Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Progress Report for Advanced Automotive Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Energy Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 1999 FY 1999 FY 1999 FY 1999 Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies Office of Transportation Technologies Office of Transportation Technologies Office of Transportation Technologies Office of Advanced Automotive Technologies Office of Advanced Automotive Technologies Office of Advanced Automotive Technologies Office of Advanced Automotive Technologies

2

Automotive Fuel Cell Corporation  

NLE Websites -- All DOE Office Websites (Extended Search)

with AFCC, a private joint venture company in Canada, formed by combining the automotive fuel cell business of Ballard Power Systems with the fuel cell stack development...

3

Sandia National Laboratories: Automotive Fuel Cell Cooperation  

NLE Websites -- All DOE Office Websites (Extended Search)

Automotive Fuel Cell Cooperation ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles On February 14, 2013, in CRF, Energy,...

4

Automotive Fuels - The Challenge for Sustainable Mobility | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Automotive Fuels - The Challenge for Sustainable Mobility Automotive Fuels - The Challenge for Sustainable Mobility Overview of challenges and future fuel options...

5

Market Acceptance of Advanced Automotive Technologies Model ...  

Open Energy Info (EERE)

Automotive Technologies Model (MA3T) Consumer Choice Model AgencyCompany Organization: Oak Ridge National Laboratory OpenEI Keyword(s): EERE tool, Market Acceptance of Advanced...

6

Next Generation Bipolar Plates for Automotive PEM Fuel Cells...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Next Generation Bipolar Plates for Automotive PEM Fuel Cells Next Generation Bipolar Plates for Automotive PEM Fuel Cells Part of a 100 million fuel cell award announced by DOE...

7

Automotive and MHE Fuel Cell System Cost Analysis (Text Version...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Automotive and MHE Fuel Cell System Cost Analysis (Text Version) Automotive and MHE Fuel Cell System Cost Analysis (Text Version) Below is the text version of the webinar titled...

8

Electrocatalysts for Automotive Fuel Cells: Status and Challenges  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Nilesh Dale for the 2013 DOE Catalyst Working Group Meeting on electrocatalysts for automotive fuel cells.

9

Development of Sensors for Automotive PEM-based Fuel Cells  

E-Print Network (OSTI)

organization #12;4 Sensors for Automotive PEM Fuel Cells - Motivation Sensor Performance and Cost ImprovementsDevelopment of Sensors for Automotive PEM-based Fuel Cells DOE Agreement DE-FC04-02AL67616 Brian FC Series 200 - 50 kW PEM #12;2 Development of Sensors for Automotive PEM-based Fuel Cells ­ Program

10

Automotive and MHE Fuel Cell System Cost Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Presentation slides from the Fuel Cell Technologies Office webinar, Automotive and MHE Fuel Cell System Cost Analysis, held April 16, 2013.

11

University of Illinois at Urbana-Champaign's GATE Center for Advanced Automotive Bio-Fuel Combustion Engines  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

12

Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Automotive and MHE Automotive and MHE Fuel Cell System Cost Analysis (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Google Bookmark Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Delicious Rank Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on AddThis.com...

13

Automotive Fuel Efficiency Improvement via Exhaust Gas Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Conversion to Electricity Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Working to expand the usage of thermoelectric...

14

Webinar: Automotive and MHE Fuel Cell System Cost Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Video recording and text version of the webinar titled, Automotive and MHE Fuel Cell System Cost Analysis, originally presented on April 16, 2013.

15

E-Print Network 3.0 - advanced automotive technologies Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

technologies Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced automotive technologies Page: << < 1 2 3 4 5 > >> 1 Automotive Engineering...

16

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DELPHI AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF DELPHI AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF PATENT RIGHTS TO INVENTIONS MADE UNDER SUBCONTRACT QZ001 UNDER COOPERATIVE AGREEMENT DE-NT0003894; W(A)-09-061 ; CH1525 Delphi Automotive Systems LLC (Delphi), requests an advance waiver of domestic and foreign patent rights for all subject inventions made under the above subcontract. Delphi is a subcontractor to United Technologies under the referenced cooperative agreement. The purpose of the cooperative agreement is the development of solid oxide fuel (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas, (syngas). According to its response to question 2 of the petition, Delphi states that development of this technology will significantly advance the nation's

17

Advancing Material Models for Automotive Forming Simulations  

SciTech Connect

Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path.The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary.Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials.Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations prior to larger scale industrial validation.

Vegter, H.; An, Y.; Horn, C.H.L.J. ten; Atzema, E.H.; Roelofsen, M.E. [Corus Research Development and Technology, PO Box 10000, 1970 CA IJmuiden (Netherlands)

2005-08-05T23:59:59.000Z

18

Electrocatalyst approaches and challenges for automotive fuel cells  

Science Journals Connector (OSTI)

... catalyst development for automotive applications have been written from both an academic perspective focused on fundamentals and from a perspective focused on the requirements of the automotive companies. This review ... Fuel-cell vehicles in the test fleets monitored by the United States Department of Energy (DOE) have used 0.4?mg of Pt per square centimetre (mg?Pt?cm?2 ...

Mark K. Debe

2012-06-06T23:59:59.000Z

19

E-Print Network 3.0 - advanced fuel elements Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

1 RESEARCH & DEVELOPMENT: PROGRAM ABSTRACTS Summary: OF ADVANCED AUTOMOTIVE TECHNOLOGIES ENERGY CONVERSION TEAM Fuel Cell System Development Patrick Davis (202... , we...

20

TODAY: Secretary Chu and Senator Stabenow to Announce Advanced Automotive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TODAY: Secretary Chu and Senator Stabenow to Announce Advanced TODAY: Secretary Chu and Senator Stabenow to Announce Advanced Automotive Technology Loan for Michigan Manufacturer TODAY: Secretary Chu and Senator Stabenow to Announce Advanced Automotive Technology Loan for Michigan Manufacturer July 13, 2011 - 12:00am Addthis Washington, D.C. - Today, U.S. Energy Secretary Steven Chu will join U.S. Senators Carl Levin and Debbie Stabenow on a conference call to make an announcement regarding an advanced automotive technology loan that is expected to create jobs in Michigan, increase manufacturing, and make American automakers more competitive. WHO: Secretary of Energy Steven Chu Senator Carl Levin Senator Debbie Stabenow WHAT: Press Conference Call WHEN: Wednesday, July 13, 2011 at 11:30 AM EDT RSVP: Please contact Karissa Marcum at karissa.marcum@hq.doe.gov to receive call-in

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Automotive Fuels ? The Challenge for Sustainable Mobility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GTL Fuel launched in: Austria, Germany, Greece, Italy, Netherlands, Switzerland and Thailand Premium Fuels V-Power fuels: Best performance in Latest engine technology * In 60...

22

Advanced Fuels Synthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Fuels Synthesis Advanced Fuels Synthesis Coal and Coal/Biomass to Liquids Advanced Fuels Synthesis The Advanced Fuels Synthesis Key Technology is focused on catalyst and reactor optimization for producing liquid hydrocarbon fuels from coal/biomass mixtures, supports the development and demonstration of advanced separation technologies, and sponsors research on novel technologies to convert coal/biomass to liquid fuels. Active projects within the program portfolio include the following: Fischer-Tropsch fuels synthesis Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Small Scale Pilot Plant for the Gasification of Coal and Coal/Biomass Blends and Conversion of Derived Syngas to Liquid Fuels Via Fischer-Tropsch Synthesis Coal Fuels Alliance: Design and Construction of Early Lead Mini Fischer-Tropsch Refinery

23

Asola Advanced and Automotive Solar Systems GmbH | Open Energy Information  

Open Energy Info (EERE)

Asola Advanced and Automotive Solar Systems GmbH Asola Advanced and Automotive Solar Systems GmbH Jump to: navigation, search Name Asola Advanced and Automotive Solar Systems GmbH Place Erfurt, Germany Zip D-99428 Sector Solar Product German manufacturer of PV modules and spherical solar sun roofs for the automotive industry. References Asola Advanced and Automotive Solar Systems GmbH[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Asola Advanced and Automotive Solar Systems GmbH is a company located in Erfurt, Germany . References ↑ "Asola Advanced and Automotive Solar Systems GmbH" Retrieved from "http://en.openei.org/w/index.php?title=Asola_Advanced_and_Automotive_Solar_Systems_GmbH&oldid=34237

24

Advanced Automotive Technologies annual report to Congress, fiscal year 1996  

SciTech Connect

This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy`s Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation.

NONE

1998-03-01T23:59:59.000Z

25

Chemical Kinetic Modeling of Advanced Transportation Fuels  

SciTech Connect

Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

PItz, W J; Westbrook, C K; Herbinet, O

2009-01-20T23:59:59.000Z

26

Route-dependent operation of automotive fuel cell systems  

Science Journals Connector (OSTI)

Information on energy demand and traversal times along segments of a route is used to operate a fuel cell of an automotive drive in order to minimise fuel consumption. The buffering capacity of a battery is exploited to proactively leave the fuel cell idle or run it as close as possible to its maximum efficiency power level. Additionally, recuperation energy is buffered. Shortest paths in so-called power graphs correspond to approximately optimal fuel cell operation along a given route. In principle, minimum consumption routes can be computed in the same way. The approach targets planning rather than control.

Thomas Kämpke

2012-01-01T23:59:59.000Z

27

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS, LLC FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UGCP-HO P.04,-07 UGCP-HO P.04,-07 * * STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS, LLC FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36- 04G014319 ENTITLED "SOLID OXIDE FUEL CELL DEVELOPMENT FOR AUXILLARY POWER IN HEAVY DUTY VEHICLE APPLICATIONS"; W(A)-04-082; CH-1261 As set out in the attached waiver petition and in subsequent discussions with DOE patent counsel, Delphi Automotive Systems, LLC (Delphi) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above-identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L.

28

Automotive Fuel Cell Research and Development Needs  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by USCAR FreedomCARFuel Cell Tech Team Industry for DOE Fuel Cell Pre-Solicitation Workshop - March 16, 2010 Golden, CO

29

REQUEST BY MERIDIAN AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement of Considerations Statement of Considerations REQUEST BY MERIDIAN AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER A SUBTIER CONTRACT UNDER UT-BATTELLE, LLC SUBCONTRACT NO. 4000010928, UNDER DOE PRIME CONTRACT DE-AC05- 00OR22725; DOE WAIVER DOCKET W(A)-2003-037; [ORO-780] Meridian Automotive Systems, Inc. (Meridian) has made a request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under a subtier contract under UT-Battelle, LLC Subcontract No. 4000010928 with Volvo Trucks North America under Department of Energy (DOE) Contract DE-AC05-00OR22725. The scope of work of this project is for the utilization of Carbon Fiber Sheet Molding Compound (SMC) Materials for

30

Benefits of Water-Fuel Emulsion on Automotive Diesel Exhaust Emissions  

Science Journals Connector (OSTI)

Water fuel emulsion is widely used to control pollutant emissions in large and medium diesel engines. The application of this fuel to small automotive engines has been limited by the emulsion stability and eco...

K. Lombaert; L. Le Moyne; P. Guibert

2004-01-01T23:59:59.000Z

31

Oxidation of automotive primary reference fuels at elevated pressures  

SciTech Connect

Automotive engine knock limits the maximum operating compression ratio and ultimate thermodynamic efficiency of spark-ignition (SI) engines. In compression-ignition (CI) or diesel cycle engines, the premixed burn phase, which occurs shortly after injection, determines the time it takes for autoignition to occur. In order to improve engine efficiency and to recommend more efficient, cleaner-burning alternative fuels, they must understand the chemical kinetic processes that lead to autoignition in both SI and CI engines. These engines burn large molecular-weight blended fuels, a class to which the primary reference fuels (PRF) n-heptane and iso-octane belong. In this study, experiments were performed under engine like conditions in a high-pressure flow reactor using both the pure PRF fuels and their mixtures in the temperature range 550-880 K and 12.5 atm pressure. These experiments not only provide information on the reactivity of each fuel but also identify the major intermediate products formed during the oxidation process. A detailed chemical kinetic mechanism is used to simulate these experiments, and comparisons of experimentally measured and model predicted profiles for O{sub 2}, CO, CO{sub 2}, H{sub 2}O and temperature rise are presented. Intermediates identified in the flow reactor are compared with those present in the computations, and the kinetic pathways leading to their formation are discussed. In addition, autoignition delay times measured in a shock tube over the temperature range 690-1220 K and at 40 atm pressure were simulated. Good agreement between experiment and simulation was obtained for both the pure fuels and their mixtures. Finally, quantitative values of major intermediates measured in the exhaust gas of a cooperative fuels research engine operating under motored engine conditions are presented together with those predicted by the detailed model.

Callahan, C V; Curran, H J; Dryer, F L; Pitz, W J; Westbrook, C K

1999-03-01T23:59:59.000Z

32

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2NT41246; W(A) 03-021 ; CH-1147 2NT41246; W(A) 03-021 ; CH-1147 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Delphi Automotive Systems, L.L.C (Delphi) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above subject cooperative agreement. The waiver will apply to inventions made by Delphi employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517, as amended, and National Laboratories. Referring to item 2 of Delphi's petition, the purpose of this agreement is to develop 5 kW Solid Oxide Fuel Cell (SOFC) power systems for a range of fuels and applications. These

33

Basics of Advanced Software Systems Static cyclic scheduling on automotive Electronic Control Units (ECU)  

E-Print Network (OSTI)

Basics of Advanced Software Systems Static cyclic scheduling on automotive Electronic Control Units Systems ­ Coursework ­ March 9, 2012. lic scheduling on automotive Electronic Control Units (ECU) (nicolas - Name, - Execution time, - Period of execution, - First activation date, also cal period. The scheduling

Navet, Nicolas

34

Forecasting the Costs of Automotive PEM Fuel Cell Systems: Using Bounded Manufacturing Progress Functions  

E-Print Network (OSTI)

fuel cell stacks (Savote (1998)) Estimating manufactunng costfuel cell stacks, $20/kWfor fuel processors, and $20/kWfor "balance of plant" auxlhary components These costCosts of Automotive PEM Fuel Cell Systems (PEM)fuel cell stack

Lipman, Timonthy E.; Sperling, Daniel

2001-01-01T23:59:59.000Z

35

Alternative Fuels Data Center: Alternative Fuel and Advanced Technology  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Advanced Technology Vehicle Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on AddThis.com... More in this section... Federal

36

Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Advanced Vehicle Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on AddThis.com...

37

Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Advanced Vehicle Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on AddThis.com...

38

Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Advanced Vehicle Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on AddThis.com...

39

Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer  

Open Energy Info (EERE)

Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model Jump to: navigation, search Tool Summary Name: Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model Agency/Company /Organization: Oak Ridge National Laboratory OpenEI Keyword(s): EERE tool, Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model, MA3T Project U.S. consumer demand for plug-in hybrid electric vehicles (PHEV) in competition among various light-duty vehicle technologies for hundreds of market segments based and multiple regions. For more information, contact the ORNL Energy and Transportation Science Division at http://www.ornl.gov/sci/ees/etsd/contactus.shtml References Retrieved from

40

CONTROL-ORIENTED MODELING AND ANALYSIS FOR AUTOMOTIVE FUEL CELL SYSTEMS  

E-Print Network (OSTI)

CONTROL-ORIENTED MODELING AND ANALYSIS FOR AUTOMOTIVE FUEL CELL SYSTEMS Jay T. Pukrushpan Huei Peng of Michigan Ann Arbor, Michigan 48109-2125 Email: pukrushp@umich.edu Abstract Fuel Cells are electrochemical regarded as a potential future stationary and mobile power source. The response of a fuel cell system

Peng, Huei

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1NT41022; W(A)-03-022; CH-1146 1NT41022; W(A)-03-022; CH-1146 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Delphi Automotive Systems, L.L.C (Delphi) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above subject cooperative agreement. The waiver will apply to inventions made by Delphi employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517, as amended, and National Laboratories. Referring to item 2 of Delphi's petition, the purpose of this agreement is the development of interconnects for solid oxide fuel cell systems. Delphi will investigate materials for the metal

42

Final report: U.S. competitive position in automotive technologies  

SciTech Connect

Patent data are presented and analyzed to assess the U.S. competitive position in eleven advanced automotive technology categories, including automotive fuel cells, hydrogen storage, advanced batteries, hybrid electric vehicles and others. Inventive activity in most of the technologies is found to be growing at a rapid pace, particularly in advanced batteries, automotive fuel cells and ultracapacitors. The U.S. is the clear leader in automotive fuel cells, on-board hydrogen storage and light weight materials. Japan leads in advanced batteries, hybrid electric vehicles, ultracapacitors, and appears to be close to overtaking the U.S. in other areas of power electronics.

Albert, Michael B.; Cheney, Margaret; Thomas, Patrick; Kroll, Peter

2002-09-30T23:59:59.000Z

43

Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Ethanol Fuel Advanced Ethanol Fuel Blend Research Grants to someone by E-mail Share Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Facebook Tweet about Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Twitter Bookmark Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Google Bookmark Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Delicious Rank Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Digg Find More places to share Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Ethanol Fuel Blend Research Grants

44

Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Advanced Vehicle Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Advanced Vehicle Tax

45

Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicles Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Google Bookmark Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Delicious Rank Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on AddThis.com... Alternative Fuels and Advanced Vehicles More than a dozen alternative fuels are in production or under development

46

Advanced nuclear fuel  

SciTech Connect

Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

Terrani, Kurt

2014-07-14T23:59:59.000Z

47

Advanced nuclear fuel  

ScienceCinema (OSTI)

Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

Terrani, Kurt

2014-07-15T23:59:59.000Z

48

Advanced Electrocatalysts for PEM Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Presentation slides from the DOE Fuel Cell Technologies Office webinar, Advanced Electrocatalysts for PEM Fuel Cells, held February 12, 2013.

49

Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure  

Energy.gov (U.S. Department of Energy (DOE))

This report by Oak Ridge National Laboratory assesses the current status of automotive fuel cell technology and the plans for the deployment of refueling infrastructure.

50

Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Career  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Advanced Vehicle Career Training to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Career Training on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Career Training on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Career Training on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Career Training on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Career Training on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Career Training on AddThis.com... More in this section... Federal State Advanced Search

51

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

52

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update  

Energy.gov (U.S. Department of Energy (DOE))

Report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

53

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis.

54

Advances in Metallic Nuclear Fuel  

Science Journals Connector (OSTI)

Metallic nuclear fuels have generated renewed interest for advanced ... operations is excellent. Ongoing irradiation tests in Argonne-Wests Idaho-based Experimental Breeder Reactor ... fast reactor (IFR) concept...

B. R. Seidel; L. C. Walters; Y. I. Chang

1987-04-01T23:59:59.000Z

55

Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Job  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Advanced Vehicle Job Creation Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Job Creation Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Job Creation Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Job Creation Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Job Creation Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Job Creation Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Job Creation Tax Credit on AddThis.com...

56

Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle System  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Advanced Vehicle System Manufacturing Incentive to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle System Manufacturing Incentive on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle System Manufacturing Incentive on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle System Manufacturing Incentive on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle System Manufacturing Incentive on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle System Manufacturing Incentive on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle System Manufacturing Incentive on AddThis.com...

57

Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Rebate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Advanced Vehicle Rebate - San Joaquin Valley to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Rebate - San Joaquin Valley on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Rebate - San Joaquin Valley on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Rebate - San Joaquin Valley on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Rebate - San Joaquin Valley on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Rebate - San Joaquin Valley on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Rebate - San Joaquin Valley on AddThis.com...

58

REQUEST BY UNITED STATES AUTOMOTIVE MATERIALS PARTNERSHIP (USAMP) FOR AN ADVANCE WAIVER OF DOMESTIC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STATES AUTOMOTIVE MATERIALS STATES AUTOMOTIVE MATERIALS PARTNERSHIP (USAMP) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE PERFORMANCE OF DEPARTMENT OF ENERGY COOPERATIVE AGREEMENT NUMBER DE-FC05-960R22363 AND FOR SUBJECT INVENTIONS MADE UNDER ITS SUBCONTRACTS WITH LARGE, FOR- PROFIT BUSINESSES; DOE WAIVER DOCKET W(A)-95-001 [ORO- 593] USAMP has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the performance of cooperative agreement DE-FC05-950R22363 and Subject Inventions made under its subcontracts with large, for-profit businesses. Background The award of this cooperative agreement has been made in response to an unsolicited proposal from USAMP entitled "Automotive Lightweight Materials Program" whose objectives are closely

59

Advanced Fuel Cycle Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

60

Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine  

E-Print Network (OSTI)

Geothermal 2.5 Wind 0.22 Solar 0.02 Coal 110 Natural Gas 107 Residential 50 Vehicle 39 Freight 40 Air 129.30am Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine electric drive Plug in Hybrid Electric Vehicle (P-HEVs), long range electric vehi cle (EV) and sm art grid

Levi, Anthony F. J.

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

5 kW Multilevel DC-DC Converter for Hybrid Electric and Fuel Cell Automotive  

E-Print Network (OSTI)

automobile, there are many electrical loads grouped into two main categories depending on the voltages5 kW Multilevel DC-DC Converter for Hybrid Electric and Fuel Cell Automotive Applications Faisal H. Khan1,2 Leon M. Tolbert2 fkhan3@utk.edu tolbert@utk.edu 1 Electric Power Research Institute (EPRI) 2

Tolbert, Leon M.

62

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities  

Fuel Cell Technologies Publication and Product Library (EERE)

Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

63

Sandia National Laboratories: ECIS-Automotive Fuel Cell Corporation...  

NLE Websites -- All DOE Office Websites (Extended Search)

can operate optimally with minimum on-board humidification and low gas crossover. Current fuel cell vehicles run optimally when the air and hydrogen fuel is humidified, which...

64

Alternative Fuels Data Center: Alternative Fuel, Advanced Vehicle, and Idle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel, Alternative Fuel, Advanced Vehicle, and Idle Reduction Technology Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel, Advanced Vehicle, and Idle Reduction Technology Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel, Advanced Vehicle, and Idle Reduction Technology Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel, Advanced Vehicle, and Idle Reduction Technology Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel, Advanced Vehicle, and Idle Reduction Technology Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel, Advanced Vehicle, and Idle Reduction Technology Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative

65

Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Advanced Vehicle Research and Development Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Research and Development Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Research and Development Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Research and Development Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Research and Development Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Research and Development Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative

66

Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Advanced Vehicle Technology Research and Demonstration Bonds to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Technology Research and Demonstration Bonds on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Technology Research and Demonstration Bonds on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Technology Research and Demonstration Bonds on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Technology Research and Demonstration Bonds on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Technology Research and Demonstration Bonds on Digg Find More places to share Alternative Fuels Data Center: Alternative

67

Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Laws & Incentives Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Funding - New York, NY to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Funding - New York, NY on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Funding - New York, NY on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Funding - New York, NY on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Funding - New York, NY on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Funding - New York, NY on Digg Find More places to share Alternative Fuels Data Center: Alternative

68

Advanced fuel chemistry for advanced engines.  

SciTech Connect

Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

2009-09-01T23:59:59.000Z

69

ADVANCED FUELS CAMPAIGN 2013 ACCOMPLISHMENTS  

SciTech Connect

The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nations current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of goal-oriented science-based approach. In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.

Not Listed

2013-10-01T23:59:59.000Z

70

Advanced Fuels Campaign Execution Plan  

SciTech Connect

The purpose of the Advanced Fuels Campaign (AFC) Execution Plan is to communicate the structure and management of research, development, and demonstration (RD&D) activities within the Fuel Cycle Research and Development (FCRD) program. Included in this document is an overview of the FCRD program, a description of the difference between revolutionary and evolutionary approaches to nuclear fuel development, the meaning of science-based development of nuclear fuels, and the 'Grand Challenge' for the AFC that would, if achieved, provide a transformational technology to the nuclear industry in the form of a high performance, high reliability nuclear fuel system. The activities that will be conducted by the AFC to achieve success towards this grand challenge are described and the goals and milestones over the next 20 to 40 year period of research and development are established.

Kemal Pasamehmetoglu

2011-09-01T23:59:59.000Z

71

The individual contribution of automotive components to vehicle fuel consumption  

E-Print Network (OSTI)

Fuel consumption has grown to become a major point of interest as oil reserves are depleted. The purpose of this study is to determine the key components that cause variation in the instantaneous fuel consumption of vehicles ...

Napier, Parhys L

2011-01-01T23:59:59.000Z

72

Webinar: Advanced Electrocatalysts for PEM Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Video recording of the Fuel Cell Technologies Office webinar, Advanced Electrocatalysts for PEM Fuel Cells, originally presented on February 12, 2013.

73

Advancements and Opportunities for Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advancements and Opportunities for Fuel Cells Fuel Cell Seminar and Energy Exposition Reuben Sarkar U.S. Department of Energy Deputy Assistant Secretary Sustainable Transportation...

74

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application: 2009 Update  

Energy.gov (U.S. Department of Energy (DOE))

This report is the third annual update of a comprehensive automotive fuel cell cost analysis conducted by Directed Technologies (DTI), under contract to the US Department of Energy (DOE).

75

Status and Prospects of the Global Automotive Fuel Cell Industry...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

leading the development of mass-market fuel cell vehicles in Japan, Korea, Germany, and the United States with data from the open literature and public meetings to...

76

Automotive and MHE Fuel Cell System Cost Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Vince Contini, Kathya Mahadevan, Fritz Eubanks, Vince Contini, Kathya Mahadevan, Fritz Eubanks, Jennifer Smith, Gabe Stout and Mike Jansen Battelle April 16, 2013 Manufacturing Cost Analysis of Fuel Cells for Material Handling Applications 2 Presentation Outline * Background * Approach * System Design * Fuel Cell Stack Design * Stack, BOP and System Cost Models * System Cost Summary * Results Summary 3 * 10 and 25 kW PEM Fuel Cells for Material Handling Equipment (MHE) applications Background 5-year program to provide feedback to DOE on evaluating fuel cell systems for stationary and emerging markets by developing independent models and cost estimates * Applications - Primary (including CHP) power, backup power, APU, and material handling * Fuel Cell Types - 80°C PEM, 180°C PEM, SOFC technologies

77

Alternative Fuels Data Center: Advanced Biofuel Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Biofuel Advanced Biofuel Incentives to someone by E-mail Share Alternative Fuels Data Center: Advanced Biofuel Incentives on Facebook Tweet about Alternative Fuels Data Center: Advanced Biofuel Incentives on Twitter Bookmark Alternative Fuels Data Center: Advanced Biofuel Incentives on Google Bookmark Alternative Fuels Data Center: Advanced Biofuel Incentives on Delicious Rank Alternative Fuels Data Center: Advanced Biofuel Incentives on Digg Find More places to share Alternative Fuels Data Center: Advanced Biofuel Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Biofuel Incentives The North Dakota Industrial Commission's Renewable Energy Program provides matching grants and other forms of assistance to support research and

78

Proceedings of conference on fleet use of unique automotive fuels  

SciTech Connect

Papers and/or summaries of presentations which were given at the conference are included in this volume. The conference was concerned with alcohol and emergency fuels. Topics covered include: ethanol supply; Texaco lead-free gasohol distribution; the BETC fleet test program; the army fleet test program; tri-butyl alcohol and methanol in gasoline (blending, distribution, utilization); the DOE alcohol fuels utilization program; DOE engineering and reliability fleet test results; federal emergency energy policy; emergency transportation resource management; EPA emergency action; DOE transportation emergency fuels program; and emergency fuels utilization guidebook. Summaries of the 2 panel discussions are also included. Separate abstracts of 5 papers have been prepared for inclusion in the Energy Data Base. There are 10 summaries in this document which have not been abstracted separately. (DMC)

Not Available

1980-01-01T23:59:59.000Z

79

DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 4: Low Temperature Fuel Cell System BOP & FUEL Processors For Stationary and Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

BREAKOUT GROUP 4: LOW TEMPERATURE FUEL CELL SYSTEM BOP & FUEL PROCESSORS FOR STATIONARY AND AUTOMOTIVE BREAKOUT GROUP 4: LOW TEMPERATURE FUEL CELL SYSTEM BOP & FUEL PROCESSORS FOR STATIONARY AND AUTOMOTIVE PARTICIPANTS O NAME RGANIZATION Shabbir Ahmed Argonne National Laboratory Chris Ainscough NUVERA Rod Borup Los Alamos National Laboratory Vince Contini Battelle Rick Cutright PlugPower LLC David Frank Hydrogenics Jamie Holladay Pacific Northwest National Laboratory Terry Johnson Sandia National Laboratory Sridhas Kanuri UTC Power Ted Krause Argonne National Laboratory Michael McCarthy Protonex Technology Corporation Pinakin Patel FuelCell Energy Inc. Dennis Rapodios Argonne National Laboratory Eric Simpkins IdaTech LLC Anna Stefanopoulou University of Michigan Ken Stroh Los Alamos National Laboratory Olivier Verdu HELION Doug Wheeler National Renewable Energy Laboratory

80

Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report DOE's Office of...

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Production Cost Estimation for Direct H 2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update March 26, 2009 v.30.2021.052209 Prepared by: Brian D. James & Jeffrey A. Kalinoski One Virginia Square 3601 Wilson Boulevard, Suite 650 Arlington, Virginia 22201 703-243-3383 Prepared for: Contract No. GS-10F-0099J to the U.S. Department of Energy Energy Efficiency and Renewable Energy Office Hydrogen, Fuel Cells & Infrastructure Technologies Program Foreword Energy security is fundamental to the mission of the U.S. Department of Energy (DOE) and hydrogen fuel cell vehicles have the potential to eliminate the need for oil in the transportation sector. Fuel cell vehicles can operate on hydrogen, which can be produced domestically, emitting less greenhouse gas and pollutants than

82

Advanced high temperature materials for the energy efficient automotive Stirling engine  

SciTech Connect

The Stirling engine is under investigation jointly by the Department of Energy and NASA Lewis as an alternative to the internal combustion engine for automotive applications. The Stirling engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance and high temperature creep-rupture and fatigue properties. A continuing supporting materials research and technology program has identified the wrought alloys CG-27 and 12RN72 and the cast alloys XF-818 and NASAUT 4G-A1 as candidate replacements for the cobalt containing alloys used in current prototype engines. Based on the materials research program in support of the automotive Stirling engine it is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys used in prototype engines. This paper will present results of research that led to this conclusion.

Titran, R.H.; Stephens, J.R.

1984-01-01T23:59:59.000Z

83

Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

84

Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Presented at the Department of Energy Fuel...

85

North Central Texas Alternative Fuel and Advanced Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

North Central Texas Alternative Fuel and Advanced Technology Investments North Central Texas Alternative Fuel and Advanced Technology Investments 2011 DOE Hydrogen and Fuel Cells...

86

Advanced Technology and Alternative Fuel Vehicle Basics | Department...  

Office of Environmental Management (EM)

Vehicles & Fuels Advanced Technology and Alternative Fuel Vehicle Basics Advanced Technology and Alternative Fuel Vehicle Basics August 20, 2013 - 9:00am Addthis Photo of a...

87

North Central Texas Alternative Fuel and Advanced Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

North Central Texas Alternative Fuel and Advanced Technology Investments North Central Texas Alternative Fuel and Advanced Technology Investments 2012 DOE Hydrogen and Fuel Cells...

88

Advanced Cathode Catalysts and Supports for PEM Fuel Cells |...  

Energy Savers (EERE)

Advanced Cathode Catalysts and Supports for PEM Fuel Cells Advanced Cathode Catalysts and Supports for PEM Fuel Cells 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

89

Advancements and Opportunities for Fuel Cells | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advancements and Opportunities for Fuel Cells Advancements and Opportunities for Fuel Cells Presentation by Reuben Sarkar at the Fuel Cell Seminar and Energy Exposition plenary...

90

Advanced Materials and Concepts for Portable Power Fuel Cells...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Materials and Concepts for Portable Power Fuel Cells Advanced Materials and Concepts for Portable Power Fuel Cells These slides were presented at the 2010 New Fuel Cell...

91

Atmospheric chemistry of automotive fuel additives: Diisopropyl ether  

SciTech Connect

To quantify the atmospheric reactivity of diisopropyl ether (DIPE), we have conducted a study of the kinetics and mechanism of reaction 1: OH + DIPE {r_arrow} products. Kinetic measurements of reaction 1 were made using both relative (at 295 K) and absolute techniques (over the temperature range 240-440 K). Rate data from both techniques can be represented by the following: k{sub 1} = (2.2{sub -0.8}{sup +14}) x 10{sup -12} exp[(445 {plus_minus} 145)/T] cm{sup 3} molecule{sup -1}s{sup -1}. At 298 K, k{sub 1} = 9.8 x 10{sup -12} cm{sup 3} molecule{sup -1}s{sup -1}. The products of the simulated atmospheric oxidation of DIPE were identified using FT-IR spectroscopy; isopropyl acetate and HCHO were the main products. The atmospheric oxidation of DIPE can be represented by i-C{sub 3}H{sub 7}O-i-C{sub 3}H{sub 7} + OH + 2NO {r_arrow} HCHO + i-C{sub 3}H{sub 7}OC(O)CH{sub 3} + HO{sub 2} + 2NO{sub 2}. Our kinetic and mechanistic data were incorporated into a 1-day simulation of atmospheric chemistry to quantify the relative incremental reactivity of DIPE. Results are compared with other oxygenated fuel additives. 30 refs., 9 figs.

Wallington, T.J.; Andino, J.M.; Potts, A.R. [Ford Motor Company, Dearborn, MI (United States)] [and others

1993-01-01T23:59:59.000Z

92

Los Alamos scientists advance biomass fuel production  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos scientists advance biomass fuel production Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2014 - Jan....

93

Advancing Alternative Fuel Markets in Florida  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Alternative Fuel Markets in Florida Colleen Kettles University of Central Florida June 20, 2014 Project ID TI052 This presentation does not contain any proprietary,...

94

How Green Is your Fuel? Creation and Comparison of Automotive Biofuels  

Science Journals Connector (OSTI)

Creation and Comparison of Automotive Biofuels ... In recent years, biofuel development and use has risen significantly. ...

Eugene P. Wagner; Maura A. Koehle; Todd M. Moyle; Patrick D. Lambert

2010-05-13T23:59:59.000Z

95

Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review  

Energy.gov (U.S. Department of Energy (DOE))

This presentation reports on direct hydrogen PEMFC manufacturing cost estimation for automotive applications.

96

Uncertainty Analyses of Advanced Fuel Cycles  

SciTech Connect

The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

2008-12-12T23:59:59.000Z

97

An advanced fuel cell simulator  

E-Print Network (OSTI)

of Fuel Cells ...................... 4 D. Fuel Cell Power Plant ..................... 4 E. Challenges in Fuel Cell Development ............ 5 F. Previous Work ......................... 6 G. Solar Array Simulators .................... 8 H. Battery... ............................. 54 28 Under-voltage Fault ........................... 55 1 CHAPTER I INTRODUCTION The depleting fossil fuel resources and increasing pollution are leading to the research and development of alternate energy generation techniques like fuel cells...

Acharya, Prabha Ramchandra

2005-11-01T23:59:59.000Z

98

Alternative Fuels Data Center: Advanced Transportation Tax Exclusion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Advanced Transportation Tax Exclusion to someone by E-mail Share Alternative Fuels Data Center: Advanced Transportation Tax Exclusion on Facebook Tweet about Alternative Fuels Data Center: Advanced Transportation Tax Exclusion on Twitter Bookmark Alternative Fuels Data Center: Advanced Transportation Tax Exclusion on Google Bookmark Alternative Fuels Data Center: Advanced Transportation Tax Exclusion on Delicious Rank Alternative Fuels Data Center: Advanced Transportation Tax Exclusion on Digg Find More places to share Alternative Fuels Data Center: Advanced Transportation Tax Exclusion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Transportation Tax Exclusion The California Alternative Energy and Advanced Transportation Financing

99

NREL: Learning - Advanced Vehicles and Fuels Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicles and Fuels Basics Advanced Vehicles and Fuels Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of the Center for Transportation Technologies and Systems and its research. Video produced for NREL by Fireside Production. Text Version We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. And we can help to reduce our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution and improve our environment. At least 250 million vehicles are in use in the United States today. They include all kinds of passenger cars, trucks, vans, buses, and large

100

BREAKOUT GROUP 4: LOW TEMPERATURE FUEL CELL SYSTEM BOP & FUEL PROCESSORS FOR STATIONARY AND AUTOMOTIVE PARTICIPANTS  

E-Print Network (OSTI)

cost and durability · PEM fuel reformers have too many components, driving complexity and cost ­ needBREAKOUT GROUP 4: LOW TEMPERATURE FUEL CELL SYSTEM BOP & FUEL PROCESSORS FOR STATIONARY Technology Corporation Pinakin Patel FuelCell Energy Inc. Dennis Rapodios Argonne National Laboratory Eric

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Non-Petroleum-Based Fuel Effects on Advanced Combustion | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Non-Petroleum-Based Fuel Effects on Advanced Combustion Non-Petroleum-Based Fuel Effects on Advanced Combustion 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

102

Advanced Petroleum Based Fuel Effects in HCCI (Agreement 13415...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Petroleum Based Fuel Effects in HCCI (Agreement 13415) Advanced Petroleum Based Fuel Effects in HCCI (Agreement 13415) Presentation from the U.S. DOE Office of Vehicle...

103

Joint Fuel Cell Technologies and Advanced Manufacturing Webinar...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Download the presentation slides from the "Joint...

104

Hydrogen fuel closer to reality because of storage advances  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen fuel closer to reality because of storage advances Advances made in rechargeable solid hydrogen fuel storage tanks. March 21, 2012 Field experiments on the Alamosa Canyon...

105

Connecticut Company to Advance Hydrogen Infrastructure and Fueling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station Technologies Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station Technologies July...

106

Department of Energy Awards Nearly $7 Million to Advance Fuel...  

Energy Savers (EERE)

Million to Advance Fuel Cell and Hydrogen Storage Systems Research Department of Energy Awards Nearly 7 Million to Advance Fuel Cell and Hydrogen Storage Systems Research August...

107

Alternative Fuels Data Center: Technology Advancement Funding - South Coast  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Technology Advancement Technology Advancement Funding - South Coast to someone by E-mail Share Alternative Fuels Data Center: Technology Advancement Funding - South Coast on Facebook Tweet about Alternative Fuels Data Center: Technology Advancement Funding - South Coast on Twitter Bookmark Alternative Fuels Data Center: Technology Advancement Funding - South Coast on Google Bookmark Alternative Fuels Data Center: Technology Advancement Funding - South Coast on Delicious Rank Alternative Fuels Data Center: Technology Advancement Funding - South Coast on Digg Find More places to share Alternative Fuels Data Center: Technology Advancement Funding - South Coast on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Technology Advancement Funding - South Coast

108

Fuels for Advanced Combustion Engines  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

109

Advanced Fuels Campaign FY 2011 Accomplishments Report  

SciTech Connect

One of the major research and development (R&D) areas under the Fuel Cycle Research and Development (FCRD) program is advanced fuels development. The Advanced Fuels Campaign (AFC) has the responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. Accomplishments made during fiscal year (FY 20) 2011 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section. The order of the accomplishments in this report is consistent with the AFC work breakdown structure (WBS).

Not Listed

2011-11-01T23:59:59.000Z

110

Advanced Fuel Cycle Economic Sensitivity Analysis  

SciTech Connect

A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

David Shropshire; Kent Williams; J.D. Smith; Brent Boore

2006-12-01T23:59:59.000Z

111

Innovative Drivetrains in Electric Automotive Technology Education...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Drivetrains in Electric Automotive Technology Education (IDEATE) Innovative Drivetrains in Electric Automotive Technology Education (IDEATE) 2012 DOE Hydrogen and Fuel Cells...

112

Thermoelectrics: The New Green Automotive Technology | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermoelectrics: The New Green Automotive Technology Thermoelectrics: The New Green Automotive Technology 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

113

Thermoelectrics: The New Green Automotive Technology | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermoelectrics: The New Green Automotive Technology Thermoelectrics: The New Green Automotive Technology 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program...

114

Physics challenges for advanced fuel cycle assessment  

SciTech Connect

Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

Giuseppe Palmiotti; Massimo Salvatores; Gerardo Aliberti

2014-06-01T23:59:59.000Z

115

Alternative Fuels Data Center: Advanced Vehicle Acquisition and Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Vehicle Advanced Vehicle Acquisition and Biodiesel Fuel Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Advanced Vehicle Acquisition and Biodiesel Fuel Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Advanced Vehicle Acquisition and Biodiesel Fuel Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Advanced Vehicle Acquisition and Biodiesel Fuel Use Requirement on Google Bookmark Alternative Fuels Data Center: Advanced Vehicle Acquisition and Biodiesel Fuel Use Requirement on Delicious Rank Alternative Fuels Data Center: Advanced Vehicle Acquisition and Biodiesel Fuel Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Advanced Vehicle Acquisition and Biodiesel Fuel Use Requirement on AddThis.com...

116

Advanced Fuels Campaign FY 2010 Accomplishments Report  

SciTech Connect

The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) Accomplishment Report documents the high-level research and development results achieved in fiscal year 2010. The AFC program has been given responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. The science-based approach combines theory, experiments, and multi-scale modeling and simulation aimed at a fundamental understanding of the fuel fabrication processes and fuel and clad performance under irradiation. The scope of the AFC includes evaluation and development of multiple fuel forms to support the three fuel cycle options described in the Sustainable Fuel Cycle Implementation Plan4: Once-Through Cycle, Modified-Open Cycle, and Continuous Recycle. The word fuel is used generically to include fuels, targets, and their associated cladding materials. This document includes a brief overview of the management and integration activities; but is primarily focused on the technical accomplishments for FY-10. Each technical section provides a high level overview of the activity, results, technical points of contact, and applicable references.

Lori Braase

2010-12-01T23:59:59.000Z

117

Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events Printable Version Share this resource Send a link to Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop to someone by E-mail Share Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on Facebook Tweet about Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on Twitter Bookmark Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on Google Bookmark Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on Delicious Rank Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on Digg Find More places to share Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on AddThis.com...

118

Advancing Fuel Cell Technology at Los Alamos | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advancing Fuel Cell Technology at Los Alamos Advancing Fuel Cell Technology at Los Alamos July 26, 2013 - 12:00am Addthis From fuel cell electric vehicles to portable power, Los...

119

Alternative Fuels Data Center: Advanced Technology Vehicle (ATV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Technology Advanced Technology Vehicle (ATV) Manufacturing Incentives to someone by E-mail Share Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on Facebook Tweet about Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on Twitter Bookmark Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on Google Bookmark Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on Delicious Rank Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on Digg Find More places to share Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on AddThis.com... More in this section...

120

Advanced high temperature materials for the energy efficient automotive stirling engine  

Science Journals Connector (OSTI)

The Stirling engine is under investigation jointly by the Department ... internal combustion engine for automotive applications. The Stirling engine is an external combustion engine that offers ... materials rese...

R. H. Titran; J. R. Stephens

1984-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Performance and cost of automotive fuel cell systems with ultra-low platinum loadings.  

SciTech Connect

An automotive polymer-electrolyte fuel cell (PEFC) system with ultra-low platinum loading (0.15 mg-Pt cm{sup -2}) has been analyzed to determine the relationship between its design-point efficiency and the system efficiency at part loads, efficiency over drive cycles, stack and system costs, and heat rejection. The membrane electrode assemblies in the reference PEFC stack use nanostructured, thin-film ternary catalysts supported on organic whiskers and a modified perfluorosulfonic acid membrane. The analyses show that the stack Pt content can be reduced by 50% and the projected high-volume manufacturing cost by >45% for the stack and by 25% for the system, if the design-point system efficiency is lowered from 50% to 40%. The resulting penalties in performance are a <1% reduction in the system peak efficiency; a 2-4% decrease in the system efficiency on the urban, highway, and LA92 drive cycles; and a 6.3% decrease in the fuel economy of the modeled hybrid fuel-cell vehicle on the combined cycle used by EPA for emission and fuel economy certification. The stack heat load, however, increases by 50% at full power (80 kW{sub e}) but by only 23% at the continuous power (61.5 kW{sub e}) needed to propel the vehicle on a 6.5% grade at 55 mph. The reduced platinum and system cost advantages of further lowering the design-point efficiency from 40% to 35% are marginal. The analyses indicate that thermal management in the lower efficiency systems is very challenging and that the radiator becomes bulky if the stack temperature cannot be allowed to increase to 90-95 C under driving conditions where heat rejection is difficult.

Ahluwalia, R.; Wang, X.; Kwon, K.; Rousseau, A.; Kalinoski, J.; James, B.; Marcinkoski, J. (Energy Systems); ( NE); (Directed Technologies Inc.); (ED)

2011-05-15T23:59:59.000Z

122

A design strategy applied to sulfur resistant lean NOx̳ automotive catalysts  

E-Print Network (OSTI)

Catalyst poisoning due to sulfur compounds derived from fuel sulfur presents a major challenge, intractable thus far, to development of many advanced technologies for automotive catalysts such as the lean NOx, trap. Under ...

Tang, Hairong

2005-01-01T23:59:59.000Z

123

Advanced Fuels in HDV Applications  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

124

Advanced Fuel Cycles Activities in IAEA  

SciTech Connect

Considerable scientific and technical progress in many areas of Partitioning and Transmutation (P and T) has been recognized as probable answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. These recent global developments such as Russian initiative on Global Nuclear Infrastructure-International Fuel Centre and the US initiative on Global Nuclear Energy Partnership (GNEP) have made advanced fuel cycles as one of the decisive influencing factor for the future growth of nuclear energy. International Atomic Energy Agency has initiated the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) with overall objective of bringing together technology holders and technology users to consider jointly the international and national actions required achieving desired innovations in nuclear reactors and fuel cycles. One of the interesting common features of these initiatives (INPRO, GNEP and GNI-IFC) is closed fast reactor fuel cycles and proliferation resistance. Any fuel cycle that integrate P and T into it is also known as 'Advanced Fuel Cycle' (AFC) that could achieve reduction of plutonium and Minor Actinide (MA) elements (namely Am, Np, Cm, etc.). In this regard, some Member States are also evaluating alternative concepts involving the use of thorium fuel cycle, inert-matrix fuel or coated particle fuel. Development of 'fast reactors with closed fuel cycles' would be the most essential step for implementation of P and T. The scale of realization of any AFC depends on the maturity of the development of all these elemental technologies such as recycling MA, Pu as well as reprocessed uranium. In accordance with the objectives of the Agency, the programme B entitled 'Nuclear Fuel cycle technologies and materials' initiated several activities aiming to strengthen the capabilities of interested Member States for policy making, strategic planning, technology development and implementation of safe, reliable, economically efficient, proliferation resistant, environmentally sound and secure nuclear fuel cycle programmes. The paper describes some on-going IAEA activities in the area of: MA-fuel and target, thorium fuel cycle, coated particle fuel, MA-property database, inert matrix fuels, liquid metal cooled fast reactor fuels and fuel cycles, management of reprocessed uranium and proliferation resistance in fuel cycle. (authors)

Nawada, H.P.; Ganguly, C. [Nuclear Fuel Cycle and Materials Section, Division of Nuclear Fuel Cycle and Waste Technology, Department of Nuclear Energy, International Atomic Energy Agency, Vienna (Austria)

2007-07-01T23:59:59.000Z

125

DKRW Advanced Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

DKRW Advanced Fuels LLC DKRW Advanced Fuels LLC Jump to: navigation, search Name DKRW Advanced Fuels LLC Place Houston, Texas Zip 77056 Product Focues on projects that utilise coal gasification technology, including coal-to-liquids, methanation, and integrated coal gasification combined cycle power projects. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity 2003 DEER Conference...

128

Advanced Petroleum Based Fuels Research at NREL | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Petroleum Based Fuels Research at NREL Advanced Petroleum Based Fuels Research at NREL 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer...

129

Advanced Petroleum-Based Fuels Research at NREL | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Petroleum-Based Fuels Research at NREL Advanced Petroleum-Based Fuels Research at NREL 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation...

130

Vehicle Technologies Office Merit Review 2014: Advanced Combustion and Fuels  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion and fuels.

131

North Central Texas Alternative Fuel and Advanced Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. tiarravt057reese2010p.pdf More Documents & Publications North Central Texas Alternative Fuel and Advanced Technology Investments North Central Texas Alternative Fuel and...

132

Gasoline-Like Fuel Effects on Advanced Combustion Regimes | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Regimes Gasoline-Like Fuel Effects on Advanced Combustion Regimes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

133

Gasoline-like fuel effects on advanced combustion regimes | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

regimes Gasoline-like fuel effects on advanced combustion regimes 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

134

Advanced coal-fueled gas turbine systems  

SciTech Connect

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

135

Alternative Fuels Data Center: Heavy-Duty Alternative Fuel and Advanced  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Alternative Heavy-Duty Alternative Fuel and Advanced Vehicle Purchase Vouchers to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Alternative Fuel and Advanced Vehicle Purchase Vouchers on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Alternative Fuel and Advanced Vehicle Purchase Vouchers on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Alternative Fuel and Advanced Vehicle Purchase Vouchers on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Alternative Fuel and Advanced Vehicle Purchase Vouchers on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Alternative Fuel and Advanced Vehicle Purchase Vouchers on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Alternative Fuel and Advanced Vehicle Purchase Vouchers on AddThis.com...

136

Engaging the Next Generation of Automotive Engineers through...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition Engaging the Next Generation of Automotive Engineers through Advanced Vehicle...

137

Alternative Fuels Data Center: Laws and Incentives Advanced Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Laws and Incentives Laws and Incentives Advanced Search to someone by E-mail Share Alternative Fuels Data Center: Laws and Incentives Advanced Search on Facebook Tweet about Alternative Fuels Data Center: Laws and Incentives Advanced Search on Twitter Bookmark Alternative Fuels Data Center: Laws and Incentives Advanced Search on Google Bookmark Alternative Fuels Data Center: Laws and Incentives Advanced Search on Delicious Rank Alternative Fuels Data Center: Laws and Incentives Advanced Search on Digg Find More places to share Alternative Fuels Data Center: Laws and Incentives Advanced Search on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Search Search incentives and laws related to alternative fuels and advanced

138

Property:RenewableFuelStandard/UndifferentiatedAdvancedBiofuel | Open  

Open Energy Info (EERE)

UndifferentiatedAdvancedBiofuel UndifferentiatedAdvancedBiofuel Jump to: navigation, search This is a property of type Number. Pages using the property "RenewableFuelStandard/UndifferentiatedAdvancedBiofuel" Showing 14 pages using this property. R Renewable Fuel Standard Schedule + 0.5 + Renewable Fuel Standard Schedule + 4.5 + Renewable Fuel Standard Schedule + 1.75 + Renewable Fuel Standard Schedule + 4.5 + Renewable Fuel Standard Schedule + 2 + Renewable Fuel Standard Schedule + 4.5 + Renewable Fuel Standard Schedule + 2.5 + Renewable Fuel Standard Schedule + 0.1 + Renewable Fuel Standard Schedule + 5 + Renewable Fuel Standard Schedule + 3 + Renewable Fuel Standard Schedule + 0.2 + Renewable Fuel Standard Schedule + 3.5 + Renewable Fuel Standard Schedule + 0.3 + Renewable Fuel Standard Schedule + 4 +

139

Fuel Effects on Ignition and Their Impact on Advanced Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ignition and Their Impact on Advanced Combustion Engines Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines Presentation given at DEER 2006, August 20-24,...

140

Alternative Fuels Data Center: Advanced Energy Research Project Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Energy Advanced Energy Research Project Grants to someone by E-mail Share Alternative Fuels Data Center: Advanced Energy Research Project Grants on Facebook Tweet about Alternative Fuels Data Center: Advanced Energy Research Project Grants on Twitter Bookmark Alternative Fuels Data Center: Advanced Energy Research Project Grants on Google Bookmark Alternative Fuels Data Center: Advanced Energy Research Project Grants on Delicious Rank Alternative Fuels Data Center: Advanced Energy Research Project Grants on Digg Find More places to share Alternative Fuels Data Center: Advanced Energy Research Project Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Energy Research Project Grants The Advanced Research Projects Agency - Energy (ARPA-E) was established

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Non-Petroleum Based Fuel Effects on Advanced Combustion (Agreement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Petroleum Based Fuel Effects on Advanced Combustion (Agreement 13425) Non-Petroleum Based Fuel Effects on Advanced Combustion (Agreement 13425) Presentation from the U.S. DOE...

142

Advanced Technology and Alternative Fuel Vehicle Basics | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Technology and Alternative Fuel Vehicle Basics Advanced Technology and Alternative Fuel Vehicle Basics August 20, 2013 - 9:00am Addthis Photo of a large blue truck with...

143

Advanced Electrocatalysts for PEM Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinar on PEM Fuel Cells 2-12-2013 Webinar on PEM Fuel Cells 2-12-2013 Advanced Electrocatalysts for PEM Fuel Cells Nenad M. Markovic Vojislav R. Stamenkovic Materials Science Division Argonne National Laboratory 1 st Layer 2 nd Layer 3 rd Layer Pt=100 at.% Pt=48 at.% Ni=52 at.% Pt=87 at.% Ni=13 at.% Pt[111]-Skin surface 5 nm (111) (100) 3 nm Size distribution c-15 nm Shape Bulk composition Surface structure ? HR-TEM: Characterization of Nanoscale Pt/C Catalyst x 15 x 5 Surface composition ? 2 Surface Science Approach design, synthesis, characterization, and testing of well-defined interfaces Pt/C H 2 O 2 Real Applications FUEL CELLS / BATTERIES / ELECTROLIZERS Activity and Stability Mapping DFT/MC EC Pt Au Ru Surface Characterization UHV Chemical / Physical Synthesis SXS/HRDFS FTIR HRTEM DOUBLE-LAYER-BY-DESIGN

144

advanced-fuels-synthesis-index | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

International Activity Project Information Project Portfolio Publications Coal Gasification Magazine Solicitations The Advanced Fuels Synthesis Key Technology is focused on...

145

Joint Fuel Cell Technologies and Advanced Manufacturing Webinar  

Energy.gov (U.S. Department of Energy (DOE))

Presentation slides from the joint Fuel Cell Technologies Office and Advanced Manufacturing Office webinar held November 20, 2012.

146

Assessment of methane-related fuels for automotive fleet vehicles: technical, supply, and economic assessments  

SciTech Connect

The use of methane-related fuels, derived from a variety of sources, in highway vehicles is assessed. Methane, as used here, includes natural gas (NG) as well as synthetic natural gas (SNG). Methanol is included because it can be produced from NG or the same resources as SNG, and because it is a liquid fuel at normal ambient conditions. Technological, operational, efficiency, petroleum displacement, supply, safety, and economic issues are analyzed. In principle, both NG and methanol allow more efficient engine operation than gasoline. In practice, engines are at present rarely optimized for NG and methanol. On the basis of energy expended from resource extraction to end use, only optimized LNG vehicles are more efficient than their gasoline counterparts. By 1985, up to 16% of total petroleum-based highway vehicle fuel could be displaced by large fleets with central NG fueling depots. Excluding diesel vehicles, which need technology advances to use NG, savings of 8% are projected. Methanol use by large fleets could displace up to 8% of petroleum-based highway vehicle fuel from spark-ignition vehicles and another 9% from diesel vehicles with technology advances. The US NG supply appears adequate to accommodate fleet use. Supply projections, future price differential versus gasoline, and user economics are uncertain. In many cases, attractive paybacks can occur. Compressed NG now costs on average about $0.65 less than gasoline, per energy-equivalent gallon. Methanol supply projections, future prices, and user economics are even more uncertain. Current and projected near-term methanol supplies are far from adequate to support fleet use. Methanol presently costs more than gasoline on an equal-energy basis, but is projected to cost less if produced from coal instead of NG or petroleum.

Not Available

1982-02-01T23:59:59.000Z

147

Alternative Fuels Data Center: Support for Advance Biofuel Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Support for Advance Support for Advance Biofuel Development to someone by E-mail Share Alternative Fuels Data Center: Support for Advance Biofuel Development on Facebook Tweet about Alternative Fuels Data Center: Support for Advance Biofuel Development on Twitter Bookmark Alternative Fuels Data Center: Support for Advance Biofuel Development on Google Bookmark Alternative Fuels Data Center: Support for Advance Biofuel Development on Delicious Rank Alternative Fuels Data Center: Support for Advance Biofuel Development on Digg Find More places to share Alternative Fuels Data Center: Support for Advance Biofuel Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Support for Advance Biofuel Development The California Legislature urges the U.S. Congress or the U.S.

148

Alternative Fuels Data Center: Advanced Biofuel Feedstock Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Biofuel Advanced Biofuel Feedstock Incentives to someone by E-mail Share Alternative Fuels Data Center: Advanced Biofuel Feedstock Incentives on Facebook Tweet about Alternative Fuels Data Center: Advanced Biofuel Feedstock Incentives on Twitter Bookmark Alternative Fuels Data Center: Advanced Biofuel Feedstock Incentives on Google Bookmark Alternative Fuels Data Center: Advanced Biofuel Feedstock Incentives on Delicious Rank Alternative Fuels Data Center: Advanced Biofuel Feedstock Incentives on Digg Find More places to share Alternative Fuels Data Center: Advanced Biofuel Feedstock Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Biofuel Feedstock Incentives The Biomass Crop Assistance Program (BCAP; Section 9010) provides financial

149

E-Print Network 3.0 - automotive fuels distribution Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

>> 1 Distributed Energy Fuel Cells DOE HydrogenDOE Hydrogen Summary: Distributed Energy Fuel Cells DOE HydrogenDOE Hydrogen andand Fuel CellsFuel Cells Coordination... ;Objectives...

150

Computational Design of Advanced Nuclear Fuels  

SciTech Connect

The objective of the project was to develop a method for theoretical understanding of nuclear fuel materials whose physical and thermophysical properties can be predicted from first principles using a novel dynamical mean field method for electronic structure calculations. We concentrated our study on uranium, plutonium, their oxides, nitrides, carbides, as well as some rare earth materials whose 4f eletrons provide a simplified framework for understanding complex behavior of the f electrons. We addressed the issues connected to the electronic structure, lattice instabilities, phonon and magnon dynamics as well as thermal conductivity. This allowed us to evaluate characteristics of advanced nuclear fuel systems using computer based simulations and avoid costly experiments.

Savrasov, Sergey; Kotliar, Gabriel; Haule, Kristjan

2014-06-03T23:59:59.000Z

151

Advanced direct methanol fuel cells. Final report  

SciTech Connect

The goal of the program was an advanced proton-exchange membrane (PEM) for use as the electrolyte in a liquid feed direct methanol fuel cell which provides reduced methanol crossover while simultaneously providing high conductivity and low membrane water content. The approach was to use a membrane containing precross-linked fluorinated base polymer films and subsequently to graft the base film with selected materials. Over 80 different membranes were prepared. The rate of methanol crossover through the advanced membranes was reduced 90%. A 5-cell stack provided stable performance over a 100-hour life test. Preliminary cost estimates predicted a manufacturing cost at $4 to $9 per kW.

Hamdan, Monjid; Kosek, John A.

1999-11-01T23:59:59.000Z

152

Table II: Technical Targets for Membranes: Automotive  

Energy.gov (U.S. Department of Energy (DOE))

Technical targets for fuel cell membranes in automotive applications defined by the High Temperature Working Group (February 2003).

153

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Production Cost Estimation for Direct H 2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update September 30, 2010 Prepared by: Brian D. James, Jeffrey A. Kalinoski & Kevin N. Baum One Virginia Square 3601 Wilson Boulevard, Suite 650 Arlington, Virginia 22201 703-243-3383 Prepared under: Subcontract No. AGB-0-40628-01 to the National Renewable Energy Laboratory (NREL) under Prime Contract No. DE-AC36-08GO28308 to the U.S. Department of Energy Foreword Energy security is fundamental to the mission of the U.S. Department of Energy (DOE) and hydrogen fuel cell vehicles have the potential to eliminate the need for oil in the transportation sector. Fuel cell vehicles can operate on hydrogen, which can be produced domestically, emitting less greenhouse gasses and pollutants than

154

Alternative Fuels Data Center: Advanced Biofuel Production Payments  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Payments to someone by E-mail Payments to someone by E-mail Share Alternative Fuels Data Center: Advanced Biofuel Production Payments on Facebook Tweet about Alternative Fuels Data Center: Advanced Biofuel Production Payments on Twitter Bookmark Alternative Fuels Data Center: Advanced Biofuel Production Payments on Google Bookmark Alternative Fuels Data Center: Advanced Biofuel Production Payments on Delicious Rank Alternative Fuels Data Center: Advanced Biofuel Production Payments on Digg Find More places to share Alternative Fuels Data Center: Advanced Biofuel Production Payments on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Biofuel Production Payments Through the Bioenergy Program for Advanced Biofuels (Section 9005),

155

Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

DOE's Office of Transportation Technologies Fiscal Year 2000 Annual Progress Report for the Fuels for Advanced CIDI Engines and Fuel Cells Program highlights progress achieved during FY 2000.

156

Analysis of Marine Diesel Fuel with the Advanced Distillation Curve Method  

Science Journals Connector (OSTI)

Analysis of Marine Diesel Fuel with the Advanced Distillation Curve Method ... Energy Fuels, 2013, 27 (2), ...

Peter Y. Hsieh; Kathryn R. Abel; Thomas J. Bruno

2013-01-17T23:59:59.000Z

157

Investigation on combustion characteristics of crude rice bran oil methyl ester blend as a heavy duty automotive engine fuel  

Science Journals Connector (OSTI)

In the present work, an attempt was made to test the suitability of crude rice bran oil methyl ester (CRBME) blend as a heavy duty automotive engine fuel. A four stroke, six cylinder direct injection 117.6 kW turbo-charged compression ignition (CI) engine was used for the work. The operation of the engine with CRBME blend showed that the peak pressure increased with lower maximum rate of pressure rise and maximum heat release rate with shorter delay period. Burning rate of the CRBME blend was slower and required a higher crank angle to complete the combustion cycle when compared to diesel. The brake thermal efficiency of the CRBME blend was lower than that of diesel at all speeds except at 2300rpm. As the measured combustion and performance parameters for CRBME blend differs only by a smaller magnitude when compared with diesel, this investigation ensures the suitability of the CRBME blend as fuel for heavy duty automotive engine without any design modifications [Received: August 12, 2010; Accepted: August 29, 2010

S. Saravanan; G. Nagarajan; S. Sampath

2011-01-01T23:59:59.000Z

158

Electrohydraulic Forming of Near Net Shape Automotive Panels  

Energy.gov (U.S. Department of Energy (DOE))

The Development of Advancing Automotive Panel Manufacturing for Increased Energy and Material Savings

159

Physical Chemistry Research Toward Proton Exchange Membrane Fuel Cell Advancement  

Science Journals Connector (OSTI)

He obtained his Ph.D. in semiconductor electrochemistry from Southampton University in 1987, and since 1994, he has worked on fuel cell electrochemistry and the development of oxygen reduction catalysts for automotive applications for Ballard and then AFCC. ... More work is needed to better understand electrocatalysts generally in terms of properties and characterization. ... Such lessons from PEMFC research are relevant to other electrochemical conversion systems, including Liair batteries and flow batteries. ...

Karen E. Swider-Lyons; Stephen A. Campbell

2013-01-10T23:59:59.000Z

160

Alternative Fuels and Advanced Vehicles Data Center | Open Energy  

Open Energy Info (EERE)

Alternative Fuels and Advanced Vehicles Data Center Alternative Fuels and Advanced Vehicles Data Center Jump to: navigation, search Tool Summary Name: Alternative Fuels and Advanced Vehicles Data Center Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Fuels & Efficiency, Biomass, Hydrogen, Transportation Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Datasets, Technology characterizations Resource Type: Dataset, Guide/manual User Interface: Website Website: www.afdc.energy.gov/afdc/ Cost: Free References: Alternative Fuels and Advanced Vehicles Data Center[1] The Alternative Fuels and Advanced Vehicles Data Center provides a wide range of information and resources to enable the use of alternative fuels, in addition to other petroleum reduction options such as advanced vehicles,

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Alternative Fuels Data Center: Advanced Biofuel Production Grants and Loan  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Grants and Loan Guarantees to someone by E-mail Grants and Loan Guarantees to someone by E-mail Share Alternative Fuels Data Center: Advanced Biofuel Production Grants and Loan Guarantees on Facebook Tweet about Alternative Fuels Data Center: Advanced Biofuel Production Grants and Loan Guarantees on Twitter Bookmark Alternative Fuels Data Center: Advanced Biofuel Production Grants and Loan Guarantees on Google Bookmark Alternative Fuels Data Center: Advanced Biofuel Production Grants and Loan Guarantees on Delicious Rank Alternative Fuels Data Center: Advanced Biofuel Production Grants and Loan Guarantees on Digg Find More places to share Alternative Fuels Data Center: Advanced Biofuel Production Grants and Loan Guarantees on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

162

Mass-Production Cost Estimation for Automotive Fuel Cell Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Brian D. James (Primary Contact), Kevin Baum, Andrew B. Spisak, Whitney G. Colella Strategic Analysis, Inc. 4075 Wilson Blvd. Suite 200 Arlington VA 22203 Phone: (703) 778-7114 Email: bjames@sainc.com DOE Managers HQ: Jason Marcinkoski, Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Contract Number: DE-EE0005236 Project Start Date: September 30, 2011 Project End Date: September 30, 2016 Fiscal Year (FY) 2012 Objectives Update 2011 automotive fuel cell cost model to include * latest performance data and system design information. Examine costs of fuel cell systems (FCSs) for light-duty * vehicle and bus applications.

163

Development of a Hybrid Compressor/Expander Module for Automotive Fuel Cell Applications  

SciTech Connect

In this program TIAX LLC conducted the development of an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The overall objective of this program was to develop a hybrid compressor/expander module, based on both scroll and high-speed turbomachinery technologies, which will combine the strengths of each technology to create a concept with superior performance at minimal size and cost. The resulting system was expected to have efficiency and pressure delivery capability comparable to that of a scroll-only machine, at significantly reduced system size and weight when compared to scroll-only designs. Based on the results of detailed designs and analyses of the critical system elements, the Hybrid Compressor/Expander Module concept was projected to deliver significant improvements in weight, volume and manufacturing cost relative to previous generation systems.

McTaggart, Paul

2004-12-31T23:59:59.000Z

164

Advanced Gas Reactor Fuel Program's TRISO Particle Fuel Sets A New World  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Gas Reactor Fuel Program's TRISO Particle Fuel Sets A New Advanced Gas Reactor Fuel Program's TRISO Particle Fuel Sets A New World Record For Irradiation Performance Advanced Gas Reactor Fuel Program's TRISO Particle Fuel Sets A New World Record For Irradiation Performance November 16, 2009 - 1:12pm Addthis As part of the Office of Nuclear Energy's Next Generation Nuclear Plant (NGNP) Program, the Advanced Gas Reactor (AGR) Fuel Development Program has achieved a new international record for irradiation testing of next-generation particle fuel for use in high temperature gas reactors (HTGRs). The AGR Fuel Development Program was initiated by the Department of Energy in 2002 to develop the advanced fabrication and characterization technologies, and provide irradiation and safety performance data required to license TRISO particle fuel for the NGNP and future HTGRs. The AGR

165

Vehicle Technologies Office: Graduate Automotive Technology Education (GATE)  

Energy.gov (U.S. Department of Energy (DOE))

DOE established the Graduate Automotive Technology Education (GATE) Centers of Excellence to provide future generations of engineers and scientists with knowledge and skills in advanced automotive...

166

Advanced Petroleum Based Fuels Research at NREL | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Petroleum Based Fuels Research at NREL Advanced Petroleum Based Fuels Research at NREL Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

167

Alternative Fuel and Advanced Vehicle Tools (AFAVT), AFDC (Fact Sheet)  

SciTech Connect

The Alternative Fuels and Advanced Vehicles Web site offers a collection of calculators, interactive maps, and informational tools to assist fleets, fuel providers, and others looking to reduce petroleum consumption in the transportation sector.

Not Available

2010-01-01T23:59:59.000Z

168

Advanced Cathode Catalysts and Supports for PEM Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, which focuses on advanced cathode catalysts and supports for PEM fuel cells, was given by Mark Debe of 3M at a February 2007 meeting on new fuel cell projects.

169

Forecasting the Costs of Automotive PEM Fuel Cell Systems: Using Bounded Manufacturing Progress Functions  

E-Print Network (OSTI)

s pilot-scale PEM fuel cell manufactunng cost, and theproductaon, PEM fuel cell systems could cost $35 - 90/kW,is how PEM fuel cell system manufactunng costs might evolve

Lipman, Timonthy E.; Sperling, Daniel

2001-01-01T23:59:59.000Z

170

Advanced Coal-Fueled Gas Turbine Program  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

171

Advanced Petroleum Based Fuels Research at NREL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Impacts on Current and Emerging Engines Goals and Objectives * VTP Task 3: Petroleum displacing fuels and fuel blending components - Study combustion and emissions...

172

Advances in X-Ray Diagnostics of Diesel Fuel Sprays  

Energy.gov (U.S. Department of Energy (DOE))

Recent advances in high-speed X-ray imaging has shown several distinct behaviors of commercial fuel injectors that cannot be seen with more conventional techniques.

173

Development of Advanced High Temperature Fuel Cell Membranes  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on Development of Advanced High Temperature Fuel Cell Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

174

Energy Department Offers $50 Million to Advance Fuel Efficient...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

lightweighting materials; cost-effective batteries and power electronics; advanced heating, ventilation, and air conditioning systems; and improved fuels and lubricants. With...

175

Alternative Fuel and Advanced Technology Vehicles Pilot Program...  

Open Energy Info (EERE)

Program Emissions Benefit Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool...

176

Alternative Fuels and Advanced Vehicles Data Center - Codes and...  

Open Energy Info (EERE)

Resources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards Resources AgencyCompany...

177

Alternative Fuels and Advanced Vehicles Data Center - Federal...  

Open Energy Info (EERE)

Incentives and Laws Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuels and Advanced Vehicles Data Center - Federal and State Incentives and...

178

Advancement in Fuel Spray and Combustion Modeling for Compression...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Spray, Combustion, & Emission Modeling using KH-ACT Primary Breakup Model & Detailed Chemistry Vehicle Technologies Office Merit Review 2014: Advancement in Fuel Spray and...

179

Fuel Effects on Advanced Combustion Engines | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research Greenpower Trap Mufflerl System Low-Temperature Diesel Combustion...

180

E-Print Network 3.0 - automotive fuel consumption Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 August 2005 Fuel Tank Capacity and Gas Pump...

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

E-Print Network 3.0 - alternative automotive fuel Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanical Engineering Technical Elective Introduction to Fuel Cell Systems Summary: in alternative energy sources. Fuel Cell Basic Design COURSE TOPICS INCLUDE The prevalent...

182

PNNL Advances Hydrogen-Fueled Vehicle Technologies  

Energy.gov (U.S. Department of Energy (DOE))

EERE-funded PNNL projects are improving performance and decreasing production costs of hydrogen fuel and fuel cell technologies.

183

Viable combined cycle design for automotive applications  

Science Journals Connector (OSTI)

A relatively new approach for improving fuel economy and automotive engine performance involves the use of automotive combined cycle generation technologies. The combined cycle generation, a process widely used i...

K. -B. Kim; K. -W. Choi; K. -H. Lee

2012-04-01T23:59:59.000Z

184

Green Racing's Impact on the Automotive World | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Racing's Impact on the Automotive World Green Racing's Impact on the Automotive World Green Racing's Impact on the Automotive World April 16, 2012 - 4:52pm Addthis One of the competitors from the Michelin Green X Challenge. | Photo courtesy of Green Racing. One of the competitors from the Michelin Green X Challenge. | Photo courtesy of Green Racing. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager What does this project do? Green Racing uses motorsports competition to help educate and promote alternative fuels and advanced vehicle technologies that can be transferred from the race track to the consumer market. The automotive racing world has a long history of moving the car industry forward through the development and use of new technology. Seeing racing's tremendous promise, the Energy Department, U.S. Environmental

185

Green Racing's Impact on the Automotive World | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Racing's Impact on the Automotive World Racing's Impact on the Automotive World Green Racing's Impact on the Automotive World April 16, 2012 - 4:52pm Addthis One of the competitors from the Michelin Green X Challenge. | Photo courtesy of Green Racing. One of the competitors from the Michelin Green X Challenge. | Photo courtesy of Green Racing. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager What does this project do? Green Racing uses motorsports competition to help educate and promote alternative fuels and advanced vehicle technologies that can be transferred from the race track to the consumer market. The automotive racing world has a long history of moving the car industry forward through the development and use of new technology. Seeing racing's tremendous promise, the Energy Department, U.S. Environmental

186

Advanced membrane electrode assemblies for fuel cells  

DOE Patents (OSTI)

A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

Kim, Yu Seung; Pivovar, Bryan S

2014-02-25T23:59:59.000Z

187

Emissions Characterization from Advanced Combustion & Alternative Fuels -  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Characterization from Advanced Combustion & Emissions Characterization from Advanced Combustion & Alternative Fuels Exhaust emissions from engines operating in advanced combustion modes such as PCCI (Premixed Charge Compression Ignition) and HCCI (Homogeneous Charge Compression Ignition) are analyzed with an array of analytical tools. Furthermore, emissions from a variety of alternative fuels and mixtures thereof with conventional gasoline and diesel fuels are also measured. In addition to measuring the criteria pollutants nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HCs) are also measured and categorized based on chemistry. These chemical details of the emissions provide important information for optimizing combustion processes to maximize fuel efficiency while minimizing emissions

188

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application  

Energy.gov (U.S. Department of Energy (DOE))

This presentation reports on the status of mass production cost estimation for direct hydrogen PEM fuel cell systems.

189

Hydrogen fuel closer to reality because of storage advances  

E-Print Network (OSTI)

extracted for use in hydrogen fuel cell batteries and then be recharged with hydrogen over and over- 1 - Hydrogen fuel closer to reality because of storage advances March 21, 2012 Drive toward as a "chemical storage tank" for hydrogen fuel. An ammonia borane system could allow hydrogen to be easily

190

Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FUELS FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS 2000 ANNUAL PROGRESS REPORT FUELS F O R ADVANCED CIDI ENGINES A N D FUEL CELLS A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory, Computer Systems Management, Inc., National Renewable Energy Laboratory, and QSS Group, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2000 Progress Report for Fuels for Advanced CIDI

191

Enhanced air/fuel mixing for automotive Stirling engine turbulator-type combustors  

SciTech Connect

This patent describes a combustor for use in a Stirling engine and the like. It comprises: a combustor chamber; a fuel inlet couple to the chamber to inject fuel therein; a turbulator means disposed in the chambers downstream of the fuel inlet means for injecting combustion air into the chamber, the turbulator means being so positioned to cause a mixing of the combustion air and fuel injected in the chamber; diverter means for dividing the combustion air and creating a primary mixing zone downstream fa the primary mixing zone; and wherein the primary mixing zone comprises a fuel rich zone where combustion initiates and the secondary mixing zone has sufficient combustion air to complete combustion of the fuel.

Riecke, G.T.; Stotts, R.E.

1992-02-25T23:59:59.000Z

192

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Before Senate Committee...

193

E-Print Network 3.0 - automotive-propulsion fuel cells Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 3 1 Copyright 2008 by ASME...

194

E-Print Network 3.0 - automotive fuel Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

2-3, 2003 ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

195

E-Print Network 3.0 - automotive fuel economy Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

proposed hydrogen tax credit supports the market introduction of hydrogen for use... in fuel cells and internal combustion engines in nearer-term applications, including forklifts,...

196

E-Print Network 3.0 - automotive fuel ratings Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

(H2S, SO2, ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

197

E-Print Network 3.0 - automotive fuel cell Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

198

E-Print Network 3.0 - automotive fuels Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

2-3, 2003 ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

199

Hydrogen fuel closer to reality because of storage advances  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen fuel closer to reality because of storage advances Hydrogen fuel closer to reality because of storage advances Hydrogen fuel closer to reality because of storage advances Advances made in rechargeable solid hydrogen fuel storage tanks. March 21, 2012 Field experiments on the Alamosa Canyon How best to achieve the benchmark of 300 miles of travel without refueling? It may be to use the lightweight compound ammonia-borane to carry the hydrogen. With hydrogen accounting for almost 20 percent of its weight, this stable, non-flammable compound is one of the highest-capacity materials for storing hydrogen. In a car, the introduction of a chemical catalyst would release the hydrogen as needed, thus avoiding on-board storage of large quantities of flammable hydrogen gas. When the ammonia-borane fuel is depleted of hydrogen, it would be regenerated at a

200

Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences |  

Open Energy Info (EERE)

Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences Jump to: navigation, search Tool Summary Name: Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Vehicles Topics: Best Practices Complexity/Ease of Use: Not Available Website: www.afdc.energy.gov/afdc/fleets/fleet_experiences.html Related Tools Finalize Historic National Program to Reduce Greenhouse Gases and Improve Fuel Economy for Cars and Trucks Diesel Idling Reduction Tool and Calculator (Transit, Fuel) ... further results Find Another Tool FIND TRANSPORTATION TOOLS This compilation of case studies shows how other fleets are using alternative fuel vehicles, dealing with infrastructure issues, obtaining

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development  

SciTech Connect

The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

Jon Carmack

2014-01-01T23:59:59.000Z

202

Advanced computational simulation for design and manufacturing of lightweight material components for automotive applications  

SciTech Connect

Computational vehicle models for the analysis of lightweight material performance in automobiles have been developed through collaboration between Oak Ridge National Laboratory, the National Highway Transportation Safety Administration, and George Washington University. The vehicle models have been verified against experimental data obtained from vehicle collisions. The crashed vehicles were analyzed, and the main impact energy dissipation mechanisms were identified and characterized. Important structural parts were extracted and digitized and directly compared with simulation results. High-performance computing played a key role in the model development because it allowed for rapid computational simulations and model modifications. The deformation of the computational model shows a very good agreement with the experiments. This report documents the modifications made to the computational model and relates them to the observations and findings on the test vehicle. Procedural guidelines are also provided that the authors believe need to be followed to create realistic models of passenger vehicles that could be used to evaluate the performance of lightweight materials in automotive structural components.

Simunovic, S.; Aramayo, G.A.; Zacharia, T. [Oak Ridge National Lab., TN (United States); Toridis, T.G. [George Washington Univ., Washington, DC (United States); Bandak, F.; Ragland, C.L. [Dept. of Transportation, Washington, DC (United States)

1997-04-01T23:59:59.000Z

203

The likelihood of lock-in in the automotive market.  

E-Print Network (OSTI)

??This thesis studies the automotive market and the competition between the gasoline-fueled internal combustion engine car and a fuel cell-powered hydrogen car. The automotive market (more)

Midttmme, Kristoffer

2011-01-01T23:59:59.000Z

204

E-Print Network 3.0 - advanced automotive battery Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

OPERATIONS 12.0 billion yen investment to mass produce advanced lithium-ion batteries... Energy Utilization 12;HISTORY OF NISSAN'S EV 15 years of experience in lithium-ion...

205

Advanced Transmission Impact on Fuel Displacement  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

206

Table I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive  

Energy.gov (U.S. Department of Energy (DOE))

Technical targets for fuel cell CCMs in automotive applications defined by the High Temperature Working Group (February 2003).

207

NREL: Vehicles and Fuels Research - Advanced Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map The electric drive system is the technology foundation for hybrid electric and fuel cell vehicles. That's why NREL's Advanced Power Electronics project supports and promotes the design, development, and demonstration of power electronic components and systems that will overcome major technical barriers to the commercialization of hybrid, advanced internal combustion, and fuel cell vehicle technologies. In support of DOE's Vehicle Technologies Office, our researchers focus on developing advanced power electronics and electric machinery technologies that improve reliability, efficiency, and ruggedness, and dramatically decrease systems costs for advanced vehicles. Key components for these vehicles include the motor controller, DC to DC converters, and inverters

208

Computer simulation of optimal functioning regimes with minimum fuel consumption for automotives  

Science Journals Connector (OSTI)

The paper deals with computer simulation that allows the calculus of operating regimes with minimum fuel consumption for road vehicles, using engines mechanical characteristics for power and consumption, charact...

Salvadore Mugurel Burciu

2014-10-01T23:59:59.000Z

209

Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards  

Open Energy Info (EERE)

Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards Resources Jump to: navigation, search Tool Summary Name: Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards Resources Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.afdc.energy.gov/afdc/codes_standards.html This resource provides an overview of codes and standards related to alternative fuel vehicles, dispensing, storage, and infrastructure to help project developers and code officials prepare and review code-compliant projects. How to Use This Tool This tool is most helpful when using these strategies: Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

210

Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut Company to Advance Hydrogen Infrastructure and Fueling Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station Technologies Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station Technologies July 18, 2012 - 3:36pm Addthis As part of the U.S. Energy Department's commitment to give American businesses more options to cut energy costs and reduce reliance on imported oil, the Department today announced a $1.4 million investment to Wallingford- based Proton Energy Systems to collect and analyze performance data for hydrogen fueling stations and advanced refueling components. The projects will also help to track the performance and technical progress of innovative refueling systems to find ways to lower costs and improve operation. These investments are part of the Department's broader strategy

211

Recent advances in cathode electrocatalysts for PEM fuel cells  

Science Journals Connector (OSTI)

Great progress has been made in the past two decades in the development of the electrocatalysts for proton exchange membrane fuel cells (PEMFCs). This review article is focused on recent advances made in the k...

Junliang Zhang

2011-06-01T23:59:59.000Z

212

Brazil-NETL Advanced Fossil Fuels Partnerships | Open Energy Information  

Open Energy Info (EERE)

Advanced Fossil Fuels Partnerships Advanced Fossil Fuels Partnerships (Redirected from Brazil-NETL Cooperation) Jump to: navigation, search Logo: Brazil-NETL Cooperation Name Brazil-NETL Cooperation Agency/Company /Organization National Energy Technology Laboratory Partner Brazil Sector Energy Topics Background analysis Website http://www.netl.doe.gov/techno Program Start 2007 Program End 2012 Country Brazil South America References NETL Technologies Programs[1] This article is a stub. You can help OpenEI by expanding it. Advanced Fossil Fuels Partnerships with Brazil ORD International Research Agreements Brazilian Coal Gasification and CCS MOUs References ↑ NETL Technologies Programs Retrieved from "http://en.openei.org/w/index.php?title=Brazil-NETL_Advanced_Fossil_Fuels_Partnerships&oldid=375248"

213

Advanced Safeguards Approaches for New TRU Fuel Fabrication Facilities  

SciTech Connect

This second report in a series of three reviews possible safeguards approaches for the new transuranic (TRU) fuel fabrication processes to be deployed at AFCF specifically, the ceramic TRU (MOX) fuel fabrication line and the metallic (pyroprocessing) line. The most common TRU fuel has been fuel composed of mixed plutonium and uranium dioxide, referred to as MOX. However, under the Advanced Fuel Cycle projects custom-made fuels with higher contents of neptunium, americium, and curium may also be produced to evaluate if these minor actinides can be effectively burned and transmuted through irradiation in the ABR. A third and final report in this series will evaluate and review the advanced safeguards approach options for the ABR. In reviewing and developing the advanced safeguards approach for the new TRU fuel fabrication processes envisioned for AFCF, the existing international (IAEA) safeguards approach at the Plutonium Fuel Production Facility (PFPF) and the conceptual approach planned for the new J-MOX facility in Japan have been considered as a starting point of reference. The pyro-metallurgical reprocessing and fuel fabrication process at EBR-II near Idaho Falls also provided insight for safeguarding the additional metallic pyroprocessing fuel fabrication line planned for AFCF.

Durst, Philip C.; Ehinger, Michael H.; Boyer, Brian; Therios, Ike; Bean, Robert; Dougan, A.; Tolk, K.

2007-12-15T23:59:59.000Z

214

Automotive Thermoelectric Generator (TEG) Controls | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(TEG) Fuel Displacement Potential using Engine-in-the-Loop and Simulation Automotive Thermoelectric Generator Design Issues Benefits of Thermoelectric Technology for the Automobile...

215

Advanced Fuels Campaign FY 2014 Accomplishments Report  

SciTech Connect

The overall goal of ATF development is to identify alternative fuel system technologies to further enhance the safety, competitiveness, and economics of commercial nuclear power. The complex multiphysics behavior of LWR nuclear fuel in the integrated reactor system makes defining specific material or design improvements difficult; as such, establishing desirable performance attributes is critical in guiding the design and development of fuels and cladding with enhanced accident tolerance.

Lori Braase; W. Edgar May

2014-10-01T23:59:59.000Z

216

Advanced Petroleum Based Fuels Research at NREL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Petroleum Based Fuels Research at NREL Brad Zigler (PI) with Robb Barnitt, Greg Bogin, Wendy Clark, John Ireland, Doug Lawson, Jon Luecke, Dan Pedersen, Matt Ratcliff, and Matt...

217

Advances in Fuel Cell Vehicle Design.  

E-Print Network (OSTI)

??Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) (more)

Bauman, Jennifer

2008-01-01T23:59:59.000Z

218

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS, LLC (DELPHI) FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SYSTEMS, LLC (DELPHI) FOR AN ADVANCE SYSTEMS, LLC (DELPHI) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE AWARD NO. DE-EE0005342; W(A) 2011-064 DELPHI has requested a waiver of domestic and foreign patent rights of the United States of America in all subject inventions arising from its pm1icipation under the above referenced cooperative agreement entitled "Cascaded Micro Inverter System for Reduced Costs." ·1 he cooperative agreement was made under the Solar Energy Grid Integration Systems- Adv

219

Requirements For An Advanced Fueling System  

E-Print Network (OSTI)

supported by DOE grant No. DE-FG03-02ER54686 Supported by 1 #12;Reactor Fueling Requirements Not Adequately for current drive, a fueling system is all that a burning plasma system may be able to rely on to alter core density peaking via. core fuelling provides more flexibility to reach ignition 3Raman/FESAC/7Aug07 #12

Princeton Plasma Physics Laboratory

220

E-Print Network 3.0 - automotive shredder residue Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

residue Search Powered by Explorit Topic List Advanced Search Sample search results for: automotive shredder residue...

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

E-Print Network 3.0 - automotive shredder residues Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

residues Search Powered by Explorit Topic List Advanced Search Sample search results for: automotive shredder residues...

222

E-Print Network 3.0 - automotive diesel engine Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

engine Search Powered by Explorit Topic List Advanced Search Sample search results for: automotive diesel engine...

223

E-Print Network 3.0 - automotive emission control Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

emission control Search Powered by Explorit Topic List Advanced Search Sample search results for: automotive emission...

224

Technologies for Gaseous Fueled Advanced Reciprocating Engine...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* A user facility to developtest technologies to improve DE performance. 2 Advanced Laser Ignition System (ALIS): * Laser ignition was shown to extend lean ignitability of...

225

Advanced Research in Diesel Fuel Sprays Using X-rays from the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source Advanced Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source 2003 DEER...

226

Metal/ceria water-gas shift catalysts for automotive polymer electrolyte fuel cell system.  

SciTech Connect

Polymer electrolyte fuel cell (PEFC) systems are a leading candidate for replacing the internal combustion engine in light duty vehicles. One method of generating the hydrogen necessary for the PEFC is reforming a liquid fuel, such as methanol or gasoline, via partial oxidation, steam reforming, or autothermal reforming (a combination of partial oxidation and steam reforming). The H{sub 2}-rich reformate can contain as much as 10% carbon monoxide. Carbon monoxide has been shown to poison the platinum-based anode catalyst at concentrations as low as 10 ppm,1 necessitating removal of CO to this level before passing the reformate to the fuel cell stack. The water-gas shift (WGS) reaction, CO + H{sub 2}O {rightleftharpoons} CO{sub 2} + H{sub 2}, is used to convert the bulk of the reformate CO to CO{sub 2}. Industrially, the WGS reaction is conducted over two catalysts, which operate in different temperature regimes. One catalyst is a FeCr mixed oxide, which operates at 350-450 C and is termed the high-temperature shift (HTS) catalyst. The second catalyst is a CuZn mixed oxide, which operates at 200-250 C and is termed the low-temperature shift (LTS) catalyst. Although these two catalysts are used industrially in the production of H{sub 2} for ammonia synthesis, they have major drawbacks that make them unsuitable for transportation applications. Both the LTS and the HTS catalysts must first be ''activated'' before being used. For example, the copper in the copper oxide/zinc oxide LTS catalyst must first be reduced to elemental copper in situ before it becomes active for the WGS reaction. This reduction reaction is exothermic and must be carried out under well- controlled conditions using a dilute hydrogen stream (1 vol% H{sub 2}) to prevent high catalyst temperatures, which can result in sintering (agglomeration) of the copper particles and loss of active surface area for the WGS reaction. Also, once the catalyst has been activated by reduction, it must be protected from exposure to ambient air to prevent re-oxidation of the copper. The activated catalyst must also be protected from the condensation of liquids, for example, during start-up or transient operation. For these reasons, a more thermally rugged catalyst is needed which has sufficient activity to operate at the low temperatures that are thermodynamically necessary to achieve low CO concentrations.

Myers, D. J.; Krebs, J. F.; Carter, J. D.; Kumar, R.; Krumpelt, M.

2002-01-11T23:59:59.000Z

227

Ceramic Automotive Stirling Engine Program  

SciTech Connect

The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

Not Available

1986-08-01T23:59:59.000Z

228

NREL: Hydrogen and Fuel Cells Research - Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials The Advanced Materials group within NREL's Materials and Computational Sciences Center develops novel and optimized materials for energy-related applications that include sorption-based hydrogen storage, fuel cells, catalysts, photovoltaics, batteries, electrochromics, electronics, sensors, electricity conduction, and thermal management. These R&D efforts use first-principle models combined with state-of-the-art synthetic and characterization techniques to rationally design and construct advanced materials with new and improved properties. In addition to creating specific material properties tailored for the application of interest by understanding the underlying chemical and physical mechanisms involved, the research focuses on developing materials

229

FY2001 Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

FUELS FOR ADVANCED CIDI FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory and QSS Group, Inc., for their artistic, editorial and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2001 Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells

230

Advanced Fuel Cell Systems | Open Energy Information  

Open Energy Info (EERE)

Fuel Cell Systems Fuel Cell Systems Place Amherst, New York Zip 14228 Product Collaboration of three companies (ATSI Engineering, ENrg, BioEconomy Development Corp) active in the development and application of fuel cell systems. Coordinates 44.450509°, -89.281675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.450509,"lon":-89.281675,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

AUTOMOTIVE POWERTRAIN CONTROL A SURVEY Jeffrey A. Cook, Jing Sun, Julia H. Buckland, Ilya V. Kolmanovsky,  

E-Print Network (OSTI)

-oriented models of gasoline and diesel engines and their aftertreatment systems are reviewed, and challenging approaches to systems engineering, aftertreatment, and control of advanced tech- nology gasoline and diesel engines, hybrid electric power- trains and automotive fuel cells. In each case, fundamental models

Peng, Huei

232

ULTRACLEAN FUELS PRODUCTION AND UTILIZATION FOR THE TWENTY-FIRST CENTURY: ADVANCES TOWARDS SUSTAINABLE TRANSPORTATION FUELS  

SciTech Connect

Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

Fox, E.

2013-06-17T23:59:59.000Z

233

Recent advances in high-performance direct methanol fuel cells  

SciTech Connect

Direct methanol fuel cells for portable power applications have been advanced significantly under DARPA- and ARO-sponsored programs over the last five years. A liquid-feed direct methanol fuel cell developed under these programs, employs a proton exchange membrane as electrolyte and operates on aqueous solutions of methanol with air or oxygen as the oxidant. Power densities as high as 320 mW/cm{sup 2} have been demonstrated. Demonstration of five-cell stack based on the liquid-feed concept have been successfully performed by Giner Inc. and the Jet Propulsion Laboratory. Over 2000 hours of life-testing have been completed on these stacks. These fuel cells have been also been demonstrated by USC to operate on alternate fuels such as trimethoxymethane, dimethoxymethane and trioxane. Reduction in the parasitic loss of fuel across the fuel cell, a phenomenon termed as {open_quotes}fuel crossover{close_quotes} has been achieved using polymer membranes developed at USC. As a result efficiencies as high as 40% is considered attainable with this type of fuel cell. The state-of-development has reached a point where it is now been actively considered for stationary, portable and transportation applications. The research and development issues have been the subject of several previous articles and the present article is an attempt to summarize the key advances in this technology.

Narayanan, S.R.; Chun, W.; Valdez, T.I. [California Institute of Technology, Pasadena, CA (United States)] [and others

1996-12-31T23:59:59.000Z

234

Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions  

Open Energy Info (EERE)

Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Transportation Phase: Determine Baseline, Evaluate Options Topics: Co-benefits assessment, GHG inventory Resource Type: Online calculator, Software/modeling tools User Interface: Spreadsheet Complexity/Ease of Use: Moderate Website: www.transportation.anl.gov/modeling_simulation/AirCred/index.html

235

Integration of carbonate fuel cells with advanced coal gasification systems  

SciTech Connect

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have been identified in integrated coal gasification/carbonate fuel cells which take advantage of low temperature catalytic coal gasification producing a methane-rich fuel gas, and the internal methane reforming capabilities of Energy Research Corporation`s carbonate fuel cells. By selecting the appropriate operating conditions and catalyst in the gasifier, methane formation is maximized to improve gasification efficiency and to take advantage of the heat management aspects of the internal reforming carbonate fuel cell. These advanced integrated gasification/carbonate fuel cell systems are projected to have better efficiencies than gasification/carbonate fuel cell systems employing conventional gasification, and also competing non-fuel cell systems. These improved efficiencies would be accompanied by a corresponding reduction in impact on the environment as well.

Steinfeld, G. [Energy Research Corp., Danbury, CT (United States); Meyers, S.J. [Fluor Daniel, Inc., Irvine, CA (United States); Hauserman, W.B. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

1992-12-01T23:59:59.000Z

236

Integration of carbonate fuel cells with advanced coal gasification systems  

SciTech Connect

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have been identified in integrated coal gasification/carbonate fuel cells which take advantage of low temperature catalytic coal gasification producing a methane-rich fuel gas, and the internal methane reforming capabilities of Energy Research Corporation's carbonate fuel cells. By selecting the appropriate operating conditions and catalyst in the gasifier, methane formation is maximized to improve gasification efficiency and to take advantage of the heat management aspects of the internal reforming carbonate fuel cell. These advanced integrated gasification/carbonate fuel cell systems are projected to have better efficiencies than gasification/carbonate fuel cell systems employing conventional gasification, and also competing non-fuel cell systems. These improved efficiencies would be accompanied by a corresponding reduction in impact on the environment as well.

Steinfeld, G. (Energy Research Corp., Danbury, CT (United States)); Meyers, S.J. (Fluor Daniel, Inc., Irvine, CA (United States)); Hauserman, W.B. (North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center)

1992-01-01T23:59:59.000Z

237

Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)  

SciTech Connect

The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

Not Available

2014-10-01T23:59:59.000Z

238

Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research Fuels and Combustion Strategies for High-Efficiency Clean-Combustion...

239

Automotive Stirling summary and overview  

SciTech Connect

Government-funded studies for adapting the Stirling engine to an automotive application started in 1971. The initial studies were to reduce exhaust emissions and were later broadened to include fuel economy and alternate fuels. With the passage of the Automotive Propulsion Research and Development Act of 1978, the studies matured into the current Automotive Stirling Engine (ASE) Program. After eight years of development effort, the accomplishments of the ASE Program are reviewed to assess the outlook for program success at its scheduled completion in September 1987. One important goal of the ASE program is the transfer of Stirling engine technology to the USA. The technology transfer to the ASE Program team members has been accomplished. To expand the transfer in the USA, various activities have been initiated to make available the developed automotive Stirling engine technology to other US industries, including nonautomotive.

Tabata, W.K.; Shaltens, R.K.

1985-01-01T23:59:59.000Z

240

Model Year 2013: Alternative Fuel Vehicles and Advanced Technology Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

13: Alternative Fuel and Advanced Technology Vehicles 13: Alternative Fuel and Advanced Technology Vehicles 1 (Updated 3/6/13) 1 Source: http:/afdc.energy.gov/vehicles/search/light/ Fuel/Powertrain Type Make Model Vehicle Type Engine Size/Cylinders Transmission Emissions Class 2 Fuel Economy Gasoline 3,4 City/Hwy Fuel Economy Alt Fuel 3,4 City/Hwy HEV Acura ILX Sedan 1.5L I4 ECVT Tier 2 Bin 3 LEVII PZEV 39 / 38 N/A FFV E85 Audi A4 Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi A5 Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi A5 Cabriolet Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi Allroad Quatro Wagon 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 27 14 / 18 FFV E85 Audi Q5 SUV 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 28 14 / 19 HEV Audi Q5 Hybrid SUV 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 24 / 30 N/A FFV E85 Bentley

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Automotive Stirling Engine Development Program  

SciTech Connect

The Task I accomplishments of the jointly funded Ford/DOE Automotive Stirling Engine Development Program are detailed. This task was directed at achieving 20.6 MPG (gasoline) fuel economy for a 4500 lb inertia weight Stirling engine-powered passenger car. The results of engine testing and design, power control, fuel economy projections, and component design and development are discussed.

Kitzner, E.W.

1980-03-01T23:59:59.000Z

242

Particle Number and Size Emissions from a Small Displacement Automotive Diesel Engine: Bioderived vs Conventional Fossil Fuels  

Science Journals Connector (OSTI)

General Motors Powertrain Europe, Corso Castelfidardo 36, 10138 Torino, Italy ... The experiments were carried out at the Politecnico di Torino on a modern small displacement, turbocharged, common-rail Euro 5 direct injection (DI) automotive diesel engine, one of the smallest engines on the market, considering unit displacement. ...

Federico Millo; Davide Simone Vezza; Theodoros Vlachos; Andrea De Filippo; Claudio Ciaravino; Nunzio Russo; Debora Fino

2012-01-11T23:59:59.000Z

243

Low Emisssions Potential of EGR-SCR-DPF and Advanced Fuel Formulations...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emisssions Potential of EGR-SCR-DPF and Advanced Fuel Formulations - A Progress Report Low Emisssions Potential of EGR-SCR-DPF and Advanced Fuel Formulations - A Progress Report...

244

Low Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation - A Progress Report Low Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation - A Progress Report 2003...

245

Assessment of Research Needs for Advanced Fuel Cells  

SciTech Connect

The DOE Advanced Fuel Cell Working Group (AFCWG) was formed and asked to perform a scientific evaluation of the current status of fuel cells, with emphasis on identification of long-range research that may have a significant impact on the practical utilization of fuel cells in a variety of applications. The AFCWG held six meetings at locations throughout the country where fuel cell research and development are in progress, for presentations by experts on the status of fuel cell research and development efforts, as well as for inputs on research needs. Subsequent discussions by the AFCWG have resulted in the identification of priority research areas that should be explored over the long term in order to advance the design and performance of fuel cells of all types. Surveys describing the salient features of individual fuel cell types are presented in Chapters 2 to 6 and include elaborations of long-term research needs relating to the expeditious introduction of improved fuel cells. The Introduction and the Summary (Chapter 1) were prepared by AFCWG. They were repeatedly revised in response to comments and criticism. The present version represents the closest approach to a consensus that we were able to reach, which should not be interpreted to mean that each member of AFCWG endorses every statement and every unexpressed deletion. The Introduction and Summary always represent a majority view and, occasionally, a unanimous judgment. Chapters 2 to 6 provide background information and carry the names of identified authors. The identified authors of Chapters 2 to 6, rather than AFCWG as a whole, bear full responsibility for the scientific and technical contents of these chapters.

Penner, S.S.

1985-11-01T23:59:59.000Z

246

Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts (Presentation)  

SciTech Connect

This presentation is a summary of a Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts.

Dinh, H.; Gennett, T.

2010-06-11T23:59:59.000Z

247

Users Perspective on Advanced Fuel Cell Bus Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Users Perspective on Advanced Fuel Cell Bus Technology Lesl lie Eud dy - NREL Nico Bouwkamp - CaFCP DOE/FTA FCB Workshop DOE/FTA FCB Workshop June 7, 2010 - Transit Agencies FCB Demonstrations Transit Agencies FCB Demonstrations Reasons for participation Reasons for participation - Government regulations to reduce emissions - Public pressure Public pressure - Agency desire to be 'green' - Funding opportunity Funding opportunity - Learn about the newest technology 2 - Challenges: Performance Challenges: Performance Bus should match conventional bus performance Bus should match conventional bus performance - Operate 7 days/week, up to 20 hr/day - Complete day of service with one tank of fuel Complete day of service with one tank of fuel - Keep up with duty-cycle

248

Alternative Fuels and Advanced Vehicles Data Center - Federal and State  

Open Energy Info (EERE)

Federal and State Federal and State Incentives and Laws Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuels and Advanced Vehicles Data Center - Federal and State Incentives and Laws Database Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Standards - Incentives - Policies - Regulations Topics: Best Practices Website: www.afdc.energy.gov/afdc/laws/ This database provides U.S. federal and state laws and incentives related to alternative fuels and vehicles, air quality, fuel efficiency, and other transportation-related topics. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

249

Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Dinh (PI) Dinh (PI) Thomas Gennett National Renewable Energy Laboratory October 1, 2009 Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts This presentation does not contain any proprietary, confidential, or otherwise restricted information Objectives Develop cost-effective, reliable, durable fuel cells for portable power applications (e.g., cell phones, computers, etc.) that meet all DOE targets. Note that the energy density (Wh/L), volumetric (W/L), and specific power (W/kg) all depend on knowing the weight and volume of the entire DMFC system as well as the volume and concentration of fuel, which are system specific (power application and manufacturer dependent). In our model study the surface power density levels on HOPG will allow for indirect evaluation of our system to DOE's energy density

250

Advanced Materials and Concepts for Portable Power Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 1 DOE Kick-off Meeting, Washington, DC September 28, 2010 Fuel Cell Projects Kick-off Meeting Washington, DC - September 28, 2010 Advanced Materials and Concepts for Portable Power Fuel Cells for Portable Power Fuel Cells Piotr Zelenay Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos, New Mexico 87545 This presentation does not contain any proprietary, confidential, or otherwise restricted information - t t Overview Timeline * Start date: September 2010 * End date: Four-year duration Budget Budget * Total funding estimate: - DOE share: $3,825K Contractor share: $342K $342K - Contractor share: * FY10 funding received: $250K * FY11 funding estimate: $1,000K Barriers * A. Durability (catalyst; electrode) (catalyst; electrode)

251

Model Year 2006: Alternative Fuel and Advanced Technology Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

06: Alternative Fuel and Advanced Technology Vehicles 06: Alternative Fuel and Advanced Technology Vehicles Fuel Type EPAct Compliant? Model Vehicle Type Emission Class Powertrain Fuel Capacity Range American Honda Motor Corporation 888-CCHONDA www.honda.com CNG Dedicated EPAct Yes Civic GX Compact Sedan SULEV Tier 2 Bin II 1.7L, 4-cylinder 8 GGE 200 mi HEV (NiMH) EPAct No Accord Hybrid Sedan ULEV 3.0L V6 144 volt NiMH + 17.1 Gal Gasoline TBD HEV (NiMH) EPAct No Civic Hybrid Sedan CA ULEV 1.3L, 4-cylinder 144 volt NiMH + 13.2 Gal Gasoline TBD HEV (NiMH) EPAct No Insight Two-seater SULEV (CVT model) ULEV (MT model) 1.0L, 3-cylinder 144 volt NiMH + 10.6 Gal Gasoline 636 mi DaimlerChrysler 800-999-FLEET www.fleet.chrysler.com E85 FFV EPAct Yes Dodge Ram Pickup 1500 Series 1 Pickup Tier 2 Bin 10A 4.7L V8 26 Gal 416 mi E85 FFV

252

FY2002 Progress Report for Fuels for Advanced Compression Ignition Direct Injection (CIDI) Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels for Advanced Compression Fuels for Advanced Compression Ignition Direct Injection (CIDI) Engines Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Approved by Stephen Goguen November 2002 Fuels for Advanced CIDI Engines FY 2002 Progress Report iii CONTENTS CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii INDEX OF PRIMARY CONTACTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. FUEL/LUBRICANT EFFECTS TESTING ON ENGINE PERFORMANCE . . . . . . . . . 13 A. Oil Consumption Contribution to CIDI PM Emissions during Transient Operation . . . . . . . . . . . . . . . . . . . .13

253

Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels  

SciTech Connect

Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear fuels are critical to understand the burnup, and thus the fuel efficiency.

Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

2014-01-09T23:59:59.000Z

254

Low-Temperature Automotive Diesel Combustion | Department of...  

Energy Savers (EERE)

Diesel Combustion Low-Temperature Automotive Diesel Combustion 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

255

Dynamic Modelling of Battery Cooling Systems for Automotive Applications.  

E-Print Network (OSTI)

??The automotive industry is currently undergoing a period of historic upheaval. Under mounting pressure from increasing fuel costs and emission legislations, the industry now faces (more)

Hasselby, Fabian

2014-01-01T23:59:59.000Z

256

Penn State DOE Graduate Automotive Technology Education (Gate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Graduate Automotive Technology Education (Gate) Program for In-Vehicle, High-Power Energy Storage Systems 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program...

257

Development of Thermoelectric Technology for Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement.

258

Xiamien King Long United Automotive Industry Suzhou | Open Energy...  

Open Energy Info (EERE)

Fujian Province, China Sector: Vehicles Product: Automotive manufacturer, developing fuel cell vehicles. Coordinates: 31.3092, 120.613121 Show Map Loading map......

259

NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010  

ScienceCinema (OSTI)

We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

None

2013-05-29T23:59:59.000Z

260

NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010  

SciTech Connect

We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

None

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced fuel cycles and impacts On The Yucca Mountain Repository  

SciTech Connect

One of the goals identified for advanced fuel cycles, such as that proposed by the Global Nuclear Energy Partnership, is to reduce the volume of wastes that would ultimately have to be disposed in a geologic repository. Besides reducing volume, techniques that recycle the vast majority of actinides along with the removal of key fission products also reduce the inventory of radionuclides that must ultimately be disposed and the thermal output of the wastes. Advanced recycling techniques may also generate waste forms having different characteristics than those that have been considered for disposal in a repository at Yucca Mountain to-date. These all have a potential impact on several aspects of a repository, such as the proposed repository at Yucca Mountain, including surface and subsurface facility design, pre-closure and post-closure safety analyses, and ultimately licensing. These changes would all have to be performed in accordance with the requirements at 10 CFR 63 and approved by the U.S. Nuclear Regulatory Commission in a license amendment prior to the disposal of any wastes from an advanced fuel cycle. (authors)

Nutt, W.M.; Peters, M.T. [Argonne National Laboratory, Argonne, IL (United States); Swift, P.N. [Sandia National Laboratories, New Mexico, Albuquerque, NM (United States)

2007-07-01T23:59:59.000Z

262

Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

North Carolina Airport North Carolina Airport Advances With Plug-In Electric Buses to someone by E-mail Share Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Facebook Tweet about Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Twitter Bookmark Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Google Bookmark Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Delicious Rank Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Digg Find More places to share Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on AddThis.com...

263

ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells  

E-Print Network (OSTI)

ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells Spring 2014 Syllabus Course: ENCH 473 Electrochemical Energy Engineering ENCH: 648K Advanced Batteries and Fuel Cells, with emphasis on the principle and performance of batteries, supercapacitors and fuel cells. The objective

Rubloff, Gary W.

264

The Progressive Insurance Automotive X PRIZE Education Program  

SciTech Connect

The Progressive Insurance Automotive X PRIZE Education Program conducted education and outreach activities and used the competition's technical goals and vehicle demonstrations as a means of attracting students and the public to learn more about advanced vehicle technologies, energy efficiency, climate change, alternative fuels, and the science and math behind efficient vehicle development. The Progressive Insurance Automotive X PRIZE Education Program comprised three integrated components that were designed to educate the general public and create a multi-tiered initiative to engage students and showcase the 21st century skills students will need to compete in our global economy: teamwork, creativity, strong literacy, math and science skills, and innovative thinking. The elements included an Online Experience, a National Student Contest, and in person education events and activites. The project leveraged online connections, strategic partnerships, in-classroom, and beyond-the-classroom initiatives, as well as mainstream media. This education program supported by the U.S. Department of Energy (DOE) also funded the specification of vehicle telemetry and the full development and operation of an interactive online experience that allowed internet users to follow the Progressive Insurance Automotive X PRIZE vehicles as they performed in real-time during the Progressive Insurance Automotive X PRIZE competition events.

Robyn Ready

2011-12-31T23:59:59.000Z

265

Fuel qualification plan for the Advanced Neutron Source Reactor  

SciTech Connect

This report describes the development and qualification plan for the fuel for the Advanced Neutron Source. The reference fuel is U{sub 3}Si{sub 2}, dispersed in aluminum and clad in 6061 aluminum. This report was prepared in May 1994, at which time the reference design was for a two-element core containing highly enriched uranium (93% {sup 235}U) . The reactor was in the process of being redesigned to accommodate lowered uranium enrichment and became a three-element core containing a higher volume fraction of uranium enriched to 50% {sup 235}U. Consequently, this report was not issued at that time and would have been revised to reflect the possibly different requirements of the lower-enrichment, higher-volume fraction fuel. Because the reactor is now being canceled, this unrevised report is being issued for archival purposes. The report describes the fabrication and inspection development plan, the irradiation tests and performance modeling to qualify performance, the transient testing that is part of the safety program, and the interactions and interfaces of the fuel development with other tasks.

Copeland, G.L.

1995-07-01T23:59:59.000Z

266

Advanced Neutron Source Reactor thermal analysis of fuel plate defects  

SciTech Connect

The Advanced Neutron Source Reactor (ANSR) is a research reactor designed to provide the highest continuous neutron beam intensity of any reactor in the world. The present technology for determining safe operations were developed for the High Flux Isotope Reactor (HFIR). These techniques are conservative and provide confidence in the safe operation of HFIR. However, the more intense requirements of ANSR necessitate the development of more accurate, but still conservative, techniques. This report details the development of a Local Analysis Technique (LAT) that provides an appropriate approach. Application of the LAT to two ANSR core designs are presented. New theories of the thermal and nuclear behavior of the U{sub 3}Si{sub 2} fuel are utilized. The implications of lower fuel enrichment and of modifying the inspection procedures are also discussed. Development of the computer codes that enable the automate execution of the LAT is included.

Giles, G.E.

1995-08-01T23:59:59.000Z

267

Irradiation Test of Advanced PWR Fuel in Fuel Test Loop at HANARO  

SciTech Connect

A new fuel test loop has been constructed in the research reactor HANARO at KAERI. The main objective of the FTL (Fuel Test Loop) is an irradiation test of a newly developed LWR fuel under PWR or Candu simulated conditions. The first test rod will be loaded within 2007 and its irradiation test will be continued until a rod average their of 62 MWd/kgU. A total of five test rods can be loaded into the IPS (In-Pile Section) and fuel centerline temperature, rod internal pressure and fuel stack elongation can be measured by an on-line real time system. A newly developed advanced PWR fuel which consists of a HANA{sup TM} alloy cladding and a large grain UO{sub 2} pellet was selected as the first test fuel in the FTL. The fuel cladding, the HANA{sup TM} alloy, is an Nb containing Zirconium alloy that has shown better corrosion and creep resistance properties than the current Zircaloy-4 cladding. A total of six types of HANA{sup TM} alloy were developed and two or three of these candidate alloys will be used as test rod cladding, which have shown a superior performance to the others. A large-grain UO{sub 2} pellet has a 14{approx}16 micron 2D diameter grain size for a reduction of a fission gas release at a high burnup. In this paper, characteristics of the FTL and IPS are introduced and the expected operation and irradiation conditions are summarized for the test periods. Also the preliminary fuel performance analysis results, such as the cladding oxide thickness, fission gas release and rod internal pressure, are evaluated from the test rod safety analysis aspects. (authors)

Yang, Yong Sik; Bang, Je Geon; Kim, Sun Ki; Song, Kun Woo [LWR Fuel Development Division, Korea Atomic Energy Research Institute, 1045, Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of); Park, Su Ki [HANARO Utilization Technology Development Division, Korea Atomic Energy Research Institute, 1045, Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of); Seo, Chul Gyo [HANARO Management Division, Korea Atomic Energy Research Institute, 1045, Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

2007-07-01T23:59:59.000Z

268

TODAY: Secretary Chu and Senator Stabenow to Announce Advanced...  

Energy Savers (EERE)

Senator Stabenow to Announce Advanced Automotive Technology Loan for Michigan Manufacturer TODAY: Secretary Chu and Senator Stabenow to Announce Advanced Automotive Technology Loan...

269

Low-Temperature Automotive Diesel Combustion | Department of...  

Office of Environmental Management (EM)

in Low Temperature Automotive Diesel Combustion Systems Mixture Formation in a Light-Duty Diesel Engine Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments...

270

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Development...

271

Centers for Alternative Fuels and Advanced Vehicle Technology Pre-Application Workshop Attendee List  

E-Print Network (OSTI)

PON-13-605 Centers for Alternative Fuels and Advanced Vehicle Technology Pre-Application Workshop. Clements Clean Air / Alternative Fuel / School Transportation Experience 559-356-1334 johndclements56@gmail

272

The Adoption of Advanced Fuel Cycle Technology Under a Single Repository Policy  

SciTech Connect

Develops the tools to investiage the hypothesis that the savings in repository space associated with the implementation of advanced nuclear fuel cycles can result in sufficient cost savings to offset the higher costs of those fuel cycles.

Paul Wilson

2009-11-02T23:59:59.000Z

273

Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

R&D Annual Progress Report Vehicle Technologies Office: 2008-2009 Fuels Technologies R&D Progress Report Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research...

274

Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics  

SciTech Connect

The safe, reliable and economic operation of the nations nuclear power reactor fleet has always been a top priority for the United States nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industrys success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, metrics describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly insertion into a commercial reactor within the desired timeframe (by 2022).

Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

2014-02-01T23:59:59.000Z

275

Detection of arcs in automotive electrical systems  

E-Print Network (OSTI)

At the present time, there is no established method for the detection of DC electric arcing. This is a concern for forthcoming advanced automotive electrical systems which consist of higher DC electric power bus voltages, ...

Mishrikey, Matthew David

2005-01-01T23:59:59.000Z

276

Advanced Coal-Fueled Gas Turbine Program. Final report  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

277

Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation  

E-Print Network (OSTI)

Oxford ; New York ; Oxford University Press. Fuel- Trac,Spent Fuel / Reprocessing, in Nuclear Industry Statusto Burn Non-Fissile Fuels. 2008. GA. Energy Multiplier

Heidet, Florent

2010-01-01T23:59:59.000Z

278

E-Print Network 3.0 - advanced pem fuel Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

tolerant PEM Fuel Cell System utilizing advanced components, high temperature membrane Praxair Process... Powders Reformate-Tolerant Membrane Electrode Assemblies (MEAs) for PEM...

279

E-Print Network 3.0 - advanced spent fuel Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

facilities should have more advanced technical monitoring... of the cycle to extract fis- sile material from the spent fuel removed from reactors. Although a complete... of...

280

Vehicle Technologies Office Merit Review 2014: Advancing Alternative Fuel Markets in Florida  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by University of Central Florida at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancing...

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Vehicle Technologies Office Merit Review 2014: Advanced Lean-Burn DI Spark Ignition Fuels Research  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced lean...

282

Automotive fuels. January 1984-February 1992 (Citations from the NTIS Data Base). Rept. for Jan 84-Feb 92  

SciTech Connect

The bibliography contains citations concerning various fuels for the operation of automobiles. Fuels include alcohol, diesel, gasoline, hydrogen, natural gas, methanol, and methane. Topics include exhaust emissions and gases, economy, consumption, antiknock additives, and volatility. (Contains 153 citations with title list and subject index.)

Not Available

1992-01-01T23:59:59.000Z

283

E-Print Network 3.0 - advanced fuel systems Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

States Summary: advanced vehicle and fuel technologies, helps to move them from R&D to markets - Collaborate on R... ethanol) - 50% for advanced biofuels (e.g., sugar ethanol)...

284

Assessment of SFR fuel pin performance codes under advanced fuel for minor actinide transmutation  

SciTech Connect

Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like {sup 241}Am is, therefore, an option for the reduction of radiotoxicity and residual power packages as well as the repository area. In the SUPERFACT Experiment four different oxide fuels containing high and low concentrations of {sup 237}Np and {sup 241}Am, representing the homogeneous and heterogeneous in-pile recycling concepts, were irradiated in the PHENIX reactor. The behavior of advanced fuel materials with minor actinide needs to be fully characterized, understood and modeled in order to optimize the design of this kind of fuel elements and to evaluate its performances. This paper assesses the current predictability of fuel performance codes TRANSURANUS and GERMINAL V2 on the basis of post irradiation examinations of the SUPERFACT experiment for pins with low minor actinide content. Their predictions have been compared to measured data in terms of geometrical changes of fuel and cladding, fission gases behavior and actinide and fission product distributions. The results are in good agreement with the experimental results, although improvements are also pointed out for further studies, especially if larger content of minor actinide will be taken into account in the codes. (authors)

Bouineau, V.; Lainet, M.; Chauvin, N.; Pelletier, M. [French Alternative Energies and Atomic Energy Commission - CEA, CEA Cadarache, DEN/DEC/SESC, 13108 Saint Paul lez Durance (France); Di Marcello, V.; Van Uffelen, P.; Walker, C. [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, D- 76344 Eggenstein-Leopoldshafen (Germany)

2013-07-01T23:59:59.000Z

285

Advanced proton-exchange materials for energy efficient fuel cells.  

SciTech Connect

The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

2005-12-01T23:59:59.000Z

286

Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation  

E-Print Network (OSTI)

As the heavy metal density of carbide fuel is 6% smallera heavy metal density close to that of the carbide fuel butcarbide fuel or inert matrix dispersion fuel due to the lowered heavy metal

Heidet, Florent

2010-01-01T23:59:59.000Z

287

Advanced Fuel Cycle Economic Tools, Algorithms, and Methodologies  

SciTech Connect

The Advanced Fuel Cycle Initiative (AFCI) Systems Analysis supports engineering economic analyses and trade-studies, and requires a requisite reference cost basis to support adequate analysis rigor. In this regard, the AFCI program has created a reference set of economic documentation. The documentation consists of the Advanced Fuel Cycle (AFC) Cost Basis report (Shropshire, et al. 2007), AFCI Economic Analysis report, and the AFCI Economic Tools, Algorithms, and Methodologies Report. Together, these documents provide the reference cost basis, cost modeling basis, and methodologies needed to support AFCI economic analysis. The application of the reference cost data in the cost and econometric systems analysis models will be supported by this report. These methodologies include: the energy/environment/economic evaluation of nuclear technology penetration in the energy marketdomestic and internationallyand impacts on AFCI facility deployment, uranium resource modeling to inform the front-end fuel cycle costs, facility first-of-a-kind to nth-of-a-kind learning with application to deployment of AFCI facilities, cost tradeoffs to meet nuclear non-proliferation requirements, and international nuclear facility supply/demand analysis. The economic analysis will be performed using two cost models. VISION.ECON will be used to evaluate and compare costs under dynamic conditions, consistent with the cases and analysis performed by the AFCI Systems Analysis team. Generation IV Excel Calculations of Nuclear Systems (G4-ECONS) will provide static (snapshot-in-time) cost analysis and will provide a check on the dynamic results. In future analysis, additional AFCI measures may be developed to show the value of AFCI in closing the fuel cycle. Comparisons can show AFCI in terms of reduced global proliferation (e.g., reduction in enrichment), greater sustainability through preservation of a natural resource (e.g., reduction in uranium ore depletion), value from weaning the U.S. from energy imports (e.g., measures of energy self-sufficiency), and minimization of future high level waste (HLW) repositories world-wide.

David E. Shropshire

2009-05-01T23:59:59.000Z

288

Advanced LWR Nuclear Fuel Cladding System Development Trade-Off Study  

SciTech Connect

The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an accident tolerant fuel system that would offer improved coping time under accident scenarios. With a development time of about 20 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.

Kristine Barrett; Shannon Bragg-Sitton

2012-09-01T23:59:59.000Z

289

Batteries and Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

290

Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics Executive Summary  

SciTech Connect

Research and development (R&D) activities on advanced, higher performance Light Water Reactor (LWR) fuels have been ongoing for the last few years. Following the unfortunate March 2011 events at the Fukushima Nuclear Power Plant in Japan, the R&D shifted toward enhancing the accident tolerance of LWRs. Qualitative attributes for fuels with enhanced accident tolerance, such as improved reaction kinetics with steam resulting in slower hydrogen generation rate, provide guidance for the design and development of fuels and cladding with enhanced accident tolerance. A common set of technical metrics should be established to aid in the optimization and down selection of candidate designs on a more quantitative basis. Metrics describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. This report describes a proposed technical evaluation methodology that can be applied to evaluate the ability of each concept to meet performance and safety goals relative to the current UO2 zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed toward qualification.

Shannon Bragg-Sitton

2014-02-01T23:59:59.000Z

291

Subfreezing Start/Stop Protocol for an Advanced Metallic Open-Flowfield Fuel Cell Stack  

NLE Websites -- All DOE Office Websites (Extended Search)

Subfreezing Start/Stop Protocol for an Advanced Subfreezing Start/Stop Protocol for an Advanced Subfreezing Start/Stop Protocol for an Advanced Subfreezing Start/Stop Protocol for an Advanced Subfreezing Start/Stop Protocol for an Advanced Metallic Open Metallic Open Metallic Open Metallic Open- - - -Flowfield Flowfield Flowfield Flowfield Fuel Cell Stack Fuel Cell Stack Fuel Cell Stack Fuel Cell Stack Presented at: US DOE New Projects Kickoff Meeting Washington, DC 13-14 February 2007 Alternative Energy Efficient Simple Clean Today Alternative Energy Efficient Simple Clean Today Objective Objective Objective Objective This project will demonstrate a PEM fuel cell stack that is able to perform and start up in subfreezing conditions, respecting allowed energy budget, and showing limited impact at extreme temperatures over multiple

292

Autonomie Automotive Simulation Tool | Open Energy Information  

Open Energy Info (EERE)

Autonomie Automotive Simulation Tool Autonomie Automotive Simulation Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Autonomie Automotive Simulation Tool Agency/Company /Organization: Argonne National Laboratory Focus Area: Economic Development, Vehicles Phase: Create a Vision Topics: Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.transportation.anl.gov/modeling_simulation/PSAT/autonomie.html OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: Autonomie[1] Rapidly evaluate new powertrain and propulsion technologies for improving fuel economy through virtual design and analysis in a math-based simulation environment. Argonne has developed a new tool, called Autonomie, to accelerate the

293

Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode Operation with Low  

E-Print Network (OSTI)

Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode Operation with Low, Director Product Development & Federal Programs #12;Project Background f Reversible Solid Oxide Fuel Cells:Water The VPS Storage f Wind Fuel Cell / f Solar Electrolyzer Continuous SOFC Intermittent Power Power

294

Geospatial Analysis and Optimization of Fleet Logistics to Exploit Alternative Fuels and Advanced Transportation Technologies: Preprint  

SciTech Connect

This paper describes how the National Renewable Energy Laboratory (NREL) is developing geographical information system (GIS) tools to evaluate alternative fuel availability in relation to garage locations and to perform automated fleet-wide optimization to determine where to deploy alternative fuel and advanced technology vehicles and fueling infrastructure.

Sparks, W.; Singer, M.

2010-06-01T23:59:59.000Z

295

INTERNATIONAL SUMMER SCHOOL ON ADVANCED STUDIES OF POLYMER ELECTROLYTE FUEL CELLS  

E-Print Network (OSTI)

4TH INTERNATIONAL SUMMER SCHOOL ON ADVANCED STUDIES OF POLYMER ELECTROLYTE FUEL CELLS YOKOHAMA and with internationally recognized experts in the field of fuel cell research. The lectures include fundamental studies OF THE LECTURES: · PEFC Fundamentals · Hydrogen as Fuel - Fundamentals · Electrochemistry · Measurement Techniques

296

Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report  

SciTech Connect

The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

William Anderson; James Tulenko; Bradley Rearden; Gary Harms

2008-09-11T23:59:59.000Z

297

Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles  

SciTech Connect

The current posture of the used nuclear fuel management program in the U.S. following termination of the Yucca Mountain Project, is to pursue research and development (R&D) of generic (i.e., non-site specific) technologies for storage, transportation and disposal. Disposal R&D is directed toward understanding and demonstrating the performance of reference geologic disposal concepts selected to represent the current state-of-the-art in geologic disposal. One of the principal constraints on waste packaging and emplacement in a geologic repository is management of the waste-generated heat. This paper describes the selection of reference disposal concepts, and thermal management strategies for waste from advanced fuel cycles. A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE) Used Fuel Disposition Campaign, for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. We performed thermal analysis of these concepts using waste inventory cases representing a range of advanced fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress and previous experience in the U.S. repository program. All of the disposal concepts selected for this study use enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. The encapsulating materials (typically clay-based or rock salt) have low intrinsic permeability and plastic rheology that closes voids so that low permeability is maintained. Uniformly low permeability also contributes to chemically reducing conditions common in soft clay, shale, and salt formations. Enclosed modes are associated with temperature constraints that limit changes to the encapsulating materials, and they generally have less capacity to dissipate heat from the waste package and its immediate surroundings than open modes such as that proposed for a repository at Yucca Mountain, Nevada. Open emplacement modes can be ventilated for many years prior to permanent closure of the repository, limiting peak temperatures both before and after closure, and combining storage and disposal functions in the same facility. Open emplacement modes may be practically limited to unsaturated host formations, unless emplacement tunnels are effectively sealed everywhere prior to repository closure. Thermal analysis of disposal concepts and waste inventory cases has identified important relationships between waste package size and capacity, and the duration of surface decay storage needed to meet temperature constraints. For example, the choice of salt as the host medium expedites the schedule for geologic disposal by approximately 50 yr (other factors held constant) thereby reducing future reliance on surface decay storage. Rock salt has greater thermal conductivity and stability at higher temperatures than other media considered. Alternatively, the choice of salt permits the use of significantly larger waste packages for SNF. The following sections describe the selection of reference waste inventories, geologic settings, and concepts of operation, and summarize the results from the thermal analysis.

Hardin, Ernest [Sandia National Laboratories (SNL)] [Sandia National Laboratories (SNL); Blink, James [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL); Carter, Joe [Savannah River National Laboratory (SRNL)] [Savannah River National Laboratory (SRNL); Massimiliano, Fratoni [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL); Greenberg, Harris [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL); Howard, Rob L [ORNL] [ORNL

2011-01-01T23:59:59.000Z

298

Engineering metabolic systems for production of advanced fuels  

E-Print Network (OSTI)

keto acid pathways for bio- fuel production. The productionmaking bio- gasoline, bio-jet fuel, and biodiesel, as welldevelopment of bio-ethanol as an alternative fuel have led

Yan, Yajun; Liao, James C.

2009-01-01T23:59:59.000Z

299

Alternative Fuel and Advanced Technology Commercial Lawn Equipment...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

retailers offer a mower fuel tank exchange program and deliver replacement propane tanks directly to the customer. Local propane fueling stations may also have the ability to...

300

Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partners Budget Colorado School of Mines (CSM) Jet Propulsion Laboratory (JPL) BASF Fuel Cells (BASF) MTI MicroFuel Cells (MTI) Timeline 2009 - 2011 2009 (Aug) 2011 2010...

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NREL: Vehicles and Fuels Research - Vehicle Ancillary Loads Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map Photo of Advanced Automotive Manikin Reducing fuel consumption by air conditioning systems is the focus of Vehicle Ancillary Loads Reduction (VALR) activities at NREL. About 7 billion gallons of fuel-about 5.5% of total national light-duty vehicle fuel use-are used annually just to cool light-duty vehicles in the United States. That's why our VALR team works with industry to help increase fuel economy and reduce tailpipe emissions by reducing the ancillary loads requirements in vehicles while maintaining the thermal comfort of the passengers. Approaches include improved cabin insulation, advanced window systems, advanced cooling and venting systems, and heat generated cooling. Another focus of the VALR project is ADAM, the ADvanced Automotive Manikin

302

Radio-toxicity of spent fuel of the advanced heavy water reactor  

Science Journals Connector (OSTI)

......Radio-toxicity of spent fuel of the advanced heavy water reactor S. Anand * K. D. S...Mumbai 400085, India The Advanced Heavy Water Reactor (AHWR) is a new power...PHWR. INTRODUCTION The Advanced Heavy Water Reactor (AHWR)(1, 2), currently......

S. Anand; K. D. S. Singh; V. K. Sharma

2010-01-01T23:59:59.000Z

303

Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 October 1, 2009

304

Thermoelectrics Partnership: Automotive Thermoelectric Modules...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces...

305

Thermoelectrics Partnership: Automotive Thermoelectric Modules...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel Nanostructured Interface Solution for Automotive Thermoelectric...

306

Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles  

E-Print Network (OSTI)

An Indirect Methanol Pem Fuel Cell System, SAE 2001, (paperof automotive PEM fuel cell stacks, SAE 2000 (paper number1009). for an automotive PEM fuel cell system with imbedded

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

307

Advanced Cathode Catalysts and Supports for PEM Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Cathode Catalysts and Cathode Catalysts and Supports for PEM Fuel Cells DE-FG36-07GO17007 Mark K. Debe 3M Company Feb. 13, 2007 2007 DOE HFCIT Kick-off Meeting This presentation does not contain any proprietary or confidential information Overview Advanced Cathode Catalysts and Supports for PEM FC's - 2007 DOE HFCIT Kick-off, Feb. 13-14, 2007 2 3 Barriers A. Electrode and MEA Durability B. Stack Material & Mfg Cost C. Electrode and MEA Performance DOE Technical Targets Electrocatalyst (2010, 2015) * Durability w/cycling: hrs < 80 o C - (5000, 5000) > 80 o C - (2000, 5000) * Cost: $/kW (5,4) * Mass activity: A/mg ( 0.44, 0.44) * PGM Total, g/ kW rated: (0.3, 0.2) MEA (2010, 2015) * Cost: $/kW (10,5) * Performance: W/cm 2 at Rated Pwr. (1,1) ; 0.8V (0.25, 0.25) Budget * Total Project funding $10.43MM

308

Advanced LWR Nuclear Fuel Cladding System Development Trade-off Study |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LWR Nuclear Fuel Cladding System Development Trade-off LWR Nuclear Fuel Cladding System Development Trade-off Study Advanced LWR Nuclear Fuel Cladding System Development Trade-off Study The LWR Sustainability (LWRS) Program activities must support the timeline dictated by utility life extension decisions to demonstrate a lead test rod in a commercial reactor within 10 years. In order to maintain the demanding development schedule that must accompany this aggressive timeline, the LWRS Program focuses on advanced fuel cladding systems that retain standard UO2 fuel pellets for deployment in currently operating LWR power plants. The LWRS work scope focuses on fuel system components outside of the fuel pellet, allowing for alteration of the existing zirconium-based clad system through coatings, addition of ceramic sleeves, or complete replacement

309

Biodiesel properties and automotive system compatibility issues  

Science Journals Connector (OSTI)

Abstract Acceptability of biodiesel by automotive sector is limited due to some of its adverse properties such as cold flow properties, oxidation stability and corrosiveness with automotive fuel system materials. Adverse cold flow properties of biodiesel lead to the problem of plugging and gumming of filters and injectors. There is a concern about the poor oxidation stability of biodiesel, which results in the formation of sediments and gums causing problem in the engine fuel injection system. Biodiesel reacts with automotive fuel system materials adversely resulting in corrosion of metals and degradation of elastomers. Beside these adverse issues, biodiesel possesses incredible inherent lubricity. This article aims to review the adverse biodiesel properties like cold flow properties, oxidation stability; corrosive and acidic nature resulting in non-compatibility with automotive fuel system materials. It also discusses the excellent lubrication behaviour of biodiesel and its positive impact. An effort has been made to present the review of 145 research papers along with the sharing of our some in-house experimental results. Additive treatment with biodiesel has been found to be suitable for improving the low temperature properties and oxidation stability. Certain metallic and elastomeric components have been reported as compatible/non-compatible with biodiesel. Although attempts have already been made by some researchers on the adverse properties of biodiesel but the scope is rather limited to the properties alone than correlating the same with automotive materials compatibility.

Kamalesh A. Sorate; Purnanand V. Bhale

2015-01-01T23:59:59.000Z

310

Analysis of Durability of MEAs in Automotive PEMFC Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Randal L. Perry E.I. du Pont de Nemours and Company Chestnut Run Plaza, 701/209 4417 Lancaster Pike Wilmington, DE 19805 Phone: (302) 999-6545 Email: randal.l.perry @usa.dupont.com DOE Managers HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Technical Advisor Thomas Benjamin Phone: (630) 252-1632 Email: Benjamin@anl.gov Contract Number: DE-EE0003772 Subcontractors: * Nissan Technical Center North America, Farmington Hills, MI * Illinois Institute of Technology (IIT), Chicago, IL Project Start Date: September 1, 2010

311

Advanced Petroleum-Based Fuels Research at NREL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Petroleum-Based Fuels Research at NREL Bradley Zigler(PI) With Wendy Clark, Xin He, Jon Luecke, and Matt Ratcliff Vehicle Technologies Program Merit Review Fuels Technologies June...

312

Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation  

E-Print Network (OSTI)

1996. 12 p. Toshinsky, G.I. , LMFBR Operation in the Nuclearand characterization of LMFBR carbide and nitride fuels andcores with oxide fuel, LMFBR recycle Pu/U, are used.

Heidet, Florent

2010-01-01T23:59:59.000Z

313

Sandia National Laboratories: fuel cell vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel cell vehicle ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles On February 14, 2013, in CRF, Energy, Energy...

314

Advanced Lean-Burn DI Spark Ignition Fuels Research  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

315

Advanced Lean-Burn DI Spark Ignition Fuels Research  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

316

Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

317

Advanced Lean-Burn DI Spark Ignition Fuels Research  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

318

Gasoline-Like Fuel Effects on Advanced Combustion Regimes  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

319

Oscar Automotive Ltd | Open Energy Information  

Open Energy Info (EERE)

Oscar Automotive Ltd Oscar Automotive Ltd Jump to: navigation, search Name Oscar Automotive Ltd Place London, Greater London, United Kingdom Sector Hydro, Hydrogen Product OSCar Automotive is working towards the commercialisation of hydrogen fuel cells in the transport sector. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

IV Iberian Symposium on Hydrogen, Fuel Cells and Advanced Batteries. Estoril, Portugal, June 26-28 2013 ABSTRACT QUESTIONNAIRE  

E-Print Network (OSTI)

IV Iberian Symposium on Hydrogen, Fuel Cells and Advanced Batteries. Estoril, Portugal, June 26 Other Marketing analysis Standards and regulations #12;IV Iberian Symposium on Hydrogen, Fuel Cells PEM fuel cells X Numerical simulation SO fuel cells New materials Other fuel cells New processes

Batlle, Carles

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Department of Energy Awards Nearly $7 Million to Advance Fuel Cell and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards Nearly $7 Million to Advance Fuel Cell Awards Nearly $7 Million to Advance Fuel Cell and Hydrogen Storage Systems Research Department of Energy Awards Nearly $7 Million to Advance Fuel Cell and Hydrogen Storage Systems Research August 9, 2011 - 11:21am Addthis California, Ohio, and Virginia Projects to Find Ways to Reduce Component and Manufacturing Costs Washington, D.C. - The U.S. Department of Energy today announced nearly $7 million over five years for independent cost analyses that will support research and development efforts for fuel cells and hydrogen storage systems. The four projects - in California, Ohio, and Virginia - will generate rigorous cost estimates for manufacturing equipment, labor, energy, raw materials, and various components that will help identify ways to drive down production costs of transportation fuel cell systems,

322

Fueling the Navy's Great Green Fleet with Advanced Biofuels | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fueling the Navy's Great Green Fleet with Advanced Biofuels Fueling the Navy's Great Green Fleet with Advanced Biofuels Fueling the Navy's Great Green Fleet with Advanced Biofuels December 5, 2011 - 5:44pm Addthis Idaho National Laboratory describes R&D efforts to transform raw biomass into quality feedstocks for the production of renewable fuels, power and bioproducts. Aaron Crowell Senior Technical Research Analyst What does this project do? Develops and utilizes domestically produced biofuels to make our military and the nation more secure. From transporting the oil necessary to fuel jets and vehicles to supplying battery packs to infantry, energy plays a central role in almost everything the U.S. military does. Because of this reliance, it's imperative that the military cultivate energy sources that are not subject to the whims of

323

Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

That Will Advance Solid Oxide Fuel Cell Research That Will Advance Solid Oxide Fuel Cell Research Selected by DOE for Further Development Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by DOE for Further Development July 27, 2012 - 1:00pm Addthis Washington, D.C. - Seven projects that will help develop low-cost solid oxide fuel cell (SOFC) technology for environmentally responsible central power generation from the Nation's abundant fossil energy resources have been selected for further research by the Department of Energy (DOE). The projects, managed by the Office of Fossil Energy's National Energy Technology Laboratory (NETL), are valued at a total of $4,391,570, with DOE contributing $3,499,250 and the remaining cost provided by the recipients. Four of the selected projects will pursue advances in cathode performance,

324

The DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification Program  

SciTech Connect

The Department of Energy has established the Advanced Gas Reactor Fuel Development and Qualification Program to address the following overall goals: Provide a baseline fuel qualification data set in support of the licensing and operation of the Next Generation Nuclear Plant (NGNP). Gas-reactor fuel performance demonstration and qualification comprise the longest duration research and development (R&D) task for the NGNP feasibility. The baseline fuel form is to be demonstrated and qualified for a peak fuel centerline temperature of 1250C. Support near-term deployment of an NGNP by reducing market entry risks posed by technical uncertainties associated with fuel production and qualification. Utilize international collaboration mechanisms to extend the value of DOE resources. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, postirradiation examination (PIE) and safety testing, fuel performance modeling, and fission product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete fundamental understanding of the relationship between the fuel fabrication process, key fuel properties, the irradiation performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. Fuel performance modeling and analysis of the fission product behavior in the primary circuit are important aspects of this work. The performance models are considered essential for several reasons, including guidance for the plant designer in establishing the core design and operating limits, and demonstration to the licensing authority that the applicant has a thorough understanding of the in-service behavior of the fuel system. The fission product behavior task will also provide primary source term data needed for licensing. An overview of the program and recent progress will be presented.

David Petti; Hans Gougar; Gary Bell

2005-05-01T23:59:59.000Z

325

Application of advanced fuel cells for utility load leveling  

SciTech Connect

Three system designs are described and analyzed for Molten Carbonate (MCFC) and Solid Oxide (SOFC) Fuel Cells operating on natural gas. The two MCFC systems reach fuel to bus bar efficiencies of 50% HHV and can be ramped up or down over short time spans. The SOFC system is less efficient, but has fewer components and can also follow load variations. The effect of electrochemical fuel utilization on net system efficiencies and subsystem behavior is analyzed.

Krumpelt, M.; Fee, D.C.; Pierce, R.D.; Ackerman, J.P.

1983-01-01T23:59:59.000Z

326

Experience with advanced driver fuels in EBR-II  

SciTech Connect

The Experimental Breeder Reactor II (EBR-II) is a complete nuclear power plant, incorporating a pool-type liquid-metal reactor (LMR) with a fuel-power thermal output of 62.5 MW and an electrical output of 20 MW. Initial criticality was in 1961, utilizing a metallic driver fuel design called the Mark-I. The fuel design has evolved over the last 30 yr, and significant progress has been made on improving performance. The first major innovations were incorporated into the Mark-II design, and burnup then increased dramatically. This design performed successfully, and fuel element lifetime was limited by subassembly hardware performance rather than the fuel element itself. Transient performance of the fuel was also acceptable and demonstrated the ability of EBR-II to survive severe upsets such as a loss of flow without scram. In the mid 1980s, with renewed interest in metallic fuels and Argonne's integral fast reactor (IFR) concept, the Mark-II design was used as the basis for new designs, the Mark-III and Mark-IV. In 1987, the Mark-III design began qualification testing to become a driver fuel for EBR-II. This was followed in 1989 by the Mark-IIIA and Mark-IV designs. The next fuel design, the Mark-V, is being planned to demonstrate the utilization of recycled fuel. The fuel cycle facility attached to EBR-II is being refurbished to produce pyroprocessed recycled fuel as part of the demonstration of the IFR.

Lahm, C.E.; Koenig, J.F.; Pahl, R.G.; Porter, D.L.; Crawford, D.C. (Argonne National Lab.-West, Idaho Falls, ID (United States))

1992-01-01T23:59:59.000Z

327

Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles  

E-Print Network (OSTI)

An Indirect Methanol Pem Fuel Cell System, SAE 2001, (paperof automotive PEM fuel cell stacks, SAE 2000 (paper numberParasitic Loads in Fuel Cell Vehicles, International Journal

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

328

High temperature chemistry of advanced heavy water reactor fuel  

Science Journals Connector (OSTI)

The Department of Atomic Energy envisages the use of thoria based fuel in the third phase of nuclear power generation. The fuel will consist of solid solution of thorium-uranium and thorium-plutonium in the form of their oxides. The former will contain 2.5 mole % UO2 while the latter about 4 mole % PuO2. Since no other country in the world has used such fuel, no data is available on its behavior under long-term irradiation. The high temperature chemistry of fuel can however provide some insight into the behavior of such fuel during irradiation and could be of considerable help in the assessment of its long-term integrity. The high temperature chemistry of the fuel essentially involves the measurement of thermodynamic properties of the compounds formed in the multi-component systems comprising the fuel matrix, the fission products and the clad. The physical integrity of the fuel under long-term irradiation can be predicted with the help of basic thermodynamic data such as the Gibbs energy of formation of various compounds and their thermophysical properties such as thermal conductivity and coefficient of thermal expansion derived from experimental measurements. The paper highlights the measurements made on some typical systems relevant to the prediction of thoria based fuel behaviour during long-term irradiation. The experimental problems faced in such measurements are also discussed.

S.R. Dharwadkar

2002-01-01T23:59:59.000Z

329

North Central Texas Alternative Fuel and Advanced Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Needed 51% 3% 3% 6% 37 % APPROACH: FUEL NEUTRAL Natural Gas Ethanol Biodiesel Electricity Hybrid-Electric VehicleInfrastructure Projects: Percent of Funding 5 *Emission results...

330

North Central Texas Alternative Fuel and Advanced Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contingency List of Projects Approved for Use as Needed APPROACH: FUEL NEUTRAL VehicleInfrastructure Projects: Percent of Funding 5 49% 3% 3% 7% 38% Natural Gas Ethanol...

331

North Central Texas Alternative Fuel and Advanced Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

APPROACH: MILESTONES 4 APPROACH: FUEL NEUTRAL Natural Gas Ethanol Biodiesel Electricity Hybrid-Electric VehicleInfrastructure Projects: Percent of Funding 5 Agreements Executed...

332

Advanced Nuclear Fuel | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

operate; lowers proliferation risks by reducing the need for enriched uranium; converts depleted uranium to usable fuel as it operates; uses liquid sodium as a coolant, which is...

333

Advanced Petroleum Based Fuel Effects in HCCI (Agreement 13415...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

John Storey Research supported by DOE Fuel Technology Program, Kevin Stork and Dennis Smith are DOE management team THIS PRESENTATION DOES NOT CONTAIN ANY PROPRIETARY OR...

334

Advancing Plug In Hybrid Technology and Flex Fuel Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss063bazzi2012...

335

Advancing Plug In Hybrid Technology and Flex Fuel Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss063bazzi2011...

336

Alternative Fuels Data Center: Voluntary Vehicle Retirement Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Voluntary Vehicle Voluntary Vehicle Retirement Incentives to someone by E-mail Share Alternative Fuels Data Center: Voluntary Vehicle Retirement Incentives on Facebook Tweet about Alternative Fuels Data Center: Voluntary Vehicle Retirement Incentives on Twitter Bookmark Alternative Fuels Data Center: Voluntary Vehicle Retirement Incentives on Google Bookmark Alternative Fuels Data Center: Voluntary Vehicle Retirement Incentives on Delicious Rank Alternative Fuels Data Center: Voluntary Vehicle Retirement Incentives on Digg Find More places to share Alternative Fuels Data Center: Voluntary Vehicle Retirement Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Voluntary Vehicle Retirement Incentives Through the California Bureau of Automotive Repair's Consumer Assistance

337

E-Print Network 3.0 - automotive technologies annual Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Release Submitted by Summary: technology and vehicle deployments also improve UPS's fuel efficiency. The automotive goal complements UPS... CSR Press Release Submitted by:...

338

Vehicle Technologies Office Merit Review 2014: Automotive Low Temperature Gasoline Combustion Engine Research  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about automotive low...

339

E-Print Network 3.0 - afv automotive technician Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

New automotive technologies could also be a source of additional... . 12;Alternative Fuel Vehicles (AFV) are vehicles that use the non-petroleum based ... Source: North...

340

Destruction and formation of PCDD/Fs in a fluidised bed combustor co-incinerating automotive shredder residue with refuse derived fuel and wastewater treatment sludge  

Science Journals Connector (OSTI)

During an eight day trial automotive shredder residue (ASR) was added to the usual waste feed of a Fluidized Bed Combustor (FBC) for waste-to-energy conversion; the input waste mix consisted of 25% ASR, 25% refuse-derived fuel (RDF) and 50% wastewater treatment (WWT) sludge. All inputs and outputs were sampled and the concentration of the 17 PCDD/Fs with TEF-values was determined in order to obtain PCDD/F fingerprints. The ASR contained approximately 9000ng PCDD/Fs/kgDW, six times more than the RDF and 10 times more than the WWT sludge. The fingerprint of ASR and RDF was dominated by HpCDD and OCDD, which accounted for 90% of the total PDDD/F content, whereas the WWT sludge contained relatively more HpCDFs and OCDF (together 70%). The flue gas cleaning residue (FGCR) and fly and boiler ash contained approximately 30,000 and 2500ng PCDD/Fs/kgDW, respectively. The fingerprints of these outputs were also dominated by HpCDFs and OCDF. The bottom ash contained only OCDD and OCDF, in total 8ng PCDD/Fs/kgDW. From the comparison of the bottom ash fingerprints with the fingerprints of the other output fractions and of the inputs, it could be concluded that the PCDD/Fs in the waste were destroyed and new PCDD/Fs were formed in the post combustion process by de novo synthesis. During the ASR-co-incineration, the PCDD/F congener concentrations in the fly and boiler ash, FGCR and flue gas were 1.2510 times higher compared to the same output fractions generated during incineration of the usual waste mix (70% RDF and 30% WWT sludge). The concentration of the higher chlorinated PCDD/Fs increased most. As these congeners have the lowest TEF-factors, the total PCDD/F output, expressed in kg TEQ/year, of the FBC did not increase significantly when ASR was co-incinerated. Due to the relatively high copper levels in the ASR, the copper concentrations in the \\{FBCs\\} outputs increased. As copper catalysis the de novo syntheses, this could explain the increase in PCDD/F concentrations in these outputs.

J. Van Caneghem; I. Vermeulen; C. Block; A. Van Brecht; P. Van Royen; M. Jaspers; G. Wauters; C. Vandecasteele

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Interim Update: Global Automotive Power Electronics R&D Relevant...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Automotive Power Electronics R&D Relevant To DOE 2015 and 2020 Cost Targets 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

342

Fuel Effects on Ignition and Their Impact on Advanced Combustion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ignition and Their Impact on Advanced Combustion Engines Joshua D. Taylor - National Renewable Energy Laboratory Stuart Neill, Hailin Li - National Research Council Canada...

343

Advanced Fuel Performance: Modeling and Simulation Light Water...  

NLE Websites -- All DOE Office Websites (Extended Search)

models, and will be designed for implementa- tion not only on today's leadership- class computers, but also for advanced architecture platforms now under de- velopment by DOE, as...

344

Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure  

SciTech Connect

Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

Greene, David L [ORNL; Duleep, Gopal [HD Systems

2013-06-01T23:59:59.000Z

345

Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies  

SciTech Connect

Beginning the fall semester of 1999, The University of Maryland, Departments of Mechanical and Electrical Engineering and the Institute for Systems Research served as a U.S. Department of Energy (USDOE) Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies. A key goal was to produce a graduate level education program that educated and prepared students to address the technical challenges of designing and developing hybrid electric vehicles, as they progressed into the workforce. A second goal was to produce research that fostered the advancement of hybrid electric vehicles, their controls, and other related automotive technologies. Participation ended at the University of Maryland after the 2004 fall semester. Four graduate courses were developed and taught during the course of this time, two of which evolved into annually-taught undergraduate courses, namely Vehicle Dynamics and Control Systems Laboratory. Five faculty members from Mechanical Engineering, Electrical Engineering, and the Institute for Systems Research participated. Four Ph.D. degrees (two directly supported and two indirectly supported) and seven Master's degrees in Mechanical Engineering resulted from the research conducted. Research topics included thermoelectric waste heat recovery, fuel cell modeling, pre- and post-transmission hybrid powertrain control and integration, hybrid transmission design, H{sub 2}-doped combustion, and vehicle dynamics. Many of the participating students accepted positions in the automotive industry or government laboratories involved in automotive technology work after graduation. This report discusses the participating faculty, the courses developed and taught, research conducted, the students directly and indirectly supported, and the publication list. Based on this collection of information, the University of Maryland firmly believes that the key goal of the program was met and that the majority of the participating students are now contributing to the advancement of automotive technology in this country.

David Holloway

2005-09-30T23:59:59.000Z

346

Non-Petroleum-Based Fuel Effects on Advanced Combustion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* Consumers experience 25-30% drop in fuel economy with FFV's, attributable to lower energy content 7 Managed by UT-Battelle for the U.S. Department of Energy FT008: NPBF...

347

Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation  

E-Print Network (OSTI)

Potential Uses for Depleted Uranium Oxide. 2009, DOE. p.15. WNA. Uranium and Depleted Uranium. 2009 [cited 2010R. , Direct Use of Depleted Uranium As Fuel in a Traveling-

Heidet, Florent

2010-01-01T23:59:59.000Z

348

A Blueprint for GNEP Advanced Burner Reactor Startup Fuel Fabrication Facility  

SciTech Connect

The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the startup fuel for 10-15 years and would take 3 to 5 years to construct.

S. Khericha

2010-12-01T23:59:59.000Z

349

Research Advances: Seeing Is Detecting; Tracking Dragon's Blood; Shutting Down Anthrax; A Renewable Source of Hydrogen for Fuel Cells  

Science Journals Connector (OSTI)

Research Advances: Seeing Is Detecting; Tracking Dragon's Blood; Shutting Down Anthrax; A Renewable Source of Hydrogen for Fuel Cells ... Ethanol from fermented plants may fuel future cars using new reactors. ...

Angela G. King

2004-08-01T23:59:59.000Z

350

University of Illinois at Urbana-Champaigns GATE Center for Advanced Automotive Bio-Fuel Combustion Engines  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

351

University of Illinois at Urbana Champaigns GATE Center forAdvanced Automotive Bio-Fuel Combustion Engines  

Energy.gov (U.S. Department of Energy (DOE))

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

352

Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs  

SciTech Connect

The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzed advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.

Jean Ragusa; Karen Vierow

2011-09-01T23:59:59.000Z

353

Analysis of fuel options for the breakeven core configuration of the Advanced Recycling Reactor  

SciTech Connect

A trade-off study is performed to determine the impacts of various fuel forms on the core design and core physics characteristics of the sodium-cooled Toshiba- Westinghouse Advanced Recycling Reactor (ARR). The fuel forms include oxide, nitride, and metallic forms of U and Th. The ARR core configuration is redesigned with driver and blanket regions in order to achieve breakeven fissile breeding performance with the various fuel types. State-of-the-art core physics tools are used for the analyses. In addition, a quasi-static reactivity balance approach is used for a preliminary comparison of the inherent safety performances of the various fuel options. Thorium-fueled cores exhibit lower breeding ratios and require larger blankets compared to the U-fueled cores, which is detrimental to core compactness and increases reprocessing and manufacturing requirements. The Th cores also exhibit higher reactivity swings through each cycle, which penalizes reactivity control and increases the number of control rods required. On the other hand, using Th leads to drastic reductions in void and coolant expansion coefficients of reactivity, with the potential for enhancing inherent core safety. Among the U-fueled ARR cores, metallic and nitride fuels result in higher breeding ratios due to their higher heavy metal densities. On the other hand, oxide fuels provide a softer spectrum, which increases the Doppler effect and reduces the positive sodium void worth. A lower fuel temperature is obtained with the metallic and nitride fuels due to their higher thermal conductivities and compatibility with sodium bonds. This is especially beneficial from an inherent safety point of view since it facilitates the reactor cool-down during loss of power removal transients. The advantages in terms of inherent safety of nitride and metallic fuels are maintained when using Th fuel. However, there is a lower relative increase in heavy metal density and in breeding ratio going from oxide to metallic or nitride Th fuels relative to the U counterpart fuels. (authors)

Stauff, N.E.; Klim, T.K.; Taiwo, T.A. [Argonne National Laboratory, Argonne, IL (United States); Fiorina, C. [Politecnico di Milano, Milan (Italy); Franceschini, F. [Westinghouse Electric Company LLC., Cranberry Township, Pennsylvania (United States)

2013-07-01T23:59:59.000Z

354

E-Print Network 3.0 - automotive vehicles energia Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: automotive vehicles energia Page: << < 1 2 3 4 5 > >> 1 PROBLEMES ENERGIES RENOVABLES. INTRODUCCIO Heu de...

355

Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)  

DOE Data Explorer (OSTI)

The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

356

Dynamic characteristics of a commercial Proton Exchange Membrane (PEM) fuel cell.  

E-Print Network (OSTI)

??Fast growing application of Proton Exchange Membrane (PEM) Fuel Cell in automotive industries, has brought the necessity of conducting research on automotive aspects of the (more)

Toutounchian, Hamid

2008-01-01T23:59:59.000Z

357

Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle  

Energy.gov (U.S. Department of Energy (DOE))

H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote advancing hydrogen infrastructure to support more transportation energy options for consumers. Through...

358

NETL: Advanced NOx Emissions Control: Control Technology - Optimized Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimized Fuel Injector Design Optimized Fuel Injector Design This project includes fundamental research and engineering development of low NOx burners and reburning fuel injectors. The team of Reaction Engineering International (REI), the University of Utah, Brown University and DB Riley, Inc., will develop fundamental information on low NOx burners. The work has two phases. In the first phase, the University of Utah will examine two-phase mixing and near-field behavior of coal injectors using a 15-million Btu/hr bench-scale furnace, Brown University will examine char deactivation and effectiveness of reburning, and REI will develop a comprehensive burner model using the data produced by the University of Utah and Brown University. In the second phase, an optimized injector design will be tested at the 100-million Btu/hr Riley Coal Burner Test Facility. It is anticipated that this work will provide improved hardware designs and computer simulation models for reduced NOx emissions and minimized carbon loss.

359

Vehicle Technologies Office Merit Review 2014: Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancement in...

360

Energy recovery from solid waste fuels using advanced gasification technology  

SciTech Connect

Since the mid-1980s, TPS Termiska Processer AB has been working on the development of an atmospheric-pressure gasification process. A major aim at the start of this work was the generation of fuel gas from indigenous fuels to Sweden (i.e. biomass). As the economic climate changed and awareness of the damage to the environment caused by the use of fossil fuels in power generation equipment increased, the aim of the development work at TPS was changed to applying the process to heat and power generation from feedstocks such as biomass and solid wastes. Compared with modern waste incineration with heat recovery, the gasification process will permit an increase in electricity output of up to 50%. The gasification process being developed is based on an atmospheric-pressure circulating fluidized bed gasifier coupled to a tar-cracking vessel. The gas produced from this process is then cooled and cleaned in conventional equipment. The energy-rich gas produced is clean enough to be fired in a gas boiler without requiring extensive flue gas cleaning, as is normally required in conventional waste incineration plants. Producing clean fuel gas in this manner, which facilitates the use of efficient gas-fired boilers, means that overall plant electrical efficiencies of close to 30% can be achieved. TPS has performed a considerable amount of pilot plant testing on waste fuels in their gasification/gas cleaning pilot plant in Sweden. Two gasifiers of TPS design have been in operation in Greve-in-Chianti, italy since 1992. This plant processes 200 tonnes of RDF (refuse-derived fuel) per day.

Morris, M.; Waldheim, L. [TPS Termiska Processer AB, Nykoeping (Sweden)] [TPS Termiska Processer AB, Nykoeping (Sweden)

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Department of Transportation and Public Facilities (Department) must evaluate the cost, efficiency, and commercial availability of alternative fuels for automotive purposes...

362

Advanced coal-fueled industrial cogeneration gas turbine system  

SciTech Connect

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

363

Advanced Pellet Cladding Interaction Modeling Using the US DOE CASL Fuel Performance Code: Peregrine  

SciTech Connect

The US DOEs Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermomechanical- chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale code that is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.

Jason Hales; Various

2014-06-01T23:59:59.000Z

364

Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems  

SciTech Connect

The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Programs understanding of the cost drivers that will determine nuclear powers cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

D. E. Shropshire

2009-01-01T23:59:59.000Z

365

Recovery of Information from the Fast Flux Test Facility for the Advanced Fuel Cycle Initiative  

SciTech Connect

The Fast Flux Test Facility is the most recent Liquid Metal Reactor to operate in the United States. Information from the design, construction, and operation of this reactor was at risk as the facilities associated with the reactor are being shut down. The Advanced Fuel Cycle Initiative is a program managed by the Office of Nuclear Energy of the U.S. Department of Energy with a mission to develop new fuel cycle technologies to support both current and advanced reactors. Securing and preserving the knowledge gained from operation and testing in the Fast Flux Test Facility is an important part of the Knowledge Preservation activity in this program.

Nielsen, Deborah L.; Makenas, Bruce J.; Wootan, David W.; Butner, R. Scott; Omberg, Ronald P.

2009-09-30T23:59:59.000Z

366

Fuel Properties Database from the Alternative Fuels and Advanced Vehicles Data Center (AFDC)  

DOE Data Explorer (OSTI)

The database can be searched in various ways and can output numbers or explanatory text. Heavy vehicle chassis emission data are also available for some fuels.

367

NREL: Vehicles and Fuels Research - NREL to Showcase Two Advanced Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

to Showcase Two Advanced Vehicles at Estes Park Coolest Car Show on to Showcase Two Advanced Vehicles at Estes Park Coolest Car Show on July 4 July 1, 2013 The National Renewable Energy Laboratory (NREL) will showcase two advanced Toyota vehicles -- a Highlander fuel cell hybrid vehicle (FCHV-adv) and a plug-in Prius hybrid electric vehicle -- at The Coolest Car Show in Colorado in Estes Park on July 4. Representatives from NREL will be on hand to answer questions about the vehicles on display and provide information and educational literature about alternative fuels and advanced vehicles. "We like to reach out to the community and provide information on alternative vehicle technologies and this is a great event to do that with all of the vehicle enthusiasts," said NREL's Melanie Caton. The car show, which is hosted by Estes Park Museum Friends and Foundation,

368

Automotive Thermoelectric Generators and HVAC  

Energy.gov (U.S. Department of Energy (DOE))

Provides overview of DOE-supported projects in automotive thermoelectric generators and heaters/air conditioners

369

Sandia National Laboratories: fuel cell membrane  

NLE Websites -- All DOE Office Websites (Extended Search)

membrane ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles On February 14, 2013, in CRF, Energy, Energy Efficiency,...

370

Progress in research on the performance and service life of batteries membrane of new energy automotive  

Science Journals Connector (OSTI)

Batteries membrane materials are widely used in new energy automotives such as hybrid vehicles, fuel cell vehicles, and pure electric vehicles. Membrane consists of two categories: fuel cell membrane (power unit)...

Yong Li; Jian Song; Jie Yang

2012-11-01T23:59:59.000Z

371

White paper for Developing an Advanced Fueling System and for supporting Disruption Mitigation studies for ITER on NSTX-U  

E-Print Network (OSTI)

White paper for Developing an Advanced Fueling System and for supporting 2012) 1/3 White Paper for Developing Advanced Fueling System-mails: raman@aa.washington.edu , Jarboe@aa.washington.edu , nelson@ee.washington.edu This white

372

Review of Advanced Materials for Proton Exchange Membrane Fuel Cells  

Science Journals Connector (OSTI)

BASF reported on the long-term stability of its Celtec-P1100W membranes of more than 20?000 h with a 6 ?V/h voltage drop (160 C and H2/air operation) at optimized conditions. ... Attempts to improve the stability of SPAEK have included optimization of the sulfonic group position (SPAEK is more stable if SO3 groups are attached to the pendant chain than to the main chain) and fluorination of the main-chain phenyl groups. ... Water management in PEFCs (polymer electrolyte fuel cells) is an important parameter to optimize for peak performance. ...

Alexander Kraytsberg; Yair Ein-Eli

2014-10-21T23:59:59.000Z

373

Statistical Methods Handbook for Advanced Gas Reactor Fuel Materials  

SciTech Connect

Fuel materials such as kernels, coated particles, and compacts are being manufactured for experiments simulating service in the next generation of high temperature gas reactors. These must meet predefined acceptance specifications. Many tests are performed for quality assurance, and many of these correspond to criteria that must be met with specified confidence, based on random samples. This report describes the statistical methods to be used. The properties of the tests are discussed, including the risk of false acceptance, the risk of false rejection, and the assumption of normality. Methods for calculating sample sizes are also described.

J. J. Einerson

2005-05-01T23:59:59.000Z

374

Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment  

SciTech Connect

The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/Bs) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

Dawn M. Scates; John (Jack) K Hartwell; John B. Walter

2008-09-01T23:59:59.000Z

375

Status of advanced fuel candidates for Sodium Fast Reactor within the Generation IV International Forum  

SciTech Connect

The main challenge for fuels for future Sodium Fast Reactor systems is the development and qualification of a nuclear fuel sub-assembly which meets the Generation IV International Forum goals. The Advanced Fuel project investigates high burn-up minor actinide bearing fuels as well as claddings and wrappers to withstand high neutron doses and temperatures. The R&D outcome of national and collaborative programs has been collected and shared between the AF project members in order to review the capability of sub-assembly material and fuel candidates, to identify the issues and select the viable options. Based on historical experience and knowledge, both oxide and metal fuels emerge as primary options to meet the performance and the reliability goals of Generation IV SFR systems. There is a significant positive experience on carbide fuels but major issues remain to be overcome: strong in-pile swelling, atmosphere required for fabrication as well as Pu and Am losses. The irradiation performance database for nitride fuels is limited with longer term R&D activities still required. The promising core material candidates are Ferritic/Martensitic (F/M) and Oxide Dispersed Strengthened (ODS) steels.

F. Delage; J. Carmack; C. B. Lee; T. Mizuno; M. Pelletier; J. Somers

2013-10-01T23:59:59.000Z

376

NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network (OSTI)

NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4. Distilled naphtha can be used only to produce gasoline or jet fuel. Distilled oil can be used to produce

Hall, Julian

377

Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation  

SciTech Connect

The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

Niels Gronbech Jensen; Mark Asta; Nigel Browning'Vidvuds Ozolins; Axel van de Walle; Christopher Wolverton

2011-12-29T23:59:59.000Z

378

Tracking the Origins of Fossil Fuels | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Tailoring the Properties of Magnetic Nanostructures Tailoring the Properties of Magnetic Nanostructures X-ray Holograms Expose Secret Magnetism How Dissolved Metal Ions Interact in Solution One Giant Leap for Radiation Biology? What's in the Cage Matters in Iron Antimonide Thermoelectric Materials Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Tracking the Origins of Fossil Fuels MAY 29, 2007 Bookmark and Share S-XANES absorbance and third derivative absorbance edge spectra of Duvernay (A) Type II kerogen and the results of curve fits using spectra from model compounds. Notice that sharp features appear in the thrid derivative spectrum that are easily associated with FeS2, aliphatic sulfur and

379

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc., and team members CoorsTek, McDermott Technology, inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; R.D. Carneim; P.F. Becher; C-H. Hsueh; Aaron L. Wagner; Jon P. Wagner

2002-04-30T23:59:59.000Z

380

Advanced Materials for PEM-Based Fuel Cell Systems  

SciTech Connect

Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 ???????????????????????????????°C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic fillers, such as phosphotungstic acid and zirconium hydrogen phosphate. Block copolymers were also studied due to the possibility to achieve a desired combination of homopolymer properties as well as the unique morphologies that are possible with block copolymers. Bezoyl substituted poly(p-phenylene) blocks were combined with poly(arylene ether) blocks to merge the structural rigidity of the poly(p-phenylene) with the ductility and high protonic conductivity of the poly(arylene ether)s. As evidenced by our many refereed publications and preprints, the research that we have conducted over the past several years has made a valuable and significant contribution to the literature and to the state of understanding of proton exchange membranes. Our early efforts at scale-up have suggested that the directly polymerized disulfonated poly(arylene ether sulfone) copolymers are commercially viable alternatives for proton exchange membranes. A new process for bipolar plates was developed and is described. An important single domain PEMFC model was developed and is documented in this final report.

James E. McGrath

2005-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Advanced Materials for PEM-Based Fuel Cell Systems  

SciTech Connect

Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 degrees C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic fillers, such as phosphotungstic acid and zirconium hydrogen phosphate. Block copolymers were also studied due to the possibility to achieve a desired combination of homopolymer properties as well as the unique morphologies that are possible with block copolymers. Bezoyl substituted poly(p-phenylene) blocks were combined with poly(arylene ether) blocks to merge the structural rigidity of the poly(p-phenylene) with the ductility and high protonic conductivity of the poly(arylene ether)s. As evidenced by our many refereed publications and preprints, the research that we have conducted over the past several years has made a valuable and significant contribution to the literature and to the state of understanding of proton exchange membranes. Our early efforts at scale-up have suggested that the directly polymerized disulfonated poly(arylene ether sulfone) copolymers are commercially viable alternatives for proton exchange membranes. A new process for bipolar plates was developed and is described. An important single domain PEMFC model was developed and is documented in herein.

James E. McGrath; Donald G. Baird; Michael von Spakovsky

2005-10-26T23:59:59.000Z

382

Grouped actinide separation in advanced nuclear fuel cycles  

SciTech Connect

Aiming at cleaner waste streams (containing only the short-lived fission products) a partitioning and transmutation (P-T) scheme can significantly reduce the quantities of long-lived radionuclides consigned to waste. Many issues and options are being discussed and studied at present in view of selecting the optimal route. The choice is between individual treatment of the relevant elements and a grouped treatment of all actinides together. In the European Collaborative Project ACSEPT (Actinide recycling by Separation and Transmutation), grouped separation options derived from an aqueous extraction or from a dry pyroprocessing route were extensively investigated. Successful demonstration tests for both systems have been carried out in the frame of this project. The aqueous process called GANEX (Grouped Actinide Extraction) is composed of 2 cycles, a first one to recover the major part of U followed by a co-extraction of Np, Pu, Am, and Cm altogether. The pyro-reprocessing primarily applicable to metallic fuels such as the U-Pu-Zr alloy originally developed by the Argonne National Laboratory (US) in the mid 1980s, has also been applied to the METAPHIX fuels containing up to 5% of minor actinides and 5% of lanthanides (e.g. U{sub 60}Pu{sub 20}-Zr{sub 10}Am{sub 2}Nd{sub 3.5}Y{sub 0.5}Ce{sub 0.5}Gd{sub 0.5}). A grouped actinide separation has been successfully carried out by electrorefining on solid Al cathodes. At present the recovery of the actinides from the alloy formed with Al upon electrodeposition is under investigation, because an efficient P-T cycle requires multiple re-fabrication and re-irradiation. (authors)

Glatz, J.P.; Malmbeck, R.; Ougier, M.; Soucek, P. [Joint Research Center - Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Murakamin, T.; Tsukada, T.; Koyama, T. [Central Research Institute of Electric Power Industry (CRIEPI), Komaeshi, Tokyo 201-8511 (Japan)

2013-07-01T23:59:59.000Z

383

NREL: Vehicles and Fuels Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL helps industry partners develop the next generation of energy efficient, high performance vehicles and fuels. NREL's transportation research spans from the materials to the systems level. NREL conducts research on the full range of vehicle types, from light-duty passenger cars to heavy-duty freight trucks. NREL's credible transportation research is grounded in real-world data. NREL's integrated approach links automotive technology advances to the full spectrum of renewable energy solutions. NREL researchers examine infrastructure, market conditions and driver behavior, as well as fuels and vehicles. NREL helps put fuel-efficient, low-emission cars and trucks on the road through research and innovation in electric vehicle, biofuel, and conventional automotive technologies. Researchers collaborate with industry

384

Relative performance properties of the ORNL Advanced Neutron Source Reactor with reduced enrichment fuels  

SciTech Connect

Three cores for the Advanced Neutron Source reactor, differing in size, enrichment, and uranium density in the fuel meat, have been analyzed. Performance properties of the reduced enrichment cores are compared with those of the HEU reference configuration. Core lifetime estimates suggest that none of these configurations will operate for the design goal of 17 days at 330 MW. With modes increases in fuel density and/or enrichment, however, the operating lifetimes of the HEU and MEU designs can be extended to the desired length. Achieving this lifetime with LEU fuel in any of the three studies cores, however, will require the successful development of denser fuels and/or structural materials with thermal neutron absorption cross sections substantially less than that of Al-6061. Relative to the HEU reference case, the peak thermal neutron flux in cores with reduced enrichment will be diminished by about 25--30%.

Bretscher, M.M.; Deen, J.R.; Hanan, N.A.; Matos, J.E.; Mo, S.C.; Pond, R.B.; Travelli, A.; Woodruff, W.L.

1994-12-31T23:59:59.000Z

385

Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)  

SciTech Connect

Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

Not Available

2013-08-01T23:59:59.000Z

386

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Third Results Reports  

SciTech Connect

This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. NREL has previously published two reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from July 2011 through January 2012.

Eudy, L.; Chandler, K.

2012-05-01T23:59:59.000Z

387

Annual Report: Advanced Energy Systems Fuel Cells (30 September 2013)  

SciTech Connect

The comprehensive research plan for Fuel Cells focused on Solid State Energy Conversion Alliance (SECA) programmatic targets and included objectives in two primary and focused areas: (1) investigation of degradation modes exhibited by the anode/electrolyte/cathode (AEC), development of computational models describing the associated degradation rates, and generation of a modeling tool predicting long term AEC degradation response; and (2) generation of novel electrode materials and microstructures and implementation of the improved electrode technology to enhance performance. In these areas, the National Energy Technology Laboratory (NETL) Regional University Alliance (RUA) team has completed and reported research that is significant to the SECA program, and SECA continued to engage all SECA core and SECA industry teams. Examination of degradation in an operational solid oxide fuel cell (SOFC) requires a logical organization of research effort into activities such as fundamental data gathering, tool development, theoretical framework construction, computational modeling, and experimental data collection and validation. Discrete research activity in each of these categories was completed throughout the year and documented in quarterly reports, and researchers established a framework to assemble component research activities into a single operational modeling tool. The modeling framework describes a scheme for categorizing the component processes affecting the temporal evolution of cell performance, and provides a taxonomical structure of known degradation processes. The framework is an organizational tool that can be populated by existing studies, new research completed in conjunction with SECA, or independently obtained. The Fuel Cell Team also leveraged multiple tools to create cell performance and degradation predictions that illustrate the combined utility of the discrete modeling activity. Researchers first generated 800 continuous hours of SOFC experimental data capturing operational degradation. The data were matched by a 3D multi-physics simulation of SOFC operational performance assuming that the entire performance loss related to coarsening of the cathode triple phase boundary (3PB). The predicted 3PB coarsening was then used to tune the mobility parameters of a phase field model describing microstructural evolution of the lanthanum strontium manganate (LSM)/ yttria stabilized zirconia (YSZ) system. Once calibrated, the phase field model predicted continuous microstructural coarsening processes occurring over the operating period, which could be extrapolated to performance periods of longer duration and also used to produce 3D graphical representations. NETL researchers also completed significant electrode engineering research complimented by 3D multi-physics simulations. In one key activity researchers generated an illustration demonstrating that control of infiltrate deposition can provide cell manufacturers with significant additional operational and engineering control over the SOFC stack. Specifically, researchers demonstrated that by engineering the deposition of electrocatalyst inside the cathode, the distribution of overpotential across the cell could be controlled to either decrease the average cell overpotential value or minimize cross-cell overpotential gradient. Results imply that manufacturers can establish improved engineering control over stack operation by implementing infiltration technology in SOFC cathodes.

Gerdes, Kirk; Richards, George

2014-04-16T23:59:59.000Z

388

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, ceramic, cermet (ceramic/metal), and thin film membranes were prepared, characterized, and evaluated for H{sub 2} transport. For selected ceramic membrane compositions an optimum range for transition metal doping was identified, and it was determined that highest proton conductivity occurred for two-phase ceramic materials. Furthermore, a relationship between transition metal dopant atomic number and conductivity was observed. Ambipolar conductivities of {approx}6 x 10{sup -3} S/cm were achieved for these materials, and {approx} 1-mm thick membranes generated H{sub 2} transport rates as high as 0.3 mL/min/cm{sup 2}. Cermet membranes during this quarter were found to have a maximum conductivity of 3 x 10{sup -3} S/cm, which occurred at a metal phase contact of 36 vol.%. Homogeneous dense thin films were successfully prepared by tape casting and spin coating; however, there remains an unacceptably high difference in shrinkage rates between the film and support, which led to membrane instability. Further improvements in high pressure membrane seals also were achieved during this quarter, and a maximum pressure of 100 psig was attained. CoorsTek optimized many of the processing variables relevant to manufacturing scale production of ceramic H{sub 2} transport membranes, and SCI used their expertise to deposit a range of catalysts compositions onto ceramic membrane surfaces. Finally, MTI compiled relevant information regarding Vision 21 fossil fuel plant operation parameters, which will be used as a starting point for assessing the economics of incorporating a H{sub 2} separation unit.

Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Adam E. Calihman; Lyrik Y. Pitzman; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

2001-07-30T23:59:59.000Z

389

Advanced turbine design for coal-fueled engines  

SciTech Connect

The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

Wagner, J.H.; Johnson, B.V.

1993-04-01T23:59:59.000Z

390

Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants  

SciTech Connect

Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this final quarter of the no cost extension several planar membranes of a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase were prepared and permeability testing was performed.

Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

2006-04-30T23:59:59.000Z

391

Advanced liquid fuel production from biomass for power generation  

SciTech Connect

In the European Union, important political decisions recently adopted and concerning the evolution of the Common Agriculture Policy, the GATT trade liberalisation Agreement and new measures actually under discussion (CARBON TAX, Financial support for rural development...) will have significant impact, in a no distant future, on the bioenergy activity. Also the considerable energy import ({approximately} 55% of the consumption) is of increasing concerns. The biomass potential in the E.U. is large, but the availability of commercial technologies for processing and utilising this renewable energy resource is very modest. Thus, a strong effort for the development of new and efficient technologies (like the one implemented by ENEL/CRT) is essential, as well as the build-up of an efficient industry for the commercialisation of reliable, low-cost biomass conversion/utilisation systems. The recently founded {open_quotes}European Bioenergy Industry Association{close_quotes} will make an effort for the promotion of this specific new industrial sector. In this framework, a new research effort (in Germany/Italy) for up-grading the bio-crude-oil by high energetic electrons. This process, if demonstrated feasible, could be of great interest for the production of new liquid fuels of sufficient quality to be utilised in most types of modern power generator.

Grassi, G.; Palmarocchi, M.; Joeler, J. [Zentrum fuer Sonnenenergie, Pisa (Italy)] [and others

1995-11-01T23:59:59.000Z

392

?Que es el Centro de Datos de Combustibles Alternativos y Vehiculos Avanzados? (What Is the Alternative Fuels and Advanced Vehicles Data Center - AFDC?) (Fact Sheet)  

SciTech Connect

Document gives an overview of the material and tools on the Alternative Fuels and Advanced Vehicles Data Center Web site.

Not Available

2010-06-01T23:59:59.000Z

393

Introduction to DMFCs - Advanced Materials and Concepts for Portable Power Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Program Webinar Technologies Program Webinar July 17, 2012 1 Introduction to DMFCs Advanced Materials and Concepts for Portable Power Fuel Cells Piotr Zelenay Los Alamos National Laboratory, Los Alamos, New Mexico 87545, U.S.A. Fuel Cell Technologies Program Webinar - July 17, 2012 - The Fuel Choice P. Piela and P. Zelenay, Fuel Cell Review, 1, 17, 2004 Fuel Cell Technologies Program Webinar - July 17, 2012 2 Direct Methanol Fuel Cell Anode: Pt-Ru Cathode: Pt Membrane: e.g. Nafion ® 115 e - CH 3 OH H + H 2 O CH 3 OH Electroosmotic drag MEMBRANE 1.5 O 2 (air) H 2 O CO 2 + 3 H 2 O 6 H + + 6 e - ANODE CATHODE CH 3 OH (l) + 1.5 O 2  2 H 2 O (l) + CO 2  V = 1.21 V; G° = 6.1 kWh kg -1 = 4.8 kWh L -1 Fuel Cell Technologies Program Webinar - July 17, 2012 3 ______________________ O 2 H 

394

Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process  

SciTech Connect

The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the UREX+3c fuel cycle and the Alternative Fuel Cycle (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount of the resulting MOX. The study considered two sub-cases within each of the two fuel cycles in which the uranium and plutonium from the first generation of MOX spent fuel (i) would not be recycled to produce a second generation of MOX for use in LWRs or (ii) would be recycled to produce a second generation of MOX fuel for use in LWRs. The study also investigated the effects of recycling MOX spent fuel multiple times in LWRs. The study assumed that both fuel cycles would store and then reprocess spent MOX fuel that is not recycled to produce a next generation of LWR MOX fuel and would use the recovered products to produce FR fuel. The study further assumed that FRs would begin to be brought on-line in 2043, eleven years after recycle begins in LWRs, when products from 5-year cooled spent MOX fuel would be available. Fuel for the FRs would be made using the uranium, plutonium, and minor actinides recovered from MOX. For the cases where LWR fuel was assumed to be recycled one time, the 1st generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. For the cases where the LWR fuel was assumed to be recycled two times, the 2nd generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. The number of FRs in operation was assumed to increase in successive years until the rate that actinides were recovered from permanently discharged spent MOX fuel equaled the rate the actinides were consumed by the operating fleet of FRs. To compare the two fuel cycles, the study analyzed recycle of nuclear fuel in LWRs and FRs and determined the radiological characteristics of irradiated nuclear fuel, nuclear waste products, and recycle nuclear fuels. It also developed a model to simulate the flows of nuclear materials that could occur in the two advanced nuclear fuel cycles over 81 years beginning in 2020 and ending in 2100. Simulations projected the flows of uranium, plutonium, and minor actinides as these nuclear fuel materials were produced and consumed in a fleet of 100 1,000 MWe LWRs and in FRs. The model als

E. R. Johnson; R. E. Best

2009-12-28T23:59:59.000Z

395

The Path to Sustainable Nuclear Energy. Basic and Applied Research Opportunities for Advanced Fuel Cycles  

SciTech Connect

The objective of this report is to identify new basic science that will be the foundation for advances in nuclear fuel-cycle technology in the near term, and for changing the nature of fuel cycles and of the nuclear energy industry in the long term. The goals are to enhance the development of nuclear energy, to maximize energy production in nuclear reactor parks, and to minimize radioactive wastes, other environmental impacts, and proliferation risks. The limitations of the once-through fuel cycle can be overcome by adopting a closed fuel cycle, in which the irradiated fuel is reprocessed and its components are separated into streams that are recycled into a reactor or disposed of in appropriate waste forms. The recycled fuel is irradiated in a reactor, where certain constituents are partially transmuted into heavier isotopes via neutron capture or into lighter isotopes via fission. Fast reactors are required to complete the transmutation of long-lived isotopes. Closed fuel cycles are encompassed by the Department of Energy?s Advanced Fuel Cycle Initiative (AFCI), to which basic scientific research can contribute. Two nuclear reactor system architectures can meet the AFCI objectives: a ?single-tier? system or a ?dual-tier? system. Both begin with light water reactors and incorporate fast reactors. The ?dual-tier? systems transmute some plutonium and neptunium in light water reactors and all remaining transuranic elements (TRUs) in a closed-cycle fast reactor. Basic science initiatives are needed in two broad areas: ? Near-term impacts that can enhance the development of either ?single-tier? or ?dual-tier? AFCI systems, primarily within the next 20 years, through basic research. Examples: Dissolution of spent fuel, separations of elements for TRU recycling and transmutation Design, synthesis, and testing of inert matrix nuclear fuels and non-oxide fuels Invention and development of accurate on-line monitoring systems for chemical and nuclear species in the nuclear fuel cycle Development of advanced tools for designing reactors with reduced margins and lower costs ? Long-term nuclear reactor development requires basic science breakthroughs: Understanding of materials behavior under extreme environmental conditions Creation of new, efficient, environmentally benign chemical separations methods Modeling and simulation to improve nuclear reaction cross-section data, design new materials and separation system, and propagate uncertainties within the fuel cycle Improvement of proliferation resistance by strengthening safeguards technologies and decreasing the attractiveness of nuclear materials A series of translational tools is proposed to advance the AFCI objectives and to bring the basic science concepts and processes promptly into the technological sphere. These tools have the potential to revolutionize the approach to nuclear engineering R&D by replacing lengthy experimental campaigns with a rigorous approach based on modeling, key fundamental experiments, and advanced simulations.

Finck, P.; Edelstein, N.; Allen, T.; Burns, C.; Chadwick, M.; Corradini, M.; Dixon, D.; Goff, M.; Laidler, J.; McCarthy, K.; Moyer, B.; Nash, K.; Navrotsky, A.; Oblozinsky, P.; Pasamehmetoglu, K.; Peterson, P.; Sackett, J.; Sickafus, K. E.; Tulenko, J.; Weber, W.; Morss, L.; Henry, G.

2005-09-01T23:59:59.000Z

396

Automotive Stirling engine: Mod II design report  

SciTech Connect

The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod II, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, and demonstrate poor performance. Installed in a General Motors 1985 Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/L (41 mi/gal) - a value 50% above the current vehicle fleet average. The Mod II Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation. 35 figs.

Nightingale, N.P.

1986-10-01T23:59:59.000Z

397

Building the Next Generation of Automotive Industry Leaders | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building the Next Generation of Automotive Industry Leaders Building the Next Generation of Automotive Industry Leaders Building the Next Generation of Automotive Industry Leaders December 7, 2010 - 4:23pm Addthis Zach Heir , a recent hire in the electric vehicle field Zach Heir , a recent hire in the electric vehicle field Dennis A. Smith Director, National Clean Cities It's no secret that when it comes to advanced vehicle technologies, the Department of Energy is kicking into high gear. We're investing more than $12 billion in grants and loans for research, development and deployment of advanced technology vehicles. These investments are helping to create a clean energy workforce. If we want to continue a leadership role in the global automotive industry, it is crucial that we take the long view and invest heavily in the next generation of innovators and critical thinkers

398

Skutterudite Thermoelectric Generator For Automotive Waste Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

399

Novel Nanostructured Interface Solution for Automotive Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Thermoelectrics Partnership: Automotive Thermoelectric Modules with...

400

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, it was demonstrated that increasing the transition metal loading in a model perovskite composition resulted in an increase in hydrogen flux. Improved flux corresponded to the emergence of additional phases in the ceramic membrane, and highest flux was achieved for a composite consisting of pseudo-cubic and rhombohedral perovskite phases. A 0.9-mm thick membrane of this material generated a hydrogen flux in excess of 0.1 mL/min/cm{sup 2}, which was approximately 35 times greater than analogs with lower transition metal levels. The dopant level and crystal structure also correlated with membrane density and coefficient of thermal expansion, but did not appear to affect grain size or shape. Additionally, preliminary ceramic-metal (cermet) composite membranes demonstrated a 10-fold increase in flux relative to analogous membranes composed of only the ceramic component. The hydrogen flux for these cermet samples corresponded to a conductivity of {approx} 10{sup -3} S/cm, which was consistent with the predicted proton conductivity of the ceramic phase. Increasing the sweep gas flow rate in test reactors was found to significantly increase hydrogen flux, as well as apparent material conductivity for all samples tested. Adding humidity to the feed gas stream produced a small increase in hydrogen flux. However, the catalyst on ceramic membrane surfaces did not affect flux, which suggested that the process was membrane-diffusion limited. Representative samples and fabrication processes were evaluated on the basis of manufacturing practicality. it was determined that optimum membrane densification occurs over a very narrow temperature range for the subject ceramics. Additionally, calcination temperatures currently employed result in powders that are difficult mill and screen. These issues must be addressed to improve large-scale fabricability.

Shane E. Roark; Tony F. Sammells; Adam E. Calihman; Lyrik Y. Pitzman; Pamela M. Van Calcar; Richard A. Mackay; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Tim R. Armstrong; Mike J. Holmes; Aaron L. Wagner

2001-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc. and their team members are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, new cermet compositions were tested that demonstrated similar performance to previous materials. A 0.5-mm thick membrane achieved at H{sub 2} transport rate of 0.2 mL/min/cm{sup 2} at 950 C, which corresponded to an ambipolar conductivity of 3 x 10{sup -3} S/cm. Although these results were equivalent to those for other cermet compositions, this new composition might be useful if it demonstrates improved chemical or mechanical stability. Ceramic/ceramic composite membranes also were fabricated and tested; however, some reaction did occur between the proton- and electron-conducting phases, which likely compromised conductivity. This sample only achieved a H{sub 2} transport rate of {approx} 0.006 mL/min/cm{sup 2} and an ambipolar conductivity of {approx}4 x 10{sup -4} S/cm. Chemical stability tests were continued, and candidate ceramic membranes were found to react slightly with carbon monoxide under extreme testing conditions. A cermet compositions did not show any reaction with carbon monoxide, but a thick layer of carbon formed on the membrane surface. The most significant technical accomplishment this quarter was a new high-pressure seal composition. This material maintained a pressure differential across the membrane of {approx} 280 psi at 800 C, and is still in operation.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; M.K. Ferber; Aaron L. Wagner; Jon P. Wagner

2002-07-30T23:59:59.000Z

402

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

2001-10-30T23:59:59.000Z

403

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc., and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying composite membrane composition and microstructure to maximize hydrogen permeation without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, a composite metal membrane based on an inexpensive hydrogen permeable metal achieved permeation rates in excess of 25 mL/min/cm{sup 2}. Preliminary attempts to incorporate this metal into a cermet were successful, and a thick cermet membrane (0.83 mm) with 40 vol.% metal phase achieved a permeation rate of nearly 0.4 mL/min/cm{sup 2}. Increasing the metal phase content and decreasing membrane thickness should significantly increase permeation, while maintaining the benefits derived from cermets. Two-phase ceramic/ceramic composite membranes had low hydrogen permeability, likely due to interdiffusion of constituents between the phases. However, these materials did demonstrate high resistance to corrosion, and might be good candidates for other composite membranes. Temperature-programmed reduction measurements indicated that model cermet materials absorbed 2.5 times as much hydrogen than the pure ceramic analogs. This characteristic, in addition to higher electron conductivity, likely explains the relatively high permeation for these cermets. Incorporation of catalysts with ceramics and cermets increased hydrogen uptake by 800 to more than 900%. Finally, new high-pressure seals were developed for cermet membranes that maintained a pressure differential of 250 psi. This result indicated that the approach for high-pressure seal development could be adapted for a range of compositions. Other items discussed in this report include mechanical testing, new proton conducting ceramics, supported thin films, and alkane to olefin conversion.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart R. Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-01-30T23:59:59.000Z

404

Reformulated diesel fuel  

DOE Patents (OSTI)

Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

2006-03-28T23:59:59.000Z

405

Customizable Fuel Processor Technology Benefits Fuel Cell Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Industries Automotive - range extenders for electric vehicles Residential heat and power Remote and portable power More Information Fuel processors have been...

406

Friction of Materials for Automotive Applications  

SciTech Connect

This brief overview of friction-related issues in materials for automobiles is invited for a special issue on automotive materials in the ASM journal AM&P. It describes a range of areas in a ground vehicle in which friction must be controlled or minimized. Applications range from piston rings to tires, and from brakes to fuel injector components. A perspective on new materials and lubricants, and the need for validation testing is presented.

Blau, Peter Julian [ORNL

2013-01-01T23:59:59.000Z

407

Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program  

SciTech Connect

Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germany produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO2 particle fuel up to about 10% FIMA and 1150C, UO2 fuel is known to have limitations because of CO formation and kernel migration at the high burnups, power densities, temperatures, and temperature gradients that may be encountered in the prismatic modular HTGRs. With uranium oxycarbide (UCO) fuel, the kernel composition is engineered to prevent CO formation and kernel migration, which are key threats to fuel integrity at higher burnups, temperatures, and temperature gradients. Furthermore, the recent poor fuel performance of UO2 TRISO fuel pebbles measured in Chinese irradiation testing in Russia and in German pebbles irradiated at 1250C, and historic data on poorer fuel performance in safety testing of German pebbles that experienced burnups in excess of 10% FIMA [1] have each raised concern about the use of UO2 TRISO above 10% FIMA and 1150C and the degree of margin available in the fuel system. This continues to be an active area of study internationally.

David Petti

2014-06-01T23:59:59.000Z

408

Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1  

SciTech Connect

This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

Not Available

1993-05-01T23:59:59.000Z

409

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report  

NLE Websites -- All DOE Office Websites (Extended Search)

SunLine Transit Agency SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report L. Eudy and K. Chandler Technical Report NREL/TP-5600-57560 January 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report L. Eudy and K. Chandler Prepared under Task No. HT12.8210 Technical Report NREL/TP-5600-57560 January 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

410

DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 4: Low...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Breakout Group 4: Low Temperature Fuel Cell System BOP & FUEL Processors For Stationary and Automotive DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 4: Low Temperature...

411

Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

in PEM Fuel Cells: in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization J. Vernon Cole and Ashok Gidwani CFDRC Prepared for: DOE Hydrogen Fuel Cell Kickoff Meeting February 13, 2007 This presentation does not contain any proprietary or confidential information. Background Water Management Issues Arise From: ƒ Generation of water by cathodic reaction ƒ Membrane humidification requirements ƒ Capillary pressure driven transport through porous MEA and GDL materials ƒ Scaling bipolar plate channel dimensions J.H. Nam and M. Kaviany, Int. J. Heat Mass Transfer, 46, pp. 4595-4611 (2003) Relevant Barriers and Targets ƒ Improved Gas Diffusion Layer, Flow Fields, Membrane Electrode Assemblies Needed to Improve Water Management: * Flooding blocks reactant transport

412

Thermodynamic and transport properties of thoriaurania fuel of Advanced Heavy Water Reactor  

Science Journals Connector (OSTI)

High temperature thermochemistry of thoriaurania fuel for Advanced Heavy Water Reactor was investigated. Oxygen potential development within the matrix and distribution behaviors of the fission products (fps) in different phases were worked out with the help of thermodynamic and transport properties of the fps as well as fission generated oxygen and the detailed balance of the elements. Some of the necessary data for different properties were generated in this laboratory while others were taken from literatures. Noting the behavior of poor transports of gases and volatile species in the thoria rich fuel (thoria3mol% urania), the evaluation shows that the fuel will generally bear higher oxygen potential right from early stage of burnup, and Mo will play vital role to buffer the potential through the formation of its oxygen rich chemical states. The problems related to the poor transport and larger retention of fission gases (Xe) and volatiles (I, Te, Cs) are discussed.

M. Basu (Ali); R. Mishra; S.R. Bharadwaj; D. Das

2010-01-01T23:59:59.000Z

413

STATEMENT OF CONSIDERATIONS REQUEST BY NUVERA FUEL CELLS, INC FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

rt -du 2005 16:22 FR IPL DOE CH 630 252 2779 TO RGCP-HQ P.02/03 rt -du 2005 16:22 FR IPL DOE CH 630 252 2779 TO RGCP-HQ P.02/03 * * STATEMENT OF CONSIDERATIONS REQUEST BY NUVERA FUEL CELLS, INC FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36-02AL67618 ENTITLED "ADVANCED HIGH EFFICIENCY QUICK START FUEL PROCESSOR FOR TRANSPORTATION APPLICATIONS"; W(A)-04-041; CH-1208 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Nuvera Fuel Cells, Inc. (Nuvera) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above-identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517,

414

Automotive Accessibility and Efficiency Meet in the Innovative MV-1 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Automotive Accessibility and Efficiency Meet in the Innovative MV-1 Automotive Accessibility and Efficiency Meet in the Innovative MV-1 Automotive Accessibility and Efficiency Meet in the Innovative MV-1 March 11, 2011 - 4:03pm Addthis The MV-1, a new wheelchair accessible, fuel-efficient vehicle | Photo Courtesy of Vehicle Production Group The MV-1, a new wheelchair accessible, fuel-efficient vehicle | Photo Courtesy of Vehicle Production Group Daniel B. Poneman Daniel B. Poneman Deputy Secretary of Energy Yesterday, the Department of Energy announced that we've now finalized a loan for nearly $50 million to the Vehicle Production Group - or VPG. The project will support the development and manufacturing of a new wheelchair accessible, fuel-efficient car, the MV-1, that will run on compressed natural gas instead of gasoline, produce low emissions, and create 900 jobs

415

Virtualization in Automotive Embedded Systems  

E-Print Network (OSTI)

W / PSA / Freescale - 3 Mastering complexity of automotive Electrical and Electronics (E/E) Systems #12Virtualization in Automotive Embedded Systems : an Outlook Nicolas Navet, RTaW Bertrand Delord, PSA;© 2010 RTaW / PSA / Freescale - 2 Outline 1. Automotive E/E Systems: mastering complexity 2. Ecosystems

Navet, Nicolas

416

Neutronic Analysis of an Advanced Fuel Design Concept for the High Flux Isotope Reactor  

SciTech Connect

This study presents the neutronic analysis of an advanced fuel design concept for the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) that could significantly extend the current fuel cycle length under the existing design and safety criteria. A key advantage of the fuel design herein proposed is that it would not require structural changes to the present HFIR core, in other words, maintaining the same rated power and fuel geometry (i.e., fuel plate thickness and coolant channel dimensions). Of particular practical importance, as well, is the fact that the proposed change could be justified within the bounds of the existing nuclear safety basis. The simulations herein reported employed transport theory-based and exposure-dependent eigenvalue characterization to help improve the prediction of key fuel cycle parameters. These parameters were estimated by coupling a benchmarked three-dimensional MCNP5 model of the HFIR core to the depletion code ORIGEN via the MONTEBURNS interface. The design of an advanced HFIR core with an improved fuel loading is an idea that evolved from early studies by R. D. Cheverton, formerly of ORNL. This study contrasts a modified and increased core loading of 12 kg of 235U against the current core loading of 9.4 kg. The simulations performed predict a cycle length of 39 days for the proposed fuel design, which represents a 50% increase in the cycle length in response to a 25% increase in fissile loading, with an average fuel burnup increase of {approx}23%. The results suggest that the excess reactivity can be controlled with the present design and arrangement of control elements throughout the core's life. Also, the new power distribution is comparable or even improved relative to the current power distribution, displaying lower peak to average fission rate densities across the inner fuel element's centerline and bottom cells. In fact, the fission rate density in the outer fuel element also decreased at these key locations for the proposed design. Overall, it is estimated that the advanced core design could increase the availability of the HFIR facility by {approx}50% and generate {approx}33% more neutrons annually, which is expected to yield sizeable savings during the remaining life of HFIR, currently expected to operate through 2014. This study emphasizes the neutronics evaluation of a new fuel design. Although a number of other performance parameters of the proposed design check favorably against the current design, and most of the core design features remain identical to the reference, it is acknowledged that additional evaluations would be required to fully justify the thermal-hydraulic and thermal-mechanical performance of a new fuel design, including checks for cladding corrosion performance as well as for industrial and economic feasibility.

Xoubi, Ned [ORNL; Primm, Trent [ORNL; Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK)

2009-01-01T23:59:59.000Z

417

NETL: News Release - Fuel Cells to Advance Zero-Emissions Energy in  

NLE Websites -- All DOE Office Websites (Extended Search)

September 17, 2003 September 17, 2003 Fuel Cells to Advance Zero-Emissions Energy in Tomorrow's Economy R&D on Key Components, Diagnostics, Modeling Gets $5.4 Million Boost with 10 New DOE Research Grants WASHINGTON, DC - Secretary of Energy Spencer Abraham today announced a new phase of fuel-cell research designed to hasten the wider availability of zero-emissions energy. The 10 Department of Energy (DOE) research grants, totaling $4.2 million, will be matched by another $1.2 million from university and private sector participants for research aimed at resolving obstacles to fuel-cell use. "The President's Hydrogen and Climate Initiatives envision fuel cells playing a prominent role in the economy and everyday life," Secretary Abraham said, "For that to occur, we have to reduce the costs of fuel cell acquisition and use. These projects address the most important priorities identified by industry and researchers, and were chosen for their technological impact and high potential for overall success."

418

Fuel Cell Technologies Office: Accomplishments and Progress  

NLE Websites -- All DOE Office Websites (Extended Search)

Accomplishments and Progress Accomplishments and Progress The U.S. Department of Energy's (DOE's) efforts have greatly advanced the state of the art of hydrogen and fuel cell technologies-making significant progress toward overcoming many of the key challenges to widespread commercialization. DOE has also made major advances by demonstrating and validating the technologies under real-world conditions, supporting early markets through Recovery Act deployments, and leveraging domestic and international partnerships to advance the pace of commercialization. See the Fuel Cell Technologies Office's accomplishments fact sheet. Reducing the Cost and Improving the Durability and Performance of Fuel Cells Chart showing the cost of the automotive fuel cell system, which is projected to a high-volume manufacturing of 500,000 units per year. In 2002, the cost of the automotive fuel cell system (including balance of plant and stack) was $275/kW. The cost decreased to $108/kW in 2006, to $94/kW in 2007, to $73/kW in 2008, $61/kW in 2009, to $51/kW in 2010, and to $49/kW in 2011. The target cost for 2017 is $30/kW.

419

GCTool: Design, Analyze and Compare Fuel Cell Systems and Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

GCTool: Design, Analyze and Compare Fuel Cell Systems and Power Plants GCTool allows you to design, analyze, and compare different fuel cell configurations, including automotive,...

420

Hydrogen Storage and Supply for Vehicular Fuel Systems - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

industry. During the last decade, hydrogen fuel technology has emerged as the prime alternative that will finally drive automotive fuel systems into the new millennium....

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

STATEMENT OF CONSIDERATIONS REQUEST BY ADVANCED TECHNOLOGY MATERIALS, INC.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(ATMI) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS TO INVENTIONS MADE UNDER COOPERATIVE AGREEMENT NUMBER DE-FC04-02AL67616, DOE WAIVER NO. W(A) 02-054. The Petitioner, ATMI, has requested a waiver of all domestic and foreign patent rights to inventions that may be conceived or first actually reduced to practice in the course of ATMI's subcontract work for United Technologies Corporation Fuel Cells (UTCFC) under Cooperative Agreement Number DE-FC04-02AL67616 entitled "The Development of Sensors for Automotive Fuel Cell Systems" with the U.S. Department of Energy (DOE). The work to be done under the cooperative agreement will be the development of gas sensors for use in automotive fuel cell systems. The work to be done under the subcontract will be the design and development of a novel micro-machined hydrogen

422

Cadmium Depletion Impacts on Hardening Neutron6 Spectrum for Advanced Fuel Testing in ATR  

SciTech Connect

For transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products effectively is in a fast neutron spectrum reactor. In the absence of a fast spectrum test reactor in the United States of America (USA), initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. A test region is achieved with a Cadmium (Cd) filter which can harden the neutron spectrum to a spectrum similar (although still somewhat softer) to that of the liquid metal fast breeder reactor (LMFBR). A fuel test loop with a Cd-filter has been installed within the East Flux Trap (EFT) of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). A detailed comparison analyses between the cadmium (Cd) filter hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum have been performed using MCWO. MCWO is a set of scripting tools that are used to couple the Monte Carlo transport code MCNP with the isotope depletion and buildup code ORIGEN-2.2. The MCWO-calculated results indicate that the Cd-filter can effectively flatten the Rim-Effect and reduce the linear heat rate (LHGR) to meet the advanced fuel testing project requirements at the beginning of irradiation (BOI). However, the filtering characteristics of Cd as a strong absorber quickly depletes over time, and the Cd-filter must be replaced for every two typical operating cycles within the EFT of the ATR. The designed Cd-filter can effectively depress the LHGR in experimental fuels and harden the neutron spectrum enough to adequately flatten the Rim Effect in the test region.

Gray S. Chang

2011-05-01T23:59:59.000Z

423

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative Summary This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the "Delphi Kokomo, IN Corporate Technology Center" (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOE's Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the

424

Automotive Energy Supply Corporation AESC | Open Energy Information  

Open Energy Info (EERE)

Automotive Energy Supply Corporation AESC Automotive Energy Supply Corporation AESC Jump to: navigation, search Name Automotive Energy Supply Corporation (AESC) Place Zama, Kanagawa, Japan Product JV formed for development and marketing of advanced lithium-ion batteries for automotive applications. Coordinates 32.974049°, -89.371101° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.974049,"lon":-89.371101,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Fuel Processing Valri Lightner  

E-Print Network (OSTI)

, ORNL, NETL #12;Accomplishments · Demonstrated in the lab an advanced fuel flexible fuel processor

426

Potential Benefits of Utilizing Fuel Cell Auxiliary Power Units in Lieu of Heavy-Duty Truck Engine Idling  

E-Print Network (OSTI)

Cost Estimates for Polymer Electrolyte Membrane (PEM) Fuel Cellsmanufacturing costs of automotive PEM fuel cell systems incosts of different sizes of direct-hydrogen PEM fuel cell

2001-01-01T23:59:59.000Z

427

Engineering development of advanced physical fine coal cleaning for premium fuel applications  

SciTech Connect

The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

Shields, G.L.; Smit, F.J.; Jha, M.C.

1997-08-28T23:59:59.000Z

428

Incorporation of a risk analysis approach for the nuclear fuel cycle advanced transparency framework.  

SciTech Connect

Proliferation resistance features that reduce the likelihood of diversion of nuclear materials from the civilian nuclear power fuel cycle are critical for a global nuclear future. A framework that monitors process information continuously can demonstrate the ability to resist proliferation by measuring and reducing diversion risk, thus ensuring the legitimate use of the nuclear fuel cycle. The automation of new nuclear facilities requiring minimal manual operation makes this possible by generating instantaneous system state data that can be used to track and measure the status of the process and material at any given time. Sandia National Laboratories (SNL) and the Japan Atomic Energy Agency (JAEA) are working in cooperation to develop an advanced transparency framework capable of assessing diversion risk in support of overall plant transparency. The ''diversion risk'' quantifies the probability and consequence of a host nation diverting nuclear materials from a civilian fuel cycle facility. This document introduces the details of the diversion risk quantification approach to be demonstrated in the fuel handling training model of the MONJU Fast Reactor.

Mendez, Carmen Margarita (Sociotecnia Solutions, LLC); York, David L.; Inoue, Naoko (Japan Atomic Energy Agency); Kitabata, Takuya (Japan Atomic Energy Agency); Vugrin, Eric D.; Vugrin, Kay White; Rochau, Gary Eugene; Cleary, Virginia D.

2007-05-01T23:59:59.000Z

429

DOE Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

This document describes test protocols to assess the performance and durability of fuel cell components intended for automotive applications.

430

DOE Provides $4.7 Million to Support Excellence in Automotive Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4.7 Million to Support Excellence in Automotive 4.7 Million to Support Excellence in Automotive Technology Education DOE Provides $4.7 Million to Support Excellence in Automotive Technology Education August 29, 2005 - 2:47pm Addthis WASHINGTON, DC - The U.S. Department of Energy today announced the selection of eight universities that will receive $4.7 million to be Graduate Automotive Technology Education (GATE) Centers of Excellence. The goal of GATE is to train a future workforce of automotive engineering professionals to overcome technology barriers preventing the development and production of cost-effective, high-efficiency vehicles for the U.S. market. "GATE Centers of Excellence are an exciting opportunity to equip a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies," said Douglas L. Faulkner, Acting

431

TransAtlas: A U.S. Map of Fuels and Vehicles Data from the Alternative Fuels and Advanced Vehicles (AFDC)  

DOE Data Explorer (OSTI)

Data stored in the Alternative Fuels and Advanced Vehicles Data Center (AFDC) can provide insight to policymakers, entrepreneurs, fuel users, and other parties interested in reducing petroleum consumption. The National Renewable Energy Laboratory analyzes transportation-related data and identifies trends related to alternative fuels and vehicles. These analyses are posted in the AFDC as technical reports and Excel spreadsheets that can be manipulated by outside users. To provide the most robust collection of information possible, this section also includes links to data analyses from outside the AFDC. These sources are noted in each file. There are also interactive map applications and some PDF documents.

432

Advanced thermally stable jet fuels. Technical progress report, July 1993--September 1993  

SciTech Connect

The Penn State program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. An exploratory study was conducted to investigate the pyrolysis of n-butylbenzene in a flow reactor at atmospheric pressure. A number of similarities to trends previously observed in high-pressure static reactions were identified. The product distribution from pyrolysis of n-tetradecane at 400{degrees}C and 425{degrees}C was investigated. The critical temperatures of a suite of petroleum- and coal-derived jet fuels were measured by a rapidly heating sealed tube method. Work has continued on refining the measurements of deposit growth for stressing mixtures of coal-derived JP-8C with tetradecane. Current work has given emphasis to the initial stages of fuel decomposition and the onset of deposition. Pretreatment of JPTS fuel with PX-21 activated carbon (50 mg of PX-21 in 15 mL JPTS) delayed degradation and prevented carbon deposition during thermal stressing at 425{degrees}C for 5 h in nitrogen and air atmospheres. Clear indications of initial and subsequent deposit formation on different metal surfaces have been identified for thermal stressing of dodecane. Seven additives were tested for their ability to retard decomposition of dodecane at 450{degrees}C under nitrogen. Nuclear magnetic resonance data for Dammar resin indicates that structures proposed in the literature are not entirely correct.

Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Walsh, P.M.; Coleman, M.M.

1993-12-01T23:59:59.000Z

433

Advanced Combustion, Emission Control, Health Impacts, and Fuels Merit Review and Peer Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

06 06 a n n u a l p r o g r e s s r e p o r t L e s s d e p e n d e n c e o n f o r e i g n o i l t o d a y, a n d t r a n s i t i o n t o a p e t r o l e u m - f r e e , e m i s s i o n s - f r e e v e h i c l e t o m o r r o w . F r e e d o m C A r A n d V e h i C l e T e C h n o l o g i e s P r o g r A m AdvAnced combustion, emission controls, HeAltH impActs, And Fuels merit review And peer evAluAtion Department of Energy Washington, DC 20585 October 2006 Dear Colleague: This document summarizes the comments provided by the Review Panel for the FY 2006 Department of Energy (DOE) Advanced Combustion, Emission Controls, Health Impacts, and Fuels Merit Review and Peer Evaluation Meeting, the "ACE Review," held on May 15-18, 2006 at Argonne National Laboratory (ANL). The raw evaluations and comments of the panel were provided (with reviewers' names deleted) to the presenters in early June and were used by national laboratory

434

future science group 5ISSN 1759-726910.4155/BFS.12.76 2013 Future Science Ltd Special FocuS: advanced FeedStockS For advanced bioFuelS  

E-Print Network (OSTI)

S: advanced FeedStockS For advanced bioFuelS An overview of lignocellulosic biomass feedstock harvest per truck, to transport 3 million tons of biomass feedstock from harvest sites to bioconversion plant

435

Clean Cities Now, Vol. 11, No. 4, October 2007; Official Publication of Clean Cities and the Alternative Fuels and Advanced Vehicles Data Center (Newsletter)  

NLE Websites -- All DOE Office Websites (Extended Search)

Formerly Clean Cities News Formerly Clean Cities News Official Publication of Clean Cities and the Alternative Fuels and Advanced Vehicles Data Center Clean Cities Now (www.eere.energy.gov/cleancities/ccn) is the official publication of Clean Cities, an initiative of the U.S. Department of Energy designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative fuel vehicles, idle reduction technologies, hybrid electric vehicles, fuel blends, and fuel economy. DOE Recognizes Coordinator Accomplishments

436

Engineering Development of Advanced Physical Fine Coal Cleaing for Premium Fuel Applications  

SciTech Connect

The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel? column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications -- Less than 2 pounds of ash per million Btu (860 grams per gigajoule) and

Frank J. Smit; Gene L. Schields; Mehesh C. Jha; Nick Moro

1997-09-26T23:59:59.000Z

437

Subfreezing Start/Stop Protocol for an Advanced Metallic Open-Flowfield Fuel Cell Stack  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, which focuses on fuel cell stacks, was given by C. Cross of Nuvera Fuel Cells at a DOE fuel cell meeting in February 2007.

438

Development of Thermoelectric Technology for Automotive Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop...

439

Development of Thermoelectric Technology for Automotive Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Presentation from the U.S. DOE Office of...

440

Magnesium Research in the Automotive Lightweighting Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in the Automotive Lightweighting Materials Program Magnesium Research in the Automotive Lightweighting Materials Program Presentation from the U.S. DOE Office of Vehicle...

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

HIGH INTEGRITY MAGNESIUM AUTOMOTIVE COMPONENTS (HIMAC) | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HIGH INTEGRITY MAGNESIUM AUTOMOTIVE COMPONENTS (HIMAC) HIGH INTEGRITY MAGNESIUM AUTOMOTIVE COMPONENTS (HIMAC) 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

442

Quenching and Partitioning Process Development to Replace Hot Stamping of High-Strength Automotive Steel  

Energy.gov (U.S. Department of Energy (DOE))

A combination of deep alloy development experience, designed experiments, computational tools, and characterization instruments will develop Quenching and Partitioning processing for Third-Generation Advanced High-Strength Steels (3GAHSS) in automotive applications.

443

Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced Distillation Curve Method  

Energy.gov (U.S. Department of Energy (DOE))

Supercritical transesterification processing permits efficient fuel system and combustion chamber designs to optimize fuel utilization in diesel engines.,

444

Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Fueling Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on AddThis.com... More in this section... Federal State Advanced Search

445

Optical-Engine and Surrogate-Fuels Research for an Improved Understanding of Fuel Effects on Advanced-Combustion Strategies  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

446

DOE Hydrogen and Fuel Cells Program: News Archives - 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 January February March April May June July August September October November December January 10 Questions for a Materials Scientist: Brian Larsen DOE Fuel Cell Bus Analysis Finds Fuel Economy to be up to Two Times Higher than Diesel DOE Hydrogen and Fuel Cells Program Releases 2012 Annual Progress Report Rescheduled for January 17: DOE Webinar on Wind-to-Hydrogen Cost Modeling and Project Findings February Automotive Fuel Cell Cost and Durability Target Request For Information Issued Energy Department Announces New Investment to Advance Cost-Competitive Hydrogen Fuel Fueling the Next Generation of Vehicle Technology Webinar February 22: Hydrogen Refueling Protocols March Energy Department Study Examines Potential to Reduce Transportation Petroleum Use and Carbon Emissions

447

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

07 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update This report estimates fuel cell system cost for systems...

448

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application This report estimates fuel cell system cost for systems produced in the...

449

Fuel Cell Power SystemFuel Cell Power System May 21, 2003  

E-Print Network (OSTI)

/ Commercial / Industrial Transportation Fleet Vehicles Automotive Fuel Cell Microturbine Organic Rankine Cycle · Technical Goals and Objectives · Organization and Team Structure · Background and Program Overview

450

Enterprise SRS: leveraging ongoing operations to advance nuclear fuel cycles research and development programs  

SciTech Connect

The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.

Murray, A.M.; Marra, J.E.; Wilmarth, W.R. [Savannah River National Laboratory, Aiken, SC 29808 (United States); McGuire, P.W.; Wheeler, V.B. [Department of Energy-Savannah River Operations Office, Aiken SC 29808 (United States)

2013-07-01T23:59:59.000Z

451

Automotive HCCI Engine Research  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

452

Advanced thermally stable jet fuels. Technical progress report, April 1993--June 1993  

SciTech Connect

The Penn State program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Some of our accomplishments and findings are: The product distribution and reaction mechanisms for pyrolysis of alkylcyclohexanes at 450{degree}C have been investigated in detail. In this report we present results of pyrolysis of cyclohexane and a variety of alkylcyclohexanes in nitrogen atmospheres, along with pseudo-first order rate constants, and possible reaction mechanisms for the origin of major pyrolysis products are presented. Addition of PX-21 activated carbon effectively stops the formation of carbonaceous solids on reactor walls during thermal stressing of JPTS. A review of physical and chemical interactions in supercritical fluids has been completed. Work has begun on thermal stability studies of a second generation of fuel additives, 1,2,3,4-tetrahydro-l-naphthol, 9,10-phenanthrenediol, phthalan, and 1,2-benzenedimethanol, and with careful selection of the feedstock, it is possible to achieve 85--95% conversion of coal to liquids, with 40--50% of the dichloromethane-soluble products being naphthalenes. (Further hydrogenation of the naphthalenes should produce the desired highly stable decalins.)

Schobert, H.H.; Eser, S.; Song, C. [and others

1993-10-01T23:59:59.000Z

453

Automotive EMC Workshop Clemson Vehicular Electronics Laboratory  

E-Print Network (OSTI)

Automotive EMC Workshop Clemson Vehicular Electronics Laboratory Reliable Automotive Electronics/O · Adequate Decoupling · Balance Control 2 In 2011, CVEL began to guarantee that the automotive products they reviewed/designed would meet all automotive EMC requirements the first time they were tested. #12;Clemson

Duchowski, Andrew T.

454

DOE Hydrogen and Fuel Cells Program: U.S. DRIVE Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission and Goals Mission and Goals Organization Chart and Contacts Background U.S. DRIVE Partnership Budget Timeline Program Activities Advisory Panels External Coordination U.S. Department of Energy Search help Home > About > Background > U.S. DRIVE Partnership Printable Version U.S. DRIVE Partnership The U.S. DRIVE Partnership is a collaborative effort among DOE and companies from the automotive, fuels, and electric utility industries, focused on advanced automotive and related infrastructure technology research and development. U.S. DRIVE Logo The U.S. DRIVE partners are: Automobile industry: U.S. Council for Automotive Research LLC (USCAR, the cooperative research organization for Chrysler Group, Ford Motor Company, and General Motors Company); Tesla Motors Electric utility industry: DTE Energy Company, Southern California

455

Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles  

SciTech Connect

The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

Staunton, R.H.; Thomas, J.F.

1998-12-01T23:59:59.000Z

456

University Programs of the U.S. Advanced Fuel Cycle Initiative  

SciTech Connect

As the Advanced Accelerator Applications (AAA) Program, which was initiated in fiscal year 2001 (FY01), grows and transitions to the Advanced Fuel Cycle (AFC) Program in FY03, research for its underlying science and technology will require an ever larger cadre of educated scientists and trained technicians. In addition, other applications of nuclear science and engineering (e.g., proliferation monitoring and defense, nuclear medicine, safety regulation, industrial processes, and many others) require increased academic and national infrastructure and even larger student populations. Because of the recognition of these current and increasing requirements, the DOE began a multi-year program to involve university faculty and students in various phases of these Projects to support the infrastructure requirements of nuclear energy, science and technology fields as well as the special needs of the DOE transmutation program. Herein I summarize the goals and accomplishments of the university programs that have supported the AAA and AFC Programs during FY02, including the involvement of 120 students at more than 30 universities in the U.S. and abroad. I also highlight contributions to academic research from LANL, which hosted students from and sponsored research at more than 18 universities by more than 50 students and 20 faculty members, investing about 10% of its AFC budget.

Beller, D. E. (Denis E.)

2003-01-01T23:59:59.000Z

457

Advanced Electrodes for Solid Acid Fuel Cells by Platinum Deposition on CsH2PO4  

Science Journals Connector (OSTI)

Advanced Electrodes for Solid Acid Fuel Cells by Platinum Deposition on CsH2PO4 ... The unique characteristics of the CDP electrolyte pose several challenges to SAFC optimization, particularly in the area of cathode microstructure. ... 1% CO demonstrates the potential of this approach with optimized reforming catalysts and also the tolerance to CO poisoning at these elevated temps. ...

Alexander B. Papandrew; Calum R.I. Chisholm; Ramez A. Elgammal; Mustafa M. zer; Strahinja K. Zecevic

2011-03-15T23:59:59.000Z

458

Vehicle Technologies Office: Graduate Automotive Technology Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) to someone by E-mail Share Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Facebook Tweet about Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Twitter Bookmark Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Google Bookmark Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Delicious Rank Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Digg Find More places to share Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on AddThis.com...

459

NREL: Learning - Advanced Vehicle Systems and Components  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicle Systems and Components Advanced Vehicle Systems and Components Photo of a man checking out an advanced battery using testing equipment that includes a long metal tube on a table top. NREL's researchers test new batteries developed for hybrid electric vehicles. Credit: Warren Gretz Researchers and engineers at the NREL work closely with those in the automotive industry to develop new technologies, such as advanced batteries, for storing energy in cars, trucks, and buses. They also help to develop and test new technologies for using that energy more efficiently. And they work on finding new, energy-efficient ways to reduce the amount of fuel needed to heat and cool the interiors, or cabins, of vehicles. To help develop these new technologies, NREL's researchers are improving the efficiency of vehicle systems and components like these:

460

FY2001 Progress Report for Automotive Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

AUTOMOTIVE PROPULSION AUTOMOTIVE PROPULSION MATERIALS 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory, Computer Systems Management, Inc., and Oak Ridge National Laboratory, for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Advanced Automotive Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2001 Progress Report for Propulsion Materials

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Society of Automotive Engineers World Congress | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Society of Automotive Engineers World Congress Society of Automotive Engineers World Congress Society of Automotive Engineers World Congress April 6, 2006 - 10:12am Addthis Remarks Prepared for Energy Secretary Samuel Bodman Thank you, Greg. It's always a pleasure to be in a room full of engineers. As an engineer myself, I know there is nothing our profession likes better than plain talk and solving problems. So, I'm going to serve you up some plain talk and then some assignments. Our nation faces big challenges in the energy and transportation arena. The President put it plainly in the State of the Union message when he said America is addicted to oil. To start us on the path to recovery from this addiction, he set out the Advanced Energy Initiative which calls for increasing spending on clean energy programs by 22% in next year's budget.

462

STATEMENT OF CONSIDERATIONS REQUEST BY GRAFTECH INTERNATIONAL LTD. (GRAFTECH) FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GRAFTECH INTERNATIONAL LTD. (GRAFTECH) FOR AN ADVANCE GRAFTECH INTERNATIONAL LTD. (GRAFTECH) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE GRANT NO. DE-FG36-07GO17012; W(A)-07-040 The Petitioner, GrafTech, has requested a waiver of domestic and foreign patent rights for all subject inventions arising from its participation under the above referenced grant entitled "Next Generation "Bipolar Plates for Automotive PEM Fuel Cells." The Petitioner will be collaborating with Ballard Power Systems, Huntsman Advanced Materials, and Case Western Reserve University, none of which is subject to this waiver request. The objective of the grant is to develop the next-generation automotive bipolar plate based on an engineered composite of expanded graphite and resin. The new plate composite will

463

Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels. Energy feedstocks for transportation fuel production could include crude oil, natural gas (NG), coal, biomass (grains such as corn and cellulosic biomass), and...

464

Introduction to DMFCs- Advanced Materials and Concepts for Portable Power Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Download slides from the presentation by Piotr Zelenay, Los Alamos National Laboratory, at the July 17, 2012, Fuel Cell Technologies Program webinar, Fuel Cells for Portable Power.

465

E-Print Network 3.0 - advanced ule fuel Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 3 August 2005 Fuel Tank...

466

E-Print Network 3.0 - advanced fuel performance Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Liquid Fed Direct Fuel...

467

E-Print Network 3.0 - advanced fuel processing Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 August 2005 Fuel Tank...

468

E-Print Network 3.0 - advanced fuel cycle--potential Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 August 2005 Fuel Tank...

469

E-Print Network 3.0 - advanced fissile fuel Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

will be exhausted in the foreseeable future. Spent fuel is dangerous... to the greenhouse effect. New Generation reactors to achieve the reuse of spent fuel. Fusion...

470

Professional Science Masters in Advanced Energy and Fuels Management at Southern Illinois University Carbondale  

SciTech Connect

There are currently three key drivers for the US energy sector a) increasing energy demand and b) environmental stewardship in energy production for sustainability and c) general public and governmental desire for domestic resources. These drivers are also true for energy nation globally. As a result, this sector is rapidly diversifying to alternate sources that would supplement or replace fossil fuels. These changes have created a need for a highly trained workforce with a the understanding of both conventional and emerging energy resources and technology to lead and facilitate the reinvention of the US energy production, rational deployment of alternate energy technologies based on scientific and business criteria while invigorating the overall economy. In addition, the current trends focus on the the need of Science, Technology, Engineering and Math (STEM) graduate education to move beyond academia and be more responsive to the workforce needs of businesses and the industry. The SIUC PSM in Advanced Energy and Fuels Management (AEFM) program was developed in response to the industries stated need for employees who combine technical competencies and workforce skills similar to all PSM degree programs. The SIUC AEFM program was designed to provide the STEM graduates with advanced technical training in energy resources and technology while simultaneously equipping them with the business management skills required by professional employers in the energy sector. Technical training include core skills in energy resources, technology and management for both conventional and emerging energy technologies. Business skills training include financial, personnel and project management. A capstone internship is also built into the program to train students such that they are acclimatized to the real world scenarios in research laboratories, in energy companies and in government agencies. The current curriculum in the SIUC AEFM will help fill the need for training both recent graduates seeking specialized training prior to entering the energy industry workforce as well as working professionals in the energy industry who require additional training and qualifications for further career advancement. It is expected that the students graduating from the program will be stewards of effective, sustainable and environmentally sound use of these resources to ensure energy independence and meet the growing demands. The application of this Professional Science Masters (PSM) program is in the fast evolving Fuels Arena. The PSM AEFM is intended to be a terminal degree which will prepare the graduates for interdisciplinary careers in team oriented environment. The curriculum for this program was developed in concert with industry to dovetail with current and future demands based on analysis and needs. The primary objective of the project was to exploit the in house resources such as existing curriculum and faculty strengths and develop a curriculum with consultations with industry to meet current and future demands. Additional objectives was to develop courses specific to the degree and to provide the students with a set of business skills in finance accounting and sustainable project management. The PSM program consists of a 36-hour curriculum structured in accord with the PSM model originally developed by the Sloan Foundation. Students are required to take 9 credit hours of business courses, 9 credit hours of science and engineering courses, 3 credit hours of policy related courses and a total of 9 credit hours of electives in business, science, engineering and policy. The program is designed to be completed in one academic year (based on full time study), with additional course work to be completed in the preceding summer semester and the capstone internship to be completed in the final summer semester.

Mondal, Kanchan [Southern Illinois University, Carbondale

2014-12-08T23:59:59.000Z

471

Automotive Thermoelectric Generator Design Issues  

Energy.gov (U.S. Department of Energy (DOE))

Mechanical, electrical, thermal engineering, and durability issues related to use of TEGs in the challenging automotive environment need to be resolved as they affect warranty cost and customer acceptance.

472

Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual Mode Operation with Low Degradation  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 October 1, 2009

473

Transmutation of Transuranic Elements in Advanced MOX and IMF Fuel Assemblies Utilizing Multi-recycling Strategies  

E-Print Network (OSTI)

of nuclear power plants worldwide. To do so efficiently, several new fuel assembly designs are proposed in this Thesis: these include (1) Mixed Oxide Fuel (MOX), (2) MOX fuel with Americium coating, (3) Inert-Matrix Fuel (IMF) with UOX as inner zone, and (4...

Zhang, Yunhuang

2011-02-22T23:59:59.000Z

474

Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs  

SciTech Connect

The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). Thus, the demonstration can be accomplished by leveraging the incremental cost of performing demonstrations without needing to cover the full operational cost of the facility. Current Center activities have been focused on integrating advanced safeguards monitoring technologies demonstrations into the SRS H-Canyon and advanced location technologies demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and customers as well as providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (as well as to offsite venues) so that future demonstrations can be done more efficiently and provide an opportunity to utilize these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs DOE-Nuclear Energy (DOE-NE) to advance the research for next generation fuel cycle technologies. The concept is to install processing equipment on frames. The frames are then positioned into an H-Canyon cell and testing in a relevant radiological environment involving prototypic radioactive materials can be performed.

Murray, Alice M.; Marra, John E.; Wilmarth, William R.; Mcguire, Patrick W.; Wheeler, Vickie B.

2013-07-03T23:59:59.000Z

475

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

liu. A parametric study of PEM fuel cell performances.economic design of PEM fuel cell systems by multi-objectiveEstimation for Direct H2 PEM Fuel Cell System for Automotive

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

476

Environmental Aspects of Advanced Nuclear Fuel Cycles: Parametric Modeling and Preliminary Analysis  

E-Print Network (OSTI)

........................................................... 10 2 Simplified schematic of the once-through open fuel cycle .................................. 12 3 Simplified schematic of the plutonium-burning fuel cycle .................................. 13 4 Simplified schematic of the actinide... ..................................................... 23 7 Material flow for the plutonium-burning fuel cycle, year 0 ................................. 24 8 Material flow for the plutonium-burning fuel cycle, year 40 ............................... 25 9 Material flow for the actinide-burning fuel...

Yancey, Kristina D.

2010-07-14T23:59:59.000Z

477

Dynalene Fuel Cell Coolants Achieve Commercial Success  

Office of Energy Efficiency and Renewable Energy (EERE)

Dynalene has been working with several automotive and fuel cell manufacturers on using the coolants in their PEM fuel cells, hybrid electric, electric vehicles and back-up power systems.

478

Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model - 13413  

SciTech Connect

This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity. (authors)

Djokic, Denia [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States)] [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, Steven J.; Pincock, Layne F.; Soelberg, Nick R. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)] [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

2013-07-01T23:59:59.000Z

479

Hybrid and Hydrogen Vehicle Research Laboratory 21st Century Automotive Challenge April 17-19, 2009  

E-Print Network (OSTI)

, fuel cell, or alternative fuel. And imagine that you also have the ability to buy and sell energy fromHybrid and Hydrogen Vehicle Research Laboratory 21st Century Automotive Challenge April 17-19, 2009 Contact: J.R. Anstrom, Ph.D., Director Hybrid and Hydrogen Vehicle Research Laboratory The Thomas D

Lee, Dongwon

480

Advanced thermal treatment of auto shredder residue and refuse derived fuel  

Science Journals Connector (OSTI)

The disposal of End-of-Life Vehicles (ELVs) results in a highly heterogeneous polymeric waste stream of Automobile shredder residue (ASR). Within Europe, strict legislation, such as the End-of-Life Vehicle Directive and the Landfill Directive, has imposed targets for reducing this waste stream and diverting the material away from landfill. One pathway open to recyclers is to thermally process these wastes, but the presence of chlorine and metallic species can present challenges to traditional incineration technologies. This paper discusses the use of Gasplasma, an advanced thermal treatment technology, comprising fluidised bed oxy-steam gasification followed by plasma treatment, for ASR, refuse derived fuel (RDF) and blends of ASR and RDF wastes. The work demonstrates the ability to process these highly heterogeneous materials achieving high energy conversion (8794%) and virtually complete carbon conversion, producing a calorific synthetic gas (syngas) capable of being used for power generation or as a chemical feedstock. The actual conversion efficiency achieved is dependent on feed chemistry and properties. The study also shows that ash components of the feed material can be transformed into an environmentally stable vitrified product.

Richard Taylor; Ruby Ray; Chris Chapman

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced automotive fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Ethanol Production for Automotive Fuel Usage  

SciTech Connect

The conceptual design of the 20 million gallon per year anhydrous ethanol facility a t Raft River has been completed. The corresponding geothermal gathering, extraction and reinjection systems to supply the process heating requirement were also completed. The ethanol facility operating on sugar beets, potatoes and wheat will share common fermentation and product recovery equipment. The geothermal fluid requirement will be approximately 6,000 gpm. It is anticipated that this flow will be supplied by 9 supply wells spaced at no closer than 1/4 mile in order to prevent mutual interferences. The geothermal fluid will be flashed in three stages to supply process steam at 250 F, 225 F and 205 F for various process needs. Steam condensate plus liquid remaining after the third flash will all be reinjected through 9 reinjection wells. The capital cost estimated for this ethanol plant employing all three feedstocks is $64 million. If only a single feedstock were used (for the same 20 mm gal/yr plant) the capital costs are estimated at $51.6 million, $43.1 million and $40. 5 million for sugar beets, potatoes and wheat respectively. The estimated capital cost for the geothermal system is $18 million.

Lindemuth, T.E.; Stenzel, R.A.; Yim, Y.J.; Yu, J.

1980-01-31T23:59:59.000Z

482

Analysis of Alternative Fuels in Automotive Powertrains.  

E-Print Network (OSTI)

?? The awareness of the effect emissions have on the environment and climate has risen in the last decades. This has caused strict regulations of (more)

Gunnarsson, Andreas

2009-01-01T23:59:59.000Z

483

Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus * Shuttle Bus * Transit Bus * Refuse Truck * Tractor * Van * Vocational Truck School Bus * Shuttle Bus * Transit Bus * Refuse Truck * Tractor * Van * Vocational Truck Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles 2 Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles 3 Table of Contents About the Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Heavy-Duty Vehicle Application Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Heavy-Duty Emission Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Multiple-Stage Construction of Medium- and Heavy-Duty Vehicles . . . . . . . . . . . . . . . . . . 6 Chassis Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

484

NSF/DOE Thermoelectics Partnership: Thermoelectrics for Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery 2011 DOE...

485

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery...

486

Automotive Stirling Engine Development Program. RESD Summary report  

SciTech Connect

This is the final report compiling a summary of the information presented and discussed at the May 1983 Automotive Stirling Engine (AES) Reference Engine System Design (RESD) review held at the NASA Lewis Research Center. The design of the engine and its auxiliaries and controls is described. Manufacturing costs in production quantity are also presented. Engine system performance predictions are discussed and vehicle integration is developed, along with projected fuel economy levels.

Not Available

1984-05-01T23:59:59.000Z

487

Recent Advances in Detailed Chemical Kinetic Models for Large Hydrocarbon and Biodiesel Transportation Fuels  

SciTech Connect

n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for these two primary reference fuels for diesel, a new capability is now available to model diesel fuel ignition. Also, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. Methyl decanoate and methyl stearate are large methyl esters that are closely related to biodiesel fuels, and kinetic models for these molecules have also been developed. These chemical kinetic models are used to predict the effect of the fuel molecule size and structure on ignition characteristics under conditions found in internal combustion engines.

Westbrook, C K; Pitz, W J; Curran, H J; Herbinet, O; Mehl, M

2009-03-30T23:59:59.000Z

488

Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank  

Energy.gov (U.S. Department of Energy (DOE))

Case study covering Compact Membrane Systems, Inc. and its membrane vapor processor that recovers fuel vapors from gasoline refueling.

489

Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

490

DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

491

DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

492

Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

493

E-Print Network 3.0 - advanced coal-fueled gas Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Redox Chemistry DOI:...

494

E-Print Network 3.0 - advanced fuel cycles Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Course Announcement:...