Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advanced Accelerator Concepts Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

acceleration at the BNL-ATF Thomas Marshall GeVm WAKE FIELDS GENERATED BY A TRAIN OF pC, FEMTOSECOND BUNCHES IN A PLANAR DIELECTRIC MICROSTRUCTURE Changbiao Wang GeVm...

2

Advanced Accelerator Concepts Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM Structure-Based Accelerators Working Group Group-Leader: Wayne Kimura, STI Optronics (wkimura@stioptronics.com) Group-Co-leader: Steve Lidia, LBNL (SMLidia@lbl.gov)...

3

Advanced Accelerator Concepts Final Report  

SciTech Connect (OSTI)

A major focus of research supported by this Grant has been on the ALPHA antihydrogen trap. We first trapped antihydrogen in 2010 and soon thereafter demonstrated trapping for 1000s. We now have observed resonant quantum interactions with antihydrogen. These papers in Nature and Nature Physics report the major milestones in anti-atom trapping. The success was only achieved through careful work that advanced our understanding of collective dynamics in charged particle systems, the development of new cooling and diagnostics, and in- novation in understanding how to make physics measurements with small numbers of anti-atoms. This research included evaporative cooling, autoresonant excitation of longitudinal motion, and centrifugal separation. Antihydrogen trapping by ALPHA is progressing towards the point when a important theories believed by most to hold for all physical systems, such as CPT (Charge-Parity-Time) invariance and the Weak Equivalence Principle (matter and antimatter behaving the same way under the influence of gravity) can be directly tested in a new regime. One motivation for this test is that most accepted theories of the Big Bang predict that we should observe equal amounts of matter and antimatter. However astrophysicists have found very little antimatter in the universe. Our experiment will, if successful over the next seven years, provide a new test of these ideas. Many earlier detailed and beautiful tests have been made, but the trapping of neutral antimatter allows us to explore the possibility of direct, model-independent tests. Successful cooling of the anti atoms, careful limits on systematics and increased trapping rates, all planned for our follow-up experiment (ALPHA-II) will reach unrivaled precision. CPT invariance implies that the spectra of hydrogen and antihydrogen should be identical. Spectra can be measured in principle with great precision, and any di#11;erences we might observe would revolutionize fundamental physics. This is the physics motivation for our experiment, one that requires only a few dozen researchers but must effectively integrate plasma, accelerator, atomic, and fundamental physics, as well as combine numerous technologies in the control, manipulation, and measurement of neutral and non-neutral particles. The ELENA ring (to which we hope to contribute, should funding be provided) is expect, when completed, to significantly enhance the performance of antihydrogen trapping by increasing by a factor of 100 the number of antiprotons that can be successfully trapped and cooled. ELENA operation is scheduled to commence in 2017. In collaboration with LBNL scientists, we proposed a frictional cooling scheme. This is an alternative cooling method to that used by ELENA. It is less complicated, experimentally unproven, and produces a lower yield of cold antiprotons. Students and postdoctoral researchers work on the trapping, cooling, transport, and nonlinear dynamics of antiprotons bunches that are provided by the AD to ALPHA; they contribute to the operation of the experiment, to software development, and to the design and operation of experiments. Students are expected to spend at summers at CERN while taking courses; after completion of courses they typically reside at CERN for most of the half-year run. The Antiproton Decelerator [AD] at CERN, along with its experiments, is the only facility in the world where antiprotons can be trapped and cooled and combined with positrons to form cold antihydrogen, with the ultimate goal of studying CPT violation and, subsequently, gravitational interactions of antimatter. Beyond the ALPHA experiment, the group worked on beam physics problems including limits on the average current in a time-dependent period cathode and new methods to create longitudinally coherent high repetition rate soft x-ray sources and wide bandwidth mode locked x-ray lasers. We completed a detailed study of quantum mechanical effects in the transit time cooling of muons.

Wurtele, Jonathan S.

2014-05-13T23:59:59.000Z

4

E-Print Network 3.0 - advanced accelerator concepts Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: of an advanced exotic beam facility evolved from the Rare Isotope Accelerator (RIA) concept. The OMB and the DOE... to the advance of the accelerator physics...

5

Advanced Concepts Breakout Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Workshop Workshop Advanced Concepts Working Group Facilitator: John J. Petrovic Scribe: Sherry Marin Advanced Storage Techniques/ Approaches in Priority Order 1. Crystalline Nanoporous Materials (15) 2. Polymer Microspheres (12) Self-Assembled Nanocomposites (12) 3. Advanced Hydrides (11) Metals - Organic (11) 4. BN Nanotubes (5) Hydrogenated Amorphous Carbon (5) 5. Mesoporous materials (4) Bulk Amorphous Materials (BAMs) (4) 6. Iron Hydrolysis (3) 7. Nanosize powders (2) 8. Metallic Hydrogen (1) Hydride Alcoholysis (1) Overarching R&D Questions for All Advanced Materials * Maximum storage capacity - theoretical model * Energy balance / life cycle analysis * Hydrogen absorption / desorption kinetics * Preliminary cost analysis - potential for low cost, high

6

ADVANCED SULFUR CONTROL CONCEPTS  

SciTech Connect (OSTI)

Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

2003-01-01T23:59:59.000Z

7

E-Print Network 3.0 - advanced accelerator experimental Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(NIU), where advanced accelerator concepts and beam manipulation techniques... accelerators are among the most powerful scientific instruments mankind has built. They are...

8

Basic concepts in plasma accelerators  

Science Journals Connector (OSTI)

...plasma accelerators. Plasma accelerators are ideal...2. Relativistic plasma wave acceleration The...electric field at the focus of high-power short-pulse...Diffraction limits the depth of focus to the Rayleigh length...stimulated Brillouin and plasma modulational instabilities...

2006-01-01T23:59:59.000Z

9

Advanced accelerator simulation research: miniaturizing accelerators from kilometers to meters  

E-Print Network [OSTI]

Advanced accelerator simulation research: miniaturizing accelerators from kilometers to meters W: Advanced accelerator research is aimed at finding new technologies that can dramatically reduce the size and cost of future high-energy accelerators. Supercomputing is already playing a dramatic and critical role

Geddes, Cameron Guy Robinson

10

Advanced fusion concepts: project summaries  

SciTech Connect (OSTI)

This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac. (MOW)

None

1980-12-01T23:59:59.000Z

11

Advanced Manufacturing Jobs and Innovation Accelerator Challenge |  

Broader source: Energy.gov (indexed) [DOE]

Technical Assistance » Advanced Manufacturing Jobs and Innovation Technical Assistance » Advanced Manufacturing Jobs and Innovation Accelerator Challenge Advanced Manufacturing Jobs and Innovation Accelerator Challenge October 10, 2013 - 12:01pm Addthis The Advanced Manufacturing Jobs and Innovation Accelerator Challenge (Accelerator) is a multi-agency sponsored competition established to enhance existing regional networks of firms and institutions that accelerate technology-related innovation, business formation, and job creation. Funding provided to these regional networks (also called clusters) help academia, utilities, local governments, and private industry and investors expand partnerships, share strategic information more efficiently, and reduce costs by leveraging existing assets and resources (like physical facilities and equipment).

12

Recent Advances in Plasma Acceleration  

SciTech Connect (OSTI)

The costs and the time scales of colliders intended to reach the energy frontier are such that it is important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators a drive beam, either laser or particle, produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultra-high accelerating fields over a substantial length to achieve a significant energy gain. More than 42 GeV energy gain was achieved in an 85 cm long plasma wakefield accelerator driven by a 42 GeV electron drive beam in the Final Focus Test Beam (FFTB) Facility at SLAC. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx}52 GV/m. This effectively doubles their energy, producing the energy gain of the 3 km long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. Prospects for a drive-witness bunch configuration and high-gradient positron acceleration experiments planned for the SABER facility will be discussed.

Hogan, Mark

2007-03-19T23:59:59.000Z

13

Advances in CTIX Accelerator Study  

Science Journals Connector (OSTI)

Several new experiments have been conducted on the UC Davis repetitive-pulsed spheromak-like compact toroid (SCT) accelerator (CTIX...

D. Q. Hwang; R. D. Horton; S. Howard; R. W. Evans

2007-06-01T23:59:59.000Z

14

Advanced Modeling for Particle Accelerators Project at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Modeling for Particle Accelerators Advanced Modeling for Particle Accelerators HDX Key Challenges: Work in this area consists of both application development and...

15

Advanced Offshore Wind Tech: Accelerating New Opportunities for...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy May 7, 2014 - 12:11pm...

16

Solar Energy Grid Integration Systems-Advanced Concepts | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Integration Solar Energy Grid Integration Systems-Advanced Concepts Solar Energy Grid Integration Systems-Advanced Concepts On September 1, 2011, DOE announced 25.9...

17

Advanced Materials and Concepts for Portable Power Fuel Cells...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Materials and Concepts for Portable Power Fuel Cells Advanced Materials and Concepts for Portable Power Fuel Cells These slides were presented at the 2010 New Fuel Cell...

18

Introduction to DMFCs - Advanced Materials and Concepts for Portable...  

Broader source: Energy.gov (indexed) [DOE]

DMFCs - Advanced Materials and Concepts for Portable Power Fuel Cells Introduction to DMFCs - Advanced Materials and Concepts for Portable Power Fuel Cells Presentation by Piotr...

19

UCSF Guidelines for Accelerated Advancement Accelerated advancement is an important form of recognition that rewards faculty who perform at an  

E-Print Network [OSTI]

7/09 UCSF Guidelines for Accelerated Advancement Accelerated advancement is an important form this context, "accelerated advancement" means merit increases or promotions that are awarded one or more years earlier than the normal, on-time schedule for such advancements. Merits that are accelerated by more than

Klein, Ophir

20

Advanced Test Accelerator (ATA) injector  

SciTech Connect (OSTI)

The ATA injector, developed from experience gained from the Experimental Test Accelerator (ETA) linac, has recently been completed. The injector consists of ten 0.25 MV cells that are used to develop 2.5 MV across a single diode gap. The 10 kA beam is extracted from a 500 cm/sup 2/ plasma cathode at average rates of up to 5 Hz and burst rates to 1 kHz. Pulsed power from 20 water filled blumleins is divided and introduced symmetrically through four ports on each cell. All major insulators are fabricated from filled epoxy castings. With these improvements, the ATA injector is smaller than the ETA injector; has a faster pulse response; has lower voltage stress on insulators and higher ultimate performance. Injector characterization tests began in October 1982. These tests include beam current, energy, and emittance measurements.

Jackson, C.H.; Bubp, D.G.; Fessenden, T.J.; Hester, R.E.; Neil, V.K.; Paul, A.C.; Prono, D.S.

1983-03-09T23:59:59.000Z

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

AFRD - Advanced Light Source Accelerator Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Accelerator Physics ALS Accelerator Physics Home Organization Outreach and Diversity News Highlights Safety Links Intramural FPO Accelerator Physics Group This page and the Group's own site emphasize the continuing effort to improve the performance and versatility of the accelerator-related systems of the ALS. If you want to start with a nontechnical explanation of what synchrotron light is, how scientists use it, and how the Advanced Light Source works, try About the ALS. The research performed using beams from the ALS is a vast topic that spans many scientific disciplines; a good overview with in-depth links is available at the ALS Science Briefs page. The ALS is a “” synchrotron light source based on a low-emittance electron storage ring with a nominal energy of 1.9 GeV. Since the machine

22

Green Racing: Accelerating the Use of Advanced Technologies ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Use of Advanced Technologies & Renewable Fuels, Developing Market Acceptance Green Racing: Accelerating the Use of Advanced Technologies & Renewable Fuels, Developing...

23

Tribal Renewable Energy Advanced Course: Project Financing Concepts  

Broader source: Energy.gov [DOE]

Watch the DOE Office of Indian Energy's advanced renewable energy course entitled "Tribal Renewable Energy Project Development: Advanced Financing Concepts" by clicking on the .swf link below. You...

24

Conception design of helium ion FFAG accelerator with induction accelerating cavity  

E-Print Network [OSTI]

In the recent decades of particle accelerator R&D area, fixed field alternating gradient (FFAG) accelerator has become a highlight for some advantages of its higher beam intensity and lower cost, although there are still some technical challenges. In this paper, FFAG accelerator is adopted to accelerate helium ion beam on the one hand for the study of helium embrittlement on fusion reactor envelope material and on the other hand for promoting the conception research and design of FFAG accelerator and exploring the possibility of developing high power FFAG accelerators. The conventional period focusing unit of helium ion FFAG accelerator and three-dimensional model of the large aperture combinatorial magnet by OPERA-TOSCA are given. For low energy and low revolution frequency, induction acceleration is proposed to replace conventional radio frequency(RF) acceleration for helium ion FFAG accelerator, which avoids the potential breakdown of acceleration field caused by wake field and improves the acceleratio...

Huan-li, Luo; Xiang-qi, Wang; Hong-Liang, Xu

2013-01-01T23:59:59.000Z

25

ASME Material Challenges for Advanced Reactor Concepts  

SciTech Connect (OSTI)

This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

Piyush Sabharwall; Ali Siahpush

2013-07-01T23:59:59.000Z

26

Advanced Gasifier Pilot Plant Concept Definition  

SciTech Connect (OSTI)

This report presents results from definition of a preferred commercial-scale advanced gasifier configuration and concept definition for a gasification pilot plant incorporating those preferred technologies. The preferred commercial gasifier configuration was established based on Cost Of Electricity estimates for an IGCC. Based on the gasifier configuration trade study results, a compact plug flow gasifier, with a dry solids pump, rapid-mix injector, CMC liner insert and partial quench system was selected as the preferred configuration. Preliminary systems analysis results indicate that this configuration could provide cost of product savings for electricity and hydrogen ranging from 15%-20% relative to existing gasifier technologies. This cost of product improvement draws upon the efficiency of the dry feed, rapid mix injector technology, low capital cost compact gasifier, and >99% gasifier availability due to long life injector and gasifier liner, with short replacement time. A pilot plant concept incorporating the technologies associated with the preferred configuration was defined, along with cost and schedule estimates for design, installation, and test operations. It was estimated that a 16,300 kg/day (18 TPD) pilot plant gasifier incorporating the advanced gasification technology and demonstrating 1,000 hours of hot-fire operation could be accomplished over a period of 33 months with a budget of $25.6 M.

Steve Fusselman; Alan Darby; Fred Widman

2005-08-31T23:59:59.000Z

27

Inverse free electron laser accelerator for advanced light sources  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We discuss the inverse free electron laser (IFEL) scheme as a compact high gradient accelerator solution for driving advanced light sources such as a soft x-ray free electron laser amplifier or an inverse Compton scattering based gamma-ray source. In particular, we present a series of new developments aimed at improving the design of future IFEL accelerators. These include a new procedure to optimize the choice of the undulator tapering, a new concept for prebunching which greatly improves the fraction of trapped particles and the final energy spread, and a self-consistent study of beam loading effects which leads to an energy-efficient high laser-to-beam power conversion.

Duris, J. P.; Musumeci, P.; Li, R. K.

2012-06-01T23:59:59.000Z

28

The role of plasma in advanced accelerators* Jonathan S. Wurtele+  

E-Print Network [OSTI]

The role of plasma in advanced accelerators* Jonathan S. Wurtele+ Plasma Fusion Center December 1992; accepted 18 February 1993) The role of plasma in advanced accelerators is reviewed with emphasis on three significant areas of research: plasma guiding of beams in accelerators, plasma focusing

Wurtele, Jonathan

29

Fermilab | Science | Particle Accelerators | Advanced Superconducting...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Superconducting Test Accelerator is America's only test bed for cutting-edge particle beams and for accelerator research aimed at Intensity Frontier proton accelerators. ASTA...

30

Advanced Reactor Concepts Technical Review Panel Report | Department of  

Broader source: Energy.gov (indexed) [DOE]

Advanced Reactor Concepts Technical Review Panel Report Advanced Reactor Concepts Technical Review Panel Report Advanced Reactor Concepts Technical Review Panel Report This report documents the establishment of a technical review process and the findings of the Advanced Reactor Concepts (ARC) Technical Review Panel (TRP).1 The intent of the process is to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. A goal of the process is to facilitate greater engagement between DOE and industry. The process involved establishing evaluation criteria, conducting a pilot review, soliciting concept inputs from industry entities, reviewing the concepts by TRP members and compiling the results. The eight concepts received from industry spanned a range of reactor types

31

Acceleration of polarized protons in AHF (Advanced Hadron Facility)  

SciTech Connect (OSTI)

In this paper an analysis of the depolarization expected during acceleration from 0.8 to 45.0 GeV kinetic energy in the Advanced Hadron Facility (AHF) accelerators is performed.

Colton, E.P.

1987-03-20T23:59:59.000Z

32

Advance Reactor Concepts Technical Review Panel Public Report  

Broader source: Energy.gov [DOE]

The Office of Nuclear Energy supports research and development for advanced reactor technologies. This report documents the results of the 2014 Technical Review Panel (TRP) review of seven advanced reactor concepts. The intent of the process was to identify R&D needs for advanced reactor concepts in order to inform Department of Energy (DOE) Office of Nuclear Energy R&D investment decisions.

33

Ultrafast Carrier RelaxationProcesses in Advanced Concept Solar Cells  

Science Journals Connector (OSTI)

We discuss short time carrier relaxation in advanced concept solar cells conditions using ensemble Monte Carlo (EMC) simulation coupled with rate equation and thermodynamic models, to...

Goodnick, Stephen M; Honsberg, Christiana; Zou, Yongjie

34

Realizing novel accelerator concepts in an X-band photo-injector  

SciTech Connect (OSTI)

In this project we propose to investigate the use of novel accelerator structure cell geometry to enhance the performance of X-band photo-injectors. Making novel accelerator concepts possible involves fabrication and testing of components to ensure that the performance predicted by simulation is robustly achievable. This work is important because photo-injectors are increasingly used to provide high brightness electron beams for light sources, pushing their performance to the limits, but also requiring them to be user-facility stable. Careful investigation in both computer simulation and design, and low power testing of piece parts will enable the successful fabrication of an advanced X-band photo-injector.

Marsh, R

2010-04-13T23:59:59.000Z

35

Advanced Combustion Concepts - Enabling Systems and Solutions...  

Broader source: Energy.gov (indexed) [DOE]

engine installed and vehicle available for application, emission and fuel economy optimization with advanced combustion modes. 4 Advanced combustion control strategy, capable of...

36

Tribal Renewable Energy Advanced Course: Project Development Concepts |  

Broader source: Energy.gov (indexed) [DOE]

Concepts Concepts Tribal Renewable Energy Advanced Course: Project Development Concepts Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy Project Development: Advanced Concept Topics" by clicking on the .swf file below. You can also download a PDF of the PowerPoint slides. This course provides in-depth information on project development concepts for renewable energy projects on tribal lands, including: Risk and uncertainty Tribal project roles Policies and incentives See the full list of DOE Office of Indian Energy educational webinars and provide your feedback on the National Training & Education Resource (NTER) website. Renewable Energy Project Development: Advanced Concept Topics repd_project_development_concepts_lowder.swf

37

Advanced Combustion Concepts - Enabling Systems and Solutions...  

Broader source: Energy.gov (indexed) [DOE]

engine * Integration of proposed air path and HCCI combustion control strategies into ECU software * Prototype level 2 updates and proof of combustion concept for vehicle readiness...

38

Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator  

SciTech Connect (OSTI)

The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

Chitarin, G. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Department of Engineering and Management, University of Padova, Vicenza (Italy); Agostinetti, P.; Marconato, N.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy)

2012-02-15T23:59:59.000Z

39

Advanced Combustion Concepts - Enabling Systems and Solutions...  

Broader source: Energy.gov (indexed) [DOE]

Fuel efficiency as key market driver Stringent emission requirements System cost of advanced combustion Targets 30% fuel efficiency improvement SULEV emissions...

40

E-Print Network 3.0 - advanced test accelerator Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: advanced test accelerator Page: << < 1 2 3 4 5 > >> 1 US LHC Accelerator Research Program For the...

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Process Technology and Advanced Concepts: Organic Solar Cells (Fact Sheet)  

SciTech Connect (OSTI)

Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts: Organic Solar Cell that includes scope, core competencies and capabilities, and contact/web information.

Not Available

2011-06-01T23:59:59.000Z

42

Renewable Energy Project Development: Advanced Concept Topics  

Broader source: Energy.gov (indexed) [DOE]

Concept Topics Concept Topics An Introduction to Risk, Tribal Roles, and Support Policies in the Renewable Energy Project Development Process Course Outline What we will cover...  About the DOE Office of Indian Energy Education Initiative  Concepts and Policies for Understanding Renewable Energy Projects on Tribal Lands - Risk and Uncertainty - Tribal Project Roles - Policies and Incentives  Additional Information and Resources 2 Introduction The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs is responsible for assisting Tribes with energy planning and development, infrastructure, energy costs, and electrification of Indian lands and homes. As part of this commitment and on behalf of DOE, the Office of Indian Energy is leading education

43

Advanced concepts for controlling energy surety microgrids.  

SciTech Connect (OSTI)

Today, researchers, engineers, and policy makers are seeking ways to meet the world's growing demand for energy while addressing critical issues such as energy security, reliability, and sustainability. Many believe that distributed generators operating within a microgrid have the potential to address most of these issues. Sandia National Laboratories has developed a concept called energy surety in which five of these 'surety elements' are simultaneously considered: energy security, reliability, sustainability, safety, and cost-effectiveness. The surety methodology leads to a new microgrid design that we call an energy surety microgrid (ESM). This paper discusses the unique control requirement needed to produce a microgrid system that has high levels of surety, describes the control system from the most fundamental level through a real-world example, and discusses our ideas and concepts for a complete system.

Menicucci, David F.; Ortiz-Moyet, Juan

2011-05-01T23:59:59.000Z

44

E-Print Network 3.0 - advanced control concept Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

concept Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced control concept Page: << < 1 2 3 4 5 > >> 1 MIT LINCOLN LABORATORY ORGANIZATION OF...

45

Recent results and future challenges for large scale Particle-In-Cell simulations of plasma-based accelerator concepts  

SciTech Connect (OSTI)

The concept and designs of plasma-based advanced accelerators for high energy physics and photon science are modeled in the SciDAC COMPASS project with a suite of Particle-In-Cell codes and simulation techniques including the full electromagnetic model, the envelope model, the boosted frame approach and the quasi-static model. In this paper, we report the progress of the development of these models and techniques and present recent results achieved with large-scale parallel PIC simulations. The simulation needs for modeling the plasma-based advanced accelerator at the energy frontier is discussed and a path towards this goal is outlined.

Huang, C.; An, W.; Decyk, V.K.; Lu, W.; Mori, W.B.; Tsung, F.S.; Tzoufras, M.; Morshed, S.; Antomsen, T.; Feng, B.; Katsouleas, T; Fonseca, R.A.; Martins, S.F.; Vieira, J.; Silva, L.O.; Geddes, C.G.R.; Cormier-Michel, E; Vay, J.-L.; Esarey, E.; Leemans, W.P.; Bruhwiler, D.L.; Cowan, B.; Cary, J.R.; Paul, K.

2009-05-01T23:59:59.000Z

46

Advanced Accelerator Applications University Participation Program  

SciTech Connect (OSTI)

Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability.

Y. Chen; A. Hechanova

2007-07-25T23:59:59.000Z

47

Energy Department Accelerates the Deployment of Advanced Vehicle  

Broader source: Energy.gov (indexed) [DOE]

Accelerates the Deployment of Advanced Vehicle Accelerates the Deployment of Advanced Vehicle Technologies with Private Industry Partnerships Energy Department Accelerates the Deployment of Advanced Vehicle Technologies with Private Industry Partnerships March 5, 2013 - 2:15pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitment to speeding the transition to more sustainable energy sources that will help drive economic growth, the Energy Department today announced 16 major U.S. employers and two stakeholder groups have joined the Workplace Charging Challenge to give more American workers access to new transportation options, while another three U.S. corporations have joined the National Clean Fleets Partnership. These steps support President Obama's goal to

48

ECE533 Advanced MOS Concepts and VLSI Design Spring 2012  

E-Print Network [OSTI]

ECE533 Advanced MOS Concepts and VLSI Design Spring 2012 S.K. Islam, 504 Min Kao Building, 974, Prentice Hall/Pearson 2003, ISBN 0-13-090996-3 CMOS Digital Integrated Circuits Analysis and Design, Sung Circuit Design, Layout, and Simulation, IEEE Press, 1998. · Ken Martin, Digital Integrated Circuit Design

Tennessee, University of

49

Advanced pressurized water reactor for improved resource utilization, part II - composite advanced PWR concept  

SciTech Connect (OSTI)

This report evaluates the enhanced resource utilization in an advanced pressurized water reactor (PWR) concept using a composite of selected improvements identified in a companion study. The selected improvements were in the areas of reduced loss of neutrons to control poisons, reduced loss of neutrons in leakage from the core, and improved blanket/reflector concepts. These improvements were incorporated into a single composite advanced PWR. A preliminary assessment of resource requirements and costs and impact on safety are presented.

Turner, S.E.; Gurley, M.K.; Kirby, K.D.; Mitchell, W III

1981-09-15T23:59:59.000Z

50

Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies  

SciTech Connect (OSTI)

The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

2011-11-14T23:59:59.000Z

51

Development of environmentally advanced hydropower turbine system design concepts  

SciTech Connect (OSTI)

A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

1997-08-01T23:59:59.000Z

52

Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams  

E-Print Network [OSTI]

collider," in Advanced Accelerator Concepts, edited by C .Considerations for Plasma Accelerators Driven by Lasers orUSA Abstract. Plasma accelerators may be driven by the

Schroeder, C. B.

2011-01-01T23:59:59.000Z

53

Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles  

SciTech Connect (OSTI)

The current posture of the used nuclear fuel management program in the U.S. following termination of the Yucca Mountain Project, is to pursue research and development (R&D) of generic (i.e., non-site specific) technologies for storage, transportation and disposal. Disposal R&D is directed toward understanding and demonstrating the performance of reference geologic disposal concepts selected to represent the current state-of-the-art in geologic disposal. One of the principal constraints on waste packaging and emplacement in a geologic repository is management of the waste-generated heat. This paper describes the selection of reference disposal concepts, and thermal management strategies for waste from advanced fuel cycles. A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE) Used Fuel Disposition Campaign, for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. We performed thermal analysis of these concepts using waste inventory cases representing a range of advanced fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress and previous experience in the U.S. repository program. All of the disposal concepts selected for this study use enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. The encapsulating materials (typically clay-based or rock salt) have low intrinsic permeability and plastic rheology that closes voids so that low permeability is maintained. Uniformly low permeability also contributes to chemically reducing conditions common in soft clay, shale, and salt formations. Enclosed modes are associated with temperature constraints that limit changes to the encapsulating materials, and they generally have less capacity to dissipate heat from the waste package and its immediate surroundings than open modes such as that proposed for a repository at Yucca Mountain, Nevada. Open emplacement modes can be ventilated for many years prior to permanent closure of the repository, limiting peak temperatures both before and after closure, and combining storage and disposal functions in the same facility. Open emplacement modes may be practically limited to unsaturated host formations, unless emplacement tunnels are effectively sealed everywhere prior to repository closure. Thermal analysis of disposal concepts and waste inventory cases has identified important relationships between waste package size and capacity, and the duration of surface decay storage needed to meet temperature constraints. For example, the choice of salt as the host medium expedites the schedule for geologic disposal by approximately 50 yr (other factors held constant) thereby reducing future reliance on surface decay storage. Rock salt has greater thermal conductivity and stability at higher temperatures than other media considered. Alternatively, the choice of salt permits the use of significantly larger waste packages for SNF. The following sections describe the selection of reference waste inventories, geologic settings, and concepts of operation, and summarize the results from the thermal analysis.

Hardin, Ernest [Sandia National Laboratories (SNL)] [Sandia National Laboratories (SNL); Blink, James [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL); Carter, Joe [Savannah River National Laboratory (SRNL)] [Savannah River National Laboratory (SRNL); Massimiliano, Fratoni [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL); Greenberg, Harris [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL); Howard, Rob L [ORNL] [ORNL

2011-01-01T23:59:59.000Z

54

Advanced turbine/CO{sub 2} pellet accelerator  

SciTech Connect (OSTI)

An advanced turbine/CO{sub 2} pellet accelerator is being evaluated as a depaint technology at Oak Ridge National Laboratory. The program, sponsored by Warner Robins Air Logistics Center, Robins Air Force Base, Georgia, has developed a robot-compatible apparatus that efficiently accelerates pellets of dry ice with a high-speed rotating wheel. In comparison to the more conventional compressed air sandblast pellet accelerators, the turbine system can achieve higher pellet speeds, has precise speed control, and is more than ten times as efficient. A preliminary study of the apparatus as a depaint technology has been undertaken. Depaint rates of military epoxy/urethane paint systems on 2024 and 7075 aluminum panels as a function of pellet speed and throughput have been measured. In addition, methods of enhancing the strip rate by combining infra-red heat lamps with pellet blasting have also been studied. The design and operation of the apparatus will be discussed along with data obtained from the depaint studies. Applications include removal of epoxy-based points from aircraft and the cleaning of surfaces contaminated with toxic, hazardous, or radioactive substances. The lack of a secondary contaminated waste stream is of great benefit.

Foster, C.A.; Fisher, P.W.

1994-09-01T23:59:59.000Z

55

Laser Guiding for GeV Laser-Plasma Accelerators  

E-Print Network [OSTI]

Overview of plasma-based accelerator concepts. IEEE Trans.using laser wake?eld accelerators. Meas. Sci. Technol. 12,for GeV laser-plasma accelerators. In Advanced Accelerator

Leemans, Wim; Esarey, Eric; Geddes, Cameron; Schroeder, C.B.; Toth, Csaba

2005-01-01T23:59:59.000Z

56

Design and Simulation of IOTA - a Novel Concept of Integrable Optics Test Accelerator  

SciTech Connect (OSTI)

The use of nonlinear lattices with large betatron tune spreads can increase instability and space charge thresholds due to improved Landau damping. Unfortunately, the majority of nonlinear accelerator lattices turn out to be nonintegrable, producing chaotic motion and a complex network of stable and unstable resonances. Recent advances in finding the integrable nonlinear accelerator lattices have led to a proposal to construct at Fermilab a test accelerator with strong nonlinear focusing which avoids resonances and chaotic particle motion. This presentation will outline the main challenges, theoretical design solutions and construction status of the Integrable Optics Test Accelerator (IOTA) underway at Fermilab.

Nagaitsev, S.; Valishev, A.; /Fermilab; Danilov, V.V.; /Oak Ridge; Shatilov, D.N.; /Novosibirsk, IYF

2012-05-01T23:59:59.000Z

57

Advanced Materials and Concepts for Portable Power Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 1 DOE Kick-off Meeting, Washington, DC September 28, 2010 Fuel Cell Projects Kick-off Meeting Washington, DC - September 28, 2010 Advanced Materials and Concepts for Portable Power Fuel Cells for Portable Power Fuel Cells Piotr Zelenay Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos, New Mexico 87545 This presentation does not contain any proprietary, confidential, or otherwise restricted information - t t Overview Timeline * Start date: September 2010 * End date: Four-year duration Budget Budget * Total funding estimate: - DOE share: $3,825K Contractor share: $342K $342K - Contractor share: * FY10 funding received: $250K * FY11 funding estimate: $1,000K Barriers * A. Durability (catalyst; electrode) (catalyst; electrode)

58

[Advanced accelerator R and D program]. Final report  

SciTech Connect (OSTI)

This proposal requests funding for a 3-year renewal of the DOE advanced accelerator R and D (AARD) program at Texas A and M University. The program to date has focused on the development of the gigatron, a compact high-efficiency microwave driver for future linear colliders. The author reports results and progress in that project, and plans to bring it to a milestone and conclusion by mid-1995. He proposes to initiate a second project, the development of a new technology for ultra-high field superconducting magnets for future hadron colliders. This project builds upon two magnet designs which he has introduced during the past year, which have the potential for a dramatic extension of the achievable field strength for both dipoles and quadrupoles.

NONE

1997-12-31T23:59:59.000Z

59

Advances in Ion Accelerators Boost Argonne's ATLAS User Facility...  

Office of Science (SC) Website

science as well as accelerator driven systems for nuclear waste transmutation or power generation, high-current accelerator-based isotope production facilities, and...

60

E-Print Network 3.0 - advanced lwr concept Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ENABLING SUSTAINABLE NUCLEAR POWER Summary: and NRE Design Class., "Advances in the Subcritical, Gas-Cooled Fast Transmutation Reactor Concept", Nucl... uranium energy...

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

E-Print Network 3.0 - advanced fusion concepts Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10.3 Alternate Concepts Fusion Technology FY 1995 -- 372.6 12;... International Thermonuclear Experimental Reactor Plasma Technologies Fusion Technologies Advanced Materials......

62

Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators  

E-Print Network [OSTI]

elds in laser plasma accelerators using higher order modes,collider, in Advanced Accelerator Concepts, edited by C. B.forces in laser-plasma accelerators W. Rittershofer, 1, a)

Rittershofer, W.

2010-01-01T23:59:59.000Z

63

Advanced Manufacturing Jobs and Innovation Accelerator Challenge Project Summaries  

Broader source: Energy.gov [DOE]

Project summaries for the Accelerator Challenge listing recipients, collaborations, locations, project names, and funding requests.

64

Advanced fusion MHD power conversion using the CFAR (compact fusion advanced Rankine) cycle concept  

SciTech Connect (OSTI)

The CFAR (compact fusion advanced Rankine) cycle concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high- temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium. 40 refs., 8 figs., 3 tabs.

Hoffman, M.A.; Campbell, R.; Logan, B.G. (California Univ., Davis, CA (USA); Lawrence Livermore National Lab., CA (USA))

1988-10-01T23:59:59.000Z

65

Community petascale project for accelerator science and simulation: Advancing computational science for future accelerators and accelerator technologies  

E-Print Network [OSTI]

al. 2005 Impact of SciDAC on accelerator projects across the171; Spentzouris P 2006 Accelerator modeling under SciDAC:of next-generation accelerator design, analysis, and

Spentzouris, Panagiotis

2008-01-01T23:59:59.000Z

66

Advance in Vertical Buffered Electropolishing on Niobium for Particle Accelerators*  

SciTech Connect (OSTI)

Niobium (Nb) is the most popular material that has been employed for making superconducting radio frequency (SRF) cavities to be used in various particle accelerators over the last couple of decades. One of the most important steps in fabricating Nb SRF cavities is the final chemical removal of 150 {mu}m of Nb from the inner surfaces of the SRF cavities. This is usually done by either buffered chemical polishing (BCP) or electropolishing (EP). Recently a new Nb surface treatment technique called buffered electropolishing (BEP) has been developed at Jefferson Lab. It has been demonstrated that BEP can produce the smoothest surface finish on Nb ever reported in the literature while realizing a Nb removal rate as high as 10 {mu}m/min that is more than 25 and 5 times quicker than those of EP and BCP(112) respectively. In this contribution, recent advance in optimizing and understanding BEP treatment technique is reviewed. Latest results from RF measurements on BEP treated Nb single cell cavities by our unique vertical polishing system will be reported.

A.T. Wu, S. Jin, J.D. Mammosser, C.E. Reece, R.A. Rimmer,L. Lin, X.Y. Lu, K. Zhao

2011-09-01T23:59:59.000Z

67

Beam-Dynamics Studies and Advanced Accelerator Research at CTF-3 Compact Final Focus, Laser Compton Scattering, Plasmas, etc.  

E-Print Network [OSTI]

Preliminary investigations are summarized on the possible use of the CTF3 facility for extended beam-dynamics studies and advanced accelerator R&D, which would exploit its unique properties and beam availability. The key element of these considerations is the possible addition of a test beam-delivery system comprising a compact final focus and advanced collimation concepts, scaled from 3 TeV down to low energy and having a short total length. Operational experience, verification of critical questions (octupole tail folding, beam halo transport, etc.), diagnostics (e.g., rf BPMs) and stabilization could all be explored in such a facility, which would benefit not only the CLIC study, but all linear collider projects. Another interesting application would be the study of plasma-beam interaction, which may include plasma focusing, plasma acceleration, ion-channel radiation, and plasma wigglers.

Assmann, R W; Burkhardt, H; Corsini, R; Faus-Golfe, A; Gronberg, J; Redaelli, S; Schulte, Daniel; Velasco, M; Zimmermann, Frank

2002-01-01T23:59:59.000Z

68

HEP Accelerator R&D Expertise | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

by university grants. As needed, promising concepts are tested at national laboratory test facilities, such as the Advanced Wakefield Accelerator (AWA) at ANL, the Accelerator...

69

E-Print Network 3.0 - accelerator facility complex Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

large... of an advanced exotic beam facility evolved from the Rare Isotope Accelerator (RIA) concept. The OMB and the DOE... Focus Research Areas 1. Fundamental Accelerator...

70

Advanced HEV/PHEV Concepts | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technologies Office Merit Review 2014: In-Vehicle Evaluation of Lower-Energy Energy Storage System (LEESS) Devices Overview and Progress of United States Advanced Battery...

71

Nonlinear laser energy depletion in laser-plasma accelerators  

E-Print Network [OSTI]

Lee- mans, in Advanced Accelerator Concepts, Eleventh Work-in laser-plasma accelerators ? B. A. Shadwick, 1, C. B.ac- celerators. Laser-plasma accelerators, for example, have

Shadwick, B.A.

2009-01-01T23:59:59.000Z

72

U.S. Department of Energy and India Partner to Advance Accelerator and  

Broader source: Energy.gov (indexed) [DOE]

U.S. Department of Energy and India Partner to Advance Accelerator U.S. Department of Energy and India Partner to Advance Accelerator and Particle Detector Research and Development U.S. Department of Energy and India Partner to Advance Accelerator and Particle Detector Research and Development July 25, 2011 - 3:22pm Addthis WASHINGTON DC - The U.S. Department of Energy (DOE) today announced that it has signed an agreement with the Indian Department of Atomic Energy (DAE) to help advance scientific discovery in the field of accelerator and particle detector research. The agreement builds on a long-history of successful scientific collaborations between the U.S. and India and will leverage scientific, technical, and engineering expertise to facilitate basic science research and development (R&D) between the two Departments.

73

High Performance Computing Modeling Advances Accelerator Science for High Energy Physics  

SciTech Connect (OSTI)

The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing (HPC) are essential for accurately modeling them. In the past decade, the DOE SciDAC program has produced such accelerator-modeling tools, which have beem employed to tackle some of the most difficult accelerator science problems. In this article we discuss the Synergia beam-dynamics framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable of handling the entire spectrum of beam dynamics simulations. We present the design principles, key physical and numerical models in Synergia and its performance on HPC platforms. Finally, we present the results of Synergia applications for the Fermilab proton source upgrade, known as the Proton Improvement Plan (PIP).

Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

2014-04-29T23:59:59.000Z

74

Advanced high performance solid wall blanket concepts C.P.C. Wong a,  

E-Print Network [OSTI]

and desirable attributes for the reactor design. Future needs and directions on the development of advanced FW of first wall coating material selection, design of plasma stabilization coils, consideration of reactor concepts for comparison

Raffray, A. René

75

A three dimensional simulation of a thermal experiment conducted on an accelerator driven system target model concept  

E-Print Network [OSTI]

Accelerator transmutation of waste (ATW) is a new concept that would destroy actinides in spent fuel and produce electrical power. This study explores the possibility of modeling the thermo-hydraulics of this system with computational fluid...

Pratt, Preston Persley

2012-06-07T23:59:59.000Z

76

Advanced Underground Gas Storage Concepts Refrigerated-Mined Cavern Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UNDERGROUND GAS STORAGE CONCEPTS UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE FINAL REPORT DOE CONTRACT NUMBER DE-AC26-97FT34349 SUBMITTED BY: PB-KBB INC. 11757 KATY FREEWAY, SUITE 600 HOUSTON, TX 77079 SEPTEMBER 1998 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily

77

Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced the selection of three projects that aim to advance the offshore wind industry and lower the cost of offshore wind technologies. Learn more about these technological innovations.

78

ADVANCED DIRECT LIQUEFACTION CONCEPTS FOR PETC GENERIC UNITS  

SciTech Connect (OSTI)

The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 is reported for the period April 1, 1998 to June 30, 1998. This contract is with the University of kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Researc, CONSOL, Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work involves the introduction into the basic two-stage liquefaction process several novel concepts, which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing.

Adam J. Berkovich

2000-03-01T23:59:59.000Z

79

Advances in laser driven accelerator R&D  

SciTech Connect (OSTI)

Current activities (last few years) at different laboratories, towards the development of a laser wakefield accelerator (LWFA) are reviewed, followed by a more in depth discussion of results obtained at the L'OASIS laboratory of LBNL. Recent results on laser guiding of relativistically intense beams in preformed plasma channels are discussed. The observation of mono-energetic beams in the 100 MeV energy range, produced by a channel guided LWFA at LBNL, is described and compared to results obtained in the unguided case at LOA, RAL and LBNL. Analysis, aided by particle-in-cell simulations, as well as experiments with various plasma lengths and densities, indicate that tailoring the length of the accelerator has a very beneficial impact on the electron energy distribution. Progress on laser triggered injection is reviewed. Results are presented on measurements of bunch duration and emittance of the accelerated electron beams, that indicate the possibility of generating femtosecond duration electron bunches. Future challenges and plans towards the development of a 1 GeV LWFA module are discussed.

Leemans, Wim

2004-08-23T23:59:59.000Z

80

Range of blanket concepts from near term solutions to advanced concepts  

E-Print Network [OSTI]

a considerable development risk. Therefore, the selection of blanket concepts depends on the overall strategy which can be operated safely, with minimum impact on the environment, and at an acceptable cost to the environment, and; Á/ can generate electricity at acceptable costs. The evaluation of whether or not and how

Raffray, A. René

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Advanced atomization concept for CWF burning in small combustors  

SciTech Connect (OSTI)

The present project involves the second phase of research on a new concept in coal-water fuel (CWF) atomization that is applicable to burning in small combustors. It is intended to address the most important problem associated with CWF combustion; i.e., production of small spray droplets in an efficient manner by an atomization device. Phase 1 of this work was successfully completed with the development of an opposed-jet atomizer that met the goals of the first contract. Performance as a function of operating conditions was measured, and the technical feasibility of the device established in the Atlantic Research Atomization Test Facility employing a Malvern Particle Size Analyzer. Testing then proceeded to a combustion stage in a test furnace at a firing rate of 0.5 to 1.5 MMBtu/H.

Heaton, H.; McHale, E.

1991-01-01T23:59:59.000Z

82

ADVANCED DIRECT LIQUEFACTION CONCEPTS FOR PETC GENERIC UNITS  

SciTech Connect (OSTI)

The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 is reported for the period July 1, 1998 to September 30, 1998. This contract is with the University of kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Researc, CONSOL, Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work involves the introduction into the basic two-stage liquefaction process several novel concepts, which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This project has been modified to include an investigation into the production of value added materials from coal using liquefaction based technologies.

Adam J. Berkovich

2000-02-01T23:59:59.000Z

83

High current electron linacs (advanced test accelerator/experimental test accelerator)  

SciTech Connect (OSTI)

The high current induction accelerator development at the Lawrence Livermore National Laboratory is described. The ATA facility is designed for 10 kA peak currents, 50 nsec pulse lengths and 50 MeV energies. At this time, half of the design current has been accelerated through the entire machine to particle energies of about 45 MeV. Current problem areas and operational experience to date will be discussed. Several key technical areas required development for the ATA machine; this report will survey these developments. The control of transverse beam instabilities required an accelerating cavity design with very low Q. Electron sources capable of 10 kA operation at high rep rates were developed using a plasma sparkboard approach. The pulse power systems on ATA, using the same type of spark gap switches as ETA, have exhibited excellent operational reliability.

Briggs, R.J.

1984-04-30T23:59:59.000Z

84

Acceleration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Acceleration Acceleration of porous media simulations on the Cray XE6 platform Kirsten M. Fagnan, Michael Lijewski, George Pau, Nicholas J. Wright Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94720 May 18, 2011 1 Introduction In this paper we investigate the performance of the Porous Media with Adaptive Mesh Refinment (PMAMR) code which was developed in the Center for Computational Science and Engineering at Lawrence Berkeley National Laboratory. This code is being used to model carbon sequestration and contaminant transport as part of the Advanced Simulation Capability for Environmental Management (ASCEM) project. The goal of the ASCEM project is to better understand and quantify flow and contaminant transport behavior in complex geological systems. It will also address the long-term performance of engineered components including cementitious materials in

85

Advanced Klystrons for High Efficiency Accelerator Systems - Final Report  

SciTech Connect (OSTI)

This program explored tailoring of RF pulses used to drive accelerator cavities. Simulations indicated that properly shaping the pulse risetime to match accelerator cavity characteristics reduced reflected power and increased total efficiency. Tailoring the pulse requires a high power, gridded, klystron to shape the risetime while also controlling the beam current. The Phase I program generated a preliminary design of a gridded electron gun for a klystron producing 5-10 MW of RF power. This required design of a segmented cathode using Controlled Porosity Reservoir cathodes to limit power deposition on the grid. The program was successful in computationally designing a gun producing a high quality electron beam with grid control. Additional analysis of pulse tailoring indicated that technique would only be useful for cavity drive pulses that were less than approximately 2-3 times the risetime. Otherwise, the efficiency gained during the risetime of the pulse became insignificant when considering the efficiency over the entire pulse. Consequently, it was determined that a Phase II program would not provide sufficient return to justify the cost. Never the less, other applications for a high power gridded gun are currently being pursued. This klystron, for example, would facilitate development inverse Comptom x-ray sources by providing a high repetition rate (10 -100 kHz) RF source.

Read, Michael; Ives, Robert Lawrence

2014-03-26T23:59:59.000Z

86

Advanced Direct Liquefaction Concepts for PETC Generic Units - Phase II  

SciTech Connect (OSTI)

The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 are reported for the period July 1, 1997 to September 30, 1997. This contract is with the University of Kentucky Research Foundation which supports work with the University of Kentucky Center for Applied Energy Research, CONSOL, Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work involves the introduction into the basic two stage liquefaction process several novel concepts which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. Results are reported from experiments in which various methods were tested to activate dispersed Mo precursors. Several oxothiomolybdates precursors having S/Mo ratios from two to six were prepared. Another having a S/Mo ratio of eleven was also prepared that contained an excess of sulfur. In the catalyst screening test, none of these precursors exhibited an activity enhancement that might suggest that adding sulfur into the structure of the Mo precursors would be beneficial to the process. In another series of experiments, AHM impregnated coal slurried in the reaction mixture was pretreated withH S/H under pressure and successively heated for 30 min at 120, 250 2 2 and 360 C. THF conversions in the catalyst screening test were not affected while resid conversions o increased such that pretreated coals impregnated with 100 ppm Mo gave conversions equivalent to untreated coals impregnated with 300 ppm fresh Mo. Cobalt, nickel and potassium phosphomolybdates were prepared and tested as bimetallic precursors. The thermal stability of these compounds was evaluated in TG/MS to determine whether the presence of the added metal would stabilize the Keggin structure at reaction temperature. Coals impregnated with these salts showed the Ni and Co salts gave the same THF conversion as PMA while the Ni salt gave higher resid conversion than the other salts and untreated PMA. To activate PMA, a series of sulfided PMA materials was prepared by subjecting the crystalline acid to H S/H at 125-450 C. The chemistries 2 2 o of these partially sulfided materials are reported as well as the reactivity of several impregnated coals. None of the coals impregnated with these sulfided PMA materials gave conversions that exceeded PMA. Reports covering work by the subcontractors for this reporting period have not been received. A report from CONSOL covering a previous reporting period is included.

None

1997-12-01T23:59:59.000Z

87

Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles  

Broader source: Energy.gov [DOE]

Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

88

E-Print Network 3.0 - accelerator design concept Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and simulation of the acceleration... III. ACCELERATION FEEDBACK PRINCIPLE Schmidt and ... Source: Nagurka, Mark L. - Department of Mechanical Engineering, Marquette University...

89

E-Print Network 3.0 - accelerators design concepts Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and simulation of the acceleration... III. ACCELERATION FEEDBACK PRINCIPLE Schmidt and ... Source: Nagurka, Mark L. - Department of Mechanical Engineering, Marquette University...

90

A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts  

SciTech Connect (OSTI)

This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operating experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.

Jacques V Hugo; David I Gertman; Jeffrey C Joe

2014-08-01T23:59:59.000Z

91

University Programs of the U.S. Department of Energy Advance Accelerator Applications Program  

SciTech Connect (OSTI)

The Advanced Accelerator Applications (AAA) Program was initiated in fiscal year 2001 (FY01) by the U.S. Congress, the U.S. Department of Energy (DOE), and the Los Alamos National Laboratory (LANL) in partnership with other national laboratories. The primary goal of this program is to investigate the feasibility of accelerator-driven transmutation of nuclear waste (ATW). Because a large cadre of educated scientists and trained technicians will be needed to conduct the investigations of science and technology for transmutation, the AAA Program Office has begun a multi-year program to involve university faculty and students in various phases of the Project.

Beller, D. E. (Denis E.)

2002-01-01T23:59:59.000Z

92

Generation of electron beams from a laser-based advanced accelerator at Shanghai Jiao Tong University  

E-Print Network [OSTI]

At Shanghai Jiao Tong University, we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration (LWFA) scheme, multi-hundred MeV electron beams having a reasonable quality are generated using 20-40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized for stabilizing the electron beam generation from each type of gas. The electron beam pointing angle stability and divergence angle as well as the energy spectra from each gas jet are measured and compared.

Elsied, Ahmed M M; Li, Song; Mirzaie, Mohammad; Sokollik, Thomas; Zhang, Jie

2014-01-01T23:59:59.000Z

93

Advanced Security Acceleration Project for Smart Grid (ASAP-SG) | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Security Acceleration Project for Smart Grid (ASAP-SG) Advanced Security Acceleration Project for Smart Grid (ASAP-SG) June 12, 2013 Problem Statement: The goal of this project is to develop a set of computer and network security requirements for the smart grid deployment. The key problem addressed in this project is to provide actionable security guidance to utilities for secure deployment of smart grid systems. Technical Approach: This is a utility-driven, public-private collaborative project to develop system-level security requirements for smart grid technology. The set of requirements developed in the project can be used by utilities at various stages of deployment including procurement, configuration, deployment, commissioning, and operation of smart grid systems. The ASAP SG project develops security profiles for Smart Grid applications on the basis

94

ANL/APS/TB-16 ADVANCED PHOTON SOURCE ACCELERATOR ULTRAHIGH VACUUM GUIDE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 ADVANCED PHOTON SOURCE ACCELERATOR ULTRAHIGH VACUUM GUIDE Chian Liu and John Noonan CONTENTS 1. Ultrahigh Vacuum Overview ............................................................................... 1 1.1 Vacuum ..................................................................................................... 1 1.2 Sources of Residual Gas ........................................................................... 2 1.3 Material Selections in Ultrahigh Vacuum ................................................. 9 1.4 Pumps and Pumping Processes ................................................................. 11 1.5 Common Sense in Ultrahigh Vacuum Related Work ................................ 15 1.6 Vacuum Safety Issues ...............................................................................

95

Advanced Scintillator Detector Concept (ASDC): A Concept Paper on the Physics Potential of Water-Based Liquid Scintillator  

E-Print Network [OSTI]

The recent development of Water-based Liquid Scintillator (WbLS), and the concurrent development of high-efficiency and high-precision-timing light sensors, has opened up the possibility for a new kind of large-scale detector capable of a very broad program of physics. The program would include determination of the neutrino mass hierarchy and observation of CP violation with long-baseline neutrinos, searches for proton decay, ultra-precise solar neutrino measurements, geo- and supernova neutrinos including diff?use supernova antineutrinos, and neutrinoless double beta decay. We outline here the basic requirements of the Advanced Scintillation Detector Concept (ASDC), which combines the use of WbLS, doping with a number of potential isotopes for a range of physics goals, high efficiency and ultra-fast timing photosensors, and a deep underground location. We are considering such a detector at the Long Baseline Neutrino Facility (LBNF) far site, where the ASDC could operate in conjunction with the liquid argon t...

Alonso, J R; Bergevin, M; Bernstein, A; Bignell, L; Blucher, E; Calaprice, F; Conrad, J M; Descamps, F B; Diwan, M V; Dwyer, D A; Dye, S T; Elagin, A; Feng, P; Grant, C; Grullon, S; Hans, S; Jaffe, D E; Kettell, S H; Klein, J R; Lande, K; Learned, J G; Luk, K B; Maricic, J; Marleau, P; Mastbaum, A; McDonough, W F; Oberauer, L; Gann, G D Orebi; Rosero, R; Rountree, S D; Sanchez, M C; Shaevitz, M H; Shokair, T M; Smy, M B; Strait, M; Svoboda, R; Tolich, N; Vagins, M R; van Bibber, K A; Viren, B; Vogelaar, R B; Wetstein, M J; Winslow, L; Wonsak, B; Worcester, E T; Wurm, M; Yeh, M; Zhang, C

2014-01-01T23:59:59.000Z

96

Advanced Scintillator Detector Concept (ASDC): A Concept Paper on the Physics Potential of Water-Based Liquid Scintillator  

E-Print Network [OSTI]

The recent development of Water-based Liquid Scintillator (WbLS), and the concurrent development of high-efficiency and high-precision-timing light sensors, has opened up the possibility for a new kind of large-scale detector capable of a very broad program of physics. The program would include determination of the neutrino mass hierarchy and observation of CP violation with long-baseline neutrinos, searches for proton decay, ultra-precise solar neutrino measurements, geo- and supernova neutrinos including diffuse supernova antineutrinos, and neutrinoless double beta decay. We outline here the basic requirements of the Advanced Scintillation Detector Concept (ASDC), which combines the use of WbLS, doping with a number of potential isotopes for a range of physics goals, high efficiency and ultra-fast timing photosensors, and a deep underground location. We are considering such a detector at the Long Baseline Neutrino Facility (LBNF) far site, where the ASDC could operate in conjunction with the liquid argon tracking detector proposed by the LBNE collaboration. The goal is the deployment of a 30-100 kiloton-scale detector, the basic elements of which are being developed now in experiments such as WATCHMAN, ANNIE, SNO+, and EGADS.

J. R. Alonso; N. Barros; M. Bergevin; A. Bernstein; L. Bignell; E. Blucher; F. Calaprice; J. M. Conrad; F. B. Descamps; M. V. Diwan; D. A. Dwyer; S. T. Dye; A. Elagin; P. Feng; C. Grant; S. Grullon; S. Hans; D. E. Jaffe; S. H. Kettell; J. R. Klein; K. Lande; J. G. Learned; K. B. Luk; J. Maricic; P. Marleau; A. Mastbaum; W. F. McDonough; L. Oberauer; G. D. Orebi Gann; R. Rosero; S. D. Rountree; M. C. Sanchez; M. H. Shaevitz; T. M. Shokair; M. B. Smy; A. Stahl; M. Strait; R. Svoboda; N. Tolich; M. R. Vagins; K. A. van Bibber; B. Viren; R. B. Vogelaar; M. J. Wetstein; L. Winslow; B. Wonsak; E. T. Worcester; M. Wurm; M. Yeh; C. Zhang

2014-10-24T23:59:59.000Z

97

Development of Advanced Concept for Shortening Construction Period of ABWR Plant  

SciTech Connect (OSTI)

Construction of a nuclear power plant (NPP) requires a very long period because of large amount of construction materials and many issues for negotiation among multiple sections. Shortening the construction period advances the date of return on an investment, and can also result in reduced construction cost. Therefore, the study of this subject has a very high priority for utilities. We achieved a construction period of 37 months from the first concrete work to fuel loading (F/L) (51.5 months from the inspection of the foundation (I/F) to the start of commercial operation (C/O)) at the Kashiwazaki-Kariwa NPPs No. 6 and 7 (KK-6/7), which are the first ABWR plants in the world. At TEPCO's next plant, we think that a construction period of less than 36 months (45 months from I/F to C/O) can be realized based on conventional methods such as early start of equipment installation and blocking of equipment to be brought in advance. Furthermore, we are studying the feasibility of a 21.5-month construction period (30 months from I/F to C/O) with advanced ideas and methods. The important concepts for a 21.5-month construction period are adoption of a new building structure that is the steel plate reinforced concrete (SC) structure and promotion of extensive modularization of equipment and building structure. With introducing these new concepts, we are planning the master schedule (M/S) and finding solutions to conflicts in the schedule of area release from building construction work to equipment installation work (schedule-conflicts.) In this report, we present the shortest construction period and an effective method to put it into practice for the conventional general arrangement (GA) of ABWR. In the future, we will continue the study on the improvement of building configuration and arrangements, and make clear of the concept for large composite modules of building structures and equipment. (authors)

Hiroshi Ijichi; Toshio Yamashita; Masahiro Tsutagawa; Hiroya Mori [Toshiba Corporation (Japan); Nobuaki Ooshima; Jun Miura [Hitachi Ltd. (Japan); Minoru Kanechika [Kajima Corporation (Japan); Nobuaki Miura [Shimizu Corporation (Japan)

2002-07-01T23:59:59.000Z

98

DEVELOPMENT OF OPERATIONAL CONCEPTS FOR ADVANCED SMRs: THE ROLE OF COGNITIVE SYSTEMS ENGINEERING  

SciTech Connect (OSTI)

Advanced small modular reactors (AdvSMRs) will use advanced digital instrumentation and control systems, and make greater use of automation. These advances not only pose technical and operational challenges, but will inevitably have an effect on the operating and maintenance (O&M) cost of new plants. However, there is much uncertainty about the impact of AdvSMR designs on operational and human factors considerations, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. Existing human factors and systems engineering design standards and methodologies are not current in terms of human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. New models and guidance for operational concepts for complex socio-technical systems need to adopt a state-of-the-art approach such as Cognitive Systems Engineering (CSE) that gives due consideration to the role of personnel. This approach we report on helps to identify and evaluate human challenges related to non-traditional concepts of operations. A framework - defining operational strategies was developed based on the operational analysis of Argonne National Laboratorys Experimental Breeder Reactor-II (EBR-II), a small (20MWe) sodium-cooled reactor that was successfully operated for thirty years. Insights from the application of the systematic application of the methodology and its utility are reviewed and arguments for the formal adoption of CSE as a value-added part of the Systems Engineering process are presented.

Jacques Hugo; David Gertman

2014-04-01T23:59:59.000Z

99

Advanced direct liquefaction concepts for PETC generic units. Final report, Phase I  

SciTech Connect (OSTI)

The Advanced Concepts for Direct Coal Liquefaction program was initiated by the Department of Energy in 1991 to develop technologies that could significantly reduce the cost of producing liquid fuels by the direct liquefaction of coal. The advanced 2-stage liquefaction technology that was developed at Wilsonville over the past 10 years has contributed significantly toward decreasing the cost of producing liquids from coal to about $33/bbl. It remains, however, the objective of DOE to further reduce this cost to a level more competitive with petroleum based products. This project, among others, was initiated to investigate various alternative approaches to develop technologies that might ultimately lead to a 25 % reduction in cost of product. In this project a number of novel concepts were investigated, either individually or in a coupled configuration that had the potential to contribute toward meeting the DOE goal. The concepts included mature technologies or ones closely related to them, such as coal cleaning by oil agglomeration, fluid coking and distillate hydrotreating and dewaxing. Other approaches that were either embryonic or less developed were chemical pretreatment of coal to remove oxygen, and dispersed catalyst development for application in the 2-stage liquefaction process. This report presents the results of this project. It is arranged in four sections which were prepared by participating organizations responsible for that phase of the project. A summary of the overall project and the principal results are given in this section. First, however, an overview of the process economics and the process concepts that were developed during the course of this program is presented.

NONE

1995-03-01T23:59:59.000Z

100

Draft Function Allocation Framework and Preliminary Technical Basis for Advanced SMR Concepts of Operations  

SciTech Connect (OSTI)

This report presents preliminary research results from the investigation into the development of new models and guidance for Concepts of Operations in advanced small modular reactor (AdvSMR) designs. AdvSMRs are nuclear power plants (NPPs), but unlike conventional large NPPs that are constructed on site, AdvSMRs systems and components will be fabricated in a factory and then assembled on site. AdvSMRs will also use advanced digital instrumentation and control systems, and make greater use of automation. Some AdvSMR designs also propose to be operated in a multi-unit configuration with a single central control room as a way to be more cost-competitive with existing NPPs. These differences from conventional NPPs not only pose technical and operational challenges, but they will undoubtedly also have regulatory compliance implications, especially with respect to staffing requirements and safety standards.

Jacques Hugo; John Forester; David Gertman; Jeffrey Joe; Heather Medema; Julius Persensky; April Whaley

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

University programs of the U.S. Department of Energy advanced accelerator applications program  

SciTech Connect (OSTI)

The Advanced Accelerator Applications (AAA) Program was initiated in fiscal year 2001 (FY-01) by the U.S. Congress, the U.S. Department of Energy (DOE), and the Los Alamos National Laboratory (LANL) in partnership with other national laboratories. The primary goal of this program is to investigate the feasibility of transmutation of nuclear waste. An Accelerator-Driven Test Facility (ADTF), which may be built during the first decade of the 21st Century, is a major component of this effort. The ADTF would include a large, state-of-the-art charged-particle accelerator, proton-neutron target systems, and accelerator-driven R&D systems. This new facility and its underlying science and technology will require a large cadre of educated scientists and trained technicians. In addition, other applications of nuclear science and engineering (e.g., proliferation monitoring and defense, nuclear medicine, safety regulation, industrial processes, and many others) require increased academic and national infrastructure and student populations. Thus, the AAA Program Office has begun a multi-year program to involve university faculty and students in various phases of the Project to support the infrastructure requirements of nuclear energy, science and technology fields as well as the special needs of the DOE transmutation program. In this paper we describe university programs that have supported, are supporting, and will support the R&D necessary for the AAA Project. Previous work included research for the Accelerator Transmutation of Waste (ATW) project, current (FY-01) programs include graduate fellowships and research for the AAA Project, and it is expected that future programs will expand and add to the existing programs.

Beller, D. E. (Denis E.); Ward, T. E. (Thomas E.); Bresee, J. C.

2001-01-01T23:59:59.000Z

102

Load Schedule Coordination for a Large Linear Accelerator: An Operation Powerplay Concept  

E-Print Network [OSTI]

Operation Powerplay is a viable electric load management program developed and tested with Department of Energy funding and support. It is a concept designed to provide financial benefits to a utility and one or more of its customers through...

Johnson, W. H.

1984-01-01T23:59:59.000Z

103

Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) Repowering Concept Assessment at Duke Energy's Dan River Station  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wolfmeyer et al. APFBC Repowering Assessment at Duke Energy's Dan River Station Wolfmeyer et al. APFBC Repowering Assessment at Duke Energy's Dan River Station paper 970561 Page 1 of 36 Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) Repowering Concept Assessment at Duke Energy's Dan River Station John C. Wolfmeyer, P.E., and Cal Jowers, P.E. Duke Energy / Charlotte, North Carolina Richard E. Weinstein, P.E., Harvey N. Goldstein, P.E., and Jay S. White Parsons Power Group Inc. / Reading, Pennsylvania Robert W. Travers, P.E. U.S. Department of Energy Office of Fossil Energy / Germantown, Maryland electronic mail addresses/phone no. electronic mail addresses/phone no. Wolfmeyer { JCWolfme@Duke-Energy.COM 704 / 382-4017 Goldstein { Harvey_N_Goldstein@Parsons.COM 610 / 855-3281 Jowers { -- 704 / 382-9577 White { Jay_S_White@Parsons.COM

104

AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report  

SciTech Connect (OSTI)

The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

Petersen, G.; Bair, K.; Ross, J. [eds.

1994-03-01T23:59:59.000Z

105

Feasibility study of a nonequilibrium MHD accelerator concept for hypersonic propulsion ground testing  

SciTech Connect (OSTI)

A National Aeronautics and Space Administration (NASA) funded research study to evaluate the feasibility of using magnetohydrodynamic (MHD) body force accelerators to produce true air simulation for hypersonic propulsion ground testing is discussed in this paper. Testing over the airbreathing portion of a transatmospheric vehicle (TAV) hypersonic flight regime will require high quality air simulation for actual flight conditions behind a bow shock wave (forebody, pre-inlet region) for flight velocities up to Mach 16 and perhaps beyond. Material limits and chemical dissociation at high temperature limit the simulated flight Mach numbers in conventional facilities to less than Mach 12 for continuous and semi-continuous testing and less than Mach 7 for applications requiring true air chemistry. By adding kinetic energy directly to the flow, MHD accelerators avoid the high temperatures and pressures required in the reservoir region of conventional expansion facilities, allowing MHD to produce true flight conditions in flight regimes impossible with conventional facilities. The present study is intended to resolve some of the critical technical issues related to the operation of MHD at high pressure. Funding has been provided only for the first phase of a three to four year feasibility study that would culminate in the demonstration of MHD acceleration under conditions required to produce true flight conditions behind a bow shock wave to flight Mach numbers of 16 or greater. MHD critical issues and a program plan to resolve these are discussed.

Lee, Ying-Ming; Simmons, G.A.; Nelson, G.L. [MSE Inc., Butte, MT (United States)

1995-12-31T23:59:59.000Z

106

BNL | Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Test Facility Accelerator Test Facility Home Core Capabilities Photoinjector S-Band Linac Laser Systems CO2 Laser Nd:Yag Laser Beamlines Beamline Simulation Data Beamline Parameters Beam Diagnostics Detectors Beam Schedule Operations Resources Fact Sheet (.pdf) Image Library Upgrade Proposal (.pdf) Publications ES&H Experiment Start-up ATF Handbook Laser Safety Collider-Accelerator Dept. C-AD ES&H Resources Staff Users' Place Apply for Access ATF photo ATF photo ATF photo ATF photo ATF photo A user facility for advanced accelerator research The Brookhaven Accelerator Test Facility (ATF) is a proposal driven, steering committee reviewed facility that provides users with high-brightness electron- and laser-beams. The ATF pioneered the concept of a user facility for studying complex properties of modern accelerators and

107

OSCAR API v2.1: Extensions for an Advanced Accelerator Control Scheme to a Low-Power  

E-Print Network [OSTI]

OSCAR API v2.1: Extensions for an Advanced Accelerator Control Scheme to a Low-Power Multicore API optimization and low-power optimization, has been developed. Furthermore, the OSCAR API has been also developed, AMD, Tilera, Fujitsu, Renesas Electronics, and so on. The OSCAR API v1.0 and v2.0 have been opened

Kasahara, Hironori

108

Design Concepts for RF-DC Conversion in Particle Accelerator Systems  

E-Print Network [OSTI]

In many particle accelerators considerable amounts of RF power reaching the megawatt level are converted into heat in dummy loads. After an overview of RF power in the range 200 MHz to 1 GHz dissipated at CERN we discuss several developments that have come up in the past using vacuum tube technology for RF-DC conversion. Amongst those the developments of the cyclotron wave converter CWC appears most suitable. With the availability of powerful Schottky diodes the solid state converter aspect has to be addressed as well. One of the biggest problems of Schottky diode based structures is the junction capacity. GaAs and GaN Schottky diodes show a significant reduction of this junction capacity as compared to silicon. Small rectenna type converter units which have been already developed for microwave powered helicopters can be used in waveguides or with coaxial power dividers.

Caspers, F; Grudiev, A; Sapotta, H

2010-01-01T23:59:59.000Z

109

Introduction to DMFCs - Advanced Materials and Concepts for Portable Power Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Program Webinar Technologies Program Webinar July 17, 2012 1 Introduction to DMFCs Advanced Materials and Concepts for Portable Power Fuel Cells Piotr Zelenay Los Alamos National Laboratory, Los Alamos, New Mexico 87545, U.S.A. Fuel Cell Technologies Program Webinar - July 17, 2012 - The Fuel Choice P. Piela and P. Zelenay, Fuel Cell Review, 1, 17, 2004 Fuel Cell Technologies Program Webinar - July 17, 2012 2 Direct Methanol Fuel Cell Anode: Pt-Ru Cathode: Pt Membrane: e.g. Nafion ® 115 e - CH 3 OH H + H 2 O CH 3 OH Electroosmotic drag MEMBRANE 1.5 O 2 (air) H 2 O CO 2 + 3 H 2 O 6 H + + 6 e - ANODE CATHODE CH 3 OH (l) + 1.5 O 2  2 H 2 O (l) + CO 2  V = 1.21 V; G° = 6.1 kWh kg -1 = 4.8 kWh L -1 Fuel Cell Technologies Program Webinar - July 17, 2012 3 ______________________ O 2 H 

110

Experimental study of photonic band gap accelerator structures  

E-Print Network [OSTI]

This thesis reports theoretical and experimental research on a novel accelerator concept using a photonic bandgap (PBG) structure. Major advances in higher order mode (HOM) damping are required for the next generation of ...

Marsh, Roark A

2009-01-01T23:59:59.000Z

111

Testing of advanced liquefaction concepts in HTI Run ALC-1: Coal cleaning and recycle solvent treatment  

SciTech Connect (OSTI)

In 1991, the Department of Energy initiated the Advanced Liquefaction Concepts Program to promote the development of new and emerging technology that has potential to reduce the cost of producing liquid fuels by direct coal liquefaction. Laboratory research performed by researchers at CAER, CONSOL, Sandia, and LDP Associates in Phase I is being developed further and tested at the bench scale at HTI. HTI Run ALC-1, conducted in the spring of 1996, was the first of four planned tests. In Run ALC-1, feed coal ash reduction (coal cleaning) by oil agglomeration, and recycle solvent quality improvement through dewaxing and hydrotreatment of the recycle distillate were evaluated. HTI`s bench liquefaction Run ALC-1 consisted of 25 days of operation. Major accomplishments were: 1) oil agglomeration reduced the ash content of Black Thunder Mine coal by 40%, from 5.5% to 3.3%; 2) excellent coal conversion of 98% was obtained with oil agglomerated coal, about 3% higher than the raw Black Thunder Mine coal, increasing the potential product yield by 2-3% on an MAF coal basis; 3) agglomerates were liquefied with no handling problems; 4) fresh catalyst make-up rate was decreased by 30%, with no apparent detrimental operating characteristics, both when agglomerates were fed and when raw coal was fed (with solvent dewaxing and hydrotreating); 5) recycle solvent treatment by dewaxing and hydrotreating was demonstrated, but steady-state operation was not achieved; and 6) there was some success in achieving extinction recycle of the heaviest liquid products. Performance data have not been finalized; they will be available for full evaluation in the new future.

Robbins, G.A.; Winschel, R.A.; Burke, F.P. [CONSOL, Inc., Library, PA (United States). Research and Development Dept.] [CONSOL, Inc., Library, PA (United States). Research and Development Dept.; Derbyshire, F.L.; Givens, E.N. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research] [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research; Hu, J.; Lee, T.L.K. [Hydrocarbon Research, Inc., Lawrenceville, NJ (United States)] [Hydrocarbon Research, Inc., Lawrenceville, NJ (United States); Miller, J.E.; Stephens, H.P. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Peluso, M. [LDP Associates, Hamilton Square, NJ (United States)] [LDP Associates, Hamilton Square, NJ (United States)

1996-09-01T23:59:59.000Z

112

Neutronic Analysis of an Advanced Fuel Design Concept for the High Flux Isotope Reactor  

SciTech Connect (OSTI)

This study presents the neutronic analysis of an advanced fuel design concept for the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) that could significantly extend the current fuel cycle length under the existing design and safety criteria. A key advantage of the fuel design herein proposed is that it would not require structural changes to the present HFIR core, in other words, maintaining the same rated power and fuel geometry (i.e., fuel plate thickness and coolant channel dimensions). Of particular practical importance, as well, is the fact that the proposed change could be justified within the bounds of the existing nuclear safety basis. The simulations herein reported employed transport theory-based and exposure-dependent eigenvalue characterization to help improve the prediction of key fuel cycle parameters. These parameters were estimated by coupling a benchmarked three-dimensional MCNP5 model of the HFIR core to the depletion code ORIGEN via the MONTEBURNS interface. The design of an advanced HFIR core with an improved fuel loading is an idea that evolved from early studies by R. D. Cheverton, formerly of ORNL. This study contrasts a modified and increased core loading of 12 kg of 235U against the current core loading of 9.4 kg. The simulations performed predict a cycle length of 39 days for the proposed fuel design, which represents a 50% increase in the cycle length in response to a 25% increase in fissile loading, with an average fuel burnup increase of {approx}23%. The results suggest that the excess reactivity can be controlled with the present design and arrangement of control elements throughout the core's life. Also, the new power distribution is comparable or even improved relative to the current power distribution, displaying lower peak to average fission rate densities across the inner fuel element's centerline and bottom cells. In fact, the fission rate density in the outer fuel element also decreased at these key locations for the proposed design. Overall, it is estimated that the advanced core design could increase the availability of the HFIR facility by {approx}50% and generate {approx}33% more neutrons annually, which is expected to yield sizeable savings during the remaining life of HFIR, currently expected to operate through 2014. This study emphasizes the neutronics evaluation of a new fuel design. Although a number of other performance parameters of the proposed design check favorably against the current design, and most of the core design features remain identical to the reference, it is acknowledged that additional evaluations would be required to fully justify the thermal-hydraulic and thermal-mechanical performance of a new fuel design, including checks for cladding corrosion performance as well as for industrial and economic feasibility.

Xoubi, Ned [ORNL; Primm, Trent [ORNL; Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK)

2009-01-01T23:59:59.000Z

113

Improved best estimate plus uncertainty methodology including advanced validation concepts to license evolving nuclear reactors  

SciTech Connect (OSTI)

Many evolving nuclear energy programs plan to use advanced predictive multi-scale multi-physics simulation and modeling capabilities to reduce cost and time from design through licensing. Historically, the role of experiments was primary tool for design and understanding of nuclear system behavior while modeling and simulation played the subordinate role of supporting experiments. In the new era of multi-scale multi-physics computational based technology development, the experiments will still be needed but they will be performed at different scales to calibrate and validate models leading predictive simulations. Cost saving goals of programs will require us to minimize the required number of validation experiments. Utilization of more multi-scale multi-physics models introduces complexities in the validation of predictive tools. Traditional methodologies will have to be modified to address these arising issues. This paper lays out the basic aspects of a methodology that can be potentially used to address these new challenges in design and licensing of evolving nuclear technology programs. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. An enhanced calibration concept is introduced and is accomplished through data assimilation. The goal is to enable best-estimate prediction of system behaviors in both normal and safety related environments. To achieve this goal requires the additional steps of estimating the domain of validation and quantification of uncertainties that allow for extension of results to areas of the validation domain that are not directly tested with experiments, which might include extension of the modeling and simulation (M&S) capabilities for application to full-scale systems. The new methodology suggests a formalism to quantify an adequate level of validation (predictive maturity) with respect to required selective data so that required testing can be minimized for cost saving purposes by showing further testing wold not enhance the quality of the validation of predictive tools. The proposed methodology is at a conceptual level. When matured and if considered favorably by the stakeholders, it could serve as a new framework for the next generation of the best estimate plus uncertainty licensing methodology that USNRC developed previously. In order to come to that level of maturity it is necessary to communicate the methodology to scientific, design and regulatory stakeholders for discussion and debates. This paper is the first step to establish this communication.

Unal, Cetin [Los Alamos National Laboratory; Williams, Brian [Los Alamos National Laboratory; Mc Clure, Patrick [Los Alamos National Laboratory; Nelson, Ralph A [IDAHO NATIONAL LAB

2010-01-01T23:59:59.000Z

114

E-Print Network 3.0 - advanced combustion concepts Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nature for decision rules extracted with a data... plant," in Proc. Inst. Elect. Eng. Seminar Advanced Sensors In- strumentation ... Source: Kusiak, Andrew - Department of...

115

E-Print Network 3.0 - advanced propulsion concepts Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on the field emission principle... advanced technology in power conversion. The main advantages of a propulsion system based on the field emis... AS THRUSTERS FOR ELECTRIC SPACE...

116

Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab  

SciTech Connect (OSTI)

A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

2012-05-10T23:59:59.000Z

117

E-Print Network 3.0 - advanced industrial concepts Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SECA fuel cells available for FutureGen 2020 MW-Scale SECA fuel cells for Advanced Coal Power Plants... 2010 400kW Modules -Residential, Commercial, Industrial CHP...

118

ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry  

Broader source: Energy.gov [DOE]

The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

119

DOE Office of Indian Energy Renewable Energy Project Development: Advanced Financing Concepts  

Broader source: Energy.gov (indexed) [DOE]

Concepts Concepts Why It Makes Sense to Bring on a Third-Party Partner Course Outline What we will cover...  About the DOE Office of Indian Energy Education Initiative  Concepts for Financing Renewable Energy Projects on Tribal Lands - Levelized Cost of Energy (LCOE) - Business Structures - Tax-Equity Partnerships - Introduction  Additional Information and Resources 2 Introduction The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs is responsible for assisting Tribes with energy planning and development, infrastructure, energy costs, and electrification of Indian lands and homes. As part of this commitment and on behalf of DOE, the Office of Indian Energy is leading education and capacity building efforts in Indian Country.

120

Compression and acceleration of electron bunches to high energies in the interference field of intense laser pulses with tilted amplitude fronts: concept and modelling  

SciTech Connect (OSTI)

A new concept of accelerating electrons by laser radiation is proposed, namely, direct acceleration by a laser field under the conditions of interference of several relativistic-intensity laser pulses with amplitude fronts tilted by the angle 45 Degree-Sign with respect to the phase fronts. Due to such interference the traps moving with the speed of light arise that capture the electrons, produced in the process of ionisation of low-density gas by the same laser radiation. The modelling on the basis of solving the relativistic Newton equation with the appropriate Lorenz force shows that these traps, moving in space, successively collect electrons from the target, compress the resulting electron ensemble in all directions up to the dimensions smaller than the wavelength of the laser radiation and accelerate it up to the energies of the order of a few GeV per electron. (extreme light fields and their applications)

Korobkin, V V; Romanovsky, Mikhail Yu; Trofimov, V A; Shiryaev, O B [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

2013-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Useful Links Useful Links Argonne National Laboratory Accelerator Sites Conferences Advanced Photon Source (APS) Argonne Wakefield Accelerator (AWA) Argonne Tandem Linear Accelerator System (ATLAS) High Energy Physics Division RIA (????) Link to JACoW (Joint Accelerator Conferences Website) Fermi National Accelerator Laboratory Fermilab-Argonne Collaboration Accelerator Physics Center Workshops Other Accelerator Institutes Energy Recovering Linacs Center for Advance Studies of Accelerators (Jefferson Labs) Center for Beam Physics (LBNL) Accelerator Test Facility (BNL) The Cockcroft Institute (Daresbury, UK) John Adams Institute (Rutherford, UK) ERL2009 to be held at Cornell ERL2007 ERL2005 DOE Laboratory with Accelerators Fermilab Stanford Linear Accelerator Center Brookhaven National Laboratory

122

Project Profile: Commercial Development of an Advanced Linear-Fresnel-Based CSP Concept  

Broader source: Energy.gov [DOE]

SkyFuel, under the CSP R&D FOA, is developing a commercial linear-Fresnel-based advanced CSP system called Linear Power Tower (LPT). The company aims to make significant improvements in the cost and viability of utility-scale dispatchable solar power.

123

Advanced atomization concept for CWF burning in small combustors, Phase 2. Final technical report  

SciTech Connect (OSTI)

The program describes a concept referred to as opposed-jet atomization, which is particularly applicable to coal-water fuel (CWF). In the present atomizer design, two opposed jets of CWF are directed at each other and externally encounter a perpendicular blast of air at the collision point to create a spray of much finer droplets. The present Phase 2 program involved further evaluation of the opposed-jet atomizer performance and related tasks.

McHale, E.T.; Heaton, H.L.

1991-12-01T23:59:59.000Z

124

Advanced atomization concept for CWF burning in small combustors, Phase 2  

SciTech Connect (OSTI)

The program describes a concept referred to as opposed-jet atomization, which is particularly applicable to coal-water fuel (CWF). In the present atomizer design, two opposed jets of CWF are directed at each other and externally encounter a perpendicular blast of air at the collision point to create a spray of much finer droplets. The present Phase 2 program involved further evaluation of the opposed-jet atomizer performance and related tasks.

McHale, E.T.; Heaton, H.L.

1991-12-01T23:59:59.000Z

125

ADVANCED X-BAND TEST ACCELERATOR FOR HIGH BRIGHTNESS ELECTRON AND GAMMA RAY BEAMS  

SciTech Connect (OSTI)

In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

Marsh, R A; Anderson, S G; Barty, C P; Chu, T S; Ebbers, C A; Gibson, D J; Hartemann, F V; Adolphsen, C; Jongewaard, E N; Raubenheimer, T; Tantawi, S G; Vlieks, A E; Wang, J W

2010-05-12T23:59:59.000Z

126

Advanced X-Band Test Accelerator for High Brightness Electron and Gamma Ray Beams  

SciTech Connect (OSTI)

In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

Marsh, Roark; /LLNL, Livermore; Anderson, Scott; /LLNL, Livermore; Barty, Christopher; /LLNL, Livermore; Chu, Tak Sum; /LLNL, Livermore; Ebbers, Chris; /LLNL, Livermore; Gibson, David; /LLNL, Livermore; Hartemann, Fred; /LLNL, Livermore; Adolphsen, Chris; /SLAC; Jongewaard, Erik; /SLAC; Raubenheimer, Tor; /SLAC; Tantawi, Sami; /SLAC; Vlieks, Arnold; /SLAC; Wang, Juwen; /SLAC

2012-07-03T23:59:59.000Z

127

Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report  

SciTech Connect (OSTI)

This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

Amann, J.; Bane, K.; /SLAC

2009-10-30T23:59:59.000Z

128

Advanced combustor design concepts to control NO{sub x} and air toxics. Quarterly report  

SciTech Connect (OSTI)

The University of Utah, Massachusetts Institute of Technology (MIT), Reaction Engineering International (REI) and ABB/Combustion Engineering have joined together in this research proposal to develop fundamental understanding regarding the impact of fuel and combustion changes on ignition stability and flame characteristics because these critically affect: NO{sub x} emissions, carbon burnout, and emissions of air toxics; existing laboratory and bench scale facilities are being used to generate critical missing data which will be used to improve the NO{sub x} and carbon burnout submodels in comprehensive combustion simulation tools currently being used by industrial boiler manufacturers. To ensure effective and timely transfer of This technology, a major manufacturer (ABB) and a combustion model supplier (REI) have been included as part of the team from the early conception of the proposal. ABB/Combustion Engineering is providing needed fundamental data on the extent of volatile evolution from commercial coals as well as background information on current design needs in industrial practice. MIT is responsible for the development of an improved char nitrogen oxidation model which will ultimately be incorporated into an enhanced NO{sup x} submodel. Reaction Engineering International is providing the lead engineering staff for the experimental studies and an overall industrial focus for the work based on their use of the combustion simulation tools for a wide variety of industries. The University of Utah is conducting bench scale experimentation to (1) investigate alternative methods for enhancing flame stability to reduce NO{sub x} emissions and (2) characterize air toxic emissions under ultralow NO{sub x} conditions. Accomplishments for this quarter are presented to the solid sampling system and char nitrogen modeling.

Pershing, D.W.; Lighty, J.; Veranth, J. [Utah Univ., Salt Lake City, UT (United States). Coll. of Engineering; Sarofim, A.; Goel, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

1995-04-28T23:59:59.000Z

129

Opportunities to Advance Fundamental Symmetries Research with Project-X is a staged evolution of the Fermilab accelerator complex realized by the dramatic  

E-Print Network [OSTI]

-X is a staged evolution of the Fermilab accelerator complex realized by the dramatic advances in super-conducting RF technology [1] of the past decade and it is central to Fermilab's strategic plan for the comingV would produce intense neutrino sources and beams illuminating near detectors on the Fermilab site

130

Advanced-ignition-concept exploration on OMEGA This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network [OSTI]

at the Omega Laser Facility. Integrated fast-ignition experiments with room-temperature re-entrant cone targets from the short-pulse laser into the core by fast electrons. In shock- ignition experiments, sphericalAdvanced-ignition-concept exploration on OMEGA This article has been downloaded from IOPscience

131

Beam Physics of Integrable Optics Test Accelerator at Fermilab  

SciTech Connect (OSTI)

Fermilab's Integrable Optics Test Accelerator (IOTA) is an electron storage ring designed for testing advanced accelerator physics concepts, including implementation of nonlinear integrable beam optics and experiments on optical stochastic cooling. The machine is currently under construction at the Advanced Superconducting Test Accelerator facility. In this report we present the goals and the current status of the project, and describe the details of machine design. In particular, we concentrate on numerical simulations setting the requirements on the design and supporting the choice of machine parameters.

Nagaitsev, S.; Valishev, A.; /Fermilab; Danilov, V.V.; /Oak Ridge; Shatilov, D.N.; /Novosibirsk, IYF

2012-05-01T23:59:59.000Z

132

FINAL REPORT DE-FG02-04ER41317 Advanced Computation and Chaotic Dynamics for Beams and Accelerators  

SciTech Connect (OSTI)

During the year ending in August 2013, we continued to investigate the potential of photonic crystal (PhC) materials for acceleration purposes. We worked to characterize acceleration ability of simple PhC accelerator structures, as well as to characterize PhC materials to determine whether current fabrication techniques can meet the needs of future accelerating structures. We have also continued to design and optimize PhC accelerator structures, with the ultimate goal of finding a new kind of accelerator structure that could offer significant advantages over current RF acceleration technology. This design and optimization of these requires high performance computation, and we continue to work on methods to make such computation faster and more efficient.

Cary, John R [U. Colorado

2014-09-08T23:59:59.000Z

133

Summary Report of Working Group 6: Laser-Plasma Acceleration  

SciTech Connect (OSTI)

A summary is given of presentations and discussions in theLaser-Plasma Acceleration Working Group at the 2006 Advanced AcceleratorConcepts Workshop. Presentation highlights include: widespreadobservation of quasi-monoenergetic electrons; good agreement betweenmeasured and simulated beam properties; the first demonstration oflaser-plasma acceleration up to 1 GeV; single-shot visualization of laserwakefield structure; new methods for measuring<100 fs electronbunches; and new methods for "machining" laser-plasma acceleratorstructures. Discussion of future direction includes: developing a roadmapfor laser-plasma acceleration beyond 1 GeV; a debate over injection andguiding; benchmarking simulations with improved wake diagnostics;petawatt laser technology for future laser-plasmaaccelerators.

Leemans, Wim P.; Downer, Michael; Siders, Craig

2006-07-01T23:59:59.000Z

134

Vehicle Technologies Office Merit Review 2014: Accelerating the Evaluation and Market Introduction of Advanced Technologies Through Model Based System Engineering  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating the...

135

Site Considerations for Repowering With Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) from the L.V. Sutton Station Concept Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tonnemacher et al., Site Considerations for Repowering With APFBC from the L.V. Sutton Station Concept Assessment Tonnemacher et al., Site Considerations for Repowering With APFBC from the L.V. Sutton Station Concept Assessment paper 970562 Page 1 of 36 Site Considerations for Repowering with Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) from the L.V. Sutton Station Concept Assessment Gary C. Tonnemacher, P.E., and David C. Killen, P.E. Carolina Power & Light Company Raleigh, North Carolina Richard E. Weinstein, P.E., Harvey N. Goldstein, P.E., and Jay S. White Parsons Power Group Inc. Reading, Pennsylvania Robert W. Travers, P.E. U.S. Department of Energy Office of Fossil Energy / Germantown, Maryland electronic mail addresses/phone no. electronic mail addresses/phone no. Tonnemacher{ Gary.Tonnemacher@CPLC.COM 919 / 546-6091 Goldstein { Harvey_N_Goldstein@Parsons.COM

136

Final Report on "Development and Testing of Advanced Accelerator Structures and Technologies at 11.424 GHz"  

SciTech Connect (OSTI)

This is the final report on the research program ?Development and Testing of Advanced Accelerator Structures and Technologies at 11.424 GHz,? which was carried out by the Naval Research Laboratory (NRL) under Interagency Agreement DE?AI02?01ER41170 with the Department of Energy. The period covered by this report is 15 July 2010 ? 14 July 2013. The program included two principal tasks. Task 1 involved a study of the key physics issues related to the use of high gradient dielectric-loaded accelerating (DLA) structures in rf linear accelerators and was carried out in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC. Task 2 involved a study of high power active microwave pulse compressors and was carried out in collaboration with Omega-P, Inc. and the Institute of Applied Physics of the Russian Academy of Sciences in Nizhny Novgorod. The studies under Task 1 were focused on rf-induced multipactor and breakdown in externally driven DLA structures at the 200-ns timescale. Suppression of multipactor and breakdown are essential to the practical application of dielectric structures in rf linear accelerators. The structures that were studied were developed by ANL and Euclid Techlabs and their performance was evaluated at high power in the X-band Magnicon Laboratory at NRL. Three structures were designed, fabricated, and tested, and the results analyzed in the first two years of the program: a clamped quartz traveling-wave (TW) structure, a externally copper-coated TW structure, and an externally copper-coated dielectric standing-wave (SW) structure. These structures showed that rf breakdown could be largely eliminated by eliminating dielectric joints in the structures, but that the multipactor loading was omnipresent. In the third year of the program, the focus of the program was on multipactor suppression using a strong applied axial magnetic field, as proposed by Chang et al. [C. Chang et al., J. Appl. Phys. 110, 063304 (2011).], and a successful experiment was carried out that demonstrated suppression of multipactor in the uniform-field region of a TW DLA structure. However, in accordance with theory, the multipactor was enhanced in regions of the structure with lower values of axial magnetic field. Under Task 2, there were two two-month experimental runs at NRL that were used to characterize the performance of high power two-channel dual-mode active microwave pulse compressor configurations that used electron-beam triggered switch cavities. The pulse compressors were designed and fabricated by Omega-P, Inc. and the Russian Institute of Applied Physics and tested in the Magnicon Laboratory at NRL. These pulse compressors made use of an electron beam discharge from a cylindrical knife-edged Mo cathode coated with a CVD diamond film that was driven by a ?100 kV, 100 ns high voltage pulse. The electron beam was used to change the resonant frequency of the switch cavities in order to create the output microwave pulse. The compressor channels included a TE01 input and output section and a TE02 energy storage cavity, followed by a switch assembly that controlled the coupling between the TE01 and TE02 modes. In the initial state, the switch cavity was in resonance, the reflection from the cavity was out of phase, and the mode conversion was only ~2-3%, allowing the energy storage cavity to fill. When the electron beam was discharged into the switch cavity, the cavity was shifted out of resonance, causing the phase of the reflection to change by ~?. As a result of the change in the reflection phase, the mode coupling in the conical taper was greatly increased, and could approach ~100%, permitting the energy storage cavity to empty in one cavity round trip time of the TE02 mode to produce a high power output pulse. The second experiment runs demonstrated a 190 MW, ~20 ns compressed pulse at 25.7 gain and ~50% efficiency, using a 7.4 MW, 1 ?s drive pulse from the magnicon. The success of this experiment suggests a path to future high gain active versions of the SLED 2 pulse compressor at SLAC.

Gold, Steven H. [Naval Research Laboratory

2013-10-13T23:59:59.000Z

137

The Muon Accelerator Program  

SciTech Connect (OSTI)

Multi-TeV Muon Colliders and high intensity Neutrino Factories have captured the imagination of the particle physics community. These new types of facility both require an advanced muon source capable of producing O(10{sup 21}) muons per year. The muons must be captured within bunches, and their phase space manipulated so that they fit within the acceptance of an accelerator. In a Neutrino Factory (NF), muons from this 'front end' are accelerated to a few GeV or a few tens of GeV, and then injected into a storage ring with long straight sections. Muon decays in the straight sections produce an intense neutrino beam. In a Muon Collider (MC) the muons must be cooled by a factor O(10{sup 6}) to produce beams that are sufficiently bright to give high luminosity in the collider. Bunches of positive and negative muons are then accelerated to high energy, and injected in opposite directions into a collider ring in which they collide at one or more interaction points. Over the last decade our understanding of the concepts and technologies needed for Muon Colliders and Neutrino Factories has advanced, and it is now believed that, within a few years, with a well focused R&D effort (i) a Neutrino Factory could be proposed, and (ii) enough could be known about the technologies needed for a Muon Collider to assess the feasibility and cost of this new type of facility, and to make a detailed plan for the remaining R&D. Although these next NF and MC steps are achievable, they are also ambitious, and will require an efficient and dedicated organization to accomplish the desired goals with limited resources. The Muon Accelerator Program (MAP) has recently been created to propose and execute this R&D program.

Geer, Steve; /Fermilab; Zisman, Mike; /LBL, Berkeley

2011-08-01T23:59:59.000Z

138

Accelerating development of advanced inverters : evaluation of anti-islanding schemes with grid support functions and preliminary laboratory demonstration.  

SciTech Connect (OSTI)

The high penetration of utility interconnected photovoltaic (PV) systems is causing heightened concern over the effect that variable renewable generation will have on the electrical power system (EPS). These concerns have initiated the need to amend the utility interconnection standard to allow advanced inverter control functionalities that provide: (1) reactive power control for voltage support, (2) real power control for frequency support and (3) better tolerance of grid disturbances. These capabilities are aimed at minimizing the negative impact distributed PV systems may have on EPS voltage and frequency. Unfortunately, these advanced control functions may interfere with island detection schemes, and further development of advanced inverter functions requires a study of the effect of advanced functions on the efficacy of antiislanding schemes employed in industry. This report summarizes the analytical, simulation and experimental work to study interactions between advanced inverter functions and anti-islanding schemes being employed in distributed PV systems.

Neely, Jason C.; Gonzalez, Sigifredo; Ropp, Michael [Northern Plains Power Technologies, Brookings, SD] [Northern Plains Power Technologies, Brookings, SD; Schutz, Dustin [Northern Plains Power Technologies, Brookings, SD] [Northern Plains Power Technologies, Brookings, SD

2013-11-01T23:59:59.000Z

139

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AAI Homepage Lee Teng Scholarship Program USPAS Argonne Department of Education Fermilab Education Office For Students Many scientific advances are made using accelerators. The world of High Energy Particle Physics has driven this field and continues to depend largely on accelerators. Increasingly advances in materials science, chemistry, biology and environmental science are being made at accelerators using x-ray and neutrons to probe matter. Accelerators have a number of commercial applications including isotope production for use in medicine, cancer treatment, processing semiconductor chips, and so on. Presently there are around 15,000 accelerators worldwide. Approximately 97% of these are used for commercial applications. However several hundred are in use

140

ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications.  

SciTech Connect (OSTI)

We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

Shiltsev, V.; Piot, P.

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Development Research and Development Click to download a PDF version of this document. PDF Focus Research Areas Fundamental Accelerator Physics: Theory Importance Accelerator physics research is normally associated with specific accelerator projects. As a scientific discipline, however, it is useful to study fundamental accelerator phenomena decoupled, as much as possible, from specific project aspects. Pursuit of fundamental accelerator physics in this sense has contributed significantly to the advance of the accelerator physics knowledgebase during the last several decades, clarifying the limitations and suggesting ways to overcome those limitations. Such basic research tends to be discouraged in a project-driven environment. For sustained and significant progress in

142

Application Acceleration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Acceleration Acceleration on Current and Future Cray Platforms Alice Koniges, Robert Preissl, Jihan Kim, Lawrence Berkeley National Laboratory David Eder, Aaron Fisher, Nathan Masters, Velimir Mlaker, Lawrence Livermore National Laboratory Stephane Ethier, Weixing Wang, Princeton Plasma Physics Laboratory Martin Head-Gordon, University of California, Berkeley and Nathan Wichmann, Cray Inc. ABSTRACT: Application codes in a variety of areas are being updated for performance on the latest architectures. We describe current bottlenecks and performance improvement areas for applications including plasma physics, chemistry related to carbon capture and sequestration, and material science. We include a variety of methods including advanced hybrid parallelization using multi-threaded MPI, GPU acceleration, libraries and auto- parallelization compilers. KEYWORDS: hybrid

143

Accelerators and the Accelerator Community  

E-Print Network [OSTI]

of electrostatic accelerators, while Ernest O. Lawrence (CBP 820 LBNL TBA ACCELERATORS ANDTHE ACCELERATOR COMMUNITY 1 ANDREW SESSLER Lawrence Berkeley

Malamud, Ernest

2009-01-01T23:59:59.000Z

144

Challenges in Accelerator Beam Instrumentation  

SciTech Connect (OSTI)

The challenges in beam instrumentation and diagnostics for present and future particle accelerator projects are presented. A few examples for advanced hadron and lepton beam diagnostics are given.

Wendt, M.

2009-12-01T23:59:59.000Z

145

Accelerators, Electrodynamics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science and Innovation Capabilities Accelerators, Electrodynamics science-innovationassetsimagesicon-science.jpg Accelerators, Electrodynamics National security depends...

146

Efficient Modeling of Laser-Plasma Accelerators with INF&RNO  

E-Print Network [OSTI]

in: Proc. 13th Advanced Accelerator Workshop, Santa Cruz,in: Proc. 13th Advanced Accelerator Workshop, Santa Cruz,in: Proc. 13th Advanced Accelerator Workshop, Santa Cruz,

Benedetti, C.

2011-01-01T23:59:59.000Z

147

DUAL-MODE PROPULSION SYSTEM ENABLING CUBESAT EXPLORATION OF THE SOLAR SYSTEM NASA Innovative Advanced Concepts (NIAC) Phase I Final Report  

SciTech Connect (OSTI)

It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (~1,000 kgs to LEO) can be targeted. This, in effect, allows for beneficial explora-tion to be conducted within limited budgets. Researchers at the Center for Space Nuclear Re-search (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO. The proposed radioisotope-based system would leverage the high specific energies [J/kg] associated with radioisotope materials and enhance their inherent low specific powers [W/g]. This is accomplished by accumulating thermal energy from nuclear decay within a central core over time. This allows for significant amounts of power to be transferred to a flowing gas over short periods of time. In the proposed configuration the stored energy can be utilized in two ways: (1) with direct propellant injection to the core, the energy can be converted into thrust through the use of a converging-diverging nozzle and (2) by flowing a working fluid through the core and subsequent Brayton engine, energy within the core can be converted to electrical energy. The first scenario achieves moderate ranges of thrust, but at a higher Isp than traditional chemical-based systems. The second scenario allows for the production of electrical power, which is then available for electric-based propulsion. Additionally, once at location the production of electrical power can be dedicated to the payloads communication system for data transfer. Ultimately, the proposed dual-mode propulsion platform capitalizes on the benefits of two types of propulsion methods the thrust of thermal propulsion ideal for quick orbital maneuvers and the specific impulse of electric propulsion ideal for efficient inter-planetary travel. Previous versions of this RTR-based concept have been studied for various applications [NETS 1-3]. The current version of this concept is being matured through a NASA Innovative Advanced Concepts (NIAC) Phase I grant, awarded for FY 2014. In this study the RTR concept is being developed to deliver a 6U CubeSat payload to the orbit of the Saturnian moon - Enceladus. Additionally, this study will develop an entire mission architecture for Enceladus targeting a total allowable launch mass of 1,000 kg.

Nathan Jerred; Troy Howe; Adarsh Rajguru; Dr. Steven Howe

2014-06-01T23:59:59.000Z

148

Advanced direct coal liquefaction concepts  

SciTech Connect (OSTI)

During the first quarter of FY 1993, the Project proceeded close to the Project Plan. The analysis of the feed material has been completed as far as possible. Some unplanned distillation was needed to correct the boiling range of the Black Thunder solvent used during the autoclave tests. Additional distillation will be required if the same solvent is to be used for the bench unit tests. A decision on this is still outstanding. The solvent to be used with Illinois No. 6 coal has not yet been defined. As a result, the procurement of the feed and the feed analysis is somewhat behind schedule. Agglomeration tests with Black Thunder coal indicates that small agglomerates can be formed. However, the ash removal is quite low (about 10%), which is not surprising in view of the low ash content of the coal. The first series of autoclave tests with Black Thunder coal was completed as planned. Also, additional runs are in progress as repeats of previous runs or at different operating conditions based on the data obtained so far. The results are promising indicating that almost complete solubilization (close to 90%) of Black Thunder coal can be achieved in a CO/H[sub 2]O environment at our anticipated process conditions. The design of the bench unit has been completed. In contrast to the originally planned modifications, the bench unit is now designed based on a computerized control and data acquisition system. All major items of equipment have been received, and prefabrication of assemblies and control panels is proceeding on schedule. Despite a slight delay in the erection of the structural steel, it is anticipated that the bench unit will be operational at the beginning of April 1993.

Berger, D.J.; Parker, R.J.; Simpson, P.L. (Canadian Energy Development, Inc., Edmonton, AB (Canada))

1992-01-01T23:59:59.000Z

149

E-Print Network 3.0 - accelerated test laboratory Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: accelerated test laboratory Page: << < 1 2 3 4 5 > >> 1 SLAC National Accelerator Laboratory Accelerator...

150

Modern electron accelerators for radiography  

SciTech Connect (OSTI)

Over the past dozen years or so there have been significant advances in electron accelerators designed specifically for radiography of hydrodynamic experiments. Accelerator technology has evolved to accomodate the radiographers' contitiuing quest for multiple images in t h e and space:, improvements in electron beam quality have resulted in smaller radiographic spot sizes for better resolution, while higher radiation do% now provides imprcwed penetration of large, dense objects. Inductive isolation and acceleration techniques have played a ley rob in these advances.

Ekdahl, C. A. (Carl A.)

2001-01-01T23:59:59.000Z

151

Linear Accelerator | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(MeV). At 450 MeV, the electrons are relativistic: they are traveling at >99.999% of the speed of light, which is 299,792,458 meters second (186,000 milessecond). Photo: Linear...

152

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mission Mission The mission of the Argonne Accelerator Institute is centered upon the following related goals: Locate next generation accelerator facilities in Northern Illinois Advance accelerator technology Oversee a selected, strategic, lab-wide, and acclaimed accelerator R&D portfolio In order to accomplish the above goals, the institute has established five objectives. These are coupled to programmatic objectives, and are dependent on each other, but they serve to identify important areas for the institute to focus its activities. Educate the "next generation" of accelerator physicists and engineers Work with area Universities to establish Joint Appointments and Adjunct Professorships Identify students Provide research opportunities at Argonne Work with the US Particle Accelerator School

153

Accelerator and Beam Science, ABS, Accelerator Operations and Technology,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Concepts Accelerator Concepts Injectors Operations Physics CONTACTS Group Leader Robert Garnett Deputy Group Leader Kenneth Johnson Office Administrator Monica Sanchez Phone: (505) 667-2846 Put a short description of the graphic or its primary message here Accelerator and Beam Science The Accelerator and Beam Science (AOT-ABS) Group at Los Alamos addresses physics aspects of the driver accelerator for the LANSCE spallation neutron source and related topics. These activities are wide ranging and include generating negative and positive ions in plasma ion sources, creating ion beams from these particles, accelerating the ion beams in linear accelerator structures up to an energy of 800 MeV, compressing the negative hydrogen beam to packets of sub-microsecond duration and accumulating beam current in the Proton Storage Ring, and

154

PAC++: Object-oriented platform for accelerator codes  

SciTech Connect (OSTI)

Software packages in accelerator physics have relatively long life cycles. They had been developed and used for a wide range of accelerators in the past as well as for the current projects. For example, the basic algorithms written in the first accelerator Program TRANSPORT are actual for design of most magnet systems. Most of these packages had been implemented on Fortran. But this language is rather inconvenient as a basic language for large integrated projects that possibly could include real-time data acquisition, data base access, graphic riser interface modules (GUI), arid other features. Some later accelerator programs had been based on object-oriented tools (primarily, C++ language). These range from systems for advanced theoretical studies to control system software. For the new generations of accelerators it would be desirable to have an integrated platform in which all simulation and control tasks will be considered with one point of view. In this report the basic principles of an object-oriented platform for accelerator research software (PAC++) are suggested and analyzed. Primary objectives of this work are to enable efficient self-explaining realization of the accelerator concepts and to provide an integrated environment for the updating and the developing of the code.

Malitsky, N.; Reshetov, A.; Bourianoff, G.

1994-06-01T23:59:59.000Z

155

Accelerating Solutions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solutions From vehicles on the road to the energy that powers them, Oak Ridge National Laboratory innovations are advancing American transportation. Oak Ridge National Laboratory is making an impact on everyday America by enhancing transportation choices and quality of life. Through strong collaborative partnerships with industry, ORNL research and development efforts are helping accelerate the deployment of a new generation of energy efficient vehicles powered by domestic, renewable, clean energy. EPA ultra-low sulfur diesel fuel rule ORNL and the National Renewable Energy Laboratory co-led a comprehensive research and test program to determine the effects of diesel fuel sulfur on emissions and emission control (catalyst) technology. In the course of this program, involving

156

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quarterly Meetings Quarterly Meetings November 29, 2011 Held at the Advanced Photon Source, Argonne, IL DOE Accelerator R&D Task Force - M. White February 17, 2010 Held at the Advanced Photon Source, Argonne, IL June 16, 2009 General Updates - R. Gerig Accelerator Developments in Physics Division - R. Janssens Proposal for Argonne SRF Facility - M. Kelly Accelerator Developments in HEP Division - W. Gai Beam Activities of the DOD Project Office-Focus on the Navy FEL - S. Biedron AAI Historical Collection - T. Fields November 24, 2008 Strategic Theme Forum Meeting - This meeting was held to gather information on the Accelerator Science and Technology Theme to establish the Argonne's Strategic Plan January 9, 2008 Opening Remarks - R. Gerig ILC Planning - J. Carwardine Argonne Participation in Project X - P. Ostroumov

157

CEBAF accelerator achievements  

SciTech Connect (OSTI)

In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

Y.C. Chao, M. Drury, C. Hovater, A. Hutton, G.A. Krafft, M. Poelker, C. Reece, M. Tiefenback

2011-06-01T23:59:59.000Z

158

Accelerator on a Chip: How It Works  

SciTech Connect (OSTI)

In an advance that could dramatically shrink particle accelerators for science and medicine, researchers used a laser to accelerate electrons at a rate 10 times higher than conventional technology in a nanostructured glass chip smaller than a grain of rice.

None

2014-06-30T23:59:59.000Z

159

Cryogenic technology boosts linear accelerator capability  

Science Journals Connector (OSTI)

Cryogenic technology boosts linear accelerator capability ... Two critical properties of matter at cryogenic temperaturessuperconductivity and superfluidityshould open the way for a major advance in electron linear accelerator capability. ...

1968-05-06T23:59:59.000Z

160

ITP Metal Casting: Advanced Melting Technologies: Energy Saving...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and...

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

LASER ACCELERATORS  

E-Print Network [OSTI]

UNIVERSITY OF CALIFORNIA Accelerator & Fusion Researchat the 1983 Particle Accelerator Conference, Santa Fe, NM,March 21-23, 1983 LASER ACCELERATORS A.M. Sessler TWO-WEEK

Sessler, A.M.

2008-01-01T23:59:59.000Z

162

E-Print Network 3.0 - accelerated aging tests Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tests Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated aging tests...

163

E-Print Network 3.0 - accelerated ageing test Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated ageing test...

164

E-Print Network 3.0 - accelerated evolutionary rate Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rate Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated evolutionary rate...

165

E-Print Network 3.0 - accelerated aging test Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated aging test...

166

E-Print Network 3.0 - accelerated life testing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

testing Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated life testing...

167

E-Print Network 3.0 - accelerated test methods Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

methods Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated test methods...

168

E-Print Network 3.0 - accelerated life test Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated life test...

169

E-Print Network 3.0 - accelerated test method Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

method Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated test method...

170

E-Print Network 3.0 - accelerated evolutionary rates Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rates Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated evolutionary rates...

171

E-Print Network 3.0 - accelerated ageing tests Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tests Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated ageing tests...

172

Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC  

ScienceCinema (OSTI)

Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators. FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.

Andrei Seryi

2010-01-08T23:59:59.000Z

173

Tribal Renewable Energy Advanced Course: Project Development...  

Broader source: Energy.gov (indexed) [DOE]

Concepts Tribal Renewable Energy Advanced Course: Project Development Concepts Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy...

174

Accelerator Design Concept for Future Neutrino Facilities  

E-Print Network [OSTI]

for calibration of the muon energy [30]. As RF is needed fora function of the proton energy muon yields as a function ofbetween the time and energy of the muons. This correlation

Berg, J. S.; ISS Accelerator Working Group

2008-01-01T23:59:59.000Z

175

Combustion Model for Engine Concept Development | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Model for Engine Concept Development Presentation shows how 1-cylinder testing, 3D combustion CFD and 1D gas exchange with an advanced combustion model are used...

176

Future Accelerators (?)  

E-Print Network [OSTI]

I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

John Womersley

2003-08-09T23:59:59.000Z

177

Linear Accelerator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Linear Accelerator (LINAC) The core of the LANSCE facility is one of the nation's most powerful proton linear accelerators or LINAC. The LINAC at LANSCE has served the nation since...

178

Non-Paraxial Accelerating Beams  

E-Print Network [OSTI]

We present the spatially accelerating solutions of the Maxwell equations. Such non-paraxial beams accelerate in a circular trajectory, thus generalizing the concept of Airy beams. For both TE and TM polarizations, the beams exhibit shape-preserving bending with sub-wavelength features, and the Poynting vector of the main lobe displays a turn of more than 90 degrees. We show that these accelerating beams are self-healing, analyze their properties, and compare to the paraxial Airy beams. Finally, we present the new family of periodic accelerating beams which can be constructed from our solutions.

Ido Kaminer; Rivka Bekenstein; Jonathan Nemirovsky; Mordechai Segev

2012-02-03T23:59:59.000Z

179

Session: CSP Advanced Systems -- Advanced Overview (Presentation)  

SciTech Connect (OSTI)

The project description is: (1) it supports crosscutting activities, e.g. advanced optical materials, that aren't tied to a single CSP technology and (2) it supports the 'incubation' of new concepts in preliminary stages of investigation.

Mehos, M.

2008-04-01T23:59:59.000Z

180

E-Print Network 3.0 - accelerator test facility Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test facility Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerator test facility Page: << < 1 2 3 4 5 > >> 1 SLAC National Accelerator...

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

E-Print Network 3.0 - accelerated oxygen-14 beam Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: radiation facilities for biology and material sciences. Beam physics--study of beams in accelerators... and Northern Illinois University (NIU), where advanced accelerator...

182

E-Print Network 3.0 - accelerator-based surface chemistry Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

surface chemistry Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerator-based surface chemistry Page: << < 1 2 3 4 5 > >> 1 Accelerator based...

183

Advanced atomization concept for CWF burning in small combustors. Phase 2, Quarterly technical progress report No. 3, 1 April 1991--30 June 1991  

SciTech Connect (OSTI)

The present project involves the second phase of research on a new concept in coal-water fuel (CWF) atomization that is applicable to burning in small combustors. It is intended to address the most important problem associated with CWF combustion; i.e., production of small spray droplets in an efficient manner by an atomization device. Phase 1 of this work was successfully completed with the development of an opposed-jet atomizer that met the goals of the first contract. Performance as a function of operating conditions was measured, and the technical feasibility of the device established in the Atlantic Research Atomization Test Facility employing a Malvern Particle Size Analyzer. Testing then proceeded to a combustion stage in a test furnace at a firing rate of 0.5 to 1.5 MMBtu/H.

Heaton, H.; McHale, E.

1991-12-31T23:59:59.000Z

184

Design Concepts for the Cherenkov Telescope Array CTA: An Advanced Facility for Ground-Based High-Energy Gamma-Ray Astronomy  

SciTech Connect (OSTI)

Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.

Actis, M

2012-04-17T23:59:59.000Z

185

Acceleration Fund  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for these Venture Acceleration Fund awards, which have already produced a significant return on investment for the regional companies that have received them," said Padilla....

186

Kansas Advanced Semiconductor Project  

SciTech Connect (OSTI)

KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

2007-09-21T23:59:59.000Z

187

SUNY Technology Accelerator Fund PROGRAM: Complete Guidelines can be found at SUNY Technology Accelerator Fund 2014  

E-Print Network [OSTI]

SUNY Technology Accelerator Fund PROGRAM: Complete Guidelines can be found at SUNY Technology Accelerator Fund 2014 OBJECTIVES: The SUNY Technology Accelerator Fund ("TAF") provides funding to support the advancement of SUNY technologies from the lab to the marketplace. In many cases, SUNY technology developed

Suzuki, Masatsugu

188

The Klynac: An Integrated Klystron and Linear Accelerator  

SciTech Connect (OSTI)

The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system

Potter, J. M., Schwellenbach, D., Meidinger, A.

2012-08-07T23:59:59.000Z

189

Status of materials handbooks for particle accelerator and nuclear reactor applications  

SciTech Connect (OSTI)

In support of research and development for accelerator applications, a materials handbook was developed in August of 1998 funded by the Accelerator Production of Tritium Project. This handbook, presently called Advanced Fuel Cycle Initiative (AFCI) Materials Handbook, Materials Data for Particle Accelerator Applications, has just issued Revision 5 and contains detailed information showing the effects of irradiation on many properties for a wide variety of materials. Development of a web-accessible materials database for Generation IV Reactor Programs has been ongoing for about three years. This handbook provides a single authoritative source for qualified materials data applicable to all Generation IV reactor concepts. A beta version of this Gen IV Materials Handbook has been completed and is presently under evaluation.

Maloy, Stuart [Los Alamos National Laboratory (LANL); Rogers, Berylene [Los Alamos National Laboratory (LANL); Ren, Weiju [ORNL; Philip, Rittenhouse [Consultant

2008-01-01T23:59:59.000Z

190

Long-Term Outcome and Morbidity After Treatment With Accelerated Radiotherapy and Weekly Cisplatin for Locally Advanced Head-and-Neck Cancer: Results of a Multidisciplinary Late Morbidity Clinic  

SciTech Connect (OSTI)

Purpose: To evaluate the long-term outcome and morbidity after intensified treatment for locally advanced head-and-neck cancer. Methods and Materials: Between May 2003 and December 2007, 77 patients with Stage III to IV head-and-neck cancer were treated with curative intent. Treatment consisted of accelerated radiotherapy to a dose of 68 Gy and concurrent cisplatin. Long-term survivors were invited to a multidisciplinary outpatient clinic for a comprehensive assessment of late morbidity with special emphasis on dysphagia, including radiological evaluation of swallowing function in all patients. Results: Compliance with the treatment protocol was high, with 87% of the patients receiving at least five cycles of cisplatin and all but 1 patient completing the radiotherapy as planned. The 5-year actuarial disease-free survival and overall survival rates were 40% and 47%, respectively. Locoregional recurrence-free survival at 5 years was 61%. The 5-year actuarial rates of overall late Radiation Therapy Oncology Group (RTOG)/European Organization for Research and Treatment of Cancer (EORTC) Grade 3 and Grade 4 toxicity were 52% and 25% respectively. Radiologic evaluation after a median follow-up of 44 months demonstrated impaired swallowing in 57% of the patients, including 23% with silent aspiration. Subjective assessment using a systematic scoring system indicated normalcy of diet in only 15.6% of the patients. Conclusion: This regimen of accelerated radiotherapy with weekly cisplatin produced favorable tumor control rates and survival rates while compliance was high. However, comprehensive assessment by a multidisciplinary team of medical and paramedical specialists revealed significant long-term morbidity in the majority of the patients, with dysphagia being a major concern.

Ruetten, Heidi, E-mail: h.rutten@rther.umcn.nl [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Pop, Lucas A.M.; Janssens, Geert O.R.J. [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Takes, Robert P. [Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Knuijt, Simone [Department of Rehabilitation/Speech Pathology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Rooijakkers, Antoinette F. [Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Berg, Manon van den [Department of Gastroenterology-Dietetics, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Merkx, Matthias A. [Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Herpen, Carla M.L. van [Department of Medical Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Kaanders, Johannes H.A.M. [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)

2011-11-15T23:59:59.000Z

191

E-Print Network 3.0 - accelerator personnel radiatsionnye Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Linear Accelerator Center Collection: Physics 42 Advanced Photon Source Conduct of Operations Manual Summary: . . . . . . . . . . . . . . . . . . . 26 4.5 Beamline...

192

Accelerate Energy  

Broader source: Energy.gov (indexed) [DOE]

the next year, the U.S. Department of Energy, the Council on Competitiveness and the Alliance to Save Energy will join forces to undertake Accelerate Energy Productivity 2030 - an...

193

Advanced Electric Drive Vehicle Education Program  

Broader source: Energy.gov (indexed) [DOE]

Training Consortium (NAFTC), together with its partners, will develop an Advanced Electric Drive Vehicle Education Program that will help accelerate mass market introduction...

194

Accelerating the Electrification of U.S. Drive Trains: Ready...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced...

195

E-Print Network 3.0 - accelerated hypofractionated radiotherapy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated hypofractionated radiotherapy Page: << < 1 2 3 4 5 > >> 1 doi:10.1016...

196

Accelerated Testing Validation  

E-Print Network [OSTI]

the University of California. Accelerated Testing Validationmaterials requires relevant Accelerated Stress Tests (ASTs),

Mukundan, Rangachary

2013-01-01T23:59:59.000Z

197

Advanced Reactor Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Reactor Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Office of Nuclear Energy (NE) will pursue these advancements through RD&D activities at the Department of Energy (DOE) national laboratories and U.S. universities, as well as through collaboration with industry and international partners. These activities will focus on advancing scientific

198

Generation -IV Reactor Concepts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation-IV Reactor Concepts Generation-IV Reactor Concepts Thomas H. Fanning Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439, USA The Generation-IV International Forum (GIF) is a multi-national research and development (R&D) collaboration. The GIF pursues the development of advanced, next generation reactor technology with goals to improve: a) sustainability (effective fuel utilization and minimization of waste) b) economics (competitiveness with respect to other energy sources) c) safety and reliability (e.g., no need for offsite emergency response), and d) proliferation resistance and physical protection The GIF Technology Roadmap exercise selected six generic systems for further study: the Gas- cooled Fast Reactor (GFR), the Lead-cooled Fast Reactor (LFR), the Molten Salt Reactor (MSR),

199

Advanced Concepts in Josephson Junction Reflection Amplifiers  

E-Print Network [OSTI]

Low-noise amplification atmicrowave frequencies has become increasingly important for the research related to superconducting qubits and nanoelectromechanical systems. The fundamental limit of added noise by a phase-preserving amplifier is the standard quantum limit, often expressed as noise temperature $T_{q} = \\hbar {\\omega}/2k_{B}$. Towards the goal of the quantum limit, we have developed an amplifier based on intrinsic negative resistance of a selectively damped Josephson junction. Here we present measurement results on previously proposed wide-band microwave amplification and discuss the challenges for improvements on the existing designs. We have also studied flux-pumped metamaterial-based parametric amplifiers, whose operating frequency can be widely tuned by external DC-flux, and demonstrate operation at $2\\omega$ pumping, in contrast to the typical metamaterial amplifiers pumped via signal lines at $\\omega$.

Pasi Lhteenmki; Visa Vesterinen; Juha Hassel; G. S. Paraoanu; Heikki Sepp; Pertti Hakonen

2014-05-20T23:59:59.000Z

200

Advanced Combustion Concepts - Enabling Systems and Solutions...  

Broader source: Energy.gov (indexed) [DOE]

ins talled and vehicle available for application, emis s ion and fuel economy optimization. 5 G as oline S ys tems | 5172013 | 2013 R obert B os ch LLC and affiliates ....

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advanced wet-dry cooling tower concept  

E-Print Network [OSTI]

The purpose of this years' work has been to test and analyze the new dry cooling tower surface previously developed. The model heat transfer test apparatus built last year has been instrumented for temperature, humidity ...

Snyder, Troxell Kimmel

202

Advanced Combustion Concepts - Enabling Systems and Solutions...  

Broader source: Energy.gov (indexed) [DOE]

III C AR B OB D II Quality and Safety R eliability R obus tness IS O26262 Brand building B rand Identity & -value Image, e.g. Innovation Cost F or entry...

203

Project Profile: Commercial Development of an Advanced Linear...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Commercial Development of an Advanced Linear-Fresnel-Based CSP Concept Project Profile: Commercial Development of an Advanced Linear-Fresnel-Based CSP Concept SkyFuel logo SkyFuel,...

204

Nonparaxial Mathieu and Weber accelerating beams  

E-Print Network [OSTI]

We demonstrate both theoretically and experimentally nonparaxial Mathieu and Weber accelerating beams, generalizing the concept of previously found accelerating beams. We show that such beams bend into large angles along circular, elliptical or parabolic trajectories but still retain nondiffracting and self-healing capabilities. The circular nonparaxial accelerating beams can be considered as a special case of the Mathieu accelerating beams, while an Airy beam is only a special case of the Weber beams at the paraxial limit. Not only generalized nonparaxial accelerating beams open up many possibilities of beam engineering for applications, but the fundamental concept developed here can be applied to other linear wave systems in nature, ranging from electromagnetic and elastic waves to matter waves.

Peng Zhang; Yi Hu; Tongcang Li; Drake Cannan; Xiaobo Yin; Roberto Morandotti; Zhigang Chen; Xiang Zhang

2012-10-23T23:59:59.000Z

205

Kwok Ko SLAC National Accelerator Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kwok Ko Kwok Ko SLAC National Accelerator Laboratory Work supported by US DOE Offices of HEP, ASCR and BES under contract AC02-76SF00515. Large Scale Computing and Storage Requirements for High Energy Physics Rockville, MD, November 27-28, 2012 Present and Future Computing Requirements for Advanced Modeling for Particle Accelerator 1. Advanced Modeling for Particle Accelerators (AMPA) NERSC Repositories: m349 Principal Investigator: K. Ko Senior Investigators: SLAC - L. Ge, Z. Li, C. Ng, L. Xiao, FNAL - A. Lunin, Jlab - H. Wang, BNL - S. Belomestnykh, ANL - A. Nassiri

206

Pulse - Accelerator Science in Medicine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

t he future of accelerator physics isn’t just for physicists. As in the past, tomorrow’s discoveries in particle accelerator science may lead to unexpected applications for medical diagnosis, healing and the understanding of human biology. t he future of accelerator physics isn’t just for physicists. As in the past, tomorrow’s discoveries in particle accelerator science may lead to unexpected applications for medical diagnosis, healing and the understanding of human biology. Breakthroughs in the technology of superconducting magnets, nanometer beams, laser instrumentation and information technology will give high-energy physicists new accelerators to explore the deepest secrets of the universe: the ultimate structure of matter and the nature of space and time. But breakthroughs in accelerator science may do more than advance the exploration of particles and forces. No field of science is an island. Physics, astronomy, chemistry, biology, medicine— all interact in the continuing human endeavor to explore and understand our world and ourselves. Research at high-energy physics laboratories will lead to the next generation of particle accelerators—and perhaps to new tools for medical science.

207

About Accelerators | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Brochure top-right bottom-left-corner bottom-right-corner About Accelerators Jefferson Lab is home to two superconducting radiofrequency accelerators: the...

208

GPU accelerated cardiac electrophysiology  

E-Print Network [OSTI]

OF THE THESIS GPU Accelerated Cardiac Electrophysiology bySAN DIEGO GPU Accelerated Cardiac Electrophysiology A thesistoolkit for developing GPU accelerated programs called CUDA,

Lionetti, Fred

2010-01-01T23:59:59.000Z

209

Vehicle Systems Integration Laboratory Accelerates Powertrain Development  

ScienceCinema (OSTI)

ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

None

2014-06-25T23:59:59.000Z

210

Advanced Reactor Technology Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Reactor Technologies » Advanced Reactor Nuclear Reactor Technologies » Advanced Reactor Technologies » Advanced Reactor Technology Documents Advanced Reactor Technology Documents January 30, 2013 Advanced Reactor Concepts Technical Review Panel Report This report documents the establishment of a technical review process and the findings of the Advanced Reactor Concepts (ARC) Technical Review Panel (TRP).1 The intent of the process is to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. A goal of the process is to facilitate greater engagement between DOE and industry. The process involved establishing evaluation criteria, conducting a pilot review, soliciting concept inputs from industry entities, reviewing the concepts by TRP members and compiling the

211

idaho Accelerator Center Advanced Fuel Cycle Research  

SciTech Connect (OSTI)

The technical effort has been in two parts called; Materials Science and Instrumentation Development. The Materials Science technical program has been based on a series of research and development achievements in Positron-Annihilation Spectroscopy (PAS) for defect detection in structural materials. This work is of particular importance in nuclear power and its supporting systems as the work included detection of defects introduced by mechanical and thermal phenomena as well as those caused by irradiation damage. The second part of the program has focused on instrumentation development using active interrogation techniques supporting proliferation resistant recycling methodologies and nuclear material safeguards. This effort has also lead to basic physics studies of various phenomena relating to photo-fission. Highlights of accomplishments and facility improvement legacies in these areas over the program period include

Wells, Douglas; Dale, Dan

2011-10-20T23:59:59.000Z

212

Department of Mathematical Sciences Accelerated M.S. Program  

E-Print Network [OSTI]

Department of Mathematical Sciences Accelerated M.S. Program The Department of Mathematical education and an M.S. in Statistics. The Accelerated M.S. Program (AMSP) is designed to assist MSU at Montana State University may accelerate their program through any combination of Advanced Placement Credit

Lawrence, Rick L.

213

Fermilab | Illinois Accelerator Research Center | Accelerators...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerators and Society Physicists have been inventing new types of accelerators to propel charged particles to higher and higher energies for more than 80 years. Today, besides...

214

Accelerated Aging of Roofing Surfaces  

Broader source: Energy.gov (indexed) [DOE]

Accelerated aging of roofing surfaces Accelerated aging of roofing surfaces Hugo Destaillats, Ph.D. Lawrence Berkeley National Laboratory HDestaillats@LBL.gov (510) 486-5897 http://HeatIsland.LBL.gov April 4, 2013 Development of Advanced Building Envelope Surface Materials & Integration of Artificial Soiling and Weathering in a Commercial Weatherometer New York Times, 30 July 2009 2010 2012 Challenge: speed the development of high performance building envelope materials that resist soiling, maintain high solar reflectance, and save energy 2 | Building Technologies Office eere.energy.gov

215

How Accelerated Nursing Students Learn| A Comparative Case Study of the Facilitators, Barriers, Learning Strategies, Challenges, and Obstacles of Students in an Accelerated Nursing Program.  

E-Print Network [OSTI]

?? Accelerated nursing programs for non-nurse college graduates are a relatively new concept in nursing education. They were developed within generic nursing programs and individualized (more)

Johnson Lewis, Edna

2010-01-01T23:59:59.000Z

216

Chemical Accelerators The phrase "chemical accelerators"  

E-Print Network [OSTI]

Meetings Chemical Accelerators The phrase "chemical accelerators" is scarcely older than for one or two dozen people grew to include nearly a hundred. Chemical accelerators is a name sug- gested-volt region. Thus chemical accelerators can provide the same type of information for elemen- tary chemical

Zare, Richard N.

217

E-Print Network 3.0 - advancing translational research Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mission: Advance human health by accelerating the translation... . Educate and train future translational clinicians and researchers. Provide funding support...

218

E-Print Network 3.0 - advance translational research Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mission: Advance human health by accelerating the translation... . Educate and train future translational clinicians and researchers. Provide funding support...

219

Advances in Metallic Nuclear Fuel  

Science Journals Connector (OSTI)

Metallic nuclear fuels have generated renewed interest for advanced ... operations is excellent. Ongoing irradiation tests in Argonne-Wests Idaho-based Experimental Breeder Reactor ... fast reactor (IFR) concept...

B. R. Seidel; L. C. Walters; Y. I. Chang

1987-04-01T23:59:59.000Z

220

E-Print Network 3.0 - axial injection concept Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Georgia Institute of Technology Collection: Engineering 22 Faraday Acceleration with Radio-frequency Assisted Discharge (FARAD) Edgar Y. Choueiri Summary: Concept 180 160 140...

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Accelerating projects  

SciTech Connect (OSTI)

This chapter describes work at ORNL in the period around 1950, when the laboratory was evolving from its original mission of research aimed at producing the atomic bomb, to a new mission, which in many ways was unclear. The research division from Y-12 merged with the laboratory, which gave an increased work force, access to a wide array of equipment, and the opportunity to work on a number of projects related to nuclear propulsion. The first major project was for a nuclear aircraft. From work on this program, a good share of the laboratories work in peaceful application of nuclear energy would spring. A major concern was the development of light weight shielding to protect the crew and materials in such a plane. To do such shielding work, the laboratory employed existing, and new reactors. The original plans called for the transfer of reactor work to Argonne, but because of their own research load, and the needs of the lab, new reactor projects were started at the lab. They included the Low Intensity Test Reactor, the Swimming Pool Reactor, the Bulk Shielding Reactor, the Tower Shielding Facility, and others. The laboratory was able to extend early work on calutrons to accelerator development, pursuing both electrostatic accelerators and cyclotrons. The aircraft project also drove the need for immense quantities of scientific data, with rapid analysis, which resulted the development of divisions aimed at information support and calculational support. The laboratory also expanded its work in the effects of radiation and cells and biological systems, as well as in health physics.

Not Available

1992-01-01T23:59:59.000Z

222

Teleportation of Accelerated Information  

E-Print Network [OSTI]

A theoretical quantum teleportation protocal is suggested to teleport accelerated and non-accelerated information over different classes of accelerated quantum channels. For the accelerated information, it is shown that the fidelity of the teleported state increases as the entanglement of the initial quantum channel increases. However as the difference between the accelerated channel and the accelerated information decreases the fidelity increases. The fidelity of the non accelerated information increases as the entanglement of the initial quantum channel increases, while the accelerations of the quantum channel has a little effect. The possibility of sending quantum information over accelerated quantum channels is much better than sending classical information.

N. Metwally

2012-06-17T23:59:59.000Z

223

Concept:U.S. National Software Tools | Open Energy Information  

Open Energy Info (EERE)

Concept Concept Edit History Facebook icon Twitter icon » Concept:U.S. National Software Tools Jump to: navigation, search Description of concept "U.S. National Software Tools"RDF feed [[Category:Tools]] [[Developer.IsDOELab::true]] Pages of concept "U.S. National Software Tools" Showing 190 pages belonging to that concept. A A Policymaker's Guide to Feed-In Tariff Policy Design Advanced Process Engineering Co-Simulator (APECS) Africa - Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards Resources Alternative Fuels and Advanced Vehicles Data Center - Federal and State Incentives and Laws Database

224

ACCELERATOR R&D S U M M A R Y  

E-Print Network [OSTI]

1 ACCELERATOR R&D P5 @ BNL 3/6/08 S U M M A R Y Medium & Longer Term [AARD = Advanced Accelerator R&D] #12;2 · Accelerators remain an essential component in Elementary Particle Physics Research · Accelerator capabilities are prominent in defining the frontiers of Elementary Particle Science · EPP2010

225

A theory of metrics with maximal acceleration  

E-Print Network [OSTI]

We present a geometric theory for spacetimes whose world lines associated with physical particles have an upper bound for the proper acceleration. After some fundamental remarks on the requirements that classical dynamics for point particles must hold good, the notion of generalized metric and a theory of maximal acceleration are introduced. A perturbative approach to metrics of maximal acceleration is discussed. Then several of their physical and kinematical properties are investigated. These include a discussion of the fundamental causal theory concepts and the introduction of the associated notions of Euclidean length and celerity function. Finally, we discuss the corresponding modification of the Einstein's mass-energy relation.

Ricardo Gallego Torrom

2014-03-06T23:59:59.000Z

226

Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012)  

Broader source: Energy.gov [DOE]

The Energy Storage Technology Advancement Partnership (ESTAP) is acooperative funding and information-sharing partnership between DOE and interested states that aims to accelerate the...

227

High-brightness H/sup -/ accelerators  

SciTech Connect (OSTI)

Neutral particle beam (NPB) devices based on high-brightness H/sup -/ accelerators are an important component of proposed strategic defense systems. The basic rationale and R and D program are outlined and examples given of the underlying technology thrusts toward advanced systems. Much of the research accomplished in the past year is applicable to accelerator systems in general; some of these activities are discussed.

Jameson, R.A.

1987-01-01T23:59:59.000Z

228

Process Systems Engineering R&D for Advanced Fossil Energy Systems  

SciTech Connect (OSTI)

This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulation for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.

Zitney, S.E.

2007-09-11T23:59:59.000Z

229

E-Print Network 3.0 - accelerators Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerators Page: << < 1 2 3 4 5 > >> 1 SLAC Colloquium Accelerator Science for the 21st century...

230

E-Print Network 3.0 - accelerator-based neutron beams Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

beams Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerator-based neutron beams Page: << < 1 2 3 4 5 > >> 1 Accelerator based neutron source...

231

for sequence accelerators  

E-Print Network [OSTI]

Wynn's -algorithm for sequence accelerators using high precision arithmetic Rachel Baumann University of Arizona Wynn's -algorithm for sequence accelerators using high precision arithmetic Rachel Baumann University of Arizona April 17, 2012 #12;Wynn's -algorithm for sequence accelerators using high

Zakharov, Vladimir

232

COLLECTIVE PHENOMENA IN ACCELERATORS  

E-Print Network [OSTI]

Proc. 1971 Particle Accelerator Conference, IEEE Trans. onConference on High-Energy Accelerators) 1971 (CERN, Geneva,and P. R. Zenkevich, Particle Accelerators b 1 (1972). M. S.

Sessler, Andrew M.

2008-01-01T23:59:59.000Z

233

High-Current Accelerators  

E-Print Network [OSTI]

F i g . 13 F i g . 14 A 48 ACCELERATOR F i g . 25 F i g . 16supply. Extrapolation of accelerator energy and current9 . A-48 high-current accelerator, low-velocity end. Fig.

Lawrence, Ernest O.

1955-01-01T23:59:59.000Z

234

SuperB Progress Report for Accelerator  

SciTech Connect (OSTI)

This report details the progress made in by the SuperB Project in the area of the Collider since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. With this document we propose a new electron positron colliding beam accelerator to be built in Italy to study flavor physics in the B-meson system at an energy of 10 GeV in the center-of-mass. This facility is called a high luminosity B-factory with a project name 'SuperB'. This project builds on a long history of successful e+e- colliders built around the world, as illustrated in Figure 1.1. The key advances in the design of this accelerator come from recent successes at the DAFNE collider at INFN in Frascati, Italy, at PEP-II at SLAC in California, USA, and at KEKB at KEK in Tsukuba Japan, and from new concepts in beam manipulation at the interaction region (IP) called 'crab waist'. This new collider comprises of two colliding beam rings, one at 4.2 GeV and one at 6.7 GeV, a common interaction region, a new injection system at full beam energies, and one of the two beams longitudinally polarized at the IP. Most of the new accelerator techniques needed for this collider have been achieved at other recently completed accelerators including the new PETRA-3 light source at DESY in Hamburg (Germany) and the upgraded DAFNE collider at the INFN laboratory at Frascati (Italy), or during design studies of CLIC or the International Linear Collider (ILC). The project is to be designed and constructed by a worldwide collaboration of accelerator and engineering staff along with ties to industry. To save significant construction costs, many components from the PEP-II collider at SLAC will be recycled and used in this new accelerator. The interaction region will be designed in collaboration with the particle physics detector to guarantee successful mutual use. The accelerator collaboration will consist of several groups at present universities and national laboratories. In Italy these may include INFN Frascati and the University of Pisa, in the United States SLAC, LBNL, BNL and several universities, in France IN2P3, LAPP, and Grenoble, in Russia BINP, in Poland Krakow University, and in the UK the Cockcroft Institute. The construction time for this collider is a total of about four years. The new tunnel can be bored in about a year. The new accelerator components can be built and installed in about 4 years. The shipping of components from PEP-II at SLAC to Italy will take about a year. A new linac and damping ring complex for the injector for the rings can be built in about three years. The commissioning of this new accelerator will take about a year including the new electron and positron sources, new linac, new damping ring, new beam transport lines, two new collider rings and the Interaction Region. The new particle physics detector can be commissioned simultaneously with the accelerator. Once beam collisions start for particle physics, the luminosity will increase with time, likely reaching full design specifications after about two to three years of operation. After construction, the operation of the collider will be the responsibility of the Italian INFN governmental agency. The intent is to run this accelerator about ten months each year with about one month for accelerator turn-on and nine months for colliding beams. The collider will need to operate for about 10 years to provide the required 50 ab{sup -1} requested by the detector collaboration. Both beams as anticipated in this collider will have properties that are excellent for use as sources for synchrotron radiation (SR). The expected photon properties are comparable to those of PETRA-3 or NSLS-II. The beam lines and user facilities needed to carry out this SR program are being investigated.

Biagini, M.E.; Boni, R.; Boscolo, M.; Buonomo, B.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Mazzitelli, G.; Pellegrino, L.; Preger, M.A.; Raimondi, P.; Ricci, R.; Rotundo, U.; Sanelli, C.; Serio, M.; Stella, A.; Tomassini, S.; Zobov, M.; /Frascati; Bertsche, K.; Brachman, A.; /SLAC /Novosibirsk, IYF /INFN, Pisa /Pisa U. /Orsay, LAL /Annecy, LAPP /LPSC, Grenoble /IRFU, SPP, Saclay /DESY /Cockroft Inst. Accel. Sci. Tech. /U. Liverpool /CERN

2012-02-14T23:59:59.000Z

235

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AAI Home AAI Home Welcome Accelerators at Argonne Mission Organization History Document Collection Conferences & Workshops Beams and Applications Seminar Argonne-Fermilab Collaboration Lee Teng Scholarship Program Useful Links Argonne Accelerator Institute In 2006, Argonne Laboratory Director Robert Rosner formed the AAI as a focal point for accelerator initiatives. The institute works to utilize Argonne's extensive accelerator resources, to enhance existing facilities, to determine the future of accelerator development and construction, and to oversee a dynamic and acclaimed accelerator physics portfolio. More Information for: Members * Students Industrial Collaborators - Working with Argonne Link to: Accelerators for America's Future Upcoming Events and News 4th International Particle Accelerator Conference (IPAC'13)

236

Fermilab | Science | Particle Accelerators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Particle Accelerators Main Injector As America's particle physics laboratory, Fermilab operates and builds powerful particle accelerators for investigating the smallest things...

237

Focusing in Linear Accelerators  

DOE R&D Accomplishments [OSTI]

Review of the theory of focusing in linear accelerators with comments on the incompatibility of phase stability and first-order focusing in a simple accelerator.

McMillan, E. M.

1950-08-24T23:59:59.000Z

238

Lab announces Venture Acceleration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inc., and ThermaSun Inc. as recipients of awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund provides...

239

Proceedings of the US Nuclear Regulatory Commission fifteenth water reactor safety information meeting: Volume 1, Plenary sessions, reactor licensing topics, NUREG-1150, risk analysis/PRA applications, innovative concepts for increased safety of advanced power reactors, severe accident modeling and analysis  

SciTech Connect (OSTI)

This six-volume report contains 140 papers out of the 164 that were presented at the Fifteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 26-29, 1987. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. This report, Volume 1, discusses the following: plenary sessions; reactor licensing; NUREG-1150; risk analysis; innovative concepts for increased safety of advanced power reactors; and severe accident modeling and analysis. Thirty-two reports have been cataloged separately.

Weiss, A.J. (comp.)

1988-02-01T23:59:59.000Z

240

E-Print Network 3.0 - acceleration dark energy Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

dark energy Search Powered by Explorit Topic List Advanced Search Sample search results for: acceleration dark energy Page: << < 1 2 3 4 5 > >> 1 The big picture Victoria...

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

E-Print Network 3.0 - accelerator-driven subcritical systems...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

subcritical systems Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerator-driven subcritical systems Page: << < 1 2 3 4 5 > >> 1 Reprinted...

242

E-Print Network 3.0 - accelerator simulasi perjalanan Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

simulasi perjalanan Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerator simulasi perjalanan Page: << < 1 2 3 4 5 > >> 1 Each family member...

243

E-Print Network 3.0 - accelerators tezisy dokladov Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerators tezisy dokladov Page: << < 1 2 3 4 5 > >> 1 General Relativity and Gravitation,...

244

E-Print Network 3.0 - accelerators les accelerateurs Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerators les accelerateurs Page: << < 1 2 3 4 5 > >> 1 STRUCTURE ACCLRATRICE DE SYMTRIE...

245

E-Print Network 3.0 - accelerates fracture healing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fracture healing Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerates fracture healing Page: << < 1 2 3 4 5 > >> 1 Self-healing structural...

246

E-Print Network 3.0 - accelerated electron beams Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

beams Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated electron beams Page: << < 1 2 3 4 5 > >> 1 KJKDec. 52002 Opportunities for Beam...

247

E-Print Network 3.0 - accelerator beam instrumentation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

radiation facilities for biology and material sciences. Beam physics--study of beams in accelerators... and Northern Illinois University (NIU), where advanced ... Source:...

248

E-Print Network 3.0 - accelerator photon beams Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

photon beams Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerator photon beams Page: << < 1 2 3 4 5 > >> 1 KJKDec. 52002 Opportunities for...

249

E-Print Network 3.0 - accelerating polarized beams Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

polarized beams Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerating polarized beams Page: << < 1 2 3 4 5 > >> 1 Linear Collider...

250

E-Print Network 3.0 - accelerated radioactive beams Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

beams Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated radioactive beams Page: << < 1 2 3 4 5 > >> 1 Physics Division ESH Bulletin...

251

E-Print Network 3.0 - accelerator neutrino beams Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

beams Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerator neutrino beams Page: << < 1 2 3 4 5 > >> 1 A Neutrino Superbeam Physics Program...

252

E-Print Network 3.0 - accelerated telomere shortening Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated telomere shortening Page: << < 1 2 3 4 5 > >> 1 Telomere shortening and survival in...

253

E-Print Network 3.0 - accelerated radiotherapy chart Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated radiotherapy chart Page: << < 1 2 3 4 5 > >> 1 JOURNAL DE PHYSIQUE Colloque C1,...

254

E-Print Network 3.0 - accelerates hemopoietic regeneration Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

List Advanced Search Sample search results for: accelerates hemopoietic regeneration Page: << < 1 2 3 4 5 > >> 1 Cytotechnology 41: 7592, 2003. 2003 Kluwer Academic...

255

I. ACCELERATION A. Introduction  

E-Print Network [OSTI]

I. ACCELERATION A. Introduction Following cooling and initial bunch compression, the beams must be rapidly accelerated. The acceleration needed for a Higgs collider is probably the most conventional part undertaken. A sequence of linacs would work, but would be expensive. Some form of circulating acceleration

McDonald, Kirk

256

Superconducting Radiofrequency (SRF) Accelerator Cavities  

SciTech Connect (OSTI)

Charlie Reece, an accelerator technology scientist, explains how superconducting radiofrequency accelerator cavities work.

Reece, Charlie

2013-05-03T23:59:59.000Z

257

Superconducting Radiofrequency (SRF) Accelerator Cavities  

ScienceCinema (OSTI)

Charlie Reece, an accelerator technology scientist, explains how superconducting radiofrequency accelerator cavities work.

Reece, Charlie

2014-05-22T23:59:59.000Z

258

Accelerator Fusion Research Division 1991 summary of activities  

SciTech Connect (OSTI)

This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

Not Available

1991-12-01T23:59:59.000Z

259

Accelerator & Fusion Research Division 1991 summary of activities  

SciTech Connect (OSTI)

This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

Not Available

1991-12-01T23:59:59.000Z

260

Accelerator and fusion research division. 1992 Summary of activities  

SciTech Connect (OSTI)

This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations.

Not Available

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Progress on shock accelerated ion beam production on ATF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at hole boring velocity v(2Ic) 12 * Stationary ions in advance of the shock get accelerated by the same space charge field effectively bouncing off the shock front.* *...

262

Fermilab | Illinois Accelerator Research Center | Illinois Accelerator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

photo: IARC photo: IARC As envisioned, the Illinois Accelerator Research Center will provide approximately 83,000 square feet of technical, office and classroom space for scientists and industrial partners. The Illinois Accelerator Research Center (IARC) is a new accelerator research facility being built at Fermi National Accelerator Laboratory. At the Illinois Accelerator Research Center, scientists and engineers from Fermilab, Argonne and Illinois universities will work side by side with industrial partners to research and develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security. Located on the Fermilab campus this 83,000 square foot, state-of-the-art facility will house offices, technical and educational space to study

263

Fermilab | Science | Particle Accelerators | Fermilab's Accelerator...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

It produces the world's most powerful, high-energy neutrino beam and provides proton beams for various experiments and R&D programs. Fermilab's accelerator complex delivers...

264

Fermilab | Science | Particle Accelerators | Leading Accelerator...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fermilab scientists and engineers develop particle accelerators to produce beams to take particle physics to the next level, collaborating with scientists and...

265

Recirculating Linac Accelerators For Future Muon Facilities  

SciTech Connect (OSTI)

Neutrino Factories (NF) and Muon Colliders (MC) require rapid acceleration of shortlived muons to multi-GeV and TeV energies. A Recirculating Linear Accelerator (RLA) that uses superconducting RF structures can provide exceptionally fast and economical acceleration to the extent that the focusing range of the RLA quadrupoles allows each muon to pass several times through each high-gradient cavity. A new concept of rapidly changing the strength of the RLA focusing quadrupoles as the muons gain energy is being developed to increase the number of passes that each muon will make in the RF cavities, leading to greater cost effectiveness. We discuss the optics and technical requirements for RLA designs, using RF cavities capable of simultaneous acceleration of both m+ and m- species. The design will include the optics for the multi-pass linac and droplet-shaped return arcs.

Yves Roblin, Alex Bogacz, Vasiliy Morozov, Kevin Beard

2012-04-01T23:59:59.000Z

266

An Electric Propulsion Concept Based on Direct Ion Acceleration with  

E-Print Network [OSTI]

Bayard G. Gardineer, IV Class of 2011 Submitted to the Department of Mechanical and Aerospace Engineering and the Engineering Physics Certificate. Final Report April 28, 2011 Prof. Edgar Y. Choueiri Prof. Szymon Suckewer MAE. And also, for 3-D audio, David Blaine, and cool magic tricks. To Ben Jorns, whose guidance throughout

Choueiri, Edgar

267

Accelerating Offshore Wind Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Accelerating Offshore Wind Development Accelerating Offshore Wind Development Accelerating Offshore Wind Development Click on a project for more information. The Energy Department has selected seven projects that will accelerate the commercialization of innovative offshore wind technologies in the United States. Each project will receive up to $4 million from the Energy Department to complete the engineering, site evaluation, and planning phase of their project. Upon completion of this phase, the Energy Department will select the up to three of these projects to advance the follow-on design, fabrication, and deployment phases to achieve commercial operation by 2017. Each of the these projects will be eligible for up to $47 million in additional funding over four years, subject to Congressional appropriations. This map also includes 42

268

Advanced Combustion Technology to Enable High Efficiency Clean...  

Broader source: Energy.gov (indexed) [DOE]

Combustion System + Air Handling Air Handling + Sensors + Calibration Low P, High Flow Rate EGR + VVA - Simulated Robustness Advanced Combustion Concepts - Simulated 0.0...

269

Advanced drilling systems study.  

SciTech Connect (OSTI)

This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

1996-05-01T23:59:59.000Z

270

RHIC | Accelerator Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RHIC Accelerators RHIC Accelerators The Relativistic Heavy Ion Collider complex is actually composed of a long "chain" of particle accelerators Heavy ions begin their travels in the Electron Beam Ion Source accelerator (1). The ions then travel to the small, circular Booster (3) where, with each pass, they are accelerated to higher energy. From the Booster, ions travel to the Alternating Gradient Synchrotron (4), which then injects the beams via a beamline (5) into the two rings of RHIC (6). In RHIC, the beams get a final accelerator "kick up" in energy from radio waves. Once accelerated, the ions can "orbit" inside the rings for hours. RHIC can also conduct colliding-beam experiments with polarized protons. These are first accelerated in the Linac (2), and further in the Booster (3), AGS (4), and

271

Fermilab | Tevatron | Accelerator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

particle accelerator in the world before it shut down on Sept. 29, 2011. It accelerated beams of protons and antiprotons to 99.999954 percent of the speed of light around a...

272

History of Proton Linear Accelerators  

E-Print Network [OSTI]

much. References 1. Linear Accelerators, edited by P. M .at the 1986 Linear Accelerator Conference, SLAC, Stanford,HISTORY OF PROTON LINEAR ACCELERATORS Luis W. Alvarez TWO-

Alvarez, Luis W.

1987-01-01T23:59:59.000Z

273

LARGE-APERTURE D- ACCELERATORS  

E-Print Network [OSTI]

Vignetted current profile at accelerator entrance aperture 'LARGE-APERTURE D" ACCELERATORS* 0. A. Anderson" " Lawrencen i a 9-1720 Abstract Accelerator designs are described for

Anderson, O.A.

2010-01-01T23:59:59.000Z

274

Beam Dynamics for Induction Accelerators  

E-Print Network [OSTI]

Dynamics for Induction Accelerators Edward P. Lee Lawrencea natural candidate accelerator for a heavy ion fusion (HIF)words: Fusion, Induction, Accelerators, Dynamics This work

Lee, E.P.

2014-01-01T23:59:59.000Z

275

Shielding of proton accelerators  

Science Journals Connector (OSTI)

......capabilities of an accelerator control system...meant to undergo a nuclear interaction within...the axis of the vacuum chamber. The beam...of high-energy accelerators. Nucl. Instrum...Series, Group I: Nuclear and Particle Physics-Schopper...100-250 MeV proton accelerators: double differential......

Stefano Agosteo; Matteo Magistris; Marco Silari

2011-07-01T23:59:59.000Z

276

APS News | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

APS News Archives: APS News Archives: 2012 | 2011 | 2010 | 2009 2008 | 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed APS News Kim of ASD Awarded 2014 Wilson Prize for Achievement in Physics of Particle Accelerators Kim of ASD Awarded 2014 Wilson Prize for Achievement in Physics of Particle Accelerators January 7, 2014 Kwang-Je Kim of the Advanced Photon Source has been named the recipient of the 2014 Robert R. Wilson Prize for Achievement in the Physics of Particle Accelerators, Harkay of ASD Elected to Fellowship in the American Physical Society Harkay of ASD Elected to Fellowship in the American Physical Society December 18, 2013 Katherine Harkay of the Accelerator Systems Division has been elected to Fellowship in the American Physical Society for

277

DOE Announces $60 Million in Projects to Accelerate Scientific Discovery  

Broader source: Energy.gov (indexed) [DOE]

0 Million in Projects to Accelerate Scientific 0 Million in Projects to Accelerate Scientific Discovery through Advanced Computing DOE Announces $60 Million in Projects to Accelerate Scientific Discovery through Advanced Computing September 7, 2006 - 8:53am Addthis WASHINGTON, D.C. - The U.S. Department of Energy's (DOE) Office of Science today announced approximately $60 million in new awards annually for 30 computational science projects over the next three to five years. The projects are aimed at accelerating research in designing new materials, developing future energy sources, studying global climate change, improving environmental cleanup methods and understanding physics from the tiniest particles to the massive explosions of supernovae. "Advanced computing is a critical element of President Bush's American

278

Proliferation Potential of Accelerator-Drive Systems: Feasibility Calculations  

SciTech Connect (OSTI)

Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation neutron sources and subcritical reactors. Energy and power requirements were calculated for a proton accelerator-driven neutron spallation source and subcritical reactors to produce a significant amount of fissile material--plutonium.

Riendeau, C.D.; Moses, D.L.; Olson, A.P.

1998-11-01T23:59:59.000Z

279

Advanced Remediation Technologies  

SciTech Connect (OSTI)

The United States Department of Energy (DOE), Office of Environmental Management (EM) is responsible for the cleanup of nation's nuclear weapons program legacy wastes, along with waste associated with nuclear energy programs and research. The EM cleanup efforts continue to progress, however the cleanup continues to be technologically complex, heavily regulated, long-term; and the effort also has a high life cycle cost estimate (LCCE) effort. Over the past few years, the EM program has undergone several changes to accelerate its cleanup efforts with varying degrees of success. This article will provide some insight into the Advanced Remediation Technologies (ART) projects that may enhance cleanup efforts and reduce life cycle costs. (authors)

Krahn, St.; Miller, C.E. [The United States Department of Energy, Office of Environmental Management, Washington, D.C. (United States)

2008-07-01T23:59:59.000Z

280

The Klynac: An Integrated Klystron and Linear Accelerator  

SciTech Connect (OSTI)

The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system. The klystron is essentially a conventional klystron structure with an input cavity, some number of intermediate cavities and an output cavity. The accelerator structure is, likewise, a conventional on-axis coupled structure. The uniqueness is the means of coupling the klystron output cavity to the accelerator. The coupler is a resonant coupler rather than an ordinary transmission line. The geometry of such a system need not be coaxial. However, if the klystron and accelerator are coaxial we can eliminate the need for a separate cathode for the accelerator by injecting some of the klystron beam into the accelerator. Such a device can be made cylindrical which is ideal for some applications.

Potter, J. M. [JP Accelerator Works; Schwellenbach, D. [NSTec

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The advanced thermionics initiative. program update  

SciTech Connect (OSTI)

The United States Air Force has had a long standing interest in thermionic space power dating back to the early 1960s when a heat pipe cooled thermionic converter was demonstrated through work at the predecessor to Wright Laboratory (WL). With the exception of the short hiatus in the mid-70s, Air Force thermionics work at Wright Laboratory has continued to the present time with thermionic technology programs including the burst power thermionic phase change concepts, heat pipe cooled planar diodes, and advanced in-core concept developments such as composite materials, insulators and oxygenation. The Advanced Thermionics Initiative (ATI) program was organized to integrate thermionic technology advances into a converter suitable for in-core reactor applications in the 10 to 40 kWe power range. As an advanced thermionics technology program, the charter and philosophy of the ATI program is to provide the needed advanced converter concepts in support of national thermionic space power programs.

Lamp, T.R.; Donovan, B.D. (Aerospace Power Division, Wright Laboratory, Wright-Patterson AFB, Ohio 45433 (United States))

1993-01-20T23:59:59.000Z

282

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

283

Accelerator R and D task force presentation - m white  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE DOE Accelerator R&D Task Force Charge Presented at the AAI Meeting, 11/29/11 Marion White mwhite@aps.anl.gov Rod Gerig - Context (1)  "The Committee understands that powerful new accelerator technologies created for basic science and developed by industry will produce particle accelerators with the potential to address key economic and societal issues confronting our Nation. However, the Committee is concerned with the divide that exists in translating breakthroughs in accelerator science and technology into applications that benefit the marketplace and American competitiveness. The Committee directs the Department to submit a 10-year strategic plan by June 1, 2012 for accelerator technology research and development to advance accelerator applications in energy and the

284

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Welcome Welcome In 2006, Argonne laboratory director Robert Rosner formed the AAI as a focal point for accelerator initiatives. The institute works to utilize Argonne's extensive accelerator resources, to enhance existing facilities, to determine the future of accelerator development and construction, and to oversee a dynamic and acclaimed accelerator physics portfolio. I invite you to look around the content of this web site. Accelerators at Argonne describes our rich heritage in this field, particularly with respect to the development and support of user facilities. Initiatives describes the things we are hoping to do, and Research & Development discusses our research portfolio. If you are a graduate or undergraduate student wishing to pursue a career in accelerator science or technology, please see Educational

285

North Linear Accelerator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

North Linear Accelerator North Linear Accelerator Building Exterior Beam Enclosure Level Walk to the North Spreader North Recombiner Extras! North Linear Accelerator The North Linear Accelerator is one of the two long, straight sections of Jefferson Lab's accelerator. Electrons gain energy in this section by passing through acceleration cavities. There are 160 cavities in this straightaway, all lined up end to end. That's enough cavities to increase an electron's energy by 400 million volts each time it passes through this section. Electrons can pass though this section as many as five times! The cavities are powered by microwaves that travel down the skinny rectangular pipes from the service buildings above ground. Since the cavities won't work right unless they are kept very cold, they

286

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Argonne Accelerator History Document Collection The Argonne Accelerator History Document Collection The Argonne Accelerator Institute (AAI) has established a special collection of archived documents which describe notable Argonne accelerator work of the past 50 years. A list of such Argonne Accelerator Projects is given below. Each project is described briefly, with links to archived documents in this collection. This collection includes important Argonne accelerator documents which may have become difficult to locate, as well as ones which have broad scope. In keeping with its historical purpose, this collection only covers work done 10 or more years ago. Many of the listed documents are available online. We hope to make more of them available online in the future. [For several of the projects, interesting additional online documents can be found by

287

accelerators for ATI  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Accelerator Analogs Building Accelerator Analogs Some QuarkNet centers have built "accelerators." No, they are not real but can be used as analogs to real particle accelerators. The real learning comes, of course, when you plan and experiment on your own, but this may give you some starting points. Things to Think About What are your objectives? To make an analogy for particle accelerators? To use classical physics qualitatively? To use classical physics quantitatively? To measure forces, speed, etc.? _______________ Who is your target audience— in an Associate Teacher Institute or their students or both? What do the participants need to know before beginning? Jawbreaker Accelerator Pressurized gas shoots jawbreakers through PVC pipe into a fixed target (brick) or into each other. The original speeds and masses are measured as are those of the resulting particles.

288

Uniformly accelerated black holes  

Science Journals Connector (OSTI)

The static and stationary C metric are examined in a generic framework and their interpretations studied in some detail, especially those with two event horizons, one for the black hole and another for the acceleration. We find that (i) the spacetime of an accelerated static black hole is plagued by either conical singularities or a lack of smoothness and compactness of the black hole horizon, (ii) by using standard black hole thermodynamics we show that accelerated black holes have a higher Hawking temperature than Unruh temperature of the accelerated frame, and (iii) the usual upper bound on the product of the mass and acceleration parameters (<1/27) is just a coordinate artifact. The main results are extended to accelerated rotating black holes with no significant changes.

Patricio S. Letelier and Samuel R. Oliveira

2001-08-24T23:59:59.000Z

289

Miniaturization Techniques for Accelerators  

SciTech Connect (OSTI)

The possibility of laser driven accelerators [1] suggests the need for new structures based on micromachining and integrated circuit technology because of the comparable scales. Thus, we are exploring fully integrated structures including sources, optics (for both light and particle) and acceleration in a common format--an accelerator-on-chip (AOC). Tests suggest a number of preferred materials and techniques but no technical or fundamental roadblocks at scales of order 1 {micro}m or larger.

Spencer, James E.

2003-05-27T23:59:59.000Z

290

Optically pulsed electron accelerator  

DOE Patents [OSTI]

An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

Fraser, J.S.; Sheffield, R.L.

1985-05-20T23:59:59.000Z

291

Optically pulsed electron accelerator  

DOE Patents [OSTI]

An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

292

Accelerated Testing Validation  

Broader source: Energy.gov (indexed) [DOE]

Accelerated Testing Validation Rangachary Mukundan (PI), Rodney Borup, John Davey, Roger Lujan Los Alamos National Laboratory Adam Z. Weber Lawrence Berkeley National Laboratory...

293

Market Acceleration (Fact Sheet)  

SciTech Connect (OSTI)

The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

Not Available

2010-09-01T23:59:59.000Z

294

Accelerated Molecular Dynamics Methods  

Broader source: Energy.gov [DOE]

This presentation on Accelerated Molecular Dynamics Methods was given at the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006.

295

Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Director ATF, Accelerator External program committee W. Leemans, Chair M. Woodle Engineer Mechanical M. Montemagno Engineer Electrical I. Pogorelsky, Physicist, Laser P. Jacob...

296

Feasibility study of channeling acceleration experiment at the Fermilab ASTA facility  

E-Print Network [OSTI]

Crystal channeling technology has offered various opportunities in accelerator community with a viability of ultrahigh gradient (TV/m) acceleration for future HEP collider in Energy Frontier. The major challenge of the channeling acceleration is that ultimate acceleration gradients might require high power driver at hard x-ray regime (~ 40 keV), exceeding those conceivable for x-rays as of today, though x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. Moreover, only disposable crystal accelerators are possible at such high externally excited fields which would exceed the ionization thresholds destroying the atomic structure, so acceleration will take place only in a short time before full dissociation of the lattice. Carbon- based nanostructures have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration. This paper present beam-driven channeling acceleration concept with CNTs and discu...

Shin, Young-Min; Still, Dean A; Shiltsev, Vladimir

2015-01-01T23:59:59.000Z

297

Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams  

SciTech Connect (OSTI)

Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

Siemann, R.H.; /SLAC

2011-10-24T23:59:59.000Z

298

Acceleration Worksheet 8/24/2011 ACCELERATION WORKSHEET  

E-Print Network [OSTI]

Acceleration Worksheet 8/24/2011 ACCELERATION WORKSHEET College of Arts and Sciences Name _____________ TO _____________ month/year month/year II. I meet the requirements for acceleration under [fill out either a) or b;Acceleration Worksheet 8/24/2011 Acceleration 2011-2012 Courses of Study The faculty of the college desires

Davis, H. Floyd

299

ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect (OSTI)

A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses. The AHPC is currently being tested at the 2.7-MW scale at the Big Stone power station.

Stanley Miller; Rich Gebert; William Swanson

1999-11-01T23:59:59.000Z

300

Neutrino physics at accelerators  

E-Print Network [OSTI]

Present and future neutrino experiments at accelerators are mainly concerned with understanding the neutrino oscillation phenomenon and its implications. Here a brief account of neutrino oscillations is given together with a description of the supporting data. Some current and planned accelerator neutrino experiments are also explained.

Enrique Fernandez

2006-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

2001-01-08T23:59:59.000Z

302

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

2004-07-23T23:59:59.000Z

303

Microscale acceleration history discriminators  

DOE Patents [OSTI]

A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

Polosky, Marc A. (Albuquerque, NM); Plummer, David W. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

304

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Cancels DOE O 420.2B.

2011-07-21T23:59:59.000Z

305

Accelerators (4/5)  

ScienceCinema (OSTI)

1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

None

2011-10-06T23:59:59.000Z

306

Accelerators (3/5)  

ScienceCinema (OSTI)

1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

None

2011-10-06T23:59:59.000Z

307

Advanced NTR options. [Ta  

SciTech Connect (OSTI)

Advanced NTR concepts which offer performance improvements over the ROVER/NERVA designs have been investigated. In addition, the deliverable performance of low pressure operation and materials issues have been investigated. Based on current experience, a maximum exit gas temperature of 3200 K is likely achievable with a ZrC based PBR design. At 3200 K a low pressure NTR would have marginal performance advantage (Isp) over a high pressure system. If tantalum or other high melting point carbides are used then an exit gas temperature of 3500 K may be feasible. At 3500 K low pressure operation offers more significant performance improvements which could outweigh associated size and mass penalties.

Davis, J.W.; Mills, J.C.; Glass, J.F.; Tu, W. (Rockwell International/Rocketdyne Division, 6633 Canoga Avenue, MS HB23 Canoga Park, California 81303 (US))

1991-01-05T23:59:59.000Z

308

Advanced steel reheat furnace  

SciTech Connect (OSTI)

Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

Moyeda, D.; Sheldon, M.; Koppang, R. [Energy and Environmental Research Corp., Irvine, CA (United States); Lanyi, M.; Li, X.; Eleazer, B. [Air Products and Chemicals, Inc., Allentown, PA (United States)

1997-10-01T23:59:59.000Z

309

Accelerator Modeling with MATLAB Accelerator Toolbox  

SciTech Connect (OSTI)

This paper introduces Accelerator Toolbox (AT)--a collection of tools to model storage rings and beam transport lines in the MATLAB environment. The objective is to illustrate the flexibility and efficiency of the AT-MATLAB framework. The paper discusses three examples of problems that are analyzed frequently in connection with ring-based synchrotron light sources.

Terebilo, Andrei

2002-08-21T23:59:59.000Z

310

Collider-Accelerator Department  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RHIC Tunnel and Magnets RHIC Tunnel and Magnets RHIC Tunnel and Magnets AGS Tunnel and Magnets NSRL Beamline RF Kicker Snake 200-MeV LINAC AGS Cold Snake Magnet About the Collider-Accelerator Department The mission of the Collider-Accelerator Department is to develop, improve and operate the suite of particle / heavy ion accelerators used to carry out the program of accelerator-based experiments at BNL; to support the experimental program including design, construction and operation of the beam transports to the experiments plus support of detector and research needs of the experiments; to design and construct new accelerator facilities in support of the BNL and national missions. The C-A Department supports an international user community of over 1500 scientists. The department performs all these functions in an environmentally responsible and safe manner under a rigorous conduct of operations approach.

311

Photo of the Week: What Does a Particle Accelerator Have in Common with  

Broader source: Energy.gov (indexed) [DOE]

What Does a Particle Accelerator Have in Common What Does a Particle Accelerator Have in Common with Your Thanksgiving Turkey? Photo of the Week: What Does a Particle Accelerator Have in Common with Your Thanksgiving Turkey? November 16, 2012 - 4:02pm Addthis At the SLAC National Accelerator Laboratory, scientists are using the Facility for Advanced Accelerator Experimental Tests, also known as FACET, to research accelerator science and high-energy density physics. SLAC's particle accelerator may be two miles long, but researchers at FACET are working to develop more compact versions that could be widely used in medicine and industry -- particle accelerators are used for cancer research, processing computer chips, and even producing the shrink wrap used to keep your Thanksgiving turkey fresh. In this photo, Stanford graduate student Spencer Gessner assembles a camera that will monitor an X-ray spectrometer designed to measure FACET's beam energy. Learn more about how FACET works. | Photo courtesy of SLAC National Accelerator Laboratory.

312

Advanced Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials Advanced Materials Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Analysis Of Macromolecule, Liggands And Macromolecule-Lingand Complexes Express Licensing Carbon Microtubes Express Licensing Chemical Synthesis Of Chiral Conducting Polymers Express Licensing Forming Adherent Coatings Using Plasma Processing Express Licensing Hydrogen Scavengers Express Licensing Laser Welding Of Fused Quartz Express Licensing Multiple Feed Powder Splitter Negotiable Licensing Boron-10 Neutron Detectors for Helium-3 Replacement Negotiable Licensing Insensitive Extrudable Explosive Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Method of Synthesis of Proton Conducting Materials

313

Future Accelerators, Muon Colliders, and Neutrino Factories  

SciTech Connect (OSTI)

Particle physics is driven by five great topics. Neutrino oscillations and masses are now at the fore. The standard model with extensions to supersymmetry and a Higgs to generate mass explains much of the field. The origins of CP violation are not understood. The possibility of extra dimensions has raised tantalizing new questions. A fifth topic lurking in the background is the possibility of something totally different. Many of the questions raised by these topics require powerful new accelerators. It is not an overstatement to say that for some of the issues, the accelerator is almost the experiment. Indeed some of the questions require machines beyond our present capability. As this volume attests, there are parts of the particle physics program that have been significantly advanced without the use of accelerators such as the subject of neutrino oscillations and many aspects of the particle-cosmology interface. At this stage in the development of physics, both approaches are needed and important. This chapter first reviews the status of the great accelerator facilities now in operation or coming on within the decade. Next, midrange possibilities are discussed including linear colliders with the adjunct possibility of gamma-gamma colliders, muon colliders, with precursor neutrino factories, and very large hadron colliders. Finally visionary possibilities are considered including plasma and laser accelerators.

Richard A Carrigan, Jr.

2001-12-19T23:59:59.000Z

314

DEDICATED HEAVY ION MEDICAL ACCELERATORS  

E-Print Network [OSTI]

Lancaster, R.B. Yourd, Pre~,Accelerator A wideroe~,Basedcarbon beam medical accelerator facility. N "' . ,;j "' ::lEat the MARIA Workshop III: Accelerator Systems for Relat ic

Gough, R.A.

2013-01-01T23:59:59.000Z

315

History of Proton Linear Accelerators  

E-Print Network [OSTI]

the board to show why the accelerator couldn't work. Then atmuch. References 1. Linear Accelerators, edited by P. M .at the 1986 Linear Accelerator Conference, SLAC, Stanford,

Alvarez, Luis W.

1986-01-01T23:59:59.000Z

316

Accelerated Least Squares Multidimensional Scaling  

E-Print Network [OSTI]

x(make_x(36,2)) xACCELERATED SCALING R EFERENCES I.ACCELERATED LEAST SQUARES MULTIDIMENSIONAL SCALING JAN DEare simpler to write. ACCELERATED SCALING It is shown in De

Leeuw, Jan de

2006-01-01T23:59:59.000Z

317

Accelerated Least Squares Multidimensional Scaling  

E-Print Network [OSTI]

x(make_x(36,2)) xACCELERATED SCALING R EFERENCES I.ACCELERATED LEAST SQUARES MULTIDIMENSIONAL SCALING JAN DEare simpler to write. ACCELERATED SCALING It is shown in De

Jan de Leeuw

2011-01-01T23:59:59.000Z

318

Fast Track nuclear thermal propulsion concept  

Science Journals Connector (OSTI)

The objective of the Space Exploration Initiative (America at the Threshold... 1991) is the exploration of Mars by man in the second decade of the 21st century. The NASA Fast Track approach (NASA?LeRC Presentation 1992) could accelerate the manned exploration of Mars to 2007. NERVA?derived nuclear propulsion represents a viable near?term technology approach to accomplish the accelerated schedule. Key milestones in the progression to the manned Mars mission are (1) demonstration of TRL?6 for the man?rateable system by 1999 (2) a robotic lunar mission by 2000 (3) the first cargo mission to Mars by 2005 and (4) the piloted Mars mission in 2007. The Rocketdyne?Westinghouse concept for nuclear thermal propulsion to achieve these milestones combines the nuclear reactor technology of the Rover/NERVA programs and the state?of?the?art hardware designs from hydrogen?fueled rocket engine successes like the Space Shuttle Main Engine (SSME).

Richard A. Johnson; Herbert R. Zweig; Martin H. Cooper; Jack Wett Jr.

1993-01-01T23:59:59.000Z

319

Fast Track'' nuclear thermal propulsion concept  

SciTech Connect (OSTI)

The objective of the Space Exploration Initiative ( America at the Threshold...,'' 1991) is the exploration of Mars by man in the second decade of the 21st century. The NASA Fast Track'' approach (NASA-LeRC Presentation, 1992) could accelerate the manned exploration of Mars to 2007. NERVA-derived nuclear propulsion represents a viable near-term technology approach to accomplish the accelerated schedule. Key milestones in the progression to the manned Mars mission are (1) demonstration of TRL-6 for the man-rateable system by 1999, (2) a robotic lunar mission by 2000, (3) the first cargo mission to Mars by 2005, and (4) the piloted Mars mission in 2007. The Rocketdyne-Westinghouse concept for nuclear thermal propulsion to achieve these milestones combines the nuclear reactor technology of the Rover/NERVA programs and the state-of-the-art hardware designs from hydrogen-fueled rocket engine successes like the Space Shuttle Main Engine (SSME).

Johnson, R.A.; Zweig, H.R. (Rocketdyne Division, Rockwell International Corporation, 6633 Canoga Avenue, P.O. Box 7922, Canoga Park, California 91309-7922 (United States)); Cooper, M.H.; Wett, J. Jr. (Westinghouse Electric Corporation, Post Office Box 158, Madison, Pennsylvania 15663 (United States))

1993-01-10T23:59:59.000Z

320

Accelerator Physics and Design at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Science Accelerator Science ReframAccelerator.jpg Particle accelerators are among the largest, most complex, and most important scientific instruments in the world....

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Computational studies and optimization of wakefield accelerators  

E-Print Network [OSTI]

optimization of wakefield accelerators C. G. R. Geddes 1 ,from the U.S. -LHC Accelerator Research Program (LARP),driven plasma wakefield accelerators produce accelerating

Geddes, C.G.R.

2010-01-01T23:59:59.000Z

322

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AAI Home AAI Home Welcome Accelerators at Argonne Mission Organization History Document Collection Conferences & Workshops Beams and Applications Seminar Argonne-Fermilab Collaboration Lee Teng Scholarship Program Useful Links Organization The Argonne Accelerator Institute is a matrixed organization. Its members and fellows reside in programmatic Argonne divisions. The Institute reports to the Associate Laboratory Director for Photon Science), and the administrative functions of the Institute are within the PSC directorate. Director: Rodney Gerig Associate Director: Hendrik Weerts ( Director of High Energy Physics Division) Associate Director: Sasha Zholents (Director of Accelerator Systems Division) Associate Director: Robert Janssens ( Director of Argonne Physics Division)

323

Accelerator Toolbox for MATLAB  

SciTech Connect (OSTI)

This paper introduces Accelerator Toolbox (AT)--a collection of tools to model particle accelerators and beam transport lines in the MATLAB environment. At SSRL, it has become the modeling code of choice for the ongoing design and future operation of the SPEAR 3 synchrotron light source. AT was designed to take advantage of power and simplicity of MATLAB--commercially developed environment for technical computing and visualization. Many examples in this paper illustrate the advantages of the AT approach and contrast it with existing accelerator code frameworks.

Terebilo, Andrei

2001-05-29T23:59:59.000Z

324

Validated SCR Concept Development  

Broader source: Energy.gov (indexed) [DOE]

Validated SCR Concept Development 2007 DEER Conference, Detroit, MI Dr. Michael Traver, IAV Inc James Ireton, IAV Inc Dr. Lutz Krmer, IAV GmbH Jrgen Manns, IAV GmbH Poster...

325

Common tester platform concept.  

SciTech Connect (OSTI)

This report summarizes the results of a case study on the doctrine of a common tester platform, a concept of a standardized platform that can be applicable across the broad spectrum of testing requirements throughout the various stages of a weapons program, as well as across the various weapons programs. The common tester concept strives to define an affordable, next-generation design that will meet testing requirements with the flexibility to grow and expand; supporting the initial development stages of a weapons program through to the final production and surveillance stages. This report discusses a concept investing key leveraging technologies and operational concepts combined with prototype tester-development experiences and practical lessons learned gleaned from past weapons programs.

Hurst, Michael James

2008-05-01T23:59:59.000Z

326

C-AD Accelerator Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Division Accelerator Division The Accelerator Division operates and continually upgrades a complex of eight accelerators: 2 Tandem Van de Graaff electrostatic accelerators, an Electron Beam Ion Source (EBIS), a 200 MeV proton Linac, the AGS Booster, the Alternating Gradient Synchrotron (AGS), and the 2 rings of the Relativistic Heavy Ion Collider (RHIC). These machines serve user programs at the Tandems, the Brookhaven Linac Isotope Producer (BLIP), the NASA Space Radiation Laboratory (NSRL), and the 2 RHIC experiments STAR, and PHENIX. The Division also supports the development of new accelerators and accelerator components. Contact Personnel Division Head: Wolfram Fischer Deputy Head: Joe Tuozzolo Division Secretary: Anna Petway Accelerator Physics: Michael Blaskiewicz

327

Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA  

SciTech Connect (OSTI)

In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a 'scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10?mm in radius over an electron momentum range of 12-18 MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.

Machida, S.; Barlow, R.; Berg, J.S.; Bliss, N.; Buckley, R.K.; Clarke, J.A.; Craddock, M.K.; D'Arcy, R.; Edgecock, R.; Garland, J.M.; Giboudot, Y.; /Rutherford /Huddersfield U. /Brookhaven /Daresbury /Cockcroft Inst. Accel. Sci. Tech. /TRIUMF /British Columbia U., Vancouver, Dept. Phys. Astron. /University Coll. London /Manchester U. /Brunel U. /ASP, Melbourne

2012-03-01T23:59:59.000Z

328

Accelerated Currents in Superconductors  

Science Journals Connector (OSTI)

It is shown that the ratio of the accelerated currents of energy and matter induced in a superconductor by a long-wavelength electric field is equal to the chemical potential of the system.

Vinay Ambegaokar and Gerald Rickayzen

1966-02-04T23:59:59.000Z

329

Accelerator on a Chip  

ScienceCinema (OSTI)

SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

England, Joel

2014-07-16T23:59:59.000Z

330

Accelerator on a Chip  

SciTech Connect (OSTI)

SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

England, Joel

2014-06-30T23:59:59.000Z

331

Decay of accelerated particles  

Science Journals Connector (OSTI)

We study how the decay properties of particles are changed by acceleration. It is shown that under the influence of acceleration (1) the lifetime of particles is modified and (2) new processes (such as the decay of the proton) become possible. This is illustrated by considering scalar models for the decay of muons, pions, and protons. We discuss the close conceptual relation between these processes and the Unruh effect.

Rainer Mller

1997-07-15T23:59:59.000Z

332

Breakthrough: Fermilab Accelerator Technology  

SciTech Connect (OSTI)

There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

None

2012-04-23T23:59:59.000Z

333

Breakthrough: Fermilab Accelerator Technology  

ScienceCinema (OSTI)

There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

None

2014-08-12T23:59:59.000Z

334

Advanced Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Systems: Advanced Systems: high Performance fenestration systems Research areas: Research activities to improve the performance of windows and other fenestration products must address window systems issues as well as Glazing Materials research. LBNL activities in the area of Advanced Systems include research at both the product level and the building envelope and building systems levels. Highly insulating windows - using non structural center layers Lower cost solutions to more insulating three layer glazing systems, with the potential to turn windows in U.S. heating dominated residential applications into net-energy gainers. Highly Insulating Window Frames In collaboration with the Norwegian University of Science and Technology, we are researching the potentials for highly insulating window frames. Our initial work examines European frames with reported U-factors under 0.15 Btu/hr-ft2-F. Future research aims to analyze these designs, verify these performance levels and ensure that procedures used to calculate frame performance are accurate.

335

Advanced Reactor Research and Development Funding Opportunity Announcement  

Broader source: Energy.gov (indexed) [DOE]

Advanced Reactor Research and Development Funding Opportunity Advanced Reactor Research and Development Funding Opportunity Announcement Advanced Reactor Research and Development Funding Opportunity Announcement The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) sponsors a program of research, development, and demonstration related to advanced non-light water reactor concepts. A goal of the program is to facilitate greater engagement between DOE and industry. During FY12, DOE established a Technical Review Panel (TRP) process to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. That process involved the use of a Request for Information (RFI) to solicit concept information from industry and engage technical experts to evaluate those concepts. Having completed this process, DOE desires to

336

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Home Group Members Accelerator Magnets Insertion Devices Facilities Presentations & Publications Internal Magnetic Devices Group The primary mission of the Magnetic Devices (MD) Group is to design, build, and maintain Insertion Devices (IDs) that are reliable and transparent to the electron beam at the Advanced Photon Source (APS). The majority of IDs at the APS are conventional planar hybrid undulators, but an essential part of the mission is to develop novel IDs, such as short-period superconducting undulators and long-period electromagnetic undulators. The capabilities of APS IDs are matched to users' experimental needs. The mission also includes magnetic tuning of the IDs to ensure their near-ideal performance as x-ray sources and calculations to predict the radiation

337

ACCELERATED IMPROVEMENT A CONCENTRATED APPROACH  

E-Print Network [OSTI]

ACCELERATED IMPROVEMENT A CONCENTRATED APPROACH FOR CONTINUOUS IMPROVEMENT #12;Accelerated.quality.wisc.edu O F F I C E O F Q U A L I T Y I M P R O V E M E N T Accelerated Improvement This guide to improving resources. You will find helpful information needed to conduct an Accelerated Improvement project

Shapiro, Vadim

338

US LHC Accelerator Research Program  

E-Print Network [OSTI]

US LHC Accelerator Research Program Instrumentation Collaboration Meeting John Marriner May 9, 2003 #12;2/14/03 US LARP Instrumentation Collaboration Mtg 2 US LARP LARP = LHC Accelerator Research Program LARP is an outgrowth of the US LHC Accelerator Project The US LHC Accelerator Project built

Large Hadron Collider Program

339

Renewable Energy Project Development and Finance: Advanced Development Concepts  

Broader source: Energy.gov (indexed) [DOE]

Process and Structures Process and Structures Course Outline What we will cover...  About the DOE Office of Indian Energy Education Initiative  Project Financing Structures - Direct Ownership - Partnership Flip - Sale Leaseback - Inverted Lease/Lease Pass-Through  Additional Information and Resources 2 Introduction The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs is responsible for assisting Tribes with energy planning and development, infrastructure, energy costs, and electrification of Indian lands and homes. As part of this commitment and on behalf of DOE, the Office of Indian Energy is leading education and capacity building efforts in Indian Country. 3 Training Program Objective and Approach

340

Advanced Modular Drive Train Concepts for Electric Vehicles  

Science Journals Connector (OSTI)

The perspective for a successful market introduction of the electric car has never been that promising. Upcoming resource ... of projects to encourage car manufacturers to add electric cars to their portfolio. Ho...

Tobias Lange; Hauke van Hoek

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Mini-chamber, an advanced protection concept for NIF  

SciTech Connect (OSTI)

Inertial confinement fusion (ICF) target debris and ablated near-target materials pose the primary threat to the National Ignition Facility (NIF) final optics debris shields, as well as a major challenge in future inertial fusion energy (IFE) power plants. This work discusses a NIF `mini-chamber,` designed to mitigate the debris threat. Although the NIF base-line design protects against debris using a frost-protected target positioner and refractory first-wall coatings, the mini-chamber provides important flexibility in three areas: debris-shield protection from beyond-design basis shots (i.e. heavy hohlraums, special diagnostics, shields); fielding of large experiments with significant surface ablation; and studying key ablation and gas-dynamics issues for liquid-wall IFE power plants. Key mini-chamber modeling results are presented, followed by discussion of equipment requirements for fielding a NIF mini-chamber. 7 refs., 3 figs.

Peterson, P.F.; Scott, J.M. [Univ. of California, Berkeley, CA (United States)

1996-12-31T23:59:59.000Z

342

Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Lehigh University: Novel Thermal Storage Technologies for Concentrating Solar Power Generation Terrafore: Heat Transfer and Latent Heat Storage in Inorganic Molten...

343

Advanced Cover Cropping -Concepts and Application Friday, March 16, 2012  

E-Print Network [OSTI]

Conservation Association 689 River Road, Charlestown, NH Please join us for a free farmer-to-farmer educational. This workshop will feature Dr. Eric Sideman from the Maine Organic Farmers & Gardeners' Association (MOFGA) presenting on the principles of effective crop rotations. This will be followed by two local farmers, Pooh

New Hampshire, University of

344

Advanced Materials and Concepts for Portable Power Fuel Cells  

Broader source: Energy.gov (indexed) [DOE]

+ + 6e E 0 02 V (at 25C) * Reduction of methanol-oxidation overpotential through atomic-level control of PtRu nanoparticle synthesis: - optimal Pt atom ensembles for MeOH...

345

Advanced Concepts on Remote Sensing of Precipitation at Multiple Scales  

E-Print Network [OSTI]

of satellite-based global precipitation data in weather andvarious satellite series have provided valuable weathersatellite precipitation research community, instru- ment development teams, military weather

2011-01-01T23:59:59.000Z

346

E-Print Network 3.0 - accelerate cancer research Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cancer research Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerate cancer research Page: << < 1 2 3 4 5 > >> 1 http:www.purdue.edu...

347

E-Print Network 3.0 - accelerators kontrola procesu Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerators kontrola procesu Page: << < 1 2 3 4 5 > >> 1 http:geo.mff.cuni.czlhNPRF018...

348

E-Print Network 3.0 - accelerator beam test Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerator beam test Page: << < 1 2 3 4 5 > >> 1 RFQ 19 Ring Test The final RFQ electrodes...

349

E-Print Network 3.0 - accelerated cerebral white Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cerebral white Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated cerebral white Page: << < 1 2 3 4 5 > >> 1 TheThe NeuroFMANeuroFMA...

350

E-Print Network 3.0 - accelerated sea-level rise Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sea-level rise Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated sea-level rise Page: << < 1 2 3 4 5 > >> 1 The EGU General Assembly 2009...

351

Creating a Well-focused Laser-accelerated Proton Beam as a Driver...  

Office of Science (SC) Website

Proton Beam as a Driver for Proton Fast Ignition Focusing of laser accelerated proton beams advances with a novel cone target design. Print Text Size: A A A Subscribe...

352

E-Print Network 3.0 - accelerated ion beams Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ion beams Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated ion beams Page: << < 1 2 3 4 5 > >> 1 Siberian Branch of Russian Academy of...

353

E-Print Network 3.0 - accelerator dump lines Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

dump lines Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerator dump lines Page: << < 1 2 3 4 5 > >> 1 2005 ALCPG & ILC Workshops -Snowmass,...

354

BNL | Our History: Accelerators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

> See also: Reactors > See also: Reactors A History of Leadership in Particle Accelerator Design Cosmotron Cosmotron (1952-1966) Early in Brookhaven Lab history, the consortium of universities responsible for founding the new research center, decided that Brookhaven should provide leading facilities for high energy physics research. In April 1948, the Atomic Energy Commission approved a plan for a proton synchrotron to be built at Brookhaven. The new machine would accelerate protons to previously unheard of energies-comparable to the cosmic rays showering the earth's outer atmosphere. It would be called the Cosmotron. The Cosmotron was the first accelerator in the world to send particles to energies in the billion electron volt, or GeV, region. The machine reached its full design energy of 3.3 GeV in 1953.

355

Accelerator Update | Archive | 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Accelerator Update Archive 2 Accelerator Update Archive April 27, 2012 - April 30, 2012 NuMI reported receiving 7.67E18 protons on target for the period from 4/23/12 to 4/30/12. The Booster developed an aperture restriction that required lower beam intensity Main Injector personnel completed their last study The shutdown begins Linac, MTA, and Booster will continue using beam for one or two more weeks Linac will supply the Neutron Therapy Facility beam for most of the shutdown April 25, 2012 - April 27, 2012 Booster beam stop problem repaired Beam to all experiments will shut off at midnight on Monday morning, 4/30/12. Main Injector will continue to take beam until 6 AM on Monday morning. Linac, the Neutron Therapy Facility, MTA, and Booster will continue using beam for one or two more weeks. The Fermi Accelerator Complex will be in shutdown for approximately one year

356

ORELA accelerator facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Oak Ridge Electron Linear Accelerator The Oak Ridge Electron Linear Accelerator Pulsed Neutron Source The ORELA is a powerful electron accelerator-based neutron source located in the Physics Division of Oak Ridge National Laboratory. It produces intense, nanosecond bursts of neutrons, each burst containing neutrons with energies from 10e-03 to 10e08 eV. ORELA is operated about 1200 hours per year and is an ORNL User Facility open to university, national laboratory and industrial scientists. The mission of ORELA has changed from a recent focus on applied research to nuclear astrophysics. This is an area in which ORELA has historically been very productive: most of the measurements of neutron capture cross sections necessary for understanding heavy element nucleosynthesis through the slow neutron capture process (s-process) have

357

E-Print Network 3.0 - advanced fast reactor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ANNULAR FAST REACTOR (3000 MWth) Fuel... and NRE Design Class., "Advances in the Subcritical, Gas-Cooled Fast Transmutation Reactor Concept", Nucl... Cooled, Fast, ... Source:...

358

E-Print Network 3.0 - advanced reactors coupled Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ANNULAR FAST REACTOR (3000 MWth) Fuel... and NRE Design Class., "Advances in the Subcritical, Gas-Cooled Fast Transmutation Reactor Concept", Nucl... Cooled, Fast, Subcritical...

359

E-Print Network 3.0 - advanced reactor analyses Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ANNULAR FAST REACTOR (3000 MWth) Fuel... and NRE Design Class., "Advances in the Subcritical, Gas-Cooled Fast Transmutation Reactor Concept", Nucl... Cooled, Fast, Subcritical...

360

E-Print Network 3.0 - advanced water-cooled reactors Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the Subcritical, Gas-Cooled Fast Transmutation Reactor Concept", Nucl... Cooled, Fast, Subcritical Advanced Burner ... Source: MIT Plasma Science and Fusion Center Collection:...

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Accelerating Green Urban Growth  

Science Journals Connector (OSTI)

Building on the successful model of Special Economic Zones (SEZs), cities could develop the concept of Green Business Zones (GBZs) i.e. living laboratories for experimenting with new energy efficient/green business

Bernd Hendriksen; Eric Copius Peereboom

2013-01-01T23:59:59.000Z

362

Accelerating Innovation: PowerAmerica Is Up and Running  

Broader source: Energy.gov [DOE]

The excitement and drive to deliver was evident to me last week when I joined nearly 100 PowerAmerica members for their kick-off meeting at NC State University in Raleigh, North Carolina. PowerAmerica, also called the Next Generation Power Electronics Manufacturing Innovation Institute, will develop advanced manufacturing processes and work to accelerate the commercialization of wide bandgap (WBG) technologies.

363

Computational Tools for Accelerating Carbon Capture Process Development  

SciTech Connect (OSTI)

This presentation reports development of advanced computational tools to accelerate next generation technology development. These tools are to develop an optimized process using rigorous models. They include: Process Models; Simulation-Based Optimization; Optimized Process; Uncertainty Quantification; Algebraic Surrogate Models; and Superstructure Optimization (Determine Configuration).

Miller, David; Sahinidis, N.V,; Cozad, A; Lee, A; Kim, H; Morinelly, J.; Eslick, J.; Yuan, Z.

2013-06-04T23:59:59.000Z

364

Biodiversity Concepts and  

E-Print Network [OSTI]

Biodiversity Concepts and Measures Dr. Stacy Philpott Conservation Biology EEES 4750/5750/7750 #12;Biodiversity · What is biodiversity? · How much biodiversity is there? · Where is biodiversity found? · How do we measure biodiversity? · How do we collect and analyze biodiversity data? #12;Biodiversity · What

Gottgens, Hans

365

Concept of Operations: Essence  

SciTech Connect (OSTI)

This concept of operations is designed to give the reader a brief overview of the National Rural Electric Cooperative Associations Essence project and a description of the Essence device design. The data collected by the device, how the data are used, and how the data are protected are also discussed in this document.

Hutton, William J.

2014-04-01T23:59:59.000Z

366

Separations innovative concepts: Project summary  

SciTech Connect (OSTI)

This project summary includes the results of 10 innovations that were funded under the US Department's Innovative Concept Programs. The concepts address innovations that can substantially reduce the energy used in industrial separations. Each paper describes the proposed concept, and discusses the concept's potential energy savings, market applications, technical feasibility, prior work and state of the art, and future development needs.

Lee, V.E. (ed.)

1988-05-01T23:59:59.000Z

367

Protein folding: concepts and perspectives  

Science Journals Connector (OSTI)

...In this review, the main concepts of protein folding, as deduced from both theoretical and experimental...

J. M. Yon

1997-07-01T23:59:59.000Z

368

Interfacing to accelerator instrumentation  

SciTech Connect (OSTI)

As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed.

Shea, T.J.

1995-12-31T23:59:59.000Z

369

Advanced Neutron Source (ANS) Project progress report  

SciTech Connect (OSTI)

This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I C research and development; facility concepts; design; and safety.

McBee, M.R.; Chance, C.M. (eds.) (Oak Ridge National Lab., TN (USA)); Selby, D.L.; Harrington, R.M.; Peretz, F.J. (Oak Ridge National Lab., TN (USA))

1990-04-01T23:59:59.000Z

370

Advanced Search  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications Advanced Search Most publications by Environmental Energy Technologies Division authors are searchable from this page, including peer-reviewed publications, book chapters, conference proceedings and LBNL reports. Filter Advanced Search Publications list This publications database is an ongoing project, and not all Division publications are represented here yet. For additional help see the bottom of this page. Documents Found: 4418 Title Keyword LBNL Number Author - Any - Abadie, Marc O Abbey, Chad Abdolrazaghi, Mohamad Aberg, Annika Abhyankar, Nikit Abraham, Marvin M Abshire, James B Abushakra, Bass Acevedo-Ruiz, Manuel Aceves, Salvador Ache, Hans J Ackerly, David D Ackerman, Andrew S Adamkiewicz, Gary Adams, J W Adams, Carl Adamson, Bo Addy, Nathan Addy, Susan E Aden, Nathaniel T Adesola, Bunmi Adhikari,

371

Advanced Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Systems Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to generate electricity, which operate at efficiencies of 35-37 percent. Operation at higher temperatures and pressures can lead to higher efficiencies, resulting in reduced fuel consumption and lower greenhouse gas emissions. Higher efficiency also reduces CO2 production for the same amount of energy produced, thereby facilitating a reduction in greenhouse gas emissions. When combined, oxy-combustion comes with an efficiency hit, so it will actually increase the amount of CO2 to be captured. But without so much N2 in the flue gas, it will be easier and perhaps more efficient to capture, utilize and sequester. NETL's Advanced Combustion Project and members of the NETL-Regional University

372

Education: The Advanced IRP Seminar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 Education: The Advanced IRP Seminar The Center has now run four seminars on advanced integrated resource planning (IRP) for state public utility commission staff members from around the country. Technology transfer is a central aspect of the Energy Analysis Program's IRP project. Reviewing utility IRP filings by state utility regulatory commissions is a new challenge to commissioners because many IRP concepts, especially those dealing with demand-side management, are unfamiliar. At the request of the National Association of Regulatory Utility Commissioners, the EAP designed a seminar on leading IRP issues for state commission staff who must review these utility filings. The fourth annual LBL Advanced IRP Seminar in early June hosted staff members from 22 utility regulatory commissions representing 21 state

373

Energy Department Accelerates the Deployment of Advanced Vehicle...  

Office of Environmental Management (EM)

in his State of the Union address. "The market for energy-efficient and electric vehicles is expanding dramatically, giving drivers and businesses more options to save money...

374

Muon Collider Progress: Accelerators  

E-Print Network [OSTI]

A N. V. Mokhov et al. , Muon Collider Interaction RegionR. B. Palmer et al. , Muon Colliders, in the 9th AdvancedB. Palmer and R. Fernow, Muon Collider Final Cooling in 30

Zisman, Michael S.

2012-01-01T23:59:59.000Z

375

Perimeter Institute Cosmic Acceleration  

E-Print Network [OSTI]

Wayne Hu Perimeter Institute April 2010 Cosmic Acceleration Dark Energy v. Modified Gravity #12;Outline · Dark Energy vs Modified Gravity · Three Regimes of Modified Gravity · Worked (Toy) Models: f 1998 Discovery #12;Mercury or Pluto? General relativity says Gravity = Geometry And Geometry = Matter-Energy

Hu, Wayne

376

Accelerating News Issue 5  

E-Print Network [OSTI]

In this spring issue, we look at developments towards higher luminosity and higher energy colliders. We report on the technology developed for the remote powering of the LHC magnets and studies of diagnostics based on higher order mode port signals. We also inform you about the main outcome of the TIARA survey on market needs for accelerator scientists.

Szeberenyi, A

2013-01-01T23:59:59.000Z

377

Note on accelerated detectors  

Science Journals Connector (OSTI)

The Unruh result, on the thermal-like behavior of particle detectors under a uniformly accelerated state of motion, is found by a different method which does not involve field quantization in a metric with a horizon. The result is extended to other situations.

P. Meyer

1978-07-15T23:59:59.000Z

378

Acceleration of Time Integration  

SciTech Connect (OSTI)

We outline our strategies for accelerating time integration for long-running simulations, such as those for global climate modeling. The strategies target the Cray XT systems at the National Center for Computational Sciences at Oak Ridge National Laboratory. Our strategies include fully implicit, parallel-in-time, and curvelet methods.

White III, James B [ORNL; Drake, John B [ORNL; Worley, Patrick H [ORNL; Archibald, Richard K [ORNL; Evans, Katherine J [ORNL; Kothe, Douglas B [ORNL

2007-01-01T23:59:59.000Z

379

Solvent-free cleaning using a centrifugal cryogenic pellet accelerator  

SciTech Connect (OSTI)

An advanced centrifuge that accelerates frozen CO{sub 2} pellets to high speeds for surface cleaning and paint removal is being developed at the Oak Ridge National Laboratory. The centrifuge-based accelerator was designed, fabricated, and tested under a program sponsored by the Warner Robins Air Logistics Center, Robins Air Force Base, Georgia. In comparison to the more conventional compressed air ``sandblast`` pellet accelerators, the centrifugal accelerator system can achieve higher pellet speeds, has precise speed control, and is more than ten times as energy efficient. Furthermore, the use of frozen CO{sub 2} pellets instead of conventional metal, plastic, sand, or other abrasive materials that remain solid at room temperature, minimizes the waste stream. This apparatus has been used to demonstrate cleaning of various surfaces, including removal of paint, oxide coatings, metal coatings, organic coatings, and oil and grease coatings from a variety of surfaces. The design and operation of the apparatus is discussed.

Haines, J.R.; Fisher, P.W.; Foster, C.A.

1995-06-01T23:59:59.000Z

380

NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program  

Broader source: Energy.gov (indexed) [DOE]

NEAMS: The Nuclear Energy Advanced NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program is developing a simulation tool kit using leading-edge computational methods that will accelerate the development and deployment of nuclear power technologies that employ enhanced safety and security features, produce power more cost-effectively, and utilize natural resources more efficiently. The NEAMS ToolKit

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ATAC Process Proof of Concept Final Report  

SciTech Connect (OSTI)

Researchers at INL with funding from the Department of Energys Office of Electricity Delivery and Energy Reliability (DOE-OE) evaluated a novel approach for near real-time consumption of threat intelligence. Demonstration testing in an industry environment supported the development of this new process to assist the electric sector in securing their critical networks. This report provides the reader with an understanding of the methods used during this proof of concept project. The processes and templates were further advanced with an industry partner during an onsite assessment. This report concludes with lessons learned and a roadmap for final development of these materials for use by industry.

Bri Rolston; Sarah Freeman

2014-03-01T23:59:59.000Z

382

ELECTRON INJECTION INTO CYCLIC ACCELERATOR USING  

E-Print Network [OSTI]

ELECTRON INJECTION INTO CYCLIC ACCELERATOR USING LASER WAKEFIELD ACCELERATION Ya. V. Getmanov, O. A acceleration #12;Storage ring with laser injection CYCLIC ACCELERATOR RF Electron injection The LWFA beam ­ accelerating light, 5 ­ accelerated electrons, 6 ­fast kicker - + accelerating laser pulse evaporatinglaser

383

NASA/TM--2005213688 Revolutionary Concepts of Radiation  

E-Print Network [OSTI]

NASA/TM--2005�213688 Revolutionary Concepts of Radiation Shielding for Human Exploration of Space J, Alabama R.M. Winglee University of Washington, Seattle, Washington March 2005 #12;The NASA STI Program Office...in Profile Since its founding, NASA has been dedicated to the advancement of aeronautics

Rathbun, Julie A.

384

The pulsed linear induction motor concept for high-speed trains  

SciTech Connect (OSTI)

The SERAPBIM (SEgmented RAil PHased Induction Motor) concept is a linear induction motor concept which uses rapidly-pulsed magnetic fields and a segmented reaction rail, as opposed to low-frequency fields and continuous reaction rails found in conventional linear induction motors. These improvements give a high-traction, compact, and efficient linear motor that has potential for advanced high speed rail propulsion. In the SERAPBIM concept, coils on the vehicle push against a segmented aluminum rail, which is mounted on the road bed. Current is pulsed as the coils cross an edge of the segmented rail, inducing surface currents which repel the coil. The coils must be pulsed in synchronization with the movement by reaction rail segments. This is provided by a sense-and-fire circuit that controls the pulsing of the power modulators. Experiments were conducted to demonstrate the feasibility of the pulsed induction motor and to collect data that could be used for scaling calculations. A 14.4 kg aluminum plate was accelerated down a 4 m track to speeds of over 15 m/sec with peak thrust up to 18 kN per coilset. For a trainset capable of 200 mph speed, the SERAPHIM concept design is based on coils which are each capable of producing up to 3.5 kN thrust, and 30 coil pairs are mounted on each power car. Two power cars, one at each end of the train, provide 6 MW from two gas turbine prime power units. The thrust is about 210.000 N and is essentially constant up to 200 km/hr since wheel slippage does not limit thrust as with conventional wheeled propulsion. A key component of the SERAPHIM concept is the use of passive wheel-on-rah support for the high speed vehicle. Standard steel wheels are capable of handling over 200 mph. The SERAPHIM cost is comparable to that for steel-wheel high-speed rail, and about 10% to 25% of the projected costs for a comparable Maglev system.

Turman, B.N.; Marder, B.M.; Rohwein, G.J.; Aeschliman, D.P.; Kelley, J.B.; Cowan, M.; Zimmerman, R.M.

1995-06-01T23:59:59.000Z

385

Advanced Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ductility EnhancEmEnt of molybDEnum Ductility EnhancEmEnt of molybDEnum PhasE by nano-sizED oxiDE DisPErsions Description Using computational modeling techniques, this research aims to develop predictive capabilities to facilitate the design and optimization of molybdenum (Mo), chromium (Cr), and other high-temperature structural materials to enable these materials to withstand the harsh environments of advanced power generation systems, such as gasification-based systems. These types of materials are essential to the development of highly efficient, clean energy technologies such as low-emission power systems that use coal or other fossil fuels.

386

Advanced Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Super HigH-TemperaTure alloyS and Super HigH-TemperaTure alloyS and CompoSiTeS From nb-W-Cr SySTemS Description The U.S. Department of Energy's Office of Fossil Energy (DOE-FE) has awarded a three-year grant to the University of Texas at El Paso (UTEP) and Argonne National Laboratory (ANL) to jointly explore the high-temperature properties of alloys composed of niobium (Nb), tungsten (W), and chromium (Cr). The grant is administered by the Advanced Research (AR) program of the National

387

Mission Advancing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL Accomplishments NETL Accomplishments - the lab 2 Mission Advancing energy options to fuel our economy, strengthen our security, and improve our environment. Renewed Prosperity Through Technological Innovation - Letter from the Director NETL: the ENERGY lab 4 6 3 Contents Technology Transfer Patents and Commercialization Sharing Our Expertise Noteworthy Publications 60 62 63 64 66 Environment, Economy, & Supply Carbon Capture and Storage Partnerships Work to Reduce Atmospheric CO 2 Demand-Side Efficiencies New NETL Facility Showcases Green Technologies Environment & Economy Materials Mercury Membranes NETL Education Program Produces Significant Achievement Monitoring Water Economy & Supply NETL's Natural Gas Prediction Tool Aids Hurricane Recovery Energy Infrastructure

388

Acceleration and Classical Electromagnetic Radiation  

E-Print Network [OSTI]

Classical radiation from an accelerated charge is reviewed along with the reciprocal topic of accelerated observers detecting radiation from a static charge. This review commemerates Bahram Mashhoon's 60th birthday.

E. N. Glass

2008-01-09T23:59:59.000Z

389

Laser Wakefield Particle Accelerators Project at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laser Wakefield Particle Acceleration Laser Wakefield Particle Acceleration Vorpal.jpg Key Challenges: Design of multiple-staged, 10-GeV laser-wakefield plasma accelerated...

390

Charge Diagnostics for Laser Plasma Accelerators  

E-Print Network [OSTI]

the 1989 Particle Accelerator Conference, IEEE, Piscataway,Diagnostics for Laser Plasma Accelerators K . Nakamura, A .ALS) synchrotron booster accelerator. The sensitivity of the

Nakamura, K.

2011-01-01T23:59:59.000Z

391

History of Proton Linear Accelerators  

DOE R&D Accomplishments [OSTI]

Some personal recollections are presented that relate to the author`s experience developing linear accelerators, particularly for protons. (LEW)

Alvarez, L. W.

1987-01-00T23:59:59.000Z

392

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

393

Uncertainty assessment for accelerator-driven systems.  

SciTech Connect (OSTI)

The concept of a subcritical system driven by an external source of neutrons provided by an accelerator ADS (Accelerator Driver System) has been recently revived and is becoming more popular in the world technical community with active programs in Europe, Russia, Japan, and the U.S. A general consensus has been reached in adopting for the subcritical component a fast spectrum liquid metal cooled configuration. Both a lead-bismuth eutectic, sodium and gas are being considered as a coolant; each has advantages and disadvantages. The major expected advantage is that subcriticality avoids reactivity induced transients. The potentially large subcriticality margin also should allow for the introduction of very significant quantities of waste products (minor Actinides and Fission Products) which negatively impact the safety characteristics of standard cores. In the U.S. these arguments are the basis for the development of the Accelerator Transmutation of Waste (ATW), which has significant potential in reducing nuclear waste levels. Up to now, neutronic calculations have not attached uncertainties on the values of the main nuclear integral parameters that characterize the system. Many of these parameters (e.g., degree of subcriticality) are crucial to demonstrate the validity and feasibility of this concept. In this paper we will consider uncertainties related to nuclear data only. The present knowledge of the cross sections of many isotopes that are not usually utilized in existing reactors (like Bi, Pb-207, Pb-208, and also Minor Actinides and Fission Products) suggests that uncertainties in the integral parameters will be significantly larger than for conventional reactor systems, and this raises concerns on the neutronic performance of those systems.

Finck, P. J.; Gomes, I.; Micklich, B.; Palmiotti, G.

1999-06-10T23:59:59.000Z

394

Battery concepts for high density energy storage: Principles and practice. C. Austen Angell  

E-Print Network [OSTI]

Battery concepts for high density energy storage: Principles and practice. C. Austen Angell Dept such as the lithium-air battery, and the more advanced zinc-air battery in which only the source needs to be "bottled

Angell, C. Austen

395

Experiment study on FLOATING JACKET: a new concept for deep water platform design  

E-Print Network [OSTI]

As more oil and gas are discovered in deeper water than ever before, the offshore industry has become increasingly interested in the design of advanced offshore production platforms. A new design concept called FLOATING JACKET (FJ) is studied...

Xu, Yufeng

2012-06-07T23:59:59.000Z

396

Advanced LIGO  

E-Print Network [OSTI]

The Advanced LIGO gravitational wave detectors are second generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid- and high- frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

The LIGO Scientific Collaboration

2014-11-17T23:59:59.000Z

397

Acceleration in de Sitter spacetimes  

E-Print Network [OSTI]

We propose a definition of uniform accelerated frames in de Sitter spacetimes exploiting the Nachtmann group theoretical method of introducing coordinates on these manifolds. Requiring the transformation between the static frame and the accelerated one to depend continuously on acceleration in order to recover the well-known Rindler approach in the flat limit, we obtain a new metric with a reasonable physical meaning.

Ion I. Cotaescu

2014-07-09T23:59:59.000Z

398

Radio-frequency stabilization of a nonequilibrium plasma accelerator  

SciTech Connect (OSTI)

Results of experimental studies of the effect of an external RF field on the excitation of oscillations in a magnetoplasmadynamic plasma accelerator are presented. It is found that applying an RF field can suppress the drift component of low-frequency oscillations in the ejected plasma flow. The experimental data agree with the concept of stabilization of the plasma accelerator by the magnetic component of the field generated by the RF current loop. The conditions under which the RF field stabilizes the generation of the plasma flow are determined, and the factors limiting the stabilization efficiency are revealed.

Kirdyashev, K. P. [Russian Academy of Sciences, Kotel'nikov Institute of Radio Engineering and Electronics (Fryazino Branch) (Russian Federation)

2011-08-15T23:59:59.000Z

399

Accelerator Update | Archive | 2010  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10 Accelerator Update Archive 10 Accelerator Update Archive December 20, 2010 - December 22, 2010 - Three stores provided !32 hours of luminosity - Problems with two Linac quadrupole power supplies - Cryo system technicians work on TEV sector D1 wet engine - TEV quench during checkout - JASMIN's run at MTest ends December 17, 2010 - December 20, 2010 The Integrated Luminosity for the period from 12/13/10 to 12/20/10 was 66.31 inverse picobarns. NuMI reported receiving 7.62E18 protons on target during this same period. - Five Stores provided ~62 hours of luminosity - Operations had trouble with a Linac RF station (LRF3) - Operators tuned the Linac backup source (I- Source) December 15, 2010 - December 17, 2010 - Three stores provided ~36.1 hours of luminosity - MI-52 Septa repaired - NuMI recovered its target LCW system

400

ACCELERATOR SAFETY ENVELOPE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LCASE-001, Ver. 3 LCASE-001, Ver. 3 Linac Commissioning Accelerator Safety Envelope For the National Synchrotron Light Source II Photon Sciences Directorate Version 3 December 8, 2011 Prepared by Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 managed by Brookhaven Science Associates for the U.S. Department of Energy Office of Science Basic Energy Science under contract DE-AC02-98CD10886 Linac Commissioning Accelerator Safety Envelope (LCASE) ii Photon Sciences Directorate ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty,

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CWDD - Continuous Wave Deuterium Demonstrator CWDD - Continuous Wave Deuterium Demonstrator The Continuous Wave Deuterium Demonstrator (CWDD) accelerator, a cryogenically-cooled (26K) linac, was designed to accelerate 80 mA cw of D to 7.5 MeV. CWDD was being built to demonstrate the lauching of a beam with characteristics suitable for a space-based neutral particle-beam (NPB). A considerable amount of hardware was constructed and installed in the Argonne-based facility, and major performance milestones were achieved before program funding ended in October 1993. References - Document Access Guide Continuous Wave Deuterium Demonstrator Final Design Review, Grumman Space Systems, Grumman-Culham Laboratory, Los Alamos (1989). (Located in the Argonne Research Library) Recommissioning and first operation of the CWDD injector at Argonne

402

Accelerator Update | Archive | 2009  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 Accelerator Update Archive 9 Accelerator Update Archive December 18, 2009 - December 21, 2009 The integrated luminosity for the period from 12/14/09 to 12/21/09 was 51.27 inverse picobarns. NuMI reported receiving 6.38E18 protons on target during this same period. - Four stores provided ~62.25 hours of luminosity - Store 7444 had an AIL of 306E30 - BRF19 cavity suffered a vacuum failure and was removed - The Booster West Anode Power Supply suffered some problems December 16, 2009 - December 18, 2009 - Three stores provided ~45 hours of luminosity - PBar kicker problem - MI RF problems December 14, 2009 - December 16, 2009 - Four stores provided ~42 hours of luminosity - Recycler kicker repaired - Booster East Anode Power Supply trips due to BRF1, 2, & 8 December 11, 2009 - December 14, 2009

403

WIPP Accelerating Cleanup  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ACCELERATING CLEANUP: ACCELERATING CLEANUP: PATHS TO CLOSURE CARLSBAD AREA OFFICE JUNE 1998 I. Operations/Field Overview CAO Mission The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other activities associated with the National TRU Program (NTP). The CAO develops and directs implementation of the TRU waste program, and assesses compliance with the program guidance, as well as the commonality of activities and assumptions among all TRU waste sites. NTP Program Management

404

Plasma Wakefield Acceleration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rpwa rpwa Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES FACET User Facility : FACET An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar FACET User Facility FACET Home About FACET FACET Experimental Facilities FACET Users Research at FACET SAREC Expand SAREC FACET FAQs FACET User Facility Quick Launch FACET Users Home FACET Division ARD Home About FACET FACET News FACET Users FACET Experimental Facilities FACET Research Expand FACET Research FACET Images Expand FACET Images SAREC Expand SAREC FACET Project Site (restricted) FACET FAQs FACET Site TOC All Site Content Department of Energy Page Content Plasma Wakefield Acceleration

405

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ZGS -- Zero Gradient Synchrotron (operation: 1963 - 1979) ZGS -- Zero Gradient Synchrotron (operation: 1963 - 1979) The ZGS was a 12 GeV weak-focusing proton synchrotron. It was the first high energy physics accelerator located between the U.S. coasts. The ZGS was also the first synchrotron to accelerate spin polarized protons and the first to use H-minus injection. Other noteworthy features of the ZGS program were the large number of university-based users and the pioneering development of large superconducting magnets for bubble chambers and beam transport. References - Document Access Guide History of the ZGS, Argonne, 1979, American Institute of Physics, AIP Conference Proceedings No. 60 (1980). (Located in the Argonne Research Library) High Energy Physics at Argonne National Laboratory, A. Crewe, R.

406

ACCELERATOR SAFETY ENVELOPE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BCASE-001, Ver. 2 BCASE-001, Ver. 2 Booster Commissioning Accelerator Safety Envelope For the National Synchrotron Light Source II Photon Sciences Directorate Version 2 December 8, 2011 Prepared by Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 managed by Brookhaven Science Associates for the U.S. Department of Energy Office of Science Basic Energy Science under contract DE-AC02-98CD10886 Booster Commissioning Accelerator Safety Envelope (BCASE) ii Photon Sciences Directorate ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty,

407

Radiation from accelerated branes  

Science Journals Connector (OSTI)

The radiation emitted by accelerated fundamental strings and D-branes is studied within the linear approximation to the supergravity limit of string theory. We show that scalar, gauge field and gravitational radiation is generically emitted by such branes. In the case where an external scalar field accelerates the branes, we derive a Larmor-type formula for the emitted scalar radiation and study the angular distribution of the outgoing energy flux. The classical radii of the branes are calculated by means of the corresponding Thompson scattering cross sections. Within the linear approximation, the interaction of the external scalar field with the velocity fields of the branes gives a contribution to the observed gauge field and gravitational radiation.

Mohab Abou-Zeid and Miguel S. Costa

2000-04-26T23:59:59.000Z

408

Review of ion accelerators  

SciTech Connect (OSTI)

The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here.

Alonso, J.

1990-06-01T23:59:59.000Z

409

Accelerators for Cancer Therapy  

DOE R&D Accomplishments [OSTI]

The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

Lennox, Arlene J.

2000-05-30T23:59:59.000Z

410

Modulational effects in accelerators  

SciTech Connect (OSTI)

We discuss effects of field modulations in accelerators, specifically those that can be used for operational beam diagnostics and beam halo control. In transverse beam dynamics, combined effects of nonlinear resonances and tune modulations influence diffusion rates with applied tune modulation has been demonstrated. In the longitudinal domain, applied RF phase and voltage modulations provide mechanisms for parasitic halo transport, useful in slow crystal extraction. Experimental experiences with transverse tune and RF modulations are also discussed.

Satogata, T.

1997-12-01T23:59:59.000Z

411

Linear induction accelerator  

DOE Patents [OSTI]

A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

Buttram, M.T.; Ginn, J.W.

1988-06-21T23:59:59.000Z

412

Accelerate Energy Productivity 2030  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy, the Council on Competitiveness, and the Alliance to Save Energy are teaming up for Accelerate Energy Productivity 2030, an initiative to double U.S. energy productivity by 2030. This effort continues support for the goal the President set in his 2013 State of the Union address to double energy productivity, measured by GDP per unit of energy use, from the 2010 level by 2030.

413

Securities trading of concepts (STOC)  

E-Print Network [OSTI]

Identifying winning new product concepts can be a challenging process that requires insight into private consumer preferences. To measure consumer preferences for new product concepts, the authors apply a securities trading ...

Dahan, Ely

414

Berkeley Proton Linear Accelerator  

DOE R&D Accomplishments [OSTI]

A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

1953-10-13T23:59:59.000Z

415

Advanced Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

05/2007 05/2007 NitrogeN evolutioN aNd CorrosioN MeChaNisMs With oxyCoMbustioN of Coal Description Under a grant from the University Coal Research (UCR) program, Brigham Young University (BYU) is leading a three-year research effort to investigate the physical processes that several common types of coal undergo during oxy-fuel combustion. Specifically, research addresses the mixture of gases emitted from burning, particularly such pollutants as nitrogen oxides (NO X ) and carbon dioxide (CO 2 ), and the potential for corrosion at the various stages of combustion. The UCR program is administered by the Advanced Research Program at the National Energy Technology Laboratory (NETL), under the U.S. Department of Energy's Office of

416

Merchant vessel advanced power systems. Final report  

SciTech Connect (OSTI)

This study identifies and evaluates potential highly advanced propulsion power plants which may have marine applications beyond the year 2000. Various promising current technologies were screened and an evaluation of each plant concept and its suitability for use as a merchant ship propulsion system is contained in this report.

Baham, G.J.; Swensson, G.

1982-01-01T23:59:59.000Z

417

The CARE accelerator R&D programme in Europe  

E-Print Network [OSTI]

CARE, an ambitious and coordinated programme of accelerator research and developments oriented towards high energy physics projects, has been launched in January 2004 by the main European laboratories and the European Commission. This project aims at improving existing infrastructures dedicated to future projects such as linear colliders, upgrades of hadron colliders and high intensity proton drivers. We describe the CARE R&D plans, mostly devoted to advancing the performance of the superconducting technology, both in the fields of RF cavities for electron or proton acceleration and of high field magnets, as well as to developing high intensity electron and proton injectors. We highlight some results and progress obtained so far.

Napoly, Olivier; den Ouden, Andres; Devred, Arnaud; Garoby, Roland; Garvey, Terence; Ghigo, Andrea; Gschwendtner, Edda; Losito, Roberto; Mais, Helmut; Palladino, V; Proch, Dieter; Richard, F; Rinolfi, Louis; Ruggiero, Francesco; Scandale, Walter; Schulte, Daniel; Vretenar, Maurizio

2005-01-01T23:59:59.000Z

418

Fermilab | Illinois Accelerator Research Center | Fermilab Core...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Refrigeration systems Control, Interlock, and Data acquisition systems VHDL, PLD, PLC, DSP programming Accelerator Engineering Complete accelerator design, fabrication,...

419

Siemens Technology Accelerator | Open Energy Information  

Open Energy Info (EERE)

Siemens Technology Accelerator Place: Germany Sector: Services Product: General Financial & Legal Services ( Subsidiary Division ) References: Siemens Technology Accelerator1...

420

Safety of Accelerator Facilities - DOE Directives, Delegations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Health, Environmental Protection, Facility Authorization, Safety The order defines accelerators and establishes accelerator specific safety requirements and approval authorities...

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Accelerating Clean Energy Adoption (Fact Sheet), Weatherization...  

Broader source: Energy.gov (indexed) [DOE]

Accelerating Clean Energy Adoption (Fact Sheet), Weatherization and Intergovernmental Program (WIP) Accelerating Clean Energy Adoption (Fact Sheet), Weatherization and...

422

Accelerating Energy Savings Performance Contracting Through Model...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Accelerating Energy Savings Performance Contracting Through Model Statewide Programs Accelerating Energy Savings Performance Contracting Through Model Statewide Programs Provides...

423

PROOF-OF-CONCEPT OF A DUAL-FIRED (SOLAR & NATURAL GAS) GENERATOR  

E-Print Network [OSTI]

PROOF-OF-CONCEPT OF A DUAL-FIRED (SOLAR & NATURAL GAS) GENERATOR FOR USE IN A SPACE-COOLING SYSTEM REPORT (FAR) PROOF-OF-CONCEPT OF A DUAL-FIRED (SOLAR & NATURAL GAS) GENERATOR FOR USE IN A SPACE COOLING Technologies · Environmentally-Preferred Advanced Generation · Energy-Related Environmental Research · Energy

424

Evaluation of Generic EBS Design Concepts and Process Models Implications  

Broader source: Energy.gov (indexed) [DOE]

Generic EBS Design Concepts and Process Models Generic EBS Design Concepts and Process Models Implications to EBS Design Optimization Evaluation of Generic EBS Design Concepts and Process Models Implications to EBS Design Optimization The assessment of generic Engineered Barrier System (EBS) concepts and design optimization to harbor various disposal configurations and waste types needs advanced approaches and methods to analyze barrier performance. The report addresses: 1) Overview of the importance of Thermal-Hydrological-Mechanical-Chemical (THMC) processes to barrier performance, and international collaborations; 2) THMC processes in clay barriers; 3) experimental studies of clay stability and clay-metal interactions at high temperatures and pressures; 4) thermodynamic modeling and database development; 5) Molecular Dynamics (MD) study of clay

425

Advanced Grid Integration (AGI) | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Grid Integration (AGI) Advanced Grid Integration (AGI) Advanced Grid Integration (AGI) The Advanced Grid Integration (AGI) Division leads the federal government's efforts to accelerate modernization of the U.S. electric power grid. By enabling the two-way flow of electricity and information, a Smart Grid will increase the reliability, efficiency, and security of electric transmission, distribution, and use. A modern grid provides the foundation for a strong economy by enabling the integration of clean, renewable energy sources like wind and solar power and supporting the needs of an increasingly digital economy. AGI leverages energy industry cost-share and collaboration to foster the deployment of smart grid technologies and systems and reduce barriers to investment. To accomplish this, the Program is pursuing five core

426

Inhomogeneity implies accelerated expansion  

Science Journals Connector (OSTI)

The Einstein equations for an inhomogeneous irrotational dust universe are analyzed. A set of mild assumptions, all of which are shared by the standard Friedmann-Lemaitre-Robertson-Walkertype scenarios, results in a model that depends only on the distribution of scalar spatial curvature. If the shape of this distribution is made to fit the structure of the present Universe, with most of the matter in galaxy clusters and very little in the voids that will eventually dominate the volume, then there is a period of accelerated expansion after cluster formation, even in the absence of a cosmological constant.

Harald Skarke

2014-02-10T23:59:59.000Z

427

Black holes at accelerators.  

E-Print Network [OSTI]

ar X iv :h ep -p h/ 05 11 12 8v 3 6 A pr 2 00 6 Black Holes at Accelerators Bryan Webber Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK In theories with large extra dimensions and TeV-scale gravity, black holes... 2000 3000 Missing ET (GeV) Ar bi tra ry S ca le p p ? QCD SUSY 5 TeV BH (n=6) 5 TeV BH (n=2) (PT > 600 GeV) (SUGRA point 5) Figure 10: Missing transverse energy for various processes at the LHC. 4.2. Event Characteristics Turning from single...

Webber, Bryan R

428

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fermilab Collaboration Fermilab Collaboration Lee Teng Scholarship Program Useful Links The Argonne Accelerator Institute Historical Document Collection Document Access Guide The documents in this collection are held in several repositories, some of which have restricted access. This guide explains the different types of access, and specifies the access levels for each repository. Repositories Name Access Argonne National Laboratory Document Open Access Argonne Research Library Hard Copy Only Beam Dynamics Newsletter Open Access DOE Information Bridge Open Access IEEE Xplore Library Subscription Required JACoW Open Access Journal of Applied Physics Subscription Required Nuclear Instruments & Methods in Physics Research, Section A Subscription Required Physical Review A Subscription Required

429

Enhancement of accelerating field of microwave cavities by magnetic insulation  

SciTech Connect (OSTI)

Limitations on the maximum achievable accelerating gradient of microwave cavities can strongly influence the performance, length, and cost of particle accelerators. Gradient limitations are widely believed to be initiated by electron emission from the cavity surfaces. Here, we show that the deleterious effects of field emission are effectively suppressed by applying a tangential magnetic field to the cavity walls. With the aid of numerical simulations we compute the field strength required to insulate an 805 MHz cavity and estimate the cavity's tolerances to typical experimental errors such as magnet misalignments and positioning errors. Then, we review an experimental program, currently under progress, to further study the concept. Finally, we report on two specific examples that illustrate the feasibility of magnetic insulation into prospective particle accelerator applications.

Stratakis, D.; Gallardo, J.; Palmer, R.B.

2011-04-15T23:59:59.000Z

430

Advanced Photon Source research: Volume 1, Number 1, April 1998  

SciTech Connect (OSTI)

The following articles are included in this publication: (1) The Advanced Photon Source: A Brief Overview; (2) MAD Analysis of FHIT at the Structural Biology Center; (3) Advances in High-Energy-Resolution X-ray Scattering at Beamline 3-ID; (4) X-ray Imaging and Microspectroscopy of the Mycorrhyizal Fungus-Plant Symbiosis; (5) Measurement and Control of Particle-beam Trajectories in the Advanced Photon Storage Ring; (6) Beam Acceleration and Storage at the Advanced Photon Source; and (7) Experimental Facilities Operations and Current Status.

NONE

1998-04-01T23:59:59.000Z

431

High Energy Density Physics and Exotic Acceleration Schemes  

SciTech Connect (OSTI)

The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to be a very important field for diverse applications such as muon cooling, fusion energy research, and ultra-bright particle and radiation generation with high intensity lasers. We had several talks on these and other subjects, and many joint sessions with the Computational group, the EM Structures group, and the Beam Generation group. We summarize our groups' work in the following categories: vacuum acceleration schemes; ion acceleration; particle transport in solids; and applications to high energy density phenomena.

Cowan, T.; /General Atomics, San Diego; Colby, E.; /SLAC

2005-09-27T23:59:59.000Z

432

Accelerator R&D Stewardship | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Accelerator Accelerator R&D Stewardship High Energy Physics (HEP) HEP Home About Research Snowmass / P5 Planning Process Intensity Frontier Cosmic Frontier Theoretical Physics Advanced Technology R&D Accelerator R&D Stewardship Mission Background HEP Accelerator R&D Expertise Connecting Accelerator R&D to User Needs Workshop Reports Research Highlights .pdf file (13.1MB) Questions for the Universe Accomplishments Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees News & Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information » Research Accelerator R&D Stewardship

433

Connecting Accelerator RD to User Needs | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Connecting Accelerator R&D to User Needs Connecting Accelerator R&D to User Needs High Energy Physics (HEP) HEP Home About Research Snowmass / P5 Planning Process Intensity Frontier Cosmic Frontier Theoretical Physics Advanced Technology R&D Accelerator R&D Stewardship Mission Background HEP Accelerator R&D Expertise Connecting Accelerator R&D to User Needs Workshop Reports Research Highlights .pdf file (13.1MB) Questions for the Universe Accomplishments Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees News & Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information » Accelerator R&D Stewardship

434

Magnetic Insulation for Electrostatic Accelerators  

SciTech Connect (OSTI)

The voltage gradient which can be sustained between electrodes without electrical breakdowns is usually one of the most important parameters in determining the performance which can be obtained in an electrostatic accelerator. We have recently proposed a technique which might permit reliable operation of electrostatic accelerators at higher electric field gradients, perhaps also with less time required for the conditioning process in such accelerators. The idea is to run an electric current through each accelerator stage so as to produce a magnetic field which envelopes each electrode and its electrically conducting support structures. Having the magnetic field everywhere parallel to the conducting surfaces in the accelerator should impede the emission of electrons, and inhibit their ability to acquire energy from the electric field, thus reducing the chance that local electron emission will initiate an arc. A relatively simple experiment to assess this technique is being planned. If successful, this technique might eventually find applicability in electrostatic accelerators for fusion and other applications.

Grisham, L. R. [Princeton Plasma Physics Laboratory, P. O. Box 451, Princeton, New Jersey 08543 (United States)

2011-09-26T23:59:59.000Z

435

Advanced Reactor Research and Development Funding Opportunity Announcement  

Broader source: Energy.gov (indexed) [DOE]

Reactor Research and Development Funding Opportunity Reactor Research and Development Funding Opportunity Announcement Advanced Reactor Research and Development Funding Opportunity Announcement The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) sponsors a program of research, development, and demonstration related to advanced non-light water reactor concepts. A goal of the program is to facilitate greater engagement between DOE and industry. During FY12, DOE established a Technical Review Panel (TRP) process to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. That process involved the use of a Request for Information (RFI) to solicit concept information from industry and engage technical experts to evaluate those concepts. Having completed this process, DOE desires to

436

Gas fired Advanced Turbine System  

SciTech Connect (OSTI)

The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

LeCren, R.T.; White, D.J.

1993-01-01T23:59:59.000Z

437

Cast dielectric composite linear accelerator  

DOE Patents [OSTI]

A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

Sanders, David M. (Livermore, CA); Sampayan, Stephen (Manteca, CA); Slenes, Kirk (Albuquerque, NM); Stoller, H. M. (Albuquerque, NM)

2009-11-10T23:59:59.000Z

438

Accelerating and Retarding Anomalous Diffusion  

E-Print Network [OSTI]

In this paper Gaussian models of retarded and accelerated anomalous diffusion are considered. Stochastic differential equations of fractional order driven by single or multiple fractional Gaussian noise terms are introduced to describe retarding and accelerating subdiffusion and superdiffusion. Short and long time asymptotic limits of the mean squared displacement of the stochastic processes associated with the solutions of these equations are studied. Specific cases of these equations are shown to provide possible descriptions of retarding or accelerating anomalous diffusion.

Chai Hok Eab; S. C. Lim

2012-01-14T23:59:59.000Z

439

Application to Particle Accelerator Beam Stabilization Glenn Decker  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the the Measurement of Noise with Application to Particle Accelerator Beam Stabilization Glenn Decker Advanced Photon Source Accelerator Systems Division December 1998 LS-273 1 1.0 Introduction One of the most important figures of merit for a synchrotron radiation source, once speci- fied beam intensity and energy have been achieved, is charged particle beam stability. While a sig- nificant effort has been expended at the Advanced Photon Source (APS) to reduce or eliminate undesirable sources of beam motion, it will be necessary to employ active feedback to stabilize the user photon beams to the very stringent levels required. This becomes especially important when one considers that transverse beam stability is generally quoted as a fraction of beam dimensions. Since source brightness tends to be inversely proportional to these transverse dimen-

440

High field gradient particle accelerator  

DOE Patents [OSTI]

A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

Nation, J.A.; Greenwald, S.

1989-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

High field gradient particle accelerator  

DOE Patents [OSTI]

A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

Nation, John A. (Ithaca, NY); Greenwald, Shlomo (Haifa, IL)

1989-01-01T23:59:59.000Z

442

Accelerating Combined Heat & Power Deployment  

Broader source: Energy.gov (indexed) [DOE]

ACCELERATING COMBINED HEAT & POWER DEPLOYMENT An Industry Consultation by the United States Energy Association August 31, 2011 Cover Photograph: CHP Plant at the Mueller Energy...

443

Accelerate Energy Productivity 2030 Launch  

Office of Energy Efficiency and Renewable Energy (EERE)

Today, the Department of Energy kicked off Accelerate Energy Productivity 2030. This initiative supports President Obamas goal to double our energy productivity by 2030.

444

Advanced Editor Usage Advanced Editor Usage  

E-Print Network [OSTI]

Advanced Editor Usage Advanced Editor Usage Log in and click the edit icon How to navigate of the events will seek the video to where that event starts Page 1 of 11 #12;Advanced Editor Usage How Editor Usage 3. Type in the new caption name, enter any searchable metadata and click OK (the thumbnail

Benos, Panayiotis "Takis"

445

A Centrality Detector Concept  

E-Print Network [OSTI]

The nucleus-nucleus impact parameter and collision geometry of a heavy ion collision are typically characterized by assigning a collision "centrality". In all present heavy ion experiments centrality is measured indirectly, by detecting the number of particles or the energy of the particles produced in the interactions, typically at high rapidity. Centrality parameters are associated to the measured detector response using the Glauber model. This approach suffers from systematic uncertainties related to the assumptions about the particle production mechanism and limitations of the Glauber model. In the collider based experiments there is a unique possibility to measure centrality parameters by registering spectator fragments remaining from the collision. This approach does not require model assumptions and relies on the fact that spectators and participants are related via the total number of nucleons in the colliding species. This article describes the concept of the centrality detector for heavy ion experiment, which measures the total mass number of all fragments by measuring their deflection in the magnetic field of the collider elements.

Sourav Tarafdar; Zvi Citron; Alexander Milov

2014-06-07T23:59:59.000Z

446

Advanced Motors  

SciTech Connect (OSTI)

Project Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, ???????????????¢????????????????????????????????Motors and Generators for the 21st Century???????????????¢???????????????????????????????. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can be met with a variety of bonded magnet compositions. The torque ripple was found to drop significantly by using thinner magnet segments. The powder co-filling and subsequent compaction processing allow for thinner magnet structures to be formed. Torque ripple can be further reduced by using skewing and pole shaping techniques. The techniques can be incorporated into the rotor during the powder co-filling process.

Knoth, Edward A.; Chelluri, Bhanumathi; Schumaker, Edward J.

2012-12-14T23:59:59.000Z

447

Department of Energy Awards $338 Million to Accelerate Domestic Geothermal  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Awards $338 Million to Accelerate Domestic Department of Energy Awards $338 Million to Accelerate Domestic Geothermal Energy Department of Energy Awards $338 Million to Accelerate Domestic Geothermal Energy October 29, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced up to $338 million in Recovery Act funding for the exploration and development of new geothermal fields and research into advanced geothermal technologies. These grants will support 123 projects in 39 states, with recipients including private industry, academic institutions, tribal entities, local governments, and DOE's National Laboratories. The grants will be matched more than one-for-one with an additional $353 million in private and non-Federal cost-share funds. "The United States is blessed with vast geothermal energy resources, which

448

EV Technology Accelerates in Colorado | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EV Technology Accelerates in Colorado EV Technology Accelerates in Colorado EV Technology Accelerates in Colorado January 13, 2012 - 5:09pm Addthis Arun Majumdar speaks at Idaho National Lab (INL) during a visit to the site earlier this week. | Photo courtesy of INL. Arun Majumdar speaks at Idaho National Lab (INL) during a visit to the site earlier this week. | Photo courtesy of INL. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? One of 48 advanced battery and electric drive projects across the country funded by Recovery Act. U.S. will have increased capacity to produce electric-drive vehicles batteries from virtually zero in 2008 up to 500,000 per year in 2015. While the North American International Auto Show began this week in

449

Department of Energy Awards $338 Million to Accelerate Domestic Geothermal  

Broader source: Energy.gov (indexed) [DOE]

38 Million to Accelerate Domestic 38 Million to Accelerate Domestic Geothermal Energy Department of Energy Awards $338 Million to Accelerate Domestic Geothermal Energy October 29, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced up to $338 million in Recovery Act funding for the exploration and development of new geothermal fields and research into advanced geothermal technologies. These grants will support 123 projects in 39 states, with recipients including private industry, academic institutions, tribal entities, local governments, and DOE's National Laboratories. The grants will be matched more than one-for-one with an additional $353 million in private and non-Federal cost-share funds. "The United States is blessed with vast geothermal energy resources, which

450

Accelerator and Fusion Research Division: 1987 summary of activities  

SciTech Connect (OSTI)

An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics. (WRF)

Not Available

1988-04-01T23:59:59.000Z

451

College Students GIS Spatial Concept Knowledge Assessed by Concept Maps  

E-Print Network [OSTI]

Projection ................................................................................................... 93 26 Result of the Kruskal-Wallis Test of a Full Set of Concepts ..................... 95 27 Result of the Kruskal-Wallis Test of a Set... Projection ................................................................................................... 93 26 Result of the Kruskal-Wallis Test of a Full Set of Concepts ..................... 95 27 Result of the Kruskal-Wallis Test of a Set...

Oda, Katsuhiko

2012-07-16T23:59:59.000Z

452

Science Accelerator : User Login  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Login Login The Science Accelerator ALERTS feature will automatically update you regarding newly available information in your specific area(s) of interest. Simply register for the service, then create a search strategy which will be run against information added to . Select a schedule (weekly, monthly, etc.) for receiving the email Alerts. If you are a new patron, Register to learn how to set up Alerts to meet your needs. If you are an existing patron, enter your user name and password in the boxes to login. Once logged in, you may review or modify your search, add a new search and see recent Alerts results. User Name: Password: Remember Me Remember me on this computer. Login Don't have a user name? Register! Forgot your password? Reset your password Alerts The Alerts function allows you to monitor a topic and receive timely

453

Science Accelerator : Your Selections  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Your Selections Back To Previous Page Selections - of First Page Previous Page Next Page Last Page Back To Previous Page You have 0 selections. Click the checkboxes clipping.addClipping on the results or alert results pages to add to your selections. Some links on this page may take you to non-federal websites. Their policies may differ from this site. U.S. Department of Energy U.S. Department of Energy Office of Science Office of Scientific and Technical Information Website Policies/Important Links Science Accelerator science.gov WorldWideScience.org Deep Web Technologies Email Results Use this form to email your search results * Email this to: * Your Name: Comments: URL only?: Number of results: 10 20 50 100 200 All Email Format: HTML TEXT * Required field Print Results

454

Accelerated overlap fermions  

Science Journals Connector (OSTI)

Numerical evaluation of the overlap Dirac operator is difficult since it contains the sign function ?(Hw) of the Hermitian Wilson-Dirac operator Hw with a negative mass term. The problems are due to Hw having very small eigenvalues on the equilibrium background configurations generated in current day Monte Carlo simulations. Since these are a consequence of the lattice discretization and do not occur in the continuum version of the operator, we investigate in this paper to what extent the numerical evaluation of the overlap can be accelerated by making the Wilson-Dirac operator more continuum-like. Specifically, we study the effect of including the clover term in the Wilson-Dirac operator and smearing the link variables in the irrelevant terms. In doing so, we have obtained a factor of 2 speedup by moving from the Wilson action to a fat link irrelevant clover action as the overlap kernel.

Waseem Kamleh; David H. Adams; Derek B. Leinweber; Anthony G. Williams

2002-07-09T23:59:59.000Z

455

Muon Collider Progress: Accelerators  

SciTech Connect (OSTI)

A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 10{sup 34} cm{sup 2}s{sup 1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (cooling). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

Zisman, Michael S.

2011-09-10T23:59:59.000Z

456

Advanced Manufacturing Office Overview  

Broader source: Energy.gov [DOE]

Overview presentation by the Advanced Manufacturing Office for the Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

457

A study of acceleration noise as a measurement of the quality of freeway operation  

E-Print Network [OSTI]

A STUDY OF ACCELERATION NOISE AS A MEAS~ OF THE QUALITY OF FREEWAY OPERATION A Thesis CONRAD LOUIS DUDEK Submitted to the Graduate College of the Texas Al&l University in partial fulfillment of the requirements for the degree of MASTER... offered many constructive criticisms during the course of this study. Special acknowledgment is made to Dr, Donald R. Drew, His initial conception of the importance aud relative merits of the application of' acceleration noise as a measurement...

Dudek, Conrad L

1965-01-01T23:59:59.000Z

458

Advanced packaging technology for high frequency photonic applications  

SciTech Connect (OSTI)

An advanced packaging concept has been developed for optical devices. This concept allows multiple fibers to be coupled to photonic integrated circuits, with no fiber penetration of the package walls. The principles used to accomplish this concept involves a second-order grating to couple light in or out of the photonic circuit, and a binary optic lens which receives this light and focuses it into a single-mode optical fiber. Design, fabrication and electrical/optical measurements of this packaging concept are described.

Armendariz, M.G.; Hadley, G.R.; Warren, M.E.

1996-03-01T23:59:59.000Z

459

STATEMENT OF CONSIDERATIONS REQUEST BY ADVANCED TECHNOLOGY MATERIALS INC FOR AN ADVANCE  

Broader source: Energy.gov (indexed) [DOE]

ADVANCED TECHNOLOGY MATERIALS INC FOR AN ADVANCE ADVANCED TECHNOLOGY MATERIALS INC FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-NT0005578, W(A)-2012-031; CH-1666 The Petitioner, Advanced Technology Materials, Inc. (ATMI) was awarded a subcontract under the subject cooperative agreement between the Department of Energy and SRI International (SRI) for the performance of work entitled , "Development of Novel Carbon Sorbents for C02 Capture". The objective of the program is to develop an innovative, low cost, and low energy consuming carbon dioxide (C02) capture technology based on adsorption on a high-capacity and low-cost carbon sorbent. The specific objectives are to validate the performance of this concept on a bench-scale system

460

Laser acceleration of ion beams  

E-Print Network [OSTI]

We consider methods of charged particle acceleration by means of high-intensity lasers. As an application we discuss a laser booster for heavy ion beams provided, e.g. by the Dubna nuclotron. Simple estimates show that a cascade of crossed laser beams would be necessary to provide additional acceleration to gold ions of the order of GeV/nucleon.

I. A. Egorova; A. V. Filatov; A. V. Prozorkevich; S. A. Smolyansky; D. B. Blaschke; M. Chubaryan

2007-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

General purpose programmable accelerator board  

DOE Patents [OSTI]

A general purpose accelerator board and acceleration method comprising use of: one or more programmable logic devices; a plurality of memory blocks; bus interface for communicating data between the memory blocks and devices external to the board; and dynamic programming capabilities for providing logic to the programmable logic device to be executed on data in the memory blocks.

Robertson, Perry J. (Albuquerque, NM); Witzke, Edward L. (Edgewood, NM)

2001-01-01T23:59:59.000Z

462

Technology acceleration and corporate ergonomic policy  

Science Journals Connector (OSTI)

Technology use is best described as 'more and increasing'. The frequency of use is more and increasing. The range of use across diverse platforms is more and increasing. Likewise the attention to the ergonomic challenges presented by this technology acceleration should also be more and increasing. Emerging issues such as 'nomadic workers' and 'blackberry thumb' add to the ergonomic challenge. Ergonomic advances have been significant, yet they have not conquered all of the old problems nor have they anticipated all of the new problems generated by the 'more and increased' technology deployment. This article provides an overview of the ergonomic injuries that have been associated with computer use and then reviews changes in the computing landscape and the work environment that have important ergonomic implications. Based upon this review, it calls for increased organisational commitment to ergonomic policy and concludes with some suggested available resources.

Carol L. Clark; Amy Hennington; Jennifer Williams; Jeff Clark

2012-01-01T23:59:59.000Z

463

Innovation Concepts in Healthcare  

SciTech Connect (OSTI)

AbstractDemographic change and advances in medical science pose increased challenges to healthcare systems globally: The economic basis is aging and thus health is becoming more and more a productivity factor. At the same time, with todays new communication possibilities the demand and expectations of effective medical treatment have been increased. This presentation will illustrate the need for the industrialization of healthcare in order to achieve highest results at limited budgets. Thereby, industrialization is not meaning the medical treatment based on the assembly line approach. Rather it is to recognize the cost of medical care as an investment with respective expectations on the return of the investment. Innovations in imaging and pharmaceutical products as well as in processes - that lead to similar medical results, but with lower efforts - are keys in such scenarios.BiographyProf. Dr. Hermann Requardt, 54, is a member of the Managing Board of Siemens AG and Chief Executive Officer of the Healthcare Sector. In addition he is the CTO of Siemens AG and Head of Corporate Technology, the central research department at Siemens.After completing his studies in physics and philosophy at the Darmstadt University of Technology and Johann Wolfgang Goethe University in Frankfurt and receiving a doctorate in biophysics, he worked at the Institute of Aerospace Medicine at the German Aerospace Center.In 1984 he joined the Medical Technology Group of Siemens AG, where he was responsible for projects in the Magnetic Resonance (MR) division. He was appointed head of the division in 1995. From 2001 to 2006, as a member of the Executive Management of the Medical Solutions Group, he was responsible for several areas, including technological development.In 2006 he became a Member of the Siemens Managing Board and head of Corporate Technology. He was additionally appointed as the Sector Healthcare CEO in 2008.Since 2006 he is an honorary professor in physics of the Johann Wolfgang Goethe University in Frankfurt.

None

2011-01-06T23:59:59.000Z

464

Innovation Concepts in Healthcare  

ScienceCinema (OSTI)

AbstractDemographic change and advances in medical science pose increased challenges to healthcare systems globally: The economic basis is aging and thus health is becoming more and more a productivity factor. At the same time, with today?s new communication possibilities the demand and expectations of effective medical treatment have been increased. This presentation will illustrate the need for the ?industrialization? of healthcare in order to achieve highest results at limited budgets. Thereby, industrialization is not meaning the medical treatment based on the assembly line approach. Rather it is to recognize the cost of medical care as an investment with respective expectations on the return of the investment. Innovations in imaging and pharmaceutical products as well as in processes - that lead to similar medical results, but with lower efforts - are keys in such scenarios.BiographyProf. Dr. Hermann Requardt, 54, is a member of the Managing Board of Siemens AG and Chief Executive Officer of the Healthcare Sector. In addition he is the CTO of Siemens AG and Head of Corporate Technology, the central research department at Siemens.After completing his studies in physics and philosophy at the Darmstadt University of Technology and Johann Wolfgang Goethe University in Frankfurt and receiving a doctorate in biophysics, he worked at the Institute of Aerospace Medicine at the German Aerospace Center.In 1984 he joined the Medical Technology Group of Siemens AG, where he was responsible for projects in the Magnetic Resonance (MR) division. He was appointed head of the division in 1995. From 2001 to 2006, as a member of the Executive Management of the Medical Solutions Group, he was responsible for several areas, including technological development.In 2006 he became a Member of the Siemens? Managing Board and head of Corporate Technology. He was additionally appointed as the Sector Healthcare CEO in 2008.Since 2006 he is an honorary professor in physics of the Johann Wolfgang Goethe University in Frankfurt.

None

2011-04-25T23:59:59.000Z

465

OPERATING SYSTEM CONCEPTS Avi Silberschatz  

E-Print Network [OSTI]

OPERATING SYSTEM CONCEPTS Avi Silberschatz Department of Computer Sciences University of Texas & Peter Galvin CHAPTER 1: INTRODUCTION . What is an operating system? . Early Systems . Simple Batch Systems . Distributed Systems . Real­Time Systems Operating System Concepts, Addison­Wesley ? 1994

Schmidt, Douglas C.

466

SPEAR3 Accelerator Physics Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SPEAR3 ACCELERATOR PHYSICS UPDATE* SPEAR3 ACCELERATOR PHYSICS UPDATE* J. Safranek # , W.J. Corbett, R. Hettel, X. Huang, Y. Nosochkov, J. Sebek, A. Terebilo, SSRL/SLAC, Menlo Park, CA, U.S.A. Abstract The SPEAR3 [1,2] storage ring at Stanford Synchrotron Radiation Laboratory has been delivering photon beams for three years. We will give an overview of recent and ongoing accelerator physics activities, including 500 mA fills, work toward top-off injection, long-term orbit stability characterization and improvement, fast orbit feedback, new chicane optics, low alpha optics & short bunches, low emittance optics, and MATLAB software. The accelerator physics group has a strong program to characterize and improve SPEAR3 performance. INTRODUCTION In this summary of the past three years of accelerator

467

Advanced Hydrogen Turbine Development  

SciTech Connect (OSTI)

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

468

Thomas Jefferson National Accelerator Facility Site Tour - Accelerator Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Science Education Jefferson Lab Jefferson Lab Home Search Jefferson Lab Contact Jefferson Lab Science Education Home Teacher Resources Student Zone Games and Puzzles Science Cinema Programs and Events Search Education Privacy and Security Notice Jefferson Lab Site Tour Guided Tour Site Map Accelerator Area Map Administrative Area Map Tour Index

469

U.S. Department of Energy Selects Venture Capital Firms to Accelerate  

Broader source: Energy.gov (indexed) [DOE]

Venture Capital Firms to Venture Capital Firms to Accelerate Adoption of Advanced Energy Technologies U.S. Department of Energy Selects Venture Capital Firms to Accelerate Adoption of Advanced Energy Technologies February 27, 2008 - 11:43am Addthis SAN FRANCISCO, CA - U.S. Department of Energy (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner today announced the competitive selection of three venture capital firms to participate in DOE's newly established Entrepreneur in Residence (EIR) pilot program, which aims to accelerate deployment and commercialization of advanced clean energy technologies from three DOE National Laboratories into the global marketplace. The EIR pilot program furthers President Bush's comprehensive strategy to reduce our nation's dependence on foreign oil and

470

2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe  

SciTech Connect (OSTI)

A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

Chen, Y. H.; Yang, X. Y.; Lin, C., E-mail: linchen0812@pku.edu.cn, E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J., E-mail: linchen0812@pku.edu.cn, E-mail: cjxiao@pku.edu.cn [State Key Lab of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Wang, L. [Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190 (China); Xu, M. [Center for Fusion Science of Southwestern Institute of Physics, P. O. Box 432, Chengdu 610041 (China)

2014-11-15T23:59:59.000Z

471

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LEUTL: Low Energy Undulator Test Line (operation: 1997-2002) LEUTL: Low Energy Undulator Test Line (operation: 1997-2002) The Low Energy Undulator Test Line (LEUTL) is an experimental hall and associated hardware that was built shortly after the completion of the Advanced Photon Source, and was attached to the APS so that the linac beam could be delivered to the LEUTL hall. LEUTL was configured as a Free Electron Laser (FEL) and was the first experiment to demonstrate Self Amplified Spontaneous Emission in the visible and UV. References - Document Access Guide Description of LEUTL by S. G. Biedron (Argonne National Laboratory Document ) High-Gain Harmonic-Generation Free-Electron Laser, L.-H. Yu, M. Babzien, I. Ben-Zvi, L.F. DiMauro, A. Doyuran, W. Graves, E. Johnson, S. Krinsky, R. Malone, I. Pogorelsky, J. Skaritka, G. Rakowsky, L. Solomon,

472

EXOTIC MAGNETS FOR ACCELERATORS.  

SciTech Connect (OSTI)

Over the last few years, several novel magnet designs have been introduced to meet the requirements of new, high performance accelerators and beam lines. For example, the FAIR project at GSI requires superconducting magnets ramped at high rates ({approx} 4 T/s) in order to achieve the design intensity. Magnets for the RIA and FAIR projects and for the next generation of LHC interaction regions will need to withstand high doses of radiation. Helical magnets are required to maintain and control the polarization of high energy protons at RHIC. In other cases, novel magnets have been designed in response to limited budgets and space. For example, it is planned to use combined function superconducting magnets for the 50 GeV proton transport line at J-PARC to satisfy both budget and performance requirements. Novel coil winding methods have been developed for short, large aperture magnets such as those used in the insertion region upgrade at BEPC. This paper will highlight the novel features of these exotic magnets.

WANDERER, P.

2005-09-18T23:59:59.000Z

473

RFQ accelerator tuning system  

DOE Patents [OSTI]

A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.

Bolie, Victor W. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

474

RFQ accelerator tuning system  

DOE Patents [OSTI]

A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.

Bolie, V.W.

1990-07-03T23:59:59.000Z

475

Functional Materials for Energy | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Functional Materials for Energy SHARE Functional Materials for Energy The concept of functional materials for energy occupies a very prominent position in ORNL's research and more broadly the scientific research sponsored by DOE's Basic Energy Sciences. These materials facilitate the capture and transformation of energy, the storage of energy or the efficient release and utilization of stored energy. A different kind of

476

Sandia National Laboratories: Advanced Simulation and Computing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facebook Facebook Twitter YouTube Flickr RSS Advanced Simulation and Computing Advanced Simulation and Computing Taking on the World's Complex Challenges Advancing Science Frontiers Our research is producing new scientific insights about the world in which we live and assists in certifying the safety and reliability of the nation's nuclear weapons stockpile. Technology Provides the Tools Growth in data and the software and hardware demands needed for physics-based answers and predictive capabilities are driving technology improvements. We could not achieve the breakthroughs we're making without these important tools. Partnerships Accelerate Innovation Partnerships leverage talent and multiply the effectiveness of our research efforts. Impacting Global Issues ASC software and hardware tools solve global issues ranging from nuclear

477

RESEARCH ON HIGH BEAM-CURRENT ACCELERATORS  

E-Print Network [OSTI]

and M. Wilson, Particle Accelerators 10, 223 13. A. I.Proc. 1976 Proton Linear Accelerator Conf. , Chalk River,and D. Keefe, Particle Accelerators~' 23. S. Humphries, J.

Keefe, Denis

2014-01-01T23:59:59.000Z

478

CALCIUM SULFATE-INDUCED ACCELERATED CORROSION  

E-Print Network [OSTI]

10286 CALCIUM SULFATE-INDUCED ACCELERATED CORROSION HilaryCT Calcium Sulf(1teinduced Accelerated Corrosion By Hilaryof the Caso - induced accelerated attack on pure iron and

Akuezue, Hilary Chikezie

2013-01-01T23:59:59.000Z

479

Terahertz-driven linear electron acceleration  

E-Print Network [OSTI]

The cost, size and availability of electron accelerators is dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency (RF) accelerating structures operate with 30-50 MeV/m gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional RF structures. However, laser-driven electron accelerators require intense sources and suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here, we demonstrate the first linear acceleration of electrons with keV energy gain using optically-generated terahertz (THz) pulses. THz-driven accelerating structures enable high-gradient electron accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. Increasing the operational frequency of accelerators into the THz band allows for greatly increased accelerating ...

Nanni, Emilio Alessandro; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Miller, R J Dwayne; Krtner, Franz X

2014-01-01T23:59:59.000Z

480

Application of particle accelerators in research  

Science Journals Connector (OSTI)

......prospectives is presented. Accelerators in research are widely...to solid state, nuclear and atomic physics...bunches-multi bunch accelerator) and decrease the...In a multi-bunch accelerator, separate vacuum chambers are needed......

Giovanni Mazzitelli

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced accelerator concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

PROTON ACCELERATION AT OBLIQUE SHOCKS  

SciTech Connect (OSTI)

Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

Galinsky, V. L.; Shevchenko, V. I., E-mail: vit@ucsd.edu [ECE Department, UC San Diego, MC 407, La Jolla, CA 92093-0407 (United States)

2011-06-20T23:59:59.000Z

482

Generic repository design concepts and thermal analysis (FY11).  

SciTech Connect (OSTI)

Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generated in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the disposal system. Clay/shale, salt, and crystalline rock media are selected as the basis for reference mined geologic disposal concepts in this study, consistent with advanced international repository programs, and previous investigations in the U.S. The U.S. pursued deep geologic disposal programs in crystalline rock, shale, salt, and volcanic rock in the years leading up to the Nuclear Waste Policy Act, or NWPA (Rechard et al. 2011). The 1987 NWPA amendment act focused the U.S. program on unsaturated, volcanic rock at the Yucca Mountain site, culminating in the 2008 license application. Additional work on unsaturated, crystalline rock settings (e.g., volcanic tuff) is not required to support this generic study. Reference disposal concepts are selected for the media listed above and for deep borehole disposal, drawing from recent work in the U.S. and internationally. The main features of the repository concepts are discussed in Section 4.5 and summarized in Table ES-1. Temperature histories at the waste package surface and a specified distance into the host rock are calculated for combinations of waste types and reference disposal concepts, specifying waste package emplacement modes. Target maximum waste package surface temperatures are identified, enabling a sensitivity study to inform the tradeoff between the quantity of waste per disposal package, and decay storage duration, with respect to peak temperature at the waste package surface. For surface storage duration on the order of 100 years or less, waste package sizes for direct disposal of SNF are effectively limited to 4-PWR configurations (or equivalent size and output). Thermal results are summarized, along with recommendations for follow-on work including adding additional reference concepts, verification and uncertainty analysis for thermal calculations, developing descriptions of surface facilities and other system details, and cost estimation to support system-level evaluations.

Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); Dupont, Mark (Savannah River Nuclear Solutions, Aiken, SC); Blink, James A. (Lawrence Livermore National Laboratory, Livermore, CA); Fratoni, Massimiliano (Lawrence Livermore National Laboratory, Livermore, CA); Greenberg, Harris (Lawrence Livermore National Laboratory, Livermore, CA); Carter, Joe (Savannah River Nuclear Solutions, Aiken, SC); Hardin, Ernest L.; Sutton, Mark A. (Lawrence Livermore National Laboratory, Livermore, CA)

2011-08-01T23:59:59.000Z

483

Cosmic Particle Acceleration: Basic Issues  

E-Print Network [OSTI]

Cosmic-rays are ubiquitous, but their origins are surprisingly difficult to understand. A review is presented of some of the basic issues common to cosmic particle accelerators and arguments leading to the likely importance of diffusive shock acceleration as a general explanation. The basic theory of diffusive shock acceleration is outlined, followed by a discussion of some of the key issues that still prevent us from a full understanding of its outcomes. Some recent insights are mentioned at the end that may help direct ultimate resolution of our uncertainties.

T. W. Jones

2000-12-22T23:59:59.000Z

484

An Accelerator Control Middle Layer Using MATLAB  

E-Print Network [OSTI]

Accelerator Modeling with MATLAB Accelerator Toolbox, PACChannel Access Toolbox for Matlab," ICALEPCS 2001. [4] J.Orbit Control Using MATLAB, PAC 2001. [5] J. Safranek, G.

Portmann, Gregory J.; Corbett, Jeff; Terebilo, Andrei

2005-01-01T23:59:59.000Z

485

Development of Artificial Ash Accelerated Accumulation Test ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Artificial Ash Accelerated Accumulation Test Development of Artificial Ash Accelerated Accumulation Test Poster presented at the 16th Directions in Engine-Efficiency and Emissions...

486

Chevrolet Malibu HEV Accelerated Testing - June 2013  

Broader source: Energy.gov (indexed) [DOE]

Malibu HEV Accelerated Testing - June 2013 Four model year 2013 Chevrolet Malibu hybrid electric vehicles (HEVs) entered Accelerated testing during November 2012 in a fleet in...

487

Comparing Accelerated Testing and Outdoor Exposure | Department...  

Broader source: Energy.gov (indexed) [DOE]

Comparing Accelerated Testing and Outdoor Exposure Comparing Accelerated Testing and Outdoor Exposure Presented at the PV Module Reliability Workshop, February 26 - 27 2013,...

488

Accelerated Testing Validation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Accelerated Testing Validation Accelerated Testing Validation Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009...

489

Hyundai Sonata HEV Accelerated Testing - March 2013  

Broader source: Energy.gov (indexed) [DOE]

Hyundai Sonata HEV Accelerated Testing - March 2013 Two model year 2011 Hyundai Sonata hybrid electric vehicles (HEVs) entered Accelerated testing during June 2011 in a fleet in...

490

CRAD, Occupational Safety & Health - Idaho Accelerated Retrieval...  

Broader source: Energy.gov (indexed) [DOE]

Occupational Safety & Health - Idaho Accelerated Retrieval Project Phase II CRAD, Occupational Safety & Health - Idaho Accelerated Retrieval Project Phase II February 2006 A...

491

RDC receives award for Accelerate Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Issues submit RDC receives award for Accelerate Program Accelerate is designed to help graduate more technical career students, place them in jobs, and better prepare them...

492

SLAC National Accelerator Laboratory Technology Marketing Summaries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SLAC National Accelerator Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the SLAC National Accelerator...

493

Early Days of Accelerator Mass Spectrometry  

DOE R&D Accomplishments [OSTI]

Alvarez reviews his role in the development of the tandem Van de Graaff accelerator and the technique of accelerator mass spectrometry as a technique for isotope dating. (GHT)

Alvarez, L. W.

1981-05-00T23:59:59.000Z

494

Independent Oversight Inspection, Stanford Linear Accelerator...  

Broader source: Energy.gov (indexed) [DOE]

Stanford Linear Accelerator Center - January 2007 January 2007 Inspection of Environment, Safety, and Health Programs at the Stanford Linear Accelerator Center This report...

495

Lab announces Venture Acceleration Fund recipients  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inc., and ThermaSun Inc. as recipients of awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund provides...

496

Prometheus Hot Leg Piping Concept  

SciTech Connect (OSTI)

The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

Gribik, Anastasia M. [Bechtel Bettis, Inc., Bettis Atomic Power Laboratory, West Mifflin, PA 15122 (United States); DiLorenzo, Peter A. [KAPL, Inc., Knolls Atomic Power Laboratory, Schenectady, NY 12301 (United States)

2007-01-30T23:59:59.000Z

497

Dielectric Wakefield Accelerator to drive the future FEL Light Source.  

SciTech Connect (OSTI)

X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

Jing, C.; Power, J.; Zholents, A. (Accelerator Systems Division (APS)); ( HEP); (LLC)

2011-04-20T23:59:59.000Z

498

The Advanced Photon Source main control room  

SciTech Connect (OSTI)

The Advanced Photon Source at Argonne National Laboratory is a third-generation light source built in the 1990s. Like the machine itself, the Main Control Room (MCR) employs design concepts based on today`s requirements. The discussion will center on ideas used in the design of the MCR, the comfort of personnel using the design, and safety concerns integrated into the control room layout.

Pasky, S.

1998-07-01T23:59:59.000Z

499

BNL | Accelerators for Applied Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerators for Applied Research Accelerators for Applied Research Brookhaven National Lab operates several accelerator facilities dedicated to applied research. These facilities directly address questions and concerns on a tremendous range of fields, including medical imaging, cancer therapy, computation, and space exploration. Leading scientists lend their expertise to these accelerators and offer crucial assistant to collaborating researchers, pushing the limits of science and technology. Interested in gaining access to these facilities for research? See the contact number listed for each facility. RHIC tunnel Brookhaven Linac Isotope Producer The Brookhaven Linac Isoptope Producer (BLIP)-positioned at the forefront of research into radioisotopes used in cancer treatment and diagnosis-produces commercially unavailable radioisotopes for use by the

500

Accelerating and rotating black holes  

E-Print Network [OSTI]

An exact solution of Einstein's equations which represents a pair of accelerating and rotating black holes (a generalised form of the spinning C-metric) is presented. The starting point is a form of the Plebanski-Demianski metric which, in addition to the usual parameters, explicitly includes parameters which describe the acceleration and angular velocity of the sources. This is transformed to a form which explicitly contains the known special cases for either rotating or accelerating black holes. Electromagnetic charges and a NUT parameter are included, the relation between the NUT parameter $l$ and the Plebanski-Demianski parameter $n$ is given, and the physical meaning of all parameters is clarified. The possibility of finding an accelerating NUT solution is also discussed.

J. B. Griffiths; J. Podolsky

2005-07-06T23:59:59.000Z