Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

2012 Advanced Applications Research & Development Peer Review | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Advanced Applications Research & Development Peer Review 2 Advanced Applications Research & Development Peer Review 2012 Advanced Applications Research & Development Peer Review The Advanced Applications Research & Development Peer Review included seven sessions over 2 days on June 12 - 13, 2012. Presentations are available through the individual session links. The agenda and participant list are available below. Presentations June 12 - Day 1: Session I, Session II, Session III, Session IV, Session V June 13 - Day 2: Session VI, Session VII 2012 Advanced Applications R&D Peer Review - Agenda 2012 Advanced Applications R&D Peer Review - Participant List More Documents & Publications 2013 Transmission Reliability Program Peer Review 2012 Advanced Applications Research & Development Peer Review - Day 2

2

NETL: Advanced Research - Pathways to Commercial Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Pathways to Commercial Applications CHALLENGE: Separating H2 and CO2 Pilot plant pyrolysis unit with biomass feedstack system. Pilot plant pyrolysis unit with biomass...

3

2012 Advanced Applications Research & Development Peer Review - Day 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 Advanced Applications Research & Development Peer Review - Day 2012 Advanced Applications Research & Development Peer Review - Day 1 Presentations 2012 Advanced Applications Research & Development Peer Review - Day 1 Presentations The Advanced Applications Research & Development Peer Review included seven sessions over 2 days on June 12 - 13, 2012. Presentations from Day 1 (Sessions I through V) are available below. Session I: Dan Trudnowski, Ning Zhou, Mani Venkatasubramanian Session II: Brett Amidan, Bharat Bhargava, Ning Zhou Session III: Ken Martin, Mani Venkatasubramanian Session IV: Jeff Dagle, Jim Dyer, Joe Gracia, Joe Eto Session V: Joe Eto 2012 Advanced Applications R&D Peer Review - Measurement-Based Stability Assessment - Dan Trudnowski, U Montana 2012 Advanced Applications R&D Peer Review - Mode Meter Development - Ning

4

2012 Advanced Applications Research & Development Peer Review - Day 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Presentations 2 Presentations 2012 Advanced Applications Research & Development Peer Review - Day 2 Presentations The Advanced Applications Research & Development Peer Review included seven sessions over 2 days on June 12 - 13, 2012. Presentations from Day 2 (Sessions VI and VII) are available below. Session VI: Yuri Makarov, Henry Huang, Jim McCalley Session VII: Carlos Martinez, Pete Sauer, Gil Tam 2012 Advanced Applications R&D Peer Review - Real-Time Wide-Area Montoring Tool Based on CELL Method - Yuri Makarov, PNNL 2012 Advanced Applications R&D Peer Review - Modal Analysis for Grid Operations (MANGO) - Henry Huang, PNNL 2012 Advanced Applications R&D Peer Review - New Security Tools for Real-Time Operations - Jim McCalley, Iowa State 2012 Advanced Applications R&D Peer Review - Automatic Reliability Reports

5

2012 Advanced Applications Research & Development Peer Review - Day 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Presentations 1 Presentations 2012 Advanced Applications Research & Development Peer Review - Day 1 Presentations The Advanced Applications Research & Development Peer Review included seven sessions over 2 days on June 12 - 13, 2012. Presentations from Day 1 (Sessions I through V) are available below. Session I: Dan Trudnowski, Ning Zhou, Mani Venkatasubramanian Session II: Brett Amidan, Bharat Bhargava, Ning Zhou Session III: Ken Martin, Mani Venkatasubramanian Session IV: Jeff Dagle, Jim Dyer, Joe Gracia, Joe Eto Session V: Joe Eto 2012 Advanced Applications R&D Peer Review - Measurement-Based Stability Assessment - Dan Trudnowski, U Montana 2012 Advanced Applications R&D Peer Review - Mode Meter Development - Ning Zhou, PNNL 2012 Advanced Applications R&D Peer Review - Oscillation Monitoring System

6

Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

05/2007 05/2007 NitrogeN evolutioN aNd CorrosioN MeChaNisMs With oxyCoMbustioN of Coal Description Under a grant from the University Coal Research (UCR) program, Brigham Young University (BYU) is leading a three-year research effort to investigate the physical processes that several common types of coal undergo during oxy-fuel combustion. Specifically, research addresses the mixture of gases emitted from burning, particularly such pollutants as nitrogen oxides (NO X ) and carbon dioxide (CO 2 ), and the potential for corrosion at the various stages of combustion. The UCR program is administered by the Advanced Research Program at the National Energy Technology Laboratory (NETL), under the U.S. Department of Energy's Office of

7

Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Ductility EnhancEmEnt of molybDEnum Ductility EnhancEmEnt of molybDEnum PhasE by nano-sizED oxiDE DisPErsions Description Using computational modeling techniques, this research aims to develop predictive capabilities to facilitate the design and optimization of molybdenum (Mo), chromium (Cr), and other high-temperature structural materials to enable these materials to withstand the harsh environments of advanced power generation systems, such as gasification-based systems. These types of materials are essential to the development of highly efficient, clean energy technologies such as low-emission power systems that use coal or other fossil fuels.

8

Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Super HigH-TemperaTure alloyS and Super HigH-TemperaTure alloyS and CompoSiTeS From nb-W-Cr SySTemS Description The U.S. Department of Energy's Office of Fossil Energy (DOE-FE) has awarded a three-year grant to the University of Texas at El Paso (UTEP) and Argonne National Laboratory (ANL) to jointly explore the high-temperature properties of alloys composed of niobium (Nb), tungsten (W), and chromium (Cr). The grant is administered by the Advanced Research (AR) program of the National

9

NETL: Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

AR AR Coal and Power Systems Advanced Research 12.11.13: Request for Information entitled "Novel Crosscutting Research and Development to Support Advanced Energy Systems". Application due date is January 15, 2014. The RFI and/or instructions can be found on the FedConnect site at FedConnect. Achieving Successes in High Performance Materials, Coal Utilization Sciences, Sensors & Controls Innovations, Computational Energy Sciences, Cooperative Research and Development, and sponsoring Education Initiatives. The Advanced Research (AR) program within NETL's Office of Coal and Power Systems fosters the development of innovative, cost-effective technologies for improving the efficiency and environmental performance of advanced coal and power systems. In addition, AR bridges the gap between fundamental

10

NETL: Advanced Research - Successes  

NLE Websites -- All DOE Office Websites (Extended Search)

Successes Successes Advanced Research Successes Sensors & Controls "...Optical grade single-crystal sapphire optical fiber waveguides are especially attractive for fabricating sensors for the harsh high-temperature, corrosive environments found in gasifiers." Read More... "Industry adoption of CCADS will open the door to a new generation of more efficient, ultra-low emission turbines in advanced energy systems" Read More... Bioprocessing " Successful development and commercial application of this environmentally safe bacterial toxin will allow power plants to reduce or eliminate the use of chlorination, reducing the risk of harmful effects on aquatic ecosystems." Advanced Materials " This project will benefit gasification technology development and deployment by improving materials to contain and monitor gasification processes." Read More...

11

Advanced Application Development Program Information  

Energy.gov (U.S. Department of Energy (DOE))

Summary of the Tranmission Reliability program's Advanced Applications Research and Development activity area. This program develops and demonstrates tools to monitor and control the grid with...

12

NETL: Advanced Research - The Advanced Research (AR) Program  

NLE Websites -- All DOE Office Websites (Extended Search)

AR Program AR Program Advanced Research The Advanced Research (AR) Program Advanced Research Program Diagram CLICK ON GRAPHIC TO ENLARGE CLICK ON GRAPHIC TO ENLARGE AR pursues projects in several key areas that are considered to be of greatest relevance and potential benefit to advanced coal and power systems. Many of AR's projects focus on "breakthrough" technologies or novel applications, striving to balance high risk against the prospect of high payoff in terms of measurable benefits to coal and power systems technologies - improved efficiencies, lower costs, new materials, and new processes. AR manages a portfolio that includes pre-commercial projects that rely on NETL's in-house facilities and depth of expertise, as well as collaborative external arrangements that draw upon diverse outside

13

Advanced technology thermal energy storage and heat exchange systems for solar applications: a survey of current research  

DOE Green Energy (OSTI)

A survey is presented of the advanced research and development projects underway in the U.S. in all of the known media and methods for storing and transferring thermal energy in solar applications. The technologies reviewed include innovative heat exchange and heat transport methods, advanced sensible heat storage in water, rocks, earth and combinations of these for both short term and annual storage, phase change materials, and reversible chemical reactions. This survey is presented in a structure of categories and subcategories of thermal energy storage and heat transfer technology. Within a given subcategory the project descriptions are listed under the name of the organizations conducting the work, arranged in alphabetical order.

Michaels, A. I.

1978-01-01T23:59:59.000Z

14

NETL: Advanced Research - Ultrasupercritical  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Materials > Ultrasupercritical High Performance Materials > Ultrasupercritical Advanced Research High Performance Materials Ultrasupercritical Increasing the temperature and pressure of steam improves the efficiency of boilers and turbines that use steam as the working fluid. These higher efficiency boilers and turbines require less coal and produce less greenhouse gases. Identifying materials that can operate for long periods of time at extreme temperatures and pressures is a major goal of NETL's Advanced Research Materials Program. Phase diagram of water Figure 1: Phase diagram of water To understand the terminology of boilers and turbines, it is first necessary to understand the basics of the water/steam phase diagram (see Figure 1). The normal boiling point (nbp) of water occurs at 1 atmosphere

15

NETL: Advanced Research - Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Materials > Chrome Oxide Refractory High Performance Materials > Chrome Oxide Refractory Advanced Research High Performance Materials Chrome Oxide Refractory One notable NETL success is the development of a chrome oxide refractory material capable of working in slagging gasifier conditions. In this project, researchers first determined that one of the major failure mechanisms for chrome oxide refractories exposed to the intense heat and corrosive environment was spalling, or the chipping or flaking of refractory material from an exposed face. They used this information to formulate a high-chrome oxide refractory composition that resists spalling, resulting in a refractory with a longer service life in the gasifier. Inside an ultrasupercritical (USC) pulverized coal power plant, materials are exposed to temperatures up to 760°C and pressures up to 5,000 psi. Operating a USC system can improve power plant efficiency up to 47% and reduce emissions. However, finding boiler and turbine materials that can hold up under extreme conditions requires new high-temperature metal alloys and ceramic coatings, as well as computational modeling research to optimize the processing of these materials. Advanced Research Materials Development program successes in this area include the following:

16

Advances in Conjugated Linoleic Acid Research, Vol 2Chapter 3 Application of Silver-Ion Chromatography to the Separation of Conjugated Linoleic Acid Isomers  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Vol 2 Chapter 3 Application of Silver-Ion Chromatography to the Separation of Conjugated Linoleic Acid Isomers Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry A5EF

17

Advanced Materials Research Highlights | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials | Research Highlights Research Highlights 1-10 of 44 Results Prev 12345 Next Topotactic valence state control in epitaxial multivalent oxides July 17, 2013 -...

18

Advanced Scientific Computing Research Jobs  

Office of Science (SC) Website

about/jobs/ Below is a list of currently about/jobs/ Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the links to the formal position announcements on USAJOBS.gov for more information. en {D1C7BEC4-D6F9-4FB7-A95E-142A6B699F6B}https://www.usajobs.gov/GetJob/ViewDetails/358465200 Computer Scientist Computer Science Research & Partnerships Division Job Title: Computer Scientist Computer Science Research & Partnerships DivisionOffice: Advanced Scientific Computing ResearchURL: USAjobs listingVacancy Number: 14-DE-SC-HQ-005Location:

19

Underwater Sensor Networks: Applications, Advances, and Challenges  

E-Print Network (OSTI)

Underwater Sensor Networks: Applications, Advances, and Challenges By John Heidemann1 , Milica- mentation of underwater wireless sensor networks. We summarize key applications and the main phenomena hardware, testbeds, and simulation tools available to the research community. Keywords: underwater

Heidemann, John

20

Systems Engineering Advancement Research Initiative  

E-Print Network (OSTI)

strategic partners Define and research fundamental concepts for advanced system engineering Contribute materials, and handbooks to inspire, inform, and guide students and practitioners VENUE SEAri is located

de Weck, Olivier L.

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Research Materials Program  

NLE Websites -- All DOE Office Websites (Extended Search)

materials requirements for all fossil energy systems, including materials for advanced power generation and coal fuels technologies. Examples of these technologies include coal...

22

Advanced Powertrain Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

95F 95F Vehicle Setup Information Vehicle architecture PHEV Test cell location Front Advanced Powertrain Research Facility Document date 10/18/2013 Vehicle dynamometer Input Revision Number 1 Test weight [lb] 3518 Notes: Target A [lb] 21.47 Target B [lb/mph] 0.21588 Target C [lb/mph^2] 0.012508 Test Fuel Information Revision Number 1 Test weight [lb] 3518 Test Fuel Information Fuel type EPA Tier II EEE HF0437 Fuel density [g/ml] 0.742 Fuel Net HV [BTU/lbm] 18475 Fuel type EPA Tier II EEE HF0437 T e s t I D [ # ] C y c l e C o l d s t a r t ( C S t ) H o t s t a r t [ H S t ] D a t e T e s t C e l l T e m p [ C ] T e s t C e l l R H [ % ] T e s t C e l l B a r o [ i n / H g ] V e h i c l e c o o l i n g f a n s p e e d : S p e e d M a t c h [ S M ] o r c o n s t a n t s p e e d [ C S ] S o l a r L a m p s [ W / m 2 ] V e i c l e C l i m a t e C o n t r o l s e t t i n g s H o o d P o s i t i o n [ U p ] o r [ C l o s e d ] W i n d o w P o s i t i o n [ C l o s e d ] o r [ D o w n ] C y

23

Advanced Nuclear Research Reactor  

SciTech Connect

This report describes technical modifications implemented by INVAP to improve the safety of the Research Reactors the company designs and builds.

Lolich, J.V.

2004-10-06T23:59:59.000Z

24

NETL: Advanced Research - Successes  

NLE Websites -- All DOE Office Websites (Extended Search)

Read More... Space Shuttle "Possible fossil energy-related applications for the EERC SiC material include its use in heat exchangers that could produce working fluids at up to...

25

NETL: Advanced Research - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

(December 2012) Advanced Research Sensors and Controls Project Portfolio PDF-22MB (May 2011) Coal and Power Systems Strategic Plan and Multi-Year Program Plan PDF-1.7MB (Jan...

26

Advanced desiccant materials research  

DOE Green Energy (OSTI)

The long-range goal of this task is to understand the role of surface phenomena in desiccant cooling materials. The background information includes a brief introduction to desiccant cooling systems (DCS) and the role of the desiccant as a system component. The purpose, background, rationale, and long-term technical approach for studying advanced desiccant materials are then treated. Experimental methods for measuring water vapor sorption by desiccants are described, and the rationale is then given for choosing a quartz crystal microbalance (QCM) for measuring sorption isotherms, rates, and cyclic stability. Background information is given about the QCM, including the quartz crystal resonator itself, the support structure for the quartz crystal, and the advantages and limitations of a QCM. The apparatus assembled and placed into operation during CY 1985 is described. The functions of the principal components of the equipment, i.e., the QCM, vacuum system, pressure gauges, residual gas analyzer, constant temperature bath, and data acquisition system, are described as they relate to the water vapor sorption measurements now under way. The criteria for narrowing the potential candidates as advanced desiccant materials for the initial studies are given. Also given is a list of 20 principal candidate materials identified based on the criteria and data available in the literature.

Czanderna, A.W.; Thomas, T.M.

1986-05-01T23:59:59.000Z

27

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2002-02-01T23:59:59.000Z

28

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2000-01-01T23:59:59.000Z

29

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2002-04-01T23:59:59.000Z

30

Advanced Reactor Research and Development Funding Opportunity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Reactor Research and Development Funding Opportunity Announcement Advanced Reactor Research and Development Funding Opportunity Announcement The U.S. Department of Energy...

31

Advanced Research Projects Agency - Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Research Projects Agency - Energy Advanced Research Projects Agency - Energy recovery act Advanced Research Projects Agency - Energy More Documents & Publications Advanced...

32

NETL: Advanced Research - HBCU/OMI Program  

NLE Websites -- All DOE Office Websites (Extended Search)

HBCU HBCU Advanced Research Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI) Program R&D Student Photo Photo courtesy of Lawrence Berkeley National Laboratory. The Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI) Program provides a mechanism for cooperative research among HBCU/OMI institutions, the private sector, and Federal agencies. The central thrust of the program is to generate fresh ideas and tap underutilized talent, define applicable fundamental scientific principles, and develop advanced concepts for generating new and improved technologies across the full spectrum of fossil energy R&D programs. HBCU/OMI Winning Projects 2013 2012 2011 2008 2007 2006 2005 2004 2003 2002 2001 2000

33

Advanced evacuated tubular concentrator research  

SciTech Connect

Previous research projects led to the conceptual development and proof-of-concept of an advanced evacuated concentrating solar collector tube. The basic idea involves the integration of a nonimaging Compound Parabolic Concentrator (CPC) inside an evacuated tube and coupled to a spectrally selective absorber. An experimental panel of these tubes achieved the highest operating efficiency at high temperatures ever measured with a non-tracking stationary solar collector. Subsequent studies have indicated that a mass-producible collector, incorporating the same concepts, can be developed which will deliver excellent performance across a broad range of temperatures, extending from about 50{degrees}C (suitable for domestic hot water and space heating) to well above 200{degrees}C (suitable for space cooling, process steam and many other end uses). Some form of advanced Integrated CPC (ICPC) remains the only simple and effective method for delivering solar thermal energy efficiently throughout the temperature range from 50{degrees}C to about 300{degrees}C without tracking. It has the potential to make practical and economical several cooling technologies which are otherwise not viable. In addition to its potential for driving cooling systems, this technology also provides a highly versatile solar source for virtually all thermal end uses including general purpose space and domestic hot water heating as well as industrial process heat. Research efforts have been directed towards designing and prototyping a manufacturable version of such a collector tube. We have been pursuing several paths. These include: (1) a small tube version, 52mm in diameter, based on the use of the T-17 commercially produced fluorescent glass tubing, which is the largest size lamp tubing produced in high volume in the United States, and (2) a large tube version, 125mm in diameter, compatible with the commercial design manufactured until recently by Corning France (the CORTEC collector).

Winston, R.; O'Gallagher, J.J.

1992-06-01T23:59:59.000Z

34

NREL: Advanced Power Electronics - Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Development Research and Development The Advanced Power Electronics activity focuses on the electric drive system for hybrid electric and fuel cell vehicles. At NREL, we research and develop electronic components and systems that will overcome major technical barriers to commercialization of hybrid, advanced internal combustion, and fuel cell vehicle technologies. Researchers focus on developing advanced power electronics and electric machinery technologies that improve reliability, efficiency, and ruggedness, and dramatically decrease systems costs for advanced vehicles. To accomplish this, the power electronics team investigates cooling and heating of advanced vehicles by looking at the thermal management of motor controllers, inverters, and traction motors with one- and two-phase cooling

35

Advanced Research Robert R. Romanosky  

E-Print Network (OSTI)

in advanced ultra supercritical (USC) coal-fired power plants. The advanced materials developed in this project are essential for construction of coal-fired boilers with advanced steam cycles involving much higher temperatures and pressures than those presently used in conventional pulverized coal (PC) power

36

Categorical Exclusion Determinations: Advanced Research Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Research Projects Advanced Research Projects Agency-Energy Categorical Exclusion Determinations: Advanced Research Projects Agency-Energy Categorical Exclusion Determinations issued by Advanced Research Projects Agency-Energy. DOCUMENTS AVAILABLE FOR DOWNLOAD June 10, 2013 CX-010529: Categorical Exclusion Determination Electroalcoholgenesis CX(s) Applied: B3.6 Date: 06/10/2013 Location(s): South Carolina, Washington Offices(s): Advanced Research Projects Agency-Energy May 23, 2013 CX-010566: Categorical Exclusion Determination Massachusetts Institute of Technology- Scalable, Self-Powered Purification Technology for Brackish and Heavy Metal Contaminated Water CX(s) Applied: B3.6 Date: 05/23/2013 Location(s): Massachusetts Offices(s): Advanced Research Projects Agency-Energy May 22, 2013

37

Advanced energy projects FY 1994 research summaries  

Science Conference Proceedings (OSTI)

The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation`s energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects.

Not Available

1994-09-01T23:59:59.000Z

38

Science & Research Highlights | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Highlights Archives: 2013 | 2012 | 2011 | 2010 Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Science and Research Highlights Animatedly Suspended X-ray Observations Animatedly Suspended X-ray Observations December 16, 2013 Researchers using the U.S. Department of Energy's Advanced Photon Source have probed the behavior of colloidal systems in which microscopic particles stay suspended in a fluid indefinitely. Their findings could have applications in new synthetic materials such as paints, coatings and adhesives, foodstuffs, pharmaceutical formulations, and cosmetics. The Fate of Bioavailable Iron in Antarctic Coastal Seas The Fate of Bioavailable Iron in Antarctic Coastal Seas

39

INEEL Advanced Radiotherapy Research Program Annual Report 2001  

SciTech Connect

This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications.

Venhuizen, James Robert

2002-04-01T23:59:59.000Z

40

INEEL Advanced Radiotherapy Research Program Annual Report 2001  

SciTech Connect

This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications.

Venhuizen, James R.

2002-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NREL: Hydrogen and Fuel Cells Research - Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials The Advanced Materials group within NREL's Materials and Computational Sciences Center develops novel and optimized materials for energy-related applications that include sorption-based hydrogen storage, fuel cells, catalysts, photovoltaics, batteries, electrochromics, electronics, sensors, electricity conduction, and thermal management. These R&D efforts use first-principle models combined with state-of-the-art synthetic and characterization techniques to rationally design and construct advanced materials with new and improved properties. In addition to creating specific material properties tailored for the application of interest by understanding the underlying chemical and physical mechanisms involved, the research focuses on developing materials

42

NREL: Wind Research - Advanced Research Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Turbines Two 440 foot meteorological towers are upwind of two research wind turbines. Two 600-kW Westinghouse turbines at the NWTC are used to test new control...

43

NETL: Advanced Research - Educational Initiatives  

NLE Websites -- All DOE Office Websites (Extended Search)

recognizes and promotes the important research conducted in our Nation's institutions of higher education. The academic environment is well-suited to fundamental research that may...

44

Advanced materials research areas | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Theory and Simulation Energy Frontier Research Centers Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and...

45

University Advanced Coal Generation Research  

Science Conference Proceedings (OSTI)

In 2012, the Electric Power Research Institute (EPRI) was a sponsor of projects conducted under the auspices of two consortia that support university research for coal-based power generation: the Biomass and Fossil Fuel Research Alliance (BF2RA) in the United Kingdom and the University Turbine System Research (UTSR) program of the United States Department of Energy (DOE). This technical update report describes the progress made in both of those ...

2012-12-12T23:59:59.000Z

46

Advanced Research Robert R. Romanosky  

E-Print Network (OSTI)

Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4132 heino.beckert@netl.doe.gov Coal advanced, cost-effective mercury control technologies for coal-fired power plants. Anticipating new Federal (ORNL) have investigated bioleaching of mercury (Hg) from coal by using iron and sulfur

47

Advanced Research: Innovation Leading to Successes  

NLE Websites -- All DOE Office Websites (Extended Search)

Research: Innovation Leading to Research: Innovation Leading to Successes Exploring the "Grand Challenges" of Fossil Fuels December 2010 3 Exploring the "Grand Challenges" of Fossil Fuels NETL Advanced Research The Advanced Research (AR) Program within the Office of Coal and Power Systems of the National Energy Technology Laboratory (NETL), the research arm of the U.S. Department of Energy's Office of Fossil Energy (DOE/FE), fosters the development of innovative, cost-effective technologies for improving the efficiency, reliability, and environmental performance of advanced coal and power systems. In addition, AR bridges the gap between fundamental research into technology alternatives and applied research aimed at scale-up, deployment, and commercialization of the most promising technologies identified.

48

NETL: Advanced Research - Sensors & Controls Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors & Controls Sensors & Controls Advanced Research Sensors & Controls Innovations OSU's O2 Sensor Ohio State University's reference-free potentiometric oxygen sensor capable of withstanding temperatures of 800 °C. Novel Sensors and Advanced Process Control Novel Sensors and Advanced Process Control are key enabling technologies for advanced near zero emission power systems. NETL's Advanced Research Program is leading the effort to develop sensing and control technologies and methods to achieve seamless, integrated, automated, optimized, and intelligent power systems. Today, the performance of advanced power systems is limited by the lack of sensors and controls capable of withstanding high temperature and pressure conditions. Harsh environments are inherent to new systems that aim to

49

Barbara Helland Advanced Scientific Computing Research NERSC...  

NLE Websites -- All DOE Office Websites (Extended Search)

7-28, 2012 Barbara Helland Advanced Scientific Computing Research NERSC-HEP Requirements Review 1 Science C ase S tudies d rive d iscussions Program R equirements R eviews ...

50

Advanced fuel concepts and applications  

DOE Green Energy (OSTI)

Despite their more stringent plasma heating and confinement requirements, advanced fuel (AF) fusion cycles potentially offer improved environmental compatibility and lower costs. This comes about by elimination of tritium breeding requirements and by a reduction in neutron flux (hence, activation and radiation damage). Also a larger energy fraction carried by charged particles makes direct energy conversion more suitable. As a first application, a symbiotic system of semi-catalyzed-deuterium fueled hybrid fuel factories, supplying both fissle fuel to light water reactors and /sup 3/He to D-/sup 3/He satellite fusion reactors, is proposed. Subsequently, an evolution into a system of synfuel factories with satellite D-/sup 3/He reactors is envisioned.

Miley, G.H.

1981-01-01T23:59:59.000Z

51

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect

The activities of the AGTSR Program during this reporting period are described in this quarterly report. The report text is divided into discussions on Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are highlighted below with additional detail following in the text of the report.

Unknown

1999-10-01T23:59:59.000Z

52

Categorical Exclusion Determinations: Advanced Research Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 14, 2010 August 14, 2010 CX-004957: Categorical Exclusion Determination General Compression, Inc. -Fuel-Free, Ubiquitous, Compressed Air Energy Storage CX(s) Applied: B3.6 Date: 08/14/2010 Location(s): Watertown, Massachusetts Office(s): Advanced Research Projects Agency - Energy August 14, 2010 CX-004953: Categorical Exclusion Determination Fluidic Inc. -Enhanced Metal-Air Energy Storage System CX(s) Applied: B3.6 Date: 08/14/2010 Location(s): Scottsdale, Arizona Office(s): Advanced Research Projects Agency - Energy August 14, 2010 CX-004941: Categorical Exclusion Determination Makani Power, Inc. - Advanced Wind Turbine CX(s) Applied: B3.6 Date: 08/14/2010 Location(s): Alameda, California Office(s): Advanced Research Projects Agency - Energy August 13, 2010 CX-004925: Categorical Exclusion Determination

53

Advancing Manufacturing Research Through Competitions  

SciTech Connect

Competitions provide a technique for building interest and collaboration in targeted research areas. This paper will present a new competition that aims to increase collaboration amongst Universities, automation end-users, and automation manufacturers through a virtual competition. The virtual nature of the competition allows for reduced infrastructure requirements while maintaining realism in both the robotic equipment deployed and the scenarios. Details of the virtual environment as well as the competitions objectives, rules, and scoring metrics will be presented.

Balakirsky, Stephen [National Institute of Standards and Technology (NIST); Madhavan, Raj [ORNL

2009-01-01T23:59:59.000Z

54

High speed drilling research advances  

Science Conference Proceedings (OSTI)

This article reports that the Amoco Production Company's Tulsa Research Center is developing a High Speed Drilling System (HSDS) to improve drilling economics for both exploration and development wells. The system is targeted for areas where historically the drilling rate is less than 25 ft/hr over a large section of hole. Designed as a five-year development program, work began on the system in late 1984. A major service company is participating in the project. The objective of the HSDS project is to improve drilling efficiency by developing improvements in the basic mechanical drilling system. The HSDS approach to improved drilling economics is via the traditional routes of increasing penetration rate (ROP) and bit life, increasing hole stability and reducing trouble time.

Warren, T.M.; Canson, B.E.

1987-03-01T23:59:59.000Z

55

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2000-10-01T23:59:59.000Z

56

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2004-04-01T23:59:59.000Z

57

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL. As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2001-07-01T23:59:59.000Z

58

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2002-07-01T23:59:59.000Z

59

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in the quarterly report. As this program administers research, we have included all program activity herein within the past quarter dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL. As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2000-05-01T23:59:59.000Z

60

Changes related to "Biofuel Advanced Research and Development...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Biofuel Advanced Research and Development LLC BARD" Biofuel Advanced Research and...

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Pages that link to "Biofuel Advanced Research and Development...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Biofuel Advanced Research and Development LLC BARD" Biofuel Advanced Research and...

62

2013 Annual Planning Summary for the Advanced Research Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Annual Planning Summary for the Advanced Research Projects Agency - Energy 2013 Annual Planning Summary for the Advanced Research Projects Agency - Energy 2013 Annual Planning...

63

Advanced Research Projects Agency - Energy Program Specific Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Research Projects Agency - Energy Program Specific Recovery Plan Advanced Research Projects Agency - Energy Program Specific Recovery Plan Microsoft Word - 44F1801D.doc...

64

Categorical Exclusion Determinations: Advanced Research Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 18, 2012 October 18, 2012 CX-009518: Categorical Exclusion Determination (0674-1585) Xilectric, Inc. - Low Cost Transportation Batteries CX(s) Applied: B3.6 Date: 10/18/2012 Location(s): Rhode Island, New York Offices(s): Advanced Research Projects Agency-Energy September 27, 2012 CX-010530: Categorical Exclusion Determination Electro-Autotrophic Synthesis of Higher Alcohols CX(s) Applied: B3.6 Date: 09/27/2012 Location(s): California, North Carolina, North Carolina Offices(s): Advanced Research Projects Agency-Energy September 19, 2012 CX-009902: Categorical Exclusion Determination Agrivida - Conditionally Activated Enzymes Expressed in Cellulosic Energy Crops CX(s) Applied: B3.6 Date: 09/19/2012 Location(s): Massachusetts, Connecticut Offices(s): Advanced Research Projects Agency-Energy

65

Categorical Exclusion Determinations: Advanced Research Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 18, 2009 December 18, 2009 CX-000850: Categorical Exclusion Determination 25A4274 - Energy Efficient Capture of Carbon Dioxide from Coal Flue Gas CX(s) Applied: B3.6 Date: 12/18/2009 Location(s): Illinois Office(s): Advanced Research Projects Agency - Energy December 18, 2009 CX-000841: Categorical Exclusion Determination 25A1381 - Affordable Energy from Water and Sunlight CX(s) Applied: B3.6 Date: 12/18/2009 Location(s): Massachusetts Office(s): Advanced Research Projects Agency - Energy December 18, 2009 CX-000585: Categorical Exclusion Determination 25A1152 - 1366 Direct Wafer: Enabling Terawatt Photovoltaics CX(s) Applied: B3.6 Date: 12/18/2009 Location(s): Massachusetts Office(s): Advanced Research Projects Agency - Energy December 18, 2009 CX-009901: Categorical Exclusion Determination

66

ALS Ceramics Materials Research Advances Engine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C. Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals

67

ALS Ceramics Materials Research Advances Engine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 LBNL senior materials scientist and UC Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals and composites, Ritchie has illuminated groundbreaking cracking patterns and the underlying mechanistic processes using the x-ray synchrotron micro-tomography at ALS Beamline 8.3.2. Summary Slide ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter.

68

ALS Ceramics Materials Research Advances Engine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C. Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals

69

Advanced Turbine Systems Program and coal applications  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) is conducting a program to develop ultra high-efficiency, cost-effective, environmentally benign gas turbine systems for industrial and utility applications. The Advanced Turbine Systems (ATS) Program, jointly managed by the DOE's Office of Fossil Energy (DOE/FE) and Office of Conservation and Renewable Energy (DOE/CE), will lead to the commercial offering by industry of systems meeting full program goals by the years 2000--2002. It is expected that some advanced technology will already have been commercialized in intermediate systems before that time. Teams, led by US turbine manufacturers, will conduct most of the development work in the ATS Program. However, a substantial technology base element of the program see universities and others conduct significant research and development (R D) on generic technology issues relevant to the program. The program is primarily aimed at developing natural gas-fired turbine systems. Although the conversion of ATS to firing with coal or biomass fuels will be addressed in the analysis of ATS, tests will not be conducted in the program to verify conversion to alternate fuel firing. The program will however, include work to transfer advanced technology to the coal- and biomass-fueled systems being developed in other DOE programs.

Webb, H.A. Jr.; Bajura, R.A.; Parsons, E.L. Jr.

1993-01-01T23:59:59.000Z

70

Advanced Turbine Systems Program and coal applications  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) is conducting a program to develop ultra high-efficiency, cost-effective, environmentally benign gas turbine systems for industrial and utility applications. The Advanced Turbine Systems (ATS) Program, jointly managed by the DOE`s Office of Fossil Energy (DOE/FE) and Office of Conservation and Renewable Energy (DOE/CE), will lead to the commercial offering by industry of systems meeting full program goals by the years 2000--2002. It is expected that some advanced technology will already have been commercialized in intermediate systems before that time. Teams, led by US turbine manufacturers, will conduct most of the development work in the ATS Program. However, a substantial technology base element of the program see universities and others conduct significant research and development (R&D) on generic technology issues relevant to the program. The program is primarily aimed at developing natural gas-fired turbine systems. Although the conversion of ATS to firing with coal or biomass fuels will be addressed in the analysis of ATS, tests will not be conducted in the program to verify conversion to alternate fuel firing. The program will however, include work to transfer advanced technology to the coal- and biomass-fueled systems being developed in other DOE programs.

Webb, H.A. Jr.; Bajura, R.A.; Parsons, E.L. Jr.

1993-06-01T23:59:59.000Z

71

NETL: Advanced Research - Computation Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Energy Sciences > APECS Computational Energy Sciences > APECS Advanced Research Computational Energy Sciences APECS APECS Virtual Plant APECS (Advanced Process Engineering Co-Simulator) is the first simulation software to combine the disciplines of process simulation and computational fluid dynamics (CFD). This unique combination makes it possible for engineers to create "virtual plants" and to follow complex thermal and fluid flow phenomena from unit to unit across the plant. Advanced visualization software tools aid in analysis and optimization of the entire plant's performance. This tool can significantly reduce the cost of power plant design and optimization with an emphasis on multiphase flows critical to advanced power cycles. A government-industry-university collaboration (including DOE, NETL, Ansys/

72

Proposed research on advanced accelerator concepts  

Science Conference Proceedings (OSTI)

This report summarizes technical progress and accomplishments during the proposed three-year research on advanced accelerator concepts supported by the Department of Energy under Contract No. DE-FG02-88ER40465. A vigorous theoretical program has been pursued in critical problem areas related to advanced accelerator concepts and the basic equilibrium, stability, and radiation properties of intense charged particle beams. Broadly speaking, our research has made significant contributions in the following three major areas: Investigations of physics issues related to particle acceleration including two-beam accelerators and cyclotron resonance laser (CRL) accelerators; Investigations of RF sources including the free- electron lasers, cyclotron resonance masers, and relativistic magnetrons; Studies of coherent structures in electron plasmas and beams ranging from a low-density, nonrelativistic, pure electron plasma column to high-density, relativistic, non-neutral electron flow in a high-voltage diode. The remainder of this report presents theoretical and computational advances in these areas.

Davidson, R.C.; Wurtele, J.S.

1991-09-01T23:59:59.000Z

73

Alternative Fuels Data Center: Advanced Energy Research Project Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Energy Advanced Energy Research Project Grants to someone by E-mail Share Alternative Fuels Data Center: Advanced Energy Research Project Grants on Facebook Tweet about Alternative Fuels Data Center: Advanced Energy Research Project Grants on Twitter Bookmark Alternative Fuels Data Center: Advanced Energy Research Project Grants on Google Bookmark Alternative Fuels Data Center: Advanced Energy Research Project Grants on Delicious Rank Alternative Fuels Data Center: Advanced Energy Research Project Grants on Digg Find More places to share Alternative Fuels Data Center: Advanced Energy Research Project Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Energy Research Project Grants The Advanced Research Projects Agency - Energy (ARPA-E) was established

74

Application of Robust Design and Advanced Computer Aided Engineering Technologies: Cooperative Research and Development Final Report, CRADA Number CRD-04-143  

SciTech Connect

Oshkosh Corporation (OSK) is taking an aggressive approach to implementing advanced technologies, including hybrid electric vehicle (HEV) technology, throughout their commercial and military product lines. These technologies have important implications for OSK's commercial and military customers, including fleet fuel efficiency, quiet operational modes, additional on-board electric capabilities, and lower thermal signature operation. However, technical challenges exist with selecting the optimal HEV components and design to work within the performance and packaging constraints of specific vehicle applications. SK desires to use unique expertise developed at the Department of Energy?s (DOE) National Renewable Energy Laboratory (NREL), including HEV modeling and simulation. These tools will be used to overcome technical hurdles to implementing advanced heavy vehicle technology that meet performance requirements while improving fuel efficiency.

Thornton, M.

2013-06-01T23:59:59.000Z

75

Categorical Exclusion Determinations: Advanced Research Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 21, 2011 November 21, 2011 CX-007697: Categorical Exclusion Determination Autogrid, Inc. - Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation CX(s) Applied: A9, B1.7 Date: 11/21/2011 Location(s): New York, California Offices(s): Advanced Research Projects Agency-Energy November 18, 2011 CX-007689: Categorical Exclusion Determination Georgia Tech Research Corporation- Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Internetworks CX(s) Applied: A9 Date: 11/18/2011 Location(s): Georgia Offices(s): Advanced Research Projects Agency-Energy November 18, 2011 CX-007684: Categorical Exclusion Determination Texas Engineering Experiment Station - Robust Adaptive Topology Control

76

Categorical Exclusion Determinations: Advanced Research Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 2, 2010 June 2, 2010 CX-003144: Categorical Exclusion Determination ATK - A High Efficiency Inertial Carbon Dioxide Extraction System CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): New York Office(s): Advanced Research Projects Agency - Energy June 2, 2010 CX-003132: Categorical Exclusion Determination Georgia Institute of Technology Research Corporation - Metal Organic Frameworks in Hollow Fiber Membranes for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): Georgia Office(s): Advanced Research Projects Agency - Energy June 2, 2010 CX-003131: Categorical Exclusion Determination Lawrence Berkeley National Laboratory & Wildcat Disc. Technology - High Throughput Tools to Screen New Metal Organic Framework Materials CX(s) Applied: B3.6 Date: 06/02/2010

77

Definition: Advanced Transmission Applications | Open Energy Information  

Open Energy Info (EERE)

Applications Applications Jump to: navigation, search Dictionary.png Advanced Transmission Applications Software that utilizes synchrophasor information for real-time grid operations or planning and off-line analysis. These applications are aimed at providing wide-area situational awareness, grid monitoring, and detailed power system analysis and the improvement or validation of power system models.[1] Related Terms smart grid References ↑ https://www.smartgrid.gov/category/technology/advanced_transmission_applications [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitionssustainability, |Template:BASEPAGENAME]]sustainability, Retrieved from "http://en.openei.org/w/index.php?title=Definition:Advanced_Transmission_Applications&oldid=502495

78

Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Ethanol Fuel Advanced Ethanol Fuel Blend Research Grants to someone by E-mail Share Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Facebook Tweet about Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Twitter Bookmark Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Google Bookmark Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Delicious Rank Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Digg Find More places to share Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Ethanol Fuel Blend Research Grants

79

Categorical Exclusion Determinations: Advanced Research Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 25, 2012 July 25, 2012 CX-008873: Categorical Exclusion Determination Oregon State University- Natural Gas Self-contained Home Filling Station CX(s) Applied: B3.6 Date: 07/25/2012 Location(s): Oregon, Colorado, Michigan Offices(s): Advanced Research Projects Agency-Energy April 17, 2012 CX-008671: Categorical Exclusion Determination Arizona State University - Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels - Phase II CX(s) Applied: A9, B3.6 Date: 04/17/2012 Location(s): Arizona, Arizona, Arizona, Minnesota, North Carolina Offices(s): Advanced Research Projects Agency-Energy February 17, 2012 CX-007812: Categorical Exclusion Determination Smart Wire Grid, Inc. - Distributed Power Flow Control Using Smart Wires for Energy Routing CX(s) Applied: A9, B1.7, B3.6

80

Ford Escape Advanced Research Vehicle Report Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Research Vehicle Advanced Research Vehicle Report Notes 1 "Overall AC electrical energy consumption (AC Wh/mi)" is based on AC electricity consumed during charging events which began during the reporting period and distance driven during all trips in the reporting period. 2 "Overall DC electrical energy consumption (DC Wh/mi)" is based on net DC electricity discharged from or charged to the plug-in battery pack and distance driven during all trips in the reporting period. DC Wh/mi may not be comparable to AC Wh/mi if AC electricity charged prior to the reporting period was discharged during driving within the reporting period, or if AC electricity charged during the reporting period was not discharged during driving within the reporting period.

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NREL: Vehicles and Fuels Research - Advanced Combustion and Fuels...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Combustion and Fuels Projects NREL's advanced combustion and fuels projects bridge fundamental chemical kinetics and engine research to investigate how new vehicle fuels...

82

A Vortex Relocation Scheme for Tropical Cyclone Initialization in Advanced Research WRF  

Science Conference Proceedings (OSTI)

This paper introduces a relocation scheme for tropical cyclone (TC) initialization in the Advanced Research Weather Research and Forecasting (ARW-WRF) model and demonstrates its application to 70 forecasts of Typhoons Sinlaku (2008), Jangmi (2008)...

Ling-Feng Hsiao; Chi-Sann Liou; Tien-Chiang Yeh; Yong-Run Guo; Der-Song Chen; Kang-Ning Huang; Chuen-Teyr Terng; Jen-Her Chen

2010-08-01T23:59:59.000Z

83

Advanced research in solar-energy storage  

DOE Green Energy (OSTI)

The Solar Energy Storage Program at the Solar Energy Research Institute is reviewed. The program provides research, systems analyses, and economic assessments of thermal and thermochemical energy storage and transport. Current activities include experimental research into very high temperature (above 800/sup 0/C) thermal energy storage and assessment of novel thermochemical energy storage and transport systems. The applications for such high-temperature storage are thermochemical processes, solar thermal-electric power generation, cogeneration of heat and electricity, industrial process heat, and thermally regenerative electrochemical systems. The research results for five high-temperature thermal energy storage technologies and two thermochemical systems are described.

Luft, W.

1983-01-01T23:59:59.000Z

84

Center for Advanced Gas Turbine Systems Research  

SciTech Connect

An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

Golan, L.P.

1992-12-31T23:59:59.000Z

85

Center for Advanced Gas Turbine Systems Research  

SciTech Connect

An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

Golan, L.P.

1992-01-01T23:59:59.000Z

86

Mapping Applications to Advanced Metering Infrastructure Capabilities  

Science Conference Proceedings (OSTI)

There is a clear need in the industry to understand the applications in which advanced metering infrastructure (AMI) systems and data can be used. This white paper series will investigate how utilities that have implemented AMI systems are actually using these systems. This first white paper in the series will determine the broad range of potential applications of AMI systems and data. The next paper will identify the applications currently being used by utilities that have fully implemented AMI ...

2013-08-31T23:59:59.000Z

87

NETL: Advanced Research - Computation Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Energy Sciences Computational Energy Sciences Advanced Research Computational Energy Sciences Virtual Plant Simulating the complex processes occurring inside a coal gasifier, or across an entire chemical or power plant, is an incredible tool made possible by today's supercomputers and advanced simulation software. The Computational Energy Sciences (CES) Focus Area provides such tools to the Fossil Energy program at NETL. The goal is to help scientists and engineers to better understand the fundamental steps in a complex process so they can optimize the design of the equipment needed to run it. Not only is this less costly than performing a long series of experiments under varying conditions to try to isolate important variables, but it also provides more information than such experiments can provide. Of course, the data is

88

Nanoscale Advances in Catalysis and Energy Applications  

SciTech Connect

In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

Li, Yimin; Somorjai, Gabor A.

2010-05-12T23:59:59.000Z

89

Advances in Conjugated Linoleic Acid Research, Vol 2  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Volume 2, is the second book in a series devoted entirely to conjugated linoleic acid. Advances in Conjugated Linoleic Acid Research, Vol 2 Health Nutrition Biochemistry Hardback Books Health - Nutrition

90

Research Advances Cellulosic Ethanol, NREL Leads the Way (Brochure)  

DOE Green Energy (OSTI)

This brochure highlights NREL's recent advances in cellulosic ethanol production. Research at NREL addresses both biochemical and thermochemical processes.

Not Available

2007-03-01T23:59:59.000Z

91

Materials research to advance fossil energy technologies at the NETL  

Science Conference Proceedings (OSTI)

A brief overview of materials research being carried out by the National Energy Technology Laboratory to advance fossil energy technologies.

Powell, C.A.

2006-10-18T23:59:59.000Z

92

Sterile Neutrino Search Using China Advanced Research Reactor  

E-Print Network (OSTI)

We study the feasibility of a sterile neutrino search at the China Advanced Research Reactor by measuring $\\bar {\

Guo, Gang; Ji, Xiangdong; Liu, Jianglai; Xi, Zhaoxu; Zhang, Huanqiao

2013-01-01T23:59:59.000Z

93

Cooperative Research and Development for Advanced Materials in Advanced Industrial Gas Turbines Final Technical Report  

SciTech Connect

Evaluation of the performance of innovative thermal barrier coating systems for applications at high temperatures in advanced industrical gas turbines.

Ramesh Subramanian

2006-04-19T23:59:59.000Z

94

NETL: Advanced Research - Coal Utilization Sciences/Sensors ...  

NLE Websites -- All DOE Office Websites (Extended Search)

of pulverized coal with laser diagnostics. NETL's Advanced Research Coal Utilization Science (CUS) Program is a crosscutting research and development effort whose goal is to...

95

A presentation by the Advanced Research Projects Agency - Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agency - Energy (ARPA-E) on Research Opportunities with the DOE for Historically Black Colleges and Universities A presentation by the Advanced Research Projects Agency -...

96

Advanced Virtual Energy Simulation Training And Research (AVESTAR...  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifier Optimization and Plant Supporting Systems Advanced Virtual Energy Simulation Training And Research (AVESTAR(tm)) Facility NETL Office of Research and Development Project...

97

Polymers as advanced materials for desiccant applications  

DOE Green Energy (OSTI)

This research is concerned with solid materials used as desiccants for desiccant cooling systems (DCSs) that process water vapor in an atmosphere to produce cooling. Background information includes an introduction to DCSs and the role of the desiccant as a system component. The water vapor sorption performance criteria used for screening the modified polymers prepared include the water sorption capacity from 5% to 80% relative humidity (R.H.), isotherm shape, and rate of adsorption and desorption. Measurements are presented for the sorption performance of modified polymeric advanced desiccant materials with the quartz crystal microbalance. Isotherms of polystyrene sulfonic acid (PSSA) taken over a 5-month period show that the material has a dramatic loss in capacity and that the isotherm shape is time dependent. The adsorption and desorption kinetics for PSSA and all the ionic salts of it studied are easily fast enough for commercial DCS applications with a wheel rotation speed of 6 min per revolution. Future activities for the project are addressed, and a 5-year summary of the project is included as Appendix A. 34 refs., 20 figs., 3 tabs.

Czanderna, A.W.

1990-12-01T23:59:59.000Z

98

REVISED NOTICE OF PROPOSED AWARDS Advanced Natural Gas Engine Research and Development for Class 3  

E-Print Network (OSTI)

REVISED NOTICE OF PROPOSED AWARDS Advanced Natural Gas Engine Research and Development for Class 3 Notice (PON-12-504) entitled "Advanced Natural Gas Engine research and Development for Class 3 through of natural gas engine concepts for application in light heavy-duty vehicles (LHDV) and medium heavy duty

99

COMBUSTION SYNTHESIS OF ADVANCED MATERIALS: PRINCIPLESAND APPLICATIONS  

E-Print Network (OSTI)

COMBUSTION SYNTHESIS OF ADVANCED MATERIALS: PRINCIPLESAND APPLICATIONS Arvind Varma, Alexander S. Gasless Combustion SynthesisFrom Elements B. Combustion Synthesis in Gas-Solid Systems C. Products of Thermite-vpe SHS D. Commercial Aspects IV. Theoretical Considerations A. Combustion Wave Propagation Theory

Mukasyan, Alexander

100

Houston Advanced Research Center HARC | Open Energy Information  

Open Energy Info (EERE)

Houston Advanced Research Center HARC Houston Advanced Research Center HARC Jump to: navigation, search Name Houston Advanced Research Center (HARC) Place The Woodlands, Texas Zip 77381 Product HARC cooperates with universities, industry and governmental agencies to address complex and pressing issues relating to how people interact with ecosystems on a regional scale. References Houston Advanced Research Center (HARC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Houston Advanced Research Center (HARC) is a company located in The Woodlands, Texas . References ↑ "Houston Advanced Research Center (HARC)" Retrieved from "http://en.openei.org/w/index.php?title=Houston_Advanced_Research_Center_HARC&oldid=346615"

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NETL: Advanced Research - Computation Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

MFIX MFIX Advanced Research Computational Energy Sciences MFIX MFIX (Multiphase Flow with Interphase eXchanges) is a general-purpose computer code developed at the National Energy Technology Laboratory (NETL) for describing the hydrodynamics, heat transfer and chemical reactions in fluid-solids systems. It has been used for describing bubbling and circulating fluidized beds and spouted beds. MFIX calculations give transient data on the three-dimensional distribution of pressure, velocity, temperature, and species mass fractions. MFIX code is based on a generally accepted set of multiphase flow equations. The code is used as a "test-stand" for testing and developing multiphase flow constitutive equations. MFIX Virtual Plant Consider a fluidized bed coal gasification reactor, in which pulverized

102

Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research  

SciTech Connect

Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

1992-01-01T23:59:59.000Z

103

Seven Projects Aimed at Advancing Coal Research Selected for DOE's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seven Projects Aimed at Advancing Coal Research Selected for DOE's Seven Projects Aimed at Advancing Coal Research Selected for DOE's University Coal Research Program Seven Projects Aimed at Advancing Coal Research Selected for DOE's University Coal Research Program May 13, 2010 - 1:00pm Addthis Washington, DC -- Seven projects aimed at advancing coal research and development while providing research exposure to a new generation of scientists and engineers have been selected to participate in the U.S. Department of Energy's (DOE) University Coal Research (UCR) program. The projects aim to improve the basic understanding of the chemical and physical processes that govern coal conversion and utilization, by-product utilization, and technological development for advanced energy systems. These advanced systems -- efficient, ultra-clean energy plants -- are

104

EERE Postdoctoral Research Awards: Application Components  

NLE Websites -- All DOE Office Websites (Extended Search)

Application Components to someone by E-mail Share EERE Postdoctoral Research Awards: Application Components on Facebook Tweet about EERE Postdoctoral Research Awards: Application...

105

Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research  

SciTech Connect

Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

Speight, J.G.

1992-01-01T23:59:59.000Z

106

Communication services for advanced network applications.  

SciTech Connect

Advanced network applications such as remote instrument control, collaborative environments, and remote I/O are distinguished by traditional applications such as videoconferencing by their need to create multiple, heterogeneous flows with different characteristics. For example, a single application may require remote I/O for raw datasets, shared controls for a collaborative analysis system, streaming video for image rendering data, and audio for collaboration. Furthermore, each flow can have different requirements in terms of reliability, network quality of service, security, etc. They argue that new approaches to communication services, protocols, and network architecture are required both to provide high-level abstractions for common flow types and to support user-level management of flow creation and quality. They describe experiences with the development of such applications and communication services.

Bresnahan, J.; Foster, I.; Insley, J.; Toonen, B.; Tuecke, S.

1999-06-10T23:59:59.000Z

107

Advanced Powertrain Research Facility Document Date  

NLE Websites -- All DOE Office Websites (Extended Search)

10/18/2013 10/18/2013 Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional Vehicle Dynamometer Input 2013 Volkswagen Jetta TDI Test Cell Location Front Advanced Powertrain Research Facility Document Date 10/18/2013 Revision Number 1 Vehicle Dynamometer Input Test weight [lb] 3516 Test Fuel Information Revision Number 1 Notes: Test weight [lb] Target A [lb] 3516 30.1456 Target B [lb/mph] Target C [lb/mph^2] 0.37653 0.015662 Test Fuel Information Fuel type 2007 Certification Diesel HF0583 Fuel density [g/ml] Fuel Net HV [BTU/lbm] 0.855 18355 Fuel type 2007 Certification Diesel HF0583 T e s t I D [ # ] C y c l e C o l d s t a r t ( C S t ) H o t s t a r t [ H S t ] D a t e T e s t C e l l T e m p [ C ] T e s t C e l l R H [ % ] T e s t C e l l B a r o [ i n / H g ] V e h i c l e c o o l i n g f a n s p e e d : S p e e d M a t

108

Advanced Powertrain Research Facility Document Date  

NLE Websites -- All DOE Office Websites (Extended Search)

7/30/2013 7/30/2013 Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Alt Fuel- CNG Vehicle Dynamometer Input 2012 Honda Civic GX Test Cell Location Front Advanced Powertrain Research Facility Document Date 7/30/2013 Revision Number 1 Vehicle Dynamometer Input Test weight [lb] 3192 Test Fuel Information MPGe derived by EPA calculation methods Revision Number 1 Notes: Test weight [lb] Target A [lb] 3192 22.2037 Target B [lb/mph] Target C [lb/mph^2] 0.45855 0.01263 Test Fuel Information MPGe derived by EPA calculation methods Fuel type Compressed Natural Gas (CNG) MPGe derived by EPA calculation methods Fuel density [g/ml] Fuel Net HV [BTU/lbm] 0.5872 905.3 Fuel type Compressed Natural Gas (CNG) T e s t I D [ # ] C y c l e C o l d s t a r t ( C S t ) H o t s t a r t

109

Advances in Conjugated Linoleic Acid Research, Volume 3  

Science Conference Proceedings (OSTI)

The number of peer reviewed publications on CLA since the 2003 publication of Advances in Conjugated Linoleic Acid Research, Volume 2, has more than doubled. ...

110

Basic Research Needs for Advanced Nuclear Energy Systems - TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems. Summarizes current status...

111

Medical Applications of Non-Medical Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications Applications Medical Applications of Non of Non - - Medical Research Medical Research Applications Derived from Applications Derived from BES BES - - Supported Research Supported Research and Research at BES Facilities and Research at BES Facilities Office of Basic Energy Sciences Office of Energy Research * U.S. Department of Energy July 1998 i Table of Contents The Office of Basic Energy Sciences ..............................................................................................1 1. DISEASE DIAGNOSIS.............................................................................................................1 Thin-Film Lithium Batteries for Biomedical Applications (ORNL)......................................1 Positron Emission Tomography (BNL)

112

Biofuel Advanced Research and Development LLC BARD | Open Energy  

Open Energy Info (EERE)

Research and Development LLC BARD Research and Development LLC BARD Jump to: navigation, search Name Biofuel Advanced Research and Development LLC (BARD) Place Philadelphia, Pennsylvania Zip 19124 Sector Biofuels Product Pennsylvania-based biofuels startup company that aims to produce soy biodiesel initially but plans to transition to algae-oil based fuels in 2010. References Biofuel Advanced Research and Development LLC (BARD)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Biofuel Advanced Research and Development LLC (BARD) is a company located in Philadelphia, Pennsylvania . References ↑ "Biofuel Advanced Research and Development LLC (BARD)" Retrieved from "http://en.openei.org/w/index.php?title=Biofuel_Advanced_Research_and_Development_LLC_BARD&oldid=342811

113

NIST Creates Center for Advanced Materials Research  

Science Conference Proceedings (OSTI)

Jun 25, 2013 ... The planned center, which NIST expects to fund at approximately $25 million ... and data and informatics tools related to advanced materials.

114

Categorical Exclusion Determinations: Advanced Research Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Halotechnics Inc. - Advanced Molten Glass for Heat Transfer and Thermal Energy Storage CX(s) Applied: A9, B3.6 Date: 11182011...

115

INTRODUCTION The U.S. Department of Energy's (DOE) Office of Advanced Automotive Technologies conducts research  

E-Print Network (OSTI)

conducts research and development on advanced rechargeable batteries for application in electric vehicles (EVs) and hybrid electric vehicle (HEV) systems. Problems impeding the development of high), which develops advanced batteries for EVs, and the Partnership for a New Generation of Vehicles (PNGV

Kwak, Juhyoun

116

Research Opportunities in Advanced Aerospace Concepts  

Science Conference Proceedings (OSTI)

This report is a review of a team effort that focuses on advanced aerospace concepts of the 21st Century. The paper emphasis advanced technologies, rather than cataloging every unusual aircraft that has ever been attempted. To dispel the myth that "aerodynamics ...

Jones Gregory S.; Bangert Linda S.; Garber Donald P.; Huebner Lawrence D.; Jr Robert E. McKinley; Sutton Kenneth; Jr Roy C. Swanson; Weinstein Leonard M.

2000-12-01T23:59:59.000Z

117

Advanced research workshop: nuclear materials safety  

SciTech Connect

The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of nuclear experience on a common objectivethe safe and secure storage and disposition of excess fissile nuclear materials.

Jardine, L J; Moshkov, M M

1999-01-28T23:59:59.000Z

118

Advanced Lighting Technologies Application Guidelines: 1990  

SciTech Connect

The Advanced Lighting Technologies Application Guidelines document consists of eight guidelines that provide an overview of specific lighting technologies and design application techniques utilizing energy-efficient lighting products. Lighting Design Practice assesses energy-efficient lighting strategies and explains how to obtain quality lighting design and consulting services. Luminaries and Lighting Systems surveys advanced lighting fixture products designed to take advantage of current energy-efficient lamp technologies and includes luminaire tables to allow users to collect photometric performance characteristics for common commercial luminaires. Each of the remaining six guidelines -- Computer-Aided Lighting Design, Energy-efficient and Electronic Ballasts, Full-Size Fluorescent Lamps, Compact Fluorescent Lamps, Conventional Shape Tungsten-Halogen Lamps, and Compact Metal Halide and White High Pressure Sodium Lamps -- includes a technology overview section, a description of current products available on the market, and an applications section. The document is intended for use by electric utility personnel involved in lighting programs, lighting designers, electrical engineers, architects, lighting manufacturers' representatives, and other lighting professionals.

Eley, C. (Eley (Charles) Associates, San Francisco, CA (United States))

1992-09-01T23:59:59.000Z

119

Assessment of Research Needs for Advanced Fuel Cells  

DOE Green Energy (OSTI)

The DOE Advanced Fuel Cell Working Group (AFCWG) was formed and asked to perform a scientific evaluation of the current status of fuel cells, with emphasis on identification of long-range research that may have a significant impact on the practical utilization of fuel cells in a variety of applications. The AFCWG held six meetings at locations throughout the country where fuel cell research and development are in progress, for presentations by experts on the status of fuel cell research and development efforts, as well as for inputs on research needs. Subsequent discussions by the AFCWG have resulted in the identification of priority research areas that should be explored over the long term in order to advance the design and performance of fuel cells of all types. Surveys describing the salient features of individual fuel cell types are presented in Chapters 2 to 6 and include elaborations of long-term research needs relating to the expeditious introduction of improved fuel cells. The Introduction and the Summary (Chapter 1) were prepared by AFCWG. They were repeatedly revised in response to comments and criticism. The present version represents the closest approach to a consensus that we were able to reach, which should not be interpreted to mean that each member of AFCWG endorses every statement and every unexpressed deletion. The Introduction and Summary always represent a majority view and, occasionally, a unanimous judgment. Chapters 2 to 6 provide background information and carry the names of identified authors. The identified authors of Chapters 2 to 6, rather than AFCWG as a whole, bear full responsibility for the scientific and technical contents of these chapters.

Penner, S.S.

1985-11-01T23:59:59.000Z

120

DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ten Projects to Conduct Advanced Turbine Technology Ten Projects to Conduct Advanced Turbine Technology Research DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research August 14, 2013 - 1:44pm Addthis WASHINGTON, D.C. - Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program have been selected by the U.S. Department of Energy (DOE) for additional development. Developing gas turbines that run with greater cleanness and efficiency than current models is of great benefit both to the environment and the power industry, but development of such advanced turbine systems requires significant advances in high-temperature materials science, an understanding of combustion phenomena, and development of innovative

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NREL: Vehicles and Fuels Research - Advanced Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map The electric drive system is the technology foundation for hybrid electric and fuel cell vehicles. That's why NREL's Advanced Power Electronics project supports and promotes the design, development, and demonstration of power electronic components and systems that will overcome major technical barriers to the commercialization of hybrid, advanced internal combustion, and fuel cell vehicle technologies. In support of DOE's Vehicle Technologies Office, our researchers focus on developing advanced power electronics and electric machinery technologies that improve reliability, efficiency, and ruggedness, and dramatically decrease systems costs for advanced vehicles. Key components for these vehicles include the motor controller, DC to DC converters, and inverters

122

Commentary Should research be part of advance care planning?  

E-Print Network (OSTI)

Advance care planning is a process to help people to formulate and communicate their preferences regarding future care during critical illness. Reviews of the advance care planning process in its current form have been disappointing. Improvements in care at the end of life and palliative care are necessary for the provision of modern medical care. Medical research has led to many improvements at the physiological and technological levels. It is only by applying the same rigour of scientific study and research ethics that improvements in the advance care planning process can be made. Keywords advance care planning, critical illness, palliative care, research ethics

Alexandra M Easson

2004-01-01T23:59:59.000Z

123

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research  

SciTech Connect

Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

Not Available

1992-01-01T23:59:59.000Z

124

Integrated Advanced Energy Systems Research at IIT  

DOE Green Energy (OSTI)

This report consists of Two research projects; Sustainable Buildings and Hydrogen Storage. Sustainable Building Part includes: Wind and the self powered built environment by professor P. Land and his research group and experimental and computational works by professor D. Rempfer and his research group. Hydrogen Storage part includes: Hydrogen Storage Using Mg-Mixed Metal Hydrides by professor H. Arastoopour and his research team and Carbon Nanostructure as Hydrogen Storage Material by professor J. Prakash and his research team.

Hamid Arastoopour

2010-09-30T23:59:59.000Z

125

Advanced Power Plant Modeling with Applications to an Advanced Boiling Water  

E-Print Network (OSTI)

wave fronts. However, in most power plant transient performance models, there are few heat exchangersAdvanced Power Plant Modeling with Applications to an Advanced Boiling Water Reactor and a Heat Introduction This paper presents two advanced modeling methods, and two applications, for power plant

Mitchell, John E.

126

NETL: News Release - Seven Projects Aimed at Advancing Coal Research  

NLE Websites -- All DOE Office Websites (Extended Search)

May 13, 2010 May 13, 2010 Seven Projects Aimed at Advancing Coal Research Selected for DOE's University Coal Research Program Department's Longest Running Student-Teacher Initiative Provides Research Exposure for Future Scientists and Engineers Washington, D.C. - Seven projects aimed at advancing coal research and development while providing research exposure to a new generation of scientists and engineers have been selected to participate in the U.S. Department of Energy's (DOE) University Coal Research (UCR) program. The projects aim to improve the basic understanding of the chemical and physical processes that govern coal conversion and utilization, by-product utilization, and technological development for advanced energy systems. These advanced systems - efficient, ultra-clean energy plants - are envisioned to co-produce electric power, fuels, chemicals and other high-value products from coal with near-zero emissions, including greenhouse gases such as carbon dioxide.

127

Research on advanced photovoltaic manufacturing technology  

DOE Green Energy (OSTI)

This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

Jester, T.; Eberspacher, C. (Siemens Solar Industries, Camarillo, CA (United States))

1991-11-01T23:59:59.000Z

128

Advanced Reactor Research and Development Funding Opportunity Announcement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Reactor Research and Development Funding Opportunity Advanced Reactor Research and Development Funding Opportunity Announcement Advanced Reactor Research and Development Funding Opportunity Announcement The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) sponsors a program of research, development, and demonstration related to advanced non-light water reactor concepts. A goal of the program is to facilitate greater engagement between DOE and industry. During FY12, DOE established a Technical Review Panel (TRP) process to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. That process involved the use of a Request for Information (RFI) to solicit concept information from industry and engage technical experts to evaluate those concepts. Having completed this process, DOE desires to

129

Center for Engineering Science Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Defense Theory - Computation - Experiments Current research topics Missile defense: tracking, discrimination, sensor resource allocation optimization, flash hyperspectral...

130

NETL: Advanced Research - Educational Initiatives Conferences  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory implement Congressionally-mandated programs and promote the Department's strategic plan by supporting external research and development projects awarded...

131

Acoustic Waveform Logging - Advances In Theory And Application  

E-Print Network (OSTI)

Full-waveform acoustic logging has made significant advances in both theory and application in recent years, and these advances have greatly increased the capability of log analysts to measure the physical properties of ...

Cheng, C. H.

132

Advanced Manufacturing Office: Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration Facility Critical Materials Hub Small Business Innovation Research Combined Heat and Power Next Generation Manufacturing Processes Next Generation Materials Quick...

133

Categorical Exclusion Determinations: Advanced Research Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Agency - Energy June 2, 2010 CX-003128: Categorical Exclusion Determination University of Kentucky Research Foundation -A SolventMembrane Hybrid Post-combustion...

134

Application in Advanced Laparoscopic Procedures: Medical Ice...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications Homeland Security Applications Biomedical Applications Medical Ice Slurry Coolants for Inducing Targeted-OrganTissue Protective Cooling Technology...

135

Advanced Stirling conversion systems for terrestrial applications  

DOE Green Energy (OSTI)

Sandia National Laboratories (SNLA) is developing heat engines for terrestrial Solar distributed Heat Receivers. SNLA has identified the Stirling to be one of the most promising candidates for the terrestrial applications. The free-piston Stirling engine (FPSE) has the potential to meet the DOE goals for both performance and cost. Free-piston Stirling activities which are directed toward a dynamic power source for the space application are being conducted. Space power system requirements include high efficiency, very long life, high reliability and low vibration. The FPSE has the potential for future high power space conversion systems, either solar or nuclear powered. Generic free-piston technology is currently being developed for use with a residential heat pump under an Interagency Agreement. Also, an overview is presented of proposed conceptual designs for the Advanced Stirling Conversion System (ASCS) using a free-piston Stirling engine and a liquid metal heat pipe receiver. Power extraction includes both a linear alternator and hydraulic output capable of delivering approximately 25 kW of electrical power to the electric utility grid. Target cost of the engine/alternator is 300 dollars per kilowatt at a manufacturing rate of 10,000 units per year. The design life of the ASCS is 60,000 h (30 y) with an engine overhaul at 40,000 h (20 y). Also discussed are the key features and characteristics of the ASCS conceptual designs.

Shaltens, R.K.

1987-01-01T23:59:59.000Z

136

DOE's Advanced Coal Research, Development, and Demonstration Program to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Coal Research, Development, and Demonstration Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies DOE's Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies March 11, 2009 - 3:18pm Addthis Statement of Victor K. Der, Acting Assistant Secretary, Office of Fossil Energy before the Subcommittee on Energy and Environment, Committee on Science and Technology, U.S. House of Representatives. Thank you, Mr. Chairman and Members of the Committee. I appreciate this opportunity to provide testimony on the U.S. Department of Energy's (DOE's) advanced coal research, development, and demonstration program to develop low-carbon emission coal technologies. Introduction Fossil fuel resources represent a tremendous national asset. An abundance

137

Secretary Chu Announces $130 Million for Advanced Research Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces $130 Million for Advanced Research Projects Secretary Chu Announces $130 Million for Advanced Research Projects Secretary Chu Announces $130 Million for Advanced Research Projects April 20, 2011 - 12:00am Addthis WASHINGTON, D.C. - U.S. Department of Energy Secretary Steven Chu announced today that up to $130 million from the Advanced Research Projects Agency-Energy (ARPA-E) will be made available to develop five new program areas that could spark critical breakthrough technologies and secure America's energy future. Today's funding opportunity announcement comes two months after ARPA-E announced six of its projects have secured more than $100 million in outside private capital investment - indications that the business community is eager to invest in truly innovative solutions to the country's energy challenges.

138

Secretary Chu Announces $130 Million for Advanced Research Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30 Million for Advanced Research Projects 30 Million for Advanced Research Projects Secretary Chu Announces $130 Million for Advanced Research Projects April 20, 2011 - 12:00am Addthis WASHINGTON, D.C. - U.S. Department of Energy Secretary Steven Chu announced today that up to $130 million from the Advanced Research Projects Agency-Energy (ARPA-E) will be made available to develop five new program areas that could spark critical breakthrough technologies and secure America's energy future. Today's funding opportunity announcement comes two months after ARPA-E announced six of its projects have secured more than $100 million in outside private capital investment - indications that the business community is eager to invest in truly innovative solutions to the country's energy challenges. "ARPA-E is unleashing American innovation to strengthen America's global

139

Energy Department Advances Carbon Capture and Storage Research on Two  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Advances Carbon Capture and Storage Research on Energy Department Advances Carbon Capture and Storage Research on Two Fronts Energy Department Advances Carbon Capture and Storage Research on Two Fronts September 16, 2009 - 1:00pm Addthis Washington, DC - Forty-three research projects that will advance carbon capture and storage (CCS) technologies while providing graduate and undergraduate student training opportunities at universities across the country will be supported by $12.7 million in U.S. Department of Energy funding announced today. View Project Details Spread over three years, the regional sequestration training projects and funding will be managed by the Office of Fossil Energy's National Energy Technology Laboratory. The projects are funded through the 2009 American Reinvestment and Recovery Act and are aimed at the broad objectives of

140

DOE's Advanced Coal Research, Development, and Demonstration Program to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Advanced Coal Research, Development, and Demonstration DOE's Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies DOE's Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies March 11, 2009 - 3:18pm Addthis Statement of Victor K. Der, Acting Assistant Secretary, Office of Fossil Energy before the Subcommittee on Energy and Environment, Committee on Science and Technology, U.S. House of Representatives. Thank you, Mr. Chairman and Members of the Committee. I appreciate this opportunity to provide testimony on the U.S. Department of Energy's (DOE's) advanced coal research, development, and demonstration program to develop low-carbon emission coal technologies. Introduction Fossil fuel resources represent a tremendous national asset. An abundance

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Advanced Research Projects, OAS-RA-11-11  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Audit Report Audit Report The Advanced Research Projects Agency - Energy OAS-RA-11-11 August 2011 Department of Energy Washington, DC 20585 August 22, 2011 MEMORANDUM FOR THE DIRECTOR, ADVANCED RESEARCH PROJECTS AGENCY - ENERGY FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Advanced Research Projects Agency - Energy" BACKGROUND The Advanced Research Projects Agency - Energy (ARPA-E), an agency within the Department of Energy, was authorized in 2007 as part of the America COMPETES Act (COMPETES Act). The goals of ARPA-E are to enhance domestic economic security through the development of energy technologies and to ensure that the United States maintains a technological lead in

142

Department of Energy Announces Fellows Program for Advance Research Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fellows Program for Advance Research Fellows Program for Advance Research Energy Projects Department of Energy Announces Fellows Program for Advance Research Energy Projects December 8, 2009 - 12:00am Addthis Cambridge, MA - The Department of Energy's Advanced Research Projects Agency - Energy (ARPA-E) announced today the creation of the ARPA-E Fellows Program at an event with Massachusetts Institute of Technology's students. ARPA-E Director, Dr. Arun Majumdar, made the announcement during a presentation to the MIT Energy Club and called on the next generation of energy leaders to join ARPA-E. Today's announcement follows US Energy Secretary Steven Chu's announcement that the Department is making $100 million in Recovery Act funding available to accelerate innovation in green technology, increase America's competitiveness and create jobs.

143

Portfolio evaluation of advanced coal technology : research, development, and demonstration  

E-Print Network (OSTI)

This paper evaluates the advanced coal technology research, development and demonstration programs at the U.S. Department of Energy since the 1970s. The evaluation is conducted from a portfolio point of view and derives ...

Naga-Jones, Ayaka

2005-01-01T23:59:59.000Z

144

NREL: Wind Research - New England Offshore Wind Advances on Several...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Search More Search Options Site Map Printable Version New England Offshore Wind Advances on Several Fronts January 14, 2013 At the end of 2012, New England's first two...

145

2011 ANNUAL PLANNING SUMMARY FOR ADVANCED RESEARCH AND PROJECTS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for each NEPA review identified. APS-2011-WAPA.xls More Documents & Publications 2010 Annual Planning Summary for Advanced Research Projects Agency-Energy (ARPA-E) 2011 Annual...

146

Advanced Turbo-Charging Research and Development  

SciTech Connect

The objective of this project is to conduct analysis, design, procurement and test of a high pressure ratio, wide flow range, and high EGR system with two stages of turbocharging. The system needs to meet the stringent 2010MY emissions regulations at 20% + better fuel economy than its nearest gasoline competitor while allowing equivalent vehicle launch characteristics and higher torque capability than its nearest gasoline competitor. The system will also need to meet light truck/ SUV life requirements, which will require validation or development of components traditionally used only in passenger car applications. The conceived system is termed 'seriessequential turbocharger' because the turbocharger system operates in series at appropriate times and also sequentially when required. This is accomplished using intelligent design and control of flow passages and valves. Components of the seriessequential system will also be applicable to parallel-sequential systems which are also expected to be in use for future light truck/SUV applications.

None

2008-02-27T23:59:59.000Z

147

Educating Scientifically: Advances in Physics Education Research  

Science Conference Proceedings (OSTI)

It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

Finkelstein, Noah (University of Colorado)

2007-05-16T23:59:59.000Z

148

Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications  

SciTech Connect

Amphiphiles, either synthetic or natural, are structurally simple molecules with the unprecedented capacity to self-assemble into complex, hierarchical geometries in nanospace. Effective self-assembly processes of amphiphiles are often used to mimic biological systems, such as, assembly of lipids and proteins, which has paved a way for bottom-up nanotechnology with bio-like advanced functions. Recent developments on nanostructure formation combine simple processes of assembly with the more advanced concept of nanoarchitectonics. In this pespective, we summarize research on self-assembly of amphiphilic molecules such as lipids, surfactants or block copolymers that are a focus of interest for many colloid, polymer, and materials scientists and which have become increasingly important in emerging nanotechnology. Because the fundamental science of amphiphiles was initially developed for their solution assembly then transferred to assemblies on surfaces as a development of nanotechnological technique, this perspective attempts to mirro this development by introducing solution systems and progressing to interfacial systems, which are roughly categorized as (i) basic properties of amphiphiles, (ii) self-assembly of amphiphiles in bulk phases, (iii) assembly on static surfaces, (iv) assembly at dynamic interfaces, and (v) advanced topics from simulation to application. This progression also represents the evolution of amphiphile science and technology from simple assemblies to advanced assemblies to nanoarchitectonics.

Ramanathan, Nathan Muruganathan [ORNL; Shrestha, Lok Kumar [International Center for Materials Nanoarchitectonics (MANA); Mori, Taizo [International Center for Materials Nanoarchitectonics (MANA); Ji, Dr. Qingmin [National Institute for Materials Science, Tsukuba, Japan; Hill, Dr. Jonathan P [National Institute for Materials Science, Tsukuba, Japan; Ariga, Katsuhiko [National Institute for Materials Science, Tsukuba, Japan

2013-01-01T23:59:59.000Z

149

ADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING  

E-Print Network (OSTI)

The components of a modern Advanced Boiling Water Reactor (ABWR) nuclear power plant are modeled in this thesis) is a single-cycle, forced circulation, light-water nuclear reactor designed by the General Electric Company better control of the nuclear reaction in the fuel core. 2.1 Modifications to the BWR [1] · The reactor

Mitchell, John E.

150

Advanced energy projects; FY 1995 research summaries  

SciTech Connect

The AEP Division supports projects to explore novel energy-related concepts which are typically at an early stage of scientific development, and high-risk, exploratory concepts. Topical areas presently receiving support are: novel materials for energy technology, renewable and biodegradable materials, exploring uses of new scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, and innovative approaches to waste treatment and reduction. There were 46 research projects during FY 1995; ten were initiated during that fiscal year. The summaries are separated into grant and laboratory programs, and small business innovation research programs.

NONE

1995-09-01T23:59:59.000Z

151

Advanced Energy Projects: FY 1993, Research summaries  

SciTech Connect

AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

Not Available

1993-09-01T23:59:59.000Z

152

DOE Announces New Research to Advance Safe and Responsible Deepwater  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces New Research to Advance Safe and Responsible Announces New Research to Advance Safe and Responsible Deepwater Drilling Technologies DOE Announces New Research to Advance Safe and Responsible Deepwater Drilling Technologies May 21, 2012 - 1:00pm Addthis Washington, DC - Thirteen projects aimed at reducing the risks while enhancing the environmental performance of drilling for natural gas and oil in ultra-deepwater settings have been selected by the U.S. Department of Energy (DOE) for further development. Negotiations for the new projects will lead to awards totaling $35.4 million, adding to the research portfolio of the Office of Fossil Energy's Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program. Research needs addressed by the projects include (1) new and better ways to

153

DOE Announces New Research to Advance Safe and Responsible Deepwater  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces New Research to Advance Safe and Responsible DOE Announces New Research to Advance Safe and Responsible Deepwater Drilling Technologies DOE Announces New Research to Advance Safe and Responsible Deepwater Drilling Technologies May 21, 2012 - 1:00pm Addthis Washington, DC - Thirteen projects aimed at reducing the risks while enhancing the environmental performance of drilling for natural gas and oil in ultra-deepwater settings have been selected by the U.S. Department of Energy (DOE) for further development. Negotiations for the new projects will lead to awards totaling $35.4 million, adding to the research portfolio of the Office of Fossil Energy's Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program. Research needs addressed by the projects include (1) new and better ways to

154

2012 Advanced Applications Research & Development Peer Review...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Session II: Brett Amidan, Bharat Bhargava, Ning Zhou Session III: Ken Martin, Mani Venkatasubramanian Session IV: Jeff Dagle, Jim Dyer, Joe Gracia, Joe Eto Session...

155

R. Shane Johnson, Associate Director Office of Advanced Nuclear Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Nuclear Research Advanced Nuclear Research September 30, 2002 Generation IV International Forum Generation IV International Forum Presentation to the Nuclear Energy Research Advisory Committee Office of Nuclear Energy, Science and Technology Generation IV International Forum Generation IV International Forum 6 Government-sanctioned organization working together to plan the future of nuclear energy * Chartered in July 2002 * Conduct joint R&D on next-generation nuclear energy systems * Voluntary member participation in specific projects 6 Observer Organizations * OECD-NEA * IAEA * Euratom South Korea U.S.A. Argentina Brazil Canada France Japan South Africa United Kingdom Switzerland Office of Nuclear Energy, Science and Technology

156

NERSC Role in Advanced Scientific Computing Research Katherine Yelick  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Advanced Scientific Computing Research Katherine Yelick NERSC Director Requirements Workshop NERSC Mission The mission of the National Energy Research Scientific Computing Center (NERSC) is to accelerate the pace of scientific discovery by providing high performance computing, information, data, and communications services for all DOE Office of Science (SC) research. Sample Scientific Accomplishments at NERSC 3 Award-winning software uses massively-parallel supercomputing to map hydrocarbon reservoirs at unprecedented levels of detail. (Greg Newman, LBNL) . Combustion Adaptive Mesh Refinement allows simulation of a fuel- flexible low-swirl burner that is orders of magnitude larger & more detailed than traditional reacting flow simulations allow.

157

Energy Department Advances Research on Methane Hydrates - the World's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Advances Research on Methane Hydrates - the Energy Department Advances Research on Methane Hydrates - the World's Largest Untapped Fossil Energy Resource Energy Department Advances Research on Methane Hydrates - the World's Largest Untapped Fossil Energy Resource August 31, 2012 - 1:20pm Addthis News Media Contact (202) 586-4940 WASHINGTON, D.C. - The Energy Department today announced the selection of 14 new research projects across 11 states that will be a part of an expanding portfolio of projects designed to increase our understanding of methane hydrates' potential as a future energy supply. Methane hydrates are 3D ice-lattice structures with natural gas locked inside, and are found both onshore and offshore - including under the Arctic permafrost and in ocean sediments along nearly every continental shelf in the world.

158

Advanced Reactor Research and Development Funding Opportunity Announcement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Research and Development Funding Opportunity Reactor Research and Development Funding Opportunity Announcement Advanced Reactor Research and Development Funding Opportunity Announcement The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) sponsors a program of research, development, and demonstration related to advanced non-light water reactor concepts. A goal of the program is to facilitate greater engagement between DOE and industry. During FY12, DOE established a Technical Review Panel (TRP) process to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. That process involved the use of a Request for Information (RFI) to solicit concept information from industry and engage technical experts to evaluate those concepts. Having completed this process, DOE desires to

159

Secretary Chu Announces up to $30 Million for Research to Advance the Next  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

up to $30 Million for Research to Advance up to $30 Million for Research to Advance the Next Generation of Biofuels Secretary Chu Announces up to $30 Million for Research to Advance the Next Generation of Biofuels December 14, 2010 - 12:00am Addthis WASHINGTON, DC - U.S. Secretary of Energy Steven Chu today announced the Department is now accepting applications for up to $30 million in total funding for small-scale process integration projects that support the development of advanced biofuels that will be able to replace gasoline or diesel without requiring special upgrades or changes to the vehicle or fueling infrastructure. This announcement is part of the Obama Administration's continuing commitment to accelerating R&D to develop a more sustainable transportation system, lower our dependence on foreign

160

Secretary Chu Announces up to $30 Million for Research to Advance the Next  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces up to $30 Million for Research to Advance Secretary Chu Announces up to $30 Million for Research to Advance the Next Generation of Biofuels Secretary Chu Announces up to $30 Million for Research to Advance the Next Generation of Biofuels December 14, 2010 - 12:00am Addthis WASHINGTON, DC - U.S. Secretary of Energy Steven Chu today announced the Department is now accepting applications for up to $30 million in total funding for small-scale process integration projects that support the development of advanced biofuels that will be able to replace gasoline or diesel without requiring special upgrades or changes to the vehicle or fueling infrastructure. This announcement is part of the Obama Administration's continuing commitment to accelerating R&D to develop a more sustainable transportation system, lower our dependence on foreign

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Research on geothermal chemistry and advanced instrumentation  

DOE Green Energy (OSTI)

Research at the Pacific Northwest Laboratory (PNL) focuses on long-term geothermal power plant reliability. Past work concentrated on development of continuous high-temperature probes for monitoring process variables. PNL also completed a comprehensive handbook of brine treatment processes as they relate to injection well longevity. A recently completed study analyzed corrosion in the hydrocarbon system of a binary cycle plant. Over the two-year monitoring period, corrosion rates were less than 1 MPY in any part of the hydrocarbon system. The system was kept completely dry so the rates seem reasonable. Present projects include: (1) determination of gas breakout conditions at the Herber Binary Demonstration Plant operated by San Diego Gas and Electric Company; (2) generation of water mixing solubility data; (3) installation of prototype leak detectors at the Herber Plant; and (4) evaluation of state-of-the-art particle counters. 7 refs., 9 figs.

Robertus, R.J.; Shannon, D.W.; Sullivan, R.G.; Kindle, C.H.; Pool, K.H.

1985-09-01T23:59:59.000Z

162

Advanced Modeling Grid Research Program | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Development » Advanced Modeling Grid Development » Advanced Modeling Grid Research Program Advanced Modeling Grid Research Program The electric power industry has undergone extensive changes over the past several decades and become substantially more complex, dynamic, and uncertain, as new market rules, regulatory policies, and technologies have been adopted. The availability of more detailed data about system conditions from devices, such as phasor measurement units (PMUs) for wide area visibility and advanced meter infrastructure (AMI) for dynamic pricing and demand response, can be a great benefit for electric system reliability and flexibility. However, this large volume (and variety) of data poses its own challenges. Shifting operational data analytics from a traditionally off-line environment to real-time situational awareness (e.g., visibility) to

163

Expert Meeting Report: Advanced Envelope Research for Factory Built Housing  

Science Conference Proceedings (OSTI)

This report provides information about the expert meeting on advanced envelope research for factory built housing, hosted by the ARIES Collaborative on October 11, 2011, in Phoenix, Arizona. The goals of this meeting were to provide a comprehensive solution to the use of three previously selected advanced alternatives for factory-built wall construction, assess each option focusing on major issues relating to viability and commercial potential, and determine additional steps are required to reach this potential.

Levy, E.; Mullens, M.; Tompos, E.; Kessler, B.; Rath, P.

2012-04-01T23:59:59.000Z

164

Argonne's pyroprocessing and advanced reactor research featured on WGN  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's pyroprocessing and advanced reactor research featured on WGN Argonne's pyroprocessing and advanced reactor research featured on WGN radio Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Argonne's pyroprocessing and advanced reactor research featured on WGN radio Uranium dendrites These tiny branches, or "dendrites," of pure uranium form when engineers

165

NETL: News Release - Advanced Research Awards to Reveal Mechanisms of  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Research Awards to Reveal Mechanisms of Mercury Chemistry, Lead to Lower Mercury Emission Advanced Research Awards to Reveal Mechanisms of Mercury Chemistry, Lead to Lower Mercury Emission PITTSBURGH, PA - The Department of Energy has announced four awards totaling $1.4 million for advanced research to aid the removal of mercury from existing fossil-fueled power plants. The four new projects support the President's call for dramatic cuts in mercury emissions by providing an understanding of the mechanisms of mercury chemistry, and leading to novel approaches to measure and remove mercury from flue gas. Coal contains only trace amounts of mercury, but when coal is consumed to produce power, gaseous species of mercury are formed and emitted into the atmosphere. These emissions are the largest human-created source of mercury emissions in the United States, and may contribute to a variety of health and environmental problems.

166

Advanced Sensing in Fossil Energy Applications (2010 Stakeholder Workshop): Scientific Poster Presentations  

DOE Data Explorer (OSTI)

This spring, 2010 workshop focused on the Advanced Research Program for the use of sensor technology in Fossil Energy applications. The FE Advanced Research Program represents a bridge between basic research and final deployment. It provides a means by which concepts are transformed into efficient and environmentally benign power and energy production systems. Posters from the workshop include:

  • Advanced Process Control: Improving Integrated Control and Adopting New Approaches for Managing Complexity (Coal Utilization Science)
  • Harsh Environments (Coal Utilization Science)
  • Model Validation (Coal Utilization Science and Computational Energy Science)
  • Modeling Based Senor Placement (Coal Utilization Science)
  • Networking for Control(Coal Utilization Science)
  • Requirements Flow-down Process in the Advanced Research Program
  • Sensing in Harsh Environments (Coal Utilization Science)
  • Sensor Materials for High Temperature Environments (Coal Utilization Science)
  • System Needs Statement in the Advanced Research Program
  • Technology Goal Statements in the Advanced Research Program
    • See also the Advanced Research Project Factsheets on the same webpage. These provide background and context for the workshop posters.

167

Energy Department Advances Carbon Capture and Storage Research on Two  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage Research on Carbon Capture and Storage Research on Two Fronts Energy Department Advances Carbon Capture and Storage Research on Two Fronts September 16, 2009 - 1:00pm Addthis Washington, DC - Forty-three research projects that will advance carbon capture and storage (CCS) technologies while providing graduate and undergraduate student training opportunities at universities across the country will be supported by $12.7 million in U.S. Department of Energy funding announced today. View Project Details Spread over three years, the regional sequestration training projects and funding will be managed by the Office of Fossil Energy's National Energy Technology Laboratory. The projects are funded through the 2009 American Reinvestment and Recovery Act and are aimed at the broad objectives of

168

Advanced lead-acid batteries for utility applications  

SciTech Connect

During 1990, Sandia National Laboratories initiated an advanced lead-acid battery development program supported by the US Department of Energy's Office of Energy Management. The goal is to develop a low maintenance, cost effective battery by the mid- to late 1990's that is tailored to a variety of electric utility applications. Several parallel activities are being pursued to achieve this goal. One activity seeks to quantify the economic benefits of battery storage for specific cases in candidate utility systems and identify opportunities for field demonstration of battery systems at electric utility and utility customer sites. Such demonstrations will not only generate valuable operating experience data, but will also help in building user confidence in battery storage systems. Other activities concentrate on cell- and battery-level research and development aimed at overcoming shortcomings in existing technologies, such as Valve-Regulated Lead-Acid (VRLA), or, sealed lead-acid batteries.

Akhil, A. (Sandia National Labs., Albuquerque, NM (USA)); Landgrebe, A. (USDOE, Washington, DC (USA))

1991-01-01T23:59:59.000Z

169

9. annual battery conference on advances and applications  

SciTech Connect

The developments in batteries reported at the 9th Annual Battery Conference on Advances and Applications, are discussed. It was sponsored by the Electrical Engineering Department of California State University, Long Beach, CA, with IEEE-AESS cooperation. Previous well-funded battery research had been directed toward getting low weight in spacecraft batteries, which had to be boosted into orbit with expensive rockets. Ni-H{sub 2} batteries, even though costly, won the race. Their demonstrated life, like 30,000 charge-discharge cycles, gives an earth-orbiting satellite decades of usable life. Other types of batteries discussed are: aircraft batteries; electric vehicle batteries; Ni-Cd cells; Zn-Br batteries; industrial Pb-acid batteries; rechargeability; computer controlled charging; and small rechargeable and primary batteries.

Oman, H.

1994-04-01T23:59:59.000Z

170

Advanced Power Batteries for Renewable Energy Applications 3.09  

SciTech Connect

This report describes the research that was completed under project title ?? Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

Rodney Shane

2011-09-30T23:59:59.000Z

171

Advanced lead-acid batteries for utility applications  

SciTech Connect

During 1990, Sandia National Laboratories initiated an advanced lead-acid battery development program supported by the US Department of Energy's Office of Energy Management. The goal is to develop a low maintenance, cost effective battery by the mid- to late 1990's that is tailored to a variety of electric utility applications. Several parallel activities are being pursued to achieve this goal. One activity seeks to quantify the economic benefits of battery storage for specific cases in candidate utility systems and identify opportunities for field demonstration of battery systems at electric utility and utility customer sites. Such demonstrations will not only generate valuable operating experience data, but will also help in building user confidence in battery storage systems. Other activities concentrate on cell- and battery-level research and development aimed at overcoming shortcomings in existing technologies, such as Valve-Regulated Lead-Acid (VRLA), or, sealed lead-acid batteries.

Akhil, A. (Sandia National Labs., Albuquerque, NM (USA)); Landgrebe, A. (USDOE, Washington, DC (USA))

1991-01-01T23:59:59.000Z

172

Advances in the Research of Heat Pump Water Heaters  

E-Print Network (OSTI)

This paper presents the progress of many recently correlative research works on the heat pump water heater (HPWH) and on solar-assisted heat pump water heaters. The advances in the research on compressor development, alternative refrigerant technology for a compressor HPWH are separately summarized. A new study on frosting/defrosting of an air source heat pump water heater (ASHPWH) is also discussed. The trends of some new technologies of HPWH are analyzed.

Shan, S.; Wang, D.; Wang, R.

2006-01-01T23:59:59.000Z

173

Program on Technology Innovation: Advanced Light Source Research  

Science Conference Proceedings (OSTI)

The Advanced Light Source (ALITE) research program is aimed at breakthrough basic research to achieve approximately 150 to 200 lumens per watt for fluorescent light sources, and to increase high intensity discharge light source efficiency by up to 50%. This report describes work on high intensity discharge (HID) lamps. These commercially available lamps currently have efficacies up to 120 lumens per watt (LPW), and radiate approximately 36% of their energy in the visible spectrum and 53% in the infrared ...

2006-03-27T23:59:59.000Z

174

Advanced Carbon Aerogels for Energy Applications - Energy ...  

... graphene nanosheets that will prove necessary to provide sustainable energy applications that lessen our dependence on fossil fuels.

175

Advances in Conjugated Linoleic Acid Research, Volumes 1-3  

Science Conference Proceedings (OSTI)

This is your only chance to get all 3 Volumes, as Volume 1 is no longer available in print! Advances in Conjugated Linoleic Acid Research, Volumes 1-3 Health Nutrition Biochemistry DVD & CD-ROMs Health - Nutrition - Biochemistry AOCS Press This

176

NSERC-Laflche Industrial Research Chair Advanced Anaerobic Treatment  

E-Print Network (OSTI)

. LANDFILL BIOREACTORS EXSITU ANAEROBIC DIGESTION Apply stand alone reactor technology to digest solidNSERC- Laflèche Industrial Research Chair Advanced Anaerobic Treatment Residuals to Energy R2E 6133. 0 100 200 300 400 500 600 700 800 900 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Digestion Time

Petriu, Emil M.

177

INEEL Advanced Radiotherapy Research Program Annual Report for 2002  

SciTech Connect

This report summarizes the activities and major accomplishments for the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2002. Topics covered include computational dosimetry and treatment planning software development, medical neutron source development and characterization, and boron analytical chemistry.

J. R. Venhuizen

2003-05-01T23:59:59.000Z

178

INL Advanced Radiotherapy Research Program Annual Report 2004  

SciTech Connect

This report summarizes the activities and major accomplishments for the Idaho National Laboratory Advanced Radiotherapy Research Program for calendar year 2004. Topics covered include boron analysis in biological samples, computational dosimetry and treatment planning software development, medical neutron source development and characterization, and collaborative dosimetry studies at the RA-1 facility in Buenos Aires, Argentina.

James Venhuizen

2005-06-01T23:59:59.000Z

179

INEEL Advanced Radiotherapy Research Program Annual Report 2002  

SciTech Connect

This report summarizes the activities and major accomplishments for the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2002. Topics covered include computational dosimetry and treatment planning software development, medical neutron source development and characterization, and boron analytical chemistry.

Venhuizen, J.R.

2003-05-23T23:59:59.000Z

180

Photovoltaic Advanced Research and Development Project: Solar Radiation Research annual report  

DOE Green Energy (OSTI)

This report gives an overview of the fiscal year 1990 research activities and results under the Solar Radiation Research Task of the Photovoltaic Advanced Research and Development Project at the Solar Energy Research Institute. The activities under this task include developing and applying measurement techniques, instrumentation, and data and models to understand and quantify the response of photovoltaic devices to variations in broadband and spectra solar radiation. The information presented in this report was presented at the SERI Photovoltaic Advanced Research and Development Project 10th Review Meeting, October 1990, and will be published in a special issue of Solar Cells dedicated to the meeting.

Riordan, C.; Hulstrom, R.; Cannon, T.; Myers, D.; Stoffel, T.

1990-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Overview of APEEM Thermal Control Research Projects (Presentation)  

Science Conference Proceedings (OSTI)

NREL researchers work on advancing power electronics and electric machines for many applications including advanced vehicles.

Kelly, K.

2007-11-06T23:59:59.000Z

182

Advanced gasification projects. [Support research needs; contains list of advanced gasification projects supported by US DOE  

Science Conference Proceedings (OSTI)

An analysis of the needs for coal gasification reveals the following principal categories of information gaps that can be filled by programs already in progress or those readily initiated. The gaps are technology base needs required for successful application of both currently available and advanced gasification processes. The need areas are classified as follows: Reactor design/performance, gas cleaning/cooling separation, acid-gas removal/gas shift/gas conversion, wastewater treatment, and general data base on both state-of-the-art and advanced technologies. During the future operating and optimization phases of most of the coal gasification projects, when additional troubles will surface, the technical support program described herein will have provided the additional data base needed to correct deficiencies and/or to advance the state-of-the-art. The report describes US DOE supported projects in this area: brief description, title, contractor, objective, accomplishments, current work and possible application.

Not Available

1982-02-01T23:59:59.000Z

183

NETL: News Release - Advanced Research Projects Selected to Support  

NLE Websites -- All DOE Office Websites (Extended Search)

September 17, 2008 September 17, 2008 Advanced Research Projects Selected to Support Development of Next-Generation Power Plants Applied Research Will Lead to Novel Sensors and Controls, Power Plant Simulations Morgantown, W. Va. - The U.S. Department of Energy (DOE) has selected four new research projects aimed at improving the efficiency, reliability, and environmental performance of power-generation systems that use coal, our Nation's most abundant energy resource. The selected projects will address the central challenge of advanced near-zero emission energy systems: producing power in an efficient and environmentally benign manner while reigning in costs for power providers and consumers. Following negotiation and awards, the projects will be added to the research portfolio of the Office of Fossil Energy's Coal Utilization Science (CUS) Program, a part of the Advanced Research Program. The goal of the larger program is to support coal and power systems development through breakthroughs in materials and processes, coal utilization science, sensors and controls, and computational energy science. The program is implemented and managed by DOE's National Energy Technology Laboratory (NETL).

184

Advanced Materials Applications - Programmaster.org  

Science Conference Proceedings (OSTI)

Oct 20, 2011... geometries, and the power of the technique demonstrated with applications to energy storage materials and Fischer-Tropsch catalysts.

185

Advanced Carbon Aerogels for Energy Applications  

... graphene nanosheets that will prove necessary to provide sustainable energy applications that lessen our dependence on fossil fuels. ... are anticipated fuels of ...

186

Applications from Universities and Other Research Institutions...  

Office of Science (SC) Website

Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search Peer Review Policies EFRCs FOA Applications from Universities and Other Research...

187

Advanced Materials in Dental and Orthopedic Applications  

Science Conference Proceedings (OSTI)

This symposium provides an opportunity for the medical and dental ... and the patient needs from medical and dental research community perspectives.

188

Advanced filters and components for power applications  

E-Print Network (OSTI)

The objective of this thesis is to improve the high frequency performance of components and filters by better compensating the parasitic effects of practical components. The main application for this improvement is in ...

Neugebauer, Timothy Carl, 1975-

2004-01-01T23:59:59.000Z

189

Advanced housing materials for extreme space applications  

Science Conference Proceedings (OSTI)

Thermal stresses have a significant impact on the mechanical integrity and performance of RF hybrid circuits. To minimize this impact, a series of spray deposited Si-Al alloys were evaluated for use in electronic housing applications. Current housings ...

Linda Del Castillo; James P. Hoffman; Gaj Birur

2011-03-01T23:59:59.000Z

190

Advanced fuel cells for transportation applications. Final report  

DOE Green Energy (OSTI)

This Research and Development (R and D) contract was directed at developing an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The objective of this project was to develop a low-cost high-efficiency long-life lubrication-free integrated compressor/expander utilizing scroll technology. The goal of this compressor/expander was to be capable of providing compressed air over the flow and pressure ranges required for the operation of 50 kW PEM fuel cells in transportation applications. The desired ranges of flow, pressure, and other performance parameters were outlined in a set of guidelines provided by DOE. The project consisted of the design, fabrication, and test of a prototype compressor/expander module. The scroll CEM development program summarized in this report has been very successful, demonstrating that scroll technology is a leading candidate for automotive fuel cell compressor/expanders. The objectives of the program are: develop an integrated scroll CEM; demonstrate efficiency and capacity goals; demonstrate manufacturability and cost goals; and evaluate operating envelope. In summary, while the scroll CEM program did not demonstrate a level of performance as high as the DOE guidelines in all cases, it did meet the overriding objectives of the program. A fully-integrated, low-cost CEM was developed that demonstrated high efficiency and reliable operation throughout the test program. 26 figs., 13 tabs.

NONE

1998-02-10T23:59:59.000Z

191

Results of advanced batter technology evaluations for electric vehicle applications  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies (Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R D programs, a comparison of battery technologies, and basic data for modeling.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1992-01-01T23:59:59.000Z

192

Results of advanced battery technology evaluations for electric vehicle applications  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies [Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1992-09-01T23:59:59.000Z

193

Energy Department Advances Research on Methane Hydrates - the World's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research on Methane Hydrates - the Research on Methane Hydrates - the World's Largest Untapped Fossil Energy Resource Energy Department Advances Research on Methane Hydrates - the World's Largest Untapped Fossil Energy Resource August 31, 2012 - 1:00pm Addthis Washington, DC - The Energy Department today announced the selection of 14 new research projects across 11 states that will be a part of an expanding portfolio of projects designed to increase our understanding of methane hydrates' potential as a future energy supply. Methane hydrates are 3D ice-lattice structures with natural gas locked inside, and are found both onshore and offshore - including under the Arctic permafrost and in ocean sediments along nearly every continental shelf in the world. Today's projects build on the completion of a successful, unprecedented test

194

Guidelines for Distribution Operations Applications Using Advanced Metering Infrastructure Investments  

Science Conference Proceedings (OSTI)

This report is a study of how advanced metering infrastructure (AMI) systems and data can be used to benefit distribution operations and management. It includes an overview of common distribution applications and provides for each: 1) a description of how the application is commonly implemented and 2) an assessment of how AMI might be used to benefit this application. Following these assessments, a collection of case studies is provided as examples of what utilities are currently doing with AMI systems a...

2009-12-14T23:59:59.000Z

195

The DOE Center of Excellence for the Synthesis and Processing of Advanced Materials: Research briefs  

Science Conference Proceedings (OSTI)

This publication is designed to inform present and potential customers and partners of the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials about significant advances resulting from Center-coordinated research. The format is an easy-to-read, not highly technical, concise presentation of the accomplishments. Selected accomplishments from each of the Center`s seven initial focused projects are presented. The seven projects are: (1) conventional and superplastic forming; (2) materials joining; (3) nanoscale materials for energy applications; (4) microstructural engineering with polymers; (5) tailored microstructures in hard magnets; (6) processing for surface hardness; and (7) mechanically reliable surface oxides for high-temperature corrosion resistance.

NONE

1996-01-01T23:59:59.000Z

196

The advanced neutron source research and development plan  

Science Conference Proceedings (OSTI)

The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world (an order of magnitude more intense than beams available from the most advanced existing reactors). The ANS will be built around a new research reactor of 330-MW fission power, producing an unprecedented peak thermal flux of >7 {center_dot} 10{sup 19} {center_dot} m{sup -2} {center_dot} s{sup -1}. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science as well as applied research leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The top level work breakdown structure (WBS) for the project. As noted in this figure, one component of the project is a research and development (R&D) program (WBS 1.1). This program interfaces with all of the other project level two WBS activities. Because one of the project guidelines is to meet minimum performance goals without relying on new inventions, this R&D activity is not intended to produce new concepts to allow the project to meet minimum performance goals. Instead, the R&D program will focus on the four objectives described.

Selby, D.L.

1995-08-01T23:59:59.000Z

197

Advanced Accelerator Applications University Participation Program  

SciTech Connect

Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability.

Y. Chen; A. Hechanova

2007-07-25T23:59:59.000Z

198

Design and Operation of First-and Second-Harmonic Coaxial Gyroklystrons for Advanced Accelerator Applications  

E-Print Network (OSTI)

Design and Operation of First-and Second-Harmonic Coaxial Gyroklystrons for Advanced Accelerator Applications

Castle, M; Granatstein, V L; Hogan, B; Lawson, W; Reiser, M; Xu, X

1998-01-01T23:59:59.000Z

199

Advanced Research Power Program--CO2 Mineral Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Sequestration Robert Romanosky National Energy Technology Laboratory Mineral Carbonation Workshop August 8, 2001 Advanced Research Power Program Descriptor - include initials, /org#/date Mineral Sequestration Research Research effort seeks to refine and validate a promising CO 2 sequestration technology option, mineral sequestration also known as mineral carbonation Descriptor - include initials, /org#/date What is Mineral Carbonation * Reaction of CO 2 with Mg or Ca containing minerals to form carbonates * Lowest energy state of carbon is a carbonate and not CO 2 * Occurs naturally in nature as weathering of rock * Already proven on large scale - Carbonate formation linked to formation of the early atmosphere Descriptor - include initials, /org#/date Advantages of Mineral Carbonation

200

Compiled reports on the applicability of selected codes and standards to advanced reactors  

Science Conference Proceedings (OSTI)

The following papers were prepared for the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission under contract DE-AC06-76RLO-1830 NRC FIN L2207. This project, Applicability of Codes and Standards to Advance Reactors, reviewed selected mechanical and electrical codes and standards to determine their applicability to the construction, qualification, and testing of advanced reactors and to develop recommendations as to where it might be useful and practical to revise them to suit the (design certification) needs of the NRC.

Benjamin, E.L.; Hoopingarner, K.R.; Markowski, F.J.; Mitts, T.M.; Nickolaus, J.R.; Vo, T.V.

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue Universitys Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called Users Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. Users week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01T23:59:59.000Z

202

Expert Meeting Report: Advanced Envelope Research for Factory Built Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Envelope Advanced Envelope Research for Factory Built Housing E. Levy, M. Mullens, E. Tompos, B. Kessler, and P. Rath ARIES Collaborative April 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

203

Secretary Chu Announces up to $30 Million for Research to Advance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces up to 30 Million for Research to Advance the Next Generation of Biofuels Secretary Chu Announces up to 30 Million for Research to Advance the Next Generation of...

204

Advanced Envelope Research for Factory-Built Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 14, 2011 December 14, 2011 Advanced Envelope Research for Factory-Built Housing Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction December 14. 2011 Mike Gestwick Michael.Gestwick@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies www.buildingamerica.gov Introduction to Building America Building Technologies Program eere.energy.gov Building America Industry Consortia

205

Advanced computational research in materials processing for design and manufacturing  

DOE Green Energy (OSTI)

The computational requirements for design and manufacture of automotive components have seen dramatic increases for producing automobiles with three times the mileage. Automotive component design systems are becoming increasingly reliant on structural analysis requiring both overall larger analysis and more complex analyses, more three-dimensional analyses, larger model sizes, and routine consideration of transient and non-linear effects. Such analyses must be performed rapidly to minimize delays in the design and development process, which drives the need for parallel computing. This paper briefly describes advanced computational research in superplastic forming and automotive crash worthiness.

Zacharia, T. [Oak Ridge National Lab., TN (United States). Metals and Ceramics

1994-12-31T23:59:59.000Z

206

Advanced Boost System Developing for High EGR Applications  

SciTech Connect

To support industry efforts of clean and efficient internal combustion engine development for passenger and commercial applications This program focuses on turbocharger improvement for medium and light duty diesel applications, from complete system optimization percepective to enable commercialization of advanced diesel combustion technologies, such as HCCI/LTC. Improve combined turbocharger efficiency up to 10% or fuel economy by 3% on FTP cycle at Tier II Bin 5 emission level.

Sun, Harold

2012-09-30T23:59:59.000Z

207

Advanced Residential Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

Factsheet describing the Advanced Residential Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

Not Available

2009-09-01T23:59:59.000Z

208

Advanced Commercial Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

Factsheet describing the Advanced Commercial Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

Not Available

2009-09-01T23:59:59.000Z

209

Advanced Commercial Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

Factsheet describing the Advanced Commercial Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

2009-09-01T23:59:59.000Z

210

Advanced Residential Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

Factsheet describing the Advanced Residential Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

2009-09-01T23:59:59.000Z

211

STATEMENT OF CONSIDERATIONS Request by Ford Motor Company Research and Advanced Engineerln,g  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Engineerln,g Engineerln,g Laboratory for an Advance Waiver of Domestic and Foreign Invention Rights under DOE Cooperative Agreement No. DE-EE0000020; W(A)-2010-023, CH·1553 The Petitioner, Ford Motor Company Research and Advanced Engineering Laboratory (Ford), was awarded this cooperative agreement for the performance of work entitled "Ford Thermoelectric HVAC Project". The goal of the 'cooperative agreement is to investigate the technical and business feasibility of zonal thermoelectric HVAC hardware and design methodologies that can support advanced climate control activities. Ford and its partners (Visteon) will provide an assessment of the technical and commercial feasibility of using a zonal thermoelectric HVAC for light-duty vehicle applications. This waiver is for inventions of Ford

212

Additional research on advanced R and D in Japan  

DOE Green Energy (OSTI)

The August 1979 status of research and development programs in Japan on high temperature (inlet temperatures to 3000/sup 0/F) gas turbines, on the cleanup of exhaust gases from gas turbines and from coal combustion for steam generation, on fluidized bed combustion, and on fuel cells are summarized. This information was obtained from reports by and interviews of officials in Japanese industrial organizations and research institutes which are conducting the studies. The results show that economical technologies have been developed for waste water treatment and air pollution control so that the Japanese atmosphere and waters have regained their old purity. Basic studies have been completed on the advanced gas turbine, fluidized bed combustion system and fuel cells and pilot plants to demonstrate their performance are to be built. (LCL)

Not Available

1979-08-01T23:59:59.000Z

213

Categorical Exclusion Determination Form Program or Field Office: Advanced Research Projects Agency -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

nt of n y nt of n y Categorical Exclusion Determination Form Program or Field Office: Advanced Research Projects Agency - Energy Project Title: (0471-1508) NAVITASMAX - Novel Tuning of Critical Fluctuations for Advanced Thermal Energy Storage Location: *- Multiple States - Arizona, Massachusetts, New York, Colorado Proposed Action or Project Description: American Recovery and Reinvestment Act: D Funding will support a proof-of-concept project that evaluates and optimizes simple and complex supercritical fluids for use as novel heat storage, transfer, and working fluids in solar and nuclear applications. Proposed work consists of indoor laboratory-based research and development (R&D), modeling, and analysis, including (1) developing theoretical models to explore inhomogeneities and heat capacity anomalies in supercritical fluids, and prove potential to increase heat capacity over ranges of

214

A presentation by the Advanced Research Projects Agency - Energy (ARPA-E)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A presentation by the Advanced Research Projects Agency - Energy A presentation by the Advanced Research Projects Agency - Energy (ARPA-E) on Research Opportunities with the DOE for Historically Black Colleges and Universities A presentation by the Advanced Research Projects Agency - Energy (ARPA-E) on Research Opportunities with the DOE for Historically Black Colleges and Universities Research Opportunities with the DOE for Historically Black Colleges and Universities A presentation by the Advanced Research Projects Agency - Energy (ARPA-E) on Research Opportunities with the DOE for Historically Black Colleges and Universities More Documents & Publications Advanced Research Projects Agency -EnergyDepartment Before the House Science, Space, and Technology Committee Advanced Research Projects Agency - Energy Program Specific Recovery Plan

215

FUEL ELEMENTS FOR THE ARGONNE ADVANCED RESEARCH REACTOR  

SciTech Connect

The core design and the fuel element concept for the high-flux Argonne Advanced Research Reactor are presented. The core is cooled and moderated by light water and utilizes beryllium as a reflector. The fuel element assembly is rhomboidal in cross section and consists of 27 plates fastened together at their edges by dovetailed locking keys, and at each end by end fittings. Each fuel plate is 40 mils thick and contains a uniform dispersion of highly enriched UO/ sub 2/ particles, up to a maximum of 37 wt%, in a matrix of sintered stainless steel powder. A 5 mil thick stainless steel cladding is metallurgically bonded to each side of the fueled matrix. (N.W.R.)

Adolph, N.R.; Silberstein, M.S.; Weinstein, A.

1962-01-01T23:59:59.000Z

216

Advanced Vehicle Research Center of North Carolina | Open Energy  

Open Energy Info (EERE)

of North Carolina of North Carolina Jump to: navigation, search Name Advanced Vehicle Research Center of North Carolina Place Raleigh, North Carolina Zip 27614-7636 Product Provide a modern automotive testing facility Coordinates 37.760748°, -81.161183° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.760748,"lon":-81.161183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

REQUEST BY UNITED TECHNOLOGIES RESEARCH CENTER, FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUBCONTRACT NO. 4000009518 UNDER DOE SUBCONTRACT NO. 4000009518 UNDER DOE PRIME CONTRACT NO. DE-AC05-00OR22725; DOE WAIVER DOCKET W(A)-01- 026 [ORO-766] Petitioner, United Technologies Research Center, has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Subcontract No 4000009518 under DOE Prime Contract No. DE-AC05-00OR22725. The scope of this work is to develop a building combined heat and power (BCHP) system. In a BCHP, microturbines, high temperature fuel cells, and combinations of each produce electric power at the site while exhaust gas from the power plants is utilized to produce cooling, refrigeration, space heating, hot water and dehumidification for the building. This work is sponsored by the Office of Distributed Energy Resources, Office of Power Technologies.

218

REQUEST BY UNITED TECHNOLOGIES RESEARCH CENTER, FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A SUBTIER CONTRACT UNDER SUBCONTRACT A SUBTIER CONTRACT UNDER SUBCONTRACT NO. 4000009920 UNDER DOE PRIME CONTRACT NO. DE-AC05-000R22725; DOE WAIVER DOCKET W(A)-04-010 [ORO-787] Petitioner, United Technologies Research Center(UTRC), has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under a subtier contract under Subcontract No 4000009920 with Capstone Turbine Corporation under DOE Prime Contract No. DE-AC05-00OR22725. The scope of this work is to build upon prior work related to the development of an integrated cooling, heating, and power (CHP) system. Under this subtier contract with Capstone Turbine Corporation, UTRC will be responsible for performing detailed technology characterization and benefits quantification for three promising

219

Advanced tokamak research on the DIII-D tokamak  

SciTech Connect

The objective of the planned research in advanced tokamak development on DIII-D at General Atomics, San Diego, USA. is to establish improved tokamak operation through significant improvements in the stability factor, confinement quality, and bootstrap current fraction using localized radio frequency (rf) current profile control, rf and neutral beam heating for pressure profile control, as well as control of plasma rotation and optimization of the plasma boundary conditions. Recent research results in H-mode confinement, modifications of current profiles to achieve higher confinement and higher {beta}, a new regime of improved confinement (VH-mode), and rf noninductive current drive are encouraging. In this talk, arguments will be presented supporting the need for improved performance in tokamak reactors. Experimentally observed advanced performance regimes on DIII-D will be discussed. Confinement improvement up to H = 4, where H is the ratio of energy confinement time to the ITER89-P scaling H{triple_bond} {Tau}{sub E}/{Tau}{sub E-ITER89-P}, has been achieved. In other discharges {beta}{sub N} = {beta}/(I/aB),[%-m{center_dot}{Tau}/MA] {approx_gt} 6 has been obtained. These values have so far been achieved transiently and independently. Techniques, will be described which can extend the high performance to quasi-steady-state and sustain the high H and {beta}{sub N} values simultaneously. Two high performance regimes, one in first stable regime and the other in second stable regime, have been simulated br self-consistently evolving a magnetohydrodynamic (MHD) equilibrium-transport code. Finally, experimental program plans and outstanding important physics issues will be discussed.

Chan, V.S.

1994-01-01T23:59:59.000Z

220

Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993  

SciTech Connect

Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

Smith, V.E.

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Annual Planning Summaries: Advanced Research and Projects Agency (ARPA-E) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Projects Agency Research and Projects Agency (ARPA-E) Annual Planning Summaries: Advanced Research and Projects Agency (ARPA-E) Document(s) Available For Download February 2, 2012 2012 Annual Planning Summary for Advanced Research Projects Agency-Energy The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Advanced Research Projects Agency-Energy. January 26, 2011 2011 Annual Planning Summary for Advanced Research and Projects Agency (ARPA-E) The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Advanced Research and Projects Agency (ARPA-E). February 1, 2010 2010 Annual Planning Summary for Advanced Research Projects Agency-Energy (ARPA-E) Annual Planning Summaries briefly describe the status of ongoing NEPA

222

Fossil energy: From laboratory to marketplace. Part 2, The role of advanced research  

DOE Green Energy (OSTI)

The purpose of this work is to provide a summary description of the role of advanced research in the overall Fossil Energy R&D program successes. It presents the specific Fossil Energy advanced research products that have been adopted commercially or fed into other R&D programs as part of the crosscutting enabling technology base upon which advanced systems are based.

Not Available

1992-03-01T23:59:59.000Z

223

NETL: News Release - First Commercial Application of Advanced Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

February 19, 2004 February 19, 2004 First Commercial Application of Advanced Natural Gas Turbine Announced Turbine Developed Through Department of Energy's Advanced Turbine Systems Program GE Energy has announced that the world's first application of their next-generation 7H gas turbine technology will be an 800-megawatt class, combined-cycle project with Hydro-Quebec Production. The new natural-gas-fired power plant, to be built at Beauharnois, Quebec, southwest of Montreal, will be based on two GE 107H combined-cycle systems. The plant is expected to enter commercial service in mid 2007. The 7H gas turbine is one of two H System gas turbines developed by GE Energy as part of the U.S. Department of Energy's advanced turbine systems program. The Hydro-Quebec plant will be the first commercial application of the 60-hertz 7H, the H System turbine suitable for use in the United States and Canada. The 50-hertz 9H, suitable for the overseas market, got its commercial start in 2003 at the Baglan Bay Power Station in Wales, UK. The Baglan Bay plant has received a number of prestigious industry awards for its use of the innovative H System turbine.

224

2012 Grid Strategy: Distribution Management System (DMS) Advanced Applications for Distributed Energy Resources  

Science Conference Proceedings (OSTI)

This report provides an overview of the management systems and the advanced applications that utilities in the Electric Power Research Institutes (EPRIs) multi-year Smart Grid Demonstration Initiative are using or plan to use to manage the distribution system and to monitor and control distributed energy resources (DER). The management systems covered in this report are the distribution management system (DMS), the distributed energy resource management system (DERMS), and the demand ...

2012-10-10T23:59:59.000Z

225

[Advanced Gas Turbine Systems Research]. Technical Quarterly Progress Report  

Science Conference Proceedings (OSTI)

Major Accomplishments by Advanced Gas Turbine Systems Research (AGTSR) during this reporting period are highlighted below and amplified in later sections of this report: AGTSR distributed 50 proposals from the 98RFP to the IRB for review, evaluation and rank-ordering during the summer; AGTSR conducted a detailed program review at DOE-FETC on July 24; AGTSR organized the 1998 IRB proposal review meeting at SCIES on September 15-16; AGTSR consolidated all the IRB proposal scores and rank-orderings to facilitate the 98RFP proposal deliberations; AGTSR submitted meeting minutes and proposal short-list recommendation to the IRB and DOE for the 98RFP solicitation; AGTSR reviewed two gas turbine related proposals as part of the CU RFP State Project for renovating the central energy facility; AGTSR reviewed and cleared research papers with the IRB from the University of Pittsburgh, Wisconsin, and Minnesota; AGTSR assisted GTA in obtaining university stakeholder support of the ATS program from California, Pennsylvania, and Colorado; AGTSR assisted GTA in distributing alert notices on potential ATS budget cuts to over 150 AGTSR performing university members; AGTSR submitted proceedings booklet and organizational information pertaining to the OAI hybrid gas turbine workshop to DOE-FETC; For DOE-FETC, AGTSR updated the university consortium poster to include new members and research highlights; For DOE-FETC, the general AGTSR Fact Sheet was updated to include new awards, workshops, educational activity and select accomplishments from the research projects; For DOE-FETC, AGTSR prepared three fact sheets highlighting university research supported in combustion, aero-heat transfer, and materials; For DOE-FETC, AGTSR submitted pictures on materials research for inclusion in the ATS technology brochure; For DOE-FETC, AGTSR submitted a post-2000 roadmap showing potential technology paths AGTSR could pursue in the next decade; AGTSR distributed the ninth newsletter UPDATE to DOE, the IRB: and two interested partners involved in ATS; AGTSR submitted information on its RFP's, workshops, and educational activities for the 1999 ASMWIGTI technology report for worldwide distribution; AGTSR coordinated university poster session titles and format with Conference Management Associates (CMA) for the 98 ATS Annual; and AGTSR submitted 2-page abstract to CMA for the 98 ATS Review titled: ''AGTSR: A Virtual National Lab''.

NONE

1998-09-30T23:59:59.000Z

226

Argonne CNM Highlight: New equation could advance research in solar cell  

NLE Websites -- All DOE Office Websites (Extended Search)

nanoscale organic semiconductor junctions nanoscale organic semiconductor junctions Current-voltage characteristics and energetics of coulombically bound charge carrier pairs (copper phthalocyanine and boron subphthalocyanine chloride donors, and a fullerene acceptor) at the heterojunction in organic semiconductor junctions. New equation could advance research in solar cell materials Scientists in the Nanophotonics Group, the University of Michigan, and Northwestern University have developed a ground-breaking equation for organic semiconductor junctions. Organic, or "plastic" electronics, are a relatively new technology with the prospect of providing ultracheap, lightweight, and flexible electronic applications such as organic solar cells. Their model is successfully applied to two archetype, planar

227

Recent advances in metal hydrides for clean energy applications  

SciTech Connect

Metal hydrides are a fascinating class of materials that can be utilized for a surprising variety of clean energy applications, including smart solar collectors, smart windows, sensors, thermal energy storage, and batteries, in addition to their traditional application for hydrogen storage. Over the past decade, research on metal hydrides for hydrogen storage increased due to global governmental incentives and an increased focus on hydrogen storage research for polymer electrolyte membrane fuel cell operation. Tremendous progress has been made in so-called complex metal hydrides for hydrogen storage applications with the discovery of many new hydrides containing covalently bound complex anions. Many of these materials have applications beyond hydrogen storage and are being investigated for lithium-ion battery separator and anode materials. In this issue of MRS Bulletin , we present the state of the art of key evolving metal-hydride-based clean energy technologies with an outlook toward future needs.

Ronnebro, Ewa; Majzoub, Eric H.

2013-06-01T23:59:59.000Z

228

Advanced technology options for industrial heating equipment research  

Science Conference Proceedings (OSTI)

This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

Jain, R.C.

1992-10-01T23:59:59.000Z

229

Development of advanced battery systems for vehicle applications  

SciTech Connect

The Advanced Battery Business Unit (ABBU) of Johnson Controls, Inc. is developing several promising advanced battery technologies including flow-through lead-acid, zinc/bromine, and nickel hydrogen. The flow-through lead-acid technology, which is being developed under Department of Energy (DOE) sponsorship, is progressing towards the fabrication of a 39 kWh battery system. Recent efforts have focused on achieving the aggressive specific energy goal of 56 Wh/kg in 12 volt module form. Recent DOE sponsored work in the zinc/bromine program has focused on the development of a proof-of concept 50 kWh electric vehicle system for a light van application. Efforts in the nickel hydrogen program have focused on reducing system cost in order to make the life-time premium market and EV market possible targets. The status and future direction of each of these programs are summarized.

Zagrodnik, J.P.; Eskra, M.D.; Andrew, M.G.; Gentry, W.O.

1989-01-01T23:59:59.000Z

230

DOE Announces Up to $7.5 Million in Advanced Technology Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

development projects in support of water power technology. DOE plans to award industry-led partnerships to research, develop andor field test advanced water power technologies...

231

2012 Annual Planning Summary for Advanced Research Projects Agency-Energy  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Advanced Research Projects Agency-Energy.

232

Advances in Conjugated Linoleic Acid Research, Volume 3Chapter 3 Syntheses of Conjugated Linoleic Acids  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Volume 3 Chapter 3 Syntheses of Conjugated Linoleic Acids Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Press Downloadable pdf...

233

Advances in Conjugated Linoleic Acid Research, Volume 3 Chapter 9 Conjugated Linoleic Acid in Hypertension  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Volume 3 Chapter 9 Conjugated Linoleic Acid in Hypertension Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Press Downloadable pdf...

234

Advances in Conjugated Linoleic Acid Research, Volume 3Chapter 1 Conjugated Linoleic Acid Synthesis  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Volume 3 Chapter 1 Conjugated Linoleic Acid Synthesis Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Press Downloadable pdf...

235

Advanced Electric Submersible Pump Design Tool for Geothermal Applications  

DOE Green Energy (OSTI)

Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300 C geothermal water at 80kg/s flow rate in a maximum 10-5/8-inch diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis has been developed to design ESPs for geothermal applications. Design of Experiments was also performed to optimize the geometry and performance. The designed mixed-flow type centrifugal impeller and diffuser exhibit high efficiency and head rise under simulated EGS conditions. The design tool has been validated by comparing the prediction to experimental data of an existing ESP product.

Xuele Qi; Norman Turnquist; Farshad Ghasripoor

2012-05-31T23:59:59.000Z

236

DOE Seeks Applications to Invest up to $40 Million in Housing Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seeks Applications to Invest up to $40 Million in Housing Seeks Applications to Invest up to $40 Million in Housing Research DOE Seeks Applications to Invest up to $40 Million in Housing Research June 13, 2007 - 1:40pm Addthis Strengthens commitment to increase efficiency in homes WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced DOE is issuing a Funding Opportunity Announcement (FOA) that will make available up to $40 million to fund research applications to fundamentally change the way American homes consume energy. Awards made under this FOA would support research, development and deployment of technologies that will, on average, reduce new home energy use 30-90 percent. The results of this effort will help advance President Bush's Advanced Energy Initiative, which aims to change the way we power our cars,

237

Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research. Quarterly technical progress report, April--June 1992  

SciTech Connect

Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

1992-12-01T23:59:59.000Z

238

Sandia National Laboratories: Advanced Simulation Computing: Research &  

NLE Websites -- All DOE Office Websites (Extended Search)

Research & Collaboration Research & Collaboration Partnerships among the national laboratories, industry, and academia leverage a broad spectrum of talent and multiply the effectiveness of our research efforts. These collaborations help solve the challenges of developing computing platforms and simulation tools across a number of disciplines. Computer Science Research Institute The Computer Science Research Institute brings university faculty and students to Sandia for focused collaborative research on DOE computer and computational science problems. Organized under the DOE Stockpile Computing Program, participants conduct leading-edge research, interact with scientists and engineers at the Laboratories, and help transfer the results of their research to programs at the Labs.

239

Integrated Biorefinery Research Facility: Advancing Biofuels Technology (Fact Sheet)  

DOE Green Energy (OSTI)

The Integrated Biorefinery Research Facility (IBRF) at the National Renewable Energy Laboratory (NREL) expands NREL's cellulosic ethanol research and development and collaboration capabilities.

Not Available

2009-03-01T23:59:59.000Z

240

Copyright Awwa Research Foundation 2006 Advanced Water Treatment Impacts onAdvanced Water Treatment Impacts on  

E-Print Network (OSTI)

, brackish groundwater, produced water, etc.produced water, etc. Advanced treatmentAdvanced treatment Water and variables affecting VFactors and variables affecting V (volume produced from alternative water supplies)(volume produced from alternative water supplies) ""Supply sideSupply side"" Volume availableVolume available from

Keller, Arturo A.

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Application of advanced laser diagnostics to hypersonic wind tunnels and combustion systems.  

SciTech Connect

This LDRD was a Sandia Fellowship that supported Andrea Hsu's PhD research at Texas A&M University and her work as a visitor at Sandia's Combustion Research Facility. The research project at Texas A&M University is concerned with the experimental characterization of hypersonic (Mach>5) flowfields using experimental diagnostics. This effort is part of a Multidisciplinary University Research Initiative (MURI) and is a collaboration between the Chemistry and Aerospace Engineering departments. Hypersonic flight conditions often lead to a non-thermochemical equilibrium (NTE) state of air, where the timescale of reaching a single (equilibrium) Boltzmann temperature is much longer than the timescale of the flow. Certain molecular modes, such as vibrational modes, may be much more excited than the translational or rotational modes of the molecule, leading to thermal-nonequilibrium. A nontrivial amount of energy is therefore contained within the vibrational mode, and this energy cascades into the flow as thermal energy, affecting flow properties through vibrational-vibrational (V-V) and vibrational-translational (V-T) energy exchanges between the flow species. The research is a fundamental experimental study of these NTE systems and involves the application of advanced laser and optical diagnostics towards hypersonic flowfields. The research is broken down into two main categories: the application and adaptation of existing laser and optical techniques towards characterization of NTE, and the development of new molecular tagging velocimetry techniques which have been demonstrated in an underexpanded jet flowfield, but may be extended towards a variety of flowfields. In addition, Andrea's work at Sandia National Labs involved the application of advanced laser diagnostics to flames and turbulent non-reacting jets. These studies included quench-free planar laser-induced fluorescence measurements of nitric oxide (NO) and mixture fraction measurements via Rayleigh scattering.

North, Simon W. (Texas A& M University, College Station, TX); Hsu, Andrea G. (Texas A& M University, College Station, TX); Frank, Jonathan H.

2009-09-01T23:59:59.000Z

242

Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992  

SciTech Connect

Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

Speight, J.G.

1992-12-31T23:59:59.000Z

243

Muon Application to Advanced Bio- and Nano-Sciences  

SciTech Connect

Among present and future applications of the muon to various fields of sciences, there are several examples where research accomplishments can only be done by using muons. Here we would like to explain the selected two examples representing bio- and nano-sciences, namely, muon spin imaging of human brain for new brain function studies and muonium spin-exchange scattering spectroscopy for the development of spintronics materials.

Nagamine, Kanetada [Muon Science Laboratory, KEK, Tsukuba, Ibaraki, 305-0081 (Japan); Atomic Physics Laboratory, RIKEN, Wako, Saitama, 351-0198 (Japan); Department of Physics and Astronomy, University of California, Riverside, CA92521 (United States)

2008-02-21T23:59:59.000Z

244

Energy Department to Invest up to $5.2 million to Advance Basic Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Invest up to $5.2 million to Advance Basic to Invest up to $5.2 million to Advance Basic Research through Federal-State Partnership Energy Department to Invest up to $5.2 million to Advance Basic Research through Federal-State Partnership April 7, 2008 - 10:50am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it will invest up to $5.2 million in basic research projects with 12 universities from across the country. In an effort to ensure America remains the world leader in scientific research and innovation, universities selected will pair with a DOE national laboratory to maximize expertise. These research projects, ranging from advanced solar cells to hydrogen energy systems, are a part of DOE's Experimental Program to Stimulate Competitive Research (EPSCoR), a federal-state partnership

245

DOE Announces Up to $7.5 Million in Advanced Technology Research to Harness  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

.5 Million in Advanced Technology Research to .5 Million in Advanced Technology Research to Harness Energy Potential of Oceans, Tides and Rivers DOE Announces Up to $7.5 Million in Advanced Technology Research to Harness Energy Potential of Oceans, Tides and Rivers May 5, 2008 - 11:30am Addthis WASHINGTON, DC - As part of the Bush Administration's ongoing commitment to invest in clean energy technologies to meet growing energy demand while reducing greenhouse gas emissions, the U.S. Department of Energy (DOE) has announced up to $7.5 million in federal funding for research and development to help advance the viability and cost-competitiveness of advanced water power systems. Through this Funding Opportunity Announcement (FOA), DOE seeks partnerships with U.S. industry and universities to develop innovative and effective technologies capable of

246

Energy Secretary Chu to Tour GE Global Research Advanced Manufacturing Lab  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu to Tour GE Global Research Advanced Secretary Chu to Tour GE Global Research Advanced Manufacturing Lab Energy Secretary Chu to Tour GE Global Research Advanced Manufacturing Lab May 24, 2012 - 10:54am Addthis WASHINGTON - On Friday, May 25, 2012, U.S. Energy Secretary Steven Chu will visit GE Global Research in Niskayuna, New York, where he will tour the company's advanced manufacturing lab. Secretary Chu will highlight the economic opportunities in the clean energy economy as well as advanced manufacturing's potential to save American companies time and money while supporting efficient innovative product engineering and development. Following his tour, Secretary Chu will speak at Rensselaer Polytechnic Institute's Commencement Colloquy. On Saturday, May 26, Secretary Chu will participate in the university's commencement ceremonies as an

247

Argonne Transportation Technology R&D Center - Advanced Powertrain Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Powertrain Research Facility Advanced Powertrain Research Facility Argonne's Advanced Powertrain Research Facility (APRF) is the principal U.S. Department of Energy (DOE) facility for assessing advanced and hybrid electric vehicle (HEV) technologies for the Vehicle Technologies Program. The APRF is an integrated multi-dynamometer vehicle and component test facility capable of testing conventional and hybrid vehicle propulsion systems and vehicles (two- or four-wheel drive) in a precise laboratory environment using a variety of fuels (including hydrogen). The facility is used to assess powertrain technology for light- and medium-duty propulsion systems with state-of-the-art performance and emissions measurement equipment and techniques. Argonne's Advanced Powertrain Research Facility

248

Energy Secretary Chu to Tour GE Global Research Advanced Manufacturing Lab  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tour GE Global Research Advanced Tour GE Global Research Advanced Manufacturing Lab Energy Secretary Chu to Tour GE Global Research Advanced Manufacturing Lab May 24, 2012 - 10:54am Addthis WASHINGTON - On Friday, May 25, 2012, U.S. Energy Secretary Steven Chu will visit GE Global Research in Niskayuna, New York, where he will tour the company's advanced manufacturing lab. Secretary Chu will highlight the economic opportunities in the clean energy economy as well as advanced manufacturing's potential to save American companies time and money while supporting efficient innovative product engineering and development. Following his tour, Secretary Chu will speak at Rensselaer Polytechnic Institute's Commencement Colloquy. On Saturday, May 26, Secretary Chu will participate in the university's commencement ceremonies as an

249

Groundbreaking for the Center for Advanced Research in ...  

Science Conference Proceedings (OSTI)

... to practical applications-the engineering of proteins to accomplish specific tasks in domains ranging from health care to enzymatic laundry care to ...

2010-10-05T23:59:59.000Z

250

Time-Resolved Research (XSD) | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

are an essential technology in many industrial and consumer applications, including fuel injection, inkjet printers, liquid-jet cutting and cleaning systems. In particular,...

251

STATEMENT OF CONSIDERATIONS Request by Ford Motor Company Research and Advanced Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

No No . DE-FC26-07NT 43276; W(A)-08-002 , CH-1429 The Petitioner, Ford Motor Company Research and Advanced Engineering Laboratory (Ford), was awarded this cooperative agreement for the performance of work entitled "E85 Optim ized Engine Application ." The goal of the cooperative agreement is to develop practical technology which improves vehicle fuel efficiency using E85 and which is feasible for production implementation in the short term . Ford will : 1) utilize the favorable knock suppression properties of ethanol to build upon and enhance the recent techn ica l development of spark ignition turbocharged direct injection gasoline engines; and 2) increase the "fun-to-drive" attribute normally associated with diesel vehicles in Europe

252

Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Variable Speed Air-Source Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project The U.S. Department of Energy is currently conducting research into advanced variable speed air-source integrated heat pumps (AS-IHPs). Project Description This project seeks to develop AS-IHP products for the larger air-source system market. Development focuses on a fully variable capacity or variable speed AS-IHP option. Project Partners Research is being undertaken through a cooperative research and development agreement (CRADA) between the Department of Energy, Oak Ridge National Laboratory, and a CRADA partner. Project Goals The goal of this project is the development of a fully variable-speed version of an AS-IHP product that can provide heating, ventilation, and air

253

Center for Fuel Cell Research and Applications | Open Energy Information  

Open Energy Info (EERE)

Fuel Cell Research and Applications Fuel Cell Research and Applications Jump to: navigation, search Name Center for Fuel Cell Research and Applications Place The Woodlands, Texas Zip TX 77381 Product A multi-sponsor research consortium that tests and evaluates commercial and near-commercial fuel cell systems. References Center for Fuel Cell Research and Applications[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Center for Fuel Cell Research and Applications is a company located in The Woodlands, Texas . References ↑ "Center for Fuel Cell Research and Applications" Retrieved from "http://en.openei.org/w/index.php?title=Center_for_Fuel_Cell_Research_and_Applications&oldid=343358

254

NREL: Wind Research - Advanced Energy Legislation Tracker Tool...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy legislation. The tool is a resource for legislators, researchers, journalists, business owners, students, and anyone interested in state-level energy legislation and policy...

255

Lambdastation: a forwarding and admission control service to interface production network facilities with advanced research network paths  

Science Conference Proceedings (OSTI)

Over the past several years, there has been a great deal of research effort and funding put into the deployment of optical-based, advanced technology wide-area networks. Fermilab and CalTech have initiated a project to enable our production network facilities to exploit these advanced research network facilities. Our objective is to forward designated data transfers across these advanced wide area networks on a per-flow basis, making use our capacious production-use storage systems connected to the local campus network. To accomplish this, we intend to develop a dynamically provisioned forwarding service that would provide alternate path forwarding onto available wide area advanced research networks. The service would dynamically reconfigure forwarding of specific flows within our local production-use network facilities, as well as provide an interface to enable applications to utilize the service. We call this service LambdaStation. If one envisions wide area optical network paths as high bandwidth data railways, then LambdaStation would functionally be the railroad terminal that regulates which flows at the local site get directed onto the high bandwidth data railways. LambdaStation is a DOE-funded SciDac research project in its very early stage of development.

DeMar, Philip; Petravick, Don; /Fermilab

2004-12-01T23:59:59.000Z

256

The U.S. and China - Advancing Clean Energy Research Through Cooperation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The U.S. and China - Advancing Clean Energy Research Through The U.S. and China - Advancing Clean Energy Research Through Cooperation The U.S. and China - Advancing Clean Energy Research Through Cooperation September 3, 2010 - 9:45am Addthis David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs What does this project do? Advances in clean vehicles. Advances in clean coal, including carbon capture and storage. What two countries lead the world in energy consumption, energy production and greenhouse gas emissions? The United States and China. Can our two countries work together to help lead the world in a transition to clean energy? A recent announcement by U.S. Energy Secretary Steven Chu is an important step in that direction. Yesterday, Secretary Chu announced that the University of Michigan and West

257

Advanced, Low-Cost Solar Water Heating Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced, Low-Cost Solar Water Heating Advanced, Low-Cost Solar Water Heating Research Project Advanced, Low-Cost Solar Water Heating Research Project The U.S. Department of Energy is currently conducting research into advanced low-cost solar water heating. This project will employ innovative techniques to adapt water heating technology to meet U.S. market requirements, including specifications, cost, and performance targets. Project Description This project seeks to identify and resolve technical, performance, and cost barriers to the development of easy-to-install and reliable solar water heating systems for all major U.S. climate regions. The project will also evaluate opportunities for breakthrough system innovations and innovations in advanced system performance ratings. Project Partners

258

Cooperative Research and Development of Primary Surface Recuperator for Advanced Microturbine Systems  

SciTech Connect

Recuperators have been identified as key components of advanced gas turbines systems that achieve a measure of improvement in operating efficiency and lead the field in achieving very low emissions. Every gas turbine manufacturer that is studying, developing, or commercializing advanced recuperated gas turbine cycles requests that recuperators operate at higher temperature without a reduction in design life and must cost less. The Solar Cooperative Research and Development of Primary Surface Recuperator for Advanced Microturbine Systems Program is directed towards meeting the future requirements of advanced gas turbine systems by the following: (1) The development of advanced alloys that will allow recuperator inlet exhaust gas temperatures to increase without significant cost increase. (2) Further characterization of the creep and oxidation (dry and humid air) properties of nickel alloy foils (less than 0.13 mm thick) to allow the economical use of these materials. (3) Increasing the use of advanced robotic systems and advanced in-process statistical measurement systems.

Escola, George

2007-01-17T23:59:59.000Z

259

Advances in Conjugated Linoleic Acid Research, Vol 2Chapter 15 Metabolism of Conjugated Linoleic Acids  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Vol 2 Chapter 15 Metabolism of Conjugated Linoleic Acids Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry 305CB38A5497B8636973A9A3E5756142 AOCS Press ...

260

Advances in Conjugated Linoleic Acid Research, Vol 2Chapter 18 Conjugated Linoleic Acid in Experimental Atherosclerosis  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Vol 2 Chapter 18 Conjugated Linoleic Acid in Experimental Atherosclerosis Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry AA212B9659CFD264953B73B80A39B367 AOCS

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advances in Conjugated Linoleic Acid Research, Vol 2Chapter 8 Conjugated Linoleic Acid in Food  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Vol 2 Chapter 8 Conjugated Linoleic Acid in Food Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Downloadable pdf of Chapter 8 Conjugated Lino

262

Advances in Conjugated Linoleic Acid Research, Vol 2Chapter 5 Commercial Synthesis of Conjugated Linoleate  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Vol 2 Chapter 5 Commercial Synthesis of Conjugated Linoleate Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Downloadable pdf of Chapter 5 Com

263

Advances in Conjugated Linoleic Acid Research, Vol 2Chapter 13 CLA and Bone Modeling in Rats  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Vol 2 Chapter 13 CLA and Bone Modeling in Rats Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry AOCS Press Downloadable pdf of Chapter 13 C

264

DOE Selects Nine New University Coal Research Projects to Advance Coal-Based Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Selects Nine New University Coal Research Projects to Advance Coal-Based Power Selects Nine New University Coal Research Projects to Advance Coal-Based Power Systems Nine new projects selected by the U.S. Department of Energy (DOE) under the University Coal Research program will seek long-term solutions for the clean and efficient use of our nation's abundant coal resources. The announcement today of the selections marks the 34 th round of the Department's longest-running coal program, which began in 1979. This research continues DOE efforts to improve the understanding of the chemical and physical processes governing coal conversion and utilization, and support the technological development of the advanced coal power systems of the future. These advanced systems include ultra-clean

265

Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

That Will Advance Solid Oxide Fuel Cell Research That Will Advance Solid Oxide Fuel Cell Research Selected by DOE for Further Development Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by DOE for Further Development July 27, 2012 - 1:00pm Addthis Washington, D.C. - Seven projects that will help develop low-cost solid oxide fuel cell (SOFC) technology for environmentally responsible central power generation from the Nation's abundant fossil energy resources have been selected for further research by the Department of Energy (DOE). The projects, managed by the Office of Fossil Energy's National Energy Technology Laboratory (NETL), are valued at a total of $4,391,570, with DOE contributing $3,499,250 and the remaining cost provided by the recipients. Four of the selected projects will pursue advances in cathode performance,

266

NETL: News Release - Energy Department Advances Research on Methane...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Methane Hydrate opens new window "The Energy Department's long term investments in shale gas research during the 70s and 80s helped pave the way for today's boom in domestic...

267

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992  

SciTech Connect

Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

Not Available

1992-12-31T23:59:59.000Z

268

Fish Protection: Cooperative research advances fish-friendly turbine design  

SciTech Connect

Renewable hydropower is a tremendous resource within the Pacific Northwest that is managed with considerable cost and consideration for the safe migration of salmon. Recent research conducted in this region has provided results that could lower the impacts of hydro power production and make the technology more fish-friendly. This research is now being applied during a period when a huge emphasis is being made to develop clean, renewable energy sources.

Brown, Richard S.; Ahmann, Martin L.; Trumbo, Bradly A.; Foust, Jason

2012-12-01T23:59:59.000Z

269

Polymers as advanced materials for desiccant applications, 1988  

DOE Green Energy (OSTI)

This report documents work to identify a next-generation, low-cost material with which solar energy or heat from another low-cost energy source can be used for regenerating the water vapor sorption activity of the desiccant. The objective of the work is to determine how the desired sorption performance of advanced desiccant materials can be predicted by understanding the role of the material modifications and material surfaces. The work concentrates on solid materials to be used for desiccant cooling systems and which process water vapor in an atmosphere to produce cooling. The work involved preparing modifications of polystyrene sulfonic acid sodium salt, synthesizing a hydrogel, and evaluating the sorption performances of these and similar commercially available polymeric materials; all materials were studied for their potential application in solid commercial desiccant cooling systems. Background information is also provided on desiccant cooling systems and the role of a desiccant material within such a system, and it includes the use of polymers as desiccant materials. 31 refs., 16 figs., 5 tabs.

Czanderna, A.W.; Neidlinger, H.H.

1990-09-01T23:59:59.000Z

270

Application of the GSFUDS to advanced batteries and vehicles  

DOE Green Energy (OSTI)

The GSFUDS approach to determining appropriate battery test power profiles is applied to various combinations of advanced batteries and electric vehicles. Computer simulations are used to show that the SFUDS velocity driving profile developed for the IDSEP electric vehicle also yielded energy consumption (Wh/km) and peak power values for other vehicles of greatly different characteristics that are in good agreement with the corresponding values for the same vehicles on the FUDS driving cycle. The computer results also showed that the GSFUDS power steps expressed as multiples of the average power, Pav are applicable to electric vehicles in general for the SFUDS driving profile if the peak power step is altered to reflect the changes in the vehicle design. A general procedure is given for presenting battery test data in terms of the constant power and GSFUDS Ragone curves from which the vehicle range can be determined for the FUDS and other driving cycles for different vehicle designs. 5 refs., 6 figs., 6 tabs.

Burke, A.F.; Cole, G.H.

1990-01-01T23:59:59.000Z

271

The University of Texas at Dallas Advanced Network Research Labs 1 Generalized Burst Assembly and Scheduling Techniques for  

E-Print Network (OSTI)

The University of Texas at Dallas Advanced Network Research Labs 1 Generalized Burst Assembly Jason P. Jue, and Biao Chen Advanced Network Research Labs The University of Texas at Dallas, USA #12;The University of Texas at Dallas Advanced Network Research Labs 2 Outline · Optical Burst Switching

Vokkarane, Vinod M.

272

Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways  

SciTech Connect

Significant energy savings can be achieved in commercial building operation, along with increased comfort and control for occupants, through the implementation of advanced technologies. This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies. This paper is actually a synthesis of five other white papers: the first describes the market assessment including estimates of market potential and energy savings for sensors and control strategies currently on the market as well as a discussion of market barriers to these technologies. The other four cover technology pathways: (1) current applications and strategies for new applications, (2) sensors and controls, (3) networking, security, and protocols and standards, and (4) automated diagnostics, performance monitoring, commissioning, optimal control and tools. Each technology pathway chapter gives an overview of the technology or application. This is followed by a discussion of needs and the current status of the technology. Finally, a series of research topics is proposed.

Brambley, Michael R.; Haves, Philip; McDonald, Sean C.; Torcellini, Paul; Hansen, David G.; Holmberg, David; Roth, Kurt

2005-04-13T23:59:59.000Z

273

Advancing Public Health and Medical Preparedness with Operations Research  

Science Conference Proceedings (OSTI)

Planning for a catastrophe involving a disease outbreak with the potential for mass casualties is a significant challenge for emergency managers. Public health experts at the US Centers for Disease Control and Prevention CDC teamed with operations researchers ... Keywords: decision support, mass dispensing, national health security, optimization, public health emergency preparedness, simulation

Eva K. Lee; Ferdinand Pietz; Bernard Benecke; Jacquelyn Mason; Greg Burel

2013-01-01T23:59:59.000Z

274

Advanced sodium fast reactor accident source terms : research needs.  

Science Conference Proceedings (OSTI)

An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic eventEnergetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolantEntrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached claddingRates of radionuclide leaching from fuel by liquid sodiumSurface enrichment of sodium pools by dissolved and suspended radionuclidesThermal decomposition of sodium iodide in the containment atmosphereReactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model of radionuclide release progressed.

Powers, Dana Auburn; Clement, Bernard [IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France] IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France; Denning, Richard [Ohio State University, Columbus, OH] Ohio State University, Columbus, OH; Ohno, Shuji [Japan Atomic Energy Agency, Ibaraki, Japan] Japan Atomic Energy Agency, Ibaraki, Japan; Zeyen, Roland [Institute for Energy Petten, Saint-Paul-lez-Durance, France] Institute for Energy Petten, Saint-Paul-lez-Durance, France

2010-09-01T23:59:59.000Z

275

Advanced sodium fast reactor accident source terms : research needs.  

SciTech Connect

An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic eventEnergetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolantEntrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached claddingRates of radionuclide leaching from fuel by liquid sodiumSurface enrichment of sodium pools by dissolved and suspended radionuclidesThermal decomposition of sodium iodide in the containment atmosphereReactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model of radionuclide release progressed.

Powers, Dana Auburn; Clement, Bernard [IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France] IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France; Denning, Richard [Ohio State University, Columbus, OH] Ohio State University, Columbus, OH; Ohno, Shuji [Japan Atomic Energy Agency, Ibaraki, Japan] Japan Atomic Energy Agency, Ibaraki, Japan; Zeyen, Roland [Institute for Energy Petten, Saint-Paul-lez-Durance, France] Institute for Energy Petten, Saint-Paul-lez-Durance, France

2010-09-01T23:59:59.000Z

276

Advanced 3D Detectors for Research | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced 3D Detectors for Research Advanced 3D Detectors for Research Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » January 2013 Advanced 3D Detectors for Research Gamma-ray detectors built with silicon photomultiplier arrays provide high-resolution 3D imaging for research. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of Jefferson Lab Silicon photomultiplier array. The Office of Nuclear Physics funds a community of scientists to do basic

277

Multi-Photon Phosphor Feasibility Research: Advanced Light Source Development  

Science Conference Proceedings (OSTI)

Efficiencies of commercial light sources have reached a plateau at about 33 percent of the maximum possible, but these efficiencies will have to be doubled to achieve the energy savings in lighting needed in the future. One possibility is to develop phosphor materials for application to fluorescent lamps that emit two visible photons for each absorbed ultraviolet photon. Scientists discussed the possibility of developing such phosphor materials at a workshop held May 8 through May 10, 2001 in Peabody, Ma...

2001-08-09T23:59:59.000Z

278

Cooperative Research and Development for Advanced Microturbines Program on Advanced Integrated Microturbine System  

SciTech Connect

The Advanced Integrated Microturbine Systems (AIMS) project was kicked off in October of 2000 to develop the next generation microturbine system. The overall objective of the project was to develop a design for a 40% electrical efficiency microturbine system and demonstrate many of the enabling technologies. The project was initiated as a collaborative effort between several units of GE, Elliott Energy Systems, Turbo Genset, Oak Ridge National Lab and Kyocera. Since the inception of the project the partners have changed but the overall direction of the project has stayed consistent. The project began as a systems study to identify design options to achieve the ultimate goal of 40% electrical efficiency. Once the optimized analytical design was identified for the 40% system, it was determined that a 35% efficient machine would be capable of demonstrating many of the advanced technologies within the given budget and timeframe. The items that would not be experimentally demonstrated were fully produced ceramic parts. However, to understand the requirements of these ceramics, an effort was included in the project to experimentally evaluate candidate materials in representative conditions. The results from this effort would clearly identify the challenges and improvement required of these materials for the full design. Following the analytical effort, the project was dedicated to component development and testing. Each component and subsystem was designed with the overall system requirements in mind and each tested to the fullest extent possible prior to being integrated together. This method of component development and evaluation helps to minimize the technical risk of the project. Once all of the components were completed, they were assembled into the full system and experimentally evaluated.

Michael J. Bowman

2007-05-30T23:59:59.000Z

279

DOE Announces up to $4 Million for University Research into Advanced  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Million for University Research into 4 Million for University Research into Advanced Biomass Conversion DOE Announces up to $4 Million for University Research into Advanced Biomass Conversion April 11, 2008 - 10:50am Addthis FONTANA, Calif. - U.S. Department of Energy (DOE) Under Secretary Clarence "Bud" Albright today announced up to $4 million in funding available to U.S. universities for research and development of cost-effective, environmentally friendly biomass conversion technologies. Advancing biomass technology is critical to diversifying our nation's energy sources in an effort to reduce greenhouse gas emissions and dependence on foreign oil. Combined with a university cost share of 20%, up to $5 million would be invested in these projects. "As world demand for energy continues to grow, so too must our supply of

280

Potential performance benefits of advanced components and materials research  

DOE Green Energy (OSTI)

This paper reports work in progress to identify the potential impact of new components and materials on the energy savings, comfort, or utility of buildings. As of this writing, three new items have received preliminary examination. Wallboard containing phase change material (PCM) for thermal storage appears very promising. PCM combined with sensible storage can significantly reduce the storage volume in water walls, liquid convective diodes, and hybrid heating systems. Aerogel window glazings with present aerogel properties appear to be superior to existing materials only in applications with low insolation or very cold temperatures, but an increase in optical transmission of the material could lead to a glazing that is superior in all climates with significant winters.

Neeper, D.A.; McFarland, R.D.; Hedstrom, J.C.; Lazarus, G.S.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993  

DOE Green Energy (OSTI)

Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

Smith, V.E.

1994-09-01T23:59:59.000Z

282

ADVANCED ONCE-THROUGH STEAM GENERATOR FOR SODIUM APPLICATION  

SciTech Connect

Preliminary design calculations were performed for a once-through type steam generator and reheater for advanced sodium power plants in the 300-Mwe range. Parameters and performance data are presented. (D.L.C.)

Terpe, G.R.

1960-09-19T23:59:59.000Z

283

Advanced Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Systems: Advanced Systems: high Performance fenestration systems Research areas: Research activities to improve the performance of windows and other fenestration products must address window systems issues as well as Glazing Materials research. LBNL activities in the area of Advanced Systems include research at both the product level and the building envelope and building systems levels. Highly insulating windows - using non structural center layers Lower cost solutions to more insulating three layer glazing systems, with the potential to turn windows in U.S. heating dominated residential applications into net-energy gainers. Highly Insulating Window Frames In collaboration with the Norwegian University of Science and Technology, we are researching the potentials for highly insulating window frames. Our initial work examines European frames with reported U-factors under 0.15 Btu/hr-ft2-F. Future research aims to analyze these designs, verify these performance levels and ensure that procedures used to calculate frame performance are accurate.

284

Advanced Scientific Computing Research (ASCR) Homepage | U.S. DOE Office of  

Office of Science (SC) Website

ASCR Home ASCR Home Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » ASCR Advisory Committee Exascale Report Synergistic Challenges in Data-Intensive Science and Exascale Computing ASCAC Subcommittee Summary Report. This new report discusses the natural synergies among the challenges facing data-intensive science and exascale computing, including the need for a new scientific workflow.

285

Some Practical Applications of Dark Matter Research  

E-Print Network (OSTI)

Two practical spin-offs from the development of cryogenic dark matter detectors are presented. One in materials research, the other in biology.

Stodolsky, L

2008-01-01T23:59:59.000Z

286

SF6 Research and Applications Update  

Science Conference Proceedings (OSTI)

This report presents the results of three distinct areas of sulfur hexafluoride (SF6) research conducted in 2011. The first area of research presented is investigations into the use of SF6 adsorbents for reducing SF6 emissions into the atmosphere. The results show that the adsorbent technology is effective in capturing the SF6; however, future research is needed to allow for long-term retention of the SF6. The second area of research is into the progress in the area of SF6 replacements. The Electric Pow...

2011-12-23T23:59:59.000Z

287

Underwater Sensor Networking: Research Challenges and Potential Applications  

E-Print Network (OSTI)

Underwater Sensor Networking: Research Challenges and Potential Applications USC/ISI Technical, and underwater robotics. We identify research directions in short-range acoustic communications, MAC, time in applications today on the ground, underwater operations remain quite limited by comparison. Remotely controlled

Heidemann, John

288

High-performance Computing in China: Research and Applications  

Science Conference Proceedings (OSTI)

In this report we review the history of high-performance computing (HPC) system development and applications in China and describe the current status of major government programs, HPC centers and facilities, major research institutions, important HPC ... Keywords: China, High performance computing, research and applications

Ninghui Sun; David Kahaner; Debbie Chen

2010-11-01T23:59:59.000Z

289

Underwater sensor networking: Research challenges and potential applications  

E-Print Network (OSTI)

This report summarizes our research directions in underwater sensor networks. We highlight potential applications to off-shore oilfields for seismic monitoring, equipment monitoring, and underwater robotics. We identify research directions in short-range acoustic communications, MAC, time synchronization, and localization protocols for highlatency acoustic networks, long-duration network sleeping, and application-level data scheduling. 1

John Heidemann; Yuan Li; Affan Syed; Jack Wills; Wei Ye

2006-01-01T23:59:59.000Z

290

Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program semiannual progress report for the period ending September 30, 1991. Fossil Energy Program  

Science Conference Proceedings (OSTI)

The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

Judkins, R.R.; Cole, N.C. [comps.

1992-04-01T23:59:59.000Z

291

Fossil Energy Advanced Research and Technology Development (AR TD) Materials Program semiannual progress report for the period ending September 30, 1991  

Science Conference Proceedings (OSTI)

The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

Judkins, R.R.; Cole, N.C. (comps.)

1992-04-01T23:59:59.000Z

292

clean, "smart" electrical grids; and advance clean energy research and  

NLE Websites -- All DOE Office Websites (Extended Search)

clean, "smart" electrical grids; and advance clean energy research and clean, "smart" electrical grids; and advance clean energy research and development (R&D). The new action plan also places a greater emphasis on energy efficiency to take advantage of both countries' approaches and tools to help facilitate the uptake of energy efficiency technologies and practices. Accomplishments to date under the CED include: (1) completing the final phase of the Weyburn-Midale Carbon Dioxide Monitoring and Storage Project, which focuses on best practices for the

293

Analysis of Petroleum Technology Advances Through Applied Research by Independent Oil Producers  

SciTech Connect

Petroleum Technology Advances Through Applied Research by Independent Oil Producers is a program of the National Oil Research Program, U.S. Department of Energy. Between 1995 and 1998, the program competitively selected and cost-shared twenty-two projects with small producers. The purpose was to involve small independent producers in testing technologies of interest to them that would advance (directly or indirectly) one or more of four national program objectives: (1) Extend the productive life of reservoirs; (2) Increase production and/or reserves; (3) Improve environmental performance; and (4) Broaden the exchange of technology information.

Brashear, Jerry P.; North, Walter B.; Thomas Charles P.; Becker, Alan B.; Faulder, David D.

2000-01-12T23:59:59.000Z

294

Assessment of Advanced Batteries for Energy Storage Applications in Deregulated Electric Utilities  

Science Conference Proceedings (OSTI)

Energy storage technologies, including advanced batteries, are likely to find new roles in a restructured electric utility environment. This study evaluated the near-term potential of fourteen advanced battery technologies to outperform conventional lead-acid batteries in four key energy storage applications.

1998-12-08T23:59:59.000Z

295

EMSL Research and Capability Development Proposals Cryogenic NMR and Advanced Electronic Structure Theory as a Unique EMSL Capability  

NLE Websites -- All DOE Office Websites (Extended Search)

Temperature dependence of the on-resonance portion Temperature dependence of the on-resonance portion of the 55 Mn-NMR spectrum of a Mn(IV,IV) dimer acquired at 9.4 T. EMSL Research and Capability Development Proposals Cryogenic NMR and Advanced Electronic Structure Theory as a Unique EMSL Capability for Complex Systems: Application to the Photosynthetic Energy Conversion Systems Project start date: April 1, 2010 EMSL Lead Investigator: Ping Yang Molecular Science Computing Group, EMSL, PNNL Co-investigator: Andrew S. Lipton Cell Biology & Biochemistry, FCSD, PNNL Collaborator: K.V. Lakshmi Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute The goal of this proposal is to demonstrate a unique capability to be enabled at EMSL-the integration of leading-edge cryogenic nuclear magnetic resonance (NMR) measurements and advanced electronic

296

Low-rank coal research: Volume 2, Advanced research and technology development: Final report  

SciTech Connect

Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

1987-04-01T23:59:59.000Z

297

Isotope Development & Production for Research and Applications (IDPRA) |  

NLE Websites -- All DOE Office Websites (Extended Search)

Research » Isotope Research » Isotope Development & Production for Research and Applications (IDPRA) Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Research Isotope Development & Production for Research and Applications (IDPRA) Print Text Size: A A A RSS Feeds FeedbackShare Page The Isotope subprogram supports the production, and the development of production techniques of radioactive and stable isotopes that are in short supply for research and applications. Isotopes are high-priority

298

Component Development - Advanced Fuel Cells for Transportation Applications  

DOE Green Energy (OSTI)

Report summarizes results of second phase of development of Vairex air compressor/expander for automotive fuel cell power systems. Project included optimizing key system performance parameters, as well as reducing number of components and the project cost, size and weight of the air system. Objectives were attained. Advanced prototypes are in commercial test environments.

Butler, William

2000-06-19T23:59:59.000Z

299

Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

development and demonstration of a membrane reactor is expected to increase hydrogen production by overcoming equilibrium limitations experienced in conventional reforming followed...

300

Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

the power and transportation industries. For a hydrogen-based energy structure, fossil fuel-based technologies will be required to generate hydrogen for various uses including...

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Powder Metallurgy Products for Advanced Gas Turbine Applications  

Science Conference Proceedings (OSTI)

ties for gas turbine a.pplications. At Avco Lycoming, powder metallurgy activity has focused upon a series of high strength nickel base superalloys. These alloys ...

302

The Role of an Advanced Land Model in Seasonal Dynamical Downscaling for Crop Model Application  

Science Conference Proceedings (OSTI)

An advanced land model [the National Center for Atmospheric Research (NCAR) Community Land Model, version 2 (CLM2)] is coupled to the Florida State University (FSU) regional spectral model to improve seasonal surface climate outlooks at very high ...

D. W. Shin; J. G. Bellow; T. E. LaRow; S. Cocke; James J. O'Brien

2006-05-01T23:59:59.000Z

303

ORNL, Industry to Collaborate in Advanced Battery Research | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry to Collaborate in Advanced Battery Research Industry to Collaborate in Advanced Battery Research December 30, 2010 ORNL's Jagjit Nanda assembles a lithium ion battery for performance testing within a controlled environment Through new collaborations totaling $6.2 million, ORNL and American industry will tackle some of the most critical challenges facing lithium ion battery production. After receiving $3 million in American Recovery and Reinvestment Act (ARRA) funding in August through DOE's Office of Energy Efficiency and Renewable Energy (EERE) Industrial Technologies Program (ITP), ORNL issued a competitive solicitation to industry for proposals addressing key problems centered around lithium ion battery manufacturing science, advanced materials processing, quality control, and processing scale-up. An independent council comprising ORNL and DOE representatives

304

Design and implementation of P2P multimedia system on Taiwan Advance Research and Education Network  

Science Conference Proceedings (OSTI)

This study designs and implements a cross-platform, cross-domain P2P multimedia sharing system in the Taiwan Advance Research and Education Network. The system allows users to easily access the multimedia resources of the entire network from any network ... Keywords: OSGi, P2P network, multimedia system

Sung-Yen Chang; Chin-Feng Lai; Yueh-Min Huang; Te-Lung Liu; Jen-Wei Hu; Chia-Cheng Hu

2010-06-01T23:59:59.000Z

305

Advances in Conjugated Linoleic Acid Research, Vol 2Chapter 6 Synthesis of Labeled Isomers  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Vol 2 Chapter 6 Synthesis of Labeled Isomers Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry 1B6F1AA754D2C4433528551BF02F2702 AOCS Press Downlo

306

Baseline Results and Future Plans for the NREL Controls Advanced Research Turbine: Preprint  

DOE Green Energy (OSTI)

During the 2002 - 2003 wind season, several new algorithms were tested on the Controls Advanced Research Turbine (CART) at the National Renewable Energy Laboratory. These include an''Optimally Tracking Rotor'' algorithm proposed before, an adaptive power tracking algorithm and several full-state feedback systems. General results from these algorithms are presented here with detailed results presented elsewhere.

Fingersh, L. J.; Johnson, K. E.

2003-11-01T23:59:59.000Z

307

Program on Technology Innovation: Applications of Advanced Nanomaterials for Ultracapacitors  

Science Conference Proceedings (OSTI)

In the past decade, nanotechnology has become an important component in ultracapacitor research. Researchers have been able to identify the unique properties of nanomaterials, particularly carbon nanotubes, which can serve useful purposes in ultracapacitors. With nanometer-long diameters, nanotubes exhibit high surface area and low resistivity, among other unique properties, making them ideal candidates for ultracapacitor electrodes. Nanotube-based ultracapacitors have been built and tested in research l...

2007-03-29T23:59:59.000Z

308

Polymers as Advanced Materials for Desiccant Applications: 1987  

DOE Green Energy (OSTI)

This research is concerned with solid materials used as desiccants for desiccant cooling systems that process water vapor in an atmosphere to produce net cooling.

Czanderna, A. W.

1988-12-01T23:59:59.000Z

309

Assessment of Efficiency and Application of Advanced Motor Technologies  

Science Conference Proceedings (OSTI)

This technical update explores four major emerging motor technologies. The four advanced motor types are Permanent magnet Brushless DC Motors (BLDC), Permanent Magnet Synchronous Motors (PMSM), Switched Reluctance Motors and Field Oriented Vector Control Motors. These motor technologies are not necessarily new, but are becoming popular and attractive solutions because of material cost reductions, controller innovations or the promise of higher efficiency and improved component reliability. Overall, the a...

2009-12-23T23:59:59.000Z

310

Application of Research Findings Case Study: EPRI Ergonomics Handbooks  

Science Conference Proceedings (OSTI)

In efforts to better translate its research, the Electric Power Research Institute (EPRI) Occupational Health and Safety (OHS) Program designed and administered an online survey for health and safety professionals who either participate in the OHS program or ordered particular EPRI ergonomic product deliverables. The research investigated the application and use of written and visual ergonomic resources developed over time by the EPRI OHS program. The ergonomic research reports were developed ...

2013-10-02T23:59:59.000Z

311

Design modifications in electrospinning setup for advanced applications  

Science Conference Proceedings (OSTI)

The paper deals with the modification made to the general electrospinning setup. The emphasis is given to characterize the designs based on their applicability. Four basic categories are identified, namely, patterned fibers, fiber yarns, multicomponent, ...

Rahul Sahay; Velmurugan Thavasi; Seeram Ramakrishna

2011-01-01T23:59:59.000Z

312

Advanced nanomaterials in multimodal imaging: design, functionalization, and biomedical applications  

Science Conference Proceedings (OSTI)

The biomedical applications of nanoparticles in molecular imaging, drug delivery, and therapy give rise to the term "nanomedicine" and have led to ever-growing developments in the past decades. New generation of imaging probes (or contrast agents) and ...

Zhe Liu; Fabian Kiessling; Jessica Gtjens

2010-01-01T23:59:59.000Z

313

(865) 574-6185, mccoydd@ornl.gov Advanced Scientific Computing Research  

E-Print Network (OSTI)

on integrating new software for the science applications which researchers run on high performance computing platforms. One of the key challenges in high performance computing is to ensure that the software which

314

U.S. Department of Energy Instrumentation and Controls Technology Research for Advanced Small Modular Reactors  

Science Conference Proceedings (OSTI)

Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, key DOE programs have substantial ICHMI RD&D elements to their respective research portfolio. This article describes current ICHMI research to support the development of advanced small modular reactors.

Wood, Richard Thomas [ORNL

2012-01-01T23:59:59.000Z

315

Scientific Applications Research Associates Inc SARA | Open Energy  

Open Energy Info (EERE)

Scientific Applications Research Associates Inc SARA Scientific Applications Research Associates Inc SARA Jump to: navigation, search Name Scientific Applications Research Associates Inc SARA Address 6300 Gateway Dr Place Cypress Zip 90630 Sector Marine and Hydrokinetic Phone number 714-224-4410 x 274 Website http://www.sara.com/rae/ocean_ Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Magnetohydrodynamic MHD Wave Energy Converter MWEC This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Scientific_Applications_Research_Associates_Inc_SARA&oldid=678443"

316

Data refinement in a market research applications' data production process  

Science Conference Proceedings (OSTI)

In this contribution, we will show how empirically collected field data for a market research application are refined in a stepwise manner and enriched into end-user market reports and charts. The collected data are treated by selections, transformations, ...

Thomas Ruf; Thomas Kirsche

2005-01-01T23:59:59.000Z

317

Materials Research for Smart Grid Applications Steven J Bossart  

NLE Websites -- All DOE Office Websites (Extended Search)

Research for Smart Grid Applications Steven J Bossart Ryan Egidi U.S. Department of Energy National Energy Technology Laboratory Our nation is transitioning to a Smart Grid which...

318

Research for Advanced Heat Exchangers- The U.S. DOE Program  

E-Print Network (OSTI)

Since its beginning, the Advanced Heat Exchangers Program of the U.S. Department of Energy - Office of Industrial Programs has made significant contributions to the development of advanced heat exchanger technology to save energy for U.S. industry. Currently the Program is field testing two large ceramic tubular high temperature waste heat recuperators and one large fluidized bed waste heat boiler and another fluidized bed waste heat recuperator is being readied for field tests. As a result of technology "needs" areas being identified during the development phases of these large systems, a stronger emphasis has been placed on the research of basic technologies. As a result, a better understanding of ceramic materials performance under corrosive, high temperature conditions has been obtained. Various types of high temperature seals have been developed. Other areas of research include development of advanced NDE techniques for study of ceramic materials and development of new forming techniques. A new effort of great promise is the study of ceramic composites as a potential heat exchanger material. This paper will briefly discuss the program, and describe the projects and research efforts that comprise the Advanced Heat Exchangers Program.

Richlen, S. L.

1986-06-01T23:59:59.000Z

319

Advances in the CVD growth of graphene for electronics applications  

E-Print Network (OSTI)

Graphene, a monoatomic sheet of graphite, has recently received significant attention because of its potential impact in a wide variety of research areas. This thesis presents progress on improving the quality of graphene ...

Hofmann, Mario

2012-01-01T23:59:59.000Z

320

Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications.  

DOE Green Energy (OSTI)

The original funding under this project number was awarded for a period 12/1999 until 12/2002 under the project title Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications. The project was extended until 06/2003 at which time a renewal proposal was awarded for a period 06/2003 until 06/2008 under the project title Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes. The work under DE-FG02-01ER15120 was initiated about the time the PI moved his research group from the Department of Chemistry at Utah State University to the Department of Chemistry at Michigan State University. This DOE-funded research was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder.

Swain; Greg M.

2009-04-13T23:59:59.000Z

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Photovoltaic Advanced Research and Development project: Solar radiation research annual report, 1 October 1990--30 September 1991  

DOE Green Energy (OSTI)

This report is a summary of the year 1991 research activities and results under the Solar Radiation Research task of the Photovoltaic (PV) Advanced Research and Development project at the National Renewable Energy Laboratory (NREL). This task directly supports the characterization, testing, and design of PV cells modules, and systems. The development of a scientific and engineering understanding of incident (i.e., available to PV devices) solar irradiance and the appropriate instrumentation systems and measurement methods are the activities and results of this project. Activities described in this report include the completion of the Atmospheric Optical Calibration Systems (AOCS) and the comparison of instrumentation systems that collect site-specific measurements of solar irradiance for the purpose of PV system feasibility studies and/or design.

Hulstrom, R.; Cannon, T.; Stoffel, T.; Riordan, C.

1992-10-01T23:59:59.000Z

322

Research Challenges and Applications for Underwater Sensor Networking  

E-Print Network (OSTI)

This paper explores applications and challenges for underwater sensor networks. We highlight potential applications to off-shore oilfields for seismic monitoring, equipment monitoring, and underwater robotics. We identify research directions in shortrange acoustic communications, MAC, time synchronization, and localization protocols for high-latency acoustic networks, longduration network sleeping, and application-level data scheduling. We describe our preliminary design on short-range acoustic communication hardware, and summarize results of high-latency time synchronization.

John Heidemann; Wei Ye; Jack Wills; Affan Syed; Yuan Li

2006-01-01T23:59:59.000Z

323

Bespoke Materials Surfaces Advanced Materials for Fireside Fossil Energy Applications  

E-Print Network (OSTI)

As the temperatures and pressures at which components in coal-fired boilers operate are increased, the materials capable of causing deposition of corrosive salts or erosion. In the furnace zone of coal-fired boilers conductivity, and that are tailored for easy application to the waterwall tubes of coal-fired boilers

324

REQUEST BY GENERAL ELECTRIC CORPORATE RESEARCH AND DEVELOPMENT (GE) FOR AN ADVANCE WAIVER OF DOMESTIC AND  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Statement of Considerations REQUEST BY GENERAL ELECTRIC CORPORATE RESEARCH AND DEVELOPMENT (GE) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS TO INVENTIONS MADE UNDER CONTRACT NO. DE-FC26-00NT40993 ENTITLED "VARIABLE SPEED INTEGRATED INTELLIGENT BLOWER FOR HIGH EFFICIENCY HEATING VENTILATION AND AIR CONDITIONING"; W(A)-01-019, CH1066. GE has requested an advance waiver of domestic and foreign patent rights to inventions its employees may conceive or first actually reduce to practice in the performance of Contract No. DE-FC26-00NT40993. As brought out in the attached waiver petition, the scope of work includes the development and marketing of an Electronically Cormutated Motor (ECM) and fan combination. The combination utilizes a common rotating shaft and integral cooling and advanced blower fan

325

A review for mobile commerce research and applications  

Science Conference Proceedings (OSTI)

Although a large volume of literature is available on mobile commerce (m-commerce), the topic is still under development and offers potential opportunities for further research and applications. Since the subject is at the stage of development, a review ... Keywords: Framework, Future research, Literature review, Mobile commerce (m-commerce)

E. W. T. Ngai; A. Gunasekaran

2007-02-01T23:59:59.000Z

326

ENGINEERING DEVELOPMENT OF ADVANCED PHYSICAL FINE COAL CLEANING FOR PREMIUM FUEL APPLICATIONS  

SciTech Connect

Bechtel, together with Amax Research and Development Center (Amax R&D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program ?Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications,? (Contract No. DE-AC22- 92PC92208), under Task 11, Project Final Report. The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed $2.5 /MBtu ($ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes. Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at Amax R&D, Golden, Colorado by Entech Global for process evaluation tests. The tests successfully demonstrated the capability of advanced column flotation as well as selective agglomeration to produce ultra-clean coal at specified levels of purity and recovery efficiency. Test results and the experience gained during the operation of the PDU have provided valuable insights into the processes studied. Based on the design data obtained from the test work and a set of project design criteria, two sets of conceptual designs for commercial CWF production plants have been developed, one using column flotation and the other using selective agglomeration process. Using these designs, Capital as well as Operating and Maintenance (O&M) cost estimates for the plants have been compiled. These estimates have then been used to derive the annualized cost of production of premium CWF on a commercial scale. Further, a series of sensitivity analysis have been completed to evaluate the effects of variations in selected cost components and process parameters on the overall economics of premium fuel production

NONE

1997-06-01T23:59:59.000Z

327

Applications of laser diagnostics in energy conservation research  

Science Conference Proceedings (OSTI)

During the past decade, intensive research and development has demonstrated the feasibility, checked the accuracy, and extended the sensitivity of laser diagnostics for combustion systems. Combinations of diagnostics can now provide in-situ, time-, and space-resolved measurements of temperature, velocity, and species concentration. Although these tools are powerful, they also can be exceedingly difficult to use, and their application remains largely in the hands of specialized instrument developers rather than problem-oriented researchers. This report outlines a variety of applications for existing diagnostics that may interest both instrument developers and researchers in particular fields.

Hutchinson, R.A.

1985-02-01T23:59:59.000Z

328

Advanced Sensor Diagnostics in Nuclear Power Plant Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensor Diagnostics in Nuclear Power Plant Applications Sensor Diagnostics in Nuclear Power Plant Applications R.B. Vilim Argonne National Laboratory Sensor degradation occurs routinely during nuclear power plant operation and can contribute to reduced power production and less efficient plant operation. Mechanisms include drift of sensor electronics and mechanical components, fouling and erosion of flow meter orifice plates, and general degradation of thermocouples. One solution to this problem is the use of higher quality instrumentation and of physical redundancy. This, however, increases plant cost and does not address the degradation problem in a fundamental way. An alternative approach is to use signal processing algorithms to detect a degraded sensor and to construct a replacement value using an

329

Swords to plowshares: Shock wave applications to advanced lithography  

SciTech Connect

Extreme UltraViolet Lithography (EUVL) seeks to apply radiation in a wavelength region centered near 13 nm to produce microcircuits having features sizes 0.1 micron or less. A critical requirement for the commercial application of this technology is the development of an economical, compact source of this radiation which is suitable for lithographic applications. A good candidate is a laser-plasma source, which is generated by the interaction of an intermediate intensity laser pulse (up to 10{sup 12} W/cm{sup 2}) with a metallic target. While such a source has radiative characteristics which satisfy the needs of an EUVL source, the debris generated during the laser-target interaction strikes at the economy of the source. Here, the authors review the use of concepts and computer modeling, originally developed for hypervelocity impact analysis, to study this problem.

Trucano, T.G.; Grady, D.E.; Kubiak, G.D.; Kipp, M.E.; Olson, R.E.; Farnsworth, A.

1995-03-01T23:59:59.000Z

330

Advanced Turbine Technology Applications Project (ATTAP). 1944 Annual report  

DOE Green Energy (OSTI)

This report summarizes work performed in development and demonstration of structural ceramics technology for automotive gas turbine engines. At the end of this period, the project name was changed to ``Ceramic Turbine Engine Demonstration Project``, effective Jan. 1995. Objectives are to provide early field experience demonstrating the reliability and durability of ceramic components in a modified, available gas turbine engine application, and to scale up and improve the manufacturing processes for ceramic turbine engine components and demonstrate the application of these processes in the production environment. The 1994 ATTAP activities emphasized demonstration and refinement of the ceramic turbine nozzles in the AlliedSignal/Garrett Model 331-200[CT] engine test bed in preparation for field testing; improvements in understanding the vibration characteristics of the ceramic turbine blades; improvements in critical ceramics technologies; and scaleup of the process used to manufacture ceramic turbine components.

NONE

1995-06-01T23:59:59.000Z

331

Benefits of Utilizing Advanced Metering Provided Information Support and Control Capabilities in Distribution Automation Application s  

Science Conference Proceedings (OSTI)

Advanced Metering systems can serve a variety of applications beyond revenue cycle services. This paper describes several distribution automation functions that can significantly benefit from integration with the Advanced Metering Infrastructure (AMI). Installation of Smart Meters with two-way communications is under way at several service territories of electric utilities throughout North America, Europe, Asia and Australia. These meters could be capable of providing a variety of data representing the p...

2009-12-22T23:59:59.000Z

332

NETL: News Release - Department of Energy-Funded Research Advances Work on  

NLE Websites -- All DOE Office Websites (Extended Search)

November 3, 2003 November 3, 2003 Department of Energy-Funded Research Advances Work on Fossil Fuels Nationwide WASHINGTON - U.S.Department of Energy-funded research has verified vast available deposits of natural gas, led to the development of environmentally friendly drilling in the sensitive Arctic and the successful testing of flexible pipe that makes Houdini-like bends deep in the Earth to allow for the lateral extraction of gas supplies. These and other projects funded through the National Energy Technology Laboratory by the DOE's Office of Fossil Energy's Natural Gas Supply Program significantly advanced efforts in fiscal year 2003 to improve the discovery and recovery of natural gas supplies critical to the future of the United States, its consumers and businesses.

333

REQUEST BY GENERAL ELECTRIC COMPANY, CORPORATE RESEARCH AND DEVELOPMENT, FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMPANY, CORPORATE COMPANY, CORPORATE RESEARCH AND DEVELOPMENT, FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF ENERGY CONTRACT NO. DE-AC21-92MC29110; DOE WAIVER DOCKET W(A)-93-011, [ORO-551] General Electric Company, Corporate Research and Development (GE-CRD) has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Contract No. DE-AC21-92MC29110. The scope of the work calls for the development of a low-cost method for sorption and destruction of chlorinated volatile organic compound (CVOC) vapors using recyclable organic polymers and biodegradation. The work is sponsored by the Office of Fossil Energy. The dollar amount of the contract is $627,560 with GE-CRD cost sharing

334

Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981  

DOE Green Energy (OSTI)

This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

Bradley, R.A. (comp.) [comp.

1981-12-01T23:59:59.000Z

335

Advanced gas turbine systems research. Quarterly report, January--March, 1994  

SciTech Connect

The Department of Energy is sponsoring a series of studies related to advanced gas turbine systems. Ten universities participated in the first round studies, and an additional 13 studies have been funded this year. The five areas being covered are heat transfer, aerodynamics, materials, combustion, and dynamics. Summaries are given for the 6-month progress on the 1993 subcontract studies and on the planned research for the new subcontract studies.

Not Available

1994-04-01T23:59:59.000Z

336

Applications of moving granular-bed filters to advanced systems  

SciTech Connect

The contract is arranged as a base contract with three options. The objective of the base contract is to develop conceptual design(s) of moving granular bed filter and ceramic candle filter technology for control of particles from integrated gasification combined cycle (IGCC) systems, pressurized fluidized-bed combustors (PFBC), and direct coal fueled turbine (DCFT) environments. The conceptual design(s) of these filter technologies are compared, primarily from an economic perspective. The granular bed filter was developed through low pressure, high temperature (1600{degree}F) testing in the late 1970`s and early 1980`s. Collection efficiencies over 99% were obtained. In 1988, high pressure, high temperature testing was completed at New York University, Westbury, N.Y., utilizing a two advanced power generating plants were chosen for developing conceptual designs and cost estimates of the commercial sized filters. One is the 450 MWe, second generation pressurized fluidized bed combustion plant defined by Foster Wheeler. This plant originally included cross-flow filters for hot gas cleanup. The other plant under study is a 100 MWe, KRW air blown gasifier. A cross-flow filter was utilized for gas stream cleanup in this study also. Granular bed and ceramic candle filters were substituted for the cross-flow filters in both these plants, and the resulting costs were compared.

Wilson, K.W.; Haas, J.C.; Eshelman, M.B.

1993-09-01T23:59:59.000Z

337

Status of the Advanced Stirling Conversion System Project for 25 kW dish Stirling applications  

DOE Green Energy (OSTI)

Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising heat engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting technology development for Stirling convertors directed toward a dynamic power source for space applications. Space power requirements include high reliability with very long life, low vibration and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. NASA Lewis is providing management of the Advanced Stirling Conversion System (ASCS) Project through an Interagency Agreement (IAA) with the DOE. Parallel contracts continue with both Cummins Engine Company (CEC), Columbus, Indiana, and Stirling Technology Company (STC), Richland, Washington for the designs of an ASCS. Each system'' design features a solar receiver/liquid metal heat transport system, and a free-piston Stirling convertor with a means to provide nominally 25 kW of electric power to a utility grid while meeting DOE's performance and long-term'' cost goals. The Cummins free- piston Stirling convertor incorporates a linear alternator to directly provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both the Cummins and STC ASCS designs will use technology which can reasonably be expected to be available in the early 1990's. 17 refs., 7 figs., 3 tabs.

Shaltens, R.K.; Schreiber, J.G.

1991-01-01T23:59:59.000Z

338

ADVANCED CERAMIC COMPOSITES FOR MOLTEN ALUMINUM CONTACT APPLICATIONS  

Science Conference Proceedings (OSTI)

A new refractory material which was developed for use in molten aluminum contact applications was shown to exhibit improved corrosion and wear resistance leading to improved thermal management through reduced heat losses caused by refractory thinning and wastage. This material was developed based on an understanding of the corrosion and wear mechanisms associated with currently used aluminum contact refractories under a U.S. Department of Energy funded project to investigate multifunctional refractory materials for energy efficient handling of molten metals. This new material has been validated through an industrial trial at a commercial aluminum rod and cable mill. Material development and results of this industrial validation trial are discussed.

Hemrick, James Gordon [ORNL; Peters, Klaus-Markus [ORNL

2009-01-01T23:59:59.000Z

339

Categorical Exclusion Determination Form Program or Field Office: Advanced Research Projects Agency -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Department of Energy Categorical Exclusion Determination Form Program or Field Office: Advanced Research Projects Agency - Energy Project Title: (0207-1609) Planar Energy - Solid-State All Inorganic Rechargeable Lithium Batteries Location: Florida Proposed Action or Project Description: American Recover), and Reinvestment Act: ~ Funding will support laboratory, bench scale, and pilot scale research and development on lithium battery manufacturing processes for use in electrical energy storage for transportation. Categorical Exclusion(s) Applied: x ~ 83.6 Sitinglconstruct1onJoperationldecommlssloning of facilities for bench-scale research, conventional laboratory operations, smalJ..scale research and development and pilot projects *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of to CFRIO 21 £::lli:klkrc

340

Advanced Resources for Catalysis Science; Recommendations for a National Catalysis Research Institute  

DOE Green Energy (OSTI)

Catalysis is one of the most valuable contributors to our economy and historically an area where the United States has enjoyed, but is now losing, international leadership. While other countries are stepping up their work in this area, support for advanced catalysis research and development in the U.S. has diminished. Yet, more than ever, innovative and improved catalyst technologies are imperative for new energy production processes to ease our dependence on imported resources, for new energy-efficient and environmentally benign chemical production processes, and for new emission reduction technologies to minimize the environmental impact of an active and growing economy. Addressing growing concerns about the future direction of U.S. catalysis science, experts from the catalysis community met at a workshop to determine and recommend advanced resources needed to address the grand challenges for catalysis research and development. The workshop's primary conclusion: To recapture our position as the leader in catalysis innovation and practice, and promote crucial breakthroughs, the U.S. must establish one or more well-funded and well-equipped National Catalysis Research Institutes competitively selected, centered in the national laboratories and, by charter, networked to other national laboratories, universities, and industry. The Institute(s) will be the center of a national collaboratory that gives catalysis researchers access to the most advanced techniques available in the scientific enterprise. The importance of catalysis to our energy, economic, and environmental security cannot be overemphasized. Catalysis is a vital part of our core industrial infrastructure, as it is integral to chemical processing and petroleum refining, and is critical to proposed advances needed to secure a sustainable energy future. Advances in catalysis could reduce our need for foreign oil by making better use of domestic carbon resources, for example, allowing cost-effective and zero emission conversion of coal into transportation fuels. No matter what energy sources are being considered (oil, natural gas, coal, biomass, solar, or nuclear based), a clean, sustainable energy future will involve catalysis to improve energy efficiency and storage and use options, and to mitigate environmental impacts. Recent revolutionary advances in nanotechnology and high-performance computing are enabling the breakthroughs in catalysis science and technology essential for a secure energy future. Thus, the time is right for substantially increased investments in catalysis science and technology.

Peden, Charles HF.; Ray, Douglas

2005-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

SiCf/SiC Composites for Advanced Nuclear Applications  

SciTech Connect

Composite materials have the potential for their properties to be tailored to specific applications by engineering the combination of fibers and matrices. Ceramic matrix composites are attractive because of their excellent high-temperature properties and corrosion resistance. In particular, ceramic composites made from silicon carbide fibers and silicon carbide matrices (SiCf/SiC) are promising for nuclear applications because of the radiation resistance of the ??phase of SiC, their excellent high-temperature fracture, creep, corrosion and thermal shock resistance. The ??phase of SiC has been shown by numerous studies to have a saturation swelling value of about 0.1 to 0.2% at 800 to 1000C. This suggests that composites of SiC/SiC have the potential for excellent radiation stability. The continuous fiber architecture, coupled with engineered interfaces between the fiber and matrix, provide excellent fracture properties and fracture toughness values on the order of 25 MPa m1/2. The strength and fracture toughness are independent of temperature up to the limit of the fiber stability. Also, these fiber/matrix microstructures impart excellent thermal shock and thermal fatigue resistance so start-up and shut-down cycles and coolant loss scenarios should not induce significant structural damage.

Jones, Russell H.

2003-06-16T23:59:59.000Z

342

Advancing sustainable bioenergy: Evolving stakeholder interests and the relevance of research  

Science Conference Proceedings (OSTI)

The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different and potentially conflicting values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts to define and promote sustainable bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.

Johnson, Timothy L [U.S. Environmental Protection Agency, Raleigh, North Carolina; Bielicki, Dr Jeffrey M [University of Minnesota; Dodder, Rebecca [U.S. Environmental Protection Agency; Hilliard, Michael R [ORNL; Kaplan, Ozge [U.S. Environmental Protection Agency; Miller, C. Andy [U.S. Environmental Protection Agency

2013-01-01T23:59:59.000Z

343

ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS  

SciTech Connect

Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) for construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management, and proliferation), the worldwide community is working to develop and deploy new nuclear energy systems and advanced fuel cycles. These new nuclear systems address the key challenges and include: (1) extracting the full energy value of the nuclear fuel; (2) creating waste solutions with improved long term safety; (3) minimizing the potential for the misuse of the technology and materials for weapons; (4) continually improving the safety of nuclear energy systems; and (5) keeping the cost of energy affordable.

Marra, J.

2010-09-29T23:59:59.000Z

344

Development and application of a probabilistic evaluation method for advanced process technologies  

SciTech Connect

The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

Frey, H.C.; Rubin, E.S.

1991-04-01T23:59:59.000Z

345

Research Experience in Carbon Sequestration 2013 Now Accepting Applications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Experience in Carbon Sequestration 2013 Now Accepting Experience in Carbon Sequestration 2013 Now Accepting Applications Research Experience in Carbon Sequestration 2013 Now Accepting Applications March 12, 2013 - 1:43pm Addthis Washington, DC - Graduate students and early career professionals can gain hands-on field research experience in areas related to carbon capture and storage (CCS) by participating in the Research Experience in Carbon Sequestration (RECS) program. The initiative, supported by DOE's Office of Fossil Energy (FE) and the National Energy Technology Laboratory (NETL), is currently accepting applications for RECS 2013, scheduled for June 2-12, in Birmingham, AL. The deadline to apply is April 20. An intensive science and field-based program, RECS 2013 will combine background briefings with group exercises and field activities at an

346

Biobased Surfactants and Detergents Synthesis, Properties, and ApplicationsChapter 4 Advances in Bioprocess Development of Rhamnolipid and Sophorolipid Production  

Science Conference Proceedings (OSTI)

Biobased Surfactants and Detergents Synthesis, Properties, and Applications Chapter 4 Advances in Bioprocess Development of Rhamnolipid and Sophorolipid Production Surfactants and Detergents eChapters Surfactants - Detergents Press

347

Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs  

SciTech Connect

This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

1994-04-01T23:59:59.000Z

348

Proceedings of the tenth annual battery conference on applications and advances  

SciTech Connect

This is a collection of papers presented at the 1995 Annual Battery Conference on Application and Advances. The goal of the conference is to fill the need for improved communication between the developers and users of battery systems and the designers of interfacing electronic power conversion and control components and systems. The Conference attempts to attain that goal through deliberations on issues involving the interactions between those battery and electronic systems in commercial, industrial, space and military applications.

NONE

1995-07-01T23:59:59.000Z

349

Stackable middleware services for advanced multimedia applications. Final report for period July 14, 1999 - July 14, 2001  

SciTech Connect

In this project, the authors propose the research, development, and distribution of a stackable component-based multimedia streaming protocol middleware service. The goals of this stackable middleware interface include: (1) The middleware service will provide application writers and scientists easy to use interfaces that support their visualization needs. (2) The middleware service will support a variety of image compression modes. Currently, many of the network adaptation protocols for video have been developed with DCT-based compression algorithms like H.261, MPEG-1, or MPEG-2 in mind. It is expected that with advanced scientific computing applications that the lossy compression of the image data will be unacceptable in certain instances. The middleware service will support several in-line lossless compression modes for error-sensitive scientific visualization data. (3) The middleware service will support two different types of streaming video modes: one for interactive collaboration of scientists and a stored video streaming mode for viewing prerecorded animations. The use of two different streaming types will allow the quality of the video delivered to the user to be maximized. Most importantly, this service will happen transparently to the user (with some basic controls exported to the user for domain specific tweaking). In the spirit of layered network protocols (like ISO and TCP/IP), application writers should not have to know a large amount about lower level network details. Currently, many example video streaming players have their congestion management techniques tightly integrated into the video player itself and are, for the most part, ''one-off'' applications. As more networked multimedia and video applications are written in the future, a larger percentage of these programmers and scientist will most likely know little about the underlying networking layer. By providing a simple, powerful, and semi-transparent middleware layer, the successful completion of this project will help serve as a catalyst to support future video-based applications, particularly those of advanced scientific computing applications.

Feng, Wu-chi; Crawfis, Roger, Weide, Bruce

2002-02-01T23:59:59.000Z

350

Advanced I/O for large-scale scientific applications.  

SciTech Connect

As scientific simulations scale to use petascale machines and beyond, the data volumes generated pose a dual problem. First, with increasing machine sizes, the careful tuning of IO routines becomes more and more important to keep the time spent in IO acceptable. It is not uncommon, for instance, to have 20% of an application's runtime spent performing IO in a 'tuned' system. Careful management of the IO routines can move that to 5% or even less in some cases. Second, the data volumes are so large, on the order of 10s to 100s of TB, that trying to discover the scientifically valid contributions requires assistance at runtime to both organize and annotate the data. Waiting for offline processing is not feasible due both to the impact on the IO system and the time required. To reduce this load and improve the ability of scientists to use the large amounts of data being produced, new techniques for data management are required. First, there is a need for techniques for efficient movement of data from the compute space to storage. These techniques should understand the underlying system infrastructure and adapt to changing system conditions. Technologies include aggregation networks, data staging nodes for a closer parity to the IO subsystem, and autonomic IO routines that can detect system bottlenecks and choose different approaches, such as splitting the output into multiple targets, staggering output processes. Such methods must be end-to-end, meaning that even with properly managed asynchronous techniques, it is still essential to properly manage the later synchronous interaction with the storage system to maintain acceptable performance. Second, for the data being generated, annotations and other metadata must be incorporated to help the scientist understand output data for the simulation run as a whole, to select data and data features without concern for what files or other storage technologies were employed. All of these features should be attained while maintaining a simple deployment for the science code and eliminating the need for allocation of additional computational resources.

Klasky, Scott (Oak Ridge National Laboratory, Oak Ridge, TN); Schwan, Karsten (Georgia Institute of Technology, Atlanta, GA); Oldfield, Ron A.; Lofstead, Gerald F., II (Georgia Institute of Technology, Atlanta, GA)

2010-01-01T23:59:59.000Z

351

Virtual Advanced Power Training Environments 2012 Crosscutting Research Kickoff and Review Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Power Advanced Power Training Environments 2012 Crosscutting Research Kickoff and Review Meeting Goals - FY2012 December 31 Initial integration of an open source process simulator September 30 Demonstrate the integration of the open source simulator with a simplified energy system. Accomplishments Release of VE-PSI v3.0 Use of tools for the Hyper project Support of internal NETL projects Use of tools in the SBEUC facility Rapid content creation * Rapid creation of engineering and design environments * Software tools to enable integration of graphics, simulation, and sensors and control data * Track design project from birth to physical plant Timeline Need Concept Preliminary Design Design Build Retirement Simulators Engineering Operations Simulators... Photos courtesy of NETL ...and design tools

352

NREL: Photovoltaics Research - Testing and Analysis to Advance R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing and Analysis to Advance R&D Testing and Analysis to Advance R&D Get the Adobe Flash Player to see this video. Text Alternative NREL has capabilities and experts in measurements, characterization, reliability, engineering, scientific computing, and theory to support photovoltaic (PV) research and development (R&D) across a range of conversion technologies and scales. Conversion technologies include the primary areas of silicon, polycrystalline thin films (cadmium telluride [CdTe], copper indium gallium diselenide [CIGS]), III-V-based multijunctions, and organic PV. And scales of interest range from materials, to cells, modules, and systems. Measurements and Characterization Photo of a hand holding tweezers pinching a square wafer that is striped gold and black. We provide a huge range of techniques for measuring and characterizing PV

353

Testing State-Space Controls for the Controls Advanced Research Turbine: Preprint  

SciTech Connect

Control can improve wind turbine performance by enhancing energy capture and reducing dynamic loads. At the National Renewable Energy Laboratory, we are implementing and testing state-space controls on the Controls Advanced Research Turbine (CART), a turbine specifically configured to test advanced controls. We show the design of control systems to regulate turbine speed in Region 3 using rotor collective pitch and reduce dynamic loads in Regions 2 and 3 using generator torque. These controls enhance damping in the first drive train torsion mode. We base these designs on sensors typically used in commercial turbines. We evaluate the performance of these controls by showing field test results. We also compare results from these modern controllers to results from a baseline proportional integral controller for the CART. Finally, we report conclusions to this work and outline future studies.

Wright, A. D.; Fingersh, L. J.; Balas, M. J.

2006-01-01T23:59:59.000Z

354

Categorical Exclusion Determination Form Program or Field Office: Advanced Research Projects Agency -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Location: Location: New York Proposed Action or Project Description: American Recovery and Reinvestment Act: 181 Funding will support laboratory and bench scale research and development on aero-thermodynamic Inertial separation for use in carbon capture processes.' Categorical Exclusion(s) Applied: x - 83.6 Siting/constructiOnloperationtdecommissioning of facilities for benctrscale research, conventionallaboralory operations, small-scala research and development and pilot projects *-For the complete DOE National Euyironmental Policy Act regulations regarding categorical exclusions, see Subpart D of to CFRIO 21 [lkk Here lois action vr'Ould not: threaten a violation of applicable statutory, regulatory, or pennit requirements for environment, safety, and health, including OOE andlor Executive Orders;

355

Development of a Fissile Materials Irradiation Capability for Advanced Fuel Testing at the MIT Research Reactor  

SciTech Connect

A fissile materials irradiation capability has been developed at the Massachusetts Institute of Technology (MIT) Research Reactor (MITR) to support nuclear engineering studies in the area of advanced fuels. The focus of the expected research is to investigate the basic properties of advanced nuclear fuels using small aggregates of fissile material. As such, this program is intended to complement the ongoing fuel evaluation programs at test reactors. Candidates for study at the MITR include vibration-packed annular fuel for light water reactors and microparticle fuels for high-temperature gas reactors. Technical considerations that pertain to the design of the MITR facility are enumerated including those specified by 10 CFR 50 concerning the definition of a research reactor and those contained in a separate license amendment that was issued by the U.S. Nuclear Regulatory Commission to MIT for these types of experiments. The former includes limits on the cross-sectional area of the experiment, the physical form of the irradiated material, and the removal of heat. The latter addresses experiment reactivity worth, thermal-hydraulic considerations, avoidance of fission product release, and experiment specific temperature scrams.

Hu Linwen; Bernard, John A.; Hejzlar, Pavel; Kohse, Gordon [Massachusetts Institute of Technology (United States)

2005-05-15T23:59:59.000Z

356

Researcher, Los Alamos National Laboratory - Space Science and Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Science and Applications Science and Applications Group | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Joaquin Birn Researcher, Los Alamos National Laboratory - Space Science and Applications Group Joaquin Birn Joaquin Birn Role: Researcher, Los Alamos National Laboratory - Space Science and

357

Research Experience in Carbon Sequestration 2010 Now Accepting Applications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 Now Accepting 2010 Now Accepting Applications Research Experience in Carbon Sequestration 2010 Now Accepting Applications April 20, 2010 - 1:00pm Addthis Washington, DC - Students and early career professionals can gain hands-on experience in areas related to carbon capture and storage (CCS) by participating in the Research Experience in Carbon Sequestration (RECS) program. The initiative, supported by DOE's Office of Fossil Energy (FE), is currently accepting applications for RECS 2010, scheduled for July 18-28 in Albuquerque, N.M., and the deadline to apply is May 15. An intensive science-based program, RECS 2010 will combine classroom instruction with field activities at a geologic storage test site and visits to a power plant and coal mine. Topics cover the range of CCS

358

Advances in Conjugated Linoleic Acid Research, Vol 2Chapter 11 CLA in Functional Food: Enrichment of Animal Products  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Vol 2 Chapter 11 CLA in Functional Food: Enrichment of Animal Products Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Downloadable pdf of Cha

359

Advances in Conjugated Linoleic Acid Research, Vol 2Chapter 2 Gas Chromatography - Mass Spectrometry of Conjugated Linoleic Acids and Metabolites  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Vol 2 Chapter 2 Gas Chromatography - Mass Spectrometry of Conjugated Linoleic Acids and Metabolites Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Dow

360

Advances in Conjugated Linoleic Acid Research, Volume 3Chapter 12 Conjugated Linoleic Acid in Healthy and Cancerous Human Tissues  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Volume 3 Chapter 12 Conjugated Linoleic Acid in Healthy and Cancerous Human Tissues Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry AOCS 2526793B0420777596C5A5

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Advances in Conjugated Linoleic Acid Research, Vol 2Chapter 14 Speculation on the Mechanisms of Action of Conjugated Linoleic Acid  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Vol 2 Chapter 14 Speculation on the Mechanisms of Action of Conjugated Linoleic Acid Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Downloadable pdf...

362

Advances in Conjugated Linoleic Acid Research, Volume 3 Chapter 10 Antioxidative Activity of Conjugated Linoleic Acid Determined by ESR  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Volume 3 Chapter 10 Antioxidative Activity of Conjugated Linoleic Acid Determined by ESR Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Press

363

Advances in Conjugated Linoleic Acid Research, Vol 2Chapter 10 The Biology of Conjugated Linoleic Acids in Ruminants  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Vol 2 Chapter 10 The Biology of Conjugated Linoleic Acids in Ruminants Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry AOCS Press Downloadable pdf...

364

ENTERPRISE SRS: LEVERAGING ONGOING OPERATIONS TO ADVANCE NUCLEAR FUEL CYCLES RESEARCH AND DEVELOPMENT PROGRAMS  

SciTech Connect

The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ?all things nuclear? as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scaletechnology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE?s critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). Thus, the demonstration can be accomplished by leveraging the incremental cost of performing demonstrations without needing to cover the full operational cost of the facility. Current Center activities have been focused on integrating advanced safeguards monitoring technologies demonstrations into the SRS H-Canyon and advanced location technologies demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and customers as well as providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (as well as to offsite venues) so that future demonstrations can be done more efficiently and provide an opportunity to utilize these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs DOE-Nuclear Energy (DOE-NE) to advance the research for next generation fuel cycle technologies. The concept is to install processing equipment on frames. The frames are then positioned into an H-Canyon cell and testing in a relevant radiological environment involving prototypic radioactive materials can be performed.

Murray, A.; Marra, J.; Wilmarth, B.; Mcguire, P.; Wheeler, V.

2013-07-03T23:59:59.000Z

365

An assessment of research and development leadership in advanced batteries for electric vehicles  

DOE Green Energy (OSTI)

Due to the recently enacted California regulations requiring zero emission vehicles be sold in the market place by 1998, electric vehicle research and development (R&D) is accelerating. Much of the R&D work is focusing on the Achilles` heel of electric vehicles -- advanced batteries. This report provides an assessment of the R&D work currently underway in advanced batteries and electric vehicles in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. Although the US can be considered one of the leading countries in terms of advanced battery and electric vehicle R&D work, it lags other countries, particularly France, in producing and promoting electric vehicles. The US is focusing strictly on regulations to promote electric vehicle usage while other countries are using a wide variety of policy instruments (regulations, educational outreach programs, tax breaks and subsidies) to encourage the use of electric vehicles. The US should consider implementing additional policy instruments to ensure a domestic market exists for electric vehicles. The domestic is the largest and most important market for the US auto industry.

Bruch, V.L.

1994-02-01T23:59:59.000Z

366

Application of diffusion research to solar energy policy issues  

DOE Green Energy (OSTI)

This paper examines two types of information requirements that appear to be basic to DOE solar-energy-policy decisions: (1) how can the future market success of solar energy technologies be estimated, and (2) what factors influence the adoption of solar energy technologies, and what specific programs could promote solar energy adoption most effectively. This paper assesses the ability of a body of research, referred to here as diffusion research, to supply information that could partially satisfy these requirements. This assessment proceeds, first, by defining in greater detail a series of policy issues that face DOE. These are divided into cost reduction and performance improvement issues which include issues confronting the technology development component of the solar energy program, and barriers and incentives issues which are most relevant to problems of solar energy application. Second, these issues are translated into a series of questions that the diffusion approach can help resolve. Third, various elements within diffusion research are assessed in terms of their abilities to answer policy questions. Finally, the strengths and limitations of current knowledge about the diffusion of innovations are summarized, the applicability of both existing knowledge and the diffusion approach to the identified solar-energy-policy issues are discussed, and ways are suggested in which diffusion approaches can be modified and existing knowledge employed to meet short- and long-term goals of DOE. The inquiry covers the field of classical diffusion research, market research and consumer behavior, communication research, and solar-energy market-penetration modeling.

Roessner, J. D.; Posner, D.; Shoemaker, F.; Shama, A.

1979-03-01T23:59:59.000Z

367

ESS 2012 Peer Review - Advanced Sodium Battery - Joonho Koh, Materials & Systems Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sodium Battery Sodium Battery Joonho Koh (jkoh@msrihome.com), Greg Tao (gtao@msrihome.com), Neill Weber, and Anil V. Virkar Materials & Systems Research, Inc., 5395 W 700 S, Salt Lake City, UT 84104 Company Introduction History  Founded in 1990 by Dr. Dinesh K. Shetty and Dr. Anil V. Virkar  Currently 11 employees including 5 PhDs  10,000 ft² research facility in Salt Lake City, Utah MSRI's Experience of Na Batteries Status of the Na Batteries Overall Project Description Goal Develop advanced Na battery technology for enhanced safety, reduced fabrication cost, and high-power performance Approach  Innovative cell design using stronger structural materials  Reduction of the fabrication cost using a simple and reliable processing technique

368

Categorical Exclusion Determination Form Program or Field Office: Advanced Research Projects Agency -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

nergy nergy Categorical Exclusion Determination Form Program or Field Office: Advanced Research Projects Agency - Energy Project Title: (0471-1544) Sheetak Inc. - Thermoelectric Reactors for Efficient Automotive Thermal Storage Location: *- Multiple States - New York, Pennsylvania, Texas Proposed Action or Project Description: American Recovery and Reinvestment Act: D Funding will support development of a novel system of thermoelectric reactors for efficient automotive thermal energy storage (TREATS) in electric vehicle and plug-in hybrid electric vehicle Heating, Ventilation, and Cooling (HVAC) systems. Proposed work consists of indoor laboratory-based research and development, including (1) experimentation and analysis to assess the mechanics and dynamics of thermoelectric reactors, (2) design, fabrication, testing, and analysis of hot and cold reactors, (3) design, fabrication, testing, and

369

AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report  

DOE Green Energy (OSTI)

The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

Petersen, G.; Bair, K.; Ross, J. [eds.

1994-03-01T23:59:59.000Z

370

Proceedings of the advanced research and technology development direct utilization, instrumentation and diagnostics contractors' review meeting  

SciTech Connect

The 1990 Advanced Research and Technology Development (AR TD) Direct Utilization, and Instrumentation and Diagnostics Contractors Review Meeting was held September 16--18, 1990, at the Hyatt at Chatham Center in Pittsburgh, PA. The meeting was sponsored by the US Department of Energy (DOE), Office of Fossil Energy, and the Pittsburgh and Morgantown Energy Technology Centers. Each year the meeting provides a forum for the exchange of information among the DOE AR TD contractors and interested parties. This year's meeting was hosted by the Pittsburgh Energy Technology Center and was attended by 120 individuals from industry, academia, national laboratories, and other governmental agencies. Papers were presented on research addressing coal surface, science, devolatilization and combustion, ash behavior, emission controls for gases particulates, fluid bed combustion and utilization in diesels and turbines. Individual reports are processed separately for the data bases.

Geiling, D.W. (USDOE Morgantown Energy Technology Center, WV (USA)); Goldberg, P.M. (eds.) (USDOE Pittsburgh Energy Technology Center, PA (USA))

1990-01-01T23:59:59.000Z

371

Center for Fuel Cell Research and Applications development phase. Final report  

DOE Green Energy (OSTI)

The deployment and operation of clean power generation is becoming critical as the energy and transportation sectors seek ways to comply with clean air standards and the national deregulation of the utility industry. However, for strategic business decisions, considerable analysis is required over the next few years to evaluate the appropriate application and value added from this emerging technology. To this end the Houston Advanced Research Center (HARC) is proposing a three-year industry-driven project that centers on the creation of ``The Center for Fuel Cell Research and Applications.`` A collaborative laboratory housed at and managed by HARC, the Center will enable a core group of six diverse participating companies--industry participants--to investigate the economic and operational feasibility of proton-exchange-membrane (PEM) fuel cells in a variety of applications (the core project). This document describes the unique benefits of a collaborative approach to PEM applied research, among them a shared laboratory concept leading to cost savings and shared risks as well as access to outstanding research talent and lab facilities. It also describes the benefits provided by implementing the project at HARC, with particular emphasis on HARC`s history of managing successful long-term research projects as well as its experience in dealing with industry consortia projects. The Center is also unique in that it will not duplicate the traditional university role of basic research or that of the fuel cell industry in developing commercial products. Instead, the Center will focus on applications, testing, and demonstration of fuel cell technology.

NONE

1998-12-01T23:59:59.000Z

372

Testing Controls to Mitigate Fatigue Loads in the Controls Advanced Research Turbine  

Science Conference Proceedings (OSTI)

Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines is nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated three-dimensional (3D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energy Laboratory are designing, implementing, and testing advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on a linear model of the turbine that is generated by specialized modeling software. This paper describes testing of a control algorithm to mitigate blade, tower, and drivetrain loads using advanced state-space control methods. The controller uses independent blade pitch to regulate the turbine's speed in Region 3, mitigate the effects of shear across the rotor disk, and add active damping to the tower's first fore-aft bending mode. Additionally, a separate generator torque control loop is designed to add active damping to the tower's first side-side mode and the first drivetraintorsion mode. This paper discusses preliminary implementation and field tests of this controller in the Controls Advanced Research Turbine at the National Renewable Energy Laboratory. Also included are preliminary comparisons of the performance of this controller to results from a typical baseline Proportional-Integral-Derivative controller designed with just Region 3 speed regulation as the goal.

Wright, A. D.; Fingersh, L. J.; Stol, K. A.

2009-01-01T23:59:59.000Z

373

Applications of CAT scanning for oil and gas production research  

SciTech Connect

Computer Axial Tomography (CAT scanning) is a valuable tool in production research because it provides the ability to nondestructively identify and evaluate the internal structural characteristics of reservoir core material systems. CAT scanning can be applied to obtain either qualitative (visual) or quantitative (numerical) data. Specific applications include core analysis and fluid flow studies. In this paper, the authors' general explanation of the instrumentation and theory is provided along with specific examples of CAT scanning applications to several reservoir core material systems.

Coles, M.E.; Muegge, E.L.; Sprunt, E.S. (Mobil Research and Development Corp., Dallas, TX (United States))

1991-04-01T23:59:59.000Z

374

Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006  

Science Conference Proceedings (OSTI)

The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

2006-10-01T23:59:59.000Z

375

Advanced Gas Turbine Systems Research, Technical Quarterly Progress Report. October 1, 1998--December 31, 1998  

Science Conference Proceedings (OSTI)

Major accomplishments during this reporting period by the Advanced Gas Turbine Systems Research (AGTSR) are: AGTSR submitted FY99 program continuation request to DOE-FETC for $4M; AGTSR submitted program and workshop Formation to the Collaborative Advanced Gas Turbine (CAGT) initiative; AGTSR distributed research accomplishment summaries to DOE-FETC in the areas of combustion, aero-heat transfer, and materials; AGTSR reviewed and cleared research papers with the IRB from Arizona State, Cornell, Wisconsin, Minnesota, Pittsburgh, Clemson, Texas and Georgia Tech; AGTSR prepared background material for DOE-FETC on three technology workshops for distribution at the DOE-ATS conference in Washington, DC; AGTSR coordinated two recommendations for reputable firms to conduct an economic impact analysis in support of new DOE gas turbine initiatives; AGTSR released letters announcing the short-list winners/non-winners from the 98RFP solicitation AGTSR updated fact sheet for 1999 and announced four upcoming workshops via the SCIES web page AGTSR distributed formation to EPRI on research successes, active university projects, and workshop offerings in 1999 AGTSR continued to conduct telephone debriefings to non-winning PI's born the 98RFP solicitation AGTSR distributed completed quarterly progress report assessments to the IRB experts in the various technology areas AGTSR provided Formation to GE-Evandale on the active combustion control research at Georgia Tech AGTSR provided information to AlliedSignal and Wright-Pat Air Force Base on Connecticut's latest short-listed proposal pertaining to NDE of thermal barrier coatings AGTSR submitted final technical reports from Georgia Tech - one on coatings and the other on active combustion control - to the HU3 for review and evaluation AGTSR coordinated the format, presentation and review of 28 university research posters for the ATS Annual Review Meeting in November, 1998 AGTSR published a research summary paper at the ATS Annual Review pertaining to the university consortium's activities AGTSR published and presented a paper on the status of ATS catalytic combustion R&D at the RTA/NATO Gas Turbine Combustion Symposium, October 12-16,1998 in Lisbon, Portugal IRE approved a 12-month add-on request from Penn State University to conduct an added research task in their multistage unsteady aerodynamics project AGTSR reviewed a research extension white paper from Clemson University with the IRB to conduct an added task pertaining to their mist/steam cooling research project AGTSR coordinated new research topics with the IR.Band select universities to facilitate R&D roadmapping needs at the Aero-Heat Transfer III workshop in Austin, TX AGTSR distributed FY97 research progress reports to DOE and the XRB; and AGTSR solicited new R&D topics from the IRB experts for the 1999 RFP.

NONE

1999-01-19T23:59:59.000Z

376

Current status of environmental, health, and safety issues of electrochemical capacitors for advanced vehicle applications  

DOE Green Energy (OSTI)

Electrochemical capacitors are a candidate for traction power assists in hybrid electric vehicles (HEVs). Other advanced automotive applications, while not the primary focus of current development efforts, are also possible. These include load leveling high-energy batteries, power conditioning electronics, electrically hated catalysts, electric power steering, and engine starter power. Higher power and longer cycle life are expected for electrochemical capacitors than for batteries. Evaluation of environmental, health, and safety (EH and S) issues of electrochemical capacitors is an essential part of the development and commercialization of electrochemical capacitors for advanced vehicles. This report provides an initial EH and S assessment. This report presents electrochemical capacitor electrochemistry, materials selection, intrinsic material hazards, mitigation of those hazards, environmental requirements, pollution control options, and shipping requirements. Most of the information available for this assessment pertains to commercial devices intended for application outside the advanced vehicle market and to experiment or prototype devices. Electrochemical capacitors for power assists in HEVs are not produced commercially now. Therefore, materials for advanced vehicle electrochemical capacitors may change, and so would the corresponding EH and S issues. Although changes are possible, this report describes issues for likely electrochemical capacitor designs.

Vimmerstedt, L.J.; Hammel, C.J.

1997-04-01T23:59:59.000Z

377

US fuel cell research and applications, 1960--1989  

SciTech Connect

This paper provides an overview of the major fuel cell research and development (R and D) programs funded by the US government and the private sector, with a particular focus on terrestrial applications. Included in this overview is information on funding levels, project descriptions and goals, and selected accomplishments. Brief assessments as to the proximity of commercialization for each of the primary types of fuel cells are also furnished. 11 refs., 1 fig., 11 tabs.

Kinzey, B.R.; Sen, R.K.

1989-04-01T23:59:59.000Z

378

Effects of external boost compression on gas turbine performance in an advanced CPFBC application  

SciTech Connect

When a commercial gas turbine, designed and optimized for natural gas fuel, is used in an Advanced Circulating Pressurized Fluid Bed Combustor (CPFBC) application, changes occur that affect both the thermodynamic cycle and the performance of the individual components. These come principally from the increased pressure drop encountered between the compressor discharge and expander inlet, with changes in gas properties and flow rates for the hot combustion products having secondary effects. Net effect is that power output can be reduced and significant design and/or operational compromises may be required for the gas turbine. Application of an external boost compressor can mitigate these effects.

Freier, M.D. [USDOE Morgantown Energy Technology Center, WV (United States); Goldstein, H.N.; White, J.S. [Parsons Power Group, Inc., Reading, PA (United States)

1996-12-31T23:59:59.000Z

379

Application of a Tractive Energy Analysis to Quantify the Benefits of Advanced Efficiency Technologies Using Characteristic Drive Cycle Data  

SciTech Connect

Accurately predicting the fuel savings that can be achieved with the implementation of various technologies developed for fuel efficiency can be very challenging, particularly when considering combinations of technologies. Differences in the usage of highway vehicles can strongly influence the benefits realized with any given technology, which makes generalizations about fuel savings inappropriate for different vehicle applications. A model has been developed to estimate the potential for reducing fuel consumption when advanced efficiency technologies, or combinations of these technologies, are employed on highway vehicles, particularly medium- and heavy-duty trucks. The approach is based on a tractive energy analysis applied to drive cycles representative of the vehicle usage, and the analysis specifically accounts for individual energy loss factors that characterize the technologies of interest. This tractive energy evaluation is demonstrated by analyzing measured drive cycles from a long-haul trucking fleet and the results of an assessment of the fuel savings potential for combinations of technologies are presented. The results of this research will enable more reliable estimates of the fuel savings benefits that can be realized with particular technologies and technology combinations for individual trucking applications so that decision makers can make informed investment decisions for the implementation of advanced efficiency technologies.

LaClair, Tim J [ORNL

2012-01-01T23:59:59.000Z

380

Progress in Implementing and Testing State-Space Controls for the Controls Advanced Research Turbine: Preprint  

DOE Green Energy (OSTI)

Designing wind turbines with maximum energy production and longevity for minimal cost is a major goal of the federal wind program and the wind industry. Control can improve the performance of wind turbines by enhancing energy capture and reducing dynamic loads. At the National Renewable Energy Laboratory (NREL) we are designing state-space control algorithms for turbine speed regulation and load reduction and testing them on the Controls Advanced Research Turbine (CART). The CART is a test-bed especially designed to test advanced control algorithms on a two-bladed teetering hub upwind turbine. In this paper we briefly describe the design of control systems to regulate turbine speed in region 3 for the CART. These controls use rotor collective pitch to regulate speed and also enhance damping in the 1st drive-train torsion, 1st rotor symmetric flap mode, and the 1st tower fore-aft mode. We designed these controls using linear optimal control techniques using state estimation based on limited turbine measurements such as generator speed and tower fore-aft bending moment. In this paper, we describe the issues and steps involved with implementing and testing these controls on the CART, and we show simulated tests to quantify controller performance. We then present preliminary results after implementing and testing these controls on the CART. We compare results from these controls to field test results from a baseline Proportional Integral control system. Finally we report conclusions to this work and outline future studies.

Wright, A. D.; Fingersh, L. J.; Stol, K. A.

2004-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

FINAL REPORT VELA UNIFORM PROJECT SPONSORED BY THE ADVANCED RESEARCH PROJECTS AGENCY OF THE  

Office of Legacy Management (LM)

VUF -1009 VUF -1009 FINAL REPORT - VELA UNIFORM PROJECT SPONSORED BY THE ADVANCED RESEARCH PROJECTS AGENCY OF THE DEPARTMENT OF DEFENSE AND THE U. S. ATOMIC ENERGY COMMl SSlON FALLON, NEVADA OCTOBER 26,1963 FINAL REPORT OF OFF-SITE SURVEILLANCE Southwestern Radiological Health Laboratory September 1, 1964 Issuance Date: November 27, 1964 L E G A L N O T I C E This report war preprred a r an account of Government rponrored work. Neither the Unlted Strtor, nor the Commlerlon, nor m y perron acting on behalf of the Commlrslon: A. Maker any warranty o r reprerentition, exprerred o r Implied, wlth respect to the accu- racy, completanerr, o r urefulners of the lnfornutlon contrlned in thls report, o r that the u r e of any lnformnti~n. apparatur, method, o r procerr dlrclored in thlr report may not infringe

382

Partnering with Industry to Advance Biofuels and Bioproducts (Fact Sheet), Integrated Biorefinery Research Facility (IBRF)  

NLE Websites -- All DOE Office Websites (Extended Search)

operated by the Alliance for Sustainable Energy, LLC. Partnering with Industry to Advance Biofuels and Bioproducts Integrated Biorefinery Research Facility The IBRF can handle high concentrations of solids in the pretreatment and enzymatic hydrolysis steps, a key factor in reducing costs. Bioreactors from 10 L to 9000 L and separation and concentration equipment are housed in the IBRF allowing for biomass conversion processes to be fully integrated. Access to Experts While using the IBRF, industry partners have access to NREL's world-renowned experts, process equipment, and systems that can be used to develop and evaluate commercial processes for the production of biobased products and fuels. In addition, partners have access to NREL's state-of-the-art molecular

383

Advanced Scientific Computing Research User Facilities | U.S. DOE Office of  

Office of Science (SC) Website

ASCR User Facilities ASCR User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 ASCR User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The Advanced Scientific Computing Research program supports the operation of the following national scientific user facilities: Energy Sciences Network (ESnet): External link The Energy Sciences Network, or ESnet External link , is the Department of Energy's high-speed network that provides the high-bandwidth, reliable connections that link scientists at national laboratories, universities and

384

Field Testing LIDAR Based Feed-Forward Controls on the NREL Controls Advanced Research Turbine: Preprint  

DOE Green Energy (OSTI)

Wind turbines are complex, nonlinear, dynamic systems driven by aerodynamic, gravitational, centrifugal, and gyroscopic forces. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a chaotic three-dimensional (3-D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. In order to reduce cost of energy, future large multimegawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energy Laboratory (NREL) and University of Stuttgart are designing, implementing, and testing advanced feed-back and feed-forward controls in order to reduce the cost of energy for wind turbines.

Scholbrock, A. K.; Fleming, P. A.; Fingersh, L. J.; Wright, A. D.; Schlipf, D.; Haizmann, F.; Belen, F.

2013-01-01T23:59:59.000Z

385

Advanced evacuated tubular concentrator research. Final report, September 30, 1985--February 28, 1991  

Science Conference Proceedings (OSTI)

Previous research projects led to the conceptual development and proof-of-concept of an advanced evacuated concentrating solar collector tube. The basic idea involves the integration of a nonimaging Compound Parabolic Concentrator (CPC) inside an evacuated tube and coupled to a spectrally selective absorber. An experimental panel of these tubes achieved the highest operating efficiency at high temperatures ever measured with a non-tracking stationary solar collector. Subsequent studies have indicated that a mass-producible collector, incorporating the same concepts, can be developed which will deliver excellent performance across a broad range of temperatures, extending from about 50{degrees}C (suitable for domestic hot water and space heating) to well above 200{degrees}C (suitable for space cooling, process steam and many other end uses). Some form of advanced Integrated CPC (ICPC) remains the only simple and effective method for delivering solar thermal energy efficiently throughout the temperature range from 50{degrees}C to about 300{degrees}C without tracking. It has the potential to make practical and economical several cooling technologies which are otherwise not viable. In addition to its potential for driving cooling systems, this technology also provides a highly versatile solar source for virtually all thermal end uses including general purpose space and domestic hot water heating as well as industrial process heat. Research efforts have been directed towards designing and prototyping a manufacturable version of such a collector tube. We have been pursuing several paths. These include: (1) a small tube version, 52mm in diameter, based on the use of the T-17 commercially produced fluorescent glass tubing, which is the largest size lamp tubing produced in high volume in the United States, and (2) a large tube version, 125mm in diameter, compatible with the commercial design manufactured until recently by Corning France (the CORTEC collector).

Winston, R.; O`Gallagher, J.J.

1992-06-01T23:59:59.000Z

386

SUMMAR OF DISCUSSIONS OF USES OF THE ADVANCED LIGHT SOURCE (ALS) FOR EARTH SCIENCES RESEARCH: WORKSHOP REPORT OF THE ALS USERS' ASSOCIATION ANNUAL MEETING, LAWRENCE BERKELEY LABORATORY, BERKELEY,CA, JUNE 2-3, 1988  

E-Print Network (OSTI)

the Advanced Light Source (ALS) for Earth Sciences Research:Workshop Report of the ALS Users' Association Annual Meetingthe Advanced Light Source (ALS) for Earth Sciences Research:

Dillard, J.; Wallenberg, H.; Perry, D.

2008-01-01T23:59:59.000Z

387

Major Safety Aspects of Advanced Candu Reactor and Associated Research and Development  

Science Conference Proceedings (OSTI)

The Advanced Candu{sup R} Reactor design is built on the proven technology of existing Candu plants and on AECL's knowledge base acquired over decades of nuclear power plant design, engineering, construction and research. Two prime objectives of ACR-700TM1 are cost reduction and enhanced safety. To achieve them some new features were introduced and others were improved from the previous Candu 6 and Candu 9 designs. The ACR-700 reactor design is based on the modular concept of horizontal fuel channels surrounded by a heavy water moderator, the same as with all Candu reactors. The major novelty in the ACR-700 is the use of slightly enriched fuel and light water as coolant circulating in the fuel channels. This results in a more compact reactor design and a reduction of heavy water inventory, both contributing to a significant decrease in cost compared to Candu reactors, which employ natural uranium as fuel and heavy water as coolant. The reactor core design adopted for ACR-700 also has some features that have a bearing on inherent safety, such as negative power and coolant void reactivity coefficient. Several improvements in engineered safety have been made as well, such as enhanced separation of the safety support systems. Since the ACR-700 design is an evolutionary development of the currently operating Candu plants, limited research is required to extend the validation database for the design and the supporting safety analysis. A program of safety related research and development has been initiated to address the areas where the ACR-700 design is significantly different from the Candu designs. This paper describes the major safety aspects of the ACR-700 with a particular focus on novel features and improvements over the existing Candu reactors. It also outlines the key areas where research and development efforts are undertaken to demonstrate the effectiveness and robustness of the design. (authors)

Bonechi, M.; Wren, D.J.; Hopwood, J.M. [Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada)

2002-07-01T23:59:59.000Z

388

Advanced information science and object-oriented technology for information management applications  

Science Conference Proceedings (OSTI)

The role of the military has been undergoing rapid change since the fall of the Berlin Wall. The kinds of missions the US military has been asked to participate in have often fallen into the category of {open_quotes}Military Operations Other Than War{close_quotes} and those involving military responses have been more of a surgical nature directed against different kinds of threats, like rogue states or in response to terrorist actions. As a result, the requirements on the military planner and analyst have also had to change dramatically. For example, preparing response options now requires rapid turnaround and a highly flexible simulation capability. This in turn requires that the planner or analyst have access to sophisticated information science and simulation technologies. In this paper, we shall discuss how advanced information science and object-oriented technologies can be used in advanced information management applications. We shall also discuss how these technologies and tools can be applied to DoD applications by presenting examples with a system developed at Argonne, the Dynamic Information Architecture System (DIAS). DIAS has been developed to exploit advanced information science and simulation technologies to provide tools for future planners and analysts.

Hummel, J.R.; Swietlik, C.E.

1996-10-01T23:59:59.000Z

389

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993  

SciTech Connect

Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

1993-09-01T23:59:59.000Z

390

Tokamaks with high-performance resistive magnets: advanced test reactors and prospects for commercial applications  

DOE Green Energy (OSTI)

Scoping studies have been made of tokamak reactors with high performance resistive magnets which maximize advantages gained from high field operation and reduced shielding requirements, and minimize resistive power requirements. High field operation can provide very high values of fusion power density and n tau/sub e/ while the resistive power losses can be kept relatively small. Relatively high values of Q' = Fusion Power/Magnet Resistive Power can be obtained. The use of high field also facilitates operation in the DD-DT advanced fuel mode. The general engineering and operational features of machines with high performance magnets are discussed. Illustrative parameters are given for advanced test reactors and for possible commercial reactors. Commercial applications that are discussed are the production of fissile fuel, electricity generation with and without fissioning blankets and synthetic fuel production.

Bromberg, L.; Cohn, D.R.; Williams, J.E.C.; Becker, H.; Leclaire, R.; Yang, T.

1981-10-01T23:59:59.000Z

391

UTILITY OF MECHANISTIC MODELS FOR DIRECTING ADVANCED SEPARATIONS RESEARCH & DEVELOPMENT ACTIVITIES: Electrochemically Modulated Separation Example  

SciTech Connect

The objective for this work was to demonstrate the utility of mechanistic computer models designed to simulate actinide behavior for use in efficiently and effectively directing advanced laboratory R&D activities associated with developing advanced separations methods.

Schwantes, Jon M.

2009-06-01T23:59:59.000Z

392

Refinements and Tests of an Advanced Controller to Mitigate Fatigue Loads in the Controls Advanced Research Turbine: Preprint  

DOE Green Energy (OSTI)

Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated 3-D turbulent wind inflow field, with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, while maximizing energy capture. Active damping should be added to these dynamic structures to maintain stability for operation in a complex environment. At the National Renewable Energy Laboratory (NREL), we have designed, implemented, and tested advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are generated by specialized modeling software. In this paper, we present field test results of an advanced control algorithm to mitigate blade, tower, and drivetrain loads in Region 3.

Wright, A.; Fleming, P.

2010-12-01T23:59:59.000Z

393

Agronomy Research Assistant Biofuels The Hawaii Agriculture Research Center (HARC) is seeking a qualified applicant to fill a full time  

E-Print Network (OSTI)

Agronomy Research Assistant ­ Biofuels The Hawaii Agriculture Research Center (HARC) is seeking a qualified applicant to fill a full time Research Assistant position to work with biofuel crops to assist in the evaluation of multiple crops of interest to the biofuels research program. The position

Kaye, Jason P.

394

Premier Tools of Energy Research Also Probe Secrets of Viral Disease  

DOE R&D Accomplishments (OSTI)

Advanced light sources peer into matter at the atomic and molecular scales, with applications ranging from physics, chemistry, materials science, and advanced energy research, to biology and medicine.

Chui, Glennda

2011-03-28T23:59:59.000Z

395

University Programs of the U.S. Department of Energy Advance Accelerator Applications Program  

Science Conference Proceedings (OSTI)

The Advanced Accelerator Applications (AAA) Program was initiated in fiscal year 2001 (FY01) by the U.S. Congress, the U.S. Department of Energy (DOE), and the Los Alamos National Laboratory (LANL) in partnership with other national laboratories. The primary goal of this program is to investigate the feasibility of accelerator-driven transmutation of nuclear waste (ATW). Because a large cadre of educated scientists and trained technicians will be needed to conduct the investigations of science and technology for transmutation, the AAA Program Office has begun a multi-year program to involve university faculty and students in various phases of the Project.

Beller, D. E. (Denis E.)

2002-01-01T23:59:59.000Z

396

Advanced virtual energy simulation training and research: IGCC with CO2 capture power plant  

SciTech Connect

In this presentation, we highlight the deployment of a real-time dynamic simulator of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture at the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTARTM) Center. The Center was established as part of the DOE's accelerating initiative to advance new clean coal technology for power generation. IGCC systems are an attractive technology option, generating low-cost electricity by converting coal and/or other fuels into a clean synthesis gas mixture in a process that is efficient and environmentally superior to conventional power plants. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Fueled with coal, petroleum coke, and/or biomass, the gasification island of the simulated IGCC plant consists of two oxygen-blown, downward-fired, entrained-flow, slagging gasifiers with radiant syngas coolers and two-stage sour shift reactors, followed by a dual-stage acid gas removal process for CO{sub 2} capture. The combined cycle island consists of two F-class gas turbines, steam turbine, and a heat recovery steam generator with three-pressure levels. The dynamic simulator can be used for normal base-load operation, as well as plant start-up and shut down. The real-time dynamic simulator also responds satisfactorily to process disturbances, feedstock blending and switchovers, fluctuations in ambient conditions, and power demand load shedding. In addition, the full-scope simulator handles a wide range of abnormal situations, including equipment malfunctions and failures, together with changes initiated through actions from plant field operators. By providing a comprehensive IGCC operator training system, the AVESTAR Center is poised to develop a workforce well-prepared to operate and control commercial-scale gasification-based power plants capable of 90% pre-combustion CO{sub 2} capture and compression, as well as low sulfur, mercury, and NOx emissions. With additional support from the NETL-Regional University Alliance (NETL-RUA), the Center will educate and train engineering students and researchers by providing hands-on 'learning by operating' experience The AVESTAR Center also offers unique collaborative R&D opportunities in high-fidelity dynamic modeling, advanced process control, real-time optimization, and virtual plant simulation. Objectives and goals are aimed at safe and effective management of power generation systems for optimal efficiency, while protecting the environment. To add another dimension of realism to the AVESTAR experience, NETL will introduce an immersive training system with innovative three-dimensional virtual reality technology. Wearing a stereoscopic headset or eyewear, trainees will enter an interactive virtual environment that will allow them to move freely throughout the simulated 3-D facility to study and learn various aspects of IGCC plant operation, control, and safety. Such combined operator and immersive training systems go beyond traditional simulation and include more realistic scenarios, improved communication, and collaboration among co-workers.

Zitney, S.; Liese, E.; Mahapatra, P.; Bhattacharyya, D.; Provost, G.

2011-01-01T23:59:59.000Z

397

Advanced experimental applications for x-ray transmission gratings spectroscopy using a novel grating fabrication method  

Science Conference Proceedings (OSTI)

A novel fabrication method for soft x-ray transmission grating and other optical elements is presented. The method uses focused-ion-beam technology to fabricate high-quality free standing grating bars on transmission electron microscopy grids. High quality transmission gratings are obtained with superb accuracy and versatility. Using these gratings and back-illuminated CCD camera, absolutely calibrated x-ray spectra can be acquired for soft x-ray source diagnostics in the 100-3000 eV spectral range. Double grating combinations of identical or different parameters are easily fabricated, allowing advanced one-shot application of transmission grating spectroscopy. These applications include spectroscopy with different spectral resolutions, bandwidths, dynamic ranges, and may serve for identification of high-order contribution, and spectral calibrations of various x-ray optical elements.

Hurvitz, G.; Ehrlich, Y.; Shpilman, Z.; Levy, I.; Fraenkel, M. [Plasma Physics Department, Applied Physics Division, Soreq NRC, Yavne (Israel); Strum, G. [Solid State Department, Applied Physics Division, Soreq NRC, Yavne (Israel)

2012-08-15T23:59:59.000Z

398

The development of advanced lead-acid batteries for utility applications  

DOE Green Energy (OSTI)

Technical advances in lead-acid battery design have created new opportunities for battery systems in telecommunications, computer backup power and vehicle propulsion power. Now the lead-acid battery has the opportunity to become a major element in the mix of technologies used by electric utilities for several power quality and energy and resource management functions within the network. Since their introduction into industrial applications, Valve Regulated Lead-Acid (VRLA) batteries have received widespread acceptance and use in critical telecommunications and computer installations, and have developed over 10 years of reliable operational history. As further enhancements in performance, reliability and manufacturing processes are made, these VRLA batteries are expanding the role of battery-based energy storage systems within utility companies portfolios. This paper discusses the rationale and process of designing, optimizing and testing VRLA batteries for specific utility application requirements.

Szymborski, J. [GNB Industrial Battery Co., Lombard, IL (United States); Jungst, R.G. [Sandia National Labs., Albuquerque, NM (United States)

1993-10-01T23:59:59.000Z

399

First results on disruption mitigation by massive gas injection in Korea Superconducting Tokamak Advanced Research  

Science Conference Proceedings (OSTI)

Massive gas injection (MGI) system was developed on Korea Superconducting Tokamak Advanced Research (KSTAR) in 2011 campaign for disruption studies. The MGI valve has a volume of 80 ml and maximum injection pressure of 50 bar, the diameter of valve orifice to vacuum vessel is 18.4 mm, the distance between MGI valve and plasma edge is {approx}3.4 m. The MGI power supply employs a large capacitor of 1 mF with the maximum voltage of 3 kV, the valve can be opened in less than 0.1 ms, and the amount of MGI can be controlled by the imposed voltage. During KSTAR 2011 campaign, MGI disruptions are carried out by triggering MGI during the flat top of circular and limiter discharges with plasma current 400 kA and magnetic field 2-3.5 T, deuterium injection pressure 39.7 bar, and imposed voltage 1.1-1.4 kV. The results show that MGI could mitigate the heat load and prevent runaway electrons with proper MGI amount, and MGI penetration is deeper under higher amount of MGI or lower magnetic field. However, plasma start-up is difficult after some of D{sub 2} MGI disruptions due to the high deuterium retention and consequently strong outgassing of deuterium in next shot, special effort should be made to get successful plasma start-up after deuterium MGI under the graphite first wall.

Yu Yaowei [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Kim, Young-Ok; Kim, Hak-Kun; Kim, Hong-Tack; Kim, Woong-Chae; Kim, Kwang-Pyo; Son, Soo-Hyun; Bang, Eun-Nam; Hong, Suk-Ho; Yoon, Si-Woo [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Zhuang Huidong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Chen Zhongyong [Huazhong University of Science and Technology, Wuhan 430074 (China)

2012-12-15T23:59:59.000Z

400

Advances in Conjugated Linoleic Acid Research, Vol 2Chapter 9 Animal Feeding Strategies for Conjugated Linoleic Acid Enrichment of Milk  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Vol 2 Chapter 9 Animal Feeding Strategies for Conjugated Linoleic Acid Enrichment of Milk Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry 735D98CA0ABF7C8A10664FCCD

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advances in Conjugated Linoleic Acid Research, Vol 2Chapter 1 Analysis of Conjugated Linoleic Acid: An Overview  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Vol 2 Chapter 1 Analysis of Conjugated Linoleic Acid: An Overview Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry FC2183A22B667A6B95F8EF1636CB912D AOCS Press

402

Gasification advanced research and technology development (AR and TD) cross-cut meeting and review. [US DOE supported  

DOE Green Energy (OSTI)

The US Department of Energy gasification advanced research and technology development (AR and TD) cross-cut meeting and review was held June 24 to 26, 1981, at Germantown, Maryland. Forty-eight papers from the proceedings have been entered individually into EDB and ERA. (LTN)

Not Available

1981-01-01T23:59:59.000Z

403

Advances in the In-House CdTe Research Activities at NREL  

DOE Green Energy (OSTI)

NREL in-house CdTe research activities have impacted a broad range of recent program priorities. Studies aimed at industrially relevant applications have produced new materials and processes that enhance the performance of devices based on commercial materials (e.g., soda-lime glass, SnO2:F). Preliminary tests of the effectiveness of these novel components using large-scale processes have been encouraging. Similarly, electro- and nano-probe techniques have been developed and used to study the evolution and function of CdTe grain boundaries. Finally, cathodoluminescence (CL) and photoluminescence (PL) studies on single-crystal samples have yielded improved understanding of how various processes may combine to produce important defects in CdTe films.

Gessert, T.; Wu, X.; Dhere, R.; Moutinho, H.; Smith, S.; Romero, M.; Zhou, J.; Duda, A.; Corwine, C.

2005-01-01T23:59:59.000Z

404

NEDO Research Related to Battery Storage Applications for Integration of  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » NEDO Research Related to Battery Storage Applications for Integration of Renewable Energy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.net/index.php?id=131 Equivalent URI: cleanenergysolutions.org/content/spain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an overview of total installed wind energy capacity in Spain per year from 2000 to 2010. The page also presents the main market developments from 2010; a policy summary; a discussion of the revision in feed-in tariffs in 2010; and a future market outlook.

405

Designing and Testing Controls to Mitigate Tower Dynamic Loads in the Controls Advanced Research Turbine: Preprint  

DOE Green Energy (OSTI)

This report describes NREL's efforts to design, implement, and test advanced controls for maximizing energy extraction and reducing structural dynamic loads in wind turbines.

Wright, A. D.; Fingersh, L. J.; Stol, K. A.

2007-01-01T23:59:59.000Z

406

Perface: Research advances in vadose zone hydrology throughsimulations with the TOUGH codes  

DOE Green Energy (OSTI)

Numerical simulators are playing an increasingly important role in advancing our fundamental understanding of hydrological systems. They are indispensable tools for managing groundwater resources, analyzing proposed and actual remediation activities at contaminated sites, optimizing recovery of oil, gas, and geothermal energy, evaluating subsurface structures and mining activities, designing monitoring systems, assessing the long-term impacts of chemical and nuclear waste disposal, and devising improved irrigation and drainage practices in agricultural areas, among many other applications. The complexity of subsurface hydrology in the vadose zone calls for sophisticated modeling codes capable of handling the strong nonlinearities involved, the interactions of coupled physical, chemical and biological processes, and the multiscale heterogeneities inherent in such systems. The papers in this special section of ''Vadose Zone Journal'' are illustrative of the enormous potential of such numerical simulators as applied to the vadose zone. The papers describe recent developments and applications of one particular set of codes, the TOUGH family of codes, as applied to nonisothermal flow and transport in heterogeneous porous and fractured media (http://www-esd.lbl.gov/TOUGH2). The contributions were selected from presentations given at the TOUGH Symposium 2003, which brought together developers and users of the TOUGH codes at the Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California, for three days of information exchange in May 2003 (http://www-esd.lbl.gov/TOUGHsymposium). The papers presented at the symposium covered a wide range of topics, including geothermal reservoir engineering, fracture flow and vadose zone hydrology, nuclear waste disposal, mining engineering, reactive chemical transport, environmental remediation, and gas transport. This Special Section of ''Vadose Zone Journal'' contains revised and expanded versions of selected papers from the symposium, with special attention to issues related to the vadose zone and unsaturated flow systems. The first paper, written by the original developer of TOUGH, Karsten Pruess, provides an overview of the history of the TOUGH codes, the main physical processes considered, their mathematical and numerical implementation, and case studies. That paper is followed by a review article summarizing inverse modeling applications performed by iTOUGH2. A subsequent group of papers deals with diverse unsaturated zone systems, highlighting the versatility of the code to handle a variety of processes in different geologic settings. Simulation capabilities of the TOUGH codes are increasingly used for geologic carbon sequestration studies as testified by the next group of papers. The final series of papers demonstrates the use of the TOUGH codes in support of remediation and engineering applications. These studies discuss biological and reactive chemical transport simulations, the design of clean-up operations and landfill management, and the analysis of engineered soil stabilization. As guest editors, we thank the authors for their interesting contributions, and the many reviewers for their careful and constructive review comments. Finally, on behalf of all of the authors and ourselves, we express our sincerest appreciation to Rien van Genuchten for providing the opportunity to publish these papers together in a Special Section of ''Vadose Zone Journal''.

Finsterle, Stefan; Oldenburg, Curtis M.

2004-07-12T23:59:59.000Z

407

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, April--June 1993  

SciTech Connect

Progress made in five areas of research is described briefly. The subtask in oil shale research is on oil shale process studies. For tar sand the subtask reported is on process development. Coal research includes the following subtasks: Coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes the following: Advanced process concepts; advanced mitigation concepts; oil and gas technology. Jointly sponsored research includes: Organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sup 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process;NMR analysis of samples from the ocean drilling program; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of Mowry formation shale from different sedimentary basins; solid-state NMR analysis of naturally and artificially matured kerogens; and development of effective method for the clean-up of natural gas.

1993-09-01T23:59:59.000Z

408

Geometry and Structural Properties for the Controls Advanced Research Turbine (CART) from Model Tuning: August 25, 2003--November 30, 2003  

DOE Green Energy (OSTI)

The Controls Advanced Research Turbine (CART) is a modified Westinghouse WWG-0600 machine rated at 600 kW. It is located at the National Wind Technology Center (NWTC) in Boulder, Colorado, and has been installed to test new control schemes for power and load regulation. In its original configuration, the WWG-0600 uses a synchronous generator, fluid coupling, and hydraulic collective pitch actuation. However, the CART is fitted with an induction generator, rigid coupling, and individual electromechanical pitch actuators. The rotor runs upwind of the tower and consists of two blades and a teetering hub. In order to design advanced control schemes for the CART, representative computational models are essential.

Stol, K. A.

2004-09-01T23:59:59.000Z

409

Assessment of instrumentation needs for advanced coal power plant applications: Final report  

DOE Green Energy (OSTI)

The purpose of this study was to identify contaminants, identify instrumentation needs, assess available instrumentation and identify instruments that should be developed for controlling and monitoring gas streams encountered in the following power plants: Integrated Gasification Combined Cycle, Pressurized Fluidized Bed Combustion, and Gasification Molten Carbonate Fuel Cell. Emphasis was placed on hot gas cleanup system gas stream analysis, and included process control, research and environmental monitoring needs. Commercial process analyzers, typical of those currently used for process control purposes, were reviewed for the purpose of indicating commercial status. No instrument selection guidelines were found which were capable of replacing user interaction with the process analyzer vendors. This study leads to the following conclusions: available process analyzers for coal-derived gas cleanup applications satisfy current power system process control and regulatory requirements, but they are troublesome to maintain; commercial gas conditioning systems and in situ analyzers continue to be unavailable for hot gas cleanup applications; many research-oriented gas stream characterization and toxicity assessment needs can not be met by commercially available process analyzers; and greater emphasis should be placed on instrumentation and control system planning for future power plant applications. Analyzers for specific compounds are not recommended other than those needed for current process control purposes. Instead, some generally useful on-line laser-based and inductively coupled plasma methods are recommended for further development because of their potential for use in present hot gas cleanup research and future optimization, component protection and regulation compliance activities. 48 refs., 21 figs., 26 tabs.

Nelson, E.T.; Fischer, W.H.; Lipka, J.V.; Rutkowski, M.D.; Zaharchuk, R.

1987-10-01T23:59:59.000Z

410

ADVANCED SORBENT DEVELOPMENT PROGRAM DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS  

SciTech Connect

The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 C (700 F) to 538 C (1000 F) and regeneration temperatures up to 760 C (1400 F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent development at General Electric's Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

R.E Ayala; V.S. Venkataramani; Javad Abbasian; Rachid B. Slimane; Brett E. Williams; Minoo K. Zarnegar; James R. Wangerow; Andy H. Hill

2000-03-31T23:59:59.000Z

411

ADVANCED SORBENT DEVELOPMENT PROGRAM; DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS  

SciTech Connect

The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.?s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 C (700 F) to 538 C (1000 F) and regeneration tempera-tures up to 760 C (1400 F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent develop-ment at General Electric?s Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

R.E. AYALA; V.S. VENKATARAMANI

1998-09-30T23:59:59.000Z

412

NREL: Wind Research - Wind Applications Center Valuable Resource...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Applications Center Valuable Resource for Wind for Schools Partners March 14, 2013 Audio with Jerry Hudgins, Nebraska Wind Applications Center Director and Joel Jacobs,...

413

HTGR applications program advanced systems. Semiannual report, October 1, 1982-March 31, 1983  

SciTech Connect

Work Breakdown Structure (WBS 41) activities emphasize the advanced HTGR modular reactor system (MRS) for reformer (R) and steam cycle/-cogeneration (SC/C) applications. This report describes progress in system performance for a 250-MW(t) MRS-R and a 300-MW(t) MRS-SC/C plant; it details the groundrules and parameters for the FY-83 nuclear core design and examines and compares fuel cycle economics. This report gives results from a study on decay heat removal transients for the MRS-R and MRS-SC/C variants. It evaluates the bypass valve system and the number and location of helium circulators, and it describes the progress on circulator component design, a prestressed concrete vessel steel closure design, and plant licensing and safety. Under the Advanced Technology Transfer Task (WBS 15), this report includes a section on a pebble bed reactor (PBR) MRS core heatup thermal model analysis. This report also gives the results of a survey on candidate reformer tube materials from GA Technologies Inc. to identify acceptable substitute materials for Inconel 617 to alleviate possible cobalt activation and carburization problems.

None

1983-05-01T23:59:59.000Z

414

Design and Application of CVD Diamond Windows for X-Rays at the Advanced Photon Source  

Science Conference Proceedings (OSTI)

Two types of directly cooled, 0.2-mm-thick, 8-mm-diameter clear aperture CVD diamond windows have been designed and successfully fabricated by two different vendors for use at the Advanced Photon Source (APS). Both windows contain a direct braze joint between the diamond and the cooled OFHC copper. These windows can be used to replace the front-end beryllium windows in high-heat-load applications and can be used as white beam windows in the beamlines. This paper presents the detailed design of the diamond windows, the thermal analysis of the diamond window under different thermal load configurations, as well as a complete list of the existing APS front-end beryllium window configurations and replacement scenarios. Small-angle scattering experiments have been conducted on both diamond windows and a polished beryllium window, and the results are presented.

Jaski, Yifei [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Bldg 401, Argonne, IL 60439 (United States); Cookson, David [University of Chicago, CARS, APS Sector 15, 9700 S. Cass Ave, Bldg. 434D, Argonne, IL 60439 (United States)

2007-01-19T23:59:59.000Z

415

Design and application of CVD diamond windows for x-rays at the Advanced Photon Source.  

Science Conference Proceedings (OSTI)

Two types of directly cooled, 0.2-mm-thick, 8-mm-diameter clear aperture CVD diamond windows have been designed and successfully fabricated by two different vendors for use at the Advanced Photon Source (APS). Both windows contain a direct braze joint between the diamond and the cooled OFHC copper. These windows can be used to replace the front-end beryllium windows in high-heat-load applications and can be used as white beam windows in the beamlines. This paper presents the detailed design of the diamond windows, the thermal analysis of the diamond window under different thermal load configurations, as well as a complete list of the existing APS front-end beryllium window configurations and replacement scenarios. Small-angle scattering experiments have been conducted on both diamond windows and a polished beryllium window, and the results are presented.

Jaski, Y.; Cookson, D.; Experimental Facilities Division (APS); Univ. of Chicago

2007-01-01T23:59:59.000Z

416

NREL: Vehicles and Fuels Research - NREL to Showcase Two Advanced Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

to Showcase Two Advanced Vehicles at Estes Park Coolest Car Show on to Showcase Two Advanced Vehicles at Estes Park Coolest Car Show on July 4 July 1, 2013 The National Renewable Energy Laboratory (NREL) will showcase two advanced Toyota vehicles -- a Highlander fuel cell hybrid vehicle (FCHV-adv) and a plug-in Prius hybrid electric vehicle -- at The Coolest Car Show in Colorado in Estes Park on July 4. Representatives from NREL will be on hand to answer questions about the vehicles on display and provide information and educational literature about alternative fuels and advanced vehicles. "We like to reach out to the community and provide information on alternative vehicle technologies and this is a great event to do that with all of the vehicle enthusiasts," said NREL's Melanie Caton. The car show, which is hosted by Estes Park Museum Friends and Foundation,

417

From Hot Towers to TRMM: Joanne Simpson and Advances in Tropical Convection Research  

Science Conference Proceedings (OSTI)

Joanne Simpson began contributing to advances in tropical convection about half a century ago. The hot tower hypothesis jointly put forth by Joanne Simpson and Herbert Riehl postulated that deep convective clouds populating the equatorial trough ...

Robert A. Houze Jr.

2003-01-01T23:59:59.000Z

418

Overview of the Consortium of Hospitals Advancing Research on Tobacco (CHART)  

E-Print Network (OSTI)

Center for Health Research provides organizational and dataHealth Research in Portland, Oregon (U01 HL 105233, Principal Investigator (PI ) Victor Stevens). The CHART organizational

Riley, William T; Stevens, Victor J; Zhu, Shu-Hong; Morgan, Glen; Grossman, Debra

2012-01-01T23:59:59.000Z

419

Designing and Testing Contols to Mitigate Dynamic Loads in the Controls Advanced Research Turbine: Preprint  

SciTech Connect

The National Renewable Energy Laboratory is designing, implementing, and testing advanced controls to maximize energy extraction and reduce structural dynamic loads of wind turbines. These control designs are based on a linear model of the turbine that is generated by specialized modeling software. In this paper, we show the design and simulation testing of a control algorithm to mitigate blade, tower, and drivetrain loads using advanced state-space control design methods.

Wright, A.D.; Stol, K.A.

2008-01-01T23:59:59.000Z

420

Boulder Wind Power Advanced Gearless Drivetrain: Cooperative Research and Development Final Report, CRADA Number CRD-12-00463  

DOE Green Energy (OSTI)

The Boulder Wind Power (BWP) Advanced Gearless Drivetrain Project explored the application of BWP's innovative, axial-gap, air-core, permanent-magnet direct-drive generator in offshore wind turbines. The objective of this CRADA is to assess the benefits that result from reduced towerhead mass of BWP's technology when used in 6 MW offshore turbines installed on a monopile or a floating spar foundation.

Cotrell, J.

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Boulder Wind Power Advanced Gearless Drivetrain: Cooperative Research and Development Final Report, CRADA Number CRD-12-00463  

SciTech Connect

The Boulder Wind Power (BWP) Advanced Gearless Drivetrain Project explored the application of BWP's innovative, axial-gap, air-core, permanent-magnet direct-drive generator in offshore wind turbines. The objective of this CRADA is to assess the benefits that result from reduced towerhead mass of BWP's technology when used in 6 MW offshore turbines installed on a monopile or a floating spar foundation.

Cotrell, J.

2013-04-01T23:59:59.000Z

422

Research on the Integration Application of Business Intelligence and ERP  

Science Conference Proceedings (OSTI)

This paper analyzes the limitation of traditional ERP system, briefly introduces the ERP system and business intelligence technology, focus on the business intelligence technology and ERP system integration application architecture, discusses the various ... Keywords: business intelligence, ERP, framework, integration application

Lianqiu Zhou

2012-10-01T23:59:59.000Z

423

Proceedings of the 3rd International Conference on Computing for Geospatial Research and Applications  

Science Conference Proceedings (OSTI)

COM.Geo Conference is a leading-edge conference on computer science and technology for geospatial information research and application. It focuses on the latest computing technologies for multidisciplinary research and development that enables the exploration ...

Lindi Liao

2012-07-01T23:59:59.000Z

424

Proceedings of the 2nd International Conference on Computing for Geospatial Research & Applications  

Science Conference Proceedings (OSTI)

COM.Geo Conference is a leading-edge conference on computer science and technology for geospatial information research and applications. It focuses on the latest computer and information technologies for multidisciplinary research and development that ...

Lindi Liao

2011-05-01T23:59:59.000Z

425

Proceedings of the 2011 Conference of the Center for Advanced Studies on Collaborative Research  

Science Conference Proceedings (OSTI)

For over 20 years, CASCON has been a technology showcase and an event of research collaboration for industrial and academic leaders and researchers from around the world. This annual conference on computer science technologies is hosted by the Centre ...

Joanna Ng; Christian Couturier; Marin Litoiu; Eleni Stroulia, Marin Litoiu, Eleni Stroulia, Stephen MacKay

2011-11-01T23:59:59.000Z

426

Advances and Applications of Intrinsic Low Dimensional Manifold Theory Joseph M. Powers, Samuel Paolucci, and Sandeep Singh  

E-Print Network (OSTI)

scales of chemical reaction. Simple and often useful strategies which capture some of the kinetic time systematically reduce chemical kinetic models in such a way that consistency with full model equationsAdvances and Applications of Intrinsic Low Dimensional Manifold Theory Joseph M. Powers, Samuel

427

Atmospheric fluidized bed combustion advanced system concepts applicable to small industrial and commercial markets. Topical report, Level 2  

Science Conference Proceedings (OSTI)

As part of an overall strategy to promote FBC coal combustion and to improve the marketability of the eastern coals, the US Department of Energy`s Morgantown Energy Research Center awarded a three level contract to Riley Stoker Corporation to develop advanced Multi Solids Fluidized Bed (MSFB) boiler designs. The first level of this contract targeted the small package boiler (10,000--50,000 lb/hr steam) and industrial size boiler (75,000--150,000 lb/hr steam) markets. Two representative sizes, 30,000 lb/hr and 110,000 lb/hr of steam, were selected for the two categories for a detailed technical and economic evaluation. Technically, both the designs showed promise, however, the advanced industrial design was favored on economic considerations. It was thus selected for further study in the second level of the contract. Results of this Level-2 effort, presented in this report, consisted of testing the design concept in Riley`s 4.4 MBtu/hr pilot MSFB facility located at Riley Research Center in Worcester, Mass. The design and economics of the proof of concept facility developed in Level-1 of the contract were then revised in accordance with the findings of the pilot test program. A host site for commercial demonstration in Level-3 of the contract was also secured. It was determined that co-firing coal in combination with paper de-inking sludge will broaden the applicability of the design beyond conventional markets. International Paper (IP), the largest paper company in the world, is willing to participate in this part of the program. IP has offered its Hammermill operation at Lockhaven, Pa, site of a future paper de-inking plant, for the proof of concept installation. This plant will go in operation in 1994. It is recommended that METC proceed to the commercial demonstration of the design developed. The approach necessary to satisfy the needs of the customer while meeting the objectives of this program is presented along with a recommended plan of action.

Ake, T.R.; Dixit, V.B.; Mongeon, R.K.

1992-09-01T23:59:59.000Z

428

Advanced Monitoring systems initiative  

SciTech Connect

The Advanced Monitoring Systems Initiative (AMSI) actively searches for promising technologies and aggressively moves them from the research bench into DOE/NNSA end-user applications. There is a large unfulfilled need for an active element that reaches out to identify and recruit emerging sensor technologies into the test and evaluation function. Sensor research is ubiquitous, with the seeds of many novel concepts originating in the university systems, but at present these novel concepts do not move quickly and efficiently into real test environments. AMSI is a widely recognized, self-sustaining ''business'' accelerating the selection, development, testing, evaluation, and deployment of advanced monitoring systems and components.

R.J. Venedam; E.O. Hohman; C.F. Lohrstorfer; S.J. Weeks; J.B. Jones; W.J. Haas

2004-09-30T23:59:59.000Z

429

Development, Implementation, and Testing of Fault Detection Strategies on the National Wind Technology Center's Controls Advanced Research Turbines  

Science Conference Proceedings (OSTI)

The National Renewable Energy Laboratory's National Wind Technology Center dedicates two 600 kW turbines for advanced control systems research. A fault detection system for both turbines has been developed, analyzed, and improved across years of experiments to protect the turbines as each new controller is tested. Analysis of field data and ongoing fault detection strategy improvements have resulted in a system of sensors, fault definitions, and detection strategies that have thus far been effective at protecting the turbines. In this paper, we document this fault detection system and provide field data illustrating its operation while detecting a range of failures. In some cases, we discuss the refinement process over time as fault detection strategies were improved. The purpose of this article is to share field experience obtained during the development and field testing of the existing fault detection system, and to offer a possible baseline for comparison with more advanced turbine fault detection controllers.

Johnson, K. E.; Fleming, P. A.

2011-06-01T23:59:59.000Z

430

Advanced High Frequency Devices  

Science Conference Proceedings (OSTI)

... External agencies, including the Defense Advanced Research Projects Agency (DARPA) and the Office of Naval Research (ONR), have ...

2010-10-05T23:59:59.000Z

431

Partnering with Industry to Advance Biofuels, NREL's Integrated Biorefinery Research Facility (Fact Sheet)  

Science Conference Proceedings (OSTI)

Fact sheet describing NREL's Integrated Biorefinery Research Facility and its availability to biofuels' industry partners who want to operate, test, and develop biorefining technology and equipment.

Not Available

2010-10-01T23:59:59.000Z

432

Active load management with advanced window wall systems: Research and industry perspectives  

SciTech Connect

Advanced window wall systems have the potential to provide demand response by reducing peak electric loads by 20-30% in many commercial buildings through the active control of motorized shading systems, switchable window coatings, operable windows, and ventilated double-skin facade systems. These window strategies involve balancing daylighting and solar heat gains, heat rejection through ventilation, and night-time natural ventilation to achieve space-conditioning and lighting energy use reductions without the negative impacts on occupants associated with other demand responsive (DR) strategies. This paper explores conceptually how advanced window systems fit into the context of active load management programs, which cause customers to directly experience the time-varying costs of their consumption decisions. Technological options are suggested. We present pragmatic criteria that building owners use to determine whether to deploy such strategies. A utility's perspective is given. Industry also provides their perspectives on where the technology is today and what needs to happen to implement such strategies more broadly in the US. While there is significant potential for these advanced window concepts, widespread deployment is unlikely to occur with business-as-usual practice. Technologically, integrated window-lighting-HVAC products are underdeveloped. Implementation is hindered by fragmented labor practices, non-standard communication protocols, and lack of technical expertise. Design tools and information products that quantify energy performance, occupant impacts, reliability, and other pragmatic concerns are not available. Interest within the building industry in sustainability, energy-efficiency, and increased occupant amenity, comfort, and productivity will be the driving factors for these advanced facades in the near term--at least until the dust settles on the deregulated electricity market.

Lee, Eleanor S.; Selkowitz, Stephen E.; Levi, Mark S.; Blanc, Steven L.; McConahey, Erin; McClintock, Maurya; Hakkarainen, Pekka; Sbar, Neil L.; Myser, Michael P.

2002-06-01T23:59:59.000Z

433

Active load management with advanced window wall systems: Research and industry perspectives  

SciTech Connect

Advanced window wall systems have the potential to provide demand response by reducing peak electric loads by 20-30% in many commercial buildings through the active control of motorized shading systems, switchable window coatings, operable windows, and ventilated double-skin facade systems. These window strategies involve balancing daylighting and solar heat gains, heat rejection through ventilation, and night-time natural ventilation to achieve space-conditioning and lighting energy use reductions without the negative impacts on occupants associated with other demand responsive (DR) strategies. This paper explores conceptually how advanced window systems fit into the context of active load management programs, which cause customers to directly experience the time-varying costs of their consumption decisions. Technological options are suggested. We present pragmatic criteria that building owners use to determine whether to deploy such strategies. A utility's perspective is given. Industry also provides their perspectives on where the technology is today and what needs to happen to implement such strategies more broadly in the US. While there is significant potential for these advanced window concepts, widespread deployment is unlikely to occur with business-as-usual practice. Technologically, integrated window-lighting-HVAC products are underdeveloped. Implementation is hindered by fragmented labor practices, non-standard communication protocols, and lack of technical expertise. Design tools and information products that quantify energy performance, occupant impacts, reliability, and other pragmatic concerns are not available. Interest within the building industry in sustainability, energy-efficiency, and increased occupant amenity, comfort, and productivity will be the driving factors for these advanced facades in the near term--at least until the dust settles on the deregulated electricity market.

Lee, Eleanor S.; Selkowitz, Stephen E.; Levi, Mark S.; Blanc, Steven L.; McConahey, Erin; McClintock, Maurya; Hakkarainen, Pekka; Sbar, Neil L.; Myser, Michael P.

2002-06-01T23:59:59.000Z

434

Recent advances in fabrication of high-T{sub c} superconductors for electric power applications.  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) supports an applied superconductivity program entitled ''Superconductivity Program for Electric Power Systems.'' Activities within this program contribute to development of the high-temperature superconductor (HTS) technology needed for industry to proceed with the commercial development of electric power applications such as motors, generators, transformers, transmission cables, and current limiters. Research is conducted in three categories: wire development, systems technology development, and Superconductivity Partnership Initiative (SPI). Wire development activities are devoted to improving the critical current density (J{sub c}) of short-length HTS wires, whereas systems technology development focuses on fabrication of long-length wires, coils, and on magnets. The SPI activities are aimed at development of prototype products. Significant progress has been made in the development of (HTSs) for various applications: some applications have already made significant strides in the marketplace, while others are still in the developmental stages. For successful electric power applications, it is very important that the HTS be fabricated into long-length conductors that exhibit desired superconducting and mechanical properties. Several parameters of the PIT technique must be carefully controlled to obtain the desired properties. Long lengths of Bi-2223 tapes with respectable superconducting properties have been fabricated by a carefully designed thermomechanical treatment process. A 1-MVA capacity fault current limiter, a 286-hp motor, and 630-kVA transformers, and a 50-m-long conductor, all using HTSs, have already been demonstrated. While the use of HTS devices in the electric utility area has clear advantages, impediments to successful commercialization remain. Issues such as AC losses, conductor cost, and reliable superconducting joints must be addressed. The cost of HTS conductors are still quite high, and significant R and D effort must be focused on this issue. The general acceptance of HTS power equipment will ultimately be based on system performance, reliability and maintenance, efficiency, and installed cost relative to those of conventional technologies.

Balachandran, U.

1998-03-25T23:59:59.000Z

435

Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report  

DOE Green Energy (OSTI)

This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

NONE

1998-12-01T23:59:59.000Z

436

Collaborating for Knowledge Creation and Application: The Case of Nanotechnology Research Programs  

Science Conference Proceedings (OSTI)

We study how collaboration and internal resources drive knowledge creation and application in university research programs. Academic collaboration with fellow university scientists drives knowledge creation, whereas collaboration with industry partners ... Keywords: alliance, application, collaboration, innovation, knowledge, nanotechnology, network, partnering, resource, university research

Dovev Lavie; Israel Drori

2012-05-01T23:59:59.000Z

437

Report on the workshop "Decay spectroscopy at CARIBU: advanced fuel cycle applications, nuclear structure and astrophysics". 14-16 April 2011, Argonne National Laboratory, USA.  

SciTech Connect

A workshop on 'Decay Spectroscopy at CARIBU: Advanced Fuel Cycle Applications, Nuclear Structure and Astrophysics' will be held at Argonne National Laboratory on April 14-16, 2011. The aim of the workshop is to discuss opportunities for decay studies at the Californium Rare Isotope Breeder Upgrade (CARIBU) of the ATLAS facility with emphasis on advanced fuel cycle (AFC) applications, nuclear structure and astrophysics research. The workshop will consist of review and contributed talks. Presentations by members of the local groups, outlining the status of relevant in-house projects and availabile equipment, will also be organized. time will also be set aside to discuss and develop working collaborations for future decay studies at CARIBU. Topics of interest include: (1) Decay data of relevance to AFC applications with emphasis on reactor decay heat; (2) Discrete high-resolution gamma-ray spectroscopy following radioactive decya and related topics; (3) Calorimetric studies of neutron-rich fission framgents using Total ABsorption Gamma-Ray Spectrometry (TAGS) technique; (4) Beta-delayed neutron emissions and related topics; and (5) Decay data needs for nuclear astrophysics.

Kondev, F.; Carpenter, M.P.; Chowdhury, P.; Clark, J.A.; Lister, C.J.; Nichols, A.L.; Swewryniak, D. (Nuclear Engineering Division); (Univ. of Massachusetts); (Univ. of Surrey)

2011-10-06T23:59:59.000Z

438

Advanced Materials in MML  

Science Conference Proceedings (OSTI)

... Advanced Materials Characterization. Fusion Wall Development Research by Neutron Depth Profiling. < Previous 1 2 3 Next . ...

2012-06-12T23:59:59.000Z

439

Advances in Conjugated Linoleic Acid Research, Volume 3Chapter 11 An Overview of the Effects of Conjugated Linoleic Acid on Body Weight and Body Composition in Humans  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Volume 3 Chapter 11 An Overview of the Effects of Conjugated Linoleic Acid on Body Weight and Body Composition in Humans Downloadable pdf of Chapter 11 An Ove

440

Advances in Conjugated Linoleic Acid Research, Volume 3Chapter 5 New Developments in Silver Ion and Reverse Phase HPLC of CLA  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Volume 3 Chapter 5 New Developments in Silver Ion and Reverse Phase HPLC of CLA Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Press ...

Note: This page contains sample records for the topic "advanced applications research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Advances in Conjugated Linoleic Acid Research, Volume 3Chapter 7 Growth Inhibition and Apoptotic Cell Death of Cancer Cells Induced by CLA  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Volume 3 Chapter 7 Growth Inhibition and Apoptotic Cell Death of Cancer Cells Induced by CLA Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Press ...

442

Advances in Conjugated Linoleic Acid Research, Vol 2Chapter 7 Reversed-Phase HPLC Analysis of Conjugated Linoleic Acid and Its Metabolites  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Vol 2 Chapter 7 Reversed-Phase HPLC Analysis of Conjugated Linoleic Acid and Its Metabolites Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry AOCS Press ...

443

Advances in Conjugated Linoleic Acid Research, Vol 2Chapter 16 Conjugated Linoleic Acids as Anticancer Nutrients: Studies In Vivo and Cellular Mechanisms  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Vol 2 Chapter 16 Conjugated Linoleic Acids as Anticancer Nutrients: Studies In Vivo and Cellular Mechanisms Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry AOCS Pr

444

Advances in Conjugated Linoleic Acid Research, Volume 3Chapter 4 Systematic Analysis of trans and Conjugated Linoleic Acids in Milk and Meat of Ruminants  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Volume 3 Chapter 4 Systematic Analysis of trans and Conjugated Linoleic Acids in Milk and Meat of Ruminants Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Press

445

Advances in Conjugated Linoleic Acid Research, Vol 2Chapter 19 Conjugated Linoleic Acids in Type 2 Diabetes Mellitus: Implications and Potential Mechanisms  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Vol 2 Chapter 19 Conjugated Linoleic Acids in Type 2 Diabetes Mellitus: Implications and Potential Mechanisms Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry AOCS

446

Advances in Conjugated Linoleic Acid Research, Vol 2Chapter 17 Conjugated Linoleic Acid Enhances Immune Repsonses but Protects Against the Collateral Damage of Immune Events  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Vol 2 Chapter 17 Conjugated Linoleic Acid Enhances Immune Repsonses but Protects Against the Collateral Damage of Immune Events Health Nutrition Biochemistry eChapters Health - Nutrition - B

447

Advances in Conjugated Linoleic Acid Research, Volume 3Chapter 6 Structural Characterization of CLA Methyl Esters with Acetonitrile Chemical Ionization Tandem Mass Spectrometry  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Volume 3 Chapter 6 Structural Characterization of CLA Methyl Esters with Acetonitrile Chemical Ionization Tandem Mass Spectrometry Health Nutrition Biochemistry eChapters Health - Nutrition

448

Advances in Conjugated Linoleic Acid Research, Volume 3Chapter 8 Modulatory Properties of CLA on Inflammation and Immune Function: Cellular and Molecular Mechanisms  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Volume 3 Chapter 8 Modulatory Properties of CLA on Inflammation and Immune Function: Cellular and Molecular Mechanisms Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemist

449

Advances in Conjugated Linoleic Acid Research, Vol 2Chapter 4 Oxidation of Conjugated Linoleic Acid: Initiators and Simultaneous Reactions: Theory and Practice  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Vol 2 Chapter 4 Oxidation of Conjugated Linoleic Acid: Initiators and Simultaneous Reactions: Theory and Practice Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry A

450

Proceedings of the 2010 Conference of the Center for Advanced Studies on Collaborative Research  

Science Conference Proceedings (OSTI)

Welcome to CASCON 2010! For the last two decades, each fall, CASCON has been a showcase event for industrial and academic thought leaders and researchers from around the world. This annual conference on computer science technologies is hosted by the ...

Joanna Ng; Christian Couturier; Hausi A. Mller; Arthur Ryman; Anatol W. Kark; Hausi A. Mller; Arthur Ryman

2010-11-01T23:59:59.000Z

451

Evaluations of BDA Scheme Using the Advanced Research WRF (ARW) Model  

Science Conference Proceedings (OSTI)

A tropical cyclone bogus data assimilation (BDA) scheme is built in the Weather Research and Forecasting three-dimensional variational data assimilation system (WRF 3D-VAR). Experiments were conducted (21 experiments with BDA in parallel with ...

Qingnong Xiao; Liqiang Chen; Xiaoyan Zhang

2009-03-01T23:59:59.000Z

452

Proceedings of the technical review on advances in geothermal reservoir technology---Research in progress  

DOE Green Energy (OSTI)

This proceedings contains 20 technical papers and abstracts describing most of the research activities funded by the Department of Energy (DOE's) Geothermal Reservoir Technology Program, which is under the management of Marshall Reed. The meeting was organized in response to several requests made by geothermal industry representatives who wanted to learn more about technical details of the projects supported by the DOE program. Also, this gives them an opportunity to personally discuss research topics with colleagues in the national laboratories and universities.

Lippmann, M.J. (ed.)

1988-09-01T23:59:59.000Z

453

National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology  

Science Conference Proceedings (OSTI)

National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

Hules, J. [ed.

1996-11-01T23:59:59.000Z

454

Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations  

Science Conference Proceedings (OSTI)

This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.

Michael S. Bruno

2005-12-31T23:59:59.000Z

455

Advanced energy design and operation technologies research: Recommendations for a US Department of Energy multiyear program plan  

Science Conference Proceedings (OSTI)

This document describes recommendations for a multiyear plan developed for the US Department of Energy (DOE) as part of the Advanced Energy Design and Operation Technologies (AEDOT) project. The plan is an outgrowth of earlier planning activities conducted for DOE as part of design process research under the Building System Integration Program (BSIP). The proposed research will produce intelligent computer-based design and operation technologies for commercial buildings. In this document, the concept is explained, the need for these new computer-based environments is discussed, the benefits are described, and a plan for developing the AEDOT technologies is presented for the 9-year period beginning FY 1989. 45 refs., 37 figs., 9 tabs.

Brambley, M.R.; Crawley, D.B.; Hostetler, D.D.; Stratton, R.C.; Addision, M.S.; Deringer, J.J.; Hall, J.D.; Selkowitz, S.E.

1988-12-01T23:59:59.000Z

456

Development of ceramic matrix composites for application in Ceramic Technology for Advanced Heat Engine program  

DOE Green Energy (OSTI)

The objectives of the program are to develop an advanced toughened silicon nitride composite and a process for near net shape part fabrication. This program was initiated in 1985. The initial phase of the program considered particulate and whisker-reinforced composites and examined the effect of TiC and SiC dispersoids on fracture toughness of Si{sub 3}N{sub 4}. The best results were obtained with whisker reinforcements. Silicon carbide whisker-reinforced Si{sub 3}N{sub 4} was selected for further development. A predictive model that relates microstructure-fracture toughness dependence developed and scrutinized in the course of these studies has shown that fracture toughness of polycrystalline ceramics could be affected by changes of grain size and shape as well as strength of intergranular bond. Accordingly, it was shown that a deflection/debonding mechanism could utilize Si{sub 3}N{sub 4} whiskers to toughen Si{sub 3}N{sub 4} body. Si{sub 3}N{sub 4}-SiC composites offer a number of distinct advantages over monolith,'' which in addition to their improved thermal shock and wear resistance (due particularly to improved conductivity and hardness), Si{sub 3}N{sub 4}-SiC composites are t