Sample records for advanced anl cathode

  1. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries High Energy Novel Cathode Alloy Automotive Cell Develop & evaluate...

  2. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries Vehicle Technologies Office Merit Review 2014: High Energy Novel...

  3. Advances in cold cathode physics and technology

    SciTech Connect (OSTI)

    Nation, J.A. [Cornell Univ., Ithaca, NY (United States)] [Cornell Univ., Ithaca, NY (United States); Schaechter, L. [Technion, Haifa (Israel). Electrical Engineering Dept.] [Technion, Haifa (Israel). Electrical Engineering Dept.; Mako, F.M.; Len, L.K.; Peter, W. [FM Technologies, Inc., Fairfax, VA (United States)] [FM Technologies, Inc., Fairfax, VA (United States); Tang, C.M. [Creatv MicroTech, Inc., Potomac, MD (United States)] [Creatv MicroTech, Inc., Potomac, MD (United States); Srinivasan-Rao, T. [Brookhaven National Lab., Upton, NY (United States)] [Brookhaven National Lab., Upton, NY (United States)

    1999-05-01T23:59:59.000Z

    The authors review recent progress in the physics and technology of cold cathode electron emitters. The characteristics of emission from field emitter arrays, photocathodes, and ferroelectrics are presented, together with a summary of the understanding of the physics involved. The paper concludes with a description of L-band micropulse gun, based on secondary emission in an RF cavity. Emphasis is placed on cathode development for electron guns to drive microwave tubes and RF accelerators.

  4. Advanced Cathode Catalysts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment of Energy 1CathodePart of a $100

  5. Advanced Cathode Catalysts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment of Energy 1CathodePart of a

  6. Cathodes

    Broader source: Energy.gov (indexed) [DOE]

    - Y. Shao-Horn, C. Carlton (MIT) - M. Balasubramanian (APS- ANL) - V. Battaglia (LBNL), Jose M. Calderon- Moreno (Romanian Academy) 3 Objectives Design high capacity,...

  7. advanced cathode material: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials. unknown authors 6 Short communication Mesoporous nitrogen-rich carbon materials as cathode catalysts in Energy Storage, Conversion and Utilization Websites Summary:...

  8. advanced cathode catalyst: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    overall treatment. The IN wastewater had 22 Condensation in the Cathode of a PEM Fuel Cell M. J. Kermani J. M. Stockie A. G. Gerber Mathematics Websites Summary: @unb.ca....

  9. Advanced Measurement and Modeling Techniques for Improved SOFC Cathodes

    SciTech Connect (OSTI)

    Stuart Adler; L. Dunyushkina; S. Huff; Y. Lu; J. Wilson

    2006-12-31T23:59:59.000Z

    The goal of this project was to develop an improved understanding of factors governing performance and degradation of mixed-conducting SOFC cathodes. Two new diagnostic tools were developed to help achieve this goal: (1) microelectrode half-cells for improved isolation of cathode impedance on thin electrolytes, and (2) nonlinear electrochemical impedance spectroscopy (NLEIS), a variant of traditional impedance that allows workers to probe nonlinear rates as a function of frequency. After reporting on the development and efficacy of these tools, this document reports on the use of these and other tools to better understand performance and degradation of cathodes based on the mixed conductor La{sub 1-x}Sr{sub x}CoO{sub 3-{delta}} (LSC) on gadolinia or samaria-doped ceria (GDC or SDC). We describe the use of NLEIS to measure O{sub 2} exchange on thin-film LSC electrodes, and show that O{sub 2} exchange is most likely governed by dissociative adsorption. We also describe parametric studies of porous LSC electrodes using impedance and NLEIS. Our results suggest that O{sub 2} exchange and ion transport co-limit performance under most relevant conditions, but it is O{sub 2} exchange that is most sensitive to processing, and subject to the greatest degradation and sample-to-sample variation. We recommend further work that focuses on electrodes of well-defined or characterized geometry, and probes the details of surface structure, composition, and impurities. Parallel work on primarily electronic conductors (LSM) would also be of benefit to developers, and to improved understanding of surface vs. bulk diffusion.

  10. Advanced Cathode Catalysts and Supports for PEM Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 ofEmergencyAcrobatBetterby USEC, INC.Cathode

  11. Advanced Cathode Material Development for PHEV Lithium Ion Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment of Energy 1CathodePart of

  12. Advanced Cathode Material Development for PHEV Lithium Ion Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment of Energy 1CathodePart

  13. anl: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL LABORATORY ANL-0824 ISSN 1931-55015 May 2009 Argonne is a U Kemner, Ken 167 KJK 1018-1901 MUTAC Review Advanced Photon Source Kwang-Je Kim Plasma Physics and...

  14. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    SciTech Connect (OSTI)

    Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

    2010-11-01T23:59:59.000Z

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  15. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells

    SciTech Connect (OSTI)

    R.A. Christini; R.K. Dawless; S.P. Ray; D.A. Weirauch, Jr.

    2001-11-05T23:59:59.000Z

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be done. The anode composition needs further improvements to attain commercial purity targets. At the present corrosion rate, the vertical plate anodes will wear too rapidly leading to a rapidly increasing anode-cathode gap and thermal instabilities in the cell. Cathode wetting as a function of both cathode plate composition and bath composition needs to be better understood to ensure that complete drainage of the molten aluminum off the plates occurs. Metal buildup appears to lead to back reaction and low current efficiencies.

  16. Advanced Reactor Thermal Hydraulic Modeling | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fischer (ANL), Aleks Obabko (ANL), and Hank Childs (LBNL) Advanced Reactor Thermal Hydraulic Modeling PI Name: Paul Fischer PI Email: fischer@mcs.anl.gov Institution: Argonne...

  17. July2006ANL40.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from proximity of 1st order transition and entropy (covalent glasses, oxides, protein folding?, computability? ....) July2006ANL-39 Materials Functioning Beyond the Bloch...

  18. ANL-W EM Report.pmd

    Broader source: Energy.gov (indexed) [DOE]

    INEEL Aerial View of ANL-W 2 Warning Communications Center, emergency operations center, Joint Information Center, and Fire Department. However, ANL-W provides its own security...

  19. Advanced Cathode Catalysts and Supports for PEM Fuel Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment of Energy 1Cathode Catalysts

  20. Recommended documentation for computer users at ANL

    SciTech Connect (OSTI)

    Heiberger, A.A.

    1992-04-01T23:59:59.000Z

    Recommended Documentation for Computer Users at ANL is for all users of the services available from the Argonne National Laboratory (ANL) Computing and Telecommunications Division (CTD). This document will guide you in selecting available documentation that will best fill your particular needs. Chapter 1 explains how to use this document to select documents and how to obtain them from the CTD Document Distribution Counter. Chapter 2 contains a table that categorizes available publications. Chapter 3 gives descriptions of the online DOCUMENT command for CMS, and VAX, and the Sun workstation. DOCUMENT allows you to scan for and order documentation that interests you. Chapter 4 lists publications by subject. Categories I and IX cover publications of a general nature and publications on telecommunications and networks respectively. Categories II, III, IV, V, VI, VII, VIII, and X cover publications on specific computer systems. Category XI covers publications on advanced scientific computing at Argonne. Chapter 5 contains abstracts for each publication, all arranged alphabetically. Chapter 6 describes additional publications containing bibliographies and master indexes that the user may find useful. The appendix identifies available computer systems, applications, languages, and libraries.

  1. Interfacial Processes in EES Systems Advanced Diagnostics

    Broader source: Energy.gov (indexed) [DOE]

    power and affects system safety Partners * BATT Cathode and Anode Task Groups: ANL, LBNL, SUNY, UP, HQ and UG. * V. Srinivasan, M. Foure (BATT Program management) * The...

  2. Advanced Cathode Catalysts and Supports for PEM Fuel Cells | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03 AUDITProductsletter No.10-006 AdvanceEnergy

  3. Miniaturized cathodic arc plasma source

    DOE Patents [OSTI]

    Anders, Andre (Albany, CA); MacGill, Robert A. (Richmond, CA)

    2003-04-15T23:59:59.000Z

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  4. ANL/APS/TB-18

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    load optics at the Advanced Photon Source. A prototype liquid nitrogen pumping system has been procured. This pump provides a variable flow rate of 1 to 10 gpm of...

  5. Cathodes - Technological review

    SciTech Connect (OSTI)

    Cherkouk, Charaf; Nestler, Tina [Institut für Experimentelle Physik, Technische Universität Bergakademie Freiberg, Leipziger Straße 23, 09596 Freiberg (Germany)

    2014-06-16T23:59:59.000Z

    Lithium cobalt oxide (LiCoO{sub 2}) was already used in the first commercialized Li-ion battery by SONY in 1990. Still, it is the most frequently used cathode material nowadays. However, LiCoO{sub 2} is intrinsically unstable in the charged state, especially at elevated temperatures and in the overcharged state causing volume changes and transport limitation for high power batteries. In this paper, some technological aspects with large impact on cell performance from the cathode material point of view will be reviewed. At first it will be focused on the degradation processes and life-time mechanisms of the cathode material LiCoO{sub 2}. Electrochemical and structural results on commercial Li-ion batteries recorded during the cycling will be discussed. Thereafter, advanced nanomaterials for new cathode materials will be presented.

  6. Electrometallurgical treatment demonstration at ANL-West

    SciTech Connect (OSTI)

    Goff, K. M.; Benedict, R. W.; Johnson, S. G.; Mariani, R. D.; Simpson, M. F.; Westphal, B. R.

    2000-03-20T23:59:59.000Z

    Electrometallurgical treatment (EMT) was developed by Argonne National Laboratory (ANL) to ready sodium-bonded spent nuclear fuel for geological disposal. A demonstration of this technology was successfully completed in August 1999. EMT was used to condition irradiated EBR-II driver and blanket fuel at ANL-West. The results of this demonstration, including the production of radioactive high-level waste forms, are presented.

  7. High-Capacity Micrometer-Sized Li2S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries

    E-Print Network [OSTI]

    Cui, Yi

    Lithium-Ion Batteries Yuan Yang, Guangyuan Zheng, Sumohan Misra,§ Johanna Nelson,§ Michael F. Toney for lithium metal-free rechargeable batteries. It has a theoretical capacity of 1166 mAh/g, which is nearly 1 as the cathode material for rechargeable lithium-ion batteries with high specific energy. INTRODUCTION

  8. Using the central VAX cluster at ANL

    SciTech Connect (OSTI)

    Caruthers, C.M.; Vote, S.L. [eds.; Lifka, D.A.; Raffenetti, R.C.

    1992-08-01T23:59:59.000Z

    This report is a manual that discusses the following topics on the Central Vax Cluster at ANL: What the Central Vax Cluster is; how the Vax Cluster works; operational policies; getting started; using tapes; printing on the Vax Cluster; developing programs in VMS; using the X window system on the Central Vax Cluster; and using Central Vax Cluster file sharing services.

  9. ANL-14/02 Argonne National Laboratory

    E-Print Network [OSTI]

    Kemner, Ken

    #12;#12;ANL-14/02 Argonne National Laboratory Site Environmental Report for Calendar Year 2013, and Quality Assurance Division Argonne National Laboratory September 2014 #12;#12;A NOTE FROM THE AUTHORS Argonne Site Environmental Report _____________________________________________________ iii This Site

  10. ANL-13/02 Argonne National Laboratory

    E-Print Network [OSTI]

    Kemner, Ken

    #12;#12;ANL-13/02 Argonne National Laboratory Site Environmental Report for Calendar Year 2012 Assurance Division Argonne National Laboratory September 2013 #12;#12;A NOTE FROM THE AUTHORS Argonne Site (SER) was prepared by the Environment, Safety, and Quality Assurance (ESQ) Division at Argonne National

  11. anl 4-gev microtron: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermi Ins;tutes 12;www.ci.anl.gov www.ci.uchicago.edu 2 UC Compu;ng Coopera the funding agencies and the University UC3 @ Condor Week 2012 12;www.ci.anl.gov Wisconsin at...

  12. Recommended documentation for computer users at ANL. Revision 3

    SciTech Connect (OSTI)

    Heiberger, A.A.

    1992-04-01T23:59:59.000Z

    Recommended Documentation for Computer Users at ANL is for all users of the services available from the Argonne National Laboratory (ANL) Computing and Telecommunications Division (CTD). This document will guide you in selecting available documentation that will best fill your particular needs. Chapter 1 explains how to use this document to select documents and how to obtain them from the CTD Document Distribution Counter. Chapter 2 contains a table that categorizes available publications. Chapter 3 gives descriptions of the online DOCUMENT command for CMS, and VAX, and the Sun workstation. DOCUMENT allows you to scan for and order documentation that interests you. Chapter 4 lists publications by subject. Categories I and IX cover publications of a general nature and publications on telecommunications and networks respectively. Categories II, III, IV, V, VI, VII, VIII, and X cover publications on specific computer systems. Category XI covers publications on advanced scientific computing at Argonne. Chapter 5 contains abstracts for each publication, all arranged alphabetically. Chapter 6 describes additional publications containing bibliographies and master indexes that the user may find useful. The appendix identifies available computer systems, applications, languages, and libraries.

  13. Hydrogen Delivery Analysis Amgad Elgowainy (ANL), Marianne Mintz

    E-Print Network [OSTI]

    Hydrogen Truck Liquid Hydrogen Truck Terminal H2 Transmission Compressor H2 Forecourt Compressor HydrogenHydrogen Delivery Analysis Models Amgad Elgowainy (ANL), Marianne Mintz (ANL), Jerry Gillette (ANL Components Compressed Hydrogen Gas Truck (Tube trailer) Compressed Hydrogen Gas Truck Terminal Liquid

  14. Interfacial Processes in EES Systems Advanced Diagnostics

    Broader source: Energy.gov (indexed) [DOE]

    power and affects system safety Partners * BATT Cathode and Anode Task Groups * ANL, LBNL, SUNY, UP, HQ and UU * G. Chen, J. Kerr, J. Cabana,, M. Doeff, K. Persson (LBNL) * V....

  15. Cathodic Arc Plasma Deposition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .Fornl ProjectDeterminatIonCathode

  16. A User Guide to PARET/ANL

    SciTech Connect (OSTI)

    Olson, A. P. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Marin-Lafleche, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Kalimullah, M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-01T23:59:59.000Z

    PARET was originally created in 1969 at what is now Idaho National Laboratory (INL), to analyze reactivity insertion events in research and test reactor cores cooled by light or heavy water, with fuel composed of either plates or pins. The use of PARET is also appropriate for fuel assemblies with curved fuel plates when their radii of curvatures are large with respect to the fuel plate thickness. The PARET/ANL version of the code has been developed at Argonne National Laboratory (ANL) under the sponsorship of the U.S. Department of Energy/NNSA, and has been used by the Reactor Conversion Program to determine the expected transient behavior of a large number of reactors. PARET/ANL models the various fueled regions of a reactor core as channels. Each of these channels consists of a single flat fuel plate/pin (including cladding and, optionally, a gap) with water coolant on each side. In slab geometry the coolant channels for a given fuel plate are of identical dimensions (mirror symmetry), but they can be of different thickness in each channel. There can be many channels, but each channel is independent and coupled only through reactivity feedback effects to the whole core. The time-dependent differential equations that represent the system are replaced by an equivalent set of finite-difference equations in space and time, which are integrated numerically. PARET/ANL uses fundamentally the same numerical scheme as RELAP5 for the time-integration of the point-kinetics equations. The one-dimensional thermal-hydraulic model includes temperature-dependent thermal properties of the solid materials, such as heat capacity and thermal conductivity, as well as the transient heat production and heat transfer from the fuel meat to the coolant. Temperature- and pressure-dependent thermal properties of the coolant such as enthalpy, density, thermal conductivity, and viscosity are also used in determining parameters such as friction factors and heat transfer coefficients. The code first determines the steady-state solution for the initial state. Then the solution of the transient is obtained by integration in time and space. Multiple heat transfer, DNB and flow instability correlations are available. The code was originally developed to model reactors cooled by an open loop, which was adequate for rapid transients in pool-type cores. An external loop model appropriate for Miniature Neutron Source Reactors (MNSR’s) was also added to PARET/ANL to model natural circulation within the vessel, heat transfer from the vessel to pool and heat loss by evaporation from the pool. PARET/ANL also contains models for decay heat after shutdown, control rod reactivity versus time or position, time-dependent pump flow, and loss-of-flow event with flow reversal as well as logic for trips on period, power, and flow. Feedback reactivity effects from coolant density changes and temperature changes are represented by tables. Feedback reactivity from fuel heat-up (Doppler Effect) is represented by a four-term polynomial in powers of fuel temperature. Photo-neutrons produced in beryllium or in heavy water may be included in the point-kinetics equations by using additional delayed neutron groups.

  17. ANL/ALCF/ESP-13/16

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNewstt^ \ # AN EXPERIMENT ON, .1346

  18. ANL/ALCF/ESP-13/3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNewstt^ \ # AN EXPERIMENT ON,3

  19. ANL/ALCF/ESP-13/4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNewstt^ \ # AN EXPERIMENT ON,34

  20. The ANL electrochemical program for DOE on electric vehicle R D

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R D tasks for DOE-EHP during the period of January 1 through March 31, 1991. The work is organized into the following six task areas: Project management; battery systems technology; lithium/sulfide batteries; advanced sodium/metal chloride battery; aqueous batteries; and EV Battery performance/life evaluation.

  1. The ANL electric vehicle battery R D program for DOE-EHP

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EBP). The goal of DOE-EHP is to advance promising EV propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce petroleum consumption in the transportation sector of the US economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R D contracts on advanced battery and fuel cell technologies for DOE-EBP. This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R D tasks for DOE-EHP during the period of October 1, 1990 through December 31, 1990. The work is organized into the following six task areas: 1.0 Project Management; 3.0 Battery Systems Technology; 4.0 Lithium/Sulfide Batteries; 5.0 Advanced Sodium/Metal Chloride Battery; 6.0 Aqueous Batteries; 7.0 EV Battery Performance/Life Evaluation.

  2. anl electrichemical program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enrico Fermi Ins;tutes 12;www.ci.anl.gov www.ci.uchicago.edu 2 UC Compu;ng Coopera the funding agencies and the University UC3 @ Condor Week 2012 12;www.ci.anl.gov Wisconsin at...

  3. anl organization plans: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enrico Fermi Ins;tutes 12;www.ci.anl.gov www.ci.uchicago.edu 2 UC Compu;ng Coopera the funding agencies and the University UC3 @ Condor Week 2012 12;www.ci.anl.gov Wisconsin at...

  4. ANL-85-51 ANL-85-51 FLOW-INDUCED VIBRATION OF CIRCULAR CYLINDRICAL STRUCTURES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNewstt^ \ # AN EXPERIMENT ON, .

  5. Colloid-Associated Radionuclide Concentration Limits: ANL

    SciTech Connect (OSTI)

    C. Mertz

    2000-12-21T23:59:59.000Z

    The purpose and scope of this report is to describe the analysis of available colloidal data from waste form corrosion tests at Argonne National Laboratory (ANL) to extract characteristics of these colloids that can be used in modeling their contribution to the source term for sparingly soluble radioelements (e.g., Pu). Specifically, the focus is on developing a useful description of the following waste form colloid characteristics: (1) composition, (2) size distribution, and (3) quantification of the rate of waste form colloid generation. The composition and size distribution information are intended to support analysis of the potential transport of the sparingly soluble radionuclides associated with the waste form colloids. The rate of colloid generation is intended to support analysis of the waste form colloid-associated radionuclide concentrations. In addressing the above characteristics, available data are interpreted to address mechanisms controlling colloid formation and stability. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M&O 2000). Because the end objective is to support the source term modeling we have organized the conclusions into two categories: (1) data analysis conclusions and (2) recommendations for colloid source term modeling. The second category is included to facilitate use of the conclusions from the data analysis in the abstraction of a colloid source term model. The data analyses and conclusions that are presented in this report are based on small-scale laboratory tests conducted on a limited number of waste glass compositions and spent fuel types.

  6. Advanced Reactor Thermal Hydraulic Modeling | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Reactor Thermal Hydraulic Modeling PI Name: Paul Fischer PI Email: fischer@mcs.anl.gov Institution: Argonne National Laboratory Allocation Program: INCITE Allocation Hours...

  7. ANL supplement to the CA-Disspla user's manual

    SciTech Connect (OSTI)

    Thommes, M.M.; Larson, E.M. (ed.)

    1989-03-01T23:59:59.000Z

    The ANL Supplement to the CA-DISSPLA USER'S MANUAL (ANL/TM 467) summarizes installation-dependent options and features of Disspla; this Supplement supersedes Using Cuechart, Tellegraf, and Disspla at ANL (ANL/TM 433). The information in this Supplement applies to version 10.5 of Disspla (which is currently installed in CMS, in MVS batch, and in several Argonne VAX/VMS systems), to Disspla 11.0 on the VAX 8700, and to version 10.0 of Disspla (which is currently installed on the Cray X-MP/14 under UNICOS). Unless this Supplement states otherwise, you should write Disspla programs according to instructions in the CA-Disspla User's Manual. This chapter contains information common to Disspla as installed in CMS, MVS, VAX/VMS, and UNICOS. (Chapter Two contains information specific to using Disspla in each of these computer systems.) 9 tabs.

  8. lstols@anl.gov Loyola University BS 1978 Biology

    E-Print Network [OSTI]

    Kemner, Ken

    Lucy Stols lstols@anl.gov . Education Loyola University BS 1978 Biology Chicago, IL Roosevelt determination. J Struc Funct Genomics 11, 31-39. Structural Genomics Consortium; China Structural Genomics

  9. Cathode R&D for Future Light Sources

    SciTech Connect (OSTI)

    Dowell, D.H.; /SLAC; Bazarov, I.; Dunham, B.; /Cornell U., CLASSE; Harkay, K.; /Argonne; Hernandez-Garcia; /Jefferson Lab; Legg, R.; /Wisconsin U., SRC; Padmore, H.; /LBL, Berkeley; Rao, T.; Smedley, J.; /Brookhaven; Wan, W.; /LBL, Berkeley

    2010-05-26T23:59:59.000Z

    This paper reviews the requirements and current status of cathodes for accelerator applications, and proposes a research and development plan for advancing cathode technology. Accelerator cathodes need to have long operational lifetimes and produce electron beams with a very low emittance. The two principal emission processes to be considered are thermionic and photoemission with the photocathodes being further subdivided into metal and semi-conductors. Field emission cathodes are not included in this analysis. The thermal emittance is derived and the formulas used to compare the various cathode materials. To date, there is no cathode which provides all the requirements needed for the proposed future light sources. Therefore a three part research plan is described to develop cathodes for these future light source applications.

  10. Sintered wire cathode

    DOE Patents [OSTI]

    Falce, Louis R. (San Jose, CA); Ives, R. Lawrence (Saratoga, CA)

    2009-06-09T23:59:59.000Z

    A porous cathode structure is fabricated from a plurality of wires which are placed in proximity to each other in elevated temperature and pressure for a sintering time. The sintering process produces the porous cathode structure which may be divided into a plurality of individual porous cathodes, one of which may be placed into a dispenser cathode support which includes a cavity for containing a work function reduction material such as BaO, CaO, and Al.sub.2O.sub.3. The work function reduction material migrates through the pores of the porous cathode from a work replenishment surface adjacent to the cavity of the dispenser cathode support to an emitting cathode surface, thereby providing a dispenser cathode which has a uniform work function and therefore a uniform electron emission.

  11. Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants

    E-Print Network [OSTI]

    Anitescu, Mihai

    Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants ANL-AFCI-168 of Nuclear Reactor and Chemical Separation Plants ANL-AFCI-168 by G. Palmiotti, J. Cahalan, P. Pfeiffer, T;2 ANL-AFCI-168 Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants G

  12. Status of ANL out-of-pile investigations of severe accident phenomena for liquid metal reactors

    SciTech Connect (OSTI)

    Spencer, B.W.; Marchaterre, J.F.; Anderson, R.P.; Armstrong, D.R.; Baker, L.; Cho, D.H.; Gabor, J.D.; Pedersen, D.R.; Sienicki, J.J.; Stein, R.P.

    1986-01-01T23:59:59.000Z

    Research addressing LMFBR whole core accidents has been terminated, and there is now emphasis on quantifying reactivity feedbacks, and in particular enhancing negative feedback, so that advanced LMR designs will provide inherently safe operation. The status of recent HCDA-related laboratory research performed at ANL, up to the time that such activities were no longer needed to support CRBR licensing, is described. Included are descriptions of programs addressing sodium channel voiding, fuel sweepout, fuel dispersal and plugging, boiled-up pool, UO/sub 2//sodium FCI, and debris coolability. Descriptions of recent investigations involving the metal fuel/sodium system are also included.

  13. Argonne National Laboratory Partners with Advanced Magnet Lab...

    Energy Savers [EERE]

    next generation wind turbines and accelerate the deployment of advanced turbines for offshore wind energy in the United States. ANL will work with Magnet Lab, Emerson Electric...

  14. Squeezing Out the Hidden Lives of Electrons | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Nevada Las Vegas, 8Center for High Pressure Science and Technology Advanced Research (China), 9Northern Illinois University Correspondence: *yangding@aps.anl.gov This research...

  15. The ANL electrochemical program for DOE on electric vehicle R&D. Quarterly progress report, January--March 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R&D tasks for DOE-EHP during the period of January 1 through March 31, 1991. The work is organized into the following six task areas: Project management; battery systems technology; lithium/sulfide batteries; advanced sodium/metal chloride battery; aqueous batteries; and EV Battery performance/life evaluation.

  16. ANL-671A (10-06) 1 UCHICAGO ARGONNE, LLC,

    E-Print Network [OSTI]

    Kemner, Ken

    ANL-671A (10-06) 1 UCHICAGO ARGONNE, LLC, OPERATOR OF ARGONNE NATIONAL LABORATORY GUEST RESEARCH of Argonne is to serve as a center where investigators can pursue research and development work related to the broad field of energy. To this end, Argonne is particularly interested in cooperating with qualified

  17. DOE/ANL/HTRI heat exchanger tube vibration data bank

    SciTech Connect (OSTI)

    Halle, H.; Chenoweth, J.M.; Wambsganss, M.W.

    1981-01-01T23:59:59.000Z

    This addendum to the DOE/ANL/HTRI Heat Exchanger Tube Vibration Data Bank includes 16 new case histories of field experiences. The cases include several exchangers that did not experience vibration problems and several for which acoustic vibration was reported.

  18. The ANL electric vehicle battery R&D program for DOE-EHP. Quarterly progress report, October--December 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-31T23:59:59.000Z

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE`s Electric and Hybrid Propulsion Division (DOE-EBP). The goal of DOE-EHP is to advance promising EV propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce petroleum consumption in the transportation sector of the US economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R&D contracts on advanced battery and fuel cell technologies for DOE-EBP. This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R&D tasks for DOE-EHP during the period of October 1, 1990 through December 31, 1990. The work is organized into the following six task areas: 1.0 Project Management; 3.0 Battery Systems Technology; 4.0 Lithium/Sulfide Batteries; 5.0 Advanced Sodium/Metal Chloride Battery; 6.0 Aqueous Batteries; 7.0 EV Battery Performance/Life Evaluation.

  19. air-cathode microbial fuel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power generation by packed-bed air-cathode microbial fuel cells Xiaoyuan Environment Joint Research Center for Advanced Environmental Technology, School of Environment, Tsinghua...

  20. Layered Cathode Materials

    Broader source: Energy.gov (indexed) [DOE]

    Layered Cathode Materials presented by Michael Thackeray Chemical Sciences and Engineering Division, Argonne Annual Merit Review DOE Vehicle Technologies Program Washington, D.C....

  1. ANL/ESD/08-3 Full Fuel-Cycle Comparison

    E-Print Network [OSTI]

    ANL/ESD/08-3 Full Fuel-Cycle Comparison of Forklift Propulsion Systems Energy Systems Division. #12;ANL/ESD/08-3 Full Fuel-Cycle Comparison of Forklift Propulsion Systems by L.L. Gaines, A

  2. Degradation modeling of the ANL ceramic waste form

    SciTech Connect (OSTI)

    Fanning, T. H.; Morss, L. R.

    2000-03-28T23:59:59.000Z

    A ceramic waste form composed of glass-bonded sodalite is being developed at Argonne National Laboratory (ANL) for immobilization and disposition of the molten salt waste stream from the electrometallurgical treatment process for metallic DOE spent nuclear fuel. As part of the spent fuel treatment program at ANL, a model is being developed to predict the long-term release of radionuclides under repository conditions. Dissolution tests using dilute, pH-buffered solutions have been conducted at 40, 70, and 90 C to determine the temperature and pH dependence of the dissolution rate. Parameter values measured in these tests have been incorporated into the model, and preliminary repository performance assessment modeling has been completed. Results indicate that the ceramic waste form should be acceptable in a repository environment.

  3. A. A. Abrikosov Publications at Argonne National Laboratory (ANL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2,generationPhysicsA

  4. ANL-78-XX-95 Energy Level Structure and Transition Probabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNewstt^ \ # AN EXPERIMENT ON, . -

  5. ANL/ALCF/ESP-13/11 Lattice Quantum Chromodynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNewstt^ \ # AN EXPERIMENT ON, .1

  6. Cathode materials review

    SciTech Connect (OSTI)

    Daniel, Claus, E-mail: danielc@ornl.gov; Mohanty, Debasish, E-mail: danielc@ornl.gov; Li, Jianlin, E-mail: danielc@ornl.gov; Wood, David L., E-mail: danielc@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS6472 Oak Ridge, TN 37831-6472 (United States)

    2014-06-16T23:59:59.000Z

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  7. Electrochemically Stable Cathode Current Collectors for Rechargeable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stable Cathode Current Collectors for Rechargeable Magnesium Batteries . Electrochemically Stable Cathode Current Collectors for Rechargeable Magnesium Batteries . Abstract:...

  8. Engineering-Scale Liquid Cadmium Cathode Experiments

    SciTech Connect (OSTI)

    D Vaden; B. R. Westphal; S. X. Li; T. A. Johnson; K. B. Davies; D. M. Pace

    2006-08-01T23:59:59.000Z

    Recovery of transuranic actinides (TRU) using electrorefining is a process being investigated as part of the Department of Energy (DOE) Advanced Fuel Cycle Initiative (AFCI). TRU recovery via electrorefining onto a solid cathode is very difficult as the thermodynamic properties of transuranics are not favourable for them to remain in the metal phase while significant quantities of uranium trichloride exist in the electrolyte. Theoretically, the concentration of transuranics in the electrolyte must be approximately 106 greater than the uranium concentration in the electrolyte to produce a transuranic deposit on a solid cathode. Using liquid cadmium as a cathode contained within a LiCl-KCl eutectic salt, the co-deposition of uranium and transuranics is feasible because the activity of the transuranics in liquid cadmium is very small. Depositing transuranics and uranium in a liquid cadmium cathode (LCC) theoretically requires the concentration of transuranics to be two to three times the uranium concentration in the electrolyte. Three LCC experiments were performed in an Engineering scale elecdtrorefiner, which is located in the argon hot cell of the Fuel Conditioning Facility at the Materials and Fuels Complex on the Idaho National Laboratory. Figure 1 contains photographs of the LCC assembly in the hot cell prior to the experiment and a cadmium ingot produced after the first LCC test. Figure 1. Liquid Cadmium Cathode (left) and Cadmium Ingot (right) The primary goal of the engineering-scale liquid cadmium cathode experiments was to electrochemically collect kilogram quantities of uranium and plutonium via a LCC. The secondary goal was to examine fission product contaminations in the materials collected by the LCC. Each LCC experiment used chopped spent nuclear fuel from the blanket region of the Experimental Breeder Reactor II loaded into steel baskets as the anode with the LCC containing 26 kg of cadmium metal. In each experiment, between one and two kilograms of heavy metal was collected in the LCC after passing an integrated current over 500 amp hours. Analysis of samples from the liquid cadmium cathode ingots showed detectable amounts of transuranics and rare-earth elements. Acknowledgements K. B. Davies and D. M. Pace for the mechanical and electrical engineering needed to prepare the equipment for the engineering-scale liquid cadmium cathode experiments.

  9. A user's guide to the PLTEMP/ANL code.

    SciTech Connect (OSTI)

    Kalimullah, M. (Nuclear Engineering Division)

    2011-07-05T23:59:59.000Z

    PLTEMP/ANL V4.1 is a FORTRAN program that obtains a steady-state flow and temperature solution for a nuclear reactor core, or for a single fuel assembly. It is based on an evolutionary sequence of ''PLTEMP'' codes in use at ANL for the past 20 years. Fueled and non-fueled regions are modeled. Each fuel assembly consists of one or more plates or tubes separated by coolant channels. The fuel plates may have one to five layers of different materials, each with heat generation. The width of a fuel plate may be divided into multiple longitudinal stripes, each with its own axial power shape. The temperature solution is effectively 2-dimensional. It begins with a one-dimensional solution across all coolant channels and fuel plates/tubes within a given fuel assembly, at the entrance to the assembly. The temperature solution is repeated for each axial node along the length of the fuel assembly. The geometry may be either slab or radial, corresponding to fuel assemblies made of a series of flat (or slightly curved) plates, or of nested tubes. A variety of thermal-hydraulic correlations are available with which to determine safety margins such as Onset-of-Nucleate boiling (ONB), departure from nucleate boiling (DNB), and onset of flow instability (FI). Coolant properties for either light or heavy water are obtained from FORTRAN functions rather than from tables. The code is intended for thermal-hydraulic analysis of research reactor performance in the sub-cooled boiling regime. Both turbulent and laminar flow regimes can be modeled. Options to calculate both forced flow and natural circulation are available. A general search capability is available (Appendix XII) to greatly reduce the reactor analyst's time.

  10. Tungsten Cathode Catalyst for PEMFC

    SciTech Connect (OSTI)

    Joel B. Christian; Sean P. E. Smith

    2006-09-22T23:59:59.000Z

    Final report for project to evaluate tungsten-based catalyst as a cathode catalyst for PEM cell applications.

  11. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2013-07-23T23:59:59.000Z

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  12. ANL/ESD/10-9 Highway Vehicle Electric Drive in the United States

    E-Print Network [OSTI]

    Kemner, Ken

    ANL/ESD/10-9 Highway Vehicle Electric Drive in the United States: 2009 Status and Issues Energy Laboratory, or UChicago Argonne, LLC. #12;ANL/ESD/10-9 Highway Vehicle Electric Drive in the United States .............................................................................................................. 1 2 STATE OF ELECTRIC DRIVE VEHICLE TECHNOLOGY .......................................... 4 2

  13. TransForumNews from Argonne's Transportation Research Program www.transportation.anl.gov

    E-Print Network [OSTI]

    Kemner, Ken

    TransForumNews from Argonne's Transportation Research Program www.transportation.anl.gov Volume 14 Issue 2 2014 Contents #12;TransForumNews from Argonne's Transportation Research Program www.transportation.anl.gov VERIFI Shrinks Combustion Engine Development Cycles to Save Money and Time page 4 Argonne researchers

  14. TransForumNews from Argonne's Transportation Research Program www.transportation.anl.gov

    E-Print Network [OSTI]

    Kemner, Ken

    TransForumNews from Argonne's Transportation Research Program www.transportation.anl.gov Volume 14 Issue 2 2014 #12;TransForumNews from Argonne's Transportation Research Program www.transportation.anl.gov VERIFI Shrinks Combustion Engine Development Cycles to Save Money and Time page 4 Argonne researchers

  15. Air cathode structure manufacture

    DOE Patents [OSTI]

    Momyer, William R. (Palo Alto, CA); Littauer, Ernest L. (Los Altos Hills, CA)

    1985-01-01T23:59:59.000Z

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  16. Effect of conductive additives in LiFePO4 cathode for lithium-ion batteries

    E-Print Network [OSTI]

    Shim, J.; Guerfi, A.; Zaghib, K.; Striebel, K.A.

    2003-01-01T23:59:59.000Z

    Cathode for Lithium-Ion Batteries J. Shim a , A. Guerfi b ,material for Li rechargeable batteries because of low-cost,is a part of BATT (Batteries for Advanced Transportation

  17. Stabilized Spinel and Polyanion Cathodes

    Broader source: Energy.gov (indexed) [DOE]

    nanostructured phosphate and silicate cathodes and their nanocomposites with graphene - To develop a fundamental understanding of the factors that control the...

  18. HIGH-CAPACITY POLYANION CATHODES

    Broader source: Energy.gov (indexed) [DOE]

    nanostructured phosphate and silicate cathodes as well as their nanocomposites with graphene to overcome the limitations of poor ionic and electronic conductivity - To develop a...

  19. Toda Cathode Materials Production Facility

    Broader source: Energy.gov (indexed) [DOE]

    Cathode Materials Production Facility 2013 DOE Vehicle Technologies Annual Merit Review May 13-17, 2013 David Han, Yasuhiro Abe Toda America Inc. Project ID: ARRAVT017...

  20. Cathodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-Desert Southwest RegionDiesel Racing:Cathodes

  1. Batteries: Overview of Battery Cathodes

    SciTech Connect (OSTI)

    Doeff, Marca M

    2010-07-12T23:59:59.000Z

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

  2. Advances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14Scripting for Advanced Workflows Jack

  3. A LASER STRAIN GAUGE FOR ACCELERATOR TARGETS A. Hassanein, J. Norem, ANL, Argonne, IL 60439

    E-Print Network [OSTI]

    Harilal, S. S.

    A LASER STRAIN GAUGE FOR ACCELERATOR TARGETS A. Hassanein, J. Norem, ANL, Argonne, IL 60439 tests using the Brookhaven AGS and the Argonne CHM linac. 1 INTRODUCTION The next generation of particle

  4. The character of a cathode | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The character of a cathode The character of a cathode Released: November 18, 2013 Nickel segregation, cation spatial distribution and tightly integrated phases occur in pristine...

  5. Development of High Energy Cathode Materials

    Broader source: Energy.gov (indexed) [DOE]

    other high- energy cathodes. Improved the performance of Li-rich, Mn-rich layered composite cathode suitable for PHEV and EV applications. Developed electrolyte additives...

  6. Hot hollow cathode gun assembly

    DOE Patents [OSTI]

    Zeren, J.D.

    1983-11-22T23:59:59.000Z

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  7. Overview of the Batteries for Advanced Transportation Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Material BATT and the Battery Industry Block copolymer electrolytes for Li-metal batteries (Balsara) being commercialized by Seeo, Inc. Advanced cathode materials (Manthiram)...

  8. ANL/APS/TB-16 ADVANCED PHOTON SOURCE ACCELERATOR ULTRAHIGH VACUUM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electron linac accelerator with the use of SLED. The SLED microwave network utilizes a dual cavity which is tuned to resonance. 10 The waveguide assemblies are made of OFHC copper...

  9. The Linac Injector For The ANL 7 Ge V Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quadrupole triplets are adequate to provide focusing and transport properties. Positron Production Following the DESY design, the positrons are produced in a water-cooled,...

  10. Stabilized Spinels and Polyanion Cathodes

    Broader source: Energy.gov (indexed) [DOE]

    process * Synthesis of nano-engineered alloy, carbon-decorated Fe 3 O 4 nanowire, and graphene anodes, but only results on the cathodes are given in the next 11 slides TECHNICAL...

  11. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, Gordon E. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  12. Cold cathode vacuum gauging system

    DOE Patents [OSTI]

    Denny, Edward C. (Knoxville, TN)

    2004-03-09T23:59:59.000Z

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  13. Construction of a Li Ion Battery (LIB) Cathode Production Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of LIB Cathode Materials Process for Low Cost Domestic Production of LIB Cathode Materials Construction of a Li Ion Battery (LIB) Cathode Production Plant in Elyria, Ohio...

  14. High Current Density, Long Life Cathodes for High Power RF Sources

    SciTech Connect (OSTI)

    Ives, Robert Lawrence [Calabazas Creek Research,, Inc.; Collins, George [Calabazas Creek Research, Inc.; Falce, Lou [Consultant; Schwartzkopf, Steve [Ron Witherspoon, Inc.; Busbaher, Daniel [Semicon Associates

    2014-01-22T23:59:59.000Z

    This program was tasked with improving the quality and expanding applications for Controlled Porosity Reservoir (CPR) cathodes. Calabazas Creek Research, Inc. (CCR) initially developed CPR cathodes on a DOE-funded SBIR program to improve cathodes for magnetron injection guns. Subsequent funding was received from the Defense Advanced Research Projects Agency. The program developed design requirements for implementation of the technology into high current density cathodes for high frequency applications. During Phase I of this program, CCR was awarded the prestigious 2011 R&D100 award for this technology. Subsequently, the technology was presented at numerous technical conferences. A patent was issued for the technology in 2009. These cathodes are now marketed by Semicon Associates, Inc. in Lexington, KY. They are the world’s largest producer of cathodes for vacuum electron devices. During this program, CCR teamed with Semicon Associates, Inc. and Ron Witherspoon, Inc. to improve the fabrication processes and expand applications for the cathodes. Specific fabrications issues included the quality of the wire winding that provides the basic structure and the sintering to bond the wires into a robust, cohesive structure. The program also developed improved techniques for integrating the resulting material into cathodes for electron guns.

  15. Electropositive surface layer MPD thruster cathodes

    SciTech Connect (OSTI)

    Chamberlain, F.R.; Kelly, A.J.; Jahn, R.G.

    1989-01-01T23:59:59.000Z

    Lithium and barium oxide have been used to generate electropositive surface layers on tungsten cathodes in low power steady state MPD thruster experiments. The electropositive surface layer decreases the cathode work function, resulting in substantial reductions in the steady state cathode operating temperature and erosion rate. Cathode temperature is reduced by 300 degrees with a lithium surface layer and by 800 degrees with a barium oxide surface layer at a 500 ampere thruster current level. These temperature reductions substantially reduce the calculated steady state evaporative erosion rate of the cathode by factors of 20 and 10,000 respectively. Cold cathode startup erosion is also reduced dramatically. The surface melting and arc cratering that is characteristic of pure tungsten cathodes does not occur with an electropositive surface layer cathode. In addition to reducing cathode erosion, the use of these materials increases thruster efficiency. 12 refs.

  16. Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

    SciTech Connect (OSTI)

    Kerry L. Nisson

    2012-10-01T23:59:59.000Z

    This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

  17. PROTOTYPE 350 MHZ NIOBIUM SPOKE-LOADED CAVITIES K. W. Shepard, M. Kedzie, ANL, Argonne, IL

    E-Print Network [OSTI]

    #12;PROTOTYPE 350 MHZ NIOBIUM SPOKE-LOADED CAVITIES K. W. Shepard, M. Kedzie, ANL, Argonne, IL J. R.4, and the other for v/c = 0.29. Construction of the prototype niobium cavities is nearly complete. Details in the form of an 855 MHz, single-cell niobium cavity [7,8]. For the linac contemplated here, a substantially

  18. Cathode Connector For Aluminum Low Temperature Smelting Cell

    DOE Patents [OSTI]

    Brown, Craig W. (Seattle, WA); Beck, Theodore R. (Seattle, WA); Frizzle, Patrick B. (Seattle, WA)

    2003-07-16T23:59:59.000Z

    Cathode connector means for low temperature aluminum smelting cell for connecting titanium diboride cathode or the like to bus bars.

  19. Attempted RIAPMTQ Benchmarking Study of the ANL RIA Low-Beta LinacDesign

    SciTech Connect (OSTI)

    Billen, J.; Qiang, J.; Wangler, T.

    2007-01-01T23:59:59.000Z

    The objective of this work is to compare the simulation results of the RIAPMTQ code with those of the ANL simulation code for the low-beta section of an ANL RIA Driver Linac design. However, the approach taken is not precisely that of a direct comparison of the two simulations of the same linac section, which is what one would normally expect to do. The reason is that the RFQ design approach used by the ANL codes and the LANL codes are approximately but not exactly the same, particularly at the ends of the RFQ, and it did not appear to be easy to make the two RFQ designs exactly identical. The effects on the beam of the different RFQ design approaches are not expected to be large, as long as the beam is properly matched at the transitions. What was done in the RIAPMTQ input file to compensate for the RFQ design difference was to use TRACE3D to adjust the four solenoid strengths and the two matching rf cavities in the MEBT (the beam transport system between the end of the RFQ and the beginning of the superconducting linac) to obtain the same match (Courant-Snyder parameters) into the superconducting linac as was obtained from the ANL code. We also matched the beam into the RFQ. The result is that we generate a RIAPMTQ input file for the low-beta section of the linac, which is not exactly identical to, but should be near to that of the ANL design. Then, what we wish to compare from the two codes are the rms emittances at the beginning of the superconducting linac, and the beam losses in the first or prestripper section of the superconducting (SC) linac. In this report, we describe the procedure and present the results. Section 2 gives the procedures and results, and Section 3 gives the summary.

  20. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, G.E.

    1998-04-14T23:59:59.000Z

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by chemical vapor deposition (CVD) or diamond-like carbon (DLC) deposition are disclosed. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 14 figs.

  1. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, G.E.

    1998-03-10T23:59:59.000Z

    A cold cathode vacuum discharge tube, and method for making same, are disclosed with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 15 figs.

  2. Remote control for anode-cathode adjustment

    DOE Patents [OSTI]

    Roose, Lars D. (Albuquerque, NM)

    1991-01-01T23:59:59.000Z

    An apparatus for remotely adjusting the anode-cathode gap in a pulse power machine has an electric motor located within a hollow cathode inside the vacuum chamber of the pulse power machine. Input information for controlling the motor for adjusting the anode-cathode gap is fed into the apparatus using optical waveguides. The motor, controlled by the input information, drives a worm gear that moves a cathode tip. When the motor drives in one rotational direction, the cathode is moved toward the anode and the size of the anode-cathode gap is diminished. When the motor drives in the other direction, the cathode is moved away from the anode and the size of the anode-cathode gap is increased. The motor is powered by batteries housed in the hollow cathode. The batteries may be rechargeable, and they may be recharged by a photovoltaic cell in combination with an optical waveguide that receives recharging energy from outside the hollow cathode. Alternatively, the anode-cathode gap can be remotely adjusted by a manually-turned handle connected to mechanical linkage which is connected to a jack assembly. The jack assembly converts rotational motion of the handle and mechanical linkage to linear motion of the cathode moving toward or away from the anode.

  3. Cathode for the electrolytic production of hydrogen

    SciTech Connect (OSTI)

    Nicolas, E.

    1983-07-19T23:59:59.000Z

    The invention relates to a cathode for the electrolytic production of hydrogen. The cathode comprises an active surface consisting of a metal oxide obtained by the thermal decomposition of a thermally decomposable compound of a metal chosen from amongst cobalt, iron, manganese or nickel. The cathode is particularly suitable for the electrolysis of aqueous sodium chloride solutions in cells with a permeable diaphragm.

  4. Cathode Coating (IN-09-061) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .Fornl ProjectDeterminatIonCathode Coating

  5. Cathodic protection in oilfield brine

    SciTech Connect (OSTI)

    Turnipseed, S.P. (Chevron U.S.A. Inc., Houston, TX (US))

    1991-12-01T23:59:59.000Z

    In this paper the use of cathodic protection (CP) to mitigate internal and corrosion-related failures that occur in the produced brine phase of oilfield tanks and production vessels is discussed. Unique considerations covered include brine properties, CP system selection, installation details, monitoring, and coatings.

  6. Cathodes for ceria-based fuel cells

    SciTech Connect (OSTI)

    Doshi, R.; Krumpelt, M. [Argonne National Lab., IL (United States); Ricvhards, V.L. [Tri-State Univ., Angola, IN (United States). Dept. of Mech. & Aerospace Engr.

    1997-08-01T23:59:59.000Z

    Work is underway to develop a solid oxide fuel cell that has a ceria-based electrolyte and operates at lower temperatures (500-600{degrees}C) than conventional zirconia-based cells. At present the performance of this ceria-based solid oxide fuel cell is limited by the polarization of conventional cathode materials. The performance of alternative cathodes was measured by impedance spectroscopy and dc polarization. The performance was found to improve by using a thin dense interface layer and by using two-phase cathodes with an electrolyte and an electronic phase. The cathode performance was also found to increase with increasing ionic conductivity for single phase cathodes.

  7. Cathode for aluminum producing electrolytic cell

    DOE Patents [OSTI]

    Brown, Craig W.

    2004-04-13T23:59:59.000Z

    A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.

  8. Theory, Investigation and Stability of Cathode Electrocatalytic Activity

    SciTech Connect (OSTI)

    Ding, Dong; Liu, Mingfei; Lai, Samson; Blinn, Kevin; Liu, Meilin

    2012-09-30T23:59:59.000Z

    The main objective of this project is to systematically characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF, aiming to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating. The understanding gained will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance. More specifically, the technical objectives include: (1) to characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF; (2) to characterize the microscopic details and stability of the LSCF-catalyst (e.g., LSM) interfaces; (3) to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating; and (4) to demonstrate that the performance and stability of porous LSCF cathodes can be enhanced by the application of a thin-film coating of LSM through a solution infiltration process in small homemade button cells and in commercially available cells of larger dimension. We have successfully developed dense, conformal LSM films with desired structure, composition, morphology, and thickness on the LSCF surfaces by two different infiltration processes: a non-aqueous and a water-based sol-gel process. It is demonstrated that the activity and stability of LSCF cathodes can be improved by the introduction of a thin-film LSM coating through an infiltration process. Surface and interface of the LSM-coated LSCF cathode were systematically characterized using advanced microscopy and spectroscopy techniques. TEM observation suggests that a layer of La and Sr oxide was formed on LSCF surfaces after annealing. With LSM infiltration, in contrast, we no longer observe such La/Sr oxide layer on the LSM-coated LSCF samples after annealing under similar conditions. This was also confirmed by x-ray analyses. For example, soft x-ray XANES data reveal that Co cations displace the Mn cations as being more favored to be reduced. Variations in the Sr-O in the annealed LSCF Fourier-transformed (FT) EXAFS suggest that some Sr segregation is occurring, but is not present in the annealed LSM-infiltrated LSCF cathode materials. Further, a surface enhanced Raman technique was also developed into to probe and map LSM and LSCF phase on underlying YSZ substrate, enabling us to capture important chemical information of cathode surfaces under practical operating conditions. Electrochemical models for the design of test cells and understanding of mechanism have been developed for the exploration of fundamental properties of electrode materials. Novel catalyst coatings through particle depositions (SDC, SSC, and LCC) or continuous thin films (PSM and PSCM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized LSM infiltration process. Microstructure examination of the tested cells did not show obvious differences between blank and infiltrated cells, suggesting that the infiltrated LSM may form a coherent film on the LSCF cathodes. There was no significant change in the morphology or microstructure of the LSCF cathode due to the structural similarity of LSCF and LSM. Raman analysis of the tested cells indicated small peaks emerging on the blank cells that correspond to trace amounts of secondary phase formation during operation (e.g., CoO{sub x}). The formation of this secondary phase might be attributed to performance degradation. In contrast, there was no such secondary phase observed in the LSM infiltrated cells, indicating that the LSM modification staved off secondary phase formation and thus improved the stability.

  9. JUPITER-II Program: ANL analysis of ZPPR-13A and ZPPR-13B

    SciTech Connect (OSTI)

    Collins, P.J.; Brumbach, S.B. (comps.)

    1984-08-09T23:59:59.000Z

    The ZPPR-13 experiments provide basic physics data for radial-heterogeneous LMFBR cores of approximately 700 MWe size. Assemblies ZPPR-13A, ZPPR-13B and ZPPR-13C comprised the JUPITER-II cooperative program between US-DOE and PNC of Japan. The measurements were made between August 1982 and April 1984. This report describes in detail the results of the ANL analyses of phases 13A and 13B/1 and includes preliminary results for the later assemblies of phase 13B. The data were compiled primarily for discussions at the Third Jupiter Analysis Meeting to be held at ANL-West between September 11th and 14th, 1984.

  10. Using the central VAX 8700 computer at ANL (Argonne National Laboratory)

    SciTech Connect (OSTI)

    Lark, D.T.; Caruthers, C.M.; Bragg, R.W. (eds.)

    1988-09-01T23:59:59.000Z

    This paper is a manual for using the VAX 8700 computer at ANL. The chapters include: The central VAX cluster: What it is and how it works; Training and other available assistance; Getting started with the VAX 8700 computer and VAX/VMS; Using the VAX/VMS file system; Developing programs in VMS; Using batch; Using available software; and Using graphics in VAX/VMS. (LSP)

  11. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2002-03-31T23:59:59.000Z

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves as the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is LSCF < PSCF < SSCF < YSCF < LSM. The button cell results agree with this ordering indicating that this is an important tool for use in developing our understanding of electrode behavior in fuel cells.

  12. C O N TA C T > Lee Ann Ciarlette | 630.252.4835 | leeann@anl.gov | Nuclear Engineering Division | students.ne.anl.gov Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 November 2012

    E-Print Network [OSTI]

    Kemner, Ken

    C O N TA C T > Lee Ann Ciarlette | 630.252.4835 | leeann@anl.gov | Nuclear Engineering Division of Massachuse s Lowell · University of Michigan · University of Michigan, Ann Arbor · University of Missouri

  13. Nickel-titanium-phosphate cathodes

    DOE Patents [OSTI]

    Belharouak, Ilias (Westmont, IL); Amine, Khalil (Downers Grove, IL)

    2008-12-16T23:59:59.000Z

    Cathode materials having an improved electronic conductivity allowing for faster kinetics in the electrochemical reaction, as well as higher conductivity to meet the power requirements for many consumer applications, especially at low temperatures. The cathode material comprises a compound from the family of compounds where the basic unit is generally represented by Li.sub.xNi.sub.0.5TiOPO.sub.4. The structure of Li.sub.xNi.sub.0.5TiOPO.sub.4 includes corner sharing octahedra [TiO.sub.6] running along the C-axis. The structure is such that nearly three Li atoms are being inserted in Li.sub.xNi.sub.0.5TiOPO.sub.4. A cell in accordance with the principles of the present invention is rechargable and demonstrates a high capacity of lithium intercalation and fast kinetics.

  14. Filters for cathodic arc plasmas

    DOE Patents [OSTI]

    Anders, Andre (Albany, CA); MacGill, Robert A. (Richmond, CA); Bilek, Marcela M. M. (Engadine, AU); Brown, Ian G. (Berkeley, CA)

    2002-01-01T23:59:59.000Z

    Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  15. Vehicle Technologies Office Merit Review 2015: ANL IC3P Research Focus on Diagnostic Studies at BNL

    Broader source: Energy.gov [DOE]

    Presentation given by 3M at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ANL IC3P research focus on diagnostic...

  16. Sun powers Libya cathodic-protection system

    SciTech Connect (OSTI)

    Currer, G.W.

    1982-03-22T23:59:59.000Z

    Well castings and part of the main 300-mile-long, 32-in diameter pipeline from Sarir to Tobruk are cathodically protected by solar power, which prevents galvanic action by applying an electric direct current of appropriate magnitude and polarity to the steel structures. They then act as cathodes and become the recipients of metallic ions. At each cathodic-protection station, the solar-generaor system consists of solar-panel arrays, electronic controls, and batteries.

  17. Modeling a short dc discharge with thermionic cathode and auxiliary anode E. Bogdanov, V. I. Demidov, I. D. Kaganovich, M. E. Koepke, and A. A. Kudryavtsev

    E-Print Network [OSTI]

    Kaganovich, Igor

    -authors of this paper, to advance nonlocal plasma research. Explaining and utilizing cathode fall, negative glow, anode in a high-voltage discharge. This approach is being applied currently in plasma engineering research

  18. Arc initiation in cathodic arc plasma sources

    DOE Patents [OSTI]

    Anders, Andre (Albany, CA)

    2002-01-01T23:59:59.000Z

    A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.

  19. Stabilized Spinel and Nano Olivine Cathodes

    Broader source: Energy.gov (indexed) [DOE]

    good storage properties at elevated temperatures - Low cost spinel + layered oxide composite cathodes that can offer a combination of high energy and high power * To develop a...

  20. Investigations of Cathode Architecture using Graphite Fibers

    Broader source: Energy.gov (indexed) [DOE]

    Temperature Materials Lab, ORNL * Microscopy, Thermography - Collaboration, external * LBNL independent cathode testing (V. Battaglia) * HydroQuebec for materials (K. Zaghib)...

  1. ANL/ALCF/ESP-13/1 Climate-Weather Modeling Studies Using a Prototype

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNewstt^ \ # AN EXPERIMENT ON, .

  2. ANL/ALCF/ESP-13/13 Ab-initio Reaction Calculations for Carbon-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNewstt^ \ # AN EXPERIMENT ON, .13

  3. ANL/ALCF/ESP-13/14 NAMD - The Engine for Large-Scale Classical MD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNewstt^ \ # AN EXPERIMENT ON, .134

  4. ANL/ALCF/ESP-13/17 ALCF-2 Early Science Program Technical Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNewstt^ \ # AN EXPERIMENT ON,

  5. ANL/ALCF/ESP-13/5 Cosmic Structure Probes of the Dark Universe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNewstt^ \ # AN EXPERIMENT ON,345

  6. ANL/ALCF/ESP-13/8 Using Multi-scale Dynamic Rupture Models to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNewstt^ \ # AN EXPERIMENT ON,3458

  7. NANOWIRE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES

    SciTech Connect (OSTI)

    John Olson, PhD

    2004-07-21T23:59:59.000Z

    This project involved the synthesis of nanowire ã-MnO2 and characterization as cathode material for high-power lithium-ion batteries for EV and HEV applications. The nanowire synthesis involved the edge site decoration nanowire synthesis developed by Dr. Reginald Penner at UC Irvine (a key collaborator in this project). Figure 1 is an SEM image showing ã-MnO2 nanowires electrodeposited on highly oriented pyrolytic graphite (HOPG) electrodes. This technique is unique to other nanowire template synthesis techniques in that it produces long (>500 um) nanowires which could reduce or eliminate the need for conductive additives due to intertwining of fibers. Nanowire cathode for lithium-ion batteries with surface areas 100 times greater than conventional materials can enable higher power batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs). The synthesis of the ã-MnO2 nanowires was successfully achieved. However, it was not found possible to co-intercalate lithium directly in the nanowire synthesis. Based on input from proposal reviewers, the scope of the project was altered to attempt the conversion into spinel LiMn2O4 nanowire cathode material by solid state reaction of the ã-MnO2 nanowires with LiNO3 at elevated temperatures. Attempts to perform the conversion on the graphite template were unsuccessful due to degradation of the graphite apparently caused by oxidative attack by LiNO3. Emphasis then shifted to quantitative removal of the nanowires from the graphite, followed by the solid state reaction. Attempts to quantitatively remove the nanowires by several techniques were unsatisfactory due to co-removal of excess graphite or poor harvesting of nanowires. Intercalation of lithium into ã-MnO2 electrodeposited onto graphite was demonstrated, showing a partial demonstration of the ã-MnO2 material as a lithium-ion battery cathode material. Assuming the issues of nanowires removal can be solved, the technique does offer potential for creating high-power lithium-ion battery cathode needed for advanced EV and HEVs. Several technical advancements will still be required to meet this goal, and are likely topics for future SBIR feasibility studies.

  8. Performance Degradation of LSCF Cathodes

    SciTech Connect (OSTI)

    Alinger, Matthew

    2013-09-30T23:59:59.000Z

    This final report summarizes the progress made during the October 1, 2008 - September 30, 2013 period under Cooperative Agreement DE-NT0004109 for the U. S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled “Performance Degradation of LSCF Cathodes”. The primary objective of this program is to develop a performance degradation mitigation path for high performing, cost-effective solid oxide fuel cells (SOFCs). Strategies to mitigate performance degradation are developed and implemented. In addition, thermal spray manufacturing of SOFCs is explored. Combined, this work establishes a basis for cost-effective SOFC cells.

  9. Degradation of Ionic Pathway in PEM Fuel Cell Cathode. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Degradation of Ionic Pathway in PEM Fuel Cell Cathode. Degradation of Ionic Pathway in PEM Fuel Cell Cathode. Abstract: The degradation of the ionic pathway throughout the catalyst...

  10. Process for Low Cost Domestic Production of LIB Cathode Materials

    Broader source: Energy.gov (indexed) [DOE]

    information" 4 Approach BASF has a low cost production process for Li ion battery cathode materials. In this project, the cathode materials developed in the laboratory will be...

  11. Developing new high energy gradient concentration cathode material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    new high energy gradient concentration cathode material Developing new high energy gradient concentration cathode material 2009 DOE Hydrogen Program and Vehicle Technologies...

  12. Mitigating Voltage Fade in Cathode Materials by Improving the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution. Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level...

  13. Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading Presented at the Department of Energy Fuel Cell...

  14. Conflicting Roles Of Nickel In Controlling Cathode Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conflicting Roles Of Nickel In Controlling Cathode Performance In Lithium-ion Batteries. Conflicting Roles Of Nickel In Controlling Cathode Performance In Lithium-ion Batteries....

  15. Electrochemical Performance and Stability of the Cathode for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance and Stability of the Cathode for Solid Oxide Fuel Cells. I. Cross Validation of Polarization Electrochemical Performance and Stability of the Cathode for Solid Oxide...

  16. Cathode for an electrochemical cell

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)

    2001-01-01T23:59:59.000Z

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  17. Coated porous carbon cathodes for lithium ion batteries

    SciTech Connect (OSTI)

    Kercher, Andrew K [ORNL; Dudney, Nancy J [ORNL; Kiggans, Jim [ORNL; Klett, James William [ORNL

    2008-01-01T23:59:59.000Z

    Coated porous carbon cathodes for automotive lithium batteries are being developed with the goal of overcoming the problems with capacity fade and poor thermal management in conventional polymer-bonded cathodes. The active cathode material (lithium iron phosphate nanoparticles) is carbon-bonded to the porous carbon support material. Cathodes have been developed with high specific energy and power and with good cycling behavior.

  18. K2CsSb Cathode Development

    SciTech Connect (OSTI)

    Smedley,J.; Rao, T.; Wang, E.

    2008-10-01T23:59:59.000Z

    K{sub 2}CsSb is an attractive photocathode for high current applications. With a quantum efficiency of >4% at 532nm and >10% at 355nm, it is the only cathode to have demonstrated an average current of 35mA in an accelerator environment We describe ongoing cathode development work. for the energy recovery linac being constructed at BNL Several cathodes have been created on both copper and stainless steel substrates, and their spatial uniformity and spectral response have been characterized. Preliminary lifetime measurements have been performed at high average current densities (>1 mA/mm{sup 2}).

  19. Low temperature aluminum reduction cell using hollow cathode

    DOE Patents [OSTI]

    Brown, Craig W. (Seattle, WA); Frizzle, Patrick B. (Seattle, WA)

    2002-08-20T23:59:59.000Z

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. A plurality of non-consumable anodes are disposed substantially vertically in the electrolyte along with a plurality of monolithic hollow cathodes. Each cathode has a top and bottom and the cathodes are disposed vertically in the electrolyte and the anodes and the cathodes are arranged in alternating relationship. Each of the cathodes is comprised of a first side facing a first opposing anode and a second side facing a second opposing anode. The first and second sides are joined by ends to form a reservoir in the hollow cathode for collecting aluminum therein deposited at the cathode.

  20. Analysis of the ANL Test Method for 6CVS Containment Vessels

    SciTech Connect (OSTI)

    Trapp, D.; Crow, G.

    2011-06-06T23:59:59.000Z

    In the fall of 2010, Argonne National Laboratory (ANL) contracted with vendors to design and build 6CVS containment vessels as part of their effort to ship Fuel Derived Mixed Fission Product material. The 6CVS design is based on the Savannah River National Laboratory's (SRNL) design for 9975 and 9977 six inch diameter containment vessels. The main difference between the designs is that the 6CVS credits the inner O-ring seal as the containment boundary while the SRNL design credits the outer O-ring seal. Since the leak test must be done with the inner O-ring in place, the containment vessel does not have a pathway for getting the helium into the vessel during the leak test. The leak testing contractor was not able to get acceptable leak rates with the specified O-ring, but they were able to pass the leak test with a slightly larger O-ring. ANL asked the SRNL to duplicate the leak test vendor's method to determine the cause of the high leak rates. The SRNL testing showed that the helium leak indications were caused by residual helium left within the 6CVS Closure Assembly by the leak test technique, and by helium permeation through the Viton O-ring seals. After SRNL completed their tests, the leak testing contractor was able to measure acceptable leak rates by using the slightly larger O-ring size, by purging helium from the lid threads, and by being very quick in getting the bell jar under a full vacuum. This paper describes the leak test vendor's test technique, and other techniques that could be have been used to successfully leak test the 6CVS's.

  1. Aluminum ion batteries: electrolytes and cathodes

    E-Print Network [OSTI]

    Reed, Luke

    2015-01-01T23:59:59.000Z

    of Vanadium Oxide Aerogels. J. Non. Cryst. Solids (102)of composite V 2 O 5 aerogel electrodes. 26electrolyte and a V 2 O 5 aerogel cathode. There are few

  2. Interfacial phenomena on selected cathode materials

    SciTech Connect (OSTI)

    Kostecki, Robert; Matsuo, Yoshiaki; McLarnon, Frank

    2001-06-22T23:59:59.000Z

    We have carried out a series of surface studies of selected cathode materials. Instrumental techniques such as Raman microscopy, surface enhanced Raman spectroscopy (SERS), and atomic force microscopy were used to investigate the cathode surfaces. The goal of this study was to identify detrimental processes which occur at the electrode/electrolyte interface and can lead to electrode degradation and failure during cycling and/or storage at elevated temperatures.

  3. www.sbc.anl.gov The Structural Biology Center enables the atomic-scale study of macromolecular

    E-Print Network [OSTI]

    Kemner, Ken

    systems using very small crystal samples. It also offers the most efficient data collection and structure to synchrotron data collection W H O W E A R E Supported by the U.S. Department of Energy, the Structural Biologywww.sbc.anl.gov The Structural Biology Center enables the atomic-scale study of macromolecular

  4. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2003-03-31T23:59:59.000Z

    This report represents a summary of the work carried out on this project which started October 1999 and ended March 2003. A list of the publications resulting from the work are contained in Appendix A. The most significant achievements are: (1) Dense nanocrystalline zirconia and ceria films were obtained at temperatures < 400 C. (2) Nanocrystalline films of both ceria and zirconia were characterized. (3) We showed that under anodic conditions 0.5 to 1 micron thick nanocrystalline films of Sc doped zirconia have sufficient electronic conductivity to prevent them from being useful as an electrolyte. (4) We have developed a process by which dense 0.5 to 5 micron thick dense films of either YSZ or ceria can be deposited on sintered porous substrates which serve as either the cathode or anode at temperatures as low as 400 C. (5) The program has provided the research to produce two PhD thesis for students, one is now working in the solid oxide fuel cell field. (6) The results of the research have resulted in 69 papers published, 3 papers submitted or being prepared for publication, 50 oral presentations and 3 patent disclosures.

  5. Process Development and Scale-up of Advanced Cathode Materials

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. 2013 Estorm - Invited Paper - Cathode Materials Review

    SciTech Connect (OSTI)

    Daniel, Claus [ORNL] [ORNL; Mohanty, Debasish [ORNL] [ORNL; Li, Jianlin [ORNL] [ORNL; Wood III, David L [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403 431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783 789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  7. Micro-engineered cathode interface studies

    SciTech Connect (OSTI)

    Doshi, R.; Kueper, T.; Nagy, Z.; Krumpelt, M.

    1997-08-01T23:59:59.000Z

    The aim of this work is to increase the performance of the cathode in solid oxide fuel cells (SOFCs) operating at 1,000 C by decreasing the polarization resistance from 0.2 {Omega}-cm{sup 2} at 300 mA/cm{sup 2}. Decreased polarization resistance will allow operation at higher current densities. This work is in support of the Westinghouse tubular SOFC technology using YSZ electrolyte and strontium doped lanthanum manganite (LSM) cathode. As a result of work performed last year at Argonne National Laboratory and information derived from the literature, the limitations at the cathode/electrolyte interface can be classified into two main areas. First, the ionic conductivity of the LSM cathode material is low which limits the reaction zone to an area very close to the interface, while the rest of the cathode thickness acts essentially as current collector with channels for gas access. Second, the electronic conductivity in YSZ is very low which limits the reaction zone to areas that are the boundaries between LSM and YSZ rather than the YSZ surface away from LSM at the interface. Possible solutions to this problem being pursued are: (1) introducing an ionic conducting YSZ phase in LSM to form a porous two-phase mixture of LSM and YSZ; (2) applying a thin interlayer between the electrolyte and the cathode where the interlayer has high ionic and electronic conductivity and high catalytic activity for reduction of O{sub 2}; (3) increasing the ionic conductivity in the LSM by suitable doping; and (4) increasing the electronic conductivity in the electrolyte by doping or by depositing an appropriate mixed conducting layer on the YSZ before applying the cathode.

  8. TransForumNews from Argonne's Transportation Research Program www.transportation.anl.gov

    E-Print Network [OSTI]

    Kemner, Ken

    page 10 A revolutionary advance in our understanding of how diesel engines work may unlock new at the local and regional level. 16 How Might Increased Biofuel Production Affect Midwest Water Supplies Laboratory recently won a three-year, $3.44 million grant from the U.S. Department of Energy's Advanced

  9. TransForumNews from Argonne's Transportation Research Program www.transportation.anl.gov

    E-Print Network [OSTI]

    Kemner, Ken

    page 10 A revolutionary advance in our understanding of how diesel engines work may unlock new at the local and regional level. 16 How Might Increased Biofuel Production Affect Midwest Water Supplies.S. Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E), a government agency that funds

  10. Formation Of The Spinel Phase In The Layered Composite Cathode...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of The Spinel Phase In The Layered Composite Cathode Used In Li-Ion Batteries. Formation Of The Spinel Phase In The Layered Composite Cathode Used In Li-Ion Batteries. Abstract:...

  11. Microbial Fuel Cell Cathodes With Poly(dimethylsiloxane) Diffusion

    E-Print Network [OSTI]

    applications of MFCs for wastewater treatment and bioenergy production. The main challenges for commercializing limited by cathode surface area and performance (9, 12, 13), and the price of cathode materials can

  12. Synchrotron Investigations of SOFC Cathode Degradation

    SciTech Connect (OSTI)

    Idzerda, Yves

    2013-09-30T23:59:59.000Z

    The atomic variations occurring in cathode/electrolyte interface regions of La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3-?} (LSCF) cathodes and other SOFC related materials have been investigated and characterized using soft X-ray Absorption Spectroscopy (XAS) and diffuse soft X-ray Resonant Scattering (XRS). X-ray Absorption Spectroscopy in the soft X-ray region (soft XAS) is shown to be a sensitive technique to quantify the disruption that occurs and can be used to suggest a concrete mechanism for the degradation. For LSC, LSF, and LSCF films, a significant degradation mechanism is shown to be Sr out-diffusion. By using the XAS spectra of hexavalent Cr in SrCrO4 and trivalent Cr in Cr2O3, the driving factor for Sr segregation was identified to be the oxygen vacancy concentration at the anode and cathode side of of symmetric LSCF/GDC/LSCF heterostructures. This is direct evidence of vacancy induced cation diffusion and is shown to be a significant indicator of cathode/electrolyte interfacial degradation. X-ray absorption spectroscopy is used to identify the occupation of the A-sites and B-sites for LSC, LSF, and LSCF cathodes doped with other transition metals, including doping induced migration of Sr to the anti-site for Sr, a significant cathode degradation indicator. By using spatially resolved valence mapping of Co, a complete picture of the surface electrochemistry can be determined. This is especially important in identifying degradation phenomena where the degradation is spatially localized to the extremities of the electrochemistry and not the average. For samples that have electrochemical parameters that are measured to be spatially uniform, the Co valence modifications were correlated to the effects of current density, overpotential, and humidity.

  13. Cathodic protection retrofit of an offshore pipeline

    SciTech Connect (OSTI)

    Winters, R.H.; Holk, A.C. [Tenneco Energy, Houston, TX (United States)

    1997-09-01T23:59:59.000Z

    The cathodic protection anodes and corrosion coating on two 8-inch (203.2 mm) outside diameter (O.D.) offshore pipelines were damaged during deep water ({minus}380 feet, {minus}116 m) installation. In-situ methods for deep water inspection and repair of the pipelines` cathodic protection and coating systems were developed and performed. Methods are described in which underwater anode retrofits were performed and friction welding technology was used to re-attach anode leads. Standard procedures for underwater pipeline coating repair and remediation of damaged line pipe are provided.

  14. A comparison of the PARET/ANL and RELAP5/MOD3 codes for the analysis of IAEA benchmark transients

    SciTech Connect (OSTI)

    Woodruff, W.L.; Hanan, N.A.; Smith, R.S.; Matos, J.E.

    1996-12-31T23:59:59.000Z

    The PARET/ANL and RELAP5/MOD3 codes are used to analyze the series of benchmark transients specified for the IAEA Research Reactor Core Conversion Guidebook (IAEA-TECDOC-643, Vol. 3). The computed results for these loss-of-flow and reactivity insertion transients with scram are in excellent agreement and agree well with the earlier results reported in the guidebook. Attempts to also compare RELAP5/MOD3 with the SPERT series of experiments are in progress.

  15. Tubular Membrane Cathodes for Scalable Power Generation in

    E-Print Network [OSTI]

    architecture that provides large surface areas for oxygen reduction at the cathode and bacteria growth, is a promising architecture that is intrinsically scalable for creating larger systems. Further increases and its use is sustainable (13). Exposing one side of the cathode to air (air cathode) has significantly

  16. ANL/APS/TB-32 Test of Horizontal Field Measurements Using Two...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Source Argonne National Laboratory Argonne, IL 60439 1. Introduction The free-electron laser (FEL) project at the Advanced Photon Source (APS) will use a 400-MeV particle...

  17. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson

    2000-03-31T23:59:59.000Z

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and Testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Progress has been made in the preparation and characterization of thin electrolytes and porous LSM substrates. Both of these tasks are essentially on or ahead of schedule. In our proposal, we suggested that the ZrO{sub 2}/Sc system needed to be considered as a candidate as a thin electrolyte. This was because microcrystalline ZrO{sub 2}/Sc has a significantly higher ionic conductivity than YSZ, particularly at the lower temperatures. As a result, some 0.5 micron thick film of ZrO{sub 2}/16% Sc on an alumina substrate (grain size 20nm) was prepared and the electrical conductivity measured as a function of temperature and oxygen activity. The Sc doped ZrO{sub 2} certainly has a higher conductivity that either 20nm or 2400nm YSZ, however, electronic conductivity dominates the conductivity for oxygen activities below 10{sup -15}. Whereas for YSZ, electronic conductivity is not a problem until the oxygen activity decreases below 10{sup -25}. These initial results show that the ionic conductivity of 20nm YSZ and 20nm ZrO{sub 2}/16% Sc are essentially the same and the enhanced conductivity which is observed for Sc doping in microcrystalline specimens is not observed for the same composition when it is nanocrystalline. In addition they show that the electronic conductivity of Sc doped ZrO{sub 2} is at least two orders of magnitude higher than that observed for YSZ. The conclusion one reaches is that for 0.5 to 1 micron thick nanocrystalline films, Sc doping of ZrO{sub 2} has no benefits compared to YSZ. As a result, electrolyte films of ZrO{sub 2}/Sc should not be considered as candidates. However, they have the potential of being useful as an interface on the anode side of the electrolyte. NexTech has focused much of its effort during the past few months on establishing tape casting methods for porous LSM substrates. This work, performed under a separate DOE-funded program, involved tape casting formulations comprising LSM powders with bi-modal particle size distributions and fugitive pore forming additives. Sintered LSM substrates with porosities in the 30 to 40 vol% range, and pore sizes of 10 {approx} 20 microns have been prepared. In addition, tape casting formulations involving composite mixtures of LSM and Sm-doped ceria (SDC) have been evaluated. The LSM/SDC cathode substrates are expected to provide better performance at low temperatures. Characterization of these materials is currently underway.

  18. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson; Wayne Huebner; Igor Kosacki

    2001-09-30T23:59:59.000Z

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. In this portion of study we have focused on producing YSZ films on porous LSM substrates. When using the polymer precursor there are a number of obstacles to overcome in order to form dense electrolyte layers on porous substrates (cathode or anode). Probably the most difficult problems are: (1) Extreme penetration of the polymer into the substrate must be prevented. (2) Shrinkage cracking must be avoided. (3) Film thickness in the 1 to 5{micro}m range must be achieved. We have demonstrated that cracking due to shrinkage involved during the elimination of solvents and organic matter and densification of the remaining oxide is not a problem as long as the resulting oxide film is < {approx} 0.15 {micro}m in thickness. We have also shown that we can make thicker films by making multiple depositions if the substrate is smooth (roughness {le} 0.1 {micro}m) and contains no surface pores > 0.2 {micro}m. The penetration of the polymer into the porous substrate can be minimized by increasing the viscosity of the polymer and reducing the largest pore at the surface of the substrate to {le} 0.2 {micro}m. We have shown that this can be done, but we have also shown that it is difficult to make dense films that are defect free with areas > 1 cm{sup 2}. This is because of the roughness of the substrate and the difficulty in making a substrate which does not have surface voids > 0.2 {micro}m. Thus the process works well for dense, smooth substrates for films < 1 {micro}m thick, but is difficult to apply to rough, porous surfaces and to make film thickness > 1 {micro}m. As a result of these problems, we have been addressing the issue of how to make dense films in the thickness range of 1 to 5 {micro}m on sintered porous substrates without introducing cracks and holes due to shrinkage and surface voids? These endeavors have lead us to a solution which we think is quite unique and should allow us to obtain flaw free dense films of thickness in the 0.5 to 5 {micro}m range at processing temperatures {le} 900{sup o}. The process involves the deposition of a slurry of nanocrystalline YSZ onto a presintered porous LSM substrate. The key element in the deposition is that the slurry contains sufficient YSZ polymer precursor to allow adhesion of the YSZ particles to each other and the surface after annealing at about 600 C. This allows the formation of a porous film of 0.5 to 5 {micro}m thick which adheres to the surface. After formation of this film, YSZ polymer precursor is allowed to impregnate the porous surface layer (capillary forces tend to confine the polymer solution in the nanoporous layer). After several impregnation/heat treatment cycles, a dense film results. Within the next few months, this process should be developed to the point that single cell measurements can be made on 0.5 to 5 {micro}m films on a LSM substrate. This type of processing allows the formation of essentially flaw free films over areas > 1 cm{sup 2}.

  19. Cathode side hardware for carbonate fuel cells

    DOE Patents [OSTI]

    Xu, Gengfu (Danbury, CT); Yuh, Chao-Yi (New Milford, CT)

    2011-03-29T23:59:59.000Z

    Carbonate fuel cathode side hardware having a thin coating of a conductive ceramic formed from one of LSC (La.sub.0.8Sr.sub.0.2CoO.sub.3) and lithiated NiO (Li.sub.xNiO, where x is 0.1 to 1).

  20. Bimetallic Cathode Materials for Lithium Based Batteries

    E-Print Network [OSTI]

    Bimetallic Cathode Materials for Lithium Based Batteries Frontiers in Materials Science Seminar / Chemistryg g g g g y University at Buffalo ­ The State University of New York (SUNY) Abstract Batteries for implantable cardiac defibrillators (ICDs) are based on the Lithium/Silver vanadium oxide (SVO, Ag2V4O11

  1. Carbon-containing cathodes for enhanced electron emission

    DOE Patents [OSTI]

    Cao, Renyu (Cupertino, CA); Pan, Lawrence (Pleasanton, CA); Vergara, German (Madrid, ES); Fox, Ciaran (Los Altos, CA)

    2000-01-01T23:59:59.000Z

    A cathode has electropositive atoms directly bonded to a carbon-containing substrate. Preferably, the substrate comprises diamond or diamond-like (sp.sup.3) carbon, and the electropositive atoms are Cs. The cathode displays superior efficiency and durability. In one embodiment, the cathode has a negative electron affinity (NEA). The cathode can be used for field emission, thermionic emission, or photoemission. Upon exposure to air or oxygen, the cathode performance can be restored by annealing or other methods. Applications include detectors, electron multipliers, sensors, imaging systems, and displays, particularly flat panel displays.

  2. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01T23:59:59.000Z

    Costs of Lithium-Ion Batteries for Vehicles, (ANL/ESD- 42) .Linden, D. , Handbook of Batteries, McGraw-Hill Companies,2012). Lithium Use in Batteries, U.S. Geological Survey (

  3. The effect of cathode geometry on barium transport in hollow cathode plasmas

    SciTech Connect (OSTI)

    Polk, James E., E-mail: james.e.polk@jpl.nasa.gov; Mikellides, Ioannis G.; Katz, Ira [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109 (United States); Capece, Angela M. [California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States)

    2014-05-14T23:59:59.000Z

    The effect of barium transport on the operation of dispenser hollow cathodes was investigated in numerical modeling of a cathode with two different orifice sizes. Despite large differences in cathode emitter temperature, emitted electron current density, internal xenon neutral and plasma densities, and size of the plasma-surface interaction region, the barium transport in the two geometries is qualitatively very similar. Barium is produced in the insert and flows to the surface through the porous structure. A buildup of neutral Ba pressure in the plasma over the emitter surface can suppress the reactions supplying the Ba, restricting the net production rate. Neutral Ba flows into the dense Xe plasma and has a high probability of being ionized at the periphery of this zone. The steady state neutral Ba density distribution is determined by a balance between pressure gradient forces and the drag force associated with collisions between neutral Ba and neutral Xe atoms. A small fraction of the neutral Ba is lost upstream. The majority of the neutral Ba is ionized in the high temperature Xe plasma and is pushed back to the emitter surface by the electric field. The steady state Ba{sup +} ion density distribution results from a balance between electrostatic and pressure forces, neutral Xe drag and Xe{sup +} ion drag with the dominant forces dependent on location in the discharge. These results indicate that hollow cathodes are very effective at recycling Ba within the discharge and therefore maintain a high coverage of Ba on the emitter surface, which reduces the work function and sustains high electron emission current densities at moderate temperatures. Barium recycling is more effective in the cathode with the smaller orifice because the Ba is ionized in the dense Xe plasma concentrated just upstream of the orifice and pushed back into the hollow cathode. Despite a lower emitter temperature, the large orifice cathode has a higher Ba loss rate through the orifice because the Xe plasma density peaks further upstream.

  4. NUMERICAL MODELING OF CATHODE CONTACT MATERIAL DENSIFICATION

    SciTech Connect (OSTI)

    Koeppel, Brian J.; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-11-01T23:59:59.000Z

    Numerical modeling was used to simulate the constrained sintering process of the cathode contact layer during assembly of solid oxide fuel cells (SOFCs). A finite element model based on the continuum theory for sintering of porous bodies was developed and used to investigate candidate low-temperature cathode contact materials. Constitutive parameters for various contact materials under investigation were estimated from dilatometry screening tests, and the influence of processing time, processing temperature, initial grain size, and applied compressive stress on the free sintering response was predicted for selected candidate materials. The densification behavior and generated stresses within a 5-cell planar SOFC stack during sintering, high temperature operation, and room temperature shutdown were predicted. Insufficient constrained densification was observed in the stack at the proposed heat treatment, but beneficial effects of reduced grain size, compressive stack preload, and reduced thermal expansion coefficient on the contact layer densification and stresses were observed.

  5. Magnetron cathodes in plasma electrode pockels cells

    DOE Patents [OSTI]

    Rhodes, Mark A. (Pleasanton, CA)

    1995-01-01T23:59:59.000Z

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating. pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal.

  6. Cathode power distribution system and method of using the same for power distribution

    DOE Patents [OSTI]

    Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2014-11-11T23:59:59.000Z

    Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.

  7. Optogalvanic effect in a hollow cathode discharge with nonlaser sources

    SciTech Connect (OSTI)

    Apel, C.T.; Keller, R.A.; Zalewski, E.F.; Engleman, R. Jr.

    1982-04-15T23:59:59.000Z

    Several atomic emission sources were investigated for their potential to induce optogalvanic signals in hollow cathode lamps. The sources included an inductively coupled argon plasma, a H/sub 2/--O/sub 2/ flame, a high-temperature furnace, electrodeless microwave discharge lamps, and hollow cathode lamps. Successful results were obtained with argon emission from the inductively coupled plasma focused into an argon-filled hollow cathode tube and with atomic emission from one hollow cathode discharge focused into a hollow cathode tube containing the same element. Very low level optogalvanic signals were observed from the other sources but could not be unambiguously ascribed to emission from a specific element. A problem encountered was the presence of a background signal due to photoelectric emission and possibly radiative heating of the cathode.

  8. INTRODUCTION The U.S. Department of Energy's (DOE) Office of Advanced Automotive Technologies conducts research

    E-Print Network [OSTI]

    Kwak, Juhyoun

    ), which seeks to develop passenger vehicles with a fuel economy equivalent to 80 mpg of gasoline Materials, 4) Novel Cathode Materials, 5) Advanced Solid Polymer Electrolytes, 6) Advanced Diagnostic-ion batteries. Any advancements developed under this effort will be tested in baseline cells so that they may

  9. Molten carbonate fuel cell cathode with mixed oxide coating

    DOE Patents [OSTI]

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07T23:59:59.000Z

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  10. High Energy Materials for PHEVs: Cathodes (New Project)

    Broader source: Energy.gov (indexed) [DOE]

    Materials for PHEVs: Cathodes (New Project) presented by Michael Thackeray Chemical Sciences and Engineering Division, Argonne Annual Merit Review DOE Vehicle Technologies Program...

  11. Single-step Infiltration for Improved Low Temperature Cathode...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    monolayers using only 3-5 weight percent of ceramic. The technique enables high SOFC cathode performance at lower temperatures where less expensive and more pliable metals...

  12. Surface Characterization of the LCLS RF Gun Cathode

    SciTech Connect (OSTI)

    Brachmann, Axel; /SLAC; Decker, Franz-Josef; /SLAC; Ding, Yuantao; /SLAC; Dowell, David; /SLAC; Emma, Paul; /SLAC; Frisch, Josef; /SLAC; Gilevich, Sasha; /SLAC; Hays, Gregory; /SLAC; Hering, Philippe; /SLAC; Huang, Zhirong; /SLAC; Iverson, Richard; /SLAC; Loos, Henrik; /SLAC; Miahnahri, Alan; /SLAC; Nordlund, Dennis; /SLAC; Nuhn, Heinz-Dieter; /SLAC; Pianetta, Piero; /SLAC; Turner, James; /SLAC; Welch, James; /SLAC; White, William; /SLAC; Wu, Juhao; /SLAC; Xiang, Dao; /SLAC

    2012-06-25T23:59:59.000Z

    The first copper cathode installed in the LCLS RF gun was used during LCLS commissioning for more than a year. However, after high charge operation (> 500 pC), the cathode showed a decline of quantum efficiency within the area of drive laser illumination. They report results of SEM, XPS and XAS studies that were carried out on this cathode after it was removed from the gun. X-ray absorption and X-ray photoelectron spectroscopy reveal surface contamination by various hydrocarbon compounds. In addition they report on the performance of the second installed cathode with emphasis on the spatial distribution of electron emission.

  13. Multi-cathode metal vapor arc ion source

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); MacGill, Robert A. (645 Kern St., Richmond, CA 94805)

    1988-01-01T23:59:59.000Z

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. One embodiment of the appaatus utilizes a multi-cathode arrangement for interaction with the anode.

  14. Cathode dissolution: Quarterly report, January-March 1987

    SciTech Connect (OSTI)

    Shores, D.A.

    1987-07-01T23:59:59.000Z

    One important mode of degradation of current MCFCs is the dissolution of the NiO cathode into the electrolyte tile and the subsequent precipitation of Ni in the tile. Over time the performance of the cell degrades, and evantually the cell may short out locally via a bridge of Ni particles between the cathode and anode. The purpose of this program is to further the understanding of the processes which cause degradation of the NiO cathode in MCFCs, especially those processes involving dissolution of the cathode and the transport of soluble Ni species in the electrolyte. 6 figs., 3 tabs.

  15. Cathode fall measurement in a dielectric barrier discharge in helium

    SciTech Connect (OSTI)

    Hao, Yanpeng; Zheng, Bin; Liu, Yaoge [School of Electric Power, South China University of Technology, Guangzhou 510640 (China)] [School of Electric Power, South China University of Technology, Guangzhou 510640 (China)

    2013-11-15T23:59:59.000Z

    A method based on the “zero-length voltage” extrapolation is proposed to measure cathode fall in a dielectric barrier discharge. Starting, stable, and discharge-maintaining voltages were measured to obtain the extrapolation zero-length voltage. Under our experimental conditions, the “zero-length voltage” gave a cathode fall of about 185 V. Based on the known thickness of the cathode fall region, the spatial distribution of the electric field strength in dielectric barrier discharge in atmospheric helium is determined. The strong cathode fall with a maximum field value of approximately 9.25 kV/cm was typical for the glow mode of the discharge.

  16. Design and Evaluation of Novel High Capacity Cathode Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Design and Evaluation of Novel High Capacity Cathode Materials Lithium Source For High Performance Li-ion Cells Lithium Source For High Performance Li-ion...

  17. Development of spray coated cathodes for RITS-6.

    SciTech Connect (OSTI)

    Simpson, Sean; Leckbee, Joshua J.; Miller, Stephen Samuel

    2013-09-01T23:59:59.000Z

    This report documents work conducted in FY13 to conduct a feasibility study on thermal spray coated cathodes to be used in the RITS-6 accelerator in an attempt to improve surface uniformity and repeatability. Currently, the cathodes are coated with colloidal silver by means of painting by hand. It is believed that improving the cathode coating process could simplify experimental setup and improve flash x-ray radiographic performance. This report documents the experimental setup and summarizes the results of our feasibility study. Lastly, it describes the path forward and potential challenges that must be overcome in order to improve the process for creating uniform and repeatable silver coatings for cathodes.

  18. Comments on cathode contaminants and the LBNL test stand

    E-Print Network [OSTI]

    Bieniosek, F.; Baca, D.; Greenway, W.; Leitner, M.; Kwan, J.W.

    2006-01-01T23:59:59.000Z

    LBNL-61978 Comments oncathode contaminants and the LBNL test stand F. Bieniosek,the process of operating the LBNL DARHT cathode test stand.

  19. Cell Analysis ? High-Energy Density Cathodes and Anodes

    Broader source: Energy.gov (indexed) [DOE]

    does not contain any proprietary, confidential, or otherwise restricted information LBNL Project ID: ES053 OVERVIEW Timeline * PI Joined BATT 2001 * Cathodes Task Started 2001...

  20. Development of High Energy Cathode for Li-ion Batteries

    Broader source: Energy.gov (indexed) [DOE]

    3 3 Objectives Develop cost-effective, high energy cathode based on lithium metal phosphate materials suitable for PHEV and EV applications. Investigate the...

  1. Design for APS 7 GeV storage ring vacuum system at ANL

    SciTech Connect (OSTI)

    Whrele, R.B.; Nielsen, R.W.

    1988-09-30T23:59:59.000Z

    The 7 GeV advanced Photon Source (APS) design includes a storage ring having a 1060-m circumference with the capability of accomodating 34 insertion devices (ID) and their associated photon beam lines. An additional 35 photon lines can be provided from bending magnets. The vacuum systems for the storage ring is designed to maintain a beam-on operating pressure of 1n Torr or less to achieve a positron beam lifetime of approximately 20 hours. The vacuum system and its current developmental status are described.

  2. Safety aspects of the US advanced LMR (liquid metal reactor) design

    SciTech Connect (OSTI)

    Pedersen, D.R.; Gyorey, G.L.; Marchaterre, J.F.; Rosen, S. (Argonne National Lab., IL (USA); General Electric Co., San Jose, CA (USA); Argonne National Lab., IL (USA); USDOE Assistant Secretary for Nuclear Energy, Washington, DC (USA))

    1989-01-01T23:59:59.000Z

    The cornerstones of the United States Advanced Liquid Metal Cooled Reactor (ALMR) program sponsored by the Department of Energy are: the plant design program at General Electric based on the PRISM (Power Reactor Innovative Small Module) concept, and the Integral Fast Reactor program (IFR) at Argonne National Laboratory (ANL). The goal of the US program is to produce a standard, commercial ALMR, including the associated fuel cycle. This paper discusses the US regulatory framework for design of an ALMR, safety aspects of the IFR program at ANL, the IFR fuel cycle and actinide recycle, and the ALMR plant design program at GE. 6 refs., 5 figs.

  3. Cathodic protection retrofit of an offshore pipeline

    SciTech Connect (OSTI)

    Winters, R.H.; Holk, A.C. [Tenneco Energy, Houston, TX (United States)

    1997-09-01T23:59:59.000Z

    Cathodic protection (CP) anodes and corrosion coating on two offshore pipelines were damaged during deep water installation. In-situ methods for deep-water inspection and repair of the pipelines` CP and coating systems were developed and used. High-pressure natural gas Pipeline. A design was 5.6 miles of 8.625 in. OD by 0.406 in. W.T. API SL, Grade X-42, seamless line pipe. Pipeline B design was 0.3 miles of similar specification pipe. Both pipelines were mill-coated with 14 mil of fusion-bonded epoxy (FBE) corrosion coating. Girth welds were field-coated with FBE.

  4. Cathode side hardware for carbonate fuel cells

    DOE Patents [OSTI]

    Xu, Gengfu (Danbury, CT); Yuh, Chao-Yi (New Milford, CT)

    2011-04-05T23:59:59.000Z

    Carbonate fuel cathode side hardware having a thin coating of a conductive ceramic formed from one of Perovskite AMeO.sub.3, wherein A is at least one of lanthanum and a combination of lanthanum and strontium and Me is one or more of transition metals, lithiated NiO (Li.sub.xNiO, where x is 0.1 to 1) and X-doped LiMeO.sub.2, wherein X is one of Mg, Ca, and Co.

  5. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01T23:59:59.000Z

    O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-Cathode Materials for Lithium-Ion Batteries. Adv. Funct.

  6. Develop high energy high power Li-ion battery cathode materials : a first principles computational study

    E-Print Network [OSTI]

    Xu, Bo; Xu, Bo

    2012-01-01T23:59:59.000Z

    of cathode materials for lithium batteries guided by first-facing rechargeable lithium batteries. Nature, 2001. 414(M.S. Whittingham, Lithium batteries and cathode materials.

  7. Self-contained hot-hollow cathode gun source assembly

    DOE Patents [OSTI]

    Zeren, Joseph D. (Boulder, CO)

    1986-01-01T23:59:59.000Z

    A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

  8. Self-contained hot-hollow cathode gun source assembly

    DOE Patents [OSTI]

    Zeren, J.D.

    1984-08-01T23:59:59.000Z

    A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

  9. ANL Technical Support Program for DOE Environmental Restoration and Waste Management; Annual report, October 1992--September 1993

    SciTech Connect (OSTI)

    Bates, J.K.; Bourcier, W.L.; Bradley, C.R. [and others

    1994-06-01T23:59:59.000Z

    This report is an overview of the progress during FY 1993 for the Technical Support Program that is part of the ANL Technology Support Activity for DOE Environmental Restoration and Waste Management (EM). The purpose is to evaluate, before hot start-up of the Defense Waste Processing Facility (DWPF) and the West Valley Demonstration Project (WVDP), factors that are anticipated to affect glass reaction in an unsaturated environment typical of what may be expected for the candidate Yucca Mountain repository site. Specific goals for the testing program include the following: reviewing and evaluating available data on parameters that will be important in establishing the long-term performance of glass in a repository environment; performing tests to further quantify the effects of important variables where there are deficiencies in the available data; and initiating long-term tests to determine glass performance under a range of conditions applicable to repository disposal.

  10. Battery with modular air cathode and anode cage

    DOE Patents [OSTI]

    Niksa, Marilyn J. (Painesville, OH); Pohto, Gerald R. (Mentor, OH); Lakatos, Leslie K. (Mentor, OH); Wheeler, Douglas J. (Cleveland Heights, OH); Niksa, Andrew J. (Painesville, OH); Schue, Thomas J. (Huntsburg, OH)

    1987-01-01T23:59:59.000Z

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  11. Battery with modular air cathode and anode cage

    DOE Patents [OSTI]

    Niksa, Marilyn J. (Painesville, OH); Pohto, Gerald R. (Mentor, OH); Lakatos, Leslie K. (Mentor, OH); Wheeler, Douglas J. (Cleveland Heights, OH); Niksa, Andrew J. (Painesville, OH); Schue, Thomas J. (Huntsburg, OH); Turk, Thomas R. (Mentor, OH)

    1988-01-01T23:59:59.000Z

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  12. Design and Evaluation of High Capacity Cathodes

    Broader source: Energy.gov (indexed) [DOE]

    interactions with DOE's User Facilities and personnel. - on going. * X-ray absorption studies on BATT materials at Argonne's Advanced Photon Source (APS) and HR-TEM at...

  13. High Performance Cathodes for Li-Air Batteries

    SciTech Connect (OSTI)

    Xing, Yangchuan

    2013-08-22T23:59:59.000Z

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  14. Electrorefining cell with parallel electrode/concentric cylinder cathode

    DOE Patents [OSTI]

    Gay, Eddie C. (Park Forest, IL); Miller, William E. (Naperville, IL); Laidler, James J. (Burr Ridge, IL)

    1997-01-01T23:59:59.000Z

    A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium deposition rate enhanced by increasing the electrode area and reducing the anode-cathode spacing. Collection efficiency is enhanced by trapping and recovery of uranium dendrites scrapped off of the cylindrical cathodes which may be greater in number than two.

  15. Electrorefining cell with parallel electrode/concentric cylinder cathode

    DOE Patents [OSTI]

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1997-07-22T23:59:59.000Z

    A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium deposition rate enhanced by increasing the electrode area and reducing the anode-cathode spacing. Collection efficiency is enhanced by trapping and recovery of uranium dendrites scrapped off of the cylindrical cathodes which may be greater in number than two. 12 figs.

  16. Mixed polyanion glass cathodes: Iron phosphate vanadate glasses

    SciTech Connect (OSTI)

    Kercher, Andrew K [ORNL; Ramey, Joanne Oxendine [ORNL; Carroll, Kyler J [Massachusetts Institute of Technology (MIT); Kiggans Jr, James O [ORNL; Veith, Gabriel M [ORNL; Meisner, Roberta [Oak Ridge National Laboratory (ORNL); Boatner, Lynn A [ORNL; Dudney, Nancy J [ORNL

    2014-01-01T23:59:59.000Z

    Mixed polyanion (MP) glasses have been investigated for use as cathodes in lithium ion batteries. MP glass cathodes are similar in composition to theoretically promising crystalline polyanionic (CP) cathodes (e.g., lithium cobalt phosphate, lithium manganese silicate), but with proper polyanion substitution, they can be designed to overcome the key shortcomings of CP cathodes, such as poor electrical conductivity and irreversible phase changes. Iron phosphate/vanadate glasses were chosen as a first demonstration of the MP glass concept. Polyanion substitution with vanadate was shown to improve the intercalation capacity of an iron phosphate glass from almost zero to full theoretical capacity. In addition, the MP glass cathodes also exhibited an unexpected second high-capacity electrochemical reaction. X-ray absorption near-edge structure (XANES) and x-ray diffraction (XRD) of cathodes from cells having different states of charge suggested that this second electrochemical reaction is a glass-state conversion reaction. With a first demonstration established, MP glass materials utilizing an intercalation and/or glass-state conversion reaction are promising candidates for future high-energy cathode research.

  17. Efficient bottom cathodes for organic light-emitting devices

    SciTech Connect (OSTI)

    Liu Jie; Duggal, Anil R.; Shiang, Joseph J.; Heller, Christian M. [General Electric Global Research, 1 Research Circle, Niskayuna, New York 12309 (United States)

    2004-08-02T23:59:59.000Z

    Bilayers of aluminum and an alkali fluoride are well-known top cathode contacts for organic light-emitting devices but have never been successfully applied as bottom contacts. We describe a bilayer bottom cathode contact for organic electronic devices based on reversing the well-known top cathode structure such that the aluminum, rather than the alkali fluoride, contacts the organic material. Electron-only devices were fabricated showing enhanced electron injection from this bottom contact. Kelvin probe, x-ray photoelectron spectroscopy experiments, and thermodynamic calculations suggest that the enhancement results from n doping of the organic material by dissociated alkali metals.

  18. PRELIMINARY IN-SITU X-RAY ABSORPTION FINE STRUCTURE EXAMINATION OF PT/C AND PTCO/C CATHODE CATALYSTS IN AN OPERATIONAL POLYMER ELECTROLYTE FUEL CELL

    SciTech Connect (OSTI)

    Phelan, B.T.; Myers, D.J.; Smith, M.C.

    2009-01-01T23:59:59.000Z

    State-of-the-art polymer electrolyte fuel cells require a conditioning period to reach optimized cell performance. There is insuffi cient understanding about the behavior of catalysts during this period, especially with regard to the changing environment of the cathode electrocatalyst, which is typically Pt nanoparticles supported on high surface area Vulcan XC-72 carbon (Pt/C). The purpose of this research was to record preliminary observations of the changing environment during the conditioning phase using X-Ray Absorption Fine Structure (XAFS) spectroscopy. XAFS was recorded for a Pt/C cathode at the Pt L3-edge and a PtCo/C cathode at both the Pt L3-edge and Co K-edge. Using precision machined graphite cell-blocks, both transmission and fl uorescence data were recorded at Sector 12-BM-B of Argonne National Laboratory’s Advanced Photon Source. The fl uorescence and transmission edge steps allow for a working description of the changing electrocatalyst environment, especially water concentration, at the anode and cathode as functions of operating parameters. These features are discussed in the context of how future analysis may correlate with potential, current and changing apparent thickness of the membrane electrode assembly through loss of catalyst materials (anode, cathode, carbon support). Such direct knowledge of the effect of the conditioning protocol on the electrocatalyst may lead to better catalyst design. In turn, this may lead to minimizing, or even eliminating, the conditioning period.

  19. Calcium and zinc high-temperature batteries using intercalation cathodes. Final report, 1 February-31 August 1985

    SciTech Connect (OSTI)

    Sammells, A.F.; Schumacher, B.

    1985-08-01T23:59:59.000Z

    This research effort was directed toward generating the scientific understanding necessary for evaluating the viability of Ca/sup 2 +/ and Zn/sup 2 +/ conducting B'-alumina solid electrolytes for a new type of advanced battery system using either calcium, calcium-silicon alloys, or zinc as the anode material with ionic mediation to the divalent conducting solid electrolyte being via the presence of an appropriate molten salt. The cathode used in these cells was a solid-state intercalation material consisting of immobile transition metal redox species incorporated in a B'-alumina type lattice. Excellent electrochemical reversibility was found for both calcium silicon alloys in binary calcium halide molten salts, and the proposed solid-state cathode materials.

  20. 6_advancing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 U . S . D E 25Heα,

  1. Characterization of New Cathode Materials using Synchrotron-based...

    Broader source: Energy.gov (indexed) [DOE]

    yang.pdf More Documents & Publications Characterization of New Cathode Materials using Synchrotron-based X-ray Techniques and the Studies of Li-Air Batteries In Situ...

  2. Development of Ultra-low Platinum Alloy Cathode Catalyst for...

    Energy Savers [EERE]

    Alloy Cathode Catalyst for PEM Fuel Cells These slides were presented at the 2010 New Fuel Cell Projects Meeting on September 28, 2010. 7uscpopov.pdf More Documents &...

  3. A few facts and fantasies about cathodic protection

    SciTech Connect (OSTI)

    Mateer, M. [Tenneco Energy, Houston, TX (United States)

    1997-03-01T23:59:59.000Z

    Those who have had the opportunity to work in the cathodic protection (CP) business know that there are sometimes wide differences of opinion about cathodic protection technology and its application. Because of the complexity of the subject, misunderstandings are commonplace, especially among people who are not very familiar with the subject. Because of this confusion, a number of fantasies still exist about cathodic protection. The author`s own discussions with other engineers have brought some of these fantasies to his attention, usually resulting in long discussions, sometimes ending in arguments. This article is an attempt to address some of these misunderstandings without delving too far into theory. Three commonplace, but erroneous, ideas were chosen for discussion: (1) Cathodic protection puts an electric charge on the pipe to protect it from corrosion; (2) The ``pipe to soil`` potential is used to evaluate the effectiveness of CP; and (3) To protect a long section of pipe, one needs a big rectifier.

  4. Development of Alternative and Durable High Performance Cathode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    which focuses on cathode supports for PEM fuel cells, was given by Yong Wang of PNNL at a February 2007 meeting on new fuel cell projects. newfcwangpnnl.pdf More...

  5. Mixed Polyanion Glasses for Lithium Ion Battery Cathodes | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed Polyanion Glasses for Lithium Ion Battery Cathodes May 06 2015 09:30 AM - 10:30 AM Andrew K. Kercher, Division Staff Materials Science and Technology Division Seminar...

  6. anode cathodic protection: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OLEDs have been fabricated using a new anode-cathode-layer (ACL) that connects light emitting diode (OLED) 1, much development has been made to improve this device for...

  7. Studies on High Voltage Lithium Rich MNC Composite Cathodes

    Broader source: Energy.gov (indexed) [DOE]

    the U.S. Department of Energy Improve the current state-of-the art Li-ion cathode materials to achieve overall USABC EV energy density of 300 WhL (long-term ) at C3 and...

  8. The Properties of Normal Conducting Cathodes in FZD Superconducting Gun

    E-Print Network [OSTI]

    Xiang, R; Buettig, H; Janssen, D; Justus, M; Lehnert, U; Michel, P; Murcek, P; Schamlott, A; Schneider, Ch; Schurig, R; Staufenbiel, F; Teichert, J

    2009-01-01T23:59:59.000Z

    The superconducting radio frequency photoinjector (SRF photoinjector) is one of the latest applications of SC technology in the accelerator field. Since superconducting cathodes with high QE are not available up to now, normal conducting cathode material is the main choice for the SRF photoinjectors. However, the compatibility between the cathode and the cavity is one of the challenges for this concept. The SRF gun with Cs2Te cathode has been successfully operated under the collaboration of BESSY, DESY, FZD, and MBI. In this paper, some experience gained in the gun commissioning will be concluded. The results of the properties of Cs2Te photocathode in the cavity will be presented, such as the Q.E., the life time, the dark current and the thermal emittance.

  9. Construction of a Li Ion Battery (LIB) Cathode Production Plant...

    Broader source: Energy.gov (indexed) [DOE]

    Construction of a Li Ion Battery (LIB) Cathode Production Plant in Elyria, Ohio Project ID ARRAVT008 Joe DiCarlo BASF Corporation May 11, 2011 "This presentation does not contain...

  10. Advanced electrorefiner design

    DOE Patents [OSTI]

    Miller, W.E.; Gay, E.C.; Tomczuk, Z.

    1996-07-02T23:59:59.000Z

    A combination anode and cathode is described for an electrorefiner which includes a hollow cathode and an anode positioned inside the hollow cathode such that a portion of the anode is near the cathode. A retaining member is positioned at the bottom of the cathode. Mechanism is included for providing relative movement between the anode and the cathode during deposition of metal on the inside surface of the cathode during operation of the electrorefiner to refine spent nuclear fuel. A method is also disclosed which includes electrical power means selectively connectable to the anode and the hollow cathode for providing electrical power to the cell components, electrically transferring uranium values and plutonium values from the anode to the electrolyte, and electrolytically depositing substantially pure uranium on the hollow cathode. Uranium and plutonium are deposited at a liquid cathode together after the PuCl{sub 3} to UCl{sub 3} ratio is greater than 2:1. Slots in the hollow cathode provides close anode access for the liquid pool in the liquid cathode. 6 figs.

  11. Advanced electrorefiner design

    DOE Patents [OSTI]

    Miller, William E. (Naperville, IL); Gay, Eddie C. (Park Forest, IL); Tomczuk, Zygmunt (Lockport, IL)

    1996-01-01T23:59:59.000Z

    A combination anode and cathode for an electrorefiner which includes a hollow cathode and an anode positioned inside the hollow cathode such that a portion of the anode is near the cathode. A retaining member is positioned at the bottom of the cathode. Mechanism is included for providing relative movement between the anode and the cathode during deposition of metal on the inside surface of the cathode during operation of the electrorefiner to refine spent nuclear fuel. A method is also disclosed which includes electrical power means selectively connectable to the anode and the hollow cathode for providing electrical power to the cell components, electrically transferring uranium values and plutonium values from the anode to the electrolyte, and electrolytically depositing substantially pure uranium on the hollow cathode. Uranium and plutonium are deposited at a liquid cathode together after the PuCl.sub.3 to UCl.sub.3 ratio is greater than 2:1. Slots in the hollow cathode provides close anode access for the liquid pool in the liquid cathode.

  12. Preparation of redox polymer cathodes for thin film rechargeable batteries

    DOE Patents [OSTI]

    Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.

    1994-11-08T23:59:59.000Z

    The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

  13. HIGH-CURRENT COLD CATHODE EMPLOYING DIAMOND AND RELATED MATERIALS

    SciTech Connect (OSTI)

    Hirshfield, Jay L.

    2014-10-22T23:59:59.000Z

    The essence of this project was for diamond films to be deposited on cold cathodes to improve their emission properties. Films with varying morphology, composition, and size of the crystals were deposited and the emission properties of the cathodes that utilize such films were studied. The prototype cathodes fabricated by the methods developed during Phase I were tested and evaluated in an actual high-power RF device during Phase II. These high-power tests used the novel active RF pulse compression system and the X-band magnicon test facility at US Naval Research Laboratory. In earlier tests, plasma switches were employed, while tests under this project utilized electron-beam switching. The intense electron beams required in the switches were supplied from cold cathodes embodying diamond films with varying morphology, including uncoated molybdenum cathodes in the preliminary tests. Tests with uncoated molybdenum cathodes produced compressed X-band RF pulses with a peak power of 91 MW, and a maximum power gain of 16.5:1. Tests were also carried out with switches employing diamond coated cathodes. The pulse compressor was based on use of switches employing electron beam triggering to effect mode conversion. In experimental tests, the compressor produced 165 MW in a ~ 20 ns pulse at ~18× power gain and ~ 140 MW at ~ 16× power gain in a 16 ns pulse with a ~ 7 ns flat-top. In these tests, molybdenum blade cathodes with thin diamond coatings demonstrated good reproducible emission uniformity with a 100 kV, 100 ns high voltage pulse. The new compressor does not have the limitations of earlier types of active pulse compressors and can operate at significantly higher electric fields without breakdown.

  14. A one-dimensional model illustrating virtual-cathode formation in a novel coaxial virtual-cathode oscillator

    SciTech Connect (OSTI)

    Turner, Geoffrey R., E-mail: gturner@csir.co.za [Council for Scientific and Industrial Research, PO Box 395, Pretoria 0001 (South Africa)

    2014-09-15T23:59:59.000Z

    A one-dimensional electrostatic sheet model of a coaxial geometry Virtual Cathode Oscillator (VCO) is presented. The cathode is centrally located and connects to a peripherally located plate electrode to form a resonant cavity, and is thus considered to be a novel design. Charge is modelled as concentric sheets about the cathode whose absolute position and velocity are determined as a function of time by solving the relativistic equations of motion. The model predicts the formation of a virtual cathode between the grid and plate electrodes for the case of a space-charge limited current. Setting the electron reflexing frequency (as a function of the grid potential) comparable with the cavity resonant frequency is predicted to improve the efficiency of microwave emission.

  15. 2014 Advanced Grid Modeling Peer Review Presentations - Day Two...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Grid Optimization under Uncertainty: Formulations, Algorithms, and High-Performance Computing - Victor Zavala, ANL, Jianhui Wang, ANL Chance-constrained OPF and Unit...

  16. anl_mira.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prefetching - Bandwidth Indirect memory access - A(B(j)): A, B arrays, j ordered index - Prevalent in a wide variety of science and engineering applications - Difficult to...

  17. Sandia National Laboratories: ANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and atmospheric chemistry that is expected to benefit auto and engine manufacturers, oil and gas utilities, and other industries that employ combustion models. A paper...

  18. ANL-05/20

    Office of Scientific and Technical Information (OSTI)

    are also related to the effort of a Task Group of the International Union of Pure and Applied Chemistry (IUPAC Project 2003-024-1-100) The XML converter code was developed by Dr....

  19. anl_mira.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 IBM Corporation Evaluation - CG Iteration and Sparse Matrix The conjugate gradient method is frequently used to solve linear systems The CG method requires...

  20. ANL-678A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Non-NRTLModified NRTL Listed Electrical Equipment Approval Form For use at Argonne National Laboratory Equipment Location Unlisted equipment that is determined to be safe to...

  1. mcs.anl.gov

    E-Print Network [OSTI]

    2005-09-19T23:59:59.000Z

    Sep 19, 2005 ... MOOPs arise in engineering and economic applications with multiple ... We start by reviewing some basic concepts of MOOPs that will be used ...

  2. ANL/NDH-111

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR SEPARATION BY PRESSURE SWING ADSORPTIONNDH-111

  3. Inert Anode/Cathode Program: Fiscal Year 1986 annual report. [For Hall-Heroult cells

    SciTech Connect (OSTI)

    Brenden, B.B.; Davis, N.C.; Koski, O.H.; Marschman, S.C.; Pool, K.H.; Schilling, C.H.; Windisch, C.F.; Wrona, B.J.

    1987-06-01T23:59:59.000Z

    Purpose of the program is to develop long-lasting, energy-efficient anodes, cathodes, and ancillary equipment for Hall-Heroult cells used by the aluminum industry. The program is divided into four tasks: Inert Anode Development, Cathode Materials Evaluation, Cathode Bonding Development, and Sensor Development. To devise sensors to control the chemistry of Hall-Heroult cells using stable anodes and cathodes. This report highlights the major FY86 technical accomplishments, which are presented in the following sections: Management, Materials Development, Materials Evaluation, Thermodynamic Evaluation, Laboratory Cell Tests, Large-Scale Tests, Cathode Materials Evaluation, Cathode Bonding Development, and Sensor Development.

  4. Polymers For Advanced Lithium Batteries

    Broader source: Energy.gov (indexed) [DOE]

    Barriers: -(1) Energy density -(2) Safety -(3) Low cycle fife. * Partners: ANL, ALS (at LBNL) and NCEM (at LBNL) Objectives * A) Develop cost-effective method for creating...

  5. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Lei Yang; Ze Liu; Shizhone Wang; Jaewung Lee; Meilin Liu

    2008-04-30T23:59:59.000Z

    The main objective of this DOE project is to demonstrate that the performance and long-term stability of the state-of-the-art LSCF cathode can be enhanced by a catalytically active coating (e.g., LSM or SSC). We have successfully developed a methodology for reliably evaluating the intrinsic surface catalytic properties of cathode materials. One of the key components of the test cell is a dense LSCF film, which will function as the current collector for the electrode material under evaluation to eliminate the effect of ionic and electronic transport. Since it is dense, the effect of geometry would be eliminated as well. From the dependence of the electrode polarization resistance on the thickness of a dense LSCF electrode and on partial pressure of oxygen, we have confirmed that the surface catalytic activity of LSCF limits the performances of LSCF-based cathodes. Further, we have demonstrated, using test cells of different configurations, that the performance of LSCF-based electrodes can be significantly enhanced by infiltration of a thin film of LSM or SSC. In addition, the stability of LSCF-based cathodes was also improved by infiltration of LSM or SSC. While the concept feasibility of the electrode architecture is demonstrated, many details are yet to be determined. For example, it is not clear how the surface morphology, composition, and thickness of the coatings change under operating conditions over time, how these changes influence the electrochemical behavior of the cathodes, and how to control the microscopic details of the coatings in order to optimize the performance. The selection of the catalytic materials as well as the detailed microstructures of the porous LSCF and the catalyst layer may critically impact the performance of the proposed cathodes. Further, other fundamental questions still remain; it is not clear why the degradation rates of LSCF cathodes are relatively high, why a LSM coating improves the stability of LSCF cathodes, which catalysts would be most effective for LSCF, and how to achieve further enhancement of the performance and stability of SOFC cathodes.

  6. Cathodic protection of carbon steel in simulated geothermal environments

    SciTech Connect (OSTI)

    Bandy, R.; van Rooyen, D.

    1982-10-08T23:59:59.000Z

    The applicability of cathodic protection to mitigate corrosion of carbon steel in two different environments containing H{sub 2}S has been investigated using impressed current and sacrificial anode techniques. Results of impressed current tests conducted under potential control shows that the weight loss can be reduced significantly by shifting the potential of the metal 60 to 80 mV cathodic to the open circuit potential. The relationship between the applied current and the potential shift shows that the current requirement does not necessarily increase with the voltage shift, thus implying that the cost of cathodic protection may not increase in proportion to the protection achieved. The feasibility of using zinc as a sacrificial anode in the environment of interest has also been studied.

  7. Process system and method for fabricating submicron field emission cathodes

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Hayes, Jeffrey P. (Ripon, CA)

    1998-01-01T23:59:59.000Z

    A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape.

  8. Carbonaceous cathode with enhanced wettability for aluminum production

    DOE Patents [OSTI]

    Keller, Rudolf; Gatty, David G.; Barca, Brian J.

    2003-09-09T23:59:59.000Z

    A method of preparing carbonaceous blocks or bodies for use in a cathode in an electrolytic cell for producing aluminum wherein the cell contains an electrolyte and has molten aluminum contacting the cathode, the cathode having improved wettability with molten aluminum. The method comprises the steps of providing a carbonaceous block and a boron oxide containing melt. The carbonaceous block is immersed in the melt and pressure is applied to the melt to impregnate the melt into pores in the block. Thereafter, the carbonaceous block is withdrawn from the melt, the block having boron oxide containing melt intruded into pores therein, the boron oxide capable of reacting with a source of titanium or zirconium or like metal to form titanium or zirconium diboride during heatup or operation of said cell.

  9. Pulsed hollow-cathode ion lasers: pumping and lasing parameters

    SciTech Connect (OSTI)

    Zinchenko, S P; Ivanov, I G

    2012-06-30T23:59:59.000Z

    Optimal discharge conditions have been experimentally found for ion lasers excited in the hollow-cathode discharge plasma by microsecond current pulses by pumping working atoms in secondkind collisions with ions and metastable buffer-gas atoms. Measurements of the output power of krypton ion and zinc-, cadmium-, mercury-, thallium-, copper-, and gallium-vapour lasers in tubes with cathodes of different diameters showed that the pulse power reaches several tens of watts, and the average power obtained with cathodes 2 cm in diameter and a length of 40 cm or more approaches 1 W. Lasing in most media is observed simultaneously at several lines (the multi-wavelength regime). Lasing on a three-component (He - Kr - Hg) mixture is realised in the multi-wavelength regime at blue, red, and IR lines.

  10. A MULTI-LENGTH SCALE APPROACH TO CORRELATING SOLID OXIDE FUEL CELL POROUS CATHODE MICROSTRUCTURE TO ELECTROCHEMICAL PERFORMANCE

    E-Print Network [OSTI]

    Florida, University of

    1 A MULTI-LENGTH SCALE APPROACH TO CORRELATING SOLID OXIDE FUEL CELL POROUS CATHODE MICROSTRUCTURE.....................................................................................................18 2.2 Mixed Conductor SOFC Cathode

  11. Performance and Stability of Barium Strontium Cobaltite Composite Cathodes for SOFC

    E-Print Network [OSTI]

    cathode materials than LSM. Studies of the (La,Sr)(Co,Fe)O3 (LSCF) have been one of the most popular topics in the cathode research toward to intermediate temperature operation [8-14]. LSCF is a Mixed

  12. Preparation and electrochemical investigation of Li2CoPO4F cathode...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electrochemical investigation of Li2CoPO4F cathode material forlithium-ion batteries. Preparation and electrochemical investigation of Li2CoPO4F cathode material forlithium-ion...

  13. The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells

    E-Print Network [OSTI]

    achieve performance similar to carbon cathodes containing a platinum catalyst in MECs. SS mesh cathodes voltammetry at low bubble coverages (low current densities) was also consistent with performance on this basis

  14. Template Free Synthesis of LiV3O8 Nanorods as a Cathode Material...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Synthesis of LiV3O8 Nanorods as a Cathode Material for High-Rate Secondary Lithium Batteries . Template Free Synthesis of LiV3O8 Nanorods as a Cathode Material for...

  15. QE data for Pb/Nb deposited photo cathode samples

    E-Print Network [OSTI]

    Sekutowicz, J

    2010-01-01T23:59:59.000Z

    This report outlines progress in the development of photo-cathodes for a hybrid lead/niobium (Pb/Nb) superconducting SRF electron injector. We have coated eight Nb samples with lead to study and determine deposition conditions leading to high quality emitting area. The results show that the oxide layer significantly influences the quantum efficiency (QE) of all measured cathodes. In addition, we learned that although the laser cleaning enhanced the QE substantially, the film morphology was strongly modified. That observation convinced us to make the coatings thicker and therefore more robust.

  16. Cathode preparation method for molten carbonate fuel cell

    DOE Patents [OSTI]

    Smith, James L. (Lemont, IL); Sim, James W. (Evergreen Park, IL); Kucera, Eugenia H. (Downers Grove, IL)

    1988-01-01T23:59:59.000Z

    A method of preparing a porous cathode structure for use in a molten carbonate fuel cell begins by providing a porous integral plaque of sintered nickel oxide particles. The nickel oxide plaque can be obtained by oxidizing a sintered plaque of nickel metal or by compacting and sintering finely divided nickel oxide particles to the desired pore structure. The porous sintered nickel oxide plaque is contacted with a lithium salt for a sufficient time to lithiate the nickel oxide structure and thus enhance its electronic conductivity. The lithiation can be carried out either within an operating fuel cell or prior to assembling the plaque as a cathode within the fuel cell.

  17. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01T23:59:59.000Z

    Metal Oxides Cathodes for Lithium-ion Batteries Kinson C.storage using rechargeable lithium-ion batteries has become

  18. Studies of Local Degradation Phenomena in Composite Cathodes for Lithium-Ion Batteries

    E-Print Network [OSTI]

    Kerlau, M.; Marcinek, M.; Srinivasan, V.; Kostecki, R.M.

    2008-01-01T23:59:59.000Z

    Composite Cathodes for Li-ion Batteries Marie Kerlau, Marekfrom commercial Li-ion batteries and mode cells which

  19. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01T23:59:59.000Z

    Cathodes for Lithium-ion Batteries Kinson C. Kam and Marcarechargeable lithium-ion batteries has become an integral

  20. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01T23:59:59.000Z

    Oxides Cathodes for Lithium-ion Batteries Kinson C. Kam andusing rechargeable lithium-ion batteries has become an

  1. The evolution of ion charge states in cathodic vacuum arc plasmas: a review

    E-Print Network [OSTI]

    Anders, Andre

    2013-01-01T23:59:59.000Z

    false-color streak camera images showing spectrally integrated light intensity from emission sites on a titanium cathode in vacuum.

  2. Research and Development of a New Field Enhanced Low Temperature Thermionic Cathode that Enables Fluorescent Dimming and Loan Shedding without Auxiliary Cathode Heating

    SciTech Connect (OSTI)

    Feng Jin

    2009-01-07T23:59:59.000Z

    This is the final report for project entitled 'Research and development of a new field enhanced low temperature thermionic cathode that enables fluorescent dimming and load shedding without auxiliary cathode heating', under Agreement Number: DE-FC26-04NT-42329. Under this project, a highly efficient CNT based thermionic cathode was demonstrated. This cathode is capable of emitting electron at a current density two order of magnitude stronger then a typical fluorescent cathode at same temperatures, or capable of emitting at same current density but at temperature about 300 C lower than that of a fluorescent cathode. Detailed fabrication techniques were developed including CVD growth of CNTs and sputter deposition of oxide thin films on CNTs. These are mature technologies that have been widely used in industry for large scale materials processing and device fabrications, thus, with further development work, the techniques developed in this project can be scaled-up in manufacturing environment. The prototype cathodes developed in this project were tested in lighting plasma discharge environment. In many cases, they not only lit and sustain the plasma, but also out perform the fluorescent cathodes in key parameters such like cathode fall voltages. More work will be needed to further evaluate more detailed and longer term performance of the prototype cathode in lighting plasma.

  3. RF Plasma Cathode-Neutralizer for Space Applications IEPC-2007-266

    E-Print Network [OSTI]

    is closed mainly by ion current to the cathode chamber surface. In contrast to thermionic plasma cathodes stainless steel chamber 75 mm ID and 100 mm length having two openings on the top and the bottom, the starting filament cathode and Langmuir probes were fixed at the top part of the chamber. The 30th

  4. Increased performance of single-chamber microbial fuel cells using an improved cathode structure

    E-Print Network [OSTI]

    Increased performance of single-chamber microbial fuel cells using an improved cathode structure Maximum power densities by air-driven microbial fuel cells (MFCs) are considerably influenced by cathode reserved. Keywords: Microbial fuel cell; Air cathode; Diffusion layer; PTFE coating; Coulombic efficiency 1

  5. Neutronics, steady-state, and transient analyses for the Poland MARIA reactor for irradiation testing of LEU lead test fuel assemblies from CERCA : ANL independent verification results.

    SciTech Connect (OSTI)

    Garner, P. L.; Hanan, N. A. (Nuclear Engineering Division)

    2011-06-07T23:59:59.000Z

    The MARIA reactor at the Institute of Atomic Energy (IAE) in Swierk (30 km SE of Warsaw) in the Republic of Poland is considering conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel assemblies (FA). The FA design in MARIA is rather unique; a suitable LEU FA has never been designed or tested. IAE has contracted with CERCA (the fuel supply portion of AREVA in France) to supply 2 lead test assemblies (LTA). The LTAs will be irradiated in MARIA to burnup level of at least 40% for both LTAs and to 60% for one LTA. IAE may decide to purchase additional LEU FAs for a full core conversion after the test irradiation. The Reactor Safety Committee within IAE and the National Atomic Energy Agency in Poland (PAA) must approve the LTA irradiation process. The approval will be based, in part, on IAE submitting revisions to portions of the Safety Analysis Report (SAR) which are affected by the insertion of the LTAs. (A similar process will be required for the full core conversion to LEU fuel.) The analysis required was established during working meetings between Argonne National Laboratory (ANL) and IAE staff during August 2006, subsequent email correspondence, and subsequent staff visits. The analysis needs to consider the current high-enriched uranium (HEU) core and 4 core configurations containing 1 and 2 LEU LTAs in various core positions. Calculations have been performed at ANL in support of the LTA irradiation. These calculations are summarized in this report and include criticality, burn-up, neutronics parameters, steady-state thermal hydraulics, and postulated transients. These calculations have been performed at the request of the IAE staff, who are performing similar calculations to be used in their SAR amendment submittal to the PAA. The ANL analysis has been performed independently from that being performed by IAE and should only be used as one step in the verification process.

  6. Engineering analyses of large precision cathode strip chambers for GEM

    SciTech Connect (OSTI)

    Horvath, J.A.; Belser, F.C.; Pratuch, S.M.; Wuest, C.R. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); Mitselmakher, G. [Superconducting Super Collider Lab., Dallas, TX (United States)] [Superconducting Super Collider Lab., Dallas, TX (United States); Gordeev, A. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation)] [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Johnson, C.V. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); [Superconducting Super Collider Lab., Dallas, TX (United States); Polychronakos, V.A. [Brookhaven National Lab., Upton, NY (United States)] [Brookhaven National Lab., Upton, NY (United States); Golutvin, I.A. [Joint Institute for Nuclear Research, Dubna (Russian Federation)] [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    1993-10-21T23:59:59.000Z

    Structural analyses of large precision cathode strip chambers performed up to the date of this publication are documented. Mechanical property data for typical chamber materials are included. This information, originally intended to be an appendix to the {open_quotes}CSC Structural Design Bible,{close_quotes} is presented as a guide for future designers of large chambers.

  7. Supporting Information Enhanced Activated Carbon Cathode Performance for Microbial Fuel

    E-Print Network [OSTI]

    S1 Supporting Information Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black Xiaoyuan Zhang 1 , Xue Xia 2 , Ivan Ivanov 1 , Xia Huang 2 , Bruce E. Logan *1 1, School of Environment, Tsinghua University, Beijing 100084, P.R.China *Corresponding Author: Phone: (1

  8. Individually addressable cathodes with integrated focusing stack or detectors

    DOE Patents [OSTI]

    Thomas, Clarence E.; Baylor, Larry R.; Voelkl, Edgar; Simpson, Michael L.; Paulus, Michael J.; Lowndes, Douglas; Whealton, John; Whitson, John C.; Wilgen, John B.

    2005-07-12T23:59:59.000Z

    Systems and method are described for addressable field emission array (AFEA) chips. A plurality of individually addressable cathodes are integrated with an electrostatic focusing stack and/or a plurality of detectors on the addressable field emission array. The systems and methods provide advantages including the avoidance of space-charge blow-up.

  9. Operational test report -- Project W-320 cathodic protection systems

    SciTech Connect (OSTI)

    Bowman, T.J.

    1998-06-16T23:59:59.000Z

    Washington Administrative Code (WAC) 173-303-640 specifies that corrosion protection must be designed into tank systems that treat or store dangerous wastes. Project W-320, Waste Retrieval Sluicing System (WRSS), utilizes underground encased waste transfer piping between tanks 241-C-106 and 241-AY-102. Corrosion protection is afforded to the encasements of the WRSS waste transfer piping through the application of earthen ionic currents onto the surface of the piping encasements. Cathodic protection is used in conjunction with the protective coatings that are applied upon the WRSS encasement piping. WRSS installed two new two rectifier systems (46 and 47) and modified one rectifier system (31). WAC 173-303-640 specifies that the proper operation of cathodic protection systems must be confirmed within six months after initial installation. The WRSS cathodic protection systems were energized to begin continuous operation on 5/5/98. Sixteen days after the initial steady-state start-up of the WRSS rectifier systems, the operational testing was accomplished with procedure OTP-320-006 Rev/Mod A-0. This operational test report documents the OTP-320-006 results and documents the results of configuration testing of integrated piping and rectifier systems associated with the W-320 cathodic protection systems.

  10. Utilization of Cathodic Hydrogen as Electron Donor for Chloroform

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    ), and sulfate-reducing bacteria (19) have demonstrated the ability to use cathodic hydrogen as an energy source hydrogen produced by anaerobic corrosion of the added Fe0. The use of selective microbial inhibitors showed that hydrogen can be introduced into aqueous solution involves the use of iron metal. When Fe0 is immersed

  11. ENVIRONMENTAL BIOTECHNOLOGY Brewery wastewater treatment using air-cathode

    E-Print Network [OSTI]

    . 1994; Parawira et al. 2005). Biological treatment processes are particularly effective for wastewaterENVIRONMENTAL BIOTECHNOLOGY Brewery wastewater treatment using air-cathode microbial fuel cells wastewater treatment using microbial fuel cells (MFCs) will require a better understanding of how operational

  12. Transient analysis for the tajoura critical facility with IRT-2M HEU fuel and IRT-4M leu fuel : ANL independent verification results.

    SciTech Connect (OSTI)

    Garner, P. L.; Hanan, N. A.

    2005-12-02T23:59:59.000Z

    Calculations have been performed for postulated transients in the Critical Facility at the Tajoura Nuclear Research Center (TNRC) in Libya. These calculations have been performed at the request of staff of the Renewable Energy and Water Desalinization Research Center (REWDRC) who are performing similar calculations. The transients considered were established during a working meeting between ANL and REWDRC staff on October 1-2, 2005 and subsequent email correspondence. Calculations were performed for the current high-enriched uranium (HEU) core and the proposed low-enriched uranium (LEU) core. These calculations have been performed independently from those being performed by REWDRC and serve as one step in the verification process.

  13. Methanol-tolerant cathode catalyst composite for direct methanol fuel cells

    DOE Patents [OSTI]

    Zhu, Yimin (Los Alamos, NM); Zelenay, Piotr (Los Alamos, NM)

    2006-09-05T23:59:59.000Z

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of Pt.sub.3Cr/C so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  14. Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells

    DOE Patents [OSTI]

    Zhu, Yimin (Los Alamos, NM); Zelenay, Piotr (Los Alamos, NM)

    2006-03-21T23:59:59.000Z

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  15. Anode-cathode power distribution systems and methods of using the same for electrochemical reduction

    DOE Patents [OSTI]

    Koehl, Eugene R; Barnes, Laurel A; Wiedmeyer, Stanley G; Williamson, Mark A; Willit, James L

    2014-01-28T23:59:59.000Z

    Power distribution systems are useable in electrolytic reduction systems and include several cathode and anode assembly electrical contacts that permit flexible modular assembly numbers and placement in standardized connection configurations. Electrical contacts may be arranged at any position where assembly contact is desired. Electrical power may be provided via power cables attached to seating assemblies of the electrical contacts. Cathode and anode assembly electrical contacts may provide electrical power at any desired levels. Pairs of anode and cathode assembly electrical contacts may provide equal and opposite electrical power; different cathode assembly electrical contacts may provide different levels of electrical power to a same or different modular cathode assembly. Electrical systems may be used with an electrolyte container into which the modular cathode and anode assemblies extend and are supported above, with the modular cathode and anode assemblies mechanically and electrically connecting to the respective contacts in power distribution systems.

  16. Modular cathode assemblies and methods of using the same for electrochemical reduction

    DOE Patents [OSTI]

    Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L

    2014-12-02T23:59:59.000Z

    Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.

  17. Inert anodes and advanced smelting of aluminum

    SciTech Connect (OSTI)

    ASME Technical Working Group on Inert Anode Technologies

    1999-07-01T23:59:59.000Z

    This report provides a broad assessment of open literature and patents that exist in the area of inert anodes and their related cathode systems and cell designs, technologies that are relevant for the advanced smelting of aluminum. The report also discusses the opportunities, barriers, and issued associated with these technologies from a technical, environmental, and economic viewpoint. It discusses the outlook for the direct retrofit of advanced reduction technologies to existing aluminum smelters, and compares retrofits to ''brown field'' usage and ''green field'' adoption of the technologies. A number of observations and recommendations are offered for consideration concerning further research and development efforts that may be directed toward these advanced technologies. The opportunities are discussed in the context of incremental progress that is being made in conventional Hall-Heroult cell systems.

  18. Using Multispectral Imaging to Measure Temperature Profiles and Emissivity of Large Thermionic Dispenser, Cathodes

    SciTech Connect (OSTI)

    D.F. Simmons; C.M. Fortgang; D.B. Holtkamp

    2001-09-01T23:59:59.000Z

    Thermionic dispenser cathodes are widely used in modern high-power microwave tubes. Use of these cathodes has led to significant improvement in performance. In recent years these cathodes have been used in electron linear accelerators (LINACs), particularly in induction LINACs, such as the Experimental Test Accelerator at Lawrence Livermore National Laboratory and the Relativistic Test Accelerator at Lawrence Berkeley National Laboratory. For induction LINACs, the thermionic dispenser cathode provides greater reproducibility, longer pulse lengths, and lower emittance beams than does a field emission cathode. Los Alamos National Laboratory is fabricating a dual-axis X-ray radiography machine called dual-axis radiograph hydrodynamic test (DARHT). The second axis of DARHT consists of a 2-kA, 20-MeV induction LINAC that uses a 3.2-MeV electron gun with a tungsten thermionic-dispenser cathode. Typically the DARHT cathode current density is 10 A/cm{sup 2} at 1050 C. Under these conditions current density is space-charge limited, which is desirable since current density is independent of temperature. At lower temperature (the temperature-limited regime) there are variations in the local current density due to a nonuniform temperature profile. To obtain the desired uniform current density associated with space-charge limited operation, the coolest area on the cathode must be at a sufficiently high temperature so that the emission is space-charge limited. Consequently, the rest of the cathode is emitting at the same space-charge-limited current density but is at a higher temperature than necessary. Because cathode lifetime is such a strong function of cathode temperature, there is a severe penalty for nonuniformity in the cathode temperature. For example, a temperature increase of 50 C means cathode lifetime will decrease by a factor of at least four. Therefore, we are motivated to measure the temperature profiles of our large-area cathodes.

  19. Apparatus and method for treating a cathode material provided on a thin-film substrate

    DOE Patents [OSTI]

    Hanson, Eric J. (Hudson, WI); Kooyer, Richard L. (Hastings, MN)

    2001-01-01T23:59:59.000Z

    An apparatus and method for treating a cathode material provided on a surface of a continuous thin-film substrate and a treated thin-film cathode having increased smoothness are disclosed. A web of untreated cathode material is moved between a feed mechanism and a take-up mechanism, and passed through a treatment station. The web of cathode material typically includes areas having surface defects, such as prominences extending from the surface of the cathode material. The surface of the cathode material is treated with an abrasive material to reduce the height of the prominences so as to increase an 85 degree gloss value of the cathode material surface by at least approximately 10. The web of cathode material may be subjected to a subsequent abrasive treatment at the same or other treatment station. Burnishing or lapping film is employed at a treatment station to process the cathode material. An abrasive roller may alternatively be used to process the web of cathode material. The apparatus and method of the present invention may also be employed to treat the surface of a lithium anode foil so as to cleanse and reduce the roughness of the anode foil surface.

  20. Apparatus and method for treating a cathode material provided on a thin-film substrate

    DOE Patents [OSTI]

    Hanson, Eric J. (Hudson, WI); Kooyer, Richard L. (Hastings, MN)

    2003-01-01T23:59:59.000Z

    An apparatus and method for treating a cathode material provided on a surface of a continuous thin-film substrate and a treated thin-film cathode having increased smoothness are disclosed. A web of untreated cathode material is moved between a feed mechanism and a take-up mechanism, and passed through a treatment station. The web of cathode material typically includes areas having surface defects, such as prominences extending from the surface of the cathode material. The surface of the cathode material is treated with an abrasive material to reduce the height of the prominences so as to increase an 85 degree gloss value of the cathode material surface by at least approximately 10. The web of cathode material may be subjected to a subsequent abrasive treatment at the same or other treatment station. Burnishing or lapping film is employed at a treatment station to process the cathode material. An abrasive roller may alternatively be used to process the web of cathode material. The apparatus and method of the present invention may also be employed to treat the surface of a lithium anode foil so as to cleanse and reduce the roughness of the anode foil surface.

  1. Heterogeneous electrocatalysis in porous cathodes of solid oxide fuel cells

    E-Print Network [OSTI]

    Fu, Y; Bertei, A; Qi, C; Mohanram, A; Pietras, J D; Bazant, M Z

    2014-01-01T23:59:59.000Z

    A general physics-based model is developed for heterogeneous electrocatalysis in porous electrodes and used to predict and interpret the impedance of solid oxide fuel cells. This model describes the coupled processes of oxygen gas dissociative adsorption and surface diffusion of the oxygen intermediate to the triple phase boundary, where charge transfer occurs. The model accurately captures the Gerischer-like frequency dependence and the oxygen partial pressure dependence of the impedance of symmetric cathode cells. Digital image analysis of the microstructure of the cathode functional layer in four different cells directly confirms the predicted connection between geometrical properties and the impedance response. As in classical catalysis, the electrocatalytic activity is controlled by an effective Thiele modulus, which is the ratio of the surface diffusion length (mean distance from an adsorption site to the triple phase boundary) to the surface boundary layer length (square root of surface diffusivity div...

  2. Negative ion source with hollow cathode discharge plasma

    DOE Patents [OSTI]

    Hershcovitch, A.; Prelec, K.

    1980-12-12T23:59:59.000Z

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  3. Fuel cell having dual electrode anode or cathode

    DOE Patents [OSTI]

    Findl, E.

    1984-04-10T23:59:59.000Z

    A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

  4. Depth Profile Analysis of New Materials in Hollow Cathode Discharge

    SciTech Connect (OSTI)

    Djulgerova, R.; Mihailov, V.; Gencheva, V.; Popova, L.; Panchev, B. [Institute of Solid State Physics - Bulgarian Academy of Sciences, 1784 Sofia (Bulgaria); Michaylova, V. [Technical University of Sofia, 1797 Sofia (Bulgaria); Szytula, A.; Gondek, L.; Dohnalik, T.M. [Smoluchowski Institute of Physics - Jagellonian University, 30-059 Cracow (Poland); Petrovic, Z.Lj. [Institute of Physics, 11080 Zemun, Belgrade (Serbia and Montenegro)

    2004-12-01T23:59:59.000Z

    In this review the possibility of hollow cathode discharge for depth profile analysis is demonstrated for several new materials: planar optical waveguides fabricated by Ag+-Na+ ion exchange process in glasses, SnO2 thin films for gas sensors modified by hexamethildisilazane after rapid thermal annealing, W- and WC- CVD layers deposited on Co-metalloceramics and WO3- CVD thin films deposited on glass. The results are compared with different standard techniques.

  5. Formation of metal oxides by cathodic arc deposition

    SciTech Connect (OSTI)

    Anders, S.; Anders, A.; Rubin, M.; Wang, Z.; Raoux, S.; Kong, F.; Brown, I.G.

    1995-03-01T23:59:59.000Z

    Metal oxide thin films are of interest for a number of applications. Cathodic arc deposition, an established, industrially applied technique for formation of nitrides (e.g. TiN), can also be used for metal oxide thin film formation. A cathodic arc plasma source with desired cathode material is operated in an oxygen atmosphere, and metal oxides of various stoichiometric composition can be formed on different substrates. We report here on a series of experiments on metal oxide formation by cathodic arc deposition for different applications. Black copper oxide has been deposited on ALS components to increase the radiative heat transfer between the parts. Various metal oxides such as tungsten oxide, niobium oxide, nickel oxide and vanadium oxide have been deposited on ITO glass to form electrochromic films for window applications. Tantalum oxide films are of interest for replacing polymer electrolytes. Optical waveguide structures can be formed by refractive index variation using oxide multilayers. We have synthesized multilayers of Al{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/AI{sub 2}O{sub 3}/Si as possible basic structures for passive optoelectronic integrated circuits, and Al{sub 2-x}Er{sub x}O{sub 3} thin films with a variable Er concentration which is a potential component layer for the production of active optoelectronic integrated devices such as amplifiers or lasers at a wavelength of 1.53 {mu}m. Aluminum and chromium oxide films have been deposited on a number of substrates to impart improved corrosion resistance at high temperature. Titanium sub-oxides which are electrically conductive and corrosion resistant and stable in a number of aggressive environments have been deposited on various substrates. These sub-oxides are of great interest for use in electrochemical cells.

  6. Process for Low Cost Domestic Production of LIB Cathode Materials

    SciTech Connect (OSTI)

    Thurston, Anthony

    2012-10-31T23:59:59.000Z

    The objective of the research was to determine the best low cost method for the large scale production of the Nickel-Cobalt-Manganese (NCM) layered cathode materials. The research and development focused on scaling up the licensed technology from Argonne National Laboratory in BASF’s battery material pilot plant in Beachwood Ohio. Since BASF did not have experience with the large scale production of the NCM cathode materials there was a significant amount of development that was needed to support BASF’s already existing research program. During the three year period BASF was able to develop and validate production processes for the NCM 111, 523 and 424 materials as well as begin development of the High Energy NCM. BASF also used this time period to provide free cathode material samples to numerous manufactures, OEM’s and research companies in order to validate the ma-terials. The success of the project can be demonstrated by the construction of the production plant in Elyria Ohio and the successful operation of that facility. The benefit of the project to the public will begin to be apparent as soon as material from the production plant is being used in electric vehicles.

  7. A knife-edge array field emission cathode

    SciTech Connect (OSTI)

    Lee, B.

    1994-08-01T23:59:59.000Z

    many cathode applications require a new type of cathode that is able to produce short pulsed electron beams at high emission current. Gated field emitter arrays of micrometer size are recognized as candidates to meet this need and have become the research focus of vacuum microelectronics. Existing fabrication methods produce emitters that are limited either in frequency response or in current emission. One reason is that the structure of these emitters are not sufficiently optimized. In this study, the author investigated the factors that affect the performance of field emitters. An optimum emitter structure, the knife-edge field emitter array, was developed from the analysis. Large field enhancement factor, large effective emission area, and small emitter capacitance are the advantages of the structure. The author next explored various options of fabricating the knife-edge emitter structure. He proposed a unique thin film process procedure and developed the fabrication techniques to build the emitters on (110) silicon wafers. Data from the initial cathode tests showed very low onset voltages and Fowler-Nordheim type emission. Emission simulation based on the fabricated emitter structure indicated that the knife-edge emitter arrays have the potential to produce high performance in modulation frequency and current emission. Several fabrication issues that await further development are discussed and possible solutions are suggested.

  8. Olivine Composite Cathode Materials for Improved Lithium Ion Battery Performance

    SciTech Connect (OSTI)

    Ward, R.M.; Vaughey, J.T.

    2006-01-01T23:59:59.000Z

    Composite cathode materials in lithium ion batteries have become the subject of a great amount of research recently as cost and safety issues related to LiCoO2 and other layered structures have been discovered. Alternatives to these layered materials include materials with the spinel and olivine structures, but these present different problems, e.g. spinels have low capacities and cycle poorly at elevated temperatures, and olivines exhibit extremely low intrinsic conductivity. Previous work has shown that composite structures containing spinel and layered materials have shown improved electrochemical properties. These types of composite structures have been studied in order to evaluate their performance and safety characteristics necessary for use in lithium ion batteries in portable electronic devices, particularly hybrid-electric vehicles. In this study, we extended that work to layered-olivine and spinel-olivine composites. These materials were synthesized from precursor salts using three methods: direct reaction, ball-milling, and a coreshell synthesis method. X-ray diffraction spectra and electrochemical cycling data show that the core-shell method was the most successful in forming the desired products. The electrochemical performance of the cells containing the composite cathodes varied dramatically, but the low overpotential and reasonable capacities of the spinel-olivine composites make them a promising class for the next generation of lithium ion battery cathodes.

  9. Novel Composite Materials for SOFC Cathode-Interconnect Contact

    SciTech Connect (OSTI)

    J. H. Zhu

    2009-07-31T23:59:59.000Z

    This report summarized the research efforts and major conclusions of our University Coal Research Project, which focused on developing a new class of electrically-conductive, Cr-blocking, damage-tolerant Ag-perovksite composite materials for the cathode-interconnect contact of intermediate-temperature solid oxide fuel cell (SOFC) stacks. The Ag evaporation rate increased linearly with air flow rate initially and became constant for the air flow rate {ge} {approx} 1.0 cm {center_dot} s{sup -1}. An activation energy of 280 KJ.mol{sup -1} was obtained for Ag evaporation in both air and Ar+5%H{sub 2}+3%H{sub 2}O. The exposure environment had no measurable influence on the Ag evaporation rate as well as its dependence on the gas flow rate, while different surface morphological features were developed after thermal exposure in the oxidizing and reducing environments. Pure Ag is too volatile at the SOFC operating temperature and its evaporation rate needs to be reduced to facilitate its application as the cathode-interconnect contact. Based on extensive evaporation testing, it was found that none of the alloying additions reduced the evaporation rate of Ag over the long-term exposure, except the noble metals Au, Pt, and Pd; however, these noble elements are too expensive to justify their practical use in contact materials. Furthermore, the addition of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM) into Ag to form a composite material also did not significantly modify the Ag evaporation rate. The Ag-perovskite composites with the perovskite being either (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.8}Fe{sub 0.2})O{sub 3} (LSCF) or LSM were systematically evaluated as the contact material between the ferritic interconnect alloy Crofer 22 APU and the LSM cathode. The area specific resistances (ASRs) of the test specimens were shown to be highly dependent on the volume percentage and the type of the perovskite present in the composite contact material as well as the amount of thermal cycling that the specimens were subjected to during testing. The Ag-LSCF composite contact materials proved more effective in trapping Cr within the contact material and preventing Cr migration into the cathode than the Ag-LSM composites. Ag-perovskite composite contact materials are promising candidates for use in intermediate-temperature SOFC stacks with ferritic stainless steel interconnects due to their ability to maintain acceptably low ASRs while reducing Cr migration into the cathode material.

  10. Characterization of Atomic and Electronic Structures of Electrochemically Active SOFC Cathode Surfaces

    SciTech Connect (OSTI)

    Kevin Blinn; Yongman Choi; Meilin Liu

    2009-08-11T23:59:59.000Z

    The objective of this project is to gain a fundamental understanding of the oxygen-reduction mechanism on mixed conducting cathode materials by means of quantum-chemical calculations coupled with direct experimental measurements, such as vibrational spectroscopy. We have made progress in the elucidation of the mechanisms of oxygen reduction of perovkite-type cathode materials for SOFCs using these quantum chemical calculations. We established computational framework for predicting properties such as oxygen diffusivity and reaction rate constants for adsorption, incorporation, and TPB reactions, and formulated predictions for LSM- and LSC-based cathode materials. We have also further developed Raman spectroscopy as well as SERS as a characterization tool for SOFC cathode materials. Raman spectroscopy was used to detect chemical changes in the cathode from operation conditions, and SERS was used to probe for pertinent adsorbed species in oxygen reduction. However, much work on the subject of unraveling oxygen reduction for SOFC cathodes remains to be done.

  11. Large area directly heated lanthanum hexaboride cathode structure having predetermined emission profile

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Gordon, Keith C. (Berkeley, CA); Kippenham, Dean O. (Castro Valley, CA); Purgalis, Peter (San Francisco, CA); Moussa, David (San Francisco, CA); Williams, Malcom D. (Danville, CA); Wilde, Stephen B. (Pleasant Hill, CA); West, Mark W. (Albany, CA)

    1989-01-01T23:59:59.000Z

    A large area directly heated lanthanum hexaboride (LaB.sub.6) cathode system (10) is disclosed. The system comprises a LaB.sub.6 cathode element (11) generally circular in shape about a central axis. The cathode element (11) has a head (21) with an upper substantially planar emission surface (23), and a lower downwardly and an intermediate body portion (26) which diminishes in cross-section from the head (21) towards the base (22) of the cathode element (11). A central rod (14) is connected to the base (22) of the cathode element (11) and extends along the central axis. Plural upstanding spring fingers (37) are urged against an outer peripheral contact surface (24) of the head end (21) to provide a mechanical and electrical connection to the cathode element (11).

  12. Three-Dimensional Reconstruction of Porous LSCF Cathodes D. Gostovic,*,z

    E-Print Network [OSTI]

    Florida, University of

    Three-Dimensional Reconstruction of Porous LSCF Cathodes D. Gostovic,*,z J. R. Smith,* D. P In this initial study the electrochemically active region of a La0.8Sr0.2Co0.2Fe0.8O3- LSCF cathode an actual three-dimensional 3D model of a La0.8Sr0.2Co0.2Fe0.8O3- LSCF cathode and its interface

  13. Composite Organic Radical - Inorganic Hybrid Cathode for Lithium-ion Batteries

    SciTech Connect (OSTI)

    Huang, Qian; Cosimbescu, Lelia; Koech, Phillip K.; Choi, Daiwon; Lemmon, John P.

    2013-07-01T23:59:59.000Z

    A new organic radical inorganic hybrid cathode comprised of PTMA/LiFePO4 composite system is developed and reported for the first time. The hybrid cathodes demonstrate high pulse power capability resulting in a significant improvement over the pure PTMA or LiFePO4 cathode which is very promising for transportation and other high pulse power applications that require long cycle life and lower cost.

  14. Methods and apparatuses for making cathodes for high-temperature, rechargeable batteries

    DOE Patents [OSTI]

    Meinhardt, Kerry D; Sprenkle, Vincent L; Coffey, Gregory W

    2014-05-20T23:59:59.000Z

    The approaches for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.

  15. arata-style palladium cathodes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Origins Spectrograph: photometry and Physics Websites Summary: Observations of Pt-Ne hollow cathode lamps similar to those used on the Cosmic Origins Spectrograph ABSTRACT We...

  16. Cathodic disbondment resistance with reactive ethylene terpolymer blends and composite coatings

    E-Print Network [OSTI]

    Love, Corey T.

    2008-01-01T23:59:59.000Z

    epoxide groups within epoxy resins have been utilized forfor covalent bonding with epoxy resins. A full review ofdelamination of an epoxy resin on cathodically polarized

  17. Effect of conductive additives in LiFePO4 cathode for lithium-ion batteries

    E-Print Network [OSTI]

    Shim, J.; Guerfi, A.; Zaghib, K.; Striebel, K.A.

    2003-01-01T23:59:59.000Z

    Effect of Conductive Additives in LiFePO 4 Cathode forcapacity on conductive additive content and specificthe amount of conductive additive increases. The addition of

  18. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01T23:59:59.000Z

    Layered Oxides for Lithium Batteries. Nano Lett. 13, 3857–O 2 Cathode Material in Lithium Ion Batteries. Adv. Energydecomposition in lithium ion batteries: first-principles

  19. Electrochemical kinetics of thin film vanadium pentoxide cathodes for lithium batteries

    E-Print Network [OSTI]

    Mui, Simon C., 1976-

    2005-01-01T23:59:59.000Z

    Electrochemical experiments were performed to investigate the processing-property-performance relations of thin film vanadium pentoxide cathodes used in lithium batteries. Variations in microstructures were achieved via ...

  20. Studies on High Capacity Cathodes for Advanced Lithium-ion Systems

    Broader source: Energy.gov (indexed) [DOE]

    S surface area) sphere 0.4547 cube 0.4082 tetrahedron 0.3725 fractal close to zero 11 Technical Accomplishment Analysis performed on 60 representative...

  1. Vehicle Technologies Office Merit Review 2014: Process Development and Scale-up of Advanced Cathode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about process development and scale...

  2. Vehicle Technologies Office Merit Review 2014: Design and Synthesis of Advanced High-Energy Cathode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkeley National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the...

  3. Vehicle Technologies Office Merit Review 2015: Design and Synthesis of Advanced High-Energy Cathode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkley National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

  4. Advanced Cathode Catalysts and Supports for PEM Fuel Cells | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 ofEmergencyAcrobatBetterby USEC,

  5. Process Development and Scale-up of Advanced Cathode Materials | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation:in the U.S. by 2030,PNNL-23227 Processof

  6. Electrocatalysis of anodic and cathodic oxygen-transfer reactions

    SciTech Connect (OSTI)

    Wels, B.R.

    1990-09-21T23:59:59.000Z

    The electrocatalysis of oxygen-transfer reactions is discussed in two parts. In Part I, the reduction of iodate (IO{sub 3}{sup {minus}}) is examined as an example of cathodic oxygen transfer. On oxide-covered Pt electrodes (PtO), a large cathodic current is observed in the presence of IO{sub 3}{sup {minus}} to coincide with the reduction of PtO. The total cathodic charge exceeds the amount required for reduction of PtO and IO{sub 3}{sup {minus}} to produce an adsorbed product. An electrocatalytic link between reduction of IO{sub 3}{sup {minus}} and reduction of PtO is indicated. In addition, on oxide-free Pt electrodes, the reduction of IO{sub 3}{sup {minus}} is determined to be sensitive to surface treatment. The electrocatalytic oxidation of CN{sup {minus}} is presented as an example of anodic oxygen transfer in Part II. The voltametric response of CN{sup {minus}} is virtually nonexistent at PbO{sub 2} electrodes. The response is significantly improved by doping PbO{sub 2} with Cu. Cyanide is also oxidized effectively at CuO-film electrodes. Copper is concluded to serve as an adsorption site for CN{sup {minus}}. It is proposed that an oxygen tunneling mechanism comparable to electron tunneling does not occur at the electrode-solution interface. The adsorption of CN{sup {minus}} is therefore considered to be a necessary prerequisite for oxygen transfer. 201 refs., 23 figs., 2 tabs.

  7. Miniature quadrupole mass spectrometer having a cold cathode ionization source

    DOE Patents [OSTI]

    Felter, Thomas E. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  8. Development of High Energy Cathode Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H IMaterials Development of High Energy Cathode

  9. Engineering of High Energy Cathode Material | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVACEnforcementEngaging Students in20High Energy Cathode

  10. Synthesis and Characterization of Cathode Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic SafetyGeothermal/Ground-Source HeatSweptCathode Materials Synthesis

  11. Flux and energy analysis of species in hollow cathode magnetron ionized physical vapor deposition of copper

    SciTech Connect (OSTI)

    Wu, L.; Ko, E.; Dulkin, A.; Park, K. J.; Fields, S.; Leeser, K. [Novellus Systems, Inc., 4000 North 1st St., San Jose, California 95134 (United States); Meng, L.; Ruzic, D. N. [Center for Plasma-Material Interactions, University of Illinois at Urbana-Champaign, 201 South Goodwin, Urbana, Illinois 61801 (United States)

    2010-12-15T23:59:59.000Z

    To meet the stringent requirements of interconnect metallization for sub-32 nm technologies, an unprecedented level of flux and energy control of film forming species has become necessary to further advance ionized physical vapor deposition technology. Such technology development mandates improvements in methods to quantify the metal ion fraction, the gas/metal ion ratio, and the associated ion energies in the total ion flux to the substrate. In this work, a novel method combining planar Langmuir probes, quartz crystal microbalance (QCM), and gridded energy analyzer (GEA) custom instrumentation is developed to estimate the plasma density and temperature as well as to measure the metal ion fraction and ion energy. The measurements were conducted in a Novellus Systems, Inc. Hollow Cathode Magnetron (HCM{sup TM}) physical vapor deposition source used for deposition of Cu seed layer for 65-130 nm technology nodes. The gridded energy analyzer was employed to measure ion flux and ion energy, which was compared to the collocated planar Langmuir probe data. The total ion-to-metal neutral ratio was determined by the QCM combined with GEA. The data collection technique and the corresponding analysis are discussed. The effect of concurrent resputtering during the deposition process on film thickness profile is also discussed.

  12. Effect of energetic electrons on near-wall sheath voltage in the cathode region of a cold cathode direct current discharge

    SciTech Connect (OSTI)

    Blessington, J. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States); Adams, S. F. [Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Demidov, V. I. [UES, Inc., 4401 Dayton-Xenia Road, Beavercreek, Ohio 45432 (United States); Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States); Williamson, J. M. [Innovative Scientific Solutions, Inc., 2766 Indian Ripple Road, Ohio 45440-3638 (United States)

    2009-10-15T23:59:59.000Z

    It is experimentally demonstrated that energetic electrons originating from the cathode or produced in volumetric processes in the cathode region of a cold cathode direct current discharge can create a large potential drop in the near-wall sheath. This voltage drop may be much greater than kT{sub e}/e (where k is the Boltzmann constant, T{sub e} is the electron temperature, and e is the electron charge). Due to the large near-wall sheath voltage, slow and moderately energetic electrons cannot reach the wall and move toward the anode. Application of additional potentials to the wall can change the amount of energetic electrons reaching the wall. This effect can be used for regulation of the near-cathode plasma and near-wall sheath properties and thus may be useful in technical applications.

  13. Intercalation-Induced Stress and Heat Generation within Single Lithium-Ion Battery Cathode Particles

    E-Print Network [OSTI]

    Sastry, Ann Marie

    Intercalation-Induced Stress and Heat Generation within Single Lithium-Ion Battery Cathode, as will be discussed later. Heat transfer analyses of lithium-ion batteries have stemmed from work on full cells.10-induced stress and heat generation inside Li-ion battery cathode LiMn2O4 particles under potentiodynamic control

  14. Heat and Mass Transfer Modeling of Dry Gases in the Cathode of PEM Fuel Cells

    E-Print Network [OSTI]

    Stockie, John

    Heat and Mass Transfer Modeling of Dry Gases in the Cathode of PEM Fuel Cells M.J. Kermani1 J and N2, through the cathode of a proton exchange membrane (PEM) fuel cell is studied numerically) an energy equation, written in a form that has enthalpy as the dependent variable. Keywords: PEM fuel cells

  15. Effect of A-site Non-stoichiometry on LSCF Cathodes

    SciTech Connect (OSTI)

    Templeton, Jared W.; Lu, Zigui; Stevenson, Jeffry W.; Hardy, John S.

    2011-09-01T23:59:59.000Z

    LSCF Cathodes were explored when effected with A-site non-stoichiometry. At 700-800 C, the operating temperatures of intermediate temperature (IT-) SOFCs have enabled the use of stainless steels in the SOFC framework and current collectors, allowing significant reductions in cost. However, the lower operating temperatures of IT-SOFC's also result in significant decreases in power densities of cells with LSM cathodes due to their high activation energies. LSCF is a mixed ionic electronic conducting perovskite that exhibits higher performance than LSM/YSZ composites and shows potential as a replacement cathode. This study investigates the effect of A-site stoichiometry on the performance of LSCF cathodes. Cell tests showed that A-site and Sr-deficient LSCF cathodes consistently outperformed stoichiometric LSCF cathodes, exhibiting up to 10% higher cell power densities. It was also observed that all stoichiometric, A-site, and Sr-deficient LSCF cathodes degraded over time at similar rates. Contributions of ohmic and electrode polarization losses to cell degradation rates were similar regardless of cathode composition.

  16. Author's personal copy Power generation using an activated carbon and metal mesh cathode in a

    E-Print Network [OSTI]

    Author's personal copy Power generation using an activated carbon and metal mesh cathode Engineering, Zhejiang University, Hangzhou 310027, PR China c Separation and Conversion Technology, VITO online 24 September 2009 Keywords: Microbial fuel cell Activated carbon Metal mesh Cathode a b s t r a c

  17. Doped LiFePO? cathodes for high power density lithium ion batteries

    E-Print Network [OSTI]

    Bloking, Jason T. (Jason Thompson), 1979-

    2003-01-01T23:59:59.000Z

    Olivine LiFePO4 has received much attention recently as a promising storage compound for cathodes in lithium ion batteries. It has an energy density similar to that of LiCoO 2, the current industry standard for cathode ...

  18. Effects of enhanced cathode electron emission on Hall thruster operationa... Y. Raitses,b

    E-Print Network [OSTI]

    /cm; and magnetic field 102 G. Currently proposed theories of HTs predict that the thruster discharge current 100­200 W cylindrical HTs CHTs with a hollow cathode10,11 and a hot filament cathode.12 was controlled by varying the temperature of the filament wire.12 The filament heating was provided

  19. Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells

    E-Print Network [OSTI]

    Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells Priscilla Available online 24 November 2009 Keywords: MEC Electrohydrogenesis Hydrogen production Cathode Metal Nickel using a nickel powder (0.5­1 mm) and their performance was compared to conventional electrodes

  20. On the mechanism of operation of a cathode spot cell in a vacuum arc

    SciTech Connect (OSTI)

    Mesyats, G. A.; Petrov, A. A. [P. N. Lebedev Physical Institute, RAS, 53 Leninsky Ave., Moscow 119991 (Russian Federation); Bochkarev, M. B. [Institute of Electrophysics, UB, RAS, 106 Amundsen St., Ekaterinburg 620016 (Russian Federation); Barengolts, S. A., E-mail: sb@nsc.gpi.ru [A. M. Prokhorov General Physics Institute, RAS, 38 Vavilov St., Moscow 119991 (Russian Federation)

    2014-05-05T23:59:59.000Z

    The erosive structures formed on a tungsten cathode as a result of the motion of the cathode spot of a vacuum arc over the cathode surface have been examined. It has been found that the average mass of a cathode microprotrusion having the shape of a solidified jet is approximately equal to the mass of ions removed from the cathode within the lifetime of a cathode spot cell carrying a current of several amperes. The time of formation of a new liquid-metal jet under the action of the reactive force of the plasma ejected by the cathode spot is about 10?ns, which is comparable to the lifetime of a cell. The growth rate of a liquid-metal jet is ?10{sup 4}?cm/s. The geometric shape and size of a solidified jet are such that a new explosive emission center (spot cell) can be initiated within several nanoseconds during the interaction of the jet with the dense cathode plasma. This is the underlying mechanism of the self-sustained operation of a vacuum arc.

  1. Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy

    E-Print Network [OSTI]

    Subramanian, Venkat

    Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy to study the performance of cathode materials in lithium-ion batteries. The methodology takes into account. Published September 26, 2008. Lithium-ion batteries are state-of-the-art power sources1 for por- table

  2. Two-phase ow and transport in the air cathode of proton exchange membrane fuel cells

    E-Print Network [OSTI]

    Two-phase ¯ow and transport in the air cathode of proton exchange membrane fuel cells Z.H. Wanga rights reserved. Keywords: Two-phase transport; PEM fuel cells; Analytical modeling; Numerical simulation excessive water, in parti- cular, for the air cathode of direct methanol PEM fuel cells. Modeling water

  3. Electrochemical characterization of cobalt-encapsulated nickel as cathodes for MCFC

    E-Print Network [OSTI]

    Popov, Branko N.

    Electrochemical characterization of cobalt-encapsulated nickel as cathodes for MCFC Anand an electroless deposition process. The electrochemical oxidation behavior of the Co-coated electrodes is similar when compared to bare nickel oxide electrodes in the presence of cathode gas. The solubility decreased

  4. Single-layer graphene cathodes for organic photovoltaics Marshall Cox,1,a

    E-Print Network [OSTI]

    Kim, Philip

    Single-layer graphene cathodes for organic photovoltaics Marshall Cox,1,a Alon Gorodetsky,2 Bumjung single-layer graphene is demonstrated as a cathode for organic photovoltaic devices. The measured properties indicate that graphene offers two potential advantages over conventional photovoltaic electrode

  5. Cathode for a hall-heroult type electrolytic cell for producing aluminum

    DOE Patents [OSTI]

    Brown, Craig W.

    2004-04-13T23:59:59.000Z

    A method of producing aluminum from alumina in an electrolytic cell including using a cathode comprised of a base material having low electrical conductivity and wettable with molten aluminum to form a reaction layer having a high electrical conductivity on said base layer and a cathode bar extending from said reaction layer through said base material to conduct electrical current from said reaction layer.

  6. Detector with a profile-based cathode and a two-coordinate pad-strip readout system

    E-Print Network [OSTI]

    N. A. Kuchinskiy; V. A. Baturitskii; N. P. Kravchuk; A. S. Korenchenko; N. V. Khomutov; V. S. Smirnov; V. A. Chekhovskii; S. A. Movchan; F. E. Zyazyulya

    2011-12-19T23:59:59.000Z

    A detector with a profile-based cathode and a pad-strip cathode readout system is experimentally investigated. Cathode pads arranged along each anode wire are diagonally interconnected and form strips that cross the detector at an angle with respect to the anode wire. Two coordinates from the cathodes and one from the anode wire allow identification of tracks in high multiplicity events with a single detector plane.

  7. Project Description In the search for superior batteries, the road to success is paved with advanced materials: better

    E-Print Network [OSTI]

    Sadoway, Donald Robert

    Project Description In the search for superior batteries, the road to success is paved with advanced materials: better cathodes, better anodes, better electrolytes. The universe of candidates is so vast and the cost of selection and testing them is so great that conventional approaches to materials

  8. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 28, NO. 3, JUNE 2000 841 CTLSS--An Advanced Electromagnetic Simulation

    E-Print Network [OSTI]

    Hassam, Adil

    , simulation-based design, vacuum electron devices. I. INTRODUCTION A. Simulation Codes for HPM HIGH-POWER microwave (HPM) research has focused on the development of microwave sources, output windows, and advanced cathodes. An overall goal of HPM research is Manuscript received October 15, 1999; revised March 13, 2000

  9. Methods for batch fabrication of cold cathode vacuum switch tubes

    DOE Patents [OSTI]

    Walker, Charles A. (Albuquerque, NM); Trowbridge, Frank R. (Albuquerque, NM)

    2011-05-10T23:59:59.000Z

    Methods are disclosed for batch fabrication of vacuum switch tubes that reduce manufacturing costs and improve tube to tube uniformity. The disclosed methods comprise creating a stacked assembly of layers containing a plurality of adjacently spaced switch tube sub-assemblies aligned and registered through common layers. The layers include trigger electrode layer, cathode layer including a metallic support/contact with graphite cathode inserts, trigger probe sub-assembly layer, ceramic (e.g. tube body) insulator layer, and metallic anode sub-assembly layer. Braze alloy layers are incorporated into the stacked assembly of layers, and can include active metal braze alloys or direct braze alloys, to eliminate costs associated with traditional metallization of the ceramic insulator layers. The entire stacked assembly is then heated to braze/join/bond the stack-up into a cohesive body, after which individual switch tubes are singulated by methods such as sawing. The inventive methods provide for simultaneously fabricating a plurality of devices as opposed to traditional methods that rely on skilled craftsman to essentially hand build individual devices.

  10. Cold-Cathodes for Sensors and Vacuum Microelectronics

    SciTech Connect (OSTI)

    Siegal, M.P.; Sullivan, J.P.; Tallant, D.R.; Simpson, R.L. [Sandia National Labs., Albuquerque, NM (United States); DiNardo, N.J.; Mercer, T.W. [Drexel Univ., Philadelphia, PA (United States). Dept. of Physics and Astronomy; Martinez-Miranda, L.J. [Univ. of Maryland, College Park, MD (United States). Dept. of Materials Science and Engineering

    1998-05-01T23:59:59.000Z

    The aim of this laboratory-directed research and development project was to study amorphous carbon (a-C) thin films for eventual cold-cathode electron emitter applications. The development of robust, cold-cathode emitters are likely to have significant implications for modern technology and possibly launch a new industry: vacuum micro-electronics (VME). The potential impact of VME on Sandia`s National Security missions, such as defense against military threats and economic challenges, is profound. VME enables new microsensors and intrinsically radiation-hard electronics compatible with MOSFET and IMEM technologies. Furthermore, VME is expected to result in a breakthrough technology for the development of high-visibility, low-power flat-panel displays. This work covers four important research areas. First, the authors studied the nature of the C-C bonding structures within these a-C thin films. Second, they determined the changes in the film structures resulting from thermal annealing to simulate the effects of device processing on a-C properties. Third, they performed detailed electrical transport measurements as a function of annealing temperature to correlate changes in transport properties with structural changes and to propose a model for transport in these a-C materials with implications on the nature of electron emission. Finally, they used scanning atom probes to determine important aspects on the nature of emission in a-C.

  11. Self-pulsing of hollow cathode discharge in various gases

    SciTech Connect (OSTI)

    Qin, Y.; He, F., E-mail: hefeng@bit.edu.cn; Jiang, X. X.; Ouyang, J. T., E-mail: jtouyang@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Xie, K. [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2014-07-15T23:59:59.000Z

    In this paper, we investigate the self-pulsing phenomenon of cavity discharge in a cylindrical hollow cathode in various gases including argon, helium, nitrogen, oxygen, and air. The current-voltage characteristics of the cavity discharge, the waveforms of the self-pulsing current and voltage as well as the repetition frequency were measured. The results show that the pulsing frequency ranges from a few to tens kilohertz and depends on the averaged current and the pressure in all gases. The pulsing frequency will increase with the averaged current and decrease with the pressure. The rising time of the current pulse is nearly constant in a given gas or mixture. The self-pulsing does not depend on the external ballast but is affected significantly by the external capacitor in parallel with the discharge cell. The low-current self-pulsing in hollow cathode discharge is the mode transition between Townsend and glow discharges. It can be described by the charging-discharging process of an equivalent circuit consisting of capacitors and resistors.

  12. Vacuum encapsulated hermetically sealed diamond amplified cathode capsule and method for making same

    DOE Patents [OSTI]

    Rao, Triveni; Walsh, John; Gangone, Elizabeth

    2014-12-30T23:59:59.000Z

    A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first cold-weld ring disposed between the cathode element and the annular insulating spacer and a second cold-weld ring disposed between the annular insulating spacer and the diamond window element. The cathode capsule is formed by a vacuum cold-weld process such that the first cold-weld ring forms a hermetical seal between the cathode element and the annular insulating spacer and the second cold-weld ring forms a hermetical seal between the annular spacer and the diamond window element whereby a vacuum encapsulated chamber is formed within the capsule.

  13. Correlation between AlPO4 nanoparticle coating thickness on LiCoO2 cathode and thermal stability

    E-Print Network [OSTI]

    Cho, Jaephil

    Correlation between AlPO4 nanoparticle coating thickness on LiCoO2 cathode and thermal stability cathode. They coated the cathode with AlPO4 nanoparticles prepared from water [13]. The AlPO4 coating solÁ/gel coating method, this nanoparticle coating led to the easy control of the coating thickness

  14. The Orientation Distributions of Lines, Surfaces, and Interfaces around Three-Phase Boundaries in Solid Oxide Fuel Cell Cathodes

    E-Print Network [OSTI]

    Rohrer, Gregory S.

    in a multiphase ceramic material. I. Introduction THE active cathode regions of many solid oxide fuel cells (SOFCs in Solid Oxide Fuel Cell Cathodes Shen J. Dillon, Lam Helmick,§,¶ Herbert M. Miller,§ Lane Wilson relevant triple phase boundary lines and surfaces near them in SOFC cathodes made up of a porous mixture

  15. Status of development and licensing support for advanced liquid metal reactors in the United States

    SciTech Connect (OSTI)

    Pedersen, D.R. (Argonne National Lab., IL (United States)); Gyorey, G. (General Electric Co., San Jose, CA (United States))

    1991-01-01T23:59:59.000Z

    The cornerstones of the United States Advanced Liquid Metal Cooled Reactor (ALMR) program sponsored by the Department of Energy are: the ALMR plant design program at General Electric based on the PRISM (Power Reactor Innovative Small Module) concept, and the Integral Fast Reactor program (IFR) at Argonne National Laboratory (ANL). The goal of the US program is to produce a standard, commercial ALMR, including the associated fuel cycle. The paper addresses the status of the IFR program, the ALMR program and the interaction of the ALMR program with the regulatory environment.

  16. Status of development and licensing support for advanced liquid metal reactors in the United States

    SciTech Connect (OSTI)

    Pedersen, D.R. [Argonne National Lab., IL (United States); Gyorey, G. [General Electric Co., San Jose, CA (United States)

    1991-12-01T23:59:59.000Z

    The cornerstones of the United States Advanced Liquid Metal Cooled Reactor (ALMR) program sponsored by the Department of Energy are: the ALMR plant design program at General Electric based on the PRISM (Power Reactor Innovative Small Module) concept, and the Integral Fast Reactor program (IFR) at Argonne National Laboratory (ANL). The goal of the US program is to produce a standard, commercial ALMR, including the associated fuel cycle. The paper addresses the status of the IFR program, the ALMR program and the interaction of the ALMR program with the regulatory environment.

  17. Studies on Lithium Manganese Rich MNC Composite Cathodes

    Broader source: Energy.gov (indexed) [DOE]

    America Inc. 3 Presentation name Project Objectives - Relevance Undertake advanced materials research in the area of high energy (capacity) electrode materials for lithium-ion...

  18. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    0 lithium batteries. J. Electrochem. Soc.for rechargeable lithium batteries. Advanced Materials 1998,for rechargeable lithium batteries. J. Electrochem. Soc.

  19. Development of High-Capacity Cathode Materials with Integrated...

    Broader source: Energy.gov (indexed) [DOE]

    electrode structures at the Advanced Photon Source (APS) by X-ray diffraction, X-ray absorption and pair-distribution-function (pdf) analyses - initiated October 2011 4 ...

  20. Characterization of Uranium Codeposited with Hydrogen on Nickel Cathodes

    SciTech Connect (OSTI)

    G. Goddard; S. Frantz

    2000-11-12T23:59:59.000Z

    Previously, it has been reported that nuclear transmutation reactions are accelerated when radioactive elements are subjected to low-level electric fields during electrolysis of aqueous electrolytes. Our research investigated the codeposition of U{sub 3}O{sub 8} and H on Ni cathodes, using an acidic electrolyte and a Pt anode. Then, the radiation emitted by the electroplated U{sub 3}O{sub 8} was compared with radiation emitted by unelectrolyzed U{sub 3}O{sub 8} from the same batch. The electroplated U{sub 3}O{sub 8} initially produced {approx}2900 counts in 3 min (April 17, 2000). This rose sporadically in steps to {approx} 3700 counts in 3 min on May 11, 2000, and it remained relatively constant at this level until the GM measurements ended on June 8, 2000. The unelectrolyzed U{sub 3}O{sub 8} from the same batch emitted radiation at a much lower rate, {approx}1250 counts in 3 min, and this remained almost constant over the entire period of measurement. After the GM measurements, a gamma-ray spectrometer was used to measure radiation from the same two, 10-mg electroplated and unelectrolyzed U{sub 3}O{sub 8} samples. The net integral of the same 36 peaks for the same measurement time (25 h) gave 53 000 counts for the electroplated sample, 1.7 times as many as the 31 000 counts for the unelectrolyzed sample. Alpha and beta measurements are under way for both samples. Figure 2 shows a scanning electron microscope micrograph of a typical surface structure of uranium electroplated on a nickel cathode. The donut-like features appear to be the result of microscopic surface eruptions that produced voids surrounded by raised circular rims. Figure 3 shows an energy dispersive spectrometer spectrum from electroplated U{sub 3}O{sub 8} on a nickel cathode. In addition to oxygen and uranium, cesium, iron, and nickel are present. A peak at 16.36 keV, which overlaps with a uranium peak at 16.44 keV, is tentatively labeled as fermium. Mass spectrometer and X-ray diffraction studies are also underway.

  1. Corrosion performance of advanced structural materials in sodium.

    SciTech Connect (OSTI)

    Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L. (Nuclear Engineering Division)

    2012-05-16T23:59:59.000Z

    This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory, the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux Test Facility, and Clinch River Breeder Reactor. Among the nonmetallic elements discussed, oxygen is deemed controllable and its concentration in sodium can be maintained in sodium for long reactor life by using cold-trap method. It was concluded that among the cold-trap and getter-trap methods, the use of cold trap is sufficient to achieve oxygen concentration of the order of 1 part per million. Under these oxygen conditions in sodium, the corrosion performance of structural materials such as austenitic stainless steels and ferritic steels will be acceptable at a maximum core outlet sodium temperature of {approx}550 C. In the current sodium compatibility studies, the oxygen concentration in sodium will be controlled and maintained at {approx}1 ppm by controlling the cold trap temperature. The oxygen concentration in sodium in the forced convection sodium loop will be controlled and monitored by maintaining the cold trap temperature in the range of 120-150 C, which would result in oxygen concentration in the range of 1-2 ppm. Uniaxial tensile specimens are being exposed to flowing sodium and will be retrieved and analyzed for corrosion and post-exposure tensile properties. Advanced materials for sodium exposure include austenitic alloy HT-UPS and ferritic-martensitic steels modified 9Cr-1Mo and NF616. Among the nonmetallic elements in sodium, carbon was assessed to have the most influence on structural materials since carbon, as an impurity, is not amenable to control and maintenance by any of the simple purification methods. The dynamic equilibrium value for carbon in sodium systems is dependent on several factors, details of which were discussed in the earlier report. The current sodium compatibility studies will examine the role of carbon concentration in sodium on the carburization-decarburization of advanced structural materials at temperatures up to 650 C. Carbon will be added to the sodium by exposure of carbon-filled iron tubes, which over time will enable carbon to diffuse through iron and dissolve into sodium. The method enables addition of dissolved carbon (without carb

  2. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R. [NETL

    2013-03-11T23:59:59.000Z

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  3. Introduction to ANL`s effort in HTSc wire development

    SciTech Connect (OSTI)

    Balachandran, U.; Crabtree, G.W.; Dorris, S.E.; Ellingson, W.A.; Goretta, K.C.; Gray, K.E.; Kupperman, D.S.; Kampwirth, R.T.; Lanagan, M.T.; Maroni, V.A. [Argonne National Lab., IL (United States)] [and others

    1994-07-29T23:59:59.000Z

    The objective of this work is to develop, in the shortest possible time, methods to fabricate and use reliable HTS conductors in commercial applications for generation, transmission, and storage of electrical energy. The multiyear, experimental program focuses on improvement of materials properties, development of fabrication methods, and design and testing of HTS components and systems, with emphasis placed on wire and coil production. Collaborations with industry and academia are integral to the effort.

  4. Atlas of uranium emission intensities in a hollow cathode discharge

    SciTech Connect (OSTI)

    Palmer, B.A.; Keller, R.A.; Engleman, R. Jr.

    1980-07-01T23:59:59.000Z

    The uranium emission spectrum from a hollow cathode discharge is displayed from 11,000 to 26,000 cm/sup -1/. This atlas lists 4928 spectral lines of uranium; 3949 are classified to the neutral spectrum and 431 are classified to the singly ionized spectrum. Listed wavenumbers are accurate to +-0.003 cm/sup -1/ and the listed relative intensities to +-8%. The richness of the spectrum makes this atlas useful for wavenumber calibration of lasers, spectrographs, and monochromators to an accuracy of 1 part in 10/sup 7/. This atlas is also useful as a guide to the uranium spectrum, and relative oscillator strengths (gf values) can be calculated from the intensities to a precision of +-20%.

  5. 1st Workshop on Photo-cathodes: 300nm-500nm July 20-21, 2009: University of Chicago

    E-Print Network [OSTI]

    -function engineering 10:30 - 11:00 Enhancing Photon Absorption: Anti-reflection Coatings, Reflecting Sub- strates:15 - 11:45 Aerogel Photocathodes Michael Pellin (ANL) 11:45 - 12:15 New Ideas Daniel Ferenc (UC Davis

  6. Factors Affecting the Battery Performance of Anthraquinone-based Organic Cathode Materials

    SciTech Connect (OSTI)

    Xu, Wu; Read, Adam L.; Koech, Phillip K.; Hu, Dehong; Wang, Chong M.; Xiao, Jie; Padmaperuma, Asanga B.; Graff, Gordon L.; Liu, Jun; Zhang, Jiguang

    2012-02-01T23:59:59.000Z

    Two organic cathode materials based on poly(anthraquinonyl sulfide) structure with different substitution positions were synthesized and their electrochemical behavior and battery performances were investigated. The substitution positions on the anthraquinone structure, binders for electrode preparation and electrolyte formulations have been found to have significant effects on the battery performances of such organic cathode materials. The substitution position with less steric stress has higher capacity, longer cycle life and better high-rate capability. Polyvinylidene fluoride binder and ether-based electrolytes are favorable for the high capacity and long cycle life of the quinonyl organic cathodes.

  7. IN-SITU XRD OF OPERATING LSFC CATHODES: DEVELOPMENT OF A NEW ANALYTICAL CAPABILITY

    SciTech Connect (OSTI)

    Hardy, John S.; Templeton, Jared W.; Stevenson, Jeffry W.

    2012-11-19T23:59:59.000Z

    A solid oxide fuel cell (SOFC) research capability has been developed that facilitates measuring the electrochemical performance of an operating SOFC while simultaneously performing x-ray diffraction on its cathode. The evolution of this research tool’s development is discussed together with a description of the instrumentation used for in-situ x-ray diffraction (XRD) measurements of operating SOFC cathodes. The challenges that were overcome in the process of developing this capability, which included seals and cathode current collectors, are described together with the solutions that are presently being applied to mitigate them.

  8. Degradation Mechanisms of La-Sr-Co-Fe-O3 SOFC Cathodes

    SciTech Connect (OSTI)

    Simner, Steve P.; Anderson, Michael D.; Engelhard, Mark H.; Stevenson, Jeffry W.

    2006-08-17T23:59:59.000Z

    The long-term stability of anode-supported YSZ electrolyte SOFCs utilizing (La0.6Sr0.4)0.98Co0.2Fe0.8O3-? (LSCF-6428) cathodes was assessed. Samples tested for 500 hours at 750 C and 0.7V indicated ?50% degradation. While scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) analysis indicated no obvious microstructural or chemical phenomena that could explain the high degradation, x-ray photon spectroscopy (XPS) revealed that enrichment of Sr at the cathode-electrolyte and cathode-current collector interfaces was at least partially responsible for the observed degradation.

  9. Generalized space-charge limited current and virtual cathode behaviors in one-dimensional drift space

    SciTech Connect (OSTI)

    Yang, Zhanfeng; Liu, Guozhi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049 (China) [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049 (China); Northwest Institute of Nuclear Technology, P.O. Box 69-13, Xi'an 710024 (China); Shao, Hao; Chen, Changhua; Sun, Jun [Northwest Institute of Nuclear Technology, P.O. Box 69-13, Xi'an 710024 (China)] [Northwest Institute of Nuclear Technology, P.O. Box 69-13, Xi'an 710024 (China)

    2013-10-15T23:59:59.000Z

    This paper reports the space-charge limited current (SLC) and virtual cathode behaviors in one-dimensional grounded drift space. A simple general analytical solution and an approximate solution for the planar diode are given. Through a semi-analytical method, a general solution for SLC in one-dimensional drift space is obtained. The behaviors of virtual cathode in the drift space, including dominant frequency, electron transit time, position, and transmitted current, are yielded analytically. The relationship between the frequency of the virtual cathode oscillation and the injected current presented may explain previously reported numerical works. Results are significant in facilitating estimations and further analytical studies.

  10. Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries

    DOE Patents [OSTI]

    Manthiram, Arumugam; Choi, Wongchang

    2014-05-13T23:59:59.000Z

    The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn.sub.2-y-zLi.sub.yM.sub.zO.sub.4 oxide with NH.sub.4HF.sub.2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

  11. The evidence of cathodic micro-discharges during plasma electrolytic oxidation process

    SciTech Connect (OSTI)

    Nominé, A., E-mail: alexandre.nomine@univ-lorraine.fr [Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy (France); National Institute of Science and Technology “MISiS,” 4, Leninskij Prospekt, Moscow 119049 (Russian Federation); Martin, J.; Noël, C.; Henrion, G.; Belmonte, T. [Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Parc de Saurupt, 54011 Nancy (France); Bardin, I. V.; Kovalev, V. L.; Rakoch, A. G. [National Institute of Science and Technology “MISiS,” 4, Leninskij Prospekt, Moscow 119049 (Russian Federation)

    2014-02-24T23:59:59.000Z

    Plasma electrolytic oxidation (PEO) processing of EV31 magnesium alloy has been carried out in fluoride containing electrolyte under bipolar pulse current regime. Unusual PEO cathodic micro-discharges have been observed and investigated. It is shown that the cathodic micro-discharges exhibit a collective intermittent behavior, which is discussed in terms of charge accumulations at the layer/electrolyte and layer/metal interfaces. Optical emission spectroscopy is used to determine the electron density (typ. 10{sup 15}?cm{sup ?3}) and the electron temperature (typ. 7500?K) while the role of F{sup ?} anions on the appearance of cathodic micro-discharges is pointed out.

  12. ANL2014-JMA.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tennessee, Knoxville, TN 37996 4 Department of Physics, Australian National University, Canberra ACT 0200, Australia 5 Instituto de Ciencias Nucleares, UNAM, AP 70-543, 04510...

  13. ANL/APS/TB-2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    beyond the FOE. The peak heat flux incident on the mirror surace is 0.35 Wmm2. At this power density, thermally induced slope errors less than 1 arcsec may be obtainable because...

  14. ANL Beams and Applications Seminar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characterization of the laser and electron beams of the Cornell Energy Recovery Linac Heng Li Cornell University June 18 Interbeam Scattering Studies at CesrTA Michael Ehrlichman...

  15. ANL/APS/TB-13

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analyses followed by prototype tests of the photon shutter using a high power CO 2 laser prove that the photon shutter can withstand large thermal loads and heat fluxes far...

  16. ANL/APS/TB-17

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    approximately linearly with the area of the aperture. 32 Figure 11. Transmitted flux (solid) and power (dotted) vs. vertical size of aperture (horizontal size is 2.5 x vertical...

  17. Ahn-ANL_User_Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WITH THE PROTOTYPE AT-TPC AT ATLAS Tan Ahn National Superconducting Cyclotron Lab, Michigan State University Single-Particle Structure and Reactions Session ATLAS Users...

  18. ANL-FF-262i

    Office of Legacy Management (LM)

    from our foundry's graphite-melted uranium is remote because of the metalIs high carbon content. High purity metal isto be considered a possible solution of many of the...

  19. ANL/APS/TB-11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be considered before operating in these high field regimes. The other possibilty is to open up the gap and use Wiggler A for the low energy regions. At 3.2-cm gap, the peak...

  20. ANL-FF-262i

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal'.I Y.it ! ( ,E;;;:hlul,

  1. Djurcic_ANL_June2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers SubfoldersU.S.PVDividend Distributionfrom

  2. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power and TransmissionAdolphusAdvanced Energy

  3. Ab initio screening of lithium diffusion rates in transition metal oxide cathodes for lithium ion batteries

    E-Print Network [OSTI]

    Moore, Charles J. (Charles Jacob)

    2012-01-01T23:59:59.000Z

    A screening metric for diffusion limitations in lithium ion battery cathodes is derived using transition state theory and common materials properties. The metric relies on net activation barrier for lithium diffusion. ...

  4. Ternary metal fluorides as high-energy cathodes with low cycling hysteresis

    E-Print Network [OSTI]

    Wang, Feng

    Transition metal fluorides are an appealing alternative to conventional intercalation compounds for use as cathodes in next-generation lithium batteries due to their extremely high capacity (3–4 times greater than the ...

  5. Supply and demand in the material recovery system for cathode ray tube glass

    E-Print Network [OSTI]

    Nadeau, Marie-Claude

    This paper presents an analysis of the material recovery system for leaded glass from cathode ray tubes (CRTs). In particular, the global mass flow of primary and secondary CRT glass and the theoretical capacities for using ...

  6. SURFACE SEGREGATION STUDIES OF SOFC CATHODES: COMBINING SOFT X-RAYS AND ELECTROCHEMICAL IMPEDENCE SPECTROSCOPY

    SciTech Connect (OSTI)

    Miara, Lincoln J.; Piper, L.F.J.; Davis, Jacob N.; Saraf, Laxmikant V.; Kaspar, Tiffany C.; Basu, Soumendra; Smith, K. E.; Pal, Uday B.; Gopalan, Srikanth

    2010-12-01T23:59:59.000Z

    A system to grow heteroepitaxial thin-films of solid oxide fuel cell (SOFC) cathodes on single crystal substrates was developed. The cathode composition investigated was 20% strontium-doped lanthanum manganite (LSM) grown by pulsed laser deposition (PLD) on single crystal (111) yttria-stabilized zirconia (YSZ) substrates. By combining electrochemical impedance spectroscopy (EIS) with x-ray photoemission spectroscopy (XPS) and x-ray absorption spectroscopy XAS measurements, we conclude that electrically driven cation migration away from the two-phase gas-cathode interface results in improved electrochemical performance. Our results provide support to the premise that the removal of surface passivating phases containing Sr2+ and Mn2+, which readily form at elevated temperatures even in O2 atmospheric pressures, is responsible for the improved cathodic performance upon application of a bias.

  7. The role of phase transformation in the rate performance limited Lix? V? O? battery cathode

    E-Print Network [OSTI]

    Avery, Kenneth Charles

    2009-01-01T23:59:59.000Z

    It has recently been reported that the rate performance of Lix? V?O?, a widely studied candidate Li-ion battery cathode material, can be significantly improved through a variety of particle size reduction techniques, (e.g. ...

  8. Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis

    E-Print Network [OSTI]

    contributed to electromethanogenic gas production. KEYWORDS: Biocathode, Carbon capturing and sequestration generation, we examined several cathode materials: plain graphite blocks, graphite blocks coated with carbon black or carbon black containing metals (platinum, stainless steel or nickel) or insoluble minerals

  9. NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01T23:59:59.000Z

    Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO4) cathodes for lithium-ion batteries.

  10. Short communication Performance of microbial fuel cells with and without Nafion solution as cathode

    E-Print Network [OSTI]

    Short communication Performance of microbial fuel cells with and without Nafion solution as cathode online 31 March 2010 Keywords: Microbial fuel cell (MFC) Nafion Electrochemical impedance spectroscopy (EIS) Internal resistance Electricity production The performance of tubular microbial fuel cells (MFC

  11. Vehicle Technologies Office Merit Review 2014: High Energy Novel Cathode / Alloy Automotive Cell

    Broader source: Energy.gov [DOE]

    Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy novel cathode / alloy...

  12. anode-cathode microbial fuel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OLEDs have been fabricated using a new anode-cathode-layer (ACL) that connects light emitting diode (OLED) 1, much development has been made to improve this device for...

  13. 1998 Annual Cathodic Protection Survey Report for the 242-A Evaporator Area

    SciTech Connect (OSTI)

    BOWMAN, T.J.

    1999-12-07T23:59:59.000Z

    This report is the second annual cathodic protection report for the 242-A evaporator. The report documents and trends annual polarization survey data, rectifier inspection data, and continuity data from 1994 through mid-1999.

  14. Effect of Cathode Pore Volume on PEM Fuel Cell Cold Start Ashis Nandy,a

    E-Print Network [OSTI]

    into the cathode gas diffu- sion layer GDL and gas channel and finally being emitted to the ambient along with exhaust gas. The excess water increases CCL water content if initially dry, followed by water accumulation

  15. Microstructural effects on capacity-rate performance of vanadium oxide cathodes in lithium-ion batteries

    E-Print Network [OSTI]

    Davis, Robin M. (Robin Manes)

    2005-01-01T23:59:59.000Z

    Vanadium oxide thin film cathodes were analyzed to determine whether smaller average grain size and/or a narrower average grain size distribution affects the capacity-rate performance in lithium-ion batteries. Vanadium ...

  16. Cathodic disbondment resistance with reactive ethylene terpolymer blends and composite coatings

    E-Print Network [OSTI]

    Love, Corey T.

    2008-01-01T23:59:59.000Z

    EPDM EVA ethylene vinyl acetate FBE fusion-bonded epoxy GMACoating Thickness on FBE ………………. Figure 7.13: NormalizedWhen XANES was applied to FBE-coated iron, the cathodically

  17. Electrochimica Acta 52 (2007) 52665271 Effect of methanol crossover on the cathode behavior of a DMFC

    E-Print Network [OSTI]

    Zhao, Tianshou

    2007-01-01T23:59:59.000Z

    of methanol crossover on the cathode behavior. Open circuit potentials, cyclic voltammetry profiles, polarization curves and electrochemical impedance spectroscopy (EIS), resulting from the oxygen reduction measurements indicated that both current and open circuit potential of the electrode exhibited significant

  18. Correlation between microstructure and thermionic electron emission from Os-Ru thin films on dispenser cathodes

    SciTech Connect (OSTI)

    Swartzentruber, Phillip D.; John Balk, Thomas, E-mail: john.balk@uky.edu [Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506-0046 (United States); Effgen, Michael P. [Semicon Associates, Lexington, Kentucky 40510 (United States)

    2014-07-01T23:59:59.000Z

    Osmium-ruthenium films with different microstructures were deposited onto dispenser cathodes and subjected to 1000 h of close-spaced diode testing. Tailored microstructures were achieved by applying substrate biasing during deposition, and these were evaluated with scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray spectroscopy before and after close-spaced diode testing. Knee temperatures determined from the close-spaced diode test data were used to evaluate cathode performance. Cathodes with a large (10-11) Os-Ru film texture possessed comparatively low knee temperatures. Furthermore, a low knee temperature correlated with a low effective work function as calculated from the close-spaced diode data. It is proposed that the formation of strong (10-11) texture is responsible for the superior performance of the cathode with a multilayered Os-Ru coating.

  19. Anisotropic Heat and Water Transport in a PEFC Cathode Gas Diffusion Layer

    E-Print Network [OSTI]

    reaction ORR in the cathode CL to recombine with oxygen and producing water and waste heat. Despite amount of waste heat as it does electric power output. Furthermore, PEFCs tolerate only a small

  20. Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells IV. On the Ohmic loss in anode supported button cells with LSM or LSCF cathodes

    SciTech Connect (OSTI)

    Lu, Zigui; Zhou, Xiao Dong; Templeton, Jared W.; Stevenson, Jeffry W.

    2010-05-08T23:59:59.000Z

    Anode-supported solid oxide fuel cells (SOFC) with a variety of YSZ electrolyte thicknesses were fabricated by tape casting and lamination. The preparation of the YSZ electrolyte tapes with various thicknesses was accomplished by using doctor blades with different gaps between the precision machined, polished blade and the casting surface. The green tape was cut into discs, sintered at 1385°C for 2 h, and subsequently creep-flattened at 1350°C for 2 h. Either LSCF with an SDC interlayer or LSM+YSZ composite was used as the cathode material for the fuel cells. The ohmic resistances of these anode-supported fuel cells were characterized by electrochemical impedance spectroscopy at temperatures from 500°C to 750°C. A linear relationship was found between the ohmic resistance of the fuel cell and the YSZ electrolyte thickness at all the measuring temperatures for both LSCF and LSM+YSZ cathode fuel cells. The ionic conductivities of the YSZ electrolyte, derived for the fuel cells with LSM+YSZ or LSCF cathodes, were independent of the cathode material and cell configuration. The ionic conductivities of the YSZ electrolyte was slightly lower than that of the bulk material, possibly due to Ni-doping into the electrolyte. The fuel cell with a SDC interlayer and LSCF cathode showed larger intercept resistance than the fuel cell with LSM+YSZ cathode, which was possibly due to the imperfect contact between the SDC interlayer and the YSZ electrolyte and the migration of Zr into the SDC interlayer to form an insulating solid solution during cell fabrication. Calculations of the contribution of the YSZ electrolyte to the total ohmic resistance showed that YSZ was still a satisfactory electrolyte at temperatures above 650°C. Explorations should be directed to reduce the intercept resistance to achieve significant improvement in cell performance.

  1. Hollow - cathode electrode for high-power, high-pressure discharge devices

    DOE Patents [OSTI]

    Chang, Jim J. (7644 Ashford Way, Dublin, CA 94568); Alger, Terry W. (901 Renown Dr., Tracy, CA 95376)

    1995-01-01T23:59:59.000Z

    Several different cold cathode configurations for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures.

  2. Development of High-Capacity Cathode Materials with Integrated...

    Broader source: Energy.gov (indexed) [DOE]

    structures at the Advanced Photon Source (APS) by X-ray diffraction (XRD), X-ray absorption (XAS) and pair-distribution-function (PDF) analyses - on-going 4 Compatibility...

  3. Pore Scale Modeling of the Reactive Transport of Chromium in the Cathode of a Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Ryan, Emily M.; Tartakovsky, Alexandre M.; Recknagle, Kurtis P.; Khaleel, Mohammad A.; Amon, Cristina

    2011-01-01T23:59:59.000Z

    We present a pore scale model of a solid oxide fuel cell (SOFC) cathode. Volatile chromium species are known to migrate from the current collector of the SOFC into the cathode where over time they decrease the voltage output of the fuel cell. A pore scale model is used to investigate the reactive transport of chromium species in the cathode and to study the driving forces of chromium poisoning. A multi-scale modeling approach is proposed which uses a cell level model of the cathode, air channel and current collector to determine the boundary conditions for a pore scale model of a section of the cathode. The pore scale model uses a discrete representation of the cathode to explicitly model the surface reactions of oxygen and chromium with a cathode material. The pore scale model is used to study the reaction mechanisms of chromium by considering the effects of reaction rates, diffusion coefficients, chromium vaporization, and oxygen consumption on chromium’s deposition in the cathode. The study shows that chromium poisoning is most significantly affected by the chromium reaction rates in the cathode and that the reaction rates are a function of the local current density in the cathode.

  4. Code qualification of structural materials for AFCI advanced recycling reactors.

    SciTech Connect (OSTI)

    Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L. (Nuclear Engineering Division); (ORNL)

    2012-05-31T23:59:59.000Z

    This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP) and the Power Reactor Innovative Small Module (PRISM), the NRC/Advisory Committee on Reactor Safeguards (ACRS) raised numerous safety-related issues regarding elevated-temperature structural integrity criteria. Most of these issues remained unresolved today. These critical licensing reviews provide a basis for the evaluation of underlying technical issues for future advanced sodium-cooled reactors. Major materials performance issues and high temperature design methodology issues pertinent to the ARR are addressed in the report. The report is organized as follows: the ARR reference design concepts proposed by the Argonne National Laboratory and four industrial consortia were reviewed first, followed by a summary of the major code qualification and licensing issues for the ARR structural materials. The available database is presented for the ASME Code-qualified structural alloys (e.g. 304, 316 stainless steels, 2.25Cr-1Mo, and mod.9Cr-1Mo), including physical properties, tensile properties, impact properties and fracture toughness, creep, fatigue, creep-fatigue interaction, microstructural stability during long-term thermal aging, material degradation in sodium environments and effects of neutron irradiation for both base metals and weld metals. An assessment of modified versions of Type 316 SS, i.e. Type 316LN and its Japanese version, 316FR, was conducted to provide a perspective for codification of 316LN or 316FR in Subsection NH. Current status and data availability of four new advanced alloys, i.e. NF616, NF616+TMT, NF709, and HT-UPS, are also addressed to identify the R&D needs for their code qualification for ARR applications. For both conventional and new alloys, issues related to high temperature design methodology are described to address the needs for improvements for the ARR design and licensing. Assessments have shown that there are significant data gaps for the full qualification and licensing of the ARR structural materials. Development and evaluation of structural materials require a variety of experimental facilities that have been seriously degraded

  5. Iron-based perovskite cathodes for solid oxide fuel cells

    DOE Patents [OSTI]

    Ralph, James M.; Rossignol, Cecile C.R.; Vaughey, John T.

    2007-01-02T23:59:59.000Z

    An A and/or A' site deficient perovskite of general formula of (A.sub.1-xA'.sub.x).sub.1-yFeO.sub.3-.delta. or of general formula A.sub.1-x-yA'.sub.xFeO.sub.3-67, wherein A is La alone or with one or more of the rare earth metals or a rare earth metal other than Ce alone or a combination of rare earth metals and X is in the range of from 0 to about 1; A' is Sr or Ca or mixtures thereof and Y is in the range of from about 0.01 to about 0.3; .delta. represents the amount of compensating oxygen loss. If either A or A' is zero the remaining A or A' is deficient. A fuel cell incorporating the inventive perovskite as a cathode is disclosed as well as an oxygen separation membrane. The inventive perovskite is preferably single phase.

  6. Direct determination of uranium in water by cathodic stripping voltammetry

    SciTech Connect (OSTI)

    van den Berg, C.M.G.; Nimmo, M.

    1987-03-15T23:59:59.000Z

    Uranium was determined in fresh water and seawater by using 8-hydroxyquinoline(oxine) as the chelating agent in cathodic stripping voltammetry procedure. The peak height-uranium concentration relationship was linear up to about 30 nM U (at a peak current of 80 nA) when the scans were preceded by 1 min of stirred adsorption. The linear range is extended to higher uranium levels by reducing the sensitivity by adsorbing less complex ions on the electrode, i.e., by using a shorter adsorption time, or by adsorbing without stirring. The sensitivity for uranium in a synthetic electrolyte solution was about 10% greater than in seawater, presumably due to the absence of carbonate ions which compete with the oxine for uranyl ions and the major cations which partially saturate oxine in seawater. This similar sensitivity in fresh and seawater is in contrast to the poor sensitivity that was obtained by SCS when using catechol as the chelating compound in fresh water conditions, as its sensitivity was 10-20% of that in seawater.

  7. Ignition and extinction phenomena in helium micro hollow cathode discharges

    SciTech Connect (OSTI)

    Kulsreshath, M. K.; Schwaederle, L.; Dufour, T.; Lefaucheux, P.; Dussart, R. [GREMI, CNRS/Université d'Orléans (UMR7344), Orléans (France); Sadeghi, N. [LIPhy, CNRS and Universite Joseph Fourier (UMR5588), Grenoble (France); Overzet, L. J. [GREMI, CNRS/Université d'Orléans (UMR7344), Orléans (France); PSAL, UTDallas, Richardson, Texas 75080-3021 (United States)

    2013-12-28T23:59:59.000Z

    Micro hollow cathode discharges (MHCD) were produced using 250??m thick dielectric layer of alumina sandwiched between two nickel electrodes of 8??m thickness. A through cavity at the center of the chip was formed by laser drilling technique. MHCD with a diameter of few hundreds of micrometers allowed us to generate direct current discharges in helium at up to atmospheric pressure. A slowly varying ramped voltage generator was used to study the ignition and the extinction periods of the microdischarges. The analysis was performed by using electrical characterisation of the V-I behaviour and the measurement of He*({sup 3}S{sub 1}) metastable atoms density by tunable diode laser spectroscopy. At the ignition of the microdischarges, 2??s long current peak as high as 24?mA was observed, sometimes followed by low amplitude damped oscillations. At helium pressure above 400?Torr, an oscillatory behaviour of the discharge current was observed just before the extinction of the microdischarges. The same type of instability in the extinction period at high pressure also appeared on the density of He*({sup 3}S{sub 1}) metastable atoms, but delayed by a few ?s relative to the current oscillations. Metastable atoms thus cannot be at the origin of the generation of the observed instabilities.

  8. Neutral beam dump with cathodic arc titanium gettering

    SciTech Connect (OSTI)

    Smirnov, A.; Korepanov, S. A.; Putvinski, S. [Tri Alpha Energy Inc., Rancho Santa Margarita, California 92688 (United States); Krivenko, A. S.; Murakhtin, S. V.; Savkin, V. Ya. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation)

    2011-03-15T23:59:59.000Z

    An incomplete neutral beam capture can degrade the plasma performance in neutral beam driven plasma machines. The beam dumps mitigating the shine-through beam recycling must entrap and retain large particle loads while maintaining the beam-exposed surfaces clean of the residual impurities. The cathodic arc gettering, which provides high evaporation rate coupled with a fast time response, is a powerful and versatile technique for depositing clean getter films in vacuum. A compact neutral beam dump utilizing the titanium arc gettering was developed for a field-reversed configuration plasma sustained by 1 MW, 20-40 keV neutral hydrogen beams. The titanium evaporator features a new improved design. The beam dump is capable of handling large pulsed gas loads, has a high sorption capacity, and is robust and reliable. With the beam particle flux density of 5 x 10{sup 17} H/(cm{sup 2}s) sustained for 3-10 ms, the beam recycling coefficient, defined as twice the ratio of the hydrogen molecular flux leaving the beam dump to the incident flux of high-energy neutral atoms, is {approx}0.7. The use of the beam dump allows us to significantly reduce the recycling of the shine-through neutral beam as well as to improve the vacuum conditions in the machine.

  9. Operation of an ungated diamond field-emission array cathode in a L-band radiofrequency electron source

    SciTech Connect (OSTI)

    Piot, P. [Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, Illinois 60115 (United States); Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Brau, C. A.; Gabella, W. E.; Ivanov, B.; Mendenhall, M. H. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Choi, B. K. [Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235 (United States); Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235 (United States); Blomberg, B.; Mihalcea, D.; Panuganti, H. [Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, Illinois 60115 (United States); Jarvis, J. [Advanced Energy Systems, Inc., Medford, New York 11763 (United States); Prieto, P.; Reid, J. [Accelerator Division, Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)

    2014-06-30T23:59:59.000Z

    We report on the operation of a field-emitter-array cathode in a conventional L-band radio-frequency electron source. The cathode consisted of an array of ?10{sup 6} diamond tips on pyramids. Maximum current on the order of 15?mA was reached and the cathode did not show appreciable signs of fatigue after weeks of operation. The measured Fowler-Nordheim characteristics, transverse beam density, and current stability are discussed.

  10. Conflicting Roles Of Nickel In Controlling Cathode Performance In Lithium-ion Batteries

    SciTech Connect (OSTI)

    Gu, Meng; Belharouak, Ilias; Genc, Arda; Wang, Zhiguo; Wang, Dapeng; Amine, Khalil; Gao, Fei; Zhou, Guangwen; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Jiguang; Browning, Nigel D.; Liu, Jun; Wang, Chong M.

    2012-09-17T23:59:59.000Z

    A variety of approaches are being made to enhance the performance of lithium ion batteries. Incorporating multi-valence transition metal ions into metal oxide cathodes has been identified as an essential approach to achieve the necessary high voltage and high capacity. However, the fundamental mechanism that limits their power rate and cycling stability remains unclear. The power rate strongly depends on the lithium ion drift speed in the cathode. Crystallographically, these transition metal-based cathodes frequently have a layered structure. In the classic wisdom, it is accepted that lithium ion travels swiftly within the layers moving out/in of the cathode during the charge/discharge. Here, we report the unexpected discovery of a thermodynamically driven, yet kinetically controlled, surface modification in the widely explored lithium nickel manganese oxide cathode material, which may inhibit the battery charge/discharge rate. We found that during cathode synthesis and processing before electrochemical cycling in the cell nickel can preferentially move along the fast diffusion channels and selectively segregate at the surface facets terminated with a mix of anions and cations. This segregation essentially blocks the otherwise fast out/in pathways for lithium ions during the charge/discharge. Therefore, it appears that the transition metal dopant may help to provide high capacity and/or high voltage, but can be located in a “wrong” location that blocks or slows lithium diffusion, limiting battery performance. In this circumstance, limitations in the properties of Li-ion batteries using these cathode materials can be determined more by the materials synthesis issues than by the operation within the battery itself.

  11. A Method for Monitoring Deposition at a Solid Cathode in an Electrorefiner for a Two-Species System Using Electrode Potentials

    SciTech Connect (OSTI)

    D.S. Rappleye; M.-S. Yim; M.F. Simpson; R.M. Cumberland

    2013-10-01T23:59:59.000Z

    Currently, process monitoring of spent nuclear fuel electrorefining relies upon sampling and destructive analysis methods coupled with extrapolative thermodynamic process models for non-interrupted operations. Corrections to those models are performed infrequently, jeopardizing both the control of the process and safeguarding of nuclear material. Furthermore, the timeliness of obtaining the results is inadequate for application of international safeguards protocol. Alternatively, a system that dynamically utilizes electrical data such as electrode potentials and cell current can hypothetically be used to achieve real-time process monitoring and more robust control as well as improved safeguards. Efforts to develop an advanced model of the electrorefiner to date have focused on a forward modeling approach by using feed and salt compositions to determine the product composition, cell current and electrode potential response. Alternatively, an inverse model was developed, and reported here, to predict the product deposition rates on a cathode using the cell current, cathode potential, and fundamental relations of electrochemistry. The model was applied to the following cases: pure uranium deposition, co-deposition of uranium and plutonium, and co-deposition of uranium and zirconium. The deposition rates predicted by the inverse model were compared to those of a forward model, ERAD.

  12. Block Copolymer Cathode Binder to Simultaneously Transport Electronic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewind Generator Rewind Denison

  13. Geothermal: Advanced Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You...

  14. An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode

    SciTech Connect (OSTI)

    Zhi, Mingjia; Lee, Shiwoo; Miller, Nicholas; Menzler, Norbert H.; Wu, Nianqiang

    2012-05-01T23:59:59.000Z

    Lanthanum strontium cobalt ferrite (LSCF) nanofibers have been fabricated by the electrospinning method and used as the cathode of an intermediate-temperature solid oxide fuel cell (SOFC) with yttria-stabilized zirconia (YSZ) electrolyte. The three-dimensional nanofiber network cathode has several advantages: (i) high porosity; (ii) high percolation; (iii) continuous pathway for charge transport; (iv) good thermal stability at the operating temperature; and (v) excellent scaffold for infiltration. The fuel cell with the monolithic LSCF nanofiber cathode exhibits a power density of 0.90 W cm{sup ?2} at 1.9 A cm{sup ?2} at 750 °C. The electrochemical performance of the fuel cell has been further improved by infiltration of 20 wt% of gadolinia-doped ceria (GDC) into the LSCF nanofiber cathode. The fuel cell with the LSCF–20% GDC composite cathode shows a power density of 1.07 W cm{sup ?2} at 1.9 A cm{sup ?2} at 750 °C. The results obtained show that one-dimensional nanostructures such as nanofibers hold great promise as electrode materials for intermediate-temperature SOFCs.

  15. Two types of diffusions at the cathode/electrolyte interface in IT-SOFCs

    SciTech Connect (OSTI)

    Li Zhipeng, E-mail: LI.Zhipeng@nims.go.jp [Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Mori, Toshiyuki [Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Auchterlonie, Graeme John [Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Brisbane, Queensland 4072 (Australia); Zou Jin [Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Brisbane, Queensland 4072 (Australia); Division of Materials, University of Queensland, St. Lucia, Brisbane, Queensland 4072 (Australia); Drennan, John [Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Brisbane, Queensland 4072 (Australia)

    2011-09-15T23:59:59.000Z

    Analytical transmission electron microscopy, in particular with the combination of energy dispersive X-ray spectroscopy (EDX) and electron energy-loss spectroscopy (EELS), has been performed to investigate the microstructure and microchemistry of the interfacial region between the cathode (La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3}, LSCF) and the electrolyte (Gd-doped ceria, GDC). Two types of diffusions, mutual diffusion between cathode and electrolyte as well as the diffusion along grain boundaries, have been clarified. These diffusions suggest that the chemical stability of LSCF and GDC are not as good as previously reported. The results are more noteworthy if we take into consideration the fact that such interdiffusions occur even during the sintering process of cell preparation. - Graphical Abstract: Two types of diffusions, the mutual diffusion and the diffusion along grain boundaries, occurred at the cathode/electrolyte interface of intermediate temperature solid state fuel cells, during cell preparation. The mutual diffusion is denoted by black arrows and the diffusion along grain boundaries assigned by pink arrows. Highlights: > All the cations in cathode (LSCF) and electrolyte (GDC) can mutually diffuse into each other. > Diffusing elements will segregate at grain boundaries or triple junctions around the cathode/electrolyte interface. > Two types of diffusions, the mutual diffusion and diffusion along grain boundaries, have been clarified thereafter.

  16. Photo-cathode preparation system of the A0 photo-injector

    SciTech Connect (OSTI)

    Moyses Kuchnir et al.

    2002-08-23T23:59:59.000Z

    The A0 Photo-Injector is an electron accelerator located in the AZero high bay area of Fermilab. A pulsed laser system generates electron bunches by the photo-electric effect when hitting a photo-cathode in a 1.5-cell, 1.3 GHz RF gun. A 9-cell, 1.3 GHz superconducting resonant cavity then accelerates the electrons to 15 MeV. The 10 ps time resolved waveform of the laser pulses is transferred to the electron bunches. This report is focused on the first hardware component of this accelerator, the Photo-cathode Preparation System. The reason for its existence is in the nature of the photo-electric material film used: Cs{sub 2}Te (Cesium Telluride), a very reactive compound that once coated on the cathode requires that it be transported and used in ultra high vacuum (UHV), i.e. < 10{sup -9} Torr.

  17. Corrosion/Fragmentation of Layered Composite Cathode and Related Capacity/Voltage Fading during Cycling Process

    SciTech Connect (OSTI)

    Zheng, Jianming; Gu, Meng; Xiao, Jie; Zuo, Pengjian; Wang, Chong M.; Zhang, Jiguang

    2013-06-26T23:59:59.000Z

    Pristine and cycled layered structure cathode of Li[Li0.2Ni0.2M0.6]O2 samples are characterized by aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy. These analyses provide new insights on capacity/voltage fading mechanism of Li[Li0.2Ni0.2M0.6]O2. Sponge-like structure and fragment pieces were found on the surface of cathode after cycling. Mn2+ species and reduced Li content in the fragments caused significant capacity loss. These results also reveal the functional mechanism of surface coatings, e.g. AlF3, which can protect the electrode from etching by acidic species in the electrolyte, suppress cathode degradation and improve long-term cycling stability.

  18. Gas plasma treatment of cathodes to improve Li/SO{sub 2} cell performance

    SciTech Connect (OSTI)

    Binder, M.; Mammone, R.J. [Army Electronics and Power Sources Directorate, Fort Monmouth, NJ (United States). Energy Sciences Branch; Thurston, E.P.; Reddy, T.B. [Power Conversion Inc., Elmwood Park, NJ (United States)

    1993-12-01T23:59:59.000Z

    One rapid way to alter pendant groups on surfaces and/or to clean surfaces is to expose them briefly to low pressure, room, temperature gas plasmas. In this paper, the authors present results of using this simple vapor process to pretreat fabricated, porous carbon cathodes which were then assembled in spirally wound, hermetically sealed squat ``D`` sized Li/SO{sub 2} cells (PCI Model G-70). Overall cell performance such as start-up times, load voltage, and ampere-hour capacity were monitored before and after 28 days storage at 71 C. Performance during 3 A discharge at {minus}29 C was enhanced in cells containing plasma-treated cathodes. This treatment procedure should be of practical interest because fabricated carbon cathodes of any size can be quickly processed during normal manufacturing.

  19. Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries

    DOE Patents [OSTI]

    Manthiram, Arumugam; Choi, Wonchang

    2010-05-18T23:59:59.000Z

    The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn2-y-zLiyMzO4 oxide with NH4HF2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

  20. Cathodic protection system design for steel pilings of a wharf structure

    SciTech Connect (OSTI)

    Nikolakakos, S.

    1999-07-01T23:59:59.000Z

    Corrosion of steel pilings in sea and brackish water is mostly due to the establishment of localized corrosion cells and the effects of the tidal changes. The most frequently used corrosion protection systems are coatings and/or cathodic protection. These protective systems when properly designed, installed and operated are very effective in preventing corrosion problems. The design of a cathodic protection system, in order to be effective and reliable, must take into consideration all technical design criteria, the type of materials used, the geometric shape of the structure, environmental conditions, site restrictions, and any outside interferences. These design considerations, as well as the use of design data and an overall design methodology for a cathodic protection system for pipe and sheet piling used in a wharf structure, are discussed in this paper.

  1. Development of a Compact Ion Source with a Hot Hollow Cathode

    SciTech Connect (OSTI)

    Miyamoto, N. [Nissin Ion Equipment Co. LTD., 575 Kuzetonoshiro-Cho Minamiku Kyoto 601-8205 (Japan); Demura, Y.; Imakita, S.; Kasuya, T.; Vasquez, M. R. Jr.; Wada, M. [Graduated School of Engineering Doshisha University, Tatar a-Miyakodani Kyotanabe Kyoto 610-0394 (Japan)

    2011-01-07T23:59:59.000Z

    A compact ion source with 14 mm diameter, 30 mm long discharge region was developed. A total size of the ion source including the beam extraction system was 60 mm in diameter and 160 mm in length. A high temperature coaxial cathode consisting of thin-wall tantalum and tungsten tubes produced a discharge plasma. A source gas was supplied through the inner W tube of the coaxial cathode. A stable plasma of H{sub 2} was maintained with the discharge current of 2.0 A at 68 A cathode heating current. The optimum H{sub 2} gas pressure for ion beam extraction was 2x10{sup -2} Pa. Hydrogen ion beam current was 120 {mu}A (1 mA/cm{sup 2}) at 2.0 A discharge current and 3.0 kV extraction voltage.

  2. Development of Polymer Electrolytes for Advanced Lithium Batteries

    Broader source: Energy.gov (indexed) [DOE]

    * Barriers: (1) Energy density (2) Safety (3) Low cycle life * Partners: * ANL, ALS (at LBNL) and NCEM (at LBNL) Objectives * A) Develop cost-effective method for creating...

  3. Overview of the DOE Advanced Combustion Engine R&D

    Broader source: Energy.gov (indexed) [DOE]

    (NOx and PM Control) ANL - X-ray fuel spray characterization LLNL - Chemical kinetics models (LTC and emissions) LANL - CFD modeling of combustion ...

  4. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations

    E-Print Network [OSTI]

    Ceder, Gerbrand

    Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio (>700 Wh/kg) cathode materials for lithium-ion batteries. 1 Introduction The widespread use of lithium-ion monoclinic phase).5 However, the field of lithium-ion batteries is very active, and a large number

  5. Controlled Nanoparticle Metal Phosphates (Metal = Al, Fe, Ce, and Sr) Coatings on LiCoO2 Cathode Materials

    E-Print Network [OSTI]

    Cho, Jaephil

    Controlled Nanoparticle Metal Phosphates (Metal = Al, Fe, Ce, and Sr) Coatings on LiCoO2 Cathode and annealing temperature are used for MPO4 nanoparticle coatings M = Al, Fe, Ce, and SrH on a LiCoO2 cathode, the extent of the coating coverage is influenced by the nanoparticle size or morphology. Nanoparticles AlPO4

  6. Parameter Estimates for a PEMFC Cathode Qingzhi Guo,* Vijay A. Sethuraman,* and Ralph E. White**,z

    E-Print Network [OSTI]

    Sethuraman, Vijay A.

    PEMFC cathode the volume fraction of gas pores in the gas diffusion layer, the volume fraction of gas in this work indicate that ionic conduction and gas-phase transport are two processes significantly influencing submitted air cathode model8 that includes gas pores in the CAL to estimate the values of the volume

  7. Effect of surface composition of Pt-Au alloy cathode catalyst on the performance of direct methanol fuel cells

    E-Print Network [OSTI]

    Zhao, Tianshou

    Effect of surface composition of Pt-Au alloy cathode catalyst on the performance of direct methanol 2010 Available online 12 June 2010 Keywords: Fuel cell Direct methanol fuel cell Catalyst Active Site Pt-Au alloy a b s t r a c t A pure Pt cathode catalyst in direct methanol fuel cells is not only

  8. Polarization Resistance of La0.85Ca0.15MnO3 Cathodes for Solid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resistance of La0.85Ca0.15MnO3 Cathodes for Solid Oxide Fuel Cells (SOFCs) Measured Using Patterned Electrodes. Polarization Resistance of La0.85Ca0.15MnO3 Cathodes for Solid Oxide...

  9. Power generation by packed-bed air-cathode microbial fuel cells Xiaoyuan Zhang a,b

    E-Print Network [OSTI]

    Park, PA 16802, USA c School of Environment Science and Spatial Informatics, China University of Mining have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water generate electricity from biomass using exoelectrogenic bacteria (Logan, 2008, 2009; Lovley, 2008; Rabaey

  10. Composite Cathode for High-Power Density Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Ilwon Kim; Scott Barnett; Yi Jiang; Manoj Pillai; Nikkia McDonald; Dan Gostovic; Zhongryang Zhan; Jiang Liu

    2004-01-31T23:59:59.000Z

    Reduction of solid oxide fuel cell (SOFC) operating temperature will play a key role in reducing the stack cost by allowing the use of low-cost metallic interconnects and new approaches to sealing, while making applications such as transportation more feasible. Reported results for anode-supported SOFCs show that cathode polarization resistance is the primary barrier to achieving high power densities at operating temperatures of 700 C and lower. This project aims to identify and develop composite cathodes that could reduce SOFC operating temperatures below 700 C. This effort focuses on study and use of (La,Sr)(Co,Fe)O{sub 3} (LSCF) based composite cathodes, which have arguably the best potential to substantially improve on the currently-used, (La,Sr)MnO{sub 3}-Yttria-stabilized Zirconia. During this Phase I, it was successfully demonstrated that high performances can be achieved with LSCF/Gadolinium-Doped Ceria composite cathodes on Ni-based anode supported cells operating at 700 C or lower. We studied electrochemical reactions at LSCF/Yttria-stabilized Zirconia (YSZ) interfaces, and observed chemical reactions between LSCF and YSZ. By using ceria electrolytes or YSZ electrolytes with ceria diffusion barrier layers, the chemical reactions between LSCF and electrolytes were prevented under cathode firing conditions necessary for the optimal adhesion of the cathodes. The protection provided by ceria layer is expected to be adequate for stable long-term cathode performances, but more testing is needed to verify this. Using ceria-based barrier layers, high performance Ni-YSZ anode supported cells have been demonstrated with maximum power densities of 0.8W/cm2 at 700 C and 1.6W/cm{sup 2} at 800 C. Ni-SDC anode supported cells with SDC electrolytes yielded >1W/cm{sup 2} at 600 C. We speculate that the power output of Ni-YSZ anode supported cell at 700 C and lower, was limited by the quality of the Ceria and Ceria YSZ interface. Improvements in the low-temperature performances are expected based on further development of barrier layer fabrication processes and optimization of cathode microstructure.

  11. ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS

    SciTech Connect (OSTI)

    Anil V. Virkar

    2004-05-17T23:59:59.000Z

    This report summarizes the work done during the sixth quarter of the project. Effort was directed in three areas: (1) Further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries and space charge region. (2) Calculation of the effect of space charge and morphology of porous bodies on the effective charge transfer resistance of porous composite cathodes. (3) The investigation of the three electrode system for the measurement of cathodic polarization using amperometric sensors.

  12. Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts

    DOE Patents [OSTI]

    Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne

    2014-08-12T23:59:59.000Z

    Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.

  13. Electron depletion via cathode spot dispersion of dielectric powder into an overhead plasma

    SciTech Connect (OSTI)

    Gillman, Eric D. [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, District of Columbia 20375 (United States)] [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, District of Columbia 20375 (United States); Foster, John E. [Department of Nuclear Engineering and Radiological Sciences (NERS), University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, Michigan 48109 (United States)] [Department of Nuclear Engineering and Radiological Sciences (NERS), University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, Michigan 48109 (United States)

    2013-11-15T23:59:59.000Z

    The effectiveness of cathode spot delivered dielectric particles for the purpose of plasma depletion is investigated. Here, cathode spot flows kinetically entrain and accelerate dielectric particles originally at rest into a background plasma. The time variation of the background plasma density is tracked using a cylindrical Langmuir probe biased approximately at electron saturation. As inferred from changes in the electron saturation current, depletion fractions of up to 95% are observed. This method could be exploited as a means of communications blackout mitigation for manned and unmanned reentering spacecraft as well as any high speed vehicle enveloped by a dense plasma layer.

  14. Single-layer graphene cathodes for organic photovoltaics Marshall Cox, Alon Gorodetsky, Bumjung Kim, Keun Soo Kim, Zhang Jia et al.

    E-Print Network [OSTI]

    Hone, James

    Single-layer graphene cathodes for organic photovoltaics Marshall Cox, Alon Gorodetsky, Bumjung Kim-layer graphene cathodes for organic photovoltaics Marshall Cox,1,a Alon Gorodetsky,2 Bumjung Kim,2 Keun Soo Kim,3-layer graphene is demonstrated as a cathode for organic photovoltaic devices. The measured properties indicate

  15. NETL SOFC: Anode-Electrolyte-Cathode (AEC) Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -AdvancedMIRTBD525AdaptingWaterTerry

  16. Gold and gold-graphene used as cathodic interfaces for scission of carbon-halogen bonds.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Application to the building of anthraquinone-Au electrodes. Jacques Simonet a * and Viatcheslav Jouikov b a as cathode material. This first work points out the immobilization of anthraquinone (AQ) in organic polar.12.024 #12;2 Graphical Abstract Key Words: Graphene; 2-Bromomethylanthraquinone; Anthraquinone electrodes

  17. Effect of nitrate on the performance of single chamber air cathode microbial fuel cells

    E-Print Network [OSTI]

    Tullos, Desiree

    Effect of nitrate on the performance of single chamber air cathode microbial fuel cells Chontisa Accepted 26 August 2008 Published online 11 September 2008 Keywords: Microbial fuel cell Denitrification microbial fuel cells (MFCs) has drawn much attention recently as a new approach of waste- water treatment

  18. PROPERTIES OF CATHODES USED IN THE PHOTOINJECTOR RF GUN AT THE DESY VUV-FEL

    E-Print Network [OSTI]

    to be in the order of 1 %. We have chosen Cesium Tellurite (Cs2Te) as the emissive film for our cathodes since contaminated by resid- ual gases like hydrocarbons and oxygen with a pressure of 1·10-9 mbar even for short

  19. SUPPLEMENTAL INFORMATION The Use and Optimization of Stainless Steel Mesh Cathodes in

    E-Print Network [OSTI]

    of Hydrogen Energy (IJHE) #12;Mesh Surface Area Calculation Figure S1: SS 304 woven mesh configuration, where (or cm2 / cm2 ) Specific area per 7 cm2 cathode: 2 cm45.107 =Ã?S Specific area per reactor volume: 3232

  20. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes

    E-Print Network [OSTI]

    Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes) was tested as a catalyst binder in a microbial fuel cell. 2012 Keywords: Microbial fuel cell Poly(dimethylsiloxane) Anti-flooding Catalyst binder a b s t r a c

  1. Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution

    SciTech Connect (OSTI)

    Zheng, Jianming; Gu, Meng; Genc, Arda; Xiao, Jie; Xu, Pinghong; Chen, Xilin; Zhu, Zihua; Zhao, Wenbo; Pullan, Lee; Wang, Chong M.; Zhang, Jiguang

    2014-04-07T23:59:59.000Z

    Li-rich and Mn-rich (LMR) layered structured materials are very promising cathodes for high-energy lithium-ion batteries. However, their fundamental structure and voltage fading mechanisms are far from being well understood. Here we report the first evidence on the reduced voltage and energy fade of LMR cathode by improving the atomic level spatial distribution of the chemical species. LMR cathode (Li[Li0.2Ni0.2M0.6]O2) prepared by co-precipitation and sol-gel methods are dominated by R-3m phase and show significant Ni-segregation at the surface of the particles. They exhibit large voltage-fade and fast capacity degradation. In contrast, LMR cathode prepared by hydrothermal assisted method is dominated by C2/m phase and minimal Ni-segregation. It also demonstrates much smaller voltage-fade and excellent capacity retention. The fundamental correlation between the atomic level spatial distribution of the chemical species and the functional stability of the materials found in this work also guide the design of other functional materials with enhanced stabilities.

  2. Methanol adsorbates on the DMFC cathode and their effect on the cell performance

    E-Print Network [OSTI]

    Zhao, Tianshou

    Methanol adsorbates on the DMFC cathode and their effect on the cell performance J. Prabhuram, T in the performance of a direct methanol fuel cell (DMFC) occurred after the cell had been operated at a higher temperature with higher methanol concentrations as compared with the polarization data collected under

  3. Studies of a Hollow Cathode Discharge using Mass Spectrometry and Electrostatic Probe Techniques

    E-Print Network [OSTI]

    Boyer, Edmond

    , the electron density and electron temperature were measured for different values of the gas pressure, discharge. Hollow cathode discharges (HCD) are capable of generating dense plasmas and have been used for development of high-rate, low-pressure, high-efficiency processing machines. The geometric feature of a HCD

  4. A MICROSTRUCTURED CATHODE FOR FUEL CELL WITH SELF-REGULATED O2 BUBBLE CREATION AND CONSUMPTION

    E-Print Network [OSTI]

    pumping mechanism [1]. In the bubble pumping mechanism, carbon dioxide generated inside the anodic channel forms bubbles that fill the channel and directionally grow away from the check valve. The carbon dioxideA MICROSTRUCTURED CATHODE FOR FUEL CELL WITH SELF-REGULATED O2 BUBBLE CREATION AND CONSUMPTION

  5. SUPPORTING INFORMATION Comparison of non-precious metal cathode materials for methane

    E-Print Network [OSTI]

    S1 SUPPORTING INFORMATION Comparison of non-precious metal cathode materials for methane production H2SO4, and again in de-ionized water. Butyl rubber stoppers were used to prevent loss of gas from thick and 43 mm diameter) were cut from large butyl rubber sheets (McMaster-Carr, Cleveland, OH, USA

  6. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    DOE Patents [OSTI]

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28T23:59:59.000Z

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  7. Field emission from strained carbon nanotubes on cathode substrate D. Roy Mahapatra a,

    E-Print Network [OSTI]

    Melnik, Roderick

    Field emission from strained carbon nanotubes on cathode substrate D. Roy Mahapatra a, *, N. Sinha, Waterloo, Ont. N2L3C5, Canada 1. Introduction Field emission from carbon nanotube (CNT) was first reported, the use of CNTs in the field emission devices (e.g., field emission displays, X-ray tube sources, electron

  8. Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations

    E-Print Network [OSTI]

    Yildiz, Bilge

    to drive fast ionic transport. 1. Introduction The interest in Solid Oxide Fuel Cell (SOFC) technologyOxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights. Current targets of cost and durability necessitate solid oxide fuel cells to operate in the intermediate

  9. A flat-cathode thermionic injector for the PHERMEX Radiographic Facility

    SciTech Connect (OSTI)

    Kauppila, T.; Builta, L.; Burns, M.; Gregory, W.; Honaberger, D.; Watson, S. (Los Alamos National Lab., NM (United States)); Hughes, T. (Mission Research Corp., Albuquerque, NM (United States))

    1993-01-01T23:59:59.000Z

    The PHERMEX (Pulsed High-Energy Radiographic Machine Emitting X-rays) standing-wave linear accelerator is a high-current electron beam generator used for flash-radiography. An improved electron gun has been designed employing a flat-thermionic cathode to replace the existing Pierce-geometry gun. The flat cathode yields increased current with the same applied voltage and cathode area as the Pierce gun. The ISIS code simulations indicate a beam current of 1.5 kA at 600 kV. The new geometry also reduces the probability for high voltage breakdown in the A-K gap. A reentrant magnet captures the expanding electron beam and a bucking coil nulls cathode-tinge field. A third coil is used to optimize the extraction field profile and reduce the effect of nonlinear space charge on the beam emittance. Time-resolved measurements of beam current and voltage have been made. In addition, a streak camera was used to measure beam emittance and spatial profile. Comparisons of measurements with simulations are presented.

  10. A flat-cathode thermionic injector for the PHERMEX Radiographic Facility

    SciTech Connect (OSTI)

    Kauppila, T.; Builta, L.; Burns, M.; Gregory, W.; Honaberger, D.; Watson, S. [Los Alamos National Lab., NM (United States); Hughes, T. [Mission Research Corp., Albuquerque, NM (United States)

    1993-06-01T23:59:59.000Z

    The PHERMEX (Pulsed High-Energy Radiographic Machine Emitting X-rays) standing-wave linear accelerator is a high-current electron beam generator used for flash-radiography. An improved electron gun has been designed employing a flat-thermionic cathode to replace the existing Pierce-geometry gun. The flat cathode yields increased current with the same applied voltage and cathode area as the Pierce gun. The ISIS code simulations indicate a beam current of 1.5 kA at 600 kV. The new geometry also reduces the probability for high voltage breakdown in the A-K gap. A reentrant magnet captures the expanding electron beam and a bucking coil nulls cathode-tinge field. A third coil is used to optimize the extraction field profile and reduce the effect of nonlinear space charge on the beam emittance. Time-resolved measurements of beam current and voltage have been made. In addition, a streak camera was used to measure beam emittance and spatial profile. Comparisons of measurements with simulations are presented.

  11. Facile synthesis of Li2Spolypyrrole composite structures for high-performance Li2S cathodes

    E-Print Network [OSTI]

    Cui, Yi

    Facile synthesis of Li2S­polypyrrole composite structures for high-performance Li2S cathodes Zhi demon- strate facile, in situ synthesis of Li2S­polypyrrole composites for use as high-performance Li2S polysulfides during cycling. Poly- pyrrole, being a conducting polymer, also helps to facilitate elec- tronic

  12. Dramatic Reduction of Water Crossover in Direct Methanol Fuel Cells by Cathode Humidification

    E-Print Network [OSTI]

    concentration methanol fuel cells, the water transport coefficient through the membrane must be reducedDramatic Reduction of Water Crossover in Direct Methanol Fuel Cells by Cathode Humidification much higher than 60°C and in active air-flowing direct methanol fuel cell systems with high power

  13. Electrochimica Acta 52 (2006) 14091416 Optimization of cathode catalyst layer for direct methanol fuel cells

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    methanol fuel cells (DMFCs) features a large thickness and mass transport loss due to higher Pt loading electrolyte fuel cells, as a result of an optimum balance of proton transport and oxygen diffusion. Different rights reserved. Keywords: Direct methanol fuel cell; Cathode; Catalyst layer; Porosity distribution

  14. innovati nNREL Enhances the Performance of a Lithium-Ion Battery Cathode

    E-Print Network [OSTI]

    potential environmental and safety issues. The search for a replacement cathode material has led to lithium, the chemical reaction of the anode with the electrolyte causes electrons to enter the wire, moving throughFePO4 is due to the particular geometry of its electronic struc- ture--in technical terms, it has

  15. Computational Modeling of Electrolyte/Cathode Interfaces in Proton Exchange Membrane Fuel Cells

    E-Print Network [OSTI]

    Bjørnstad, Ottar Nordal

    Computational Modeling of Electrolyte/Cathode Interfaces in Proton Exchange Membrane Fuel Cells Dr Proton exchange membrane fuel cells (PEMFCs) are alternative energy conversion devices that efficiently. The fundamental relationship between operating conditions and device performance will help to optimize the device

  16. HIGH-CURRENT COLD CATHODE FIELD EMISSION ARRAY FOR ELECTRON LENS APPLICATION

    SciTech Connect (OSTI)

    Hirshfield, Jay L

    2012-12-28T23:59:59.000Z

    During Phase I, the following goals were achieved: (1) design and fabrication of a novel, nano-dimensional CNT field emitter assembly for high current density application, with high durability; (2) fabrication of a ceramic based micro channel plate (MCP) and characterization of its secondary electron emission; and (3) characterizing the CNT/MCP cathode for high field emission and durability. As a result of these achievements, a relatively high current density of ~ 1.2 A/cm2 from a CNT cathode and single channel MCP were measured. The emission current was also extremely stable with a peak-to-peak variation of only 1.8%. The emission current could be further enhanced to meet requirements for electron lens applications by increasing the number of MCP channels. A calculation for maximum possible current density with a 1200 channel/cm2 MCP, placed over a cathode with 1200 uniformly functioning CNTs, would be ~1.46 kA/cm2, neglecting space charge limitations. Clearly this level of emission is far greater than what is needed for the electron lens application, but it does offer a highly comforting margin to account for sub-standard emitters and/or to allow the lesser challenge of building a cathode with fewer channels/cm2. A satisfactory goal for the electron lens application would be a controllable emission of 2-4 mA per channel in an ensemble of 800-1200 uniformly-functioning channels/cm2, and a cathode with overall area of about 1 cm2.

  17. Institute for ADVANCED STUDY

    E-Print Network [OSTI]

    OF EVENTS 91 · REPORT OF THE INSTITUTE LIBRARIES 93 · INSTITUTE FOR ADVANCED STUDY/PARK CITY MATHEMATICS. The Institute for Advanced Study has sustained this founding principle for more than sixty-five years

  18. Institute Jor ADVANCED STUDY

    E-Print Network [OSTI]

    for advanced study HELENE L. KAPLAN Of Counsel Skiiddcn Arps Slate Meagher & Flam PETER R. KANN Chairman

  19. Observation of radio frequency ring-shaped hollow cathode discharge plasma with MgO and Al electrodes for plasma processing

    SciTech Connect (OSTI)

    Ohtsu, Yasunori, E-mail: ohtsuy@cc.saga-u.ac.jp; Matsumoto, Naoki [Department of Electrical and Electronic Engineering, Graduate School of Science and Engineering, Saga University, 1 Honjo-machi, Saga 840-8502 (Japan)

    2014-05-15T23:59:59.000Z

    Various high-density plasma sources have been proposed for plasma processing. Especially, the hollow cathode discharge is one of the powerful ones. In this work, radio-frequency (RF) driven ring-shaped hollow cathode discharges with high secondary-electron emission have been investigated, using an aluminum (Al) cathode, coated or not with magnesium oxide (MgO). The thickness of MgO thin film is approximately 200?nm. The RF discharge voltage for the coated cathode is almost the same as that for the uncoated one, in a wide range of Ar gas pressure, from 5.3 to 53.2?Pa. The results reveal that the plasma density has a peak at an Ar gas pressure of 10.6?Pa for both cathodes. The plasma density for the coated cathode is about 1.5–3 times higher than that for the uncoated one, at various gas pressures. To the contrary, the electron temperature for the coated cathode is lower than temperature obtained with the uncoated cathode, at various gas pressures. Radial profiles of electron saturation current, which is proportional to plasma flux, are also examined for a wide range of gas pressure. Radial profiles of electron temperature at various axial positions are almost uniform for both cathodes so that the diffusion process due to density gradient is dominant for plasma transport. The secondary electrons emitted from the coated cathode contribute to the improvement of the plasma flux radial profile obtained using the uncoated cathode.

  20. Italian Academy Advanced Studies

    E-Print Network [OSTI]

    Qian, Ning

    The Italian Academy for Advanced Studies in America at Columbia University Annual Report 2006­2007 The Italian Academy for Advanced Studies in America at Columbia University Annual Report 2006­2007 #12;italian academy for advanced studies in america 1161 Amsterdam Avenue New York, NY 10027 tel: (212) 854-2306 fax

  1. Vehicle Technologies Office Merit Review 2015: Studies on High Capacity Cathodes for Advanced Lithium-ion Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about studies on high...

  2. Cite this: RSC Advances, 2013, 3, Cathodic ALD V2O5 thin films for high-rate

    E-Print Network [OSTI]

    Ghodssi, Reza

    storage come into sight. Introduction Electrochemical energy storage devices with simultaneously high nanostructures.5 As a result, there has been fast growing interest in using ALD materials for energy storage energy storage3 Received 23rd November 2012, Accepted 21st January 2013 DOI: 10.1039/c3ra23031g www

  3. Vehicle Technologies Office Merit Review 2014: Studies on High Capacity Cathodes for Advanced Lithium-ion Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about studies on high...

  4. Synthesis and Lithiation Mechanisms of Dirutile and Rutile LiMnF4: Two New Conversion Cathode Materials

    E-Print Network [OSTI]

    Twu, Nancy H.

    Driven by the need for new cathode battery materials with high energy density, fluorides have emerged as promising candidates due to their high voltages. From high throughput computations, dirutile LiMnF4 was identified ...

  5. 384 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 32, NO. 2, APRIL 2004 Efficient Particle Simulation of a Virtual Cathode

    E-Print Network [OSTI]

    Krasny, Robert

    of a Virtual Cathode Using a Grid-Free Treecode Poisson Solver Andrew J. Christlieb, Robert Krasny, and John P by National Science Foundation under Grant DMS-9977371 and Grant DMS-0107187. A. J. Christlieb and R. Krasny

  6. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    DOE Patents [OSTI]

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22T23:59:59.000Z

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  7. Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing

    E-Print Network [OSTI]

    Mueller, Tim

    Cathode materials with structure similar to the mineral tavorite have shown promise for use in lithium-ion batteries, but this class of materials is relatively unexplored. We use high-throughput density-functional-theory ...

  8. Designing materials for energy storage with high power and energy density : LiFePO? cathode material

    E-Print Network [OSTI]

    Kang, Byoungwoo

    2010-01-01T23:59:59.000Z

    LiFePO? has drawn a lot of attention as a cathode material in lithium rechargeable batteries because its structural and thermal stability, its inexpensive cost, and environmental friendliness meet the requirements of power ...

  9. A comparison of the marginal adaptation of cathode-arc vapor-deposited titanium and cast base metal copings.

    E-Print Network [OSTI]

    Wu, Jean C; Lai, Li-Chung; Sheets, Cherilyn G; Earthman, James; Newcomb, Robert

    2011-01-01T23:59:59.000Z

    without use of the lost wax method. 22 The cathode-arcusing the conventional lost wax casting technique and con-The die was dipped into a wax pot (Hotty; Renfert GmbH,

  10. Platinum-Alloy Cathode Catalyst Degradation in Proton Exchange Membrane Fuel Cells: Nanometer-Scale Compositional and Morphological Changes

    E-Print Network [OSTI]

    Chen, Shuo

    Electrochemical measurements showed an ?75% Pt surface area loss and an ?40% specific activity loss for a membrane electrode assembly (MEA) cathode with acid-treated “Pt[subscript 3]Co ” catalyst particles in a H[subscript ...

  11. New nanocrystalline manganese oxides as cathode materials for lithium batteries : electron microscopy, electrochemical and X-ray absorption studies

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 New nanocrystalline manganese oxides as cathode materials for lithium batteries : electron: manganese oxide, lithium batteries, nanomaterials Corresponding author: Pierre Strobel, tel. 33 476 887 940 with lithium iodide in aqueous medium at room temperature. Transmission electron microscopy (TEM) showed

  12. Design and Implementation of a Liquid Nitrogen-Cooled Hollow Cathode Discharge Source for the Study of the Reaction H+

    E-Print Network [OSTI]

    McCall, Benjamin J.

    Design and Implementation of a Liquid Nitrogen-Cooled Hollow Cathode Discharge Source for the Study in the first place and providing me with this incredible opportunity! You guys rock! 2 #12;Introduction Work

  13. Optimization of the Cathode Catalyst Layer Composition of a PEM Fuel Cell Using a Novel 2-Step Preparation Method

    E-Print Network [OSTI]

    Friedmann, Roland

    2009-03-05T23:59:59.000Z

    For good performance and high durability PEM fuel cells run at high water saturation levels. However, excess liquid water generated by the oxygen reduction reaction at the cathode can block pores in the catalyst layer so that reactant gases can...

  14. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect (OSTI)

    Dr. Ralph E. White

    2000-09-30T23:59:59.000Z

    The dissolution of NiO cathodes during cell operation is a limiting factor to the successful commercialization of molten carbonate fuel cells (MCFCs). Microencapsulation of the NiO cathode has been adopted as a surface modification technique to increase the stability of NiO cathodes in the carbonate melt. The material used for surface modification should possess thermodynamic stability in the molten carbonate and also should be electro catalytically active for MCFC reactions. A simple first principles model was developed to understand the influence of exchange current density and conductivity of the electrode material on the polarization of MCFC cathodes. The model predictions suggest that cobalt can be used to improve the corrosion resistance of NiO cathode without affecting its performance. Cobalt was deposited on NiO cathode by electroless deposition. The morphology and thermal oxidation behavior of Co coated NiO was studied using scanning electron microscopy and thermal gravimetric analysis respectively. The electrochemical performance of cobalt encapsulated NiO cathodes were investigated with open circuit potential measurement and current-potential polarization studies. These results were compared to that of bare NiO. The electrochemical oxidation behavior of cobalt-coated electrodes is similar to that of the bare NiO cathode. Dissolution of nickel into the molten carbonate melt was less in case of cobalt encapsulated nickel cathodes. Co coated on the surface prevents the dissolution of Ni in the melt and thereby stabilizes the cathode. Finally, cobalt coated nickel shows similar polarization characteristics as nickel oxide. A similar surface modification technique has been used to improve the performance of the SS 304 current collectors used in MCFC cells. SS 304 was encapsulated with nanostructured layers of NiCo and NiMo by electroless deposition. The corrosion behavior of bare and surface modified SS 304 in molten carbonate under cathode gas atmosphere was investigated with cyclic voltammetry, open circuit potential studies, Tafel polarization, impedance analysis and atomic absorption spectroscopy. This study confirms that the presence of surface modification leads to the formation of complex scales with better barrier properties and electronic conductivity.

  15. A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anders, Andre

    2014-10-01T23:59:59.000Z

    High power impulse magnetron sputtering (HiPIMS) has been in the center of attention over the last years as it is an emerging physical vapor deposition (PVD) technology that combines advantages of magnetron sputtering with various forms of energetic deposition of films such as ion plating and cathodic arc plasma deposition. It should not come at a surprise that many extension and variations of HiPIMS make use, intentionally or unintentionally, of previously discovered approaches to film processing such as substrate surface preparation by metal ion sputtering and phased biasing for film texture and stress control. Therefore, in this review, an overview is given on some historical developments and features of cathodic arc and HiPIMS plasmas, showing commonalities and differences. To limit the scope, emphasis is put on plasma properties, as opposed to surveying the vast literature on specific film materials and their properties.

  16. The evolution of ion charge states in cathodic vacuum arc plasmas: a review

    SciTech Connect (OSTI)

    Anders, Andre

    2011-12-18T23:59:59.000Z

    Cathodic vacuum arc plasmas are known to contain multiply charged ions. 20 years after “Pressure Ionization: its role in metal vapour vacuum arc plasmas and ion sources” appeared in vol. 1 of Plasma Sources Science and Technology, it is a great opportunity to re-visit the issue of pressure ionization, a non-ideal plasma effect, and put it in perspective to the many other factors that influence observable charge state distributions, such as the role of the cathode material, the path in the density-temperature phase diagram, the “noise” in vacuum arc plasma as described by a fractal model approach, the effects of external magnetic fields and charge exchange collisions with neutrals. A much more complex image of the vacuum arc plasma emerges putting decades of experimentation and modeling in perspective.

  17. Final Technical Report- Back-gate Field Emission-based Cathode RF Electron Gun

    SciTech Connect (OSTI)

    McGuire, Gary; Martin, Allen; Noonan, John

    2010-10-30T23:59:59.000Z

    The objective was to complete the design of an electron gun which utilizes a radio frequency (RF) power source to apply a voltage to a field emission (FE) cathode, a so called cold cathode, in order to produce an electron beam. The concept of the RF electron gun was originally conceived at Argonne National Laboratory but never reduced to practice. The research allowed the completion of the design based upon the integration of the FE electron source. Compared to other electron guns, the RF gun is very compact, less than one third the size of other comparable guns, and produces a high energy (to several MeV), high quality, high power electron beam with a long focal length with high repetition rates. The resultant electron gun may be used in welding, materials processing, analytical equipment and waste treatment.

  18. THE EFFECT OF A-SITE STOICHIOMETRY ON LSCF CATHODE PERFORMANCE AND STABILITY

    SciTech Connect (OSTI)

    Templeton, Jared W.; Hardy, John S.; Lu, Zigui; Stevenson, Jeffry W.

    2011-11-01T23:59:59.000Z

    Anode-supported solid oxide fuel cells (SOFCs) were prepared and tested identically except for variations in the A-site stoichiometry of the LSCF cathode. A commercial supplier provided lanthanum strontium cobalt ferrite (LSCF) powders that were stoichiometric [La0.6Sr0.4Co0.2Fe0.8O3-?], A-site deficient [(La0.6Sr0.4)1-xCo0.2Fe0.8O3-?], and Sr-deficient [La0.6Sr0.4-xCo0.2Fe0.8O3-?], in which the imposed deficiency (x) was 0.02, 0.05, and 0.1 in the non-stoichiometric cases. Multiple 1,000 hour tests were run using each LSCF cathode composition. The performance and stability of the cells will be discussed.

  19. A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS)

    SciTech Connect (OSTI)

    Anders, Andre

    2014-08-17T23:59:59.000Z

    High power impulse magnetron sputtering (HiPIMS) has been in the center of attention over the last years as it is an emerging physical vapor deposition (PVD) technology that combines advantages of magnetron sputtering with various forms of energetic deposition of films such as ion plating and cathodic arc plasma deposition. It should not come at a surprise that many extension and variations of HiPIMS make use, intentionally or unintentionally, of previously discovered approaches to film processing such as substrate surface preparation by metal ion sputtering and phased biasing for film texture and stress control. Therefore, in this review, an overview is given on some historical developments and features of cathodic arc and HiPIMS plasmas, showing commonalities and differences. To limit the scope, emphasis is put on plasma properties, as opposed to surveying the vast literature on specific film materials and their properties.

  20. A model for the self-pulsing regime of microhollow cathode discharges

    SciTech Connect (OSTI)

    Chabert, P.; Lazzaroni, C.; Rousseau, A. [LPP, Ecole Polytechnique, UPMC, CNRS, Paris XI, 91128 Palaiseau (France)

    2010-12-01T23:59:59.000Z

    Microhollow cathode discharges may operate in different regimes depending of the discharge current. They are subject to relaxation oscillations in the so-called self-pulsing regime in which the discharge oscillates between two quasiequilibria: at low current it remains confined in the microhole whereas it expands on the cathode backside during short high-current pulses. A model based on a nonlinear discharge resistance is proposed to describe the phenomenon. The analysis of the dynamics reveals that the current pulse rises in an extremely short time while the characteristic (longer) decay time is imposed by the resistance when the discharge is expanded outside the hole. It is shown how the nonlinear discharge resistance may be inferred from the experimental current-voltage signals.

  1. Influence of zirconium and niobium on cathodic deposition of uranium dioxide from alkali chloride melts

    SciTech Connect (OSTI)

    Komarov, V.E.; Borodina, N.P.; Martem`yanova, Z.S. [Institute of High-Temperature Electrochemistry, Ekaterinburg (Russian Federation)

    1995-07-01T23:59:59.000Z

    Electrocrystallization of uranium dioxide from molten chloride electrolytes in the presence of zirconium(IV) and niobium(V) was studied by voltammetry. Zirconium(IV) was found to react with uranium dioxide according to exchange mechanism to form (1 - x)UO{sub 2}{center_dot}xZrO{sub 2} solid solutions. Niobium(IV), a product of cathodic reduction of niobium(V), enters into the exchange reaction with uranium dioxide to yield (1 - y)UO{sub 2{center_dot}y}NbO{sub 2} solid solutions. In the case of simultaneous presence of Nb(V) and Zr(IV) in electrolyte, ternary (1 - x - y)UO{sub 2 {center_dot}x}ZrO{sub 2{center_dot}y}NbO{sub 2} solid solutions are obtained at the cathode surface. Nucleation of the solid solutions phase was shown to occurs at the most active sites of the crystalline precipitate of uranium dioxide.

  2. Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell

    E-Print Network [OSTI]

    Natarajan, Dilip; Van Nguyen, Trung

    2003-03-27T23:59:59.000Z

    . 30 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0123456789 Channel Length (cm) Abs . V a lue of V o lum e A v e r aged Cur r e nt D e nsity (A /cm 2 ) 10 0.6 A/cm2 0.8 A/cm2 1.2 A/cm2 - Base case 1.5 A/cm2 3.0 A/cm2 Infinite Cathode Overpotential= - 0.5V....3 0.4 0.5 0.6 0123456789 Channel Length (cm) Abs. V a lue of V o lum e A ver aged C u r r e nt D e ns ity (A/ c m 2 ) 10 Dry - Base case 25% Humidified 50% Humidified 75% Humidified 100% Humidified Cathode Overpotential= -0.5V Figure 10...

  3. The effect of cathodic protection on duplex stainless steels in sea water

    SciTech Connect (OSTI)

    Francis, R.; Byrne, G.; Warburton, G.R. [Weir Materials Ltd., Manchester (United Kingdom)

    1995-11-01T23:59:59.000Z

    The report reviews the available data on the embrittlement of duplex stainless steels under cathodic protection in sea water. Much of this data has previously been unpublished. The results show that while hydrogen enters duplex alloys at typical protection potentials ({minus}1V SCE) the risk of failure is very low. The austenite phase tends to block cracks in the ferrite, and very high stresses are needed to produce fracture of the austenite or austenite-ferrite phase boundaries to enable crack propagation to occur. The smaller the grain size the more resistant duplex stainless steel is to embrittlement. The report also shows that currently used design stresses for duplex alloys are well below the stresses needed to produce failure. The service experiences with cathodically protected duplex are reviewed and the few failures explained. The report concludes that at normal protection potentials the risk of failure of duplex stainless steel due to hydrogen embrittlement is extremely low.

  4. A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anders, Andre

    2014-10-01T23:59:59.000Z

    High power impulse magnetron sputtering (HiPIMS) has been in the center of attention over the last years as it is an emerging physical vapor deposition (PVD) technology that combines advantages of magnetron sputtering with various forms of energetic deposition of films such as ion plating and cathodic arc plasma deposition. It should not come at a surprise that many extension and variations of HiPIMS make use, intentionally or unintentionally, of previously discovered approaches to film processing such as substrate surface preparation by metal ion sputtering and phased biasing for film texture and stress control. Therefore, in this review, an overviewmore »is given on some historical developments and features of cathodic arc and HiPIMS plasmas, showing commonalities and differences. To limit the scope, emphasis is put on plasma properties, as opposed to surveying the vast literature on specific film materials and their properties.« less

  5. Development of Ni1-xCoxO as the cathode/interconnect contact for solid oxide fuel cells

    SciTech Connect (OSTI)

    Lu, Zigui; Xia, Guanguang; Templeton, Joshua D.; Li, Xiaohong S.; Nie, Zimin; Yang, Zhenguo; Stevenson, Jeffry W.

    2011-06-01T23:59:59.000Z

    A new type of material, Ni1-xCoxO, was developed for solid oxide fuel cell (SOFC) cathode/interconnect contact applications. The phase structure, coefficient of thermal expansion, sintering behavior, electrical property, and mechanical bonding strength of these materials were evaluated against the requirements of the SOFC cathode/interconnect contact. A dense cathode/interconnect contact layer was developed through reaction sintering from Ni and Co metal powders. An area specific resistance (ASR) as low as 5.5 mohm.cm2 was observed after 1000 h exposure in air at 800 °C for the LSM/Ni0.33Co0.67O/AISI441 assembly. Average mechanical strengths of 6.8 and 5.0 MPa were obtained for the cathode/contact/cathode and interconnect/contact/interconnect structures, respectively. The significantly low ASR was probably due to the dense structure and therefore improved electrical conductivity of the Ni0.33Co0.67O contact and the good bonding of the interfaces between the contact and the cathode, and between the contact and the interconnect.

  6. Electrochemical properties of lithium polymer batteries with doped polyaniline as cathode material

    SciTech Connect (OSTI)

    Manuel, James [Department of Chemical and Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of)] [Department of Chemical and Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Kim, Jae-Kwang; Matic, Aleksandar; Jacobsson, Per [Department of Applied Physics, Chalmers University of Technology, SE-41296 Göteborg (Sweden)] [Department of Applied Physics, Chalmers University of Technology, SE-41296 Göteborg (Sweden); Chauhan, Ghanshyam S. [Department of Chemistry, Himachal Pradesh University, Shimla 171005 (India)] [Department of Chemistry, Himachal Pradesh University, Shimla 171005 (India); Ha, Jong Keun; Cho, Kwon-Koo [Department of Materials Science and Engineering, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of)] [Department of Materials Science and Engineering, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical and Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of)] [Department of Chemical and Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of)

    2012-10-15T23:59:59.000Z

    Graphical abstract: -- Abstract: Polyaniline (PANI) was doped with different lithium salts such as LiPF{sub 6} and LiClO{sub 4} and evaluated as cathode-active material for application in room-temperature lithium batteries. The doped PANI was characterized by FTIR and XPS measurements. In the FTIR spectra, the characteristic peaks of PANI are shifted to lower bands as a consequence of doping, and it is more shifted in the case of PANI doped with LiPF{sub 6}. The cathodes prepared using PANI doped with LiPF{sub 6} and LiClO{sub 4} delivered initial discharge capacities of 125 mAh g{sup ?1} and 112 mAh g{sup ?1} and stable reversible capacities of 114 mAh g{sup ?1} and 81 mAh g{sup ?1}, respectively, after 10 charge–discharge cycles. The cells were also tested using polymer electrolyte, which delivered highest discharge capacities of 142.6 mAh g{sup ?1} and 140 mAh g{sup ?1} and stable reversible capacities of 117 mAh g{sup ?1} and 122 mAh g{sup ?1} for PANI-LiPF{sub 6} and PANI-LiClO{sub 4}, respectively, after 10 cycles. The cathode prepared with LiPF{sub 6} doped PANI shows better cycling performance and stability as compared to the cathode prepared with LiClO{sub 4} doped PANI using both liquid and polymer electrolytes.

  7. Nanostructured ceria based thin films ({<=}1 {mu}m) As cathode/electrolyte interfaces

    SciTech Connect (OSTI)

    Hierso, J. [Laboratoire de Chimie de la Matiere Condensee de Paris, Universite Paris 6-UMR 7574-College de France, 11 Place Marcelin Berthelot, 75005 Paris (France); Boy, P.; Valle, K. [CEA-Le Ripault, LSCG, BP 15, 37000 Monts (France); Vulliet, J.; Blein, F. [CEA-Le Ripault, LCCA, BP 15, 37000 Monts (France); Laberty-Robert, Ch., E-mail: christel.laberty@upmc.fr [Laboratoire de Chimie de la Matiere Condensee de Paris, Universite Paris 6-UMR 7574-College de France, 11 Place Marcelin Berthelot, 75005 Paris (France); Sanchez, C. [Laboratoire de Chimie de la Matiere Condensee de Paris, Universite Paris 6-UMR 7574-College de France, 11 Place Marcelin Berthelot, 75005 Paris (France)

    2013-01-15T23:59:59.000Z

    Gadolinium doped cerium oxide (CGO: Ce{sub 0,9}Gd{sub 0,1}O{sub 2-{delta}}) films were used as an oxygen anion diffusion layer at the cathode/electrolyte interface of Solid Oxide Fuel Cells (SOFCs), between LSCF (lanthanum strontium cobalt ferrite) and YSZ (yttria-stabilized zirconia). Thin ({approx}100 nm) and thick ({approx}700 nm) mesoporous CGO layers were synthesized through a sol-gel process including organic template coupled with the dip-coating method. Structural and microstructural characterizations were performed, highlighting a well-bonded crystalline CGO nanoparticles network which delineates a 3-D inter-connected mesoporous network. Their electrical behaviors were investigated by impedance spectroscopy analysis of YSZ/mesoporous-CGO/LSCF half-cell. Anode-supported SOFCs, operating at 800 Degree-Sign C, with either dense or mesoporous CGO dip-coated interlayers were also fabricated [NiO-YSZ anode/YSZ/CGO/LSCF cathode]. The impact of the mesoporous CGO interlayers on SOFCs performances was investigated by galvanostatic analysis and compared to the behavior of a dense CGO interlayer. The polarization curves revealed an enhancement in the electrical performance of the cell, which is assigned to a decrease of the polarization resistance at the cathode/electrolyte interface. The integrity and connectivity of the CGO nanoparticles bonded network facilitates O{sup 2-} transport across the interface. - Graphical abstract: Thin and thick CGO films have been prepared through a sol-gel process and their potential application as SOFC cathode/electrolyte interlayer in SOFC has been investigated. Highlights: Black-Right-Pointing-Pointer Mesoporous ceria based thin films exhibit interesting performances for Solid Oxide Fuel Cell. Black-Right-Pointing-Pointer Mesoporous films were synthesized through the sol-gel process combined with the dip-coating. Black-Right-Pointing-Pointer Integrity and connectivity of the nanoparticles facilitates O{sup 2-} transport across the interface.

  8. Power Densities Using Different Cathode Catalysts (Pt and CoTMPP)

    E-Print Network [OSTI]

    that the maximum power achieved using ferricyanide ion as oxidant in the cathode chamber was 50-80% greater than and PTFE) in Single Chamber Microbial Fuel Cells S H A O A N C H E N G , H O N G L I U , A N D B R U C E catalysts and binders were examined for their effect on power densities in single chamber, air

  9. Facile synthesis of nanostructured vanadium oxide as cathode materials for efficient Li-ion batteries

    E-Print Network [OSTI]

    Cao, Guozhong

    -ion batteries Yanyi Liu,a Evan Uchaker,a Nan Zhou,ab Jiangang Li,ac Qifeng Zhanga and Guozhong Cao*a Received 23 and VO2 (B) nanorods were tested as active cathode materials for Li-ion batteries. The V2O5 sheet for efficient Li-ion batteries. Introduction The expansion and demands for energy use in the past several

  10. Synthesis, Characterization and Testing of Novel Anode and Cathode Materials for Li-Ion Batteries

    SciTech Connect (OSTI)

    White, Ralph E.; Popov, Branko N.

    2002-10-31T23:59:59.000Z

    During this program we have synthesized and characterized several novel cathode and anode materials for application in Li-ion batteries. Novel synthesis routes like chemical doping, electroless deposition and sol-gel method have been used and techniques like impedance, cyclic voltammetry and charge-discharge cycling have been used to characterize these materials. Mathematical models have also been developed to fit the experimental result, thus helping in understanding the mechanisms of these materials.

  11. USE OF COUPLED MULTI-ELECTRODE ARRAYS TO ADVANCE THE UNDERSTANDING OF SELECTED CORROSION PHENOMENA

    SciTech Connect (OSTI)

    N.D. Budiansky; F. Bocher; H. Cong; M.F. Hurley; J.R. Scully

    2006-02-23T23:59:59.000Z

    The use of multi-coupled electrode arrays in various corrosion applications is discussed with the main goal of advancing the understanding of various corrosion phenomena. Both close packed and far spaced electrode configurations are discussed. Far spaced electrode arrays are optimized for high throughput experiments capable of elucidating the effects of various variables on corrosion properties. For instance the effects of a statistical distribution of flaws on corrosion properties can be examined. Close packed arrays enable unprecedented spatial and temporal information on the behavior of local anodes and cathodes. Interactions between corrosion sites can trigger or inhibit corrosion phenomena and affect corrosion damage evolution.

  12. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOE Patents [OSTI]

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24T23:59:59.000Z

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  13. Magnetic dipole discharges. II. Cathode and anode spot discharges and probe diagnostics

    SciTech Connect (OSTI)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)] [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States); Ionita, C.; Schrittwieser, R. [Institute for Ion Physics and Applied Physics, University of Innsbruck, A-6020 Innsbruck (Austria)] [Institute for Ion Physics and Applied Physics, University of Innsbruck, A-6020 Innsbruck (Austria)

    2013-08-15T23:59:59.000Z

    The high current regime of a magnetron-type discharge has been investigated. The discharge uses a permanent magnet as a cold cathode which emits secondary electrons while the chamber wall or a grounded electrode serves as the anode. As the discharge voltage is increased, the magnet develops cathode spots, which are short duration arcs that provide copious electrons to increase the discharge current dramatically. Short (1 ?s), high current (200 A) and high voltage (750 V) discharge pulses are produced in a relaxation instability between the plasma and a charging capacitor. Spots are also observed on a negatively biased plane Langmuir probe. The probe current pulses are as large as those on the magnet, implying that the high discharge current does not depend on the cathode surface area but on the properties of the spots. The fast current pulses produce large inductive voltages, which can reverse the electrical polarity of the magnet and temporarily operate it as an anode. The discharge current may also oscillate at the frequency determined by the charging capacitor and the discharge circuit inductance. Each half cycle of high-current current pulses exhibits a fast (?10 ns) current rise when a spot is formed. It induces high frequency (10–100 MHz) transients and ringing oscillations in probes and current circuits. Most probes behave like unmatched antennas for the electromagnetic pulses of spot discharges. Examples are shown to distinguish the source of oscillations and some rf characteristics of Langmuir probes.

  14. Cathodic reduction of sulfur dioxide in nonaqueous electrolytes. polarization curves at porous Electrodes

    SciTech Connect (OSTI)

    Shembel, E.M.; Danilova, N.P.; Ksenzhek, O.S.

    1986-03-01T23:59:59.000Z

    This paper describes some results obtained from studying the poloarization characteristics of cathodic sulfur dioxide reduction at porous electrodes made by applying a mixture of carbon black, graphite, and binder to a metal screen serving as current collector. Solutions of lithium perchlorate in propylene carbonate and in a mixture of propylene carbonate and acetonitrile were used as the electrolytes. Some typical galvanostatic discharge curves are shown for sulfur dioxide reduction at porous electrodes. The discharge capacity increases with increasing electrode porosity and decreasing current density. One can see when comparing the curves that the discharge capacities differ substantially for highly porous electrodes which had practically the same porosity of about 70%. The effect of current density is more important in solutions with a high SO/sub 2/ concentration. The operating efficiency of porous electrodes which serve as cathodes in high power Li-SO/sub 2/ power sources can be predicted on the basis of polorization curves for the porous electrodes which reflect the influence of macrostructure on the cathodic process.

  15. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOE Patents [OSTI]

    Doeff, Marca M. (Hayward, CA); Peng, Marcus Y. (Cupertino, CA); Ma, Yanping (Albany, CA); Visco, Steven J. (Berkeley, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    1996-01-01T23:59:59.000Z

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  16. Prevention of crevice corrosion in duplex SS flanges using carbon steel bolts with cathodic protection

    SciTech Connect (OSTI)

    Thomason, W.H.; Ivie, R.G.; Marlow, J.A.

    1999-07-01T23:59:59.000Z

    Achieving reliable long-term performance of high strength bolts for flange connections in subsea service is a critical issue for the offshore industry. Viable bolting materials with high strength that are not susceptible to embrittlement or galvanic corrosion when the flanges are made of stainless steels are limited. A laboratory study was performed to determine the viability of using B7 carbon steel stud bolts and 316 stainless steel (SS) seal rings in a Duplex SS flange for subsea service The laboratory test system used full size commercial flanges, bolts and seal rings to simulate electrochemical conditions that will occur in crevices associated with carbon steel bolts in a Duplex SS flange and with the use of a 316 stainless steel seal ring in a Duplex SS flange. The flange systems were instrumented to enable monitoring of current densities and potentials at precise locations within the crevices throughout the tests as test parameters were changed. Test parameters included cathodic protection level, temperature, and sealing the outer flange gap. Cathodic protection was provided by remote aluminum sacrificial anodes to achieve potentials typical for a sub sea manifold. Both electrochemical data and examination of the components at the end of the 164 day exposure indicated that sufficient cathodic protection occurred in the crevices to provide long term corrosion control to all of the components involved. The capability to use B7 bolts rather than high alloy bolts enables a significant project savings.

  17. Comparisons of short carbon nanotubes containing conductive additives of cathode for lithium ion batteries

    SciTech Connect (OSTI)

    Zhang, Qingtang, E-mail: zhqt137@163.com [School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Chengdu Institute of Organic Chemistry, Chinese Academy of Science, Chengdu 610041 (China); Wang, Xiaomei; Lu, Wenjiang; Tang, Fuling [School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Guo, Junhong [School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Yu, Weiyuan [School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Qu, Meizhen; Yu, Zuolong [Chengdu Institute of Organic Chemistry, Chinese Academy of Science, Chengdu 610041 (China)

    2013-08-01T23:59:59.000Z

    Graphical abstract: - Highlights: • Short carbon nanotubes (SCNT) containing conductive additives were used. • SCNT/graphite powder (GP) mixture is better than SCNT/mesoporous carbon mixture. • SCNT connect many isolated GP particles to form a more valid conductive network. • SCNT absorb some electrolyte solution allowing quick electrochemical reactions. - Abstract: Short carbon nanotubes (SCNT) containing conductive additives, i.e. SCNT/graphite powder (GP) mixture (SCNTGP) and SCNT/mesoporous carbon (MC) mixture (SCNTMC) were employed as conductive additives for LiCoO{sub 2} cathode. GP and MC have similar particle size, but GP has lower specific surface area and higher electronic conductivity. Electrochemical measurements indicate that SCNTGP is more effective in improving the electrochemical performance of LiCoO{sub 2} composite cathode under the same conditions. The reason is described as follows. SCNT connect the isolated GP particles to form a more valid conductive network. In addition, SCNT has a certain specific mesoporous surface area, which can absorb some electrolyte solution and then provide buffer lithium ions for quick electrochemical reactions. Consequently, the combination of these two factors would be responsible to the improvement in the electrochemical performance of the SCNTGP loaded cathode.

  18. 323. 1JYNJ;MI(S AND 00!ANTIM3 CF OOGINIC rouJJI'ANl' lNll'RICITrns (}l GAY MINERAlS. Z.Z. 2'bang. Penchu 2'bang and D.L. Sjmks. l:epart:lrent of Plant and Soil Sciences.

    E-Print Network [OSTI]

    Sparks, Donald L.

    323. 1JYNJ;MI(S AND 00!ANTIM3 CF OOGINIC rouJJI'ANl' lNll'RICITrns (}l GAY MINERAlS. Z.Z. 2'bangI.ark. IE 19717-lm The interactions of clay minerals with organic pollutants .ere investigated using

  19. Advanced Rooftop Unit Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced-Rooftop-Unit-Control Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors...

  20. DOE Advanced Protection Project

    Broader source: Energy.gov (indexed) [DOE]

    protection logic in each relay 17 Copyright 2010, Southern California Edison Advanced Protection on the System of the Future * Use fault-interrupting switches with relays...

  1. Advanced Studies Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Institute Advanced Studies Institute Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff...

  2. Advanced Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Thermal Control Technologies Advanced Vehicle Systems Technology Transfer Jet Cooling Alternative Coolants TIM Low R Structure Phase Change Spray Cooling Air Cooling...

  3. Advanced Propulsion Technology Strategy

    Broader source: Energy.gov (indexed) [DOE]

    Alternative Sources) Hydrogen Time ADVANCED PROPULSION TECHNOLOGY STRATEGY DOWNSIZED TURBO GAS ENGINE CHEVROLET CRUZE 1.4L TURBO ECOTEC Downsized SIDI Turbo Boosting HCCI -...

  4. ADVANCED SCIENTIFIC COMPUTING ADVISORY COMMITTEE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See the EnergyTAMANG, APIL. AProvenanceG

  5. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  6. Kansas Advanced Semiconductor Project

    SciTech Connect (OSTI)

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21T23:59:59.000Z

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  7. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01T23:59:59.000Z

    Electrode for Sodium Ion Batteries. Chemistry of Materialsnickel fluoride in Li ion batteries. Electrochimica Actafor advanced lithium ion batteries. Materials Science and

  8. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01T23:59:59.000Z

    needs for better energy storage technologies in large-scalefor advanced energy storage technologies in large-scaleenergy storage is growing as renewable energy technologies

  9. Report on sodium compatibility of advanced structural materials.

    SciTech Connect (OSTI)

    Li, M.; Natesan, K.; Momozaki, Y.; Rink, D.L.; Soppet, W.K.; Listwan, J.T. (Nuclear Engineering Division)

    2012-07-09T23:59:59.000Z

    This report provides an update on the evaluation of sodium compatibility of advanced structural materials. The report is a deliverable (level 3) in FY11 (M3A11AN04030403), under the Work Package A-11AN040304, 'Sodium Compatibility of Advanced Structural Materials' performed by Argonne National Laboratory (ANL), as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing corrosion and tensile data from the standpoint of sodium compatibility of advanced structural alloys. The scope of work involves exposure of advanced structural alloys such as G92, mod.9Cr-1Mo (G91) ferritic-martensitic steels and HT-UPS austenitic stainless steels to a flowing sodium environment with controlled impurity concentrations. The exposed specimens are analyzed for their corrosion performance, microstructural changes, and tensile behavior. Previous reports examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design, fabrication, and construction of a forced convection sodium loop for sodium compatibility studies of advanced materials. This report presents the results on corrosion performance, microstructure, and tensile properties of advanced ferritic-martensitic and austenitic alloys exposed to liquid sodium at 550 C for up to 2700 h and at 650 C for up to 5064 h in the forced convection sodium loop. The oxygen content of sodium was controlled by the cold-trapping method to achieve {approx}1 wppm oxygen level. Four alloys were examined, G92 in the normalized and tempered condition (H1 G92), G92 in the cold-rolled condition (H2 G92), G91 in the normalized and tempered condition, and hot-rolled HT-UPS. G91 was included as a reference to compare with advanced alloy, G92. It was found that all four alloys showed weight loss after sodium exposures at 550 and 650 C. The weight loss of the four alloys was comparable after sodium exposures at 550 C; the weight loss of ferritic-martensitic steels, G92 and G91 is more significant than that of austenitic stainless steel, HT-UPS after sodium exposures at 650 C. Sodium exposures up to 2700 h at 550 C had no significant influence on tensile properties, while sodium exposures up to 5064 h at 650 C dramatically lowered the tensile strengths of the four alloys. The ultimate tensile strength of H1 G92, H2 G92, and G91 ferritic-martensitic steels was reduced to as much as nearly half of its initial value after sodium exposures at 650 C. Though the uniform elongation was recovered to some extent, these three ferritic-martensitic steels showed considerable strain softening after sodium exposures. The yield stress of HT-UPS austenitic stainless steel increased, the ultimate tensile strength decreased, and the total elongation was reduced after sodium exposures at 650 C. The dynamic strain aging effect observed in the as-received HT-UPS specimens became less pronounced after sodium exposures at 650 C. Microstructural characterization of sodium-exposed specimens showed no appreciable surface deterioration or grain structure changes under an optical microscope, except for the H2 G92 steel, in which the martensite structure transformed to large grain ferrite after sodium exposures at 650 C. TEM observations of the sodium-exposed H2 G92 steel showed significant recrystallization after sodium exposure for 2700 h at 550 C, and transformation of martensite to ferrite and high density of precipitates in nearly dislocation-free matrix after sodium exposures at 650 C. Further microstructural analysis and evaluation of decarburization/carburization behavior is needed to understand the dramatic changes in the tensile strengths of advanced ferritic-martensitic and austenitic steels after sodium exposures at 650 C.

  10. USS Previous Speakers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    71814 Bing Yang ANL-MSD In-situ characterization of Co1-xPtx bimetallic clusters for Fischer-Tropsch synthesis 71114 Sanja Tepavcevic ANL-CNM Nanostructured Layered Cathode...

  11. Extended reaction zone of La0.6Sr0.4Co0.2Fe0.8O3 cathode for solid oxide fuel cell

    SciTech Connect (OSTI)

    Lu, Zigui; Hardy, John S.; Templeton, Jared W.; Stevenson, Jeffry W.

    2012-01-03T23:59:59.000Z

    The oxygen reduction reaction at the cathode of solid oxide fuel cell (SOFC) is a complicated process which involves the interaction of oxygen molecules, electrons, and oxygen ions. Therefore, it can only proceed at locations where gas, electronic conductor, and an oxygen ion conductor meet. Although the extension of the reaction zone beyond the traditional so-called triple-phase-boundary (TPB) is widely accepted for a mixed ionically and electronically conductive cathode, work in this area has yet to reach a consensus on how far the reaction zone can be extended. In this study, anode-supported fuel cells with a variety of LSCF cathode thicknesses were fabricated and tested in two cathode environments, flowing oxygen and flowing air. In flowing oxygen, the cell performance increased with LSCF cathode thickness over the entire range investigated (from 5 to 33 ?m). In flowing air, the cell performance also increased with the LSCF cathode thickness from 5 to 13 ?m, but then remained almost constant with further increase in cathode thickness. In flowing oxygen, since there was no concentration polarization related to oxygen diffusion, the polarization resistance of oxygen reduction decreased with the LSCF cathode thickness because of the increased number of reaction sites. A linear relationship was established between the reciprocal of the polarization resistance and the cathode thickness, which was explained by a model developed for aqueous gas diffusion electrodes.

  12. advanced reactors advanced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  13. advanced ceramics advanced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  14. OPTIMIZATION OF THE CATHODE LONG TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect (OSTI)

    Anand Durairajan; Bala Haran; Branko N. Popov; Ralph E. White

    2000-05-01T23:59:59.000Z

    The cathode materials for molten carbonate fuel cells (MCFCs) must have low dissolution rate, high structural strength and good electrical conductivity. Currently available cathodes are made of lithiated NiO which have acceptable structural strength and conductivity. However a study carried out by Orfeld et al. and Shores et al. indicated that the nickel cathodes dissolved, then precipitated and reformed as dendrites across the electrolyte matrix. This results in a decrease in cell utilization and eventually leads to shorting of the cell. The solubility of NiO was found to depend upon the acidity/basicity of the melt (basicity is directly proportional to log P{sub CO2}), carbonate composition, H{sub 2}O partial pressure and temperature. Urushibata et al. found that the dissolution of the cathode is a primary life limiting constraint of MCFCs, particularly in pressurized operation. With currently available NiO cathodes, the goal of 40,000 hours for the lifetime of MCFC appears achievable with cell operation at atmospheric pressure. However, the cell life at 10 atm and higher cell pressures is in the range between 5,000 to 10,000 hours. The overall objective of this research is to develop a superior cathode for MCFC's with improved catalytic ability, enhanced corrosion resistance with low ohmic losses, improved electronic conductivity. We also plan to understand the corrosion processes occurring at the cathode/molten carbonate interface. The following cathode materials will be subjected to detailed electrochemical, performance, structural and corrosion studies. (i) Passivated NiO alloys using chemical treatment with yttrium ion implantation and anodic yttrium molybdate treatment; (ii) Novel composite materials based on NiO and nanosized Ce, Yt, Mo; (iii) Co doped LiNiO{sub 2} LiNiO{sub 2} doped with 10 to 20% Co (LiCo{sub 0.2}NiO{sub 2}) and NiO cathodes; and (iv) CoO as a replacement for NiO. Passivation treatments will inhibit corrosion and increase the stability of the cathode at high temperatures. Deposition of refractory metals (Mo, W, Li{sub 2}NiCrO{sub 4}) will impart stability to the cathode at high temperatures. Further it will also increase the electrocatalytic activity and corrosion resistance of the cathode. Doping with Co will decrease the alloy dissolution and increase the cycle life of the cathode. In the reporting period the oxidation behavior of Ni and Co in Li + Na carbonate eutectic was investigated under oxidizing environment using cyclic voltammetry, electrochemical impedance spectroscopy and potentiodynamic technique. The open circuit potential was monitored as a function of time in order to evaluate the material's reactivity in the melt.

  15. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  16. Chemistry of SOFC Cathode Surfaces: Fundamental Investigation and Tailoring of Electronic Behavior

    SciTech Connect (OSTI)

    Yildiz, Bilge; Heski, Clemens

    2013-08-31T23:59:59.000Z

    1) Electron tunneling characteristics on La0.7Sr0.3MnO3 (LSM) thin-film surfaces were studied up to 580oC in 10-3mbar oxygen pressure, using scanning tunneling microscopy/ spectroscopy (STM/STS). A threshold-like drop in the tunneling current was observed at positive bias in STS, which is interpreted as a unique indicator for the activation polarization in cation oxygen bonding on LSM cathodes. Sr-enrichment was found on the surface at high temperature using Auger electron spectroscopy, and was accompanied by a decrease in tunneling conductance in STS. This suggests that Sr-terminated surfaces are less active for electron transfer in oxygen reduction compared to Mn-terminated surfaces on LSM. 2) Effects of strain on the surface cation chemistry and the electronic structure are important to understand and control for attaining fast oxygen reduction kinetics on transition metal oxides. Here, we demonstrate and mechanistically interpret the strain coupling to Sr segregation, oxygen vacancy formation, and electronic structure on the surface of La0.7Sr0.3MnO3 (LSM) thin films as a model system. Our experimental results from x-ray photoelectron spectroscopy and scanning tunneling spectroscopy are discussed in light of our first principles-based calculations. A stronger Sr enrichment tendency and a more facile oxygen vacancy formation prevail for the tensile strained LSM surface. The electronic structure of the tensile strained LSM surface exhibits a larger band gap at room temperature, however, a higher tunneling conductance near the Fermi level than the compressively strained LSM at elevated temperatures in oxygen. Our findings suggest lattice strain as a key parameter to tune the reactivity of perovskite transition metal oxides with oxygen in solid oxide fuel cell cathodes. 3) Cation segregation on perovskite oxide surfaces affects vastly the oxygen reduction activity and stability of solid oxide fuel cell (SOFC) cathodes. A unified theory that explains the physical origins of this phenomenon is therefore needed for designing cathode materials with optimal surface chemistry. We quantitatively assessed the elastic and electrostatic interactions of the dopant with the surrounding lattice as the key driving forces for segregation on model perovskite compounds, LnMnO3 (host cation Ln=La, Sm). Our approach combines surface chemical analysis with X-ray photoelectron and Auger electron spectroscopy on model dense thin films, and computational analysis with density functional theory (DFT) calculations and analytical models. Elastic energy differences were systematically induced in the system by varying the radius of the selected dopants (Ca, Sr, Ba) with respect to the host cations (La, Sm) while retaining the same charge state. Electrostatic energy differences were introduced by varying the distribution of charged oxygen and cation vacancies in our models. Varying the oxygen chemical potential in our experiments induced changes in both the elastic energy and electrostatic interactions. Our results quantitatively demonstrate that the mechanism of dopant segregation on perovskite oxides includes both the elastic and electrostatic energy contributions. A smaller size mismatch between the host and dopant cations and a chemically expanded lattice were found to reduce the segregation level of the dopant and to enable more stable cathode surfaces. Ca-doped LaMnO3 was found to have the most stable surface composition with the least cation segregation among the compositions surveyed. The diffusion kinetics of the larger dopants, Ba and Sr, was found to be slower, and can kinetically trap the segregation at reduced temperatures despite the larger elastic energy driving force. Lastly, scanning probe image-contrast showed that the surface chemical heterogeneities made of dopant oxides upon segregation were electronically insulating. The consistency between the results obtained from experiments, DFT calculations and analytical theory in this work provides a predictive capability to tailor the cathode surface compositions for high-performance SO

  17. Lattice Expansion of LSCF-6428 Cathodes Measured by In-situ XRD during SOFC Operation

    SciTech Connect (OSTI)

    Hardy, John S.; Templeton, Jared W.; Edwards, Danny J.; Lu, Zigui; Stevenson, Jeffry W.

    2012-01-03T23:59:59.000Z

    A new capability has been developed for analyzing solid oxide fuel cells (SOFCs). This paper describes the initial results of in-situ x-ray diffraction (XRD) of the cathode on an operating anode-supported solid oxide fuel cell. It has been demonstrated that XRD measurements of the cathode can be performed simultaneously with electrochemical measurements of cell performance or electrochemical impedance spectroscopy (EIS). While improvements to the technique are still to be made, the XRD pattern of a lanthanum strontium cobalt ferrite (LSCF) cathode with the composition La0.6Sr0.4Co0.2Fe0.8O3-? (LSCF-6428) was found to continually but gradually change over the course of more than 60 hours of operation in air under typical SOFC operating conditions. It was determined that the most significant change was a gradual increase in the cubic lattice parameters of the LSCF from 3.92502 Å (as determined from the integration of the first 20 hours of XRD patterns) to 3.92650 Å (from the integration of the last 20 hours). This analysis also revealed that there were several peaks from unidentified minor phases that increased in intensity over this timeframe. After a temporary loss of airflow early in the test, the cell generated between 225 and 250 mW/cm2 for the remainder of the test. A large low frequency arc in the impedance spectra suggests the cell performance was gas diffusion limited and that there is room for improvement in air delivery to the cell.

  18. Renewable Chemicals and Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Advanced Biofuels & Policy—Brett Lund, Executive Vice President, General Counsel and Secretary, Gevo Inc.

  19. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials SHARE Advanced Materials ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of...

  20. Institute /or ADVANCED STUDY

    E-Print Network [OSTI]

    OF THE INSTITUTE LIBRARIES 63 INSTITUTE FOR ADVANCED STUDY/PARK CITY MATHEMATICS INSTITUTE 66 · MENTORING PROGRAM sustained and has yielded an unsurpassed record of definitive scholarship. Although small in scale

  1. Institute for ADVANCED STUDY

    E-Print Network [OSTI]

    · PROGRAM IN THEORETICAL BIOLOGY 103 · REPORT OF THE INSTITUTE LIBRARIES 107 INSTITUTE FOR ADVANCED STUDY Study has sustained its founding principle for seventy years. This com- mitment his yielded

  2. The Advanced Manufacturing Partnership

    E-Print Network [OSTI]

    Das, Suman

    ;ve Manufacturing Technologies (led by Dow, Honeywell and MIT) Manufacturing Ins;tutes (led, Honeywell and MIT GOALS § To launch public-private ini:a:ves to advance transforma

  3. Advanced Review Geometry optimization

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    Advanced Review Geometry optimization H. Bernhard Schlegel Geometry optimization is an important part of most quantum chemical calcu- lations. This article surveys methods for optimizing equilibrium geometries, lo- cating transition structures, and following reaction paths. The emphasis is on optimizations

  4. Advanced Energy Design Guides

    Energy Savers [EERE]

    hotels up to 80 rooms and 4 stories Advanced Energy Design Guide for Small Hospitals and Health- care Facilities ASHE, ASHRAE, AIA, IES, USGBC, DOE Small healthcare facilities up...

  5. Electro-catalytically Active, High Surface Area Cathodes for Low Temperature SOFCs

    SciTech Connect (OSTI)

    Eric D. Wachsman

    2006-09-30T23:59:59.000Z

    This research focused on developing low polarization (area specific resistance, ASR) cathodes for intermediate temperature solid oxide fuel cells (IT-SOFCs). In order to accomplish this we focused on two aspects of cathode development: (1) development of novel materials; and (2) developing the relationships between microstructure and electrochemical performance. The materials investigated ranged from Ag-bismuth oxide composites (which had the lowest reported ASR at the beginning of this contract) to a series of pyrochlore structured ruthenates (Bi{sub 2-x}M{sub x}Ru{sub 2}O{sub 7}, where M = Sr, Ca, Ag; Pb{sub 2}Ru{sub 2}O{sub 6.5}; and Y{sub 2-2x}Pr{sub 2x}Ru{sub 2}O{sub 7}), to composites of the pyrochlore ruthenates with bismuth oxide. To understand the role of microstructure on electrochemical performance, we optimized the Ag-bismuth oxide and the ruthenate-bismuth oxide composites in terms of both two-phase composition and particle size/microstructure. We further investigated the role of thickness and current collector on ASR. Finally, we investigated issues of stability and found the materials investigated did not form deleterious phases at the cathode/electrolyte interface. Further, we established the ability through particle size modification to limit microstructural decay, thus, enhancing stability. The resulting Ag-Bi{sub 0.8}Er{sub 0.2}O{sub 1.5} and Bi{sub 2}Ru{sub 2}O{sub 7{sup -}}Bi{sub 0.8}Er{sub 0.2}O{sub 1.5} composite cathodes had ASRs of 1.0 {Omega} cm{sup 2} and 0.73 {Omega}cm{sup 2} at 500 C and 0.048 {Omega}cm{sup 2} and 0.053 {Omega}cm{sup 2} at 650 C, respectively. These ASRs are truly impressive and makes them among the lowest IT-SOFC ASRs reported to date.

  6. Method for analyzing the mass of a sample using a cold cathode ionization source mass filter

    DOE Patents [OSTI]

    Felter, Thomas E.

    2003-10-14T23:59:59.000Z

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  7. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    SciTech Connect (OSTI)

    Sloan Roberts, F.; Anderson, Scott L. [Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112 (United States)] [Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112 (United States)

    2013-12-15T23:59:59.000Z

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry.

  8. High current, low emittance, steady state electron guns with plasma cathodes

    SciTech Connect (OSTI)

    Herschovitch, A. [Brookhaven National Laboratory, Upton, NY (United States)

    1995-12-31T23:59:59.000Z

    Major limitations of plasma cathodes have been overcome in an electron gun based on extraction of superthermal electrons with a low thermal spread. A grid is employed to select these electrons for extraction while retaining the bulk electrons in the discharge. Steady state extraction of electron beams corresponding to over 60% of the total arc discharge current has been observed. A perveance of over 280 microperv was reached with the extraction of 9A at 1KeV from a 6 mm aperture. Some of the characteristics of the electron gun described in this paper are very attractive for electron beam melting.

  9. Humectants To Augment Current From Metallized Zinc Cathodic Protection Systems on Concrete

    SciTech Connect (OSTI)

    Holcomb, Gordon R.; Covino Jr., Bernard S.; Cramer, Stephen D.; Russell, James H. Russell; Bullard, Sophie J.; Collins, W. Keith; Bennett, Jack E. (J.E. Bennett Consulting, Inc.); Soltesz, Steven M. (ODOT); Laylor, H. Martin (ODOT)

    2002-12-01T23:59:59.000Z

    Cathodic protection (CP) systems using thermal-sprayed zinc anodes are employed to mitigate the corrosion process in reinforced concrete structures. However, the performance of the anodes is improved by moisture at the anode-concrete interface. Research was conducted to investigate the effect of hydrophilic chemical additives, humectants, on the electrical performance and service life of zinc anodes. Lithium bromide and lithium nitrate were identified as feasible humectants with lithium bromide performing better under galvanic CP and lithium nitrate performing better under impressed current CP. Both humectants improved the electrical operating characteristics of the anode and increased the service life by up to three years.

  10. Cathodic reduction of sulfur dioxide at porous, phthalocyanine-containing electrodes in nonaqueous electrolytes

    SciTech Connect (OSTI)

    Shembel', E.M.; Ksenzhek, O.S.; Danilova, N.P.; Shustov, V.A.

    1988-03-01T23:59:59.000Z

    Electrodes containing catalysts, particularly electrodes containing metal chelate compounds, were studied for their effect on reducing cathodic sulfur dioxide. The electrodes were prepared with an iron phthalocyanine polymer deposited onto activated carbon. Fluoropolymer dispersions was used as the binder and electrochemical studies were performed in a glove box under dry argon. Lithium perchlorate solution in propylene carbonate was used as the electrolyte solution. The results indicate that materials with high catalytic activity show promise in raising the discharge voltage in power sources of the lithium-sulfur dioxide system.

  11. Overview and Progress of United States Advanced Battery Research...

    Broader source: Energy.gov (indexed) [DOE]

    * Targets Timeline Budget Barriers * Chrysler, Ford, GM, DOE * INL, ANL, SNL, NREL, LBNL, ORNL Partners Overview DOE Goals HEV 2010 PHEV 2015 EV 2020 Cost System 500-800...

  12. Overview and Progress of United States Advanced Battery Consortium...

    Broader source: Energy.gov (indexed) [DOE]

    FY11 - 26.9M Timeline Budget Barriers * Chrysler, Ford, GM, DOE * INL, ANL, SNL, NREL, LBNL, ORNL Partners Overview DOE Goals HEV 2010 PHEV 2015 EV 2020 Cost System 500-800...

  13. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ioni Beam-scanning Electron Microscopy

    SciTech Connect (OSTI)

    G Nelson; W Harris; J Lombardo; J Izzo Jr.; W Chiu; P Tanasini; M Cantoni; J Van herle; C Comninellis; et al.

    2011-12-31T23:59:59.000Z

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB-SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB-SEM enable elemental mapping within the microstructure. Using these methods, non-destructive 3D x-ray imaging and FIB-SEM serial sectioning have been applied to compare three-dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  14. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ion Beam - Scanning Electron Microscopy

    SciTech Connect (OSTI)

    Nelson, George J.; Harris, William H.; Lombardo, Jeffrey J.; Izzo, Jr., John R.; Chiu, W. K. S.; Tanasini, Pietro; cantoni, Marco; Van herle, Jan; Comninellis, Christos; Andrews, Joy C.; Liu, Yijin; Pianetta, Piero; Chu, Yong

    2011-01-01T23:59:59.000Z

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB?SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB–SEM enable elemental mapping within the microstructure. Using these methods, non?destructive 3D x-ray imaging and FIB–SEM serial sectioning have been applied to compare three?dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  15. An experiment to test the viability of a gallium-arsenide cathode in a SRF electron gun

    SciTech Connect (OSTI)

    Kewisch,J.; Ben-Zvi, I.; Rao, T.; Burrill, A.; Pate, D.; Wu, Q.; Todd, R.; Wang, E.; Bluem, H.; Holmes, D.; Schultheiss, T.

    2009-05-04T23:59:59.000Z

    Strained gallium arsenide cathodes are used in electron guns for the production of polarized electrons. In order to have a sufficient quantum efficiency lifetime of the cathode the vacuum in the gun must be 10{sup -11} Torr or better, so that the cathode is not destroyed by ion back bombardment or through contamination with residual gases. All successful polarized guns are DC guns, because such vacuum levels can not be obtained in normal conducting RF guns. A superconductive RF gun may provide a sufficient vacuum level due to cryo-pumping of the cavity walls. We report on the progress of our experiment to test such a gun with normal GaAs-Cs crystals.

  16. Fabrication and characterization of lithium manganese nickel oxide sputtered thin film cathodes for lithium-ion batteries

    SciTech Connect (OSTI)

    Baggetto, Loic [ORNL] [ORNL; Unocic, Raymond R [ORNL] [ORNL; Dudney, Nancy J [ORNL] [ORNL; Veith, Gabriel M [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Li-rich and stoichiometric Li1Mn1.5Ni0.5O4 (LMNO) cathode films have been prepared by magnetron sputtering. Sputtering from a Li stoichiometric target yields Li-rich films composed of spinel, layered and monoclinic phases. Films obtained from a Li deficient target are mostly made of a spinel phase and little layered material. The resulting cathode thin films have good capacity retention and very high rate capability. The reaction mechanism has been investigated by XRD and HRTEM and evidences the reversible formation of a spinel phase, as is also found for the powder samples. The film geometry enables to understand the effect of coatings (ZnO or LiPON). Coating high voltage cathodes reduces the coulombic losses but at the price of rate performance. Nonetheless, these coated sputtered electrode thin films offer a higher rate capability than other LMNO thin films obtained by other physical vapor deposition techniques.

  17. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect (OSTI)

    Hector Colonmer; Prabhu Ganesan; Nalini Subramanian; Dr. Bala Haran; Dr. Ralph E. White; Dr. Branko N. Popov

    2002-09-01T23:59:59.000Z

    This project focused on addressing the two main problems associated with state of art Molten Carbonate Fuel Cells, namely loss of cathode active material and stainless steel current collector deterioration due to corrosion. We followed a dual approach where in the first case we developed novel materials to replace the cathode and current collector currently used in molten carbonate fuel cells. In the second case we improved the performance of conventional cathode and current collectors through surface modification. States of art NiO cathode in MCFC undergo dissolution in the cathode melt thereby limiting the lifetime of the cell. To prevent this we deposited cobalt using an electroless deposition process. We also coated perovskite (La{sub 0.8}Sr{sub 0.2}CoO{sub 3}) in NiO thorough a sol-gel process. The electrochemical oxidation behavior of Co and perovskites coated electrodes is similar to that of the bare NiO cathode. Co and perovskite coatings on the surface decrease the dissolution of Ni into the melt and thereby stabilize the cathode. Both, cobalt and provskites coated nickel oxide, show a higher polarization compared to that of nickel oxide, which could be due to the reduced surface area. Cobalt substituted lithium nickel oxide (LiNi{sub 0.8}Co{sub 0.2}O{sub 2}) and lithium cobalt oxide were also studied. LiNi{sub x}Co{sub 1-x}O{sub 2} was synthesized by solid-state reaction procedure using lithium nitrate, nickel hydroxide and cobalt oxalate precursor. LiNi{sub x}Co{sub 1-x}O{sub 2} showed smaller dissolution of nickel than state of art nickel oxide cathode. The performance was comparable to that of nickel oxide. The corrosion of the current collector in the cathode side was also studied. The corrosion characteristics of both SS304 and SS304 coated with Co-Ni alloy were studied. This study confirms that surface modification of SS304 leads to the formation of complex scales with better barrier properties and better electronic conductivity at 650 C. A three phase homogeneous model was developed to simulate the performance of the molten carbonate fuel cell cathode and the complete fuel cell. The homogeneous model is based on volume averaging of different variables in the three phases over a small volume element. This approach can be used to model porous electrodes as it represents the real system much better than the conventional agglomerate model. Using the homogeneous model the polarization characteristics of the MCFC cathode and fuel cell were studied under different operating conditions. Both the cathode and the full cell model give good fits to the experimental data.

  18. Erroneous Wave Functions of Ciuchi et al for Collective Modes in Neutron Production on Metallic Hydride Cathodes

    E-Print Network [OSTI]

    Widom, A; Larsen, L

    2012-01-01T23:59:59.000Z

    There is a recent comment (Ciuchi et al., 2012) concerning the theory of collective many body effects on the neutron production rates in a chemical battery cathode. Ciuchi et al employ an inverse beta decay expression that contains a two body amplitude. Only one electron and one proton may exist in the Ciuchi et al model initial state wave function. A flaw in their reasoning is that one cannot in reality describe collective many body correlations with only a two particle wave function. One needs very many particles to describe collective effects. In the model wave functions of Ciuchi et al there are no metallic hydrides, there are no cathodes and there are no chemical batteries. Employing a wave function with only one electron and one proton is inadequate for describing collective metallic hydride surface quantum plasma physics in cathodes accurately.

  19. Erroneous Wave Functions of Ciuchi et al for Collective Modes in Neutron Production on Metallic Hydride Cathodes

    E-Print Network [OSTI]

    A. Widom; Y. N. Srivastava; L. Larsen

    2012-10-17T23:59:59.000Z

    There is a recent comment (Ciuchi et al., 2012) concerning the theory of collective many body effects on the neutron production rates in a chemical battery cathode. Ciuchi et al employ an inverse beta decay expression that contains a two body amplitude. Only one electron and one proton may exist in the Ciuchi et al model initial state wave function. A flaw in their reasoning is that one cannot in reality describe collective many body correlations with only a two particle wave function. One needs very many particles to describe collective effects. In the model wave functions of Ciuchi et al there are no metallic hydrides, there are no cathodes and there are no chemical batteries. Employing a wave function with only one electron and one proton is inadequate for describing collective metallic hydride surface quantum plasma physics in cathodes accurately.

  20. Advanced Accelerator Concepts Final Report

    SciTech Connect (OSTI)

    Wurtele, Jonathan S.

    2014-05-13T23:59:59.000Z

    A major focus of research supported by this Grant has been on the ALPHA antihydrogen trap. We first trapped antihydrogen in 2010 and soon thereafter demonstrated trapping for 1000s. We now have observed resonant quantum interactions with antihydrogen. These papers in Nature and Nature Physics report the major milestones in anti-atom trapping. The success was only achieved through careful work that advanced our understanding of collective dynamics in charged particle systems, the development of new cooling and diagnostics, and in- novation in understanding how to make physics measurements with small numbers of anti-atoms. This research included evaporative cooling, autoresonant excitation of longitudinal motion, and centrifugal separation. Antihydrogen trapping by ALPHA is progressing towards the point when a important theories believed by most to hold for all physical systems, such as CPT (Charge-Parity-Time) invariance and the Weak Equivalence Principle (matter and antimatter behaving the same way under the influence of gravity) can be directly tested in a new regime. One motivation for this test is that most accepted theories of the Big Bang predict that we should observe equal amounts of matter and antimatter. However astrophysicists have found very little antimatter in the universe. Our experiment will, if successful over the next seven years, provide a new test of these ideas. Many earlier detailed and beautiful tests have been made, but the trapping of neutral antimatter allows us to explore the possibility of direct, model-independent tests. Successful cooling of the anti atoms, careful limits on systematics and increased trapping rates, all planned for our follow-up experiment (ALPHA-II) will reach unrivaled precision. CPT invariance implies that the spectra of hydrogen and antihydrogen should be identical. Spectra can be measured in principle with great precision, and any di#11;erences we might observe would revolutionize fundamental physics. This is the physics motivation for our experiment, one that requires only a few dozen researchers but must effectively integrate plasma, accelerator, atomic, and fundamental physics, as well as combine numerous technologies in the control, manipulation, and measurement of neutral and non-neutral particles. The ELENA ring (to which we hope to contribute, should funding be provided) is expect, when completed, to significantly enhance the performance of antihydrogen trapping by increasing by a factor of 100 the number of antiprotons that can be successfully trapped and cooled. ELENA operation is scheduled to commence in 2017. In collaboration with LBNL scientists, we proposed a frictional cooling scheme. This is an alternative cooling method to that used by ELENA. It is less complicated, experimentally unproven, and produces a lower yield of cold antiprotons. Students and postdoctoral researchers work on the trapping, cooling, transport, and nonlinear dynamics of antiprotons bunches that are provided by the AD to ALPHA; they contribute to the operation of the experiment, to software development, and to the design and operation of experiments. Students are expected to spend at summers at CERN while taking courses; after completion of courses they typically reside at CERN for most of the half-year run. The Antiproton Decelerator [AD] at CERN, along with its experiments, is the only facility in the world where antiprotons can be trapped and cooled and combined with positrons to form cold antihydrogen, with the ultimate goal of studying CPT violation and, subsequently, gravitational interactions of antimatter. Beyond the ALPHA experiment, the group worked on beam physics problems including limits on the average current in a time-dependent period cathode and new methods to create longitudinally coherent high repetition rate soft x-ray sources and wide bandwidth mode locked x-ray lasers. We completed a detailed study of quantum mechanical effects in the transit time cooling of muons.