced automobile propulsion system technology should be developed quickly. Through the Act, Congress expressed its intent for the Department of Energy (DOE) to: (1) make R and D contracts and grants for development of advanced automobile propulsion systems within five years, or within the shortest practicable time consistent with appropriate R and D techniques; (2) evaluate and disseminate information about advanced automobile propulsion system technology; (3) preserve, enhance, and facilitate competition in R and D of existing and alternative automotive propulsion systems; and (4) supplement, but neither supplant nor duplicate, private industry R and D efforts. Summaries of the status of conventional powertrain technology, automotive technology development program, and the management plan and policy transition are given. Tables on contracts and grant procurement for advanced gas turbine engine systems, advanced Stirling engine systems, and the vehicle systems project are given. (WHK)

  18. Asola Advanced and Automotive Solar Systems GmbH | Open Energy...

    Open Energy Info (EERE)

    Asola Advanced and Automotive Solar Systems GmbH Jump to: navigation, search Name: Asola Advanced and Automotive Solar Systems GmbH Place: Erfurt, Germany Zip: D-99428 Sector:...

  19. Update and Expansion of the Center of Automotive Technology Excellence Under the Graduate Automotive Technology Education (GATE) Program at the University of Tennessee, Knoxville

    SciTech Connect (OSTI)

    Irick, David

    2012-08-30

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its seventh year of operation under this agreement, its thirteenth year in total. During this period the Center has involved eleven GATE Fellows and three GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the centers focus area: Advanced Hybrid Propulsion and Control Systems. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $2,000,000.

  20. TODAY: Secretary Chu and Senator Stabenow to Announce Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Senator Stabenow to Announce Advanced Automotive Technology Loan for Michigan Manufacturer TODAY: Secretary Chu and Senator Stabenow to Announce Advanced Automotive Technology Loan ...

  1. DOE Provides $4.7 Million to Support Excellence in Automotive Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education | Department of Energy $4.7 Million to Support Excellence in Automotive Technology Education DOE Provides $4.7 Million to Support Excellence in Automotive Technology Education August 29, 2005 - 2:47pm Addthis WASHINGTON, DC - The U.S. Department of Energy today announced the selection of eight universities that will receive $4.7 million to be Graduate Automotive Technology Education (GATE) Centers of Excellence. The goal of GATE is to train a future workforce of automotive

  2. Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Relevant to DOE Power Electronics Cost Targets | Department of Energy Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ape032_whaling_2013_o.pdf (1.3 MB) More Documents & Publications

  3. Technology Roadmap for Energy Reduction in Automotive Manufacturing

    SciTech Connect (OSTI)

    none,

    2008-09-01

    U.S. Department of Energy’s (DOE) Industrial Technologies Program (ITP), in collaboration with the United States Council for Automotive Research LLC (USCAR), hosted a technology roadmap workshop in Troy, Michigan in May 2008. The purpose of the workshop was to explore opportunities for energy reduction, discuss the challenges and barriers that might need to be overcome, and identify priorities for future R&D. The results of the workshop are presented in this report.

  4. Thermoelectrics: The New Green Automotive Technology | Department...

    Broader source: Energy.gov (indexed) [DOE]

    (2.09 MB) More Documents & Publications Vehicular Thermoelectrics: A New Green Technology Vehicular Thermoelectrics: A New Green Technology Vehicular Thermoelectrics: The New Green

  5. Thermoelectric Technology for Automotive Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  6. The ARPA-E Innovation Model: A Glimpse into the Future of Automotive Battery Technology

    SciTech Connect (OSTI)

    Gur, Ilan

    2014-03-07

    The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) focuses on funding game-changing R&D aimed at reducing U.S. foreign energy dependence and emissions. ARPA-E has made a strong commitment to support breakthrough energy storage technologies that can accelerate the mass adoption of electrified vehicles. This presentation will highlight the range of ARPA-E's efforts in this area, offering a glimpse into the ARPA-E innovation model and the future of automotive battery technology.

  7. The ARPA-E Innovation Model: A Glimpse into the Future of Automotive Battery Technology

    ScienceCinema (OSTI)

    Gur, Ilan (Program Director and Senior Advisor, ARPA-E)

    2014-04-11

    The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) focuses on funding game-changing R&D aimed at reducing U.S. foreign energy dependence and emissions. ARPA-E has made a strong commitment to support breakthrough energy storage technologies that can accelerate the mass adoption of electrified vehicles. This presentation will highlight the range of ARPA-E's efforts in this area, offering a glimpse into the ARPA-E innovation model and the future of automotive battery technology.

  8. Fourth annual report to Congress on the Automotive Technology Development Program

    SciTech Connect (OSTI)

    Not Available

    1983-11-01

    Program implementation and management are described. The status of conventional power-train technology is described with respect to uniform charge reciprocating Otto engine, stratified charge reciprocating Otto engine, rotary Otto engine, diesel engine, and transmissions. The three tasks of the Automotive Technology Development Program are discussed as follows; automotive gas turbine project, automotive Stirling engine development project, and the heavy duty transport technology project.

  9. Vehicle Technologies Office Merit Review 2014: Automotive Low Temperature Gasoline Combustion Engine Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about automotive low...

  10. Vehicle Technologies Office Merit Review 2015: Automotive Low Temperature Gasoline Combustion Engine Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about automotive low...

  11. Market Acceptance of Advanced Automotive Technologies Model ...

    Open Energy Info (EERE)

    and multiple regions. For more information, contact the ORNL Energy and Transportation Science Division at http:www.ornl.govscieesetsdcontactus.shtml References Retrieved...

  12. Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Report | Department of Energy Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low

  13. Vehicle Technologies Office: 2015 Advanced Combustion Engine Annual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Report | Department of Energy Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2015 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low

  14. Ceramic Technology for Advanced Heat Engines Project

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  15. Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on

  16. Advanced Optical Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Advanced Optical Components and Technologies program develops, creates and provides critical optical components for laser-based missions at LLNL. Past projects focused on ...

  17. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    SciTech Connect (OSTI)

    Anderson, Carl L

    2006-09-25

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  18. Automotive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  19. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles

  20. Advanced uranium enrichment technologies

    SciTech Connect (OSTI)

    Merriman, R.

    1983-03-10

    The Advanced Gas Centrifuge and Atomic Vapor Laser Isotope Separation methods are described. The status and potential of the technologies are summarized, the programs outlined, and the economic incentives are noted. How the advanced technologies, once demonstrated, might be deployed so that SWV costs in the 1990s can be significantly reduced is described.

  1. Argonne Outloud promo: From Atoms to Advanced Energy Technologies | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory promo: From Atoms to Advanced Energy Technologies Share Browse By - Any - General Argonne Information Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Powertrain research --Building design ---Construction --Manufacturing -Energy sources --Renewable energy ---Bioenergy ---Solar energy --Fossil fuels ---Natural

  2. Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing

  3. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Broader source: Energy.gov (indexed) [DOE]

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Development of Cost-Competitive ...

  4. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry On Thermoelectric Properties of p-Type Skutterudites Development of Thermoelectric ...

  5. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    SciTech Connect (OSTI)

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  6. Advanced Modular Inverter Technology Development

    SciTech Connect (OSTI)

    Adam Szczepanek

    2006-02-04

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks

  7. Implementing Advances in Transport Security Technologies | Department...

    Office of Environmental Management (EM)

    Implementing Advances in Transport Security Technologies Implementing Advances in Transport Security Technologies Implementing Advances in Transport Security Technologies More...

  8. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership ...

  9. Ceramic technology for advanced heat engines project

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  10. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and ...

  11. Revolutionizing Clean Energy Technology with Advanced Composites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revolutionizing Clean Energy Technology with Advanced Composites Revolutionizing Clean Energy Technology with Advanced Composites Addthis

  12. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  13. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL ... Advanced Conversion Roadmap Workshop Conversion Technologies for Advanced Biofuels - ...

  14. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Energy Savers [EERE]

    Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue ... on Conversion Technologies for Advanced Biofuels - Carbohydrates Conversion Technologies ...

  15. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  16. State Technologies Advancement Collaborative

    SciTech Connect (OSTI)

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5

  17. 2011 Grants for Advanced Hydropower Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grants for Advanced Hydropower Technologies 2011 Grants for Advanced Hydropower Technologies 2011 Grants for Advanced Hydropower Technologies Click on an Awardee or Project Site...

  18. Guiding SSL Technology Advances | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guiding SSL Technology Advances Guiding SSL Technology Advances PDF icon Guiding Solid-State Lighting Technology Advances More Documents & Publications Doing Business with DOE's ...

  19. Fossil Energy Advanced Technologies (2008 - 2009) | Department...

    Office of Environmental Management (EM)

    Fossil Energy Advanced Technologies (2008 - 2009) Fossil Energy Advanced Technologies (2008 - 2009) Fossil Energy Advanced Technologies (2008 - 2009) (383.24 KB) Amendment: Energy ...

  20. Advanced Nuclear Technology: Advanced Light Water Reactors Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary Advanced Nuclear Technology: Advanced Light Water Reactors ...

  1. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generator Development for Automotive Waste Heat Recovery Thermoelectric Generator ... More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat ...

  2. Energy Storage - Advanced Technology Development Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Development Merit Review Energy Storage - Advanced Technology Development ... Research Program Annual Review Safety System Oversight Staffing Analysis - Blank ...

  3. Review and evaluation of automotive fuel conservation technologies. Final report

    SciTech Connect (OSTI)

    Siegel, H.M.; Schwarz, R.; Andon, J.; Kolars, G.; Gerstenberger, T.

    1981-12-01

    To support the Office of Research and Development of the National Highway Traffic Safety Administration with focused studies in areas affecting automotive fuel economy and related safety issues, a series of in-depth studies were carried out: Fuel Consumption Estimates of Stratified Charge Rotary Engines Installed in Five Vehicles; Oldsmobile Omega X Body Baseline Weight Data; GM X Body Material Substitution Weight Reduction/Cost Effectiveness Study; Calspan RSV Restraint System Cost Study; FMVSS No. 208 Extension to Light Trucks, Vans, and MPV's - Cost Lead Time Study; Multipiece Rims for Trucks, Buses, and Trailers; Identifying Design Changes, Cost Impacts and Manufacturing Lead Times to Upgrade FMVSS 114 for Passenger Cars, Trucks, and MPV's; Ford Escort GL Baseline Weight Data.

  4. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials

    SciTech Connect (OSTI)

    Beale, Andrew M.; Gao, Feng; Lezcano-Gonzalez, Ines; Peden, Charles HF; Szanyi, Janos

    2015-10-05

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade a renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3 SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptional high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ~5 years that lead to the introduction of these catalysts into practical application. The review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetics studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that are still need to be addressed in automotive exhaust control catalysis. Funding A.M.B. and I.L.G. would like to thank EPSRC for funding. F.G., C.H.F.P. and J.Sz. gratefully acknowledge

  5. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions.

  6. Advancing Clean Energy Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    DOE/EERE Solar Energy Technologies Program Fact Sheet - Advancing Clean Energy Technology, May 2010.

  7. Innovative Drivetrains in Electric Automotive Technology Education (IDEATE)

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Innovative Drivetrains in Electric Automotive Technology Education (IDEATE)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Advanced Green Technologies | Open Energy Information

    Open Energy Info (EERE)

    Green Technologies Jump to: navigation, search Name: Advanced Green Technologies Place: Fort Lauderdale, Florida Zip: 33311 Product: Advanced Green Technologies is a US-based...

  10. Advanced Propulsion Technology Strategy

    Broader source: Energy.gov [DOE]

    GM is also developing new classes of electrically driven vehicles, leveraging technology first used in their hybrids.

  11. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review emrgtech06_reedy_040213.pdf (403.24 KB) More Documents & Publications Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review Buildings Performance Database - 2013 BTO Peer Review Department of Energy

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy

  12. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  13. Vehicle Technologies Office Merit Review 2015: Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Vehicle Lab Benchmarking (L1&L2) Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2) Presentation given by Argonne ...

  14. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace050meisner2010o.pdf More...

  15. Electrochemical Energy Storage Technologies and the Automotive Industry

    ScienceCinema (OSTI)

    Mark Verbrugge

    2010-01-08

    The first portion of the lecture will relate global energy challenges to trends in personal transportation. Following this introduction, a short overview of technology associated with lithium ion batteries for traction applications will be provided. Last, I shall present new research results that enable adaptive characterization of lithium ion cells. Experimental and modeling results help to clarify the underlying electrochemistry and system performance. Specifically, through chemical modification of the electrodes, it is possible to place markers within the electrodes that signal the state of charge of a battery through abrupt voltage changes during cell operation, thereby allowing full utilization of the battery in applications. In closing, I shall highlight some promising materials research efforts that are expected to lead to substantially improved battery technology

  16. Guiding SSL Technology Advances

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's solid-state lighting (SSL) program builds collaborative industry and research community to guise SSL technology innovation. Provides an overview of DOE's SSL program and its comprehensive approach based on long-term relationships with the SSL industry and community. (April 2015)

  17. Development of Advanced Combustion Technologies for Increased...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Technologies for Increased Thermal Efficiency Development of Advanced Combustion Technologies for Increased Thermal Efficiency Investigation of fuel effects on ...

  18. Advancing Solar Through Photovoltaic Technology Innovations ...

    Energy Savers [EERE]

    Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity ...

  19. TRC Advanced Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Logo: TRC Advanced Technologies Inc Name: TRC Advanced Technologies Inc Address: 8700 Commerce Park Place: Houston, Texas Zip: 77036 Region: Texas Area Sector: Solar Product:...

  20. Voluntary Protection Program Onsite Review, Advanced Technologies...

    Office of Environmental Management (EM)

    Advanced Technologies and Laboratories, Inc., Hanford - Feb 2014 Voluntary Protection Program Onsite Review, Advanced Technologies and Laboratories, Inc., Hanford - Feb 2014...

  1. Offshore Wind Advanced Technology Demonstration Projects | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Demonstration Projects Offshore Wind Advanced Technology Demonstration Projects With roughly 80% of the U.S. electricity demand originating from coastal states, ...

  2. Three Offshore Wind Advanced Technology Demonstration Projects...

    Energy Savers [EERE]

    Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding ...

  3. Sec. Moniz Discusses Advanced Technology Vehicle Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moniz Discusses Advanced Technology Vehicle Manufacturing Loans Sec. Moniz Discusses Advanced Technology Vehicle Manufacturing Loans April 2, 2014 - 4:37pm Addthis NEWS MEDIA ...

  4. Technology Advancements for Next Generation Falling Particle...

    Office of Scientific and Technical Information (OSTI)

    Technology Advancements for Next Generation Falling Particle Receivers. Citation Details In-Document Search Title: Technology Advancements for Next Generation Falling Particle ...

  5. Center for Advanced Separation Technology (Technical Report)...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Center for Advanced Separation Technology Citation Details In-Document Search Title: Center for Advanced Separation Technology The U.S. is the largest producer of ...

  6. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research...

  7. Advanced Technology Vehicles Manufacturing Incentive Program | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles manufacturing incentive program. Advanced Technology Vehicles Manufacturing Incentive Program (1.49 MB) More Documents & Publications Advanced Technology Vehicles Manufacturing Incentive Program MEMA: Comments MEMA: Letter

  8. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel ...

  9. Gas Technology Institute (Partnership for Advanced Residential...

    Open Energy Info (EERE)

    Technology Institute (Partnership for Advanced Residential Retrofit) Jump to: navigation, search Name: Gas Technology Institute Place: Des Plaines, IL Website:...

  10. Advanced Particulate Filter Technologies for Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Specific ...

  11. Conversion Technologies for Advanced Biofuels - Carbohydrates Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production. ctab_webinar_carbohydrates_production.pdf (519.37 KB) More Documents & Publications Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading

  12. High Energy Novel Cathode / Alloy Automotive Cell | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es131_choi_2012_p.pdf (1.19 MB) More Documents & Publications High Energy Novel Cathode / Alloy Automotive Cell Vehicle Technologies Office Merit Review 2014: High Energy Novel Cathode / Alloy Automotive Cell Vehicle Technologies Office Merit Review 2016: Advanced High Energy Li-Ion Cell for PHEV and EV Applications

  13. Subsea completion technology needs advances

    SciTech Connect (OSTI)

    Ledbetter, R.

    1995-09-18

    Subsea technology needs further advances to reduce operational costs before operators will expand the use of subsea well completions in the Gulf of Mexico. They will continue to choose surface completion-oriented systems as long as these are more economical operationally than subsea system. Designs of subsea equipment such as trees, connectors, control pods, umbilicals, and flow lines, must bring about reductions in the cost of both installation and workover compatibility. Remote operated vehicle (ROV) manipulation is one avenue that should be exploited. The bottom line is that significant cooperation between equipment manufacturers and ROV companies is needed to develop advanced ROV technology, and operators should be involved to help guide operational strategies.

  14. Frontiers in Advanced Storage Technologies (FAST) project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage R&D Frontiers in Advanced Storage Technologies (FAST) project Working with vendors to develop new functionality in storage technologies generally not yet available to ...

  15. Advancing Solar Through Photovoltaic Technology Innovations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar ...

  16. Center for Advanced Separation Technology

    SciTech Connect (OSTI)

    Honaker, Rick

    2013-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, CAST is now a five-university consortium – Virginia Tech, West Virginia University, University of Kentucky, University of Utah and Montana Tech, - that is supported through U.S. DOE Cooperative Agreement No. DE-FE0000699, Center for Advanced Separation Technology. Much of the research to be conducted with Cooperative Agreement funds will be longer term, high-risk, basic research and will be carried out in two broad areas: Advanced Pre-Combustion Clean Coal Technologies and Gas-Gas Separations. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the five member universities. These were reviewed and the selected proposals were forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed below by category, along with abstracts from their final reports.

  17. Revolutionizing Clean Energy Technology with Advanced Composites

    SciTech Connect (OSTI)

    Hockfield, Susan; Holliday Jr, Charles O.; Markell, Brad

    2015-01-13

    Energy conservation and manufacturing leaders discuss manufacturing products with advance composites to revolutionize the future with clean energy technology.

  18. Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. ctab_webinar_carbohydrates_upgrading.pdf (583.49 KB) More Documents & Publications Advanced Conversion Roadmap Workshop Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels

  19. US Energy Secretary Chu Announces $528 Million Loan for Advanced Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology for Fisker Automotive | Department of Energy 528 Million Loan for Advanced Vehicle Technology for Fisker Automotive US Energy Secretary Chu Announces $528 Million Loan for Advanced Vehicle Technology for Fisker Automotive September 22, 2009 - 12:00am Addthis Washington, DC - Energy Secretary Steven Chu today announced a $528.7 million conditional loan for Fisker Automotive for the development of two lines of plug-in hybrids that will save hundreds of millions gallons of gasoline

  20. Science and Technology in the Physics and Advanced Technologies Directorate

    SciTech Connect (OSTI)

    Wootton, A J

    2004-11-16

    A compendium of LLNL Science and Technology Review articles involving scientist and engineers from the Physics and Advanced Technologies Directorate, from January 2002 to the present.

  1. Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    SciTech Connect (OSTI)

    Gregory Meisner

    2011-08-31

    integration costs into the material selection criteria in order to balance various materials, module and subsystem design, and vehicle integration options. Our work on advanced TE materials development and on TEG system design, assembly, vehicle integration, and testing proceeded in parallel efforts. Results from our two preliminary prototype TEGs using only Bi-Te TE modules allowed us to solve various mechanical challenges and to finalize and fine tune aspects of the design and implementation. Our materials research effort led us to quickly abandon work on PbTe and focus on the skutterudite materials due to their superior mechanical performance and suitability at automotive exhaust gas operating temperatures. We synthesized a sufficiently large quantity of skutterudite material for module fabrication for our third and final prototype. Our TEG#3 is the first of its kind to contain state-of-the-art skutterudite-based TE modules to be installed and tested on a production vehicle. The design, which consisted of 24 skutterudite modules and 18 Bi-Te modules, attempted to optimize electrical power generation by using these two kinds of TE modules that have their peak performance temperatures matched to the actual temperature profile of the TEG during operation. The performance of TEG#3 was limited by the maximum temperature allowable for the Bi-Te TE modules located in the colder end of the TEG, resulting in the operating temperature for the skutterudite modules to be considerably below optimum. We measured the power output for (1) the complete TEG (25 Watts) and (2) an individual TE module series string (1/3 of the TEG) operated at a 60°C higher temperature (19 Watts). We estimate that under optimum operating temperature conditions, TEG#3 will generate about 235 Watts. With additional improvements in thermal and electrical interfaces, temperature homogeneity, and power conditioning, we estimate TEG#3 could deliver a power output of about 425 Watts.

  2. Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    Broader source: Energy.gov [DOE]

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrows automobiles will function as a unified system to improve fuel efficiency.

  3. Categorical Exclusion Determinations: Advanced Technology Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Loan Program | Department of Energy Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations: Advanced Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations issued by Advanced Technology Vehicles Manufacturing Loan Program. DOCUMENTS AVAILABLE FOR DOWNLOAD September 6, 2011 CX-006488: Categorical Exclusion Determination Chrysler Group LLC, Revised Specific Project Application 2, Retooling, Reequipping and Engineering

  4. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    SciTech Connect (OSTI)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity

  5. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Advanced Materials Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Materials Manufacturing Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Advanced Materials Manufacuturing is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other

  6. Nick Wright Named Advanced Technologies Group Lead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nick Wright Named Advanced Technologies Group Lead Nick Wright Named Advanced Technologies Group Lead February 4, 2013 Nick Nick Wright has been named head of the National Energy Research Scientific Computing Center's (NERSC) Advanced Technologies Group (ATG), which focuses on understanding the requirements of current and emerging applications to make choices in hardware design and programming models that best serve the science needs of NERSC users. ATG specializes in benchmarking, system

  7. Energy Storage - Advanced Technology Development Merit Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Technology Development Merit Review Energy Storage - Advanced Technology Development Merit Review This document is a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Advanced Technology Development (ATD) program annual review. The review was held at the Argonne National Laboratory on August 9-10, 2005. A panel of knowledgeable, independent reviewers assessed the accomplishments of the ATD program and

  8. Advancing Concentrating Solar Power Technology, Performance, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dispatchability | Department of Energy Advancing Concentrating Solar Power Technology, Performance, and Dispatchability Advancing Concentrating Solar Power Technology, Performance, and Dispatchability Advancing Concentrating Solar Power Technology, Performance, and Dispatchability Energy storage will help enable CSP compete by adding flexibility value to a high-variable-generation (solar plus wind) power system (see Mehos et al. 2016). Compared with PV, CSP systems are more complex to

  9. Effects of Advanced Combustion Technologies on Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Technologies on Particulate Matter Emissions Characteristics Effects of Advanced Combustion Technologies on Particulate Matter Emissions Characteristics ...

  10. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...

    Energy Savers [EERE]

    Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates DOE report-out ... More Documents & Publications Conversion Technologies for Advanced Biofuels - ...

  11. Electrohydraulic Forming of Near Net Shape Automotive Panels

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Development of Advancing Automotive Panel Manufacturing for Increased Energy and Material Savings

  12. Advanced Vehicle Technology Analysis & Evaluation Team

    Broader source: Energy.gov [DOE]

    Presentation on Advanced Vehicle Technology Analysis & Evaluation Team to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  13. Vehicle Technologies Office: 2015 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for ...

  14. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for ...

  15. Advanced Solar Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    California Sector: Solar Product: California-based domestic and commercial designer and installer of solar energy equipment. References: Advanced Solar Technologies Inc1 This...

  16. Advanced Capacitor Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Advanced Capacitor Technologies Inc Place: Tokyo, Japan Zip: 196-8558 Sector: Carbon Product: Japanese manufacturer of ultracapacitors from...

  17. Cross-cutting Technologies for Advanced Biofuels

    Broader source: Energy.gov (indexed) [DOE]

    Cross-cutting Technologies for Advanced Biofuels Report-Out Webinar February 9, 2012 Adam ... Cost Largest cost contributor to biofuels production Impact of Harvesting...

  18. Advanced AMR Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Advanced AMR Technologies Inc Address: 285 Newbury Street Place: Peabody, Massachusetts Zip: 01960 Region: Greater Boston Area Sector: Efficiency Product:...

  19. Advanced Diesel Engine and Aftertreatment Technology Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003 DEER Conference Presentation: Detroit Diesel Corporation PDF icon 2003deerbolton1.pdf ...

  20. Advanced Lithium Ion Battery Technologies - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Advanced Lithium Ion Battery Technologies Lawrence ... improved battery life when used in the fabrication of negative silicon electrodes. ...

  1. Trinity Advanced Technology System Overview (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Trinity Advanced Technology System Overview Citation Details In-Document Search Title: ... Sponsoring Org: DOELANL Country of Publication: United States Language: English Subject: ...

  2. Vehicle Technologies Office: 2013 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  3. Vehicle Technologies Office: 2012 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  4. Vehicle Technologies Office: 2009 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report Annual report focusing on understanding and ...

  5. Vehicle Technologies Office: 2011 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  6. Vehicle Technologies Office: 2010 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The ...

  7. Vehicle Technologies Office: Advanced Battery Development, System...

    Energy Savers [EERE]

    The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, ... manuals, which are available from the USCAR Electrochemical Energy Storage Tech Team Website. ...

  8. Advanced Technology Development and Mitigation | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Advanced Technology Development and Mitigation (ATDM) subprogram includes laboratory code and computer engineering and science projects that pursue long-term simulation and ...

  9. Vehicle Technologies Office Merit Review 2015: Innovative Drivetrains in Electric Automotive Technology Education (IDEATE)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by University of Colorado Colorado Springs at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  10. Vehicle Technologies Office Merit Review 2014: Innovative Drivetrains in Electric Automotive Technology Education (IDEATE)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by University of Colorado at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Innovative Drivetrains...

  11. Chapter 7 - Advancing Systems and Technologies to Produce Cleaner...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and ...

  12. Advance Energy Technologies: Order (2013-CE-5302)

    Broader source: Energy.gov [DOE]

    DOE ordered Advance Energy Technologies, Inc., to pay a $8,000 civil penalty after finding Advance Energy Technologies had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standard.

  13. Cross-cutting Technologies for Advanced Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cross-cutting Technologies for Advanced Biofuels Cross-cutting Technologies for Advanced Biofuels NREL report-out presentation at the CTAB webinar on crosscutting technologies for advanced biofuels. ctab_webinar_crosscutting.pdf (1.34 MB) More Documents & Publications Innovative Topics for Advanced Biofuels Conversion Technologies for Advanced Biofuels - Carbohydrates Production Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading

  14. Advanced Manufacturing Office (Formerly Industrial Technologies Program) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. DOE's Advanced Manufacturing Office (85.03 KB) More Documents & Publications Innovative Manufacturing Initiative Recognition Day Manufacturing Demonstration Facilities Workshop Agenda, March 2012 Advanced Manufacturing

  15. Structural Automotive Components from Composite Materials | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting lm049_berger_2012_o.pdf (4.04 MB) More Documents & Publications Advanced Materials and Processing of Composites for High Volume Applications Advanced Materials and Processing of Composites for High Volume Applications Structural Automotive Components from Composite Materials

  16. Vehicle Technologies Office Merit Review 2015: Daikin Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daikin Advanced Lithium Ion Battery Technology High Voltage Electrolyte Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion Battery Technology High ...

  17. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

  18. GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications

    SciTech Connect (OSTI)

    2011-07-31

    This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

  19. DOE Announces Up to $5 Million to Support the Next Generation of Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Designers and Engineers | Department of Energy Up to $5 Million to Support the Next Generation of Advanced Automotive Designers and Engineers DOE Announces Up to $5 Million to Support the Next Generation of Advanced Automotive Designers and Engineers February 16, 2011 - 12:00am Addthis WASHINGTON, DC - Energy Secretary Steven Chu today announced up to $5 million in funding to support Graduate Automotive Technology Education (GATE) Centers of Excellence. The GATE Centers will focus

  20. Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab Benchmarking (L1&L2) | Department of Energy Technology Vehicle Lab Benchmarking (L1&L2) Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2) Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced technology vehicle lab benchmarking (L1&L2). vss030_stutenberg_2015_o.pdf (3.5 MB) More Documents

  1. TECHNOLOGIES TO OPTIMIZE ADVANCED TOKAMAK

    SciTech Connect (OSTI)

    SIMONEN, TC

    2004-01-01

    OAK-B135 Commercial fusion power systems must operate near the limits of the engineering systems and plasma parameters. Achieving these objectives will require real time feedback control of the plasma. This paper describes plasma control systems being used in the national DIII-D advanced tokamak research program.

  2. Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency, and Plug-in Hybrid Electric Vehicles | Department of Energy Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. alt_trans_study.pdf (122.75 KB) More Documents & Publications An Energy

  3. Funding Opportunity Announcement: Innovative Technologies to Advance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non-Powered Dam and Pumped-Storage Hydropower Development | Department of Energy Funding Opportunity Announcement: Innovative Technologies to Advance Non-Powered Dam and Pumped-Storage Hydropower Development Funding Opportunity Announcement: Innovative Technologies to Advance Non-Powered Dam and Pumped-Storage Hydropower Development July 26, 2016 - 4:00pm Addthis The Energy Department's Water Power Program has issued a Funding Opportunity Announcement (FOA) of $9.8 million for up to 12

  4. Advanced Materials Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Marketing Summaries (349) Success Stories (3) Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse

  5. EM Leads with Advanced Simulation Capability Technology

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Since 2010, EM’s Office of Soil and Groundwater Remediation has initiated technology development programs such as the Advanced Simulation Capability for Environmental Management (ASCEM) and the Applied Field Research Initiatives to enhance characterization and remediation technologies and create cost savings.

  6. Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY...

  7. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Energy Savers [EERE]

    Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels ...

  8. Advanced Combustion Technology to Enable High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research at Cummins ...

  9. Demonstrating Optimum HCCI Combustion with Advanced Control Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimum HCCI Combustion with Advanced Control Technology Demonstrating Optimum HCCI Combustion with Advanced Control Technology Presentation given at the 2007 Diesel ...

  10. Energy Department Invests $82 Million to Advanced Nuclear Technology...

    Energy Savers [EERE]

    Energy Department Invests 82 Million to Advanced Nuclear Technology Energy Department Invests 82 Million to Advanced Nuclear Technology June 14, 2016 - 1:41pm Addthis News ...

  11. Workshop on Conversion Technologies for Advanced Biofuels - Bio...

    Energy Savers [EERE]

    Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils Introduction ... More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil ...

  12. Technology Advances Needed for Photovoltaics to Achieve Widespread...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advances Needed for Photovoltaics to Achieve Widespread Grid Price Parity Technology Advances Needed for Photovoltaics to Achieve Widespread Grid Price Parity Abstract: ...

  13. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) Data Collection for Improved Cold Temperature Thermal Modeling Advanced Technology ...

  14. ITP Metal Casting: Advanced Melting Technologies: Energy Saving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and ...

  15. Green Racing: Accelerating the Use of Advanced Technologies ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Use of Advanced Technologies & Renewable Fuels, Developing Market Acceptance Green Racing: Accelerating the Use of Advanced Technologies & Renewable Fuels, Developing...

  16. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D ...

  17. U.S. Offshore Wind Advanced Technology Demonstration Projects...

    Office of Environmental Management (EM)

    Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting ...

  18. DOE Vehicle Technologies Program 2009 Merit Review Report - Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion DOE Vehicle Technologies Program 2009 Merit Review Report - Advanced Combustion Merit review of DOE Vehicle Technologies Program research efforts...

  19. 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced Combustion Advanced combustion research and development merit review results 2010amr04.pdf ...

  20. ATTAP: Advanced Turbine Technology Applications Project. Annual report, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Purpose of ATTAP is to bring the automotive gas turbine engine to a technology state at which industry can make commercialization decisions. Activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing.

  1. Frontiers in Advanced Storage Technologies (FAST) project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage R&D Frontiers in Advanced Storage Technologies (FAST) project Working with vendors to develop new functionality in storage technologies generally not yet available to industry. The NERSC project involves selecting particular technologies of interest, partnering with the vendor, assessing their hardware, and providing feedback or co-development to improve the product for use in HPC environments. The FAST project involves establishing long-term development collaboration agreements to

  2. Coherent Research Plan for the 3rd Generation Advanced high Strength Steels for Automotive Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  3. Advanced Thermal Control Enabling Cost Reduction for Automotive Power Electronics (Presentation)

    SciTech Connect (OSTI)

    Abraham, T.; Kelly, K.; Bennion, K.; Vlahinos, A.

    2008-09-01

    Describes NREL's work on next-generation vehicle cooling technologies (jets, sprays, microchannels) and novel packaging topologies to reduce costs and increase performance and reliability.

  4. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    Office of Energy Efficiency and Renewable Energy (EERE)

    Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary November 2014

  5. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  6. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  7. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  8. Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report | Department of Energy Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report 2009_avtae_hvso.pdf (22.02 MB) More Documents & Publications Well-to-Wheels Analysis

  9. Electrochromic Windows: Advanced Processing Technology

    SciTech Connect (OSTI)

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGEs production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.0261015BTU/yr) by the year 2017.

  10. Materials challenges in advanced coal conversion technologies

    SciTech Connect (OSTI)

    Powem, C.A.; Morreale, B.D.

    2008-04-15

    Coal is a critical component in the international energy portfolio, used extensively for electricity generation. Coal is also readily converted to liquid fuels and/or hydrogen for the transportation industry. However, energy extracted from coal comes at a large environmental price: coal combustion can produce large quantities of ash and CO{sub 2}, as well as other pollutants. Advanced technologies can increase the efficiencies and decrease the emissions associated with burning coal and provide an opportunity for CO{sub 2} capture and sequestration. However, these advanced technologies increase the severity of plant operating conditions and thus require improved materials that can stand up to the harsh operating environments. The materials challenges offered by advanced coal conversion technologies must be solved in order to make burning coal an economically and environmentally sound choice for producing energy.

  11. 10 Questions for an Automotive Engineer: Thomas Wallner

    Broader source: Energy.gov [DOE]

    Meet Thomas Wallner – automotive engineer extraordinaire, who hails from Argonne National Laboratory’s Center for Transportation Research. He took some time to answer our 10 Questions and share his insight on advanced engine technologies from dual-fuel to biofuels.

  12. Advanced Natural Gas Engine Technology for Heavy Duty Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Engine Technology for Heavy Duty Vehicles Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Natural gas engine technology has evolved to meet the ...

  13. Numerical Investigation of Advanced Compressor Technologies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Investigation of Advanced Compressor Technologies Numerical Investigation of Advanced Compressor Technologies The purpose of the work was to explore advanced boost technologies to support clean diesel combustion, such as HCCI/LTC applications. deer08_sun.pdf (189.93 KB) More Documents & Publications Numerical Investigation of Advanced Compressor Technologies Advanced boost system development for diesel HCCI/LTC applications Advanced Boost System Development for Diesel HCCI/LTC

  14. Vehicle Technologies Office Merit Review 2016: Advanced Technology Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab Benchmarking (L1&L2) | Department of Energy Technology Vehicle Lab Benchmarking (L1&L2) Vehicle Technologies Office Merit Review 2016: Advanced Technology Vehicle Lab Benchmarking (L1&L2) Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems vs030_stutenberg_2016_o_web.pdf (3.46 MB) More Documents & Publications Vehicle

  15. Upgrading the Center for Lightweighting Automotive Materials and Processing - a GATE Center of Excellence at the University of Michigan-Dearborn

    SciTech Connect (OSTI)

    Mallick, P. K.

    2012-08-30

    The Center for Lightweighting Materials and Processing (CLAMP) was established in September 1998 with a grant from the Department of Energy’s Graduate Automotive Technology Education (GATE) program. The center received the second round of GATE grant in 2005 under the title “Upgrading the Center for Lightweighting Automotive Materials and Processing”. Using the two grants, the Center has successfully created 10 graduate level courses on lightweight automotive materials, integrated them into master’s and PhD programs in Automotive Systems Engineering, and offered them regularly to the graduate students in the program. In addition, the Center has created a web-based lightweight automotive materials database, conducted research on lightweight automotive materials and organized seminars/symposia on lightweight automotive materials for both academia and industry. The faculty involved with the Center has conducted research on a variety of topics related to design, testing, characterization and processing of lightweight materials for automotive applications and have received numerous research grants from automotive companies and government agencies to support their research. The materials considered included advanced steels, light alloys (aluminum, magnesium and titanium) and fiber reinforced polymer composites. In some of these research projects, CLAMP faculty have collaborated with industry partners and students have used the research facilities at industry locations. The specific objectives of the project during the current funding period (2005 – 2012) were as follows: (1) develop new graduate courses and incorporate them in the automotive systems engineering curriculum (2) improve and update two existing courses on automotive materials and processing (3) upgrade the laboratory facilities used by graduate students to conduct research (4) expand the Lightweight Automotive Materials Database to include additional materials, design case studies and make it more

  16. AISI/DOE Technology Roadmap Program: Improved Surface Quality of Exposed Automotive Sheet Steels

    SciTech Connect (OSTI)

    John G. Speer; David K. Matlock; Noel Meyers; Young-Min Choi

    2002-10-10

    Surface quality of sheet steels is an important economic and technical issue for applications such as critical automotive surfaces. This project was therefore initiated to develop a more quantitative methodology for measuring surface imperfections, and to assess their response to forming and painting, particularly with respect to their visibility or invisibility after painting. The objectives were met, and included evaluation of a variety of imperfections present on commercial sheet surfaces or simulated using methods developed in the laboratory. The results are expected to have significant implications with respect to the methodology for assessing surface imperfections, development of quantitative criteria for surface inspection, and understanding and improving key painting process characteristics that influence the perceived quality of sheet steel surfaces.

  17. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carbohydrates Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates DOE report-out presentation at the CTAB webinar on carbohydrates. ctab_webinar_carbohydrates_intro.pdf (720.5 KB) More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels Cross-cutting Technologies for Advanced Biofuels

  18. Ceramic Automotive Stirling Engine Program

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  19. ZAP Advanced Battery Technologies JV | Open Energy Information

    Open Energy Info (EERE)

    battery manufacturer Advanced Battery Technologies focusing on manufacturing and marketing of advanced batteries for electric cars using the latest in nanotechnology....

  20. Vehicle Technologies Office Merit Review 2015: Impacts of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Advanced Combustion Engines Vehicle Technologies Office Merit Review 2015: Impacts of Advanced Combustion Engines Presentation given by Oak Ridge National Laboratory at ...

  1. Vehicle Technologies Office Merit Review 2014: Advanced Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions ...

  2. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mini-Van PHEV DOE Funded Project Advancing Transportation Through Vehicle Electrification - PHEV Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity...

  3. Overview of the Batteries for Advanced Transportation Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of the Batteries for Advanced Transportation Technologies (BATT) Program BATT Program- Summary and Future Plans Overview and Progress of the Batteries for Advanced ...

  4. Water-Efficient Technology Opportunity: Advanced Cooling Tower...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water-Efficient Technology Opportunity: Advanced Cooling Tower Controls The Federal Energy Management Program (FEMP) identified advanced cooling tower controls as a water-saving ...

  5. Technology Development Advances EM Cleanup | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development Advances EM Cleanup Technology Development Advances EM Cleanup The unique nature of many of EM's remaining facilities will require a strong and responsive engineering ...

  6. Materials performance in advanced fossil technologies

    SciTech Connect (OSTI)

    Natesan, K. )

    1991-11-01

    A number of advanced technologies are being developed to convert coal into clean fuels for use as a feedstock in chemical plants and for power generation. From the standpoint of component materials, the environments created by coal conversion and combustion in these technologies and their interactions with materials are of interest. This article identifies several modes of materials degradation and possible mechanisms for metal wastage. Available data on the performance of materials in several of the environments are highlighted, and examples of promising research activities to improve the corrosion resistance of materials are presented.

  7. Advances in window technology: 1973-1993

    SciTech Connect (OSTI)

    Arasteh, D.

    1994-12-31

    Until the 1970s, the thermal performance of windows and other fenestration technologies was rarely of interest to manufacturers, designers, and scientists. Since then, however, a significant research and industry effort has focused on better understanding window thermal and optical behavior, how windows influence building energy patterns, and on the development of advanced products. This chapter explains how fenestration technologies can make a positive impact on building energy flows, what physical phenomena govern window heat and light transfer, what new products have been developed, and what new products are currently the subject of international research efforts. 44 refs., 30 figs., 3 tabs.

  8. Advanced manufacturing: Technology and international competitiveness

    SciTech Connect (OSTI)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  9. Characterization and Development of Advanced Heat Transfer Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Development of Advanced Heat Transfer Technologies Characterization and Development of Advanced Heat Transfer Technologies 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape_11_kelly.pdf (1.49 MB) More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies Advanced Power Electronics and Electric Machines Air Cooling Technology

  10. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technologies and Advanced Manufacturing Webinar Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Download the presentation slides from the "Joint Fuel Cell Technologies Office and Advanced Manufacturing Office Webinar" held November 20, 2012. Joint Fuel Cell Technologies Office and Advanced Manufacturing Office Webinar Slides (1.56 MB) More Documents & Publications Hydrogen and Fuel Cell Technologies FY 2014 Budget Request Rollout to

  11. Driving Economic Growth: Advanced Technology Vehicles Manufacturing

    Broader source: Energy.gov [DOE]

    With $8 billion in loans and commitments to projects that have supported the production of more than 4 million fuel-efficient cars and more than 35,000 direct jobs across eight states, the Loan Programs Office Advanced Technology Vehicles Manufacturing (ATVM) loan program has played a key role in helping the American auto industry propel the resurgence of manufacturing in the United States.

  12. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    SciTech Connect (OSTI)

    Moe, Wayne Leland

    2015-05-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory

  13. Ceramic technology for Advanced Heat Engines Project

    SciTech Connect (OSTI)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  14. Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Technology - High Voltage Electrolyte | Department of Energy Daikin Advanced Lithium Ion Battery Technology - High Voltage Electrolyte Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion Battery Technology - High Voltage Electrolyte Presentation given by Daikin America at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion battery technology - high

  15. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Hugh W. Rimmer

    2004-05-12

    This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

  16. Technology development goals for automotive fuel cell power systems. Final report

    SciTech Connect (OSTI)

    James, B.D.; Baum, G.N.; Kuhn, I.F. Jr.

    1994-08-01

    This report determines cost and performance requirements for Proton Exchange Membrane (PEM) fuel cell vehicles carrying pure H{sub 2} fuel, to achieve parity with internal combustion engine (ICE) vehicles. A conceptual design of a near term FCEV (fuel cell electric vehicle) is presented. Complete power system weight and cost breakdowns are presented for baseline design. Near term FCEV power system weight is 6% higher than ICE system, mid-term FCEV projected weights are 29% lower than ICE`s. There are no inherently high-cost components in FCE, and at automotive production volumes, near term FCEV cost viability is closer at hand than at first thought. PEM current vs voltage performance is presented for leading PEM manufacturers and researchers. 5 current and proposed onboard hydrogen storage techniques are critically compared: pressurized gas, cryogenic liquid, combined pressurized/cryogenic, rechargeable hydride, adsorption. Battery, capacitor, and motor/controller performance is summarized. Fuel cell power system component weight and cost densities (threshold and goal) are tabulated.

  17. Air Cooling Technology for Advanced Power Electronics and Electric...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Air Cooling Technology for Power Electronic Thermal Control Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D ...

  18. Fact Sheet: Advanced Implementation of Energy Storage Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Technologies - Community Energy Storage for Grid Support (August 2013) Fact Sheet: Advanced Implementation of Energy Storage Technologies - Community Energy Storage for ...

  19. Advanced Biomass Gasification Technologies Inc ABGT | Open Energy...

    Open Energy Info (EERE)

    Biomass Gasification Technologies Inc ABGT Jump to: navigation, search Name: Advanced Biomass Gasification Technologies Inc. (ABGT) Place: New York, New York Zip: 10036 Product:...

  20. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar...

    Broader source: Energy.gov (indexed) [DOE]

    the presentation slides from the "Joint Fuel Cell Technologies Office and Advanced Manufacturing Office Webinar" held November 20, 2012. PDF icon Joint Fuel Cell Technologies ...

  1. Advances in Diesel Engine Technologies for European Passenger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation: Volkswagen AG ...

  2. Green Racing Initiative: Accelerating the Use of Advanced Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit ... Green Racing: Accelerating the Use of Advanced Technologies & Renewable Fuels, Developing ...

  3. Idaho National Laboratory Testing of Advanced Technology Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Idaho National Laboratory Testing of Advanced Technology Vehicles Vehicle Technologies Office Merit Review 2014: Idaho National Laboratory Testing of ...

  4. Advanced Ceramic Materials and Packaging Technologies for Realizing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors ...

  5. Energy Department Invests $67 Million to Advanced Nuclear Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    67 Million to Advanced Nuclear Technology Energy Department Invests 67 Million to Advanced Nuclear Technology August 20, 2014 - 12:00pm Addthis News Media Contact 202-586-4940 ...

  6. Samsung Advanced Institute of Technology SAIT | Open Energy Informatio...

    Open Energy Info (EERE)

    Advanced Institute of Technology SAIT Jump to: navigation, search Name: Samsung Advanced Institute of Technology (SAIT) Place: Yongin-Si, Gyeonggi-do, Korea (Republic) Zip: 449-712...

  7. Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress Report The Advanced Combustion Engine R&D subprogram ...

  8. Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual Progress Report Annual report on the work of the the Advanced...

  9. 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion | Department of Energy Advanced Combustion 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced Combustion Advanced combustion research and development merit review results 2010_amr_04.pdf (2.37 MB) More Documents & Publications 2012 Annual Merit Review Results Report - Advanced Combustion Engine Technologies Advanced Combustion Engine R&D and Fuels Technology Merit Review 2008 Annual Merit Review Results Summary - 7. Combustion Research

  10. Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Results | Department of Energy Advanced Vehicle Testing Activity (AVTA) Data and Results Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies through the Advanced Vehicle Testing Activity (AVTA). This effort collects performance data from a wide range of light-duty alternative fuel and advanced

  11. Conversion Technologies for Advanced Biofuels - Bio-Oil Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels - Bio-Oil Production. ctab_webinar_bio_oils_production.pdf (772.25 KB) More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading 2013 Peer Review Presentations-Bio-oil Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils

  12. Updated Guidance For Applicants To Advanced Technology Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Loan Program | Department of Energy Updated Guidance For Applicants To Advanced Technology Vehicles Manufacturing Loan Program Updated Guidance For Applicants To Advanced Technology Vehicles Manufacturing Loan Program Updated Guidance For Applicants To Advanced Technology Vehicles Manufacturing Loan Program (150.99 KB) More Documents & Publications ATVM Guidance for Applicants 11.4.14 Advanced Technology Vehicles Manufacturing Loan Program ATVM Loan Program Interim Final

  13. IPIRG programs - advances in pipe fracture technology

    SciTech Connect (OSTI)

    Wilkowski, G.; Olson, R.; Scott, P.

    1997-04-01

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  14. Advanced Technology System Scheduling Governance Model

    SciTech Connect (OSTI)

    Ang, Jim; Carnes, Brian; Hoang, Thuc; Vigil, Manuel

    2015-06-11

    In the fall of 2005, the Advanced Simulation and Computing (ASC) Program appointed a team to formulate a governance model for allocating resources and scheduling the stockpile stewardship workload on ASC capability systems. This update to the original document takes into account the new technical challenges and roles for advanced technology (AT) systems and the new ASC Program workload categories that must be supported. The goal of this updated model is to effectively allocate and schedule AT computing resources among all three National Nuclear Security Administration (NNSA) laboratories for weapons deliverables that merit priority on this class of resource. The process outlined below describes how proposed work can be evaluated and approved for resource allocations while preserving high effective utilization of the systems. This approach will provide the broadest possible benefit to the Stockpile Stewardship Program (SSP).

  15. Technological advancements in NGV station design

    SciTech Connect (OSTI)

    Ledbetter, G.S.; Grimmer, J.E.; Ketcham, E.T.

    1995-12-31

    Hurricane Compressors` SPRINT System (patent pending) is designed to increase the rate of flow from compressed natural gas (CNG) fuel stations and provide greater utilization of stored CNG than is available from traditional compressor stations. Using a novel method of adapting compressor operation to changes in CNG storage system pressures, this advanced technology provides an alternative mechanism for fuel delivery when demand for fuel is high. Transfer of CNG may be made at higher rates of flow than would be possible either from a pressure depleted storage system or directly from the compressor.

  16. Center for Lightweighting Automotive Materials and Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center for Lightweighting Automotive Materials and Processing 2008 Annual Merit Review Results Summary - 16. Technology Integration and Education GATE Center of Excellence in ...

  17. Electrifying the Automotive Market | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrifying the Automotive Market Argonne is developing battery technology that extends the range for electric vehicles while increasing safety and decreasing price. PDF icon...

  18. CENTER FOR ADVANCED SEPARATION TECHNOLOGY (CAST) PROGRAM

    SciTech Connect (OSTI)

    Yoon, Roe-Hoan; Hull, Christopher

    2014-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations.

  19. Systematic Discrimination of Advanced Hydrogen Production Technologies

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson

    2010-07-01

    The U.S. Department of Energy, in concert with industry, is developing a high-temperature gas-cooled reactor at the Idaho National Laboratory (INL) to demonstrate high temperature heat applications to produce hydrogen and electricity or to support other industrial applications. A key part of this program is the production of hydrogen from water that would significantly reduce carbon emissions compared to current production using natural gas. In 2009 the INL led the methodical evaluation of promising advanced hydrogen production technologies in order to focus future resources on the most viable processes. This paper describes how the evaluation process was systematically planned and executed. As a result, High-Temperature Steam Electrolysis was selected as the most viable near-term technology to deploy as a part of the Next Generation Nuclear Plant Project.

  20. Vehicle Technologies Office Merit Review 2016: Low Cost, High Capacity Non-Intercalation Chemistry Automotive Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Georgia Tech at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  1. Vehicle Technologies Office Merit Review 2015: High-Strength Electroformed Nanostructured Aluminum for Lightweight Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Xtalic Corporation at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-strength...

  2. Vehicle Technologies Office Merit Review 2016: High-Strength Electroformed Nanostructured Aluminum for Lightweight Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Xtalic Corporation at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Lightweighting

  3. Vehicle Technologies Office Merit Review 2016: Development of Low Cost, High Strength Automotive Aluminum Sheet

    Broader source: Energy.gov [DOE]

    Presentation given by ALCOA at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Lightweighting

  4. Vehicle Technologies Office Merit Review 2015: Understanding Protective Film Formation by Magnesium Alloys in Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about understanding...

  5. Vehicle Technologies Office Merit Review 2014: Understanding Protective Film Formation on Magnesium Alloys in Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about understanding...

  6. Vehicle Technologies Office Merit Review 2015: Crash Propagation in Automotive Batteries: Simulations and Validation

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about crash...

  7. Vehicle Technologies Office Merit Review 2014: Permanent Magnet Development for Automotive Traction Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Ames Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about permanent magnet development...

  8. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Advanced Sensors, Controls, Platforms and Modeling for Manufacturing is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between

  9. Advanced Electric Traction System Technology Development

    SciTech Connect (OSTI)

    Anderson, Iver

    2011-01-14

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  10. Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Data | Department of Energy Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data The Vehicle Technologies Office (VTO) supports testing and data collection on a wide range of advanced and alternative fuel vehicles and technologies through the Advanced Vehicle Testing Activity (AVTA) . The following table has downloadable performance, reliability, and driver behavior data for selected

  11. Vehicle Technologies Office Merit Review 2014: High Energy Novel Cathode / Alloy Automotive Cell

    Broader source: Energy.gov [DOE]

    Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy novel cathode / alloy...

  12. Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon Fiber Composite Structures

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...

  13. Vehicle Technologies Office Merit Review 2015: Low Cost, High Capacity Non-Intercalation Chemistry Automotive Cells

    Broader source: Energy.gov [DOE]

    Presentation given by Sila Nanotechnologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low cost, high capacity...

  14. Vehicle Technologies Office Merit Review 2015: Development of Computer-Aided Design Tools for Automotive Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of computer-aided...

  15. Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by CD-Adapco at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of computer-aided...

  16. Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of computer-aided...

  17. Vehicle Technologies Office Merit Review 2014: New High-Energy Electrochemical Couple for Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a new high-energy...

  18. Vehicle Technologies Office Merit Review 2015: New High-Energy Electrochemical Couple for Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about new high-energy...

  19. Vehicle Technologies Office Merit Review 2016: New High-Energy Electrochemical Couple for Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  20. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2005-01-20

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

  1. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  2. Fact Sheet: Energy Storage Technology Advancement Partnership (October

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012) | Department of Energy Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership (ESTAP) is a cooperative funding and information-sharing partnership between DOE and interested states that aims to accelerate the commercialization and deployment of energy storage technology in the U.S. via joint funding and coordination. For more information about how OE performs

  3. DOE Vehicle Technologies Program 2009 Merit Review Report - Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion | Department of Energy Advanced Combustion DOE Vehicle Technologies Program 2009 Merit Review Report - Advanced Combustion Merit review of DOE Vehicle Technologies Program research efforts 2009_merit_review_4.pdf (1.39 MB) More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials DOE Vehicle Technologies Program 2009 Merit Review Report - Fuels and Lubricants 2011 Annual Merit Review Results Report - Advanced Combustion

  4. Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    Broader source: Energy.gov [DOE]

    The APEEM subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies.

  5. Snorre subsea completions advance TFL technology

    SciTech Connect (OSTI)

    Gunnarsson, B.; Tonnessen, S.H. )

    1992-12-01

    Well-service operations on subsea completions at Saga Petroleum's Snorre field performed by TFL (through-flowline) methods. These operations will be carried out by an innovative system that advances the state-of-the-art for TFL technology. The initial field development phase for Snorre includes 10 subsea wells mounted no a large template known as the Subsea Production System, or SPS. The 2 [times] 10 well slot arrangement on the SPS allows additional wells to be drilled as needed to replace the original ten. The template is located 6,500 m (21,320 ft) from the Snorre TLP and is connected to it by two 8-in. production lines, one 8-in. water injection line and two 3-in.-ID TFL service lines. The wells will be completed with dual 3 1/2-in. Tubing strings for TFL service operations. This article will overview the Snorre TFL system and discuss completion design.

  6. GATE Center for Automotive Fuel Cell Systems at Virginia Tech

    SciTech Connect (OSTI)

    Nelson, Douglas

    2011-09-30

    The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: Expanded and updated fuel cell and vehicle technologies education programs; Conducted industry directed research in three thrust areas development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; Published research results that provide industry with new knowledge which contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Tech's comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.

  7. Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual Progress Report Annual report on the work of the the Advanced Combustion ...

  8. Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual Progress Report 2010advcombustionengine.pdf (16.62 MB) More ...

  9. Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual Progress Report Annual report on the work of the the Advanced Combustion ...

  10. Vehicle Technologies Office: Advanced Battery Development, System Analysis,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Testing | Department of Energy Advanced Battery Development, System Analysis, and Testing Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full battery systems. The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, and Testing

  11. Chapter 4: Advancing Clean Electric Power Technologies | Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The non-capture components of a power plant offer ... For pulverized coal plants it includes advanced turbines, ... than for more dilute air-fired combustion systems, which ...

  12. Under Secretary of Energy Highlights Advanced Energy Technologies to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustain America's Economic Growth | Department of Energy Highlights Advanced Energy Technologies to Sustain America's Economic Growth Under Secretary of Energy Highlights Advanced Energy Technologies to Sustain America's Economic Growth June 2, 2006 - 2:12pm Addthis HONEOYE FALLS, NY - U.S. Under Secretary of Energy David Garman today visited the General Motors (GM) Advanced Technologies Facility in Honeoye Falls, New York, with Rep. Randy Kuhl (NY-29th), to tour the facility and view new

  13. Three Offshore Wind Advanced Technology Demonstration Projects Receive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase 2 Funding | Department of Energy Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding September 11, 2014 - 3:16pm Addthis The U.S. Department of Energy (DOE) awarded additional funding to three of the seven projects from the Offshore Wind Advanced Technology Demonstration Funding Opportunity. Dominion Virginia Power, Fishermen's Energy of New Jersey, and Principle Power

  14. Inexpensive Delivery of Compressed Hydrogen with Advanced Vessel Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Inexpensive Delivery of Compressed Hydrogen with Advanced Vessel Technology Inexpensive Delivery of Compressed Hydrogen with Advanced Vessel Technology Presentation on inexpensive delivery of compressed hydrogen with advanced vessel technology. wkshp_storage_berry.pdf (367.52 KB) More Documents & Publications President's Hydrogen Fuel Initiative Overview of FreedomCAR & Fuels Partnership/DOE Delivery Program High-Pressure Tube Trailers and Tanks

  15. Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Technology Vehicles Manufacturing Loan Program Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program November 6, 2008 - 4:47pm Addthis On November 5, 2008, the Department of Energy issued the Interim Final Rule and accomplished writing the rule for Section 136 of EISA 2007 in approximately half of the 60-day expedited timeframe mandated by Congress. Historically, rulemaking at DOE takes 18 months. The Advanced Technology Vehicles Manufacturing Loan

  16. EA-1678: Nissan North America, Inc., Advanced Technology Electric Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Plant in Smyrna, TN | Department of Energy ATVM » ATVM Environmental Compliance » EA-1678: Nissan North America, Inc., Advanced Technology Electric Vehicle Manufacturing Plant in Smyrna, TN EA-1678: Nissan North America, Inc., Advanced Technology Electric Vehicle Manufacturing Plant in Smyrna, TN November 2, 2009 EA-1678: Final Environmental Assessment Loan To Nissan North America, Inc., for Advanced Technology Electric Vehicle Manufacturing Project in Smyrna, Tennessee

  17. EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project in Dearborn, MI | Department of Energy ATVM » ATVM Environmental Compliance » EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn, MI EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn, MI February 1, 2011 EA-1834: Final Environmental Assessment Loan to Severstal Dearborn, Inc., for Advanced Technology Vehicles Manufacturing Project in Dearborn, Michigan February 18, 2011 EA-1834: Finding of No Significant

  18. DOE Signs Advanced Enrichment Technology License and Facility Lease |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Enrichment Technology License and Facility Lease DOE Signs Advanced Enrichment Technology License and Facility Lease December 8, 2006 - 9:34am Addthis Announces Agreements with USEC Enabling Deployment of Advanced Domestic Technology for Uranium Enrichment WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today announced the signing of a lease agreement with the United States Enrichment Corporation, Inc. (USEC) for their use of the Department's gas

  19. Advanced Technology and Alternative Fuel Vehicle Basics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Technology and Alternative Fuel Vehicle Basics Advanced Technology and Alternative Fuel Vehicle Basics August 20, 2013 - 9:00am Addthis Photo of a large blue truck with 'PG&E Cleanair' written on the side. There are a variety of alternative fuel and advanced technology vehicles that run on fuels other than traditional petroleum. Learn about the following types of vehicles: Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid and Plug-In Electric Vehicles Natural Gas

  20. Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bio-Oils Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils Introduction presentation report-out at the CTAB webinar on bio-oils. ctab_webinar_bio_oils_intro.pdf (635.81 KB) More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading 2013 Peer Review Presnentations-Plenaries

  1. 16 Projects To Advance Hydropower Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology September 6, 2011 - 11:24am Addthis U.S. Department Energy Secretary Steven Chu and U.S. Department of the Interior Secretary Ken Salazar announced nearly $17 million in funding over the next three years for research and development projects to advance hydropower technology. The list of 16 projects in 11 different states can be found here. Applicant Location Award Amount; Funding is from DOE unless otherwise

  2. Voluntary Protection Program Onsite Review, Advanced Technologies and

    Office of Environmental Management (EM)

    Laboratories, Inc., Hanford - Feb 2014 | Department of Energy Laboratories, Inc., Hanford - Feb 2014 Voluntary Protection Program Onsite Review, Advanced Technologies and Laboratories, Inc., Hanford - Feb 2014 February 6. 2014 Evaluation to determine whether Advanced Technologies and Laboratories, Inc., Hanford is performing at a level deserving DOE-VPP Star recognition. Voluntary Protection Program Onsite Review, Advanced Technologies and Laboratories, Inc., Hanford - Feb 2014 (66.32 KB)

  3. Chapter 4 - Advancing Clean Electric Power Technologies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Chapter 4 - Advancing Clean Electric Power Technologies Chapter 4 - Advancing Clean Electric Power Technologies Chapter 4 - Advancing Clean Electric Power Technologies Clean electric power is paramount to today's mission to meet our interdependent security, economic, and environmental goals. While supporting aggressive emission reductions, the traditional market drivers such as reliability, safety, and affordability must be maintained and enhanced. The current portfolio of electric

  4. Vehicle Technologies Office Merit Review 2015: Impacts of Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Engines | Department of Energy Impacts of Advanced Combustion Engines Vehicle Technologies Office Merit Review 2015: Impacts of Advanced Combustion Engines Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about impacts of advanced combustion engines. vss140_curran_2015_p.pdf (5.06 MB) More Documents & Publications Vehicle Technologies Office Merit

  5. Chapter 6 - Innovating Clean Energy Technologies in Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing | Department of Energy 6 - Innovating Clean Energy Technologies in Advanced Manufacturing Chapter 6 - Innovating Clean Energy Technologies in Advanced Manufacturing Chapter 6 - Innovating Clean Energy Technologies in Advanced Manufacturing Clean energy manufacturing involves the minimization of the energy and environmental impacts of the production, use, and disposal of manufactured goods, which range from fundamental commodities such as metals and chemicals to sophisticated

  6. Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Fuels play a critical role throughout our economy. In 2013, fuels directly supplied about 99% of the energy needed by our national transportation system, 66% of that needed to generate our electricity, 68% of that needed by our industry, and 27% of that needed by our

  7. Technology development goals for automotive fuel cell power systems. Final report, Appendix B-2

    SciTech Connect (OSTI)

    Thomas, C.E.; James, B.D.

    1995-07-01

    Directed Technologies, Inc. has previously submitted a detailed technical assessment and concept design for a mid-size, five-passenger fuel cell electric vehicle (FCEV), under contract to the Argonne National Laboratory. As a supplement to that contract, DTI has reviewed the literature and conducted a preliminary evaluation of two energy carriers for the FCEV: hydrogen and methanol. This report compares the estimated fuel efficiency, cost of producing and delivering the fuel, and the resultant life cycle costs of the FCEV when fueled directly by hydrogen and when fueled by methanol with on-board reforming to produce the required hydrogen-rich gas for the fuel cell. This work will be supplemented and expanded under the Ford contract with the Department of Energy to develop the FCEV and its fuel infrastructure.

  8. Vehicle Technologies Office Merit Review 2014: Impacts of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines Vehicle Technologies Office Merit Review 2014: Impacts of Advanced Combustion Engines Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel ...

  9. Under Secretary Nominee Sees INL Advanced Vehicle Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Under Secretary Nominee Sees INL Advanced Vehicle Technology Facilities Acting Under Secretary of Energy and ARPA-E Director Dr. Arun Majumdar listens to INL engineers explain the ...

  10. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

    Broader source: Energy.gov [DOE]

    Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization presentation at the April 2013 peer review meeting held in Denver, Colorado.

  11. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...

    Office of Environmental Management (EM)

    Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. ctabwebinarbiooilsupgrading.pdf ...

  12. ATU Advanced Technology Upgrading Ltd | Open Energy Information

    Open Energy Info (EERE)

    Upgrading) Ltd Place: Israel Product: Focused on development of rechargeable magnesium battery. References: ATU (Advanced Technology Upgrading) Ltd1 This article is a stub. You...

  13. Advanced Technology Planning for Federal Energy Savings Performance Contracts

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Federal Energy Management Program helps agencies to identify and plan opportunities to deploy advanced technologies through federal energy savings performance contracts (ESPCs).

  14. EERE Demonstration for Advanced Retro-commissioning Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration for Advanced Retro-commissioning Technology: Predictive Energy Optimization (PEO) and Automated Demand Response for Commercial Building HVAC 2016 Building ...

  15. EERE Demonstration for Advanced Retro-commissioning Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE Demonstration for Advanced Retro-commissioning Technology: Predictive Energy Optimization (PEO) and Automated Demand Response for Commercial Building HVAC 2015 Building ...

  16. NTT Advanced Technology Corporation NTT AT | Open Energy Information

    Open Energy Info (EERE)

    search Name: NTT Advanced Technology Corporation (NTT-AT) Place: Tokyo, Tokyo, Japan Zip: 163-0431 Product: Telecommunications service provider. Coordinates: 35.670479,...

  17. EA-1985: Virginia Offshore Wind Technology Advancement Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles ... (OCS EISEA BOEM 2014-1000 and DOEEA-1985). http:www.boem.govVOWTAP PUBLIC ...

  18. DOE-Funded Primer Underscores Technology Advances, Challenges...

    Broader source: Energy.gov (indexed) [DOE]

    announces the release of "Modern Shale Gas Development in the United States: A Primer." ... on the technology advances and challenges that accompany deep shale gas development. ...

  19. Advanced Technology Development Center ATDC | Open Energy Information

    Open Energy Info (EERE)

    Development Center ATDC Jump to: navigation, search Name: Advanced Technology Development Center (ATDC) Place: United States Sector: Services Product: General Financial & Legal...

  20. Under Secretary of Energy Highlights Advanced Energy Technologies...

    Energy Savers [EERE]

    new advanced energy technologies such as hydrogen fuel cells. Under Secretary Garman discussed the importance of the development of hydrogen and other renewable energy sources as a ...

  1. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  2. Seven Universities Selected To Conduct Advanced Turbine Technology...

    Broader source: Energy.gov (indexed) [DOE]

    by the U.S. Department of Energy (DOE) to conduct advanced turbine technology studies under the Office of Fossil Energy's (FE) University Turbine Systems Research (UTSR) Program. ...

  3. Vehicle Technologies Office Merit Review 2014: Advanced Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts - enabling systems and solutions for high efficiency light duty...

  4. Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

  5. Sec. Chu Announces the First Auto Loans for Advanced Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    In Dearborn, Michigan Energy Secretary Steven Chu announced $8 billion in conditional loan commitments for the development of innovative, advanced vehicle technologies that will create thousands of...

  6. U.S. Offshore Wind Advanced Technology Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OFFSHORE WIND: ADVANCED TECHNOLOGY DEMONSTRATION PROJECTS + + + + + PUBLIC MEETING + + ... we are here 19 today to discuss our demonstration program, 20 which is the last and very ...

  7. The Center for Advanced Ceramics Technology CACT | Open Energy...

    Open Energy Info (EERE)

    itleTheCenterforAdvancedCeramicsTechnologyCACT&oldid780750" Feedback Contact needs updating Image needs updating Reference needed Missing content Broken link Other...

  8. Idaho National Laboratory Testing of Advanced Technology Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing Advanced Vehicle ...

  9. Overview of the Batteries for Advanced Transportation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    es00bduong2010o.pdf More Documents & Publications Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of...

  10. Vehicle Technologies Office Merit Review 2014: Advanced Combustion and Fuels

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion and fuels.

  11. EA-1678: Nissan North America, Inc., Advanced Technology Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ATVM ATVM Environmental Compliance EA-1678: Nissan North America, Inc., Advanced Technology Electric Vehicle Manufacturing Plant in Smyrna, TN EA-1678: Nissan North America, ...

  12. Climate Change Mitigation: An Analysis of Advanced Technology Scenarios

    SciTech Connect (OSTI)

    Clarke, Leon E.; Wise, Marshall A.; Placet, Marylynn; Izaurralde, R Cesar; Lurz, Joshua P.; Kim, Son H.; Smith, Steven J.; Thomson, Allison M.

    2006-09-18

    This report documents a scenario analysis that explores three advanced technology pathways toward climate stabilization using the MiniCAM model.

  13. Characterization and Development of Advanced Heat Transfer Technologies (Presentation)

    SciTech Connect (OSTI)

    Kelly, K.

    2009-05-01

    This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

  14. Chapter 4: Advancing Clean Electric Power Technologies | Carbon...

    Broader source: Energy.gov (indexed) [DOE]

    state- of-the-art (SOTA) technology for coal-fired power generation with CCS. Advanced ... As an example, the Dakota Gasification Company's Great Plains Synfuels Plant in ...

  15. Automotive Fuel Cell Corporation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Corporation n SNL researcher Cy Fujimoto demonstrates his new flexible hydrocarbon polymer electrolyte mem- brane, which could be a key factor in realizing a hydrogen car. The close partnership between Sandia and AFCC has resulted in a very unique and promising technology for future automotive applications. Dr. Rajeev Vohra Manager R&D AFCC Hydrocarbon Membrane Fuels the Suc- cess of Future Generation Vehicles While every car manufacturer, such as GM and Ford, has developed their

  16. Chapter 7: Advancing Systems and Technologies to Produce Cleaner...

    Broader source: Energy.gov (indexed) [DOE]

    Oil and Gas Technologies Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels Oil and Gas in the Energy Economy of the United States Fossil fuel resources account ...

  17. Vehicle Technologies Office Merit Review 2014: Advanced Battery Recycling

    Broader source: Energy.gov [DOE]

    Presentation given by OnTo Technology LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced battery recycling.

  18. Advances in Chip Technology, Packaging Enable White LED Breakthroughs

    Broader source: Energy.gov [DOE]

    Significant advances in chip technology have enabled Cree, Inc.'s Santa Barbara Technology Center to demonstrate white LEDs with record efficacies as high as 74 lumens per watt - on par with...

  19. DOE Projects to Advance Environmental Science and Technology | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Projects to Advance Environmental Science and Technology DOE Projects to Advance Environmental Science and Technology August 19, 2009 - 1:00pm Addthis Washington, DC - The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has selected nine new projects targeting environmental tools and technology for shale gas and coalbed methane (CBM) production. NETL's goals for these projects are to improve management of water resources, water usage, and water disposal, and

  20. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Innovating Clean Energy Technologies in Advanced Manufacturing September 2015 Quadrennial Technology Review 6 Innovating Clean Energy Technologies in Advanced Manufacturing Issues and RDD&D Opportunities  Manufacturing affects the way products are designed, fabricated, used, and disposed; hence, manufacturing technologies have energy impacts extending beyond the industrial sector.  Life-cycle analysis is essential to assess the total energy impact of a manufactured product. 

  1. Advanced Lost Foam Casting Technology - Phase V

    SciTech Connect (OSTI)

    Wanliang Sun; Harry E. Littleton; Charles E. Bates

    2004-04-29

    Previous research, conducted under DOE Contracts DE-FC07-89ID12869, DE-FC07-93ID12230 and DE-FC07-95ID113358 made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional developments were needed to improve the process and make it more functional in industrial environments. The current project focused on eight tasks listed as follows: Task 1--Computational Model for the Process and Data Base to Support the Model; Task 2--Casting Dimensional Accuracy; Task 3--Pattern Production; Task 4--Improved Pattern Materials; Task 5--Coating Control; Task 6--In-Plant Case Studies; Task 7--Energy and the Environmental Data; and Task 8--Technology Transfer. This report summarizes the work done on all tasks in the period of October 1, 1999 through September 30, 2004. The results obtained in each task and subtask are summarized in this Executive Summary and details are provided in subsequent sections of the report.

  2. Advanced ignition and propulsion technology program

    SciTech Connect (OSTI)

    Oldenborg, R.; Early, J.; Lester, C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

  3. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop and demonstrate pervasive materials technologies that reduce life-cycle energy ... and industry) to bridge the "Valley of Death" for new technologies and material systems. ...

  4. Sec. Chu Announces the First Auto Loans for Advanced Technologies

    SciTech Connect (OSTI)

    Secretary Chu

    2009-07-16

    Energy Secretary Steven Chu announced $8 billion in conditional loan commitments for the development of innovative, advanced vehicle technologies that will create thousands of green jobs while helping reduce the nation’s dangerous dependence on foreign oil. The first three auto loans for advanced technologies were awarded to Ford Motor Company, Nissan Motors and Tesla Motors.

  5. Sec. Chu Announces the First Auto Loans for Advanced Technologies

    ScienceCinema (OSTI)

    Secretary Chu

    2010-09-01

    Energy Secretary Steven Chu announced $8 billion in conditional loan commitments for the development of innovative, advanced vehicle technologies that will create thousands of green jobs while helping reduce the nation?s dangerous dependence on foreign oil. The first three auto loans for advanced technologies were awarded to Ford Motor Company, Nissan Motors and Tesla Motors.

  6. Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM

    Office of Energy Efficiency and Renewable Energy (EERE)

    Overview of design, fabrication, integration, and test of working prototype TEG for engine waste heat recovery on Suburban test vehicle, and continuing investigation of skutterudite materials systems

  7. Development of Advanced Combustion Technologies for Increased Thermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy Advanced Combustion Technologies for Increased Thermal Efficiency Development of Advanced Combustion Technologies for Increased Thermal Efficiency Investigation of fuel effects on low-temperature combustion, particularly HCCI / PCCI combustion deer09_gehrke.pdf (669.71 KB) More Documents & Publications The Role of Advanced Combustion in Improving Thermal Efficiency Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar Diesel HCCI

  8. UPDATED: Energy Department Announces New Advance in Biofuel Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy UPDATED: Energy Department Announces New Advance in Biofuel Technology UPDATED: Energy Department Announces New Advance in Biofuel Technology March 7, 2011 - 12:00am Addthis U.S. Energy Secretary Steven Chu today congratulated a team of researchers at the Department's BioEnergy Science Center who have achieved yet another advance in the drive toward next generation biofuels: using bacteria to convert plant matter directly into isobutanol, which can be burned in regular

  9. Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery and Components Testbed (EDAB) | Department of Energy Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB) Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Electric Drive and Advanced Battery and Components Testbed (EDAB).

  10. Vehicle Technologies Office: 2008 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles Advanced Soft Switching Inverter for Reducing Switching and Power Losses

  11. NREL: Technology Deployment - Microgrid Innovation Advances through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrid Innovation Advances through Demonstration and Deployment at MCAS Miramar News ... Through a continuous improvement loop of analysis, research, development, demonstration, ...

  12. Chapter 4: Advancing Clean Electric Power Technologies

    Broader source: Energy.gov (indexed) [DOE]

    dioxide power cycles, hybrid systems matching renewables with nuclear or fossil, and energy storage. Advanced capabilities in materials, computing, and manufacturing can...

  13. Advanced Reactor Technology Documents | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Reactor Concepts Technical Review Panel Report This report documents the establishment of a technical review process and the findings of the Advanced Reactor Concepts (ARC) ...

  14. SEMATECH: A Model for Advancing Solar Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEMATECH: A Model for Advancing Solar Technology SEMATECH: A Model for Advancing Solar Technology May 24, 2011 - 11:22am Addthis SEMATECH brings 14 companies together to help them share and collaborate in their most expensive and difficult manufacturing development projects. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs One of the hardest parts for start-up companies producing an emerging technology is the cost to test and develop more efficient

  15. Advanced Combustion Technology to Enable High Efficiency Clean Combustion |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research at Cummins to explore strategies for fuel economy improvements (PCCI and HECC) and redced engine-out NOx emissions. deer08_stanton.pdf (1.23 MB) More Documents & Publications Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions with Improved Thermal Efficiency Development of Enabling

  16. Renaissance in Flow-Cell Technologies: Recent Advancements and Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities | Department of Energy Renaissance in Flow-Cell Technologies: Recent Advancements and Future Opportunities Renaissance in Flow-Cell Technologies: Recent Advancements and Future Opportunities Presentation by Mike Perry, United Technologies Research Center, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC. flowcells2012_perry.pdf (2.33 MB) More Documents & Publications Flow Cells for Energy Storage Workshop Summary Report Energy Storage

  17. Fuels and Lubricants to Support Advanced Diesel Engine Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Lubricants to Support Advanced Diesel Engine Technology Fuels and Lubricants to Support Advanced Diesel Engine Technology 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_baranescu.pdf (87.57 KB) More Documents & Publications New Diesel Feedstocks and Future Fuels Future Engine Fluids Technologies: Durable, Fuel-Efficient, and Emissions-Friendly New Feedstocks and Replacement Fuel Diesel Engine Challenges

  18. Advanced Technology Development and Mitigation | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Advanced Technology Development and Mitigation The Advanced Technology Development and Mitigation (ATDM) subprogram includes laboratory code and computer engineering and science projects that pursue long-term simulation and computing goals relevant to the broad national security missions of the NNSA. It addresses the need to adapt current integrated design codes and build new codes that are attuned to emerging computing technologies. Performing this work within the

  19. Energy Department Invests $82 Million to Advanced Nuclear Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Invests $82 Million to Advanced Nuclear Technology Energy Department Invests $82 Million to Advanced Nuclear Technology June 14, 2016 - 1:41pm Addthis News release from the Department of Energy, June 14, 2016. WASHINGTON -Today, the U.S. Department of Energy (DOE) announced over $82 million in nuclear energy research, facility access, crosscutting technology development, and infrastructure awards in 28 states. In total, 93 projects were selected to receive funding that

  20. Partnerships Help Advance Small Modular Reactor Technology | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Partnerships Help Advance Small Modular Reactor Technology Partnerships Help Advance Small Modular Reactor Technology March 5, 2012 - 12:00pm Addthis WASHINGTON, D.C. - DOE recently announced three public-private partnerships to develop deployment plans for small modular nuclear reactor (SMR) technologies at Savannah River Site (SRS) facilities near Aiken, S.C. Read the full story on the Memorandums of Agreement to help leverage SRS land assets, energy facilities and nuclear expertise

  1. EERE Success Story-New Advanced Refrigeration Technology Provides Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy, Low Utility Bills for Supermarkets | Department of Energy Advanced Refrigeration Technology Provides Clean Energy, Low Utility Bills for Supermarkets EERE Success Story-New Advanced Refrigeration Technology Provides Clean Energy, Low Utility Bills for Supermarkets July 16, 2015 - 2:23pm Addthis Oak Ridge National Laboratory's (ORNL's) Brian Fricke tests Hillphoenix's Advansor Refrigeration System in ORNL's state-of-the-art Building Technologies Research & Integration Center

  2. Energy Department Invests $82 Million to Advanced Nuclear Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 82 Million to Advanced Nuclear Technology Energy Department Invests $82 Million to Advanced Nuclear Technology June 14, 2016 - 1:49pm Addthis NEWS MEDIA CONTACT (202) 586-4940 DOENews@hq.doe.gov WASHINGTON -Today, the U.S. Department of Energy (DOE) announced over $82 million in nuclear energy research, facility access, crosscutting technology development, and infrastructure awards in 28 states. In total, 93 projects were selected to receive funding that will help push

  3. Vehicle Technologies Office Merit Review 2015: Advanced Combustion and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels | Department of Energy Combustion and Fuels Vehicle Technologies Office Merit Review 2015: Advanced Combustion and Fuels Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about advanced combustion and fuels. ft002_zigler_2015_o.pdf (2.64 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2016: Co-Optimization of Fuels and

  4. Advanced Technology Vehicle Lab Benchmarking- Level 1

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Neutron Imaging of Advanced Engine Technologies

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  6. Advanced Technology Vehicle Lab Benchmarking- Level 1

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Neutron Imaging of Advanced Engine Technologies

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Automotive Energy Supply Corporation AESC | Open Energy Information

    Open Energy Info (EERE)

    search Name: Automotive Energy Supply Corporation (AESC) Place: Zama, Kanagawa, Japan Product: JV formed for development and marketing of advanced lithium-ion batteries for...

  9. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Manufacturing Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Additive Manufacturing is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  10. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Composite Materials Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composite Materials Chapter 6: Technology Assessments This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Composite Materials is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology assessments

  11. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Critical Materials Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Critical Materials is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  12. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Process Heating Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Heating Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Process Heating is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology assessments are

  13. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Process Intensification Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Intensification Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Process Intensification is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  14. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Roll-to-Roll Processing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roll to Roll Processing Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Roll-to-Roll Processing is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  15. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    SciTech Connect (OSTI)

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  16. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    SciTech Connect (OSTI)

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  17. University of Illinois at Urbana-Champaign's GATE Center for Advanced Automotive Bio-Fuel Combustion Engines

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  18. Permanent Magnet Development for Automotive Traction Motors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Permanent Magnet Development for Automotive Traction Motors Permanent Magnet Development for Automotive Traction Motors 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ape015_anderson_2010_o.pdf (2.46 MB) More Documents & Publications Permanent Magnet Development for Automotive Traction Motors Permanent Magnet Development for Automotive Traction Motors Permanent Magnet Development for

  19. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry ... The standard procedures and test specifications are used to test and collect data from ...

  20. Advanced Technology Vehicle Benchmark and Assessment

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  1. Advanced Membrane Technology for Hydrocarbon Separations

    SciTech Connect (OSTI)

    2004-07-01

    This factsheet describes a research project whose goal is to develop and demonstrate a membrane technology for superior, robust, low-cost natural gas dehydration.

  2. Advanced Diesel Engine Technology Development for HECC

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  3. Advanced Manufacturing Office and Potential Technologies for...

    Broader source: Energy.gov (indexed) [DOE]

    Potential Technologies for Clean Energy Manufacturing Innovation October 8, 2014 DOEDOD Planning Workshop- Fort Worth, TX 2 1. Background on DOE and Manufacturing 2. Technical ...

  4. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  5. University of Illinois at Urbana-Champaigns GATE Center for Advanced Automotive Bio-Fuel Combustion Engines

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  6. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Waste Heat Recovery Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Systems Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Waste Heat Recovery Systems is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6

  7. Vehicle Technologies Office Merit Review 2015: Advanced Packaging Technologies and Designs

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  8. Vehicle Technologies Office: 2013 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Combustion R&D Annual Progress Report This report describes the progress made on the research and ...

  9. Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual Progress Report 2008advcombustionengine.pdf (13.18 MB) More Documents & ...

  10. Center for Advanced Separation Technology Honaker, Rick 01 COAL...

    Office of Scientific and Technical Information (OSTI)

    Advanced Separation Technology Honaker, Rick 01 COAL, LIGNITE, AND PEAT; 54 ENVIRONMENTAL SCIENCES The U.S. is the largest producer of mining products in the world. In 2011, U.S....

  11. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting vss063bazzi2012o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project...

  12. Advance Energy Technologies: Proposed Penalty (2013-CE-5302)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Advance Energy Technologies, Inc. failed to certify walk-in cooler or freezer (WICFs) components as compliant with the energy conservation standards.

  13. Vehicle Technologies Office Merit Review 2014: Advanced in situ...

    Broader source: Energy.gov (indexed) [DOE]

    battery materials. es059yang2014p.pdf (5.88 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Advanced In-Situ Diagnostic Techniques for Battery ...

  14. Department of Energy Announces Advanced Vehicle Technology Competition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Technology Competition, EcoCar2: Plugging into the Future Department of ... EcoCar2 is a unique educational partnership between General Motors and the Department of ...

  15. The Progressive Insurance Automotive X PRIZE Education Program

    SciTech Connect (OSTI)

    Robyn Ready

    2011-12-31

    The Progressive Insurance Automotive X PRIZE Education Program conducted education and outreach activities and used the competition's technical goals and vehicle demonstrations as a means of attracting students and the public to learn more about advanced vehicle technologies, energy efficiency, climate change, alternative fuels, and the science and math behind efficient vehicle development. The Progressive Insurance Automotive X PRIZE Education Program comprised three integrated components that were designed to educate the general public and create a multi-tiered initiative to engage students and showcase the 21st century skills students will need to compete in our global economy: teamwork, creativity, strong literacy, math and science skills, and innovative thinking. The elements included an Online Experience, a National Student Contest, and in person education events and activites. The project leveraged online connections, strategic partnerships, in-classroom, and beyond-the-classroom initiatives, as well as mainstream media. This education program supported by the U.S. Department of Energy (DOE) also funded the specification of vehicle telemetry and the full development and operation of an interactive online experience that allowed internet users to follow the Progressive Insurance Automotive X PRIZE vehicles as they performed in real-time during the Progressive Insurance Automotive X PRIZE competition events.

  16. ORNL Crowdsourcing Site Advances Building Technologies Ideas to the Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Crowdsourcing Site Advances Building Technologies Ideas to the Market ORNL Crowdsourcing Site Advances Building Technologies Ideas to the Market September 24, 2015 - 4:09pm Addthis James White, Rod Stucker and James Rowland, winners of DOE's inaugural Buildings Crowdsourcing Community Campaign, joined GE Appliance’s Venkat Venkatakrishnan and DOE Assistant Secretary David Danielson for a panel discussion at EERE Industry Day at ORNL. Image: ORNL. James White, Rod

  17. Users Perspective on Advanced Fuel Cell Bus Technology | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Users Perspective on Advanced Fuel Cell Bus Technology Users Perspective on Advanced Fuel Cell Bus Technology Presentation at DOE & DOT Joint Fuel Cell Bus Workshop, Washington, DC, June 7, 2010 buswksp10_eudybouwkamp.pdf (650.24 KB) More Documents & Publications Joint Fuel Cell Bus Workshop Summary Report Fuel Cell Buses Fuel Cell Buses in U.S. Transit Fleets: Current Status 2008

  18. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research, Development and Deployment | Department of Energy Leaders in Advanced Vehicle Research, Development and Deployment Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research, Development and Deployment June 25, 2014 - 11:33am Addthis The DOE's Vehicle Technologies Office supports a variety of research, development, and deployment efforts in partnership with our national laboratories and private partners. The success of these projects relies on the hard work and

  19. Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Machinery R&D Annual Progress Report | Department of Energy Power Electronics and Electric Machinery R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress Report 2008_apeem_report.pdf (6.95 MB) More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices

  20. Advances in Nuclear Nonproliferation Technology & Policy Conference:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bridging the Gaps in Nuclear Nonproliferation Advances in Nuclear Nonproliferation Technology & Policy Conference Advances in Nuclear Nonproliferation Technology & Policy Conference: Bridging the Gaps in Nuclear Nonproliferation WHEN: Sep 25, 2016 8:00 AM - Sep 30, 2016 5:00 PM WHERE: La Fonda Hotel, Santa Fe, NM CONTACT: Bill Flor (505) 665-8768 CATEGORY: Community Science INTERNAL: Calendar Login Event Description This conference seeks to build upon previous ANS topical conferences

  1. Hot New Advances in Water Heating Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency

  2. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. ctab_webinar_bio_oils_upgrading.pdf (361.56 KB) More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Thermochemical Conversion Proceeses to Aviation Fuels 2013 Peer Review Presentations-Bio-oil

  3. DOE Seeking Proposals to Advance Distributed Wind Turbine Technology and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing | Department of Energy Seeking Proposals to Advance Distributed Wind Turbine Technology and Manufacturing DOE Seeking Proposals to Advance Distributed Wind Turbine Technology and Manufacturing December 30, 2014 - 11:04am Addthis On December 29, the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) released a third round of Requests for Proposals (RFPs) under DOE's Distributed Wind Competitiveness Improvement Project (CIP). The CIP aims to help U.S.

  4. Vehicle Technologies Office: Advanced Combustion Engines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fuel Efficiency & Emissions » Vehicle Technologies Office: Advanced Combustion Engines Vehicle Technologies Office: Advanced Combustion Engines Researchers take laser-based velocity measurements at the Sandia National Laboratory's Combustion Research Facility. Researchers take laser-based velocity measurements at the Sandia National Laboratory's Combustion Research Facility. Improving the efficiency of internal combustion engines is one of the most promising and cost-effective

  5. Vehicle Technologies Office: Advanced Combustion Strategies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Vehicle Technologies Office: Advanced Combustion Strategies Vehicle Technologies Office: Advanced Combustion Strategies On the left is real-time video of conventional diesel combustion. The fuel injector sprays 8 jets of liquid fuel into the combustion chamber. Compression-heating ignites the fuel, creating a flame. Soot forms in jets, which glow red, orange, and yellow. High temperature combustion has high efficiency, but also produces high emissions of nitrogen oxides. On the right

  6. Vehicle Technologies Office: Fuel Effects on Advanced Combustion |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Efficiency & Emissions » Vehicle Technologies Office: Fuel Effects on Advanced Combustion Vehicle Technologies Office: Fuel Effects on Advanced Combustion More than 90 percent of transportation relies on petroleum-based fuels: gasoline and diesel. While alternative fuels and plug-in electric vehicles offer great promise to reduce America's petroleum consumption, petroleum-based fuels are likely to play a substantial role for years to come. However, the sources

  7. 2012 Annual Merit Review Results Report - Advanced Combustion Engine Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -1 4. Advanced Combustion Engine Technologies The Advanced Combustion Engine R&D subprogram of the U.S. Department of Energy's Vehicle Technologies Program (VTP) is improving the fuel economy of passenger vehicles (cars and light trucks) and commercial vehicles (medium-duty and commercial trucks) by increasing the efficiency of the engines that power them. Work is done in collaboration with industry, national laboratories, and universities, as well as in conjunction with the U.S. DRIVE

  8. Technological Advancements Paving the Way for Geothermal Growth |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technological Advancements Paving the Way for Geothermal Growth Technological Advancements Paving the Way for Geothermal Growth February 12, 2013 - 2:47pm Addthis Preliminary results show an increase in 2012 year-end geothermal capacity Washington, D.C. (Geothermal Energy Association) - As the Geothermal Energy Association (GEA) prepares to release its annual development report at the State of the Geothermal Energy Industry Briefing on February 26 in Washington,

  9. EERE Success Story-Geothermal Wells: Advancing the Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Geothermal Wells: Advancing the Technology EERE Success Story-Geothermal Wells: Advancing the Technology August 3, 2016 - 10:12am Addthis Photo Courtesy: Trabits Group Photo Courtesy: Trabits Group Photo Courtesy: Trabits Group Photo Courtesy: Trabits Group Photo Courtesy: Trabits Group Photo Courtesy: Trabits Group Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells 1 mile deep or more can be

  10. Vehicle Technologies Office Merit Review 2016: Advanced High-Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries for Electric Vehicle (EV) Applications | Department of Energy Advanced High-Performance Batteries for Electric Vehicle (EV) Applications Vehicle Technologies Office Merit Review 2016: Advanced High-Performance Batteries for Electric Vehicle (EV) Applications Presentation given by Amprius at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries es241_stefan_2016_p_web.pdf (739.96 KB) More

  11. Vehicle Technologies Office Merit Review 2016: Advancements in Fuel Spray

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Combustion Modeling with High Performance Computing Resources | Department of Energy Advancements in Fuel Spray and Combustion Modeling with High Performance Computing Resources Vehicle Technologies Office Merit Review 2016: Advancements in Fuel Spray and Combustion Modeling with High Performance Computing Resources Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer

  12. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FCT and AMO Webinar 11/20/2012 eere.energy.gov Joint Fuel Cell Technologies and Advanced Manufacturing Office Webinar Department of Energy Washington, DC Sunita Satyapal Nancy Garland Jesse Adams Fuel Cell Technologies Office Robert Ivester Advanced Manufacturing Office 11/20/2012 "The process of converting raw materials, components, or parts into finished goods that meet a customer's expectations or specifications." - Businessdictionary.com, accessed 4/10/12 Agenda * Overview of Fuel

  13. ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Opportunities for the Metal Casting Industry | Department of Energy Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry advancedmeltingtechnologies.pdf (1.83 MB) More Documents & Publications ITP Metal Casting: Theoretical/Best Practice Energy Use in Metalcasting Operations ITP Metal Casting: Energy and

  14. U.S. Advanced Manufacturing and Clean Energy Technology Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer Review Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 Outline * Big Picture on Manufacturing in US * Focus on Advanced Manufacturing * AMO Organization * Technical Assistance * R&D Facilities * R&D Projects * Goals for Meeting 3 Products invented here, now made

  15. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    SciTech Connect (OSTI)

    Liby, Alan L; Rogers, Hiram

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  16. Advanced Aerodynamic Technologies for Improving Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Such non-engine losses can account for about a 45% decrease in efficiency. The need for technologies to reduce these parasitic losses has gained significant attention as fuel costs ...

  17. Advanced Membrane Separation Technologies for Energy Recovery

    SciTech Connect (OSTI)

    2009-05-01

    This factsheet describes a research project whose goal is to develop novel materials for use in membrane separation technologies for the recovery of waste energy and water from industrial process streams.

  18. Advanced Lighting Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appliances & Lighting We're developing cutting-edge appliances and innovative lighting to make life easier, reduce costs and increase energy efficiency. Home > Innovation > Appliances & Lighting Rio 2016 Olympic Games' technologies You cannot imagine how far GE reaches into the Rio 2016 Olympic Games. The technologies (visible and invisible) that will light,... Read More » A Quirky Idea: Turning Patents Into Consumer Products In April 2013, GE and Quirky announced a partnership

  19. Chapter 4: Advancing Clean Electric Power Technologies | Biopower Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  20. Vehicle Technologies Office Merit Review 2014: Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ...

  1. Advanced clean combustion technology in Shanxi province

    SciTech Connect (OSTI)

    Xie, K.-C.

    2004-07-01

    Biomass energy resources in China are first described, along with biomass gasification R & D now underway. In Shanxi province biomass and other regenerative energy is relatively little used but coal resources are large. Hence Shanxi is mainly developing clean coal technology to meet its economic and environmental protection requirements. Clean combustion research at Taiyuan University of Technology includes cofiring of coal and RDF in FBC, gas purification and adsorption, fundamentals of plasma-aided coal pyrolysis and gasification and coal derived liquid fuels from synthesis gas. 5 refs.

  2. Advanced NDE Technologies for Powder Metal Components

    SciTech Connect (OSTI)

    Martin, P; Haskins, J; Thomas, G; Dolan, K

    2003-05-01

    Nondestructive evaluation encompasses numerous technologies that assess materials and determine important properties. This paper demonstrates the applicability of several of these technologies to the field of powder metallurgy. The usual application of nondestructive evaluation is to detect and quantify defects in fully sintered product. But probably its most appealing role is to sense problems earlier in the manufacturing process to avoid making defects at all. Also nondestructive evaluation can be incorporated into the manufacturing processes to monitor important parameters and control the processes to produce defect free product. Nondestructive evaluation can characterize powders, evaluate components in the green state, monitor the sintering process, and inspect the final component.

  3. Expanding Robust HCCI Operation with Advanced Valve and Fuel Control Technologies

    SciTech Connect (OSTI)

    Szybist, J. P.; Confer, K.

    2012-09-11

    Delphi Automotive Systems and ORNL established this CRADA to advance the commercialization potential of the homogeneous charge compression ignition (HCCI) advanced combustion strategy for gasoline engine platforms. HCCI combustion has been shown by others to produce high diesel-like efficiency on a gasoline engine platform while simultaneously producing low NOX and particulate matter emissions. However, the commercialization barriers that face HCCI combustion are significant, with requirements for a more active engine control system, likely with next-cycle closed-loop feedback control, and with advanced valve train technologies to enable negative valve overlap conditions. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has made a number of breakthroughs with production-intent valve train technologies and controls in recent years to make a part time production-intent HCCI engine plausible. ORNL has extensive knowledge and expertise with HCCI combustion, and also has a versatile research engine with hydraulic valve actuation (HVA) that is useful for guiding production of a cam-based HCCI system. Partnering these knowledge bases and capabilities was essential towards making progress to better understand HCCI combustion and the commercialization barriers that it faces. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided guidance to ORNL regarding operational strategies to investigate on their single-cylinder research engine with HVA and data from their experimental multi-cylinder engine for modeling. ORNL provided single-cylinder engine data and modeling results.

  4. Advanced Technology Vehicles Manufacturing Loan Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technology Vehicles Manufacturing Loan Program Advanced Technology Vehicles Manufacturing Loan Program ATVM-Program-Application-Overview.pdf (1.52 MB) More Documents & Publications ATVM 1-Page Summary ATVM Program Overview 2015 ATVM Guidance for Applicants 11.4.14

  5. BASELINE DESIGN/ECONOMICS FOR ADVANCED FISCHER-TROPSCH TECHNOLOGY

    SciTech Connect (OSTI)

    1998-04-01

    Bechtel, along with Amoco as the main subcontractor, developed a Baseline design, two alternative designs, and computer process simulation models for indirect coal liquefaction based on advanced Fischer-Tropsch (F-T) technology for the U. S. Department of Energy's (DOE's) Federal Energy Technology Center (FETC).

  6. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect (OSTI)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  7. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel Nanostructured Interface Solution for Automotive ...

  8. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces

  9. Advanced Engine Trends, Challenges and Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Trends, Challenges and Opportunities Advanced Engine Trends, Challenges and Opportunities Presents mega trends for future powertrains facing energy diversity and powertrain efficiency issues deer11_taub.pdf (4.86 MB) More Documents & Publications Looking From A Hilltop: Automotive Propulsion System Technology Quarterly Biomass Program/Clean Cities State Web Conference: May 6, 2010 Advanced Propulsion Technology Strategy

  10. FY2014 Advanced Combustion Engine Annual Progress Report

    SciTech Connect (OSTI)

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  11. Bore II - Advanced Wellbore Technology Characterizes Groundwater Flow and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contamination - Energy Innovation Portal Geothermal Geothermal Energy Analysis Energy Analysis Find More Like This Return to Search Bore II - Advanced Wellbore Technology Characterizes Groundwater Flow and Contamination Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryBore II, co-developed by Berkeley Lab researchers Frank Hale, Chin-Fu Tsang, and Christine Doughty, provides vital information for solving water quality and supply problems and

  12. Chapter 4 — Advancing Clean Electric Power Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This chapter describes the current status and future outlook for power generation technologies, and identifies RDD&D directions that will contribute to a portfolio of technology options that can meet future regional demands. A combination of flexible technology options will be required to meet increasing power needs in the U.S. and globally. The QTR focuses on technological advances to meet U.S. energy needs and challenges, recognizing that these also offer opportunities for cooperative research that will expedite the international deployment of these technologies.

  13. Advanced Technology Vehicle Lab Benchmarking - Level 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Lab Benchmarking - Level 1 2014 U.S. DOE Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting Kevin Stutenberg - Principal Investigator Argonne National Laboratory June 17, 2014 Project ID # VSS030 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Overview  Timeline - Benchmarking at ANL started in 1998 - FY13 & FY14 Completed Testing: * 10 vehicles tested in FY13, 4 in FY14 * Thermal impact study *

  14. Shear Rolling of Magnesium Sheet for Automotive, Defense, and...

    Office of Scientific and Technical Information (OSTI)

    Shear Rolling of Magnesium Sheet for Automotive, Defense, and Energy Applications Citation ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  15. Development of Computer-Aided Design Tools for Automotive Batteries...

    Broader source: Energy.gov (indexed) [DOE]

    Progress of Computer-Aided Engineering of Batteries (CAEBAT) Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries ...

  16. Automotive and MHE Fuel Cell System Cost Analysis

    Broader source: Energy.gov [DOE]

    Presentation slides from the Fuel Cell Technologies Office webinar, Automotive and MHE Fuel Cell System Cost Analysis, held April 16, 2013.

  17. Economic and Environmental Tradeoffs in New Automotive Painting...

    Office of Scientific and Technical Information (OSTI)

    Title: Economic and Environmental Tradeoffs in New Automotive Painting Technologies Painting is the most expensive unit operation in automobile manufacturing and the source of over ...

  18. Advanced lost foam from casting technology

    SciTech Connect (OSTI)

    Bates, C. E.; Littleton, H. E.; Askeland, D.; Griffin, J.; Miller, B. A.; Sheldon, D. S.

    1996-05-01

    Previous research made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional research was needed to improve the process and make it more functional in an industrial environment. The current project focused on five areas listed as follows: Task 1: Precision Pattern Production Task 2: Pattern Coating Consistency Task 3: Sand Fill and Compaction Effects Task 4: Pattern Gating Task 5: Mechanical Properties of Castings. This report summarizes the work done under the current contract in all five areas in the period of October 1, 1994 through December 31, 1995. Twenty-eight (28) companies jointly participate in the project. These companies represent a variety of disciplines, including pattern designers, pattern producers, coating manufacturers, plant design companies, compaction equipment manufacturers, casting producers, and casting buyers.

  19. Chapter 4: Advancing Clean Electric Power Technologies | Hydropower Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower Technology Chapter 4: Technology Assessments Introduction Hydropower has provided reliable and flexible base and peaking power generation in the United States for more than a century, contributing on average 10.5% of cumulative U.S. power sector net generation over the past six and one-half decades (1949-2013). 1 It is the nation's largest source of renewable electricity, with 79 GW of generating assets and 22 GW of pumped-storage assets in service, with hydropower providing half of

  20. Brazil advances subsea technology in Marlim pilot

    SciTech Connect (OSTI)

    Not Available

    1993-03-29

    Petroleum Brasileiro SA has extended several water depth records for subsea technology during a pilot project in giant Marlim oil field in the Campos basin off Brazil. Petrobras finished the 10 well Marlim pilot last December. The field's pilot phase was intended to begin early production and enable Petrobras to gather more reservoir data. Ten satellite wells, including two prepilot wells, were completed during the Marlim pilot phase with guidelineless (GLL) wet christmas trees designed and fabricated by FMC Corp., Houston, and CBV Industrial Mechanic SA, Rio de Janeiro. The subsea wells are producing 52,000 b/d of oil and 21.19 MMCfd of gas in water depths of 1,847-2,562 ft. Marlim pilot well flow is routed to a permanent semisubmersible floating production system (FPS). Oil moves from the FPS to a monobuoy that offloads to a shuttle tanker. In addition to marking the first successful uses of purpose-built GLL wet trees, FMC said the Marlim pilot project allowed GLL subsea technology to evolve from conceptual status into a proven deepwater completion method. The paper describes the project.

  1. AZ Automotive: Presentation

    Broader source: Energy.gov [DOE]

    The role of midsize automotive module suppliers in meeting the goals of the Energy Independence and Security act of 2007

  2. Technology advances keeping LNG cost-competitive

    SciTech Connect (OSTI)

    Bellow, E.J. Jr.; Ghazal, F.P.; Silverman, A.J.; Myers, S.D.

    1997-06-02

    LNG plants, often very expensive in the past, will in the future need to cost less to build and operate and yet maintain high safety and reliability standards, both during construction and operation. Technical advancements, both in the process and in equipment scaling, manufacturing, and metallurgy, will provide much of the impetus for the improved economics. Although world energy demand is predicted to grow on average of about 2% annually over the next decade, LNG is expected to contribute an increasing portion of this growth with annual growth rates averaging about 7%. This steep growth increase will be propelled mainly by the environmentally friendlier burning characteristics of natural gas and the strong industrial growth in Asian and pacific Rim countries. While LNG is emerging as the fuel of choice for developing economies, its delivered cost to consumers will need to stay competitive with alternate energy supplies if it is to remain in front. The paper discusses LNG process development, treating process, equipment developments (man heat exchanger, compressors, drivers, and pressure vessels), and economy of scale.

  3. Advances in amorphous silicon photovoltaic technology

    SciTech Connect (OSTI)

    Carlson, D.E.; Rajan, K.; Arya, R.R.; Willing, F.; Yang, L.

    1998-10-01

    With the advent of new multijunction thin film solar cells, amorphous silicon photovoltaic technology is undergoing a commercial revival with about 30 megawatts of annual capacity coming on-line in the next year. These new {ital a}{endash}Si multijunction modules should exhibit stabilized conversion efficiencies on the order of 8{percent}, and efficiencies over 10{percent} may be obtained in the next several years. The improved performance results from the development of amorphous and microcrystalline silicon alloy films with improved optoelectronic properties and from the development of more efficient device structures. Moreover, the manufacturing costs for these multijunction modules using the new large-scale plants should be on the order of {dollar_sign}1 per peak watt. These new modules may find widespread use in solar farms, photovoltaic roofing, as well as in traditional remote applications. {copyright} {ital 1998 Materials Research Society.}

  4. Recent advances in lithium ion technology

    SciTech Connect (OSTI)

    Levy, S.C.

    1995-01-01

    Lithium ion technology is based on the use of lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells (1) and in 1983 for ambient temperature systems (2) it was not until Sony Energytech announced a new lithium ion rechargeable cell containing a lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these cells have the high energy density, high voltage and fight weight of metallic lithium systems plus a very long cycle life, but without the disadvantages of dendrite formation on charge and the safety considerations associated with metallic lithium.

  5. Automotive vehicle sensors

    SciTech Connect (OSTI)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  6. United States Automotive Materials Partnership LLC (USAMP)

    SciTech Connect (OSTI)

    United States Automotive Materials Partnership

    2011-01-31

    The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunities for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly developed

  7. Center for Advanced Separation Technology (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Center for Advanced Separation Technology Citation Details In-Document Search Title: Center for Advanced Separation Technology The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation's GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well

  8. Advancing Research & Technology in the Sciences (ARTS) Forum | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Advancing Research & Technology in the Sciences (ARTS) Forum Advancing Research & Technology in the Sciences (ARTS) Forum January 28, 2016 - 4:11pm Addthis VE-Suite, a virtual engineering tool developed at Ames Laboratory, displayed on a six-sided virtual reality room which helps engineers build greener, next-generation power plants faster and less expensively than ever before. VE-Suite, a virtual engineering tool developed at Ames Laboratory, displayed on a six-sided

  9. Department of Energy Announces Advanced Vehicle Technology Competition,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EcoCar2: Plugging into the Future | Department of Energy Advanced Vehicle Technology Competition, EcoCar2: Plugging into the Future Department of Energy Announces Advanced Vehicle Technology Competition, EcoCar2: Plugging into the Future April 13, 2011 - 12:00am Addthis Washington, DC - Today, at the SAE 2011 World Congress in Detroit, Mich., U.S. Department of Energy's Assistant Secretary for Policy and International Affairs, David Sandalow, announced the official launch of the EcoCar2:

  10. DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research

    Broader source: Energy.gov [DOE]

    Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy’s University Turbine Systems Research Program have been selected by the U.S. Department of Energy for additional development. Developing gas turbines that run with greater cleanness and efficiency than current models is of great benefit both to the environment and the power industry, but development of such advanced turbine systems requires significant advances in high-temperature materials science, an understanding of combustion phenomena, and development of innovative cooling techniques to maintain integrity of turbine components.

  11. DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program

    SciTech Connect (OSTI)

    Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

    2012-10-26

    The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

  12. Projects that Employ Innovative Technologies in Support of the Advanced Energy Initiative (2006)

    Broader source: Energy.gov [DOE]

    Federal Loan Guarantees For Projects That Employ Innovative Technologies In Support Of The Advanced Energy Initiative

  13. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-09-01

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  14. Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions | Department of Energy Engine and Aftertreatment Technology Development for Tier 2 Emissions Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003 DEER Conference Presentation: Detroit Diesel Corporation 2003_deer_bolton1.pdf (935.17 KB) More Documents & Publications Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment Integration - Strategy and Experimental Results Analytical Tool Development for Aftertreatment Sub-Systems

  15. Advances in Diesel Engine Technologies for European Passenger Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation: Volkswagen AG 2002_deer_schindler.pdf (1.73 MB) More Documents & Publications Accelerating Light-Duty Diesel Sales in the U.S. Market Light-Duty Diesel Market Potential in North America Meeting the CO2 Challenge DEER 2002

  16. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  17. Idaho National Laboratory Testing of Advanced Technology Vehicles |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss021_francfort_2011_o.pdf (1.12 MB) More Documents & Publications Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and Demonstration Activities

  18. Users Perspective on Advanced Fuel Cell Bus Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Users Perspective on Advanced Fuel Cell Bus Technology Lesl lie Eud dy - NREL Nico Bouwkamp - CaFCP DOE/FTA FCB Workshop DOE/FTA FCB Workshop June 7, 2010 - Transit Agencies FCB Demonstrations Transit Agencies FCB Demonstrations Reasons for participation Reasons for participation - Government regulations to reduce emissions - Public pressure Public pressure - Agency desire to be 'green' - Funding opportunity Funding opportunity - Learn about the newest technology 2 - Challenges: Performance

  19. COLLOQUIUM: Advanced Simulation for Technology Innovation and Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery | Princeton Plasma Physics Lab 27, 2015, 2:00pm to 3:30pm Colloquia MBG Auditorium COLLOQUIUM: Advanced Simulation for Technology Innovation and Science Discovery Mr. Scott Stanton ANSYS, Inc. I will give an overview of the simulation technologies being developed by ANSYS, the largest provider of simulation software. This overview will include computational fluid dynamics, structural mechanics and computational electromagnetic field analysis. I will then discuss how these solvers

  20. Vehicle Technologies Office Merit Review 2014: Idaho National Laboratory Testing of Advanced Technology Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing of advanced...

  1. Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking- Level 1

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about level 1 advanced...

  2. Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

  3. Seeking Information on Advanced HVAC&R Technologies

    Broader source: Energy.gov [DOE]

    The Building Technologies Office (BTO) released a request for information to seek feedback from the public on the technical metrics and goals, and organizational structure for a proposed advanced heating, ventilation, air conditioning, and refrigeration (HVAC&R) research and development (R&D) effort.

  4. Consumer Views on Transportation and Advanced Vehicle Technologies

    SciTech Connect (OSTI)

    Singer, Mark

    2015-09-01

    Vehicle manufacturers, U.S. Department of Energy laboratories, universities, private researchers, and organizations from countries around the globe are pursuing advanced vehicle technologies that aim to reduce gasoline and diesel consumption. This report details study findings of broad American public sentiments toward issues surrounding advanced vehicle technologies and is supported by the U.S. Department of Energy Vehicle Technology Office (VTO) in alignment with its mission to develop and deploy these technologies to improve energy security, increase mobility flexibility, reduce transportation costs, and increase environmental sustainability. Understanding and tracking consumer sentiments can influence the prioritization of development efforts by identifying barriers to and opportunities for broad acceptance of new technologies. Predicting consumer behavior toward developing technologies and products is inherently inexact. A person's stated preference given in an interview about a hypothetical setting may not match the preference that is demonstrated in an actual situation. This difference makes tracking actual consumer actions ultimately more valuable in understanding potential behavior. However, when developing technologies are not yet available and actual behaviors cannot be tracked, stated preferences provide some insight into how consumers may react in new circumstances. In this context this report provides an additional source to validate data and a new resource when no data are available. This report covers study data captured from December 2005 through June 2015 relevant to VTO research efforts at the time of the studies. Broadly the report covers respondent sentiments about vehicle fuel economy, future vehicle technology alternatives, ethanol as a vehicle fuel, plug-in electric vehicles, and willingness to pay for vehicle efficiency. This report represents a renewed effort to publicize study findings and make consumer sentiment data available to

  5. Advanced Thermionic Technology Program: summary report. Volume 2. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-10-01

    This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This Program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. The technology has previously been developed for astronautical applications. Volume 2 (Part C) concentrates on the progress made in developing and fabricating the ''current generation'' of chemical vapor deposited hot shell thermionic converters and is addressed to those primarily concerned with today's capabilities in terrestrial thermionic technology. 30 refs., 83 figs.

  6. Thermoelectrics Partnership: Automotive Thermoelectric Modules with

    Broader source: Energy.gov (indexed) [DOE]

    Scalable Thermo- and Electro-Mechanical Interfaces | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace067_goodson_2012_o.pdf (5.6 MB) More Documents & Publications Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces

  7. Thermoelectrics Partnership: Automotive Thermoelectric Modules with

    Broader source: Energy.gov (indexed) [DOE]

    Scalable Thermo- and Electro-Mechanical Interfaces | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace067_goodson_2011_o.pdf (1.89 MB) More Documents & Publications Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application

  8. AISI/DOE Technology Roadmap Program: Characterization of Fatigue and Crash Performance of New Generation High Strength Steels for Automotive Applications

    SciTech Connect (OSTI)

    Brenda Yan; Dennis Urban

    2003-04-21

    A 2-year project (2001-2002) to generate fatigue and high strain data for a new generation of high strength steels (HSS) has been completed in December 2002. The project tested eleven steel grades, including Dual Phase (DP) steels, Transformation-Induced Plasticity (TRIP) steels, Bake Hardenable (BH) steels, and conventional High Strength Low Alloy (HSLA) steels. All of these steels are of great interest in automotive industry due to the potential benefit in weight reduction, improved fuel economy, enhanced crash energy management and total system cost savings. Fatigue behavior includes strain controlled fatigue data notch sensitivity for high strength steels. High strain rate behavior includes stress-strain data for strain rates from 0.001/s to 1000/s, which are considered the important strain rate ranges for crash event. The steels were tested in two phases, seven were tested in Phase 1 and the remaining steels were tested in Phase. In a addition to the fatigue data and high st rain rate data generated for the steels studied in the project, analyses of the testing results revealed that Advanced High Strength Steels (AHSS) exhibit significantly higher fatigue strength and crash energy absorption capability than conventional HSS. TRIP steels exhibit exceptionally better fatigue strength than steels of similar tensile strength but different microstructure, for conditions both with or without notches present

  9. Recent Advances and Future Challenges in the Modeling and Simulations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Automotive SCR Systems Recent Advances and Future Challenges in the Modeling and Simulations of the injection of Urea-Water-Solution for Automotive SCR Systems The ...

  10. Vehicle Technologies Office Merit Review 2016: Validation of Material Models for Crash Simulation of Automotive Carbon Fiber Composite Structures (VMM)

    Broader source: Energy.gov [DOE]

    Presentation given by Ford at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Lightweighting

  11. Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 10 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual Progress Report 2010_adv_combustion_engine.pdf (16.62 MB) More Documents & Publications Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Combustion

  12. Advanced Lost Foam Casting technology: 1997 summary report

    SciTech Connect (OSTI)

    1997-12-31

    Previous research made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional research was needed to improve the process and make it more functional in an industrial environment. The current project focused on eight tasks listed as follows: Task 1--pyrolysis defects and sand distortion; Task 2--bronze casting technology; Task 3--steel casting technology; Task 4--sand filling and compaction; Task 5--coating technology; Task 6--precision pattern production; Task 7--computational modeling; and Task 8--project management and technology transfer. This report summarizes the work done under the current contract in all eight tasks in the period of October 1, 1995 through December 31, 1997.

  13. Baseline design/economics for advanced Fischer-Tropsch technology

    SciTech Connect (OSTI)

    Not Available

    1992-04-27

    The objectives of the study are to: Develop a baseline design for indirect liquefaction using advanced Fischer-Tropsch (F-T) technology. Prepare the capital and operating costs for the baseline design. Develop a process flowsheet simulation (PFS) model. The baseline design, the economic analysis, and the computer model will be the major research planning tools that Pittsburgh Energy Technology Center will use to plan, guide, and evaluate its ongoing and future research and commercialization programs relating to indirect coal liquefaction for the manufacture of synthetic liquid fuels from coal.

  14. CERC-BEE D2: Advancing GSHP Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CERC-BEE D2: Advancing GSHP Technology 2014 Building Technologies Office Peer Review Xiaobing Liu, Liux2@ornl.gov Oak Ridge National Laboratory Project Summary Timeline: Start date: 02-Dec-2010 Planned end date: 31-Dec-2015 Key Milestones: 1. GSHP state-of-the-art in US and China; Dec. 2011 2. Characterization of alternative GHXs; Dec. 2012 3. Demo of distributed GSHP systems; Dec. 2013 4. Smart tank controller; Dec. 2014 5. Common loop pump controller; Dec. 2015 Budget: Total DOE/LBL $ to date:

  15. Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station Technologies

    Broader source: Energy.gov [DOE]

    As part of the U.S. Energy Department's commitment to give American businesses more options to cut energy costs and reduce reliance on imported oil, the Department today announced a $1.4 million investment to Wallingford- based Proton Energy Systems to collect and analyze performance data for hydrogen fueling stations and advanced refueling components. The projects will also help to track the performance and technical progress of innovative refueling systems to find ways to lower costs and improve operation. These investments are part of the Department's broader strategy to advance U.S. leadership in hydrogen and fuel cell technological innovation and help the industry bring these technologies into the marketplace at lower cost.

  16. Building America Technology Solutions for New and Existing Homes: Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controls Improve Performance of Combination Space- and Water-Heating Systems | Department of Energy Controls Improve Performance of Combination Space- and Water-Heating Systems Building America Technology Solutions for New and Existing Homes: Advanced Controls Improve Performance of Combination Space- and Water-Heating Systems In this project, NorthernSTAR Building America Partnership team demonstrated improved controls have the potential to reduce complexity of combination systems and boost

  17. NNSA Researchers Advance Technology for Remote Reactor Monitoring |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Researchers Advance Technology for Remote Reactor Monitoring Thursday, May 5, 2016 - 12:06pm New detector neutralizes neutron interference for nuclear detection. NNSA's Defense Nuclear Nonproliferation Research and Development Program drives the innovation of technical capabilities to detect, identify, and characterize foreign nuclear weapons development activities. To achieve this, NNSA leverages the unique capabilities of the national

  18. Establishment of the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-09-30

    This Final Technical Report covers the eight sub-projects awarded in the first year and the five projects awarded in the second year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  19. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  20. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    SciTech Connect (OSTI)

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  1. Collaboration in Research and Engineering for Advanced Technology.

    SciTech Connect (OSTI)

    Vrieling, P. Douglas

    2016-01-01

    SNL/CA proposes the Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) facility to support customer-driven national security mission requirements while demonstrating a fiscally responsible approach to cost-control. SNL/CA realizes that due to the current backlog of capital projects in NNSA that following the normal Line Item process to procure capital funding is unlikely and therefore SNL/CA will be looking at all options including Alternative Financing.

  2. Inexpensive Delivery of Compressed Hydrogen with Advanced Vessel Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inexpensive delivery of compressed hydrogen with advanced vessel technology Gene Berry Andrew Weisberg Salvador M. Aceves Lawrence Livermore National Laboratory (925) 422-0864 saceves@LLNL.GOV DOE and FreedomCar & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop Washington, DC January 25, 2006 LLNL is developing innovative concepts for efficient containment of hydrogen in light duty vehicles concepts may offer advantages for hydrogen delivery Conformable containers

  3. Vehicle Technologies Office Merit Review 2015: Validation of Material Models for Crash Simulation of Automotive Carbon Fiber Composite Structures (VMM)

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material...

  4. Vehicle Technologies Office Merit Review 2014: Efficient Safety and Degradation Modeling of Automotive Li-ion Cells and Pack

    Broader source: Energy.gov [DOE]

    Presentation given by EC Power at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about efficient safety and degradation...

  5. Vehicle Technologies Office Merit Review 2015: Efficient Safety and Degradation Modeling of Automotive Li-ion Cells and Pack

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by EC-Power at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about efficient safety and degradation...

  6. Coda Automotive | Open Energy Information

    Open Energy Info (EERE)

    Coda Automotive Place: Santa Monica, California Zip: 90403 Product: California-based electric vehicle company which builds its cars in China. References: Coda Automotive1...

  7. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is

  8. DO WEM-0307 Advanced Worker Protection System TlVE TECHNOLOGY...

    Office of Scientific and Technical Information (OSTI)

    DO WEM-0307 Advanced Worker Protection System TlVE TECHNOLOGY SUMMARY REPORT aemonsrratea ... of Energy Off ice of Environmental Management Off ice of Science and Technology April ...

  9. Vehicle Technologies Office Merit Review 2015: Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Lambda Technologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced drying process...

  10. FY2009 Annual Progress Report for Advanced Power Electronics

    SciTech Connect (OSTI)

    Rogers, Susan A.

    2010-01-01

    The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  11. Advanced Combustion Engine R&D and Fuels Technology Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine R&D and Fuels Technology Merit Review Advanced Combustion Engine R&D and Fuels Technology Merit Review Merit review of DOE FCVT combustion, emission ...

  12. Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding...

    Office of Environmental Management (EM)

    Solid-State Lighting Advanced Technology R&D - 2015 Funding Opportunity Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding Opportunity October 14, 2014 - 3:57pm ...

  13. Apply: Solid-State Lighting Advanced Technology R&D - 2014(DE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Apply: Solid-State Lighting Advanced Technology R&D - 2014 (DE-FOA-0000973) Apply: Solid-State Lighting Advanced Technology R&D - 2014 (DE-FOA-0000973) December 6, 2013 - 4:27pm ...

  14. Department of Energy Announces up to $70 Million to Advance Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces up to 70 Million to Advance Technology and Reduce Cost of Geothermal Energy Department of Energy Announces up to 70 Million to Advance Technology and Reduce Cost of ...

  15. Department of Energy Announces up to $70 Million to Advance Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    up to 70 Million to Advance Technology and Reduce Cost of Geothermal Energy Department of Energy Announces up to 70 Million to Advance Technology and Reduce Cost of Geothermal ...

  16. Diversity in Science and Technology Advances National Clean Energy in Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Photovoltaics » Diversity in Science and Technology Advances National Clean Energy in Solar Diversity in Science and Technology Advances National Clean Energy in Solar The SunShot Diversity in Science and Technology Advances National Clean Energy in Solar (DISTANCE-Solar) program pairs science and technology research advances with the development of a diverse and innovative workforce. Launched in Octoboer 2013, DISTANCE-Solar aims to drive solar innovation among

  17. Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants

    SciTech Connect (OSTI)

    O'Connell, J. Michael

    2002-01-01

    OAK-B135 Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants

  18. US Energy Secretary Chu Announces $24 Million Loan for Tenneco Inc. for Advanced Vehicle Technology

    Broader source: Energy.gov [DOE]

    Tenneco is Fifth Company to Receive Conditional Loan Commitment from DOE's Advanced Technology Vehicles Manufacturing Loan Program

  19. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies | Connected and Automated Vehicles Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connected and Automated Vehicles Chapter 8: Technology Assessments Introduction to Connected and Automated Vehicles Summary Connected vehicles are able to communicate with other vehicles and infrastructure automatically to improve transportation system function. Vehicle automation refers to the ability of a vehicle to operate with reduced or without direct human operation. Using a combination of advanced sensors and controls, sophisticated learning algorithms, and GPS and mapping technologies,

  20. DOE Provides $4.7 Million to Support Excellence in Automotive...

    Office of Environmental Management (EM)

    vehicles for the U.S. market. "GATE Centers of ... to create more efficient gas powered, hybrid and even ... Control, and System Integration of Advanced Automotive ...

  1. Bay Area national labs team to tackle long-standing automotive...

    National Nuclear Security Administration (NNSA)

    Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge ... Light Source facility, is leading the Hydrogen Materials - Advanced Research Consortium ...

  2. Electrohydraulic Forming of Near Net Shape Automotive Panels

    SciTech Connect (OSTI)

    2009-01-01

    This factsheet describes a research project whose goal is to develop the electrohydraulic forming (EHF) process as a near net shape automotive panel manufacturing technology that simultaneously reduces the energy embedded in vehicles and the energy consumed while producing automotive structures.

  3. Utility advanced turbine systems (ATS) technology readiness testing

    SciTech Connect (OSTI)

    2000-09-15

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  4. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber Automotive Composite

    SciTech Connect (OSTI)

    Corum, J.M.

    2002-04-17

    This report provides recommended durability-based design properties and criteria for a quasi-isotropic carbon-fiber composite for possible automotive structural applications. The composite, which was made by a rapid molding process suitable for high-volume automotive applications, consisted of continuous Thornel T300 fibers (6K tow) in a Baydur 420 IMR urethane matrix. The reinforcement was in the form of four {+-}45{sup o} stitch-bonded mats in the following layup: [0/90{sup o}/{+-}45{sup o}]{sub S}. This material is the second in a progression of three candidate thermoset composites to be characterized and modeled as part of an Oak Ridge National Laboratory project entitled Durability of Carbon-Fiber Composites. The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Advanced Automotive Technologies and is closely coordinated with the industry Automotive Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for large automotive structural components. This document is in two parts. Part I provides the design criteria, and Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects on deformation, strength, and stiffness of cyclic and sustained loads, operating temperature, automotive fluid environments, and low-energy impacts (e.g., tool drops and kickups of roadway debris). Guidance is provided for design analysis, time-dependent allowable stresses, rules for cyclic loadings, and damage tolerance design guidance, including the effects of holes. Chapter 6 provides a brief summary of the design criteria.

  5. Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect (OSTI)

    Damevski, Kostadin

    2009-03-30

    A resounding success of the Scientific Discover through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedened computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative hig-performance scientific computing.

  6. Automotive Thermoelectric Generators and HVAC

    Broader source: Energy.gov [DOE]

    Provides overview of DOE-supported projects in automotive thermoelectric generators and heaters/air conditioners

  7. Energy Department Launches National Fuel Cell Technology Evaluation Center to Advance Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    Following Energy Secretary Ernest Moniz's visit to the National Renewable Energy Laboratory (NREL), the Energy Department today announced the unveiling of a one-of-its-kind national secure data center dedicated to the independent analysis of advanced hydrogen and fuel cell technologies at the Energy Department's Energy Systems Integration Facility (ESIF) located at NREL in Golden, Colorado.

  8. Advancement of High Temperature Black Liquor Gasification Technology

    SciTech Connect (OSTI)

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31

    Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the design, specification and

  9. Oklahoma State University proposed Advanced Technology Research Center. Environmental Assessment

    SciTech Connect (OSTI)

    1995-06-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the construction and equipping of the proposed Advanced Technology Research Center (ATRC) at Oklahoma State University (OSU) in Stillwater, Oklahoma. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

  10. Comparison of advanced cooling technologies efficiency depending on outside temperature

    SciTech Connect (OSTI)

    Blaise Hamanaka; Haihua Zhao; Phil Sharpe

    2009-09-01

    In some areas, water availability is a serious problem during the summer and could disrupt the normal operation of thermal power plants which needs large amount of water to operate. Moreover, when water quantities are sufficient, there can still be problem created by the waste heat rejected into the water which is regulated in order to limit the impact of thermal pollution on the environment. All these factors can lead to a decrease of electricity production during the summer and during peak hours, when electricity is the most needed. In order to deal with these problems, advanced cooling technologies have been developed and implemented to reduce water consumption and withdrawals but with an effect in the plant efficiency. This report aims at analyzing the efficiency of several cooling technologies with a fixed power plant design and so to produce a reference to be able to compare them.

  11. Science and Technology to Advance Regional Security in Central Asia

    SciTech Connect (OSTI)

    Rosenberg, N

    2002-07-05

    This morning I will describe a program that we refer to as STARS, for Science and Technology to Advance Regional Security, in Central Asia. It is a program that is based on cooperative, bilateral and multilateral, science and technology projects. It is our premise that such cooperative projects provide an opportunity for engagement while addressing real problems that could otherwise lead to destabilizing tensions in the region. The STARS program directly supports USCENTCOM's activities and objectives in environmental security. In fact, we think that STARS is a great vehicle for implementing and amplifying USCENTCOM's environmental security objectives and activities. We are very grateful and very pleased to have General DeLong's support in this matter. I am going to briefly describe the program. I want to stress again that it is a cooperative program. We would like to get input, suggestions, and feedback from the Central Asians here today so we can move forward together.

  12. Advanced Gas Storage Concepts: Technologies for the Future

    SciTech Connect (OSTI)

    Freeway, Katy; Rogers, R.E.; DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D.

    2000-02-01

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  13. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Storage Technologies Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Carbon Dioxide Storage Technologies

  14. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    SciTech Connect (OSTI)

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed

  15. Vehicular Thermoelectrics: A New Green Technology | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (8.06 MB) More Documents & Publications Thermoelectrics: The New Green Automotive Technology Automotive Thermoelectric Generators and HVAC Solid-State Energy Conversion Overview

  16. Utility Advanced Turbine Systems (ATS) technology readiness testing

    SciTech Connect (OSTI)

    1999-05-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  17. Utility Advanced Turbine Systems (ATS) Technology Readiness Testing

    SciTech Connect (OSTI)

    1998-10-29

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. This report summarizes work accomplished in 2Q98. The most significant accomplishments are listed in the report.

  18. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Unknown

    1998-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between Ge and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially be GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished from 4Q97 through 3Q98.

  19. Advanced Vehicles Group: Center for Transportation Technologies and Systems

    SciTech Connect (OSTI)

    Not Available

    2008-08-01

    Describes R&D in advanced vehicle systems and components (e.g., batteries) by NREL's Advanced Vehicles Group.

  20. Advanced coal technologies in Czech heat and power systems

    SciTech Connect (OSTI)

    Noskievic, P. Ochodek, T.

    1998-07-01

    Coal is the only domestic source of fossil fuel in the Czech Republic. The coal reserves are substantial and their share in total energy use is about 60%. Presently, necessary steps in making coal utilization more friendly towards the environment have been taken and fairly well established, and an interest to develop and build advanced coal units has been observed. One IGCC system has been put into operation, and circa 10 AFBC units are in operation or under construction. preparatory steps have been taken in building an advanced combustion unit fueled by pulverized coal and retrofit action is taking place in many heating plants. An actual experience has shown two basic problems: (1) Different characteristic of domestic lignite, especially high content of ash, cause problems applying well-tried foreign technologies and apparently a more focused attention shall have to be paid to the quality of coal combusted. (2) Low prices of lignite (regarding energy, lignite is four times cheaper than coal) do not result in an increased efficiency of the standing equipment by applying advanced technologies. It will be of high interest to observe the effect of the effort of the European Union to establish a kind of carbon tax. It could dramatically change the existing scene in clean coal power generation by the logical pressure to increase the efficiency of energy transformation. In like manner the gradual liberalization of energy prices might have similar consequences and it is a warranted expectation that, up to now not the best, energy balance will improve in the near future.