Sample records for administration refinery capacity

  1. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4.April 25, 20137a.06 2.013 1.673Refinery

  2. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) - HouseholdshortEIA-782A andS FRecord U.S. oilRefinery1

  3. Refinery Capacity Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    by State as of January 1, 2006 PDF 5 Refiners' Operable Atmospheric Crude Oil Distillation Capacity as of January 1, 2006 PDF 6 Operable Crude Oil and Downstream Charge...

  4. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    Capacity Report June 2014 With Data as of January 1, 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by...

  5. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacity Report

  6. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacity Report5

  7. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacity

  8. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacity Operable

  9. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacity

  10. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity onThousand(Dollars2009Rail

  11. Refinery Capacity Report Historical

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity onThousand(Dollars2009Rail

  12. U.S. Downstream Charge Capacity of Operable Petroleum Refineries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zandofpoint motional%^602SWPACharge Capacity

  13. ,"U.S. Total Shell Storage Capacity at Operable Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural Gas Plant StocksPetroleum

  14. ,"U.S. Working Storage Capacity at Operable Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S. Underground NaturalWorking

  15. Refinery Capacity Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Yeara 436INCIDENCE OF AN2009

  16. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21

  17. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacityof Last

  18. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacityof

  19. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21CapacityofVacuum

  20. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table

  1. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for TableCORPORATION / Refiner /

  2. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for TableCORPORATION / Refiner

  3. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for TableCORPORATION / RefinerAlkylates

  4. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for TableCORPORATION / RefinerAlkylates

  5. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for TableCORPORATION /

  6. Refinery Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Leveraging existing refining infrastructure potentially reduces costs for biofuel production but we first need to understand the impacts Petroleum Refinery Picture courtesy...

  7. Tenneco revamps chalmette refinery

    SciTech Connect (OSTI)

    Heck, W.E.; Ragsdale, R.

    1985-01-14T23:59:59.000Z

    A major expansion and modernization project has been completed at Tenneco Oil Co.'s Chalmette, La. refinery, which is on the outskirts of New Orleans. The $559 million project, called the Chalmette heavy oil processing program, included revamps and construction of new units. These new and modified facilities have increased the crude oil capacity of the refinery by 30,000 b/d to 127,000 b/d. Gasoline and/or middle distillate output potential has also been lifted by 30,000 b/d. Numerous studies were made and economic cases worked to determine the process configuration and selection for the project. These conclusions varied depending on the raw material chosen as the feedstock (crude source). The configuration finally chosen was driven by the decision to be able to process high metals crudes from around the world.

  8. Retrofitting analysis of integrated bio-refineries

    E-Print Network [OSTI]

    Cormier, Benjamin R.

    2007-04-25T23:59:59.000Z

    to integrated bio-refineries. Focus is given to the problem of process modification to an existing plant by considering capacity expansion and material substitution with biomass feedstocks. Process integration studies were conducted to determine cost...

  9. Multiperiod Refinery Planning Optimization

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Multiperiod Refinery Planning Optimization with Nonlinear CDU Models Abdulrahman Alattas, Advisor #12;Refinery Planning Model Development 2 Extension to Multiperiod Planning #12;3 Multiperiod Refinery: refinery configuration Determine · What crude oil to process and in which time period? · The quantities

  10. Review of petroleum transport network models and their applicability to a national refinery model

    SciTech Connect (OSTI)

    Hooker, J. N.

    1982-04-01T23:59:59.000Z

    This report examines four petroleum transport network models to determine whether parts of them can be incorporated into the transportation component of a national refinery model. Two questions in particular are addressed. (a) How do the models under examination represent the oil transport network, estimate link capacities, and calculate transport costs. (b) Are any of these network representations, capacity estimates, or cost functions suitable for inclusion in a linear programming model of oil refinery and primary distribution in the US. Only pipeline and waterway transport is discussed. The models examined are the Department of Energy's OILNET model, the Department of Transportation's Freight Energy Model, the Federal Energy Administration Petroleum Transportation Network Model, and an Oak Ridge National Laboratory oil pipeline energy model. Link capacity and cost functions are recommended for each transport mode. The coefficients of the recommended pipeline cost functions remain to be estimated.

  11. Refinery Energy Profiling Procedure

    E-Print Network [OSTI]

    Maier, R. W.

    1981-01-01T23:59:59.000Z

    This paper discusses a four-step procedure developed with support from the U.S. Department of Energy for preparing energy profiles for a refinery, for a single unit, or for an individual piece of equipment. The four steps are preparation, data...

  12. Refinery Energy Profiling Procedure

    E-Print Network [OSTI]

    Maier, R. W.

    1981-01-01T23:59:59.000Z

    This paper discusses a four-step procedure developed with support from the U.S. Department of Energy for preparing energy profiles for a refinery, for a single unit, or for an individual piece of equipment. The four steps are preparation, data...

  13. Analysis Patterns for Oil Refineries

    E-Print Network [OSTI]

    Lei Zhen; Guangzhen Shao

    We present analysis patterns to describe the structure of oil refineries. The Refinery Produc tion Unit Pattern describes the structure of units and unit groups. The Oil Storage Pattern describes the structure of tanks and tank groups. The Oil Delivery Pattern describes the structure of stations for import and export of oil. The Production Process Pattern describes the productionprocess. The audience for this paper includes analysts, designers, and programmers who are involved in developing Refinery Information Systems.

  14. U.S. Refinery Utilization and Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe Outlook269,023Year JanCrude OilNov-14 Dec-14

  15. U.S. Refinery Utilization and Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010 2011 2012 2013 2014

  16. Rocky Mountain area petroleum product availability with reduced PADD IV refining capacity

    SciTech Connect (OSTI)

    Hadder, G.R.; Chin, S.M.

    1994-02-01T23:59:59.000Z

    Studies of Rocky Mountain area petroleum product availability with reduced refining capacity in Petroleum Administration for Defense IV (PADD IV, part of the Rocky Mountain area) have been performed with the Oak Ridge National Laboratory Refinery Yield Model, a linear program which has been updated to blend gasolines to satisfy constraints on emissions of nitrogen oxides and winter toxic air pollutants. The studies do not predict refinery closures in PADD IV. Rather, the reduced refining capacities provide an analytical framework for probing the flexibility of petroleum refining and distribution for winter demand conditions in the year 2000. Industry analysts have estimated that, for worst case scenarios, 20 to 35 percent of PADD IV refining capacity could be shut-down as a result of clean air and energy tax legislation. Given these industry projections, the study scenarios provide the following conclusions: The Rocky Mountain area petroleum system would have the capability to satisfy winter product demand with PADD IV refinery capacity shut-downs in the middle of the range of industry projections, but not in the high end of the range of projections. PADD IV crude oil production can be maintained by re-routing crude released from PADD IV refinery demands to satisfy increased crude oil demands in PADDs II (Midwest), III (Gulf Coast), and Washington. Clean Air Act product quality regulations generally do not increase the difficulty of satisfying emissions reduction constraints in the scenarios.

  17. Hulett's South African Refineries Ltd.

    E-Print Network [OSTI]

    R. P. Jennings

    The improvement in the quality of raw sugars sent to Hulett's Refinery during the three seasons, 1963164 to 1965166, was the subject of a paper presented to this association last year. (1) These

  18. Encon Motivation in European Refineries

    E-Print Network [OSTI]

    Gambera, S.; Lockett, W., Jr.

    1982-01-01T23:59:59.000Z

    One essential element in a successful energy conservation or Encon program is effective motivation of employees and organizations to conserve energy. Encon motivation in our European refineries is a continuing effort that requires utilization...

  19. Saber's heavy oil cracking refinery project

    SciTech Connect (OSTI)

    Benefield, C.S.; Glasscock, W.L.

    1983-03-01T23:59:59.000Z

    Perhaps more than any other industry, petroleum refining has been subjected to the radical swings in business and political climates of the past several decades. Because of the huge investments and long lead times to construct refining facilities, stable government policies, predictable petroleum prices, secure feedstock supplies and markets, and reliable cost estimates are necessary ingredients to effectively plan new refinery projects. However, over the past ten years the political and economic climates have provided anything but these conditions. Yet, refiners have demonstrated a willingness to undertake risks by continuing to expand and modernize their refineries. The refining business -- just as most businesses -- responds to economic incentives. These incentives, when present, result in new technology and capacity additions. In the 1940's, significant technology advances were commercialized to refine higher-octane motor gasolines. Such processes as continuous catalytic cracking (Houdry Process Corporation), fluid catalytic cracking (Standard Oil Development Company), HF alkylation (UOP and Phillips Petroleum Company), and catalytic reforming (UOP) began to supply a growing gasoline market, generated from the war effort and the ever increasing numbers of automobiles on the road. The post-war economy of the 1950's and 1960's further escalated demand for refined products, products which had to meet higher performance specifications and be produced from a wider range of raw materials. The refining industry met the challenge by introducing hydro-processing technology, such as hydrocracking developed in 1960. But, the era must be characterized by the large crude processing capacity additions, required to meet demand from the rapidly expanding U.S. economy. In 1950, refining capacity was 6.2 million BPD. By 1970, capacity had grown to 11.9 million BPD, an increase of 91%.

  20. Integration of Nonlinear CDU Models in RefineryCDU Models in Refinery

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Integration of Nonlinear CDU Models in RefineryCDU Models in Refinery Planning Optimization Carnegie Mellon University EWO Meeting ­ March 2011 1 #12;I t d tiIntroduction Refinery production planning models Optimizing refinery operation C d l ti Crude selection Maximizing profit; minimizing cost

  1. Retrofitting analysis of integrated bio-refineries

    E-Print Network [OSTI]

    Cormier, Benjamin R.

    2007-04-25T23:59:59.000Z

    the economic performance of fossil-based facilities can be enhanced by retrofitting and incorporation of bio-mass feedstocks. These systems can be regarded as bio-refineries or integrated fossilbio- refineries. This work presents a retrofitting analysis...

  2. A Texas Refinery Success Story

    E-Print Network [OSTI]

    Kacsur, D.

    A Texas Refinery Success Story Dennis Kacsur Spirax Sarco Common knowledge rules that maintenance is the key to long-lasting machinery performance. Yet steam traps are often left to their own devices, to fail or succeed alone. And without... steam trap programs, plants are certain to experience a high failure rate. An oil refinery in Texas was continuously experiencing a high failure rate on its 4,790-steam trap system. Finally, the steam losses were judged to be too high, and plant...

  3. Integration of Nonlinear CDU Models in Refinery

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Integration of Nonlinear CDU Models in Refinery Planning Optimization Abdulrahman Alattas, Advisor #12;Refinery Planning Model Development Fixed-yieldModels SwingcutsModels LPPlanningModels Aggregate for the CDU #12;Planning Model Example Typical Refinery Configuration (Adapted from Aronofsky, 1978) Cat Ref

  4. Refinery Fuel Balancing with Cogeneration

    E-Print Network [OSTI]

    Passman, K. W.; Taylor, R. I.; Williams, D. E.; Emanuel, D.

    in order to tie-in during a scheduled refinery wide turnaround and to be on line during the summer 1990 operating period. The two gas turbines exhaust to two existing boilers where the oxygen in the turbine exhaust is utilized for combustion. Supplementary...

  5. Fluidized bed controls refinery emissions

    SciTech Connect (OSTI)

    Abdulally, I.F.; Kersey, B.R.

    1986-05-01T23:59:59.000Z

    In early 1983, two fluidized bed, waste heat boilers entered into service at the Ashland Petroleum Company refinery site in Ashland, Kentucky. These fluidized bed units are coupled to the regeneration end of a newly developed reduced crude conversion (RCC) process and served the purpose of reducing CO, SO/sub 2/ and NO/sub x/ emissions while recuperating waste heat from the regenerator process off gases.

  6. Controlling Silver Dust and Fumes at Mine Refinery

    E-Print Network [OSTI]

    R. A. Haney; M. P. Valoski

    ABSTRACT: As part of the refining of gold and silver molten metal, silver dust and fumes are released into the atmosphere. The Mine Safety and Health Administration (MSHA) enforces an 8-hour, equivalent Time Weighted Average concentration limit for silver dust and fumes of 10 g/m 3. MSHA initiated a program to assess the controls that were being used to control silver dust and fume exposure. Refineries were visited at six mines. The layout of each refinery and the controls used varied at each refinery. At each operation, personal and area silver fume and dust samples were collected to assess worker exposures and to determine sources of fume. Primary source of silver dust and fume exposure was the pouring of molten metal from the furnace. Secondary sources of exposure included: precipitate mixing, bar cooling, and housekeeping. Guidelines were developed addressing housekeeping, exhaust ventilation, general ventilation, administrative controls, and system monitoring. In most cases, housekeeping and general ventilation were adequate; however, the exhaust ventilation systems needed to be improved. 1 INRODUCTION Silver dust and fumes become airborne during the refining step of producing gold and silver. The dust

  7. Refinery Production Planning: Multiperiod MINLP with Nonlinear CDU

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Refinery Production Planning: Multiperiod MINLP with Nonlinear CDU Model-Rivera (2011) developed a single-period, nonlinear programing refinery planning model production, distribution, sales and inventory management1,2. The refinery

  8. Chevron Richmond Refinery Pipe Rupture and Fire Animation - Work...

    Broader source: Energy.gov (indexed) [DOE]

    Chevron Richmond Refinery Pipe Rupture and Fire Animation - Work Planning and Control is Not Chevron Richmond Refinery Pipe Rupture and Fire Animation - Work Planning and Control...

  9. Fuel-Flexible Combustion System for Refinery and Chemical Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters - Fact Sheet 2014 Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters -...

  10. Spatial Disaggregation of CO2 Emissions for the State of California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2008-01-01T23:59:59.000Z

    www.energy.ca.gov/maps/refinery_locations.html Appendix 3.Administration (EIA), 2007b. Refinery Capacity Databy individual refinery as of January 1, 2007. Washington,

  11. REFEREED PAPER PRE-TREATMENT OF REFINERY FINAL RUN-OFF FOR CHROMATOGRAPHIC SEPARATION

    E-Print Network [OSTI]

    Singh I; Stolz Hnp; Ndhlala T

    In the case of a back-end refinery, the final run-off or return syrup of 92-95 % purity and 75 brix is generally returned to the raw mill to be combined with raw syrup and boiled in the A-pans. Approximately 8 % of the input raw sugar brix into a refinery is returned, consequently locking up A-pan capacity and, in the case of a factory with marginal pan capacity, cane throughput is restricted. In addition, energy consumption is increased and sugar losses in final molasses are elevated. A number of processes have been considered to eliminate recycling refinery run-off, most of which require pre-treatment and/or high capital investment with a high degree of commercial risk. Test work was undertaken at the Tsb Malalane cane sugar refinery to determine the optimal pre-treatment option for decolorising and softening refinery return syrup. The pre-treatment results indicate that chemical softening, followed by the addition of a cationic colour precipitant and pH adjustment with sulphur dioxide, yields appreciable calcium reduction and modest decolourisation. The overall benefit indicates that the treated final run-off is of suitable quality to apply another crystallisation step and/or alternatively consider for further purification by chromatographic separation and/or resin decolourisation.

  12. Refinery burner simulation design architecture summary.

    SciTech Connect (OSTI)

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01T23:59:59.000Z

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  13. Recent trends in refinery hydrogen production

    SciTech Connect (OSTI)

    Aitani, A.M.; Siddiqui, M.A.B. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia)

    1996-12-31T23:59:59.000Z

    Refiners are experiencing a rise in hydrogen requirements to improve product quality and process heavy sour crudes. Fuel reformulation has disrupted refinery hydrogen balance in two ways: more hydrogen is needed for hydroprocessing and less hydrogen is coproduced from catalytic naphtha reforming. The purpose of this paper is to review trends in maximizing refinery hydrogen production by modifications and alternatives to the conventional steam methane reforming, recovery from refinery off gases and {open_quote}across-the-fence{close_quote} hydrogen supply. 11 refs., 2 tabs.

  14. From the Woods to the Refinery

    Broader source: Energy.gov [DOE]

    Breakout Session 2DBuilding Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels From the Woods to the Refinery Stephen S. Kelley, Principal and Department Head, Department of Forest Biomaterials, North Carolina State University

  15. Upgrade Your Refinery for Energy Conservation

    E-Print Network [OSTI]

    Johnnie, D. H., Jr.; Klooster, H. J.

    1983-01-01T23:59:59.000Z

    Upgrading existing refineries for efficient energy utilization imposes strict restraints upon design engineers. Present and future production requirements must be defined. Reliable operating data must be obtained from historical records and test...

  16. Making Refinery Wastewater Clean | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Refinery Wastewater Clean Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on...

  17. Application of Pinch Technology in Refinery Retrofits

    E-Print Network [OSTI]

    Thomas, W. R.; Siegell, J. H.; Sideropoulos, T.; Robertson, J. L.; Papoulias, S. A.

    APPLICATION OF PINCH TECHNOLOGY IN REFINERY RETROFITS W. R. L. Thomas, J. H. Siegell, T. Sideropoulos, J. L. Robertson, S. A. Papoulias Exxon Research and Engineering Company Florham Park, New Jersey ABSTRACT This paper reviews... the application of pinch technology in the identification of the most attractive retrofit prospects in typical refineries. In the first part of the paper, methodology is described to identify attractive inter-unit heat integration opportunities as well...

  18. Monitoring and Management of Refinery Energy Consumption

    E-Print Network [OSTI]

    Pelham, R. O.; Moriarty, R. D.; Hudgens, P. D.

    MONITORING AND MANAGEMENT OF REFINERY ENERGY CONSUMPTION Roger O. Pelham Richard D. Moriarty Patrie D. Hudgens Profimatics, Inc. Thousand Oaks, California ABSTRACT Since 1972, the u.s. refining industry has made much progress in reduci... ng energy consumption. Lately, falling energy prices have de-emphasized the need to appropriate new capital for additional energy conservation projects. One area neglected in most refineries is the need to monitor and man age the daily use...

  19. Refinery siting workbook: appendices A and B

    SciTech Connect (OSTI)

    Not Available

    1980-07-01T23:59:59.000Z

    The objective of this effort is to develop and provide basic refinery-related information for use by state and local government officials as a basis for establishing responsible refinery siting requirements and policies consistent with the federal clean air and water standards and socio-economic concerns. The report will be organized into two volumes. The main text comprises the basic topics of physical concerns, regulatory requirements, and permitting activities, while the second volume includes the detailed appendix materials such as the applicable laws, and the necessary permits, as available and a glossary of pertinent terms. As a means to this objective, three refinery sizes, 200,000, 100,000 and 30,000 barrels per day crude charge will be discussed in technical terms. Process unit configuration will be presented which will maximize either gasoline or heating oil production with either sweet or sour crude oil feedstocks. The major issues affecting the socio-economic impact of siting the refinery in a given locale will be presented. These data will review the factors affecting the human environment and the issues that must be addressed to assess the impact that a refinery will have on a community. The key federal registrations which impact upon a refinery siting decision shall be reviewed. Summaries of these regulations and a simplified decision diagram for the air and water acts shall be presented to assist both government and refinery officials in understanding the scope of regulatory impact. All pertinent procedures required for refinery permitting shall be reviewed under the generalized headings of air, water, health and safety, land use, and miscellaneous permits. This categorization at the federal, state and local levels of government shall be used as a basis for establishing degrees of emphasis.

  20. Outlook for Refinery Outages and Available Refinery Capacity in the First Half of 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21Year Jan Feb

  1. Kyrgyzstan starts up its first refinery

    SciTech Connect (OSTI)

    McLeod, G. [Petrofac LLC, Tyler, TX (United States)

    1997-05-05T23:59:59.000Z

    The Central Asian republic of Kyrgyzstan started up its first oil refinery in October 1996. The 10,000 b/d plant is designed to produce gasoline, diesel, and mazut (heavy fuel oil) from local Kyrgyz crude. Before construction of the Jalalabad refinery, all finished petroleum products were imported from neighboring countries. Kyrgyzstan`s demand for finished products is about 40,000 b/d. The new refinery was designed and constructed by Petrofac of Tyler, Texas, on behalf of Kyrgoil Corp., Calgary. Kyrgoil is a partner with the Kyrgyz state oil company, Kyrgyzsneft, in a venture called Kyrzgyz Petroleum Co. (KPC). KPC has undertaken restoration and continued development of the oil fields in Kyrgyzstan`s Fergana basin, in addition to the refinery project. The company also has marketing rights for finished products within Kyrgyzstan. The refinery comprises: a hydroskimming (atmospheric distillation) section, diesel steam stripping, gasoline blending, and utilities and off-sites, including steam generation, power generation, tank farm, truck and rail tank-car loading and unloading facilities, crude inlet pipeline, high-voltage power line, substation, air compression, laboratory, and maintenance facilities.

  2. U.S. Number and Capacity of Petroleum Refineries

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial and Institutional UsersDecadeYear JanMonthYear Jan

  3. U.S. Production Capacity of Operable Petroleum Refineries

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial and Institutional UsersDecadeYearThousandW W W WDay,

  4. U.S. Total Shell Storage Capacity at Operable Refineries

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial and InstitutionalArea: U.S.Feet) WorkingArea: U.S.

  5. U.S. Working Storage Capacity at Operable Refineries

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial and InstitutionalArea: U.S.Feet)Weekly ProductArea:

  6. Steam System Management Program Yields Fuel Savings for Refinery

    E-Print Network [OSTI]

    Gaines, L. D.; Hagan, K. J.

    1983-01-01T23:59:59.000Z

    The Phillips refinery at Borger, Texas, determined the need to develop a utility monitoring system. Shortly after this commitment was made, the refinery was introduced to a flowsheet modeling program that could be used to model and optimize steam...

  7. Software communications integrated into refinery system

    SciTech Connect (OSTI)

    Goodpaster, R.; Kennedy, J.P.

    1989-01-16T23:59:59.000Z

    Ashland Oil Co. is integrating software communications, using real-time data, into the computerized information system at its Catlettsburg, Ky., refinery. The Ashland real-time information system (Artis) was designed to improve timeliness and accuracy of yield accounting to the refinery, and to standardize software communications between applications. With the system, real-time data are collected in a central data server and used to feed normal data reconciliation software for validation. This part of the system has been successfully implemented. Standardization of software communications is still under design, but most of the communication paths have been defined because a highly evolved information system already exists at the refinery. And efforts are under way to integrate information from the process to optimization.

  8. Global Optimization for Scheduling Refinery Crude Oil Operations Ramkumar Karuppiaha

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Global Optimization for Scheduling Refinery Crude Oil Operations Ramkumar Karuppiaha , Kevin C at the front-end of a petroleum refinery. The model relies on a continuous time representation making use-412-268-7139. Email address: grossmann@cmu.edu (I.E. Grossmann) #12;2 Keywords: Refinery scheduling; Nonconvex MINLP

  9. Wireless Critical Process Control in oil and gas refinery plants

    E-Print Network [OSTI]

    Savazzi, Stefano

    Wireless Critical Process Control in oil and gas refinery plants Stefano Savazzi1, Sergio Guardiano control in in- dustrial plants and oil/gas refineries. In contrast to wireline communication, wireless of an oil refinery is illustrated in Fig. 1: typical locations of wireless devices used for re- mote control

  10. Determinants of HR Effectiveness and Refinery Performance

    E-Print Network [OSTI]

    Blaine Mccormick; Gary C. Mcmahan; W. Scott Sherman; Patrick M. Wright; Patrick M. Wright; Gary C. Mcmahan; Blaine Mccormick; W. Scott Sherman

    This paper has not undergone formal review or approval of the faculty of the ILR School. It is intended to make results of Center research available to others interested in preliminary form to encourage discussion and suggestions. Page 1SHRM and Refinery Performance WP 97-16 Strategy, Core Competence and HR Involvement as

  11. Refinery siting workbook: appendices C to O

    SciTech Connect (OSTI)

    Not Available

    1980-07-01T23:59:59.000Z

    Applicable laws and permits available for the selection and building of petroleum refineries are enclosed. A glossary of pertinent terms is also included. References related to the National Environmental Policy Act, the Clean Air Act, the Federal Water Pollution Control Act, Resource Conservation and Recovery Act, Toxic Substance Control Act, and Wetlands and Coastal Zone are included. Permit information is also presented. (DC)

  12. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May(MillionFeet)JulyEndData

  13. Flare Gas Recovery in Shell Canada Refineries

    E-Print Network [OSTI]

    Allen, G. D.; Wey, R. E.; Chan, H. H.

    1983-01-01T23:59:59.000Z

    the flow properties for compressor selection? What controls should be incorporated? How much operator and maintenance effort will be required for safe, efficient operation? What kind of process and hardware problems should be watched for? When...? This paper will touch on all these issues. SYSTEM CONFIGURATION A schematic of a typical refinery flare gas recovery facility is shown in Figure I. The facilities include the following pieces of equipment: - compressor suction drum - compressor set...

  14. Opportunities for Biorenewables in Oil Refineries

    SciTech Connect (OSTI)

    Marker, T.L.

    2005-12-19T23:59:59.000Z

    Abstract: The purpose of this study was to evaluate the potential for using biorenewable feedstocks in oil refineries. Economic analyses were conducted, with support from process modeling and proof of principle experiments, to assess a variety of potential processes and configurations. The study considered two primary alternatives: the production of biodiesel and green diesel from vegetable oils and greases and opportunities for utilization of pyrolysis oil. The study identified a number of promising opportunities for biorenewables in existing or new refining operations.

  15. Projection and Reaction for Decision Support in Refineries: Combining Multiple Theories

    E-Print Network [OSTI]

    Krebsbach, Kurt D.

    Projection and Reaction for Decision Support in Refineries: Combining Multiple Theories Kurt D system to provide decision support for refinery operations personnel (Krebsbach & Musliner 1997; Musliner to provide sufficiently flexible decision support in complex environments. Background: Refinery Control

  16. U.S. Refinery Net Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 0.11 0.0949,797.6(MillionRefinery3,028,561- - -

  17. Firing Excess Refinery Butane in Peaking Gas Turbines

    E-Print Network [OSTI]

    Pavone, A.; Schreiber, H.; Zwillenberg, M.

    normal butane production, which will reduce refinery normal butane value and price. Explored is an opportunity for a new use for excess refinery normal butane- as a fuel for utility peaking gas turbines which currently fire kerosene and #2 oil. Our paper...

  18. Firing Excess Refinery Butane in Peaking Gas Turbines

    E-Print Network [OSTI]

    Pavone, A.; Schreiber, H.; Zwillenberg, M.

    1989-01-01T23:59:59.000Z

    normal butane production, which will reduce refinery normal butane value and price. Explored is an opportunity for a new use for excess refinery normal butane- as a fuel for utility peaking gas turbines which currently fire kerosene and #2 oil. Our paper...

  19. Reformulated gasoline: Costs and refinery impacts

    SciTech Connect (OSTI)

    Hadder, G.R.

    1994-02-01T23:59:59.000Z

    Studies of reformulated gasoline (RFG) costs and refinery impacts have been performed with the Oak Ridge National Laboratory Refinery Yield Model (ORNL-RYM), a linear program which has been updated to blend gasolines to satisfy emissions constraints defined by preliminary complex emissions models. Policy makers may use the reformulation cost knee (the point at which costs start to rise sharply for incremental emissions control) to set emissions reduction targets, giving due consideration to the differences between model representations and actual refining operations. ORNL-RYM estimates that the reformulation cost knee for the US East Coast (PADD I) is about 15.2 cents per gallon with a 30 percent reduction of volatile organic compounds (VOCs). The estimated cost knee for the US Gulf Coast (PADD III) is about 5.5 cents per gallon with a VOC reduction of 35 percent. Reid vapor pressure (RVP) reduction is the dominant VOC reduction mechanism. Even with anti-dumping constraints, conventional gasoline appears to be an important sink which permits RFG to be blended with lower aromatics and sulfur contents in PADD III. In addition to the potentially large sensitivity of RFG production to different emissions models, RFG production is sensitive to the non-exhaust VOC share assumption for a particular VOC model. ORNL-RYM has also been used to estimate the sensitivity of RFG production to the cost of capital; to the RVP requirements for conventional gasoline; and to the percentage of RFG produced in a refining region.

  20. Nigerian refineries strive for product balance

    SciTech Connect (OSTI)

    Obuasi, P.A.

    1985-06-17T23:59:59.000Z

    This article discusses the growth patterns of the Nigerian refining industry. Production and consumption are expected to follow the pattern of consumption of fuel products by the domestic market, Presently, however, production and consumption are not evenly balanced for most fuel products, and non-fuel products are domestically consumed but not produced. Some progress has been made in the effort to match production and consumption of fuel products. But the progress that would have been made to balance non-fuel products has been nullified by 50% of the Daduna refinery being idle. This is due to problems associated with importation of heavy crude oil into Nigeria and also a weak market for asphalt in Nigeria.

  1. RCC complex now cornerstone of Ashland refinery

    SciTech Connect (OSTI)

    Busch, L.E.; Hettinger, W.P.; Krock, R.P.

    1984-12-10T23:59:59.000Z

    Performance of the first grassroots RCC process unit during its initial 1 1/2 years of operation at Ashland's principal refinery at Catlettsburg, Ky., has confirmed the commercial viability and process advantages of this new technology for heavy oil conversion. The unit has successfully processed untreated atmospheric residuum having Ramsbottom carbon content as high as 7.1 wt%, and metals contamination up to 70 ppm nickel plus vanadium into high yields of transportation and distillate fuels and other light products. The startup of this 40,000 b/d facility in March 1983 brought to fruition nearly 8 years of diligent process development and a 3-year accelerated engineering and construction program. The commercial unit was expressly designed and built to exploit process, hardware, and catalyst innovations flowing from the development effort and demonstrated to be especially applicable to converting long resids. The unit has generally met and exceeded technical expectations.

  2. Integrating NABC bio-oil intermediates into the petroleum refinery

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2D: Working Together: Conventional Refineries and Bio-Oil R&D Technologies Thomas Foust, Director, National Bioenergy Center, National Renewable Energy Laboratory

  3. Implementing an Energy Management Strategy for a Houston Refinery

    E-Print Network [OSTI]

    Wood, S. C.; Agrawal, R. K.; Canon, D.

    and maintained energy management program translates to PROFIT added directly to the BOTTOM LINE. Woodward-Clyde Consultants (WCC) recently implemented and energy management program at the Lyondell-Citgo Refinery in Houston, Texas. The basis of the program...

  4. Refinery Energy Conservation Experience with Enhanced Surface Reboilers

    E-Print Network [OSTI]

    Ragi, E. G.; O'Neill, P. S.

    1981-01-01T23:59:59.000Z

    Examples of refinery services where existing reboilers were retubed or replaced with enhanced High Flux tubing to better utilize or conserve energy are reported. (1) Retubing an existing toluene column reboiler permitted the use of low cost 115...

  5. Gas Separation Membrane Use in the Refinery and Petrochemical Industries

    E-Print Network [OSTI]

    Vari, J.

    Membranes have gained commercial acceptance as proven methods to recover valuable gases from waste gas streams. This paper explores ways in which gas separation membranes are used in the refinery and petrochemical industries to recover and purify...

  6. Petroleum Refinery Catalytic Reforming -- Cutting High Energy Costs

    E-Print Network [OSTI]

    Viar, W. L.

    1979-01-01T23:59:59.000Z

    . It is essential that the operation and maintenance of these furnaces be optimized to minimize production costs. This paper describes the performance testing and evaluation of a set of ten refinery furnaces used to thermally drive several reforming reactors...

  7. Optimization of Steam Network in Tehran Oil Refinery

    E-Print Network [OSTI]

    Khodaie, H.; Nasr, M. R. J.

    2008-01-01T23:59:59.000Z

    Dominated energy crisis in the world dictates to reduce energy consumption and identify energy saving opportunities in large and complex industries especially in oil refining industry. In this paper, Tehran oil refinery is considered as a proper...

  8. Obstacles and Opportunity: Turbine Motorization in Refineries Today

    E-Print Network [OSTI]

    Feng, Hua; Liu, Jinghing; Liu, Xiang; Ahmad, Mushtaq; Deng, Alan

    2012-01-01T23:59:59.000Z

    Steam turbines have been widely used in oil refineries for driving pumps, compressors and other rotary machines. However, in recent years, the authors of this paper have seen substantial turbine motorization projects completed or being planned...

  9. Obstacles and Opportunity: Turbine Motorization in Refineries Today

    E-Print Network [OSTI]

    Feng, Hua; Liu, Jinghing; Liu, Xiang; Ahmad, Mushtaq; Deng, Alan

    2012-01-01T23:59:59.000Z

    Steam turbines have been widely used in oil refineries for driving pumps, compressors and other rotary machines. However, in recent years, the authors of this paper have seen substantial turbine motorization projects completed or being planned...

  10. Steps taken at Malelane refinery to improve refined sugar quality

    E-Print Network [OSTI]

    M Moodley; Pm Schorn

    1997-01-01T23:59:59.000Z

    The refinery at Malelane has in the past produced refined sugar for the consumer market. A decision was taken by the management of Transvaal Sugar (TSB) to produce a quality of refined sugar that would also be acceptable to the industrial and the export markets. The processes that were evaluated and implemented at the Malelane refinery during the past three seasons to achieve this objective, are described.

  11. ,"U.S. Refinery Net Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    mbblpda.xls" ,"Available from Web Page:","http:www.eia.govdnavpetpetpnprefp2dcnusmbblpda.htm" ,"Source:","Energy Information Administration" ,"For Help,...

  12. Assessment of coal liquids as refinery feedstocks

    SciTech Connect (OSTI)

    Zhou, P.

    1992-02-01T23:59:59.000Z

    The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  13. Assessment of coal liquids as refinery feedstocks

    SciTech Connect (OSTI)

    Zhou, P.

    1992-02-01T23:59:59.000Z

    The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  14. VarPetrRef 1 VARIETY AND THE EVOLUTION OF REFINERY PROCESSING

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    VarPetrRef 1 VARIETY AND THE EVOLUTION OF REFINERY PROCESSING Phuong NGUYEN*, Pier-Paolo SAVIOTTI, refinery processes, variety, niche theory, Weitzman measure. JEL classification : L15 -L93 -O3 1

  15. STAMP-Based Analysis of a Refinery Overflow Accident Nancy Leveson, Margaret Stringfellow, and John Thomas

    E-Print Network [OSTI]

    Leveson, Nancy

    1 STAMP-Based Analysis of a Refinery Overflow Accident Nancy Leveson, Margaret Stringfellow, and John Thomas As an example of STAMP, we have taken an accident report produced for a real refinery

  16. Opportunities for Biomass-Based Fuels and Products in a Refinery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Biomass-Based Fuels and Products in a Refinery Opportunities for Biomass-Based Fuels and Products in a Refinery Breakout Session 2: Frontiers and Horizons Session...

  17. Gross Error Detection in Chemical Plants and Refineries for On-Line Optimization

    E-Print Network [OSTI]

    Pike, Ralph W.

    Gross Error Detection in Chemical Plants and Refineries for On-Line Optimization Xueyu Chen, Derya) British Petroleum Applications mainly crude units in refineries and ethylene plants #12;Companies

  18. Mixed reality training application for an oil refinery: user requirements

    E-Print Network [OSTI]

    Marjaana Trskbck

    2004-01-01T23:59:59.000Z

    Introducing mixed reality (MR) into safety-critical environment like oil refinery is difficult, since the environment and organization lays demanding restrictions for the application. In order to develop usable and safe MR application, we need to study the context of use and derive user requirements from it. This paper describes the user requirements for an MR based oil refinery training tool. The application is aimed to train employees of a specific process unit in the refinery. Training is currently done mainly in a classroom and on-site only when the process is closed down. On-site training is necessary, but expensive and rarely possible. The use of mixed reality offers a way to train employees on-site while the process is running. Users can virtually see inside the columns and can modify virtually the process..

  19. Potentials for Fuel Cells in Refineries and Chlor-Alkali Plants

    E-Print Network [OSTI]

    Altseimer, J. H.; Roach, F.

    POTENTIALS FOR FUEL CELLS IN REFINERIES AND CHLOR-ALKALI PLANTS John H. Altseimer and Fred Roach Los Alamos National Laboratory Los Alamos, New Mexico ABSTRACT The market potentials for fuel cell cogenera tion systems in petroleum refineries... in the production process are favorable to the use of fuel cells. The energy use in refineries is steam intensive with the required steam pressures ranging from approximately 15 to 650 psig. The near-term use of fuel cell cogeneration in refineries...

  20. Ashland outlines $261 million in refinery unit construction

    SciTech Connect (OSTI)

    Not Available

    1992-08-31T23:59:59.000Z

    This paper reports that Ashland Petroleum Co. has spelled out $261 million in projects completed, under way, or planned to produce cleaner fuel and further reduce emissions at two U.S. refineries. The company: Started up at $13 million pollution control system at its 213,400 b/cd Catlettsburg, Ky., plant. Started construction on six projects at its 67,100 b/cd St. Paul Park, Minn., refinery that will cost about $114 million and enable the plant to produce cleaner burning diesel fuel and further reduce emissions.

  1. GDP Formulation of a segmented CDU Swing Cut Model for Refinery Planning

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 GDP Formulation of a segmented CDU Swing Cut Model for Refinery Planning (Performance Analysis. Grossmann #12;2 Motivation · Refinery planning is an active area in process systems that strongly relies HF REFINERY FUEL RG LPG LN HN KN GO1 GO2 VGO VR1 VR2 C1 LPG LIGHT NAPHTHA PMS 98 MOGAS 95 JET FUEL

  2. The effects of soil type and chemical treatment on nickel speciation in refinery enriched soils

    E-Print Network [OSTI]

    The effects of soil type and chemical treatment on nickel speciation in refinery enriched soils Aerial deposition of Ni from a refinery in Port Colborne, Ontario, Canada has resulted in the enrichment in vegetable crops grown in the vicinity of the refinery. Conversely, dolomitic lime- stone additions resulted

  3. Optimal Industrial Load Control in Smart Grid: A Case Study for Oil Refineries

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    Optimal Industrial Load Control in Smart Grid: A Case Study for Oil Refineries Armen Gholian, Hamed units finish their operations. Considering an oil refinery industry as an example, we not only identify Terms­Demand response, load management, manufactur- ing industries, oil refineries, optimal scheduling

  4. Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs)

    E-Print Network [OSTI]

    Treatability studies on different refinery wastewater samples using high-throughput microbial, University Park, PA 16802, USA h i g h l i g h t s Refinery wastewaters were tested as fuels in MECs effective for treatment or pre-treatment of some refinery wastewaters. The best way to start up MECs

  5. Wireless channel characterization and modeling in oil and gas refinery plants

    E-Print Network [OSTI]

    Savazzi, Stefano

    Wireless channel characterization and modeling in oil and gas refinery plants Stefano Savazzi1 modeling approach is validated by experimental measurements in two oil refinery sites using industry and gas refinery sites are characterized by harsh environments where radio signals are prone to blockage

  6. Integration of Refinery Planning and Crude-Oil Scheduling using Lagrangian Decomposition

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Integration of Refinery Planning and Crude-Oil Scheduling using Lagrangian Decomposition Sylvain: refinery planning and crude-oil operations scheduling. The proposed approach consists of using Lagrangian-study and a larger refinery problem show that the Lagrangian decomposition algorithm is more robust than the other

  7. Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations

    E-Print Network [OSTI]

    Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced 2013 Available online 5 November 2013 Keywords: Microbial fuel cells Refinery wastewater Biodegradability Separator electrode assembly a b s t r a c t The effectiveness of refinery wastewater (RW

  8. JANUARY 2007 THE BP U.S. REFINERIES INDEPENDENT SAFETY REVIEW PANEL

    E-Print Network [OSTI]

    Leveson, Nancy

    OF JANUARY 2007 THE REPORT THE BP U.S. REFINERIES INDEPENDENT SAFETY REVIEW PANEL #12;From left;PANEL STATEMENT The B.P. U.S. Refineries Independent Safety Review Panel i Process safety accidents can be prevented. On March 23, 2005, the BP Texas City refinery experienced a catastrophic process accident

  9. Perception of an emergency Situation by operators in an oil refinery L.Pioche&J.RPineau

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Perception of an emergency Situation by operators in an oil refinery L.Pioche&J.RPineau Institut de the operators' behaviour during an emergency Situation m an oil refinery. The aim ofthis stage the general objective is to analyse the operators' behaviour during an emergency Situation in an oil refinery

  10. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    SciTech Connect (OSTI)

    Worrell, Ernst; Galitsky, Christina

    2005-02-15T23:59:59.000Z

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the petroleum refining industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to individual refineries, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  11. North Dakota Refining Capacity Study

    SciTech Connect (OSTI)

    Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

    2011-01-05T23:59:59.000Z

    According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

  12. The MTBE solution: Octanes, technology, and refinery profitability

    SciTech Connect (OSTI)

    Lander, E.P.; Hubbard, J.N.; Smith, L.A.

    1983-03-01T23:59:59.000Z

    This paper has been developed to provide refiners with business decision insight regarding the production of methyl tertiary butyl ether (MTBE) from refinery - (FCC) produced isobutylene. The driving forces making MTBE an attractive investment are examined with regard to the increasing demand for higher octane unleaded gasolines. The decision to proceed with MTBE production depends on the profitability of such an investment and the refiner's ability to meet market demands using available processing equipment, refinery produced streams and external feedstocks. The factors affecting this decision are analyzed in this paper and include: industry ability to meet rising octane demand; profit potential realized by diverting isobutylene to MTBE; availability of technology for producing MTBE; and investment and operating costs required to produce MTBE. Chemical Research and Licensing and NEOCHEM have developed a simple, low cost process to produce MTBE, reducing the excessive equipment and high operating costs that were associated with conventional MTBE designs. The economics and process benefits of installing a CRandL/NEOCHEM MTBE process are examined within the framework of a generalized medium-sized refinery configuration.

  13. Refinery gas waste heat energy conversion optimization in gas turbines

    SciTech Connect (OSTI)

    Rao, A.D.; Francuz, D.J.; West, E.W. [Fluor Daniel, Inc., Irvine, CA (United States)

    1996-12-31T23:59:59.000Z

    Utilization of refinery fuel gas in gas turbines poses special challenges due to the combustion characteristics of the fuel gas which contains significant concentrations of hydrogen. Proper modifications to the combustion system of the existing gas turbines are required in order to combust such fuel gas streams in gas turbines while minimizing the NO{sub x} emissions. A novel approach to the utilization of this hydrogen bearing fuel gas in gas turbines consists of humidifying the fuel gas with water vapor by direct contact with hot water in a counter-current column, the feed water to the humidifier being first circulated through the refinery to recover waste heat. The refinery waste heat produces additional motive fluid with a result that the waste heat is converted to power in the gas turbine. Furthermore, the water vapor introduced into the fuel gas reduces the NO{sub x} formation and increases the gas turbine output, while the hydrogen present in the fuel gas provides the flame stability required when combusting a fuel gas containing a large concentration of water vapor.

  14. University of Maine Integrated Forest Product Refinery (IFPR) Technology Research

    SciTech Connect (OSTI)

    Pendse, Hemant P.

    2010-11-23T23:59:59.000Z

    This project supported research on science and technology that forms a basis for integrated forest product refinery for co-production of chemicals, fuels and materials using existing forest products industry infrastructure. Clear systems view of an Integrated Forest Product Refinery (IFPR) allowed development of a compelling business case for a small scale technology demonstration in Old Town ME for co-production of biofuels using cellulosic sugars along with pulp for the new owners of the facility resulting in an active project on Integrated Bio-Refinery (IBR) at the Old Town Fuel & Fiber. Work on production of advanced materials from woody biomass has led to active projects in bioplastics and carbon nanofibers. A lease for 40,000 sq. ft. high-bay space has been obtained to establish a Technology Research Center for IFPR technology validation on industrially relevant scale. UMaine forest bioproducts research initiative that began in April 2006 has led to establishment of a formal research institute beginning in March 2010.

  15. GDP Formulation of a segmented CDU Swing Cut Model for Refinery Planning

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 GDP Formulation of a segmented CDU Swing Cut Model for Refinery Planning Department of Chemical · Refinery planning is an active area in process systems that strongly relies on the accuracy of the CDU REFINERY FUEL RG LPG LN HN KN GO1 GO2 VGO VR1 VR2 C1 LPG LIGHT NAPHTHA PMS 98 MOGAS 95 JET FUEL AGO HGO HFO

  16. Updated estimation of energy efficiencies of U.S. petroleum refineries.

    SciTech Connect (OSTI)

    Palou-Rivera, I.; Wang, M. Q. (Energy Systems)

    2010-12-08T23:59:59.000Z

    Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels such as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.

  17. (Data in kilograms of germanium content unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon an estimated

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based upon an estimated 2004 producer refinery in Utica, NY, produced germanium tetrachloride for optical fiber production. Another refinery

  18. ,"U.S. Downstream Charge Capacity of Operable Petroleum Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlantGrossDistillateReserves+Charge

  19. ,"U.S. Production Capacity of Operable Petroleum Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+LiquidsAnnual",2014Annual",2014Gas,

  20. Feasibility study report for the Imperial Valley Ethanol Refinery: a 14. 9-million-gallon-per-year ethanol synfuel refinery utilizing geothermal energy

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project is economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.

  1. The Energy Minimization Method: A Multiobjective Fitness Evaluation Technique and Its Application to the Production Scheduling in a Petroleum Refinery

    E-Print Network [OSTI]

    Coello, Carlos A. Coello

    to the Production Scheduling in a Petroleum Refinery Mayron Rodrigues de Almeida Slvio Hamacher Industrial applied to production scheduling of a petroleum refinery. The experimental results are presented of the method when applied to the production scheduling in a petroleum refinery. Section 5 discusses

  2. High-Octane Fuel from Refinery Exhaust Gas: Upgrading Refinery Off-Gas to High-Octane Alkylate

    SciTech Connect (OSTI)

    None

    2009-12-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Exelus is developing a method to convert olefins from oil refinery exhaust gas into alkylate, a clean-burning, high-octane component of gasoline. Traditionally, olefins must be separated from exhaust before they can be converted into another source of useful fuel. Exelus process uses catalysts that convert the olefin to alkylate without first separating it from the exhaust. The ability to turn up to 50% of exhaust directly into gasoline blends could result in an additional 46 million gallons of gasoline in the U.S. each year.

  3. (Data in kilograms of germanium content, unless noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1995

    E-Print Network [OSTI]

    : The value of domestic refinery production of germanium, based on the 1995 producer price, was approximately industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania. World Refinery Production, Reserves, and Reserve Base: Refinery production Reserves6 Reserve base6 1994

  4. Hydrotreating Pyrolytic Lignin to Produce a Refinery Feedstock (Poster)

    SciTech Connect (OSTI)

    French, R. J.

    2013-09-01T23:59:59.000Z

    Fast pyrolysis of biomass followed by water separation to produce pyrolytic lignin and hydrotreating of the lignin could be used to produce a stable volatile low-oxygen intermediate liquid. Such a liquid could be converted into a finished motor-fuel in a refinery, taking advantage of the existing infrastructure and economies of scale of refineries. Hydrotreating just the lignin would consume less hydrogen while preserving about half of the energy of the original oil. The aqueous by-products could be reformed to produce the needed hydrogen and would contain much of the unwanted acids and unstable oxygenates. To assess such intermediate liquids, several pyrolytic lignins were prepared by mixing pyrolysis oil with water at 1:1 and 3:1 ratios. The carboxylic acidity in the pyrolytic lignin was reduced to 24 and 10 mg-KOH/g-lignin compared to 81 in the whole oil. These lignins were hydrotreated using Ni-Mo(S)/alumina, Pt/char, or Pd/C(activated) in a semi-batch 1 L stirred autoclave. The oil was stabilized under hydrogen at 150-280 degrees C, then water and light organics were removed by partial depressurization. Hydrodeoxygenation was then performed at 340-400 degrees C. Total pressure was controlled at 70 or 170 bar with hydrogen gas. Organic liquid yields of 39-56% were obtained. For many experiments the organic oxygen content was <7%, acidity was < 7 mg-KOH/g-oil, the volatility was greater than or equal to 94% and, on a carbon basis, the total yield of organic products miscible in hydrocarbons at a 1:10 ratio was over 50%. These properties are probably acceptable to a refinery.The residual liquids left in the reactor at the end of the experiment comprised 60-85% of the organic-phase product while the rest was condensate. 13C-NMR of the residual liquids showed that they were 50-80% aliphatic. 13C-NMR coupled with GC-MS identified phenolic compounds as the main oxygenates in most residual liquids.

  5. Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra; Kumar, Ravi; Mehlman, Stewart

    2010-06-21T23:59:59.000Z

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

  6. Western Area Power Administration Transmission Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expected to Borrow Next WHAT IS WESTERN? * Power Marketing Administration under DOE * Wholesale electricity supplier, 57 hydropower plants, 10,479 MW capacity * 682 long-termfirm...

  7. Energy efficiency improvement and cost saving opportunities for petroleum refineries

    E-Print Network [OSTI]

    Worrell, Ernst; Galitsky, Christina

    2005-01-01T23:59:59.000Z

    Technologies, National Energy Technologies Laboratory, U.S.Department of Energy/Energy Information Administration, Washington, DC, June

  8. EIA-800, Weekly Refinery and Fractionator Report Page 1 U. S. ENERGY INFORMATION ADMINISTRATION

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name: Email: Terminal Control Number (TCN):800,

  9. EIA-820, Annual Refinery Report Page 1 U. S. ENERGY INFORMATION ADMINISTRATION

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name: Email: Terminal2,7, MonthlyEIAENERGY

  10. Page 1 EIA-810, Monthly Refinery Report U. S. ENERGY INFORMATION ADMINISTRATION

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) - HouseholdshortEIA-782A andS F J uP2.

  11. CO2 Reduction through Optimization of Steam Network in Petroleum Refineries: Evaluation of New Scenario

    E-Print Network [OSTI]

    Manesh, M. H. K; Khodaie, H.; Amidpour, M.

    2008-01-01T23:59:59.000Z

    Steam network of petroleum refinery is energy intensive, and consequently contribute significantly to the greenhouse gases emissions. A simple model for the estimation of CO2 emissions associated with operation of steam network as encountered...

  12. SELECTED TOPICS in APPLIED COMPUTER SCIENCE Data Mining and Data Gathering in a Refinery

    E-Print Network [OSTI]

    Mahmoud Reza Saybani A; Teh Ying Wah B

    This article handles one of critical steps of data mining, which is data collection. It will show how the researcher could get access to the valuable data of a refinery. And it explains the procedures of refining criteria for data collection. It also briefly explains the oil refining procedures to make the concept of data gathering at the refinery easier to understand. Each manufacturing company has its own specifications and rules that are needed to be considered when collecting data. As such the result of data gathering is almost always different for different manufacturing companies. Key-Words: Data gathering, data collection, data mining, oil refinery Data mining algorithms play an important and successful role in many manufacturing companies including oil refineries. Profit management, quality and process control in

  13. Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions

    E-Print Network [OSTI]

    Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

    1985-01-01T23:59:59.000Z

    Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NOx emissions while also generating electricity at an attractive heat rate. Design considerations and system costs are presented....

  14. CO2 Reduction through Optimization of Steam Network in Petroleum Refineries: Evaluation of New Scenario

    E-Print Network [OSTI]

    Manesh, M. H. K; Khodaie, H.; Amidpour, M.

    2008-01-01T23:59:59.000Z

    Steam network of petroleum refinery is energy intensive, and consequently contribute significantly to the greenhouse gases emissions. A simple model for the estimation of CO2 emissions associated with operation of steam network as encountered...

  15. Assuring Mechanical Integrity of Refinery Equipment Through Global ON-Stream Inspection

    SciTech Connect (OSTI)

    John W. Berthold

    2006-02-22T23:59:59.000Z

    The development of global on-stream inspection technology will have a dramatic effect on how refinery operations are managed in the U.S. in the future. Global on-stream inspection will provide assurance of the mechanical integrity of critical plant equipment and will allow refineries to operate more efficiently with less impact on our environment and with an increased margin of safety.

  16. Exergy Analysis of the Steam Network in Tehran Oil Refinery and Evaluation with New Scenario

    E-Print Network [OSTI]

    Khodaei, H.; Taheri, R.; Arghandeh, R.

    oil refinery, Exergy Analysis, Steam Network, Retrofit, Optimization 1. INTRODUCTION Refinery steam network is considered as a unit that consumes energy greatly. The main objective of the network is to produce the steam, which is required...) Using heat recovery steam generating systems and gas turbines instead of old boilers and so on. Figure 1 shows the opportunities of optimization in steam networks. in this paper, we complete the lost works such as optimization and estimation...

  17. Energy Efficient Refinery Process Developed with U.S. D.O.E. Support

    E-Print Network [OSTI]

    Mings, W. J.

    1983-01-01T23:59:59.000Z

    ENERGY EFFICIENT REFINERY PROCESS DEVELOPED WITH U.S. D.O.E. SUPPORT Walter J. Mings, P.E. EG&G Idaho, Inc. Idaho Falls, Idaho Abstract The United States Department of Energy histori cally has encouraged private efforts to develop en ergy... with potential for extensive industrial energy savings. INTRODUCTION An innovative energy saving refinery process (also called the catalytic distillation process) for pro ducing MTBE (Methyl Tertiary Butyl Ether) was devel oped by two Houston companies...

  18. Affordability analysis of lead emission controls for a smelter-refinery. Final report

    SciTech Connect (OSTI)

    Scherer, T.M.

    1989-10-01T23:59:59.000Z

    This document evaluates the affordability and economic impact of additional control measures deemed necessary for a smelter-refinery to meet the lead emission standard. The emphasis in the analysis is on the impact of control costs on the smelter-refinery's profitability. The analysis was performed using control-cost data from two different lead-smelter studies in conjunction with other existing industry data.

  19. Technologies for the separation and recovery of hydrogen from refinery streams

    SciTech Connect (OSTI)

    Wilcher, F.P.; Miller, G.Q.; Mitariten, M.J. [UOP, Des Plaines, IL (United States)

    1995-12-31T23:59:59.000Z

    The effective use and recovery of hydrogen from the major hydrogen-containing streams in the refinery is an important strategy to meet the refining demands of the 1990`s. Hydrogen upgrading in refinery applications can be achieved by pressure swing adsorption (PSA), selective permeation using polymer membranes, and cryogenic separation. Each of these processes has different characteristics which are of advantage in different situations. Process selection and specific application examples are discussed.

  20. Petroleum Refinery Jobs and Economic Development Impact (JEDI) Model User Reference Guide

    SciTech Connect (OSTI)

    Goldberg, M.

    2013-12-31T23:59:59.000Z

    The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are user-friendly tools utilized to estimate the economic impacts at the local level of constructing and operating fuel and power generation projects for a range of conventional and renewable energy technologies. The JEDI Petroleum Refinery Model User Reference Guide was developed to assist users in employing and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the model estimates job creation, earning and output (total economic activity) for a given petroleum refinery. This includes the direct, indirect and induced economic impacts to the local economy associated with the refinery's construction and operation phases. Project cost and job data used in the model are derived from the most current cost estimations available. Local direct and indirect economic impacts are estimated using economic multipliers derived from IMPLAN software. By determining the regional economic impacts and job creation for a proposed refinery, the JEDI Petroleum Refinery model can be used to field questions about the added value refineries may bring to the local community.

  1. International Journal of Chemistry; 2013[02] ISSN 2306-6415 Preservation Ways and Energy Consumption in Oil Refinery

    E-Print Network [OSTI]

    Amir Samimi

    Abstract: Preservation increase and energy return is one of the effective tools in saving. Studies show that energy consumption for each productive crude oil barred is dependence on the refinery complicated in reconfiguration of forge. Energy recovery increase in refinery over time that is due to economic factors like consumption fuel increase, it means that return increase is consistent with fuel price. It developed use of crude oil capability, distillation products in modern refinery. Modern refinery recovery dead to 10 to 15 % saving in energy consumption, Modern refinery.can developed energy return in several ways such as: Thermal exchange increase between processes streams, effective hydro exchange in process units, use of heaters with high thermal return and use of gas turbines with preheated air and produce steam of waste thermal. This paper investigates management ways and energy consumption recovery in different parts of oil refinery.

  2. Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams

    SciTech Connect (OSTI)

    Clifford, C.E.B.; Schobert, H.H. [Pennsylvania State University, PA (United States)

    2008-07-01T23:59:59.000Z

    We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

  3. 143Business Administration BUSINESS ADMINISTRATION

    E-Print Network [OSTI]

    Dresden, Gregory

    143Business Administration BUSINESS ADMINISTRATION (BUS) PROFESSORS CLINE, DEAN, KESTER VISITING ASSOCIATE PROFESSOR GIBBS ASSISTANT PROFESSOR REITER MAJOR A major in business administration leading at least 24 credits in business administration and 26 credits not in business administration, as follows: 1

  4. Korean oxygenates rule sparks MTBE capacity plans

    SciTech Connect (OSTI)

    Kim, Hyung-Jin

    1994-06-15T23:59:59.000Z

    The Korean government`s strict standard for gasoline sold domestically is expected to have a significant impact on the methyl tert-butyl ether (MTBE) market. The mandate-requiring gasoline oxygen content of 0.5% this year, 0.75% by 1996, and 1.0% by 1998-has sparked a rush by Korean refineries to build new MTBE plants. If expansion plans are carried out, Korea`s MTBE capacity will increase from 280,000 m.t./year to 650,000 m.t./year by 1996, far surpassing predicted demand. Honam Oil, part of the Lucky Group, plans startup of a 100,000-m.t./year unit at Yeochon by early 1996. In addition, by the end of 1996 Ssangyong Oil will bring a 100,000-m.t./year unit onstream.

  5. FEASIBILITY STUDY FOR A PETROLEUM REFINERY FOR THE JICARILLA APACHE TRIBE

    SciTech Connect (OSTI)

    John D. Jones

    2004-10-01T23:59:59.000Z

    A feasibility study for a proposed petroleum refinery for the Jicarilla Apache Indian Reservation was performed. The available crude oil production was identified and characterized. There is 6,000 barrels per day of crude oil production available for processing in the proposed refinery. The proposed refinery will utilize a lower temperature, smaller crude fractionation unit. It will have a Naphtha Hydrodesulfurizer and Reformer to produce high octane gasoline. The surplus hydrogen from the reformer will be used in a specialized hydrocracker to convert the heavier crude oil fractions to ultra low sulfur gasoline and diesel fuel products. The proposed refinery will produce gasoline, jet fuel, diesel fuel, and a minimal amount of lube oil. The refinery will require about $86,700,000 to construct. It will have net annual pre-tax profit of about $17,000,000. The estimated return on investment is 20%. The feasibility is positive subject to confirmation of long term crude supply. The study also identified procedures for evaluating processing options as a means for American Indian Tribes and Native American Corporations to maximize the value of their crude oil production.

  6. TSNo s02-roberts104537-O Microscopic and Spectroscopic Speciation of Ni in Soils in the Vicinity of a Ni Refinery.

    E-Print Network [OSTI]

    Sparks, Donald L.

    in the Vicinity of a Ni Refinery. abstract Accurately predicting the fate and bioavailability of metals in smelter REFINERY ASA-CSSA-SSSA Annual Meetings - October 21 - 25, 2001 - Charlotte, NC #12;

  7. Potentials for fuel cells in refineries and chlor-alkali plants

    SciTech Connect (OSTI)

    Altseimer, J.H.; Roach, F.

    1986-01-01T23:59:59.000Z

    The market potentials for fuel cell cogeneration systems in petroleum refineries and chlor-alkali plants were evaluated. the most promising application appears to be in chlor-alkali plants where the production process is electricity intensive. Future anticipated changes in the production process are favorable to the use of fuel cells. The energy use in refineries is steam intensive with the required steam pressures ranging from approximately 15 to 650 psig. The near-term use of fuel cell cogeneration in refineries is not as attractive as in chlor-alkali plants. The phosphoric acid fuel cell is the most developed and the most competitive, but its use is limited by its being able to produce only low-pressure steam. Over the longer term, the molten carbonate and the solid oxide fuel cell both of which operate at significantly higher temperatures, are technically very attractive. However, they do not appear to be cost competitive with conventional systems.

  8. Methods applied to investigate the major VCE that occured in the TOTAL refinery's Fluid Catalytic Cracking Unit at La Mede,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    95-35 Methods applied to investigate the major ?VCE that occured in the TOTAL refinery's Fluid.V.C.E, occured in the Gas Plant of the TOTAL refinery's Fluid Catalytic Cracking ünit at La Mede, France

  9. EVALUATION OF THE SACCHAROFLEX 2000 REFLECTANCE MEASURING INSTRUMENT FOR REFINED SUGAR COLOUR ESTIMATION AT HULETTS REFINERY

    E-Print Network [OSTI]

    M Moodley; N K Padayachee; V Govender

    Due to the successful use of the Saccharoflex 2000 reflectance measurement instrument on the estimation of refined sugar colour elsewhere in the world, it was decided by Tongaat-Hulett Sugar to evaluate the instrument at the refinery in Durban. Tests were carried out on first, second, third and fourth refined sugars, the results of which showed a good correlation between the ICUMSA colour measurement and the reflectance reading obtained from the Saccharoflex 2000. The instrument offers a number of advantages, the main one being that a refined sugar colour value can be obtained in less than a minute. The refinery has therefore purchased one for process control.

  10. (Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon the 2000

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based upon the 2000 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania, and Issues: World refinery production of germanium remained steady in 2000. The recycling of scrap continued

  11. (Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon an estimated

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based upon an estimated 2003 producer. A germanium refinery in Utica, NY, produced germanium tetrachloride for optical fiber production. Another refinery in Oklahoma produced refined germanium compounds for the production of fiber optics, infrared

  12. (Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon the 2002

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based upon the 2002 producer price-bearing materials generated from the processing of zinc ores. The germanium refinery in Utica, NY, produced germanium tetrachloride for optical fiber production. The refinery in Oklahoma doubled its production

  13. (Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon the 2001

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based upon the 2001 producer price-bearing materials generated from the processing of zinc ores. The germanium refineries in New York and Oklahoma and set up in New York. The refinery in Oklahoma expanded, and a new secondary facility was built in North

  14. (Data in kilograms of germanium content unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon an estimated

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based upon an estimated 2008 producer of 2008. A germanium refinery in Utica, NY, produced germanium tetrachloride for optical fiber production. Another refinery in Oklahoma produced refined germanium compounds for the production of fiber optics

  15. Problem 65 in Section 4.1 (Page 274) Constructing a pipeline Supertankers off-load oil at a docking facility 4 mi offshore. The nearest refinery

    E-Print Network [OSTI]

    Schilling, Anne

    facility 4 mi offshore. The nearest refinery is 9 mi east of the shore point nearest the docking facility. A pipeline must be constructed connecting the docking facility with the refinery. The pipeline costs $300.42 miles away from the refinery, or equivalently 3.58 miles away from Point A (as the back of the book has

  16. 2:00-2:30 Beverages, 2:30-4 PM Seminar Chevron operates two refineries on the west coast of California. Large parcels of

    E-Print Network [OSTI]

    4/18/2014 2:00-2:30 Beverages, 2:30-4 PM Seminar Abstract Chevron operates two refineries fuel must be moved between the refineries by ship to balance production. The El Segundo Marine Terminal these vapors are returned to the refinery for processing via a vapor return pipeline. El Segundo's terminal

  17. (Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1999

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based on the 1999 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania@usgs.gov, fax: (703) 648-7757] #12;73 GERMANIUM Events, Trends, and Issues: World refinery production

  18. (Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1996 producer

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based on the 1996 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania, and chemotherapy), 5%. Salient Statistics--United States: 1992 1993 1994 1995 1996e Production, refinery 13,000 10

  19. (Data in kilograms of germanium content unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon an estimated

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based upon an estimated 2007 producer in the fourth quarter of 2007. A germanium refinery in Utica, NY, produced germanium tetrachloride for optical fiber production. Another refinery in Oklahoma produced refined germanium compounds for the production

  20. Energy Guideline Factors Provide a Better Measure of Refinery Energy Performance

    E-Print Network [OSTI]

    Libbers, D. D.

    1980-01-01T23:59:59.000Z

    Exxon Company, U.S.A. refineries reduced energy consumption by 25% between 1972 and 1978 compared with an 18% reduction for the U.S. Petroleum Refining Industry over the same period. The Exxon approach to conserving energy in petroleum refining...

  1. THE NEW GASIFICATION PROJECT AT ENI SANNAZZARO REFINERY AND ITS INTEGRATION WITH A

    E-Print Network [OSTI]

    Mwe Power Plant; Guido Collodi; Dario Camozzi; Snamprogetti Italy

    2004-01-01T23:59:59.000Z

    Following the new regulation introduced in Europe in the last years, defining more stringent limits for the emissions to the atmosphere, the necessity to find an alternative use for the fuel oil has created a new challenge for the refineries. At the same time the need to improve the Italian power production has pushed Eni, the Italian energy company, to enter the electricity market.

  2. Getting it right at Catlettsburg: How Ashland Petroleum`s flagship refinery transformed itself

    SciTech Connect (OSTI)

    Whitt, R.E.; Kennison, R.H.M.

    1997-03-01T23:59:59.000Z

    Life has its surprises. In the midst of the pain and excitement of a massive organizational overhaul, Ashland Petroleum`s Catlettsburg refinery--a 220,000-b/d facility in Ashland, Ky.,--experienced an unplanned cracker shutdown, a few production mishaps, a two-week employee walk-out, and belt-tightening necessitated by competitive pressures. Yet, despite these adverse circumstances, the Catlettsburg Refinery Initiative (CRI), a 20-month effort that shifted from planning to implementation in October 1995, yielded remarkable results. By 1996, the refinery began achieving record levels of through-put with lower maintenance costs, increasing company profitability by about 15% in the first half of 1996, over the same period in 1995. In a post-initiative survey, refinery employees expressed enthusiam for the changes and their new work-roles. A number of factors converged to give the initiative drive and direction: a pervasive discomfort with the status quo, a determination by top management to make fundamental changes, a commitment to rapid implementation and effective use of an outside consultant. But above all, success at Catlettsburg was a result of a grassroots approach to the process of change.

  3. Application and Operation of a 2-MW Organic Rankine Cycle System on a Refinery FCC Unit

    E-Print Network [OSTI]

    Drake, R. L.

    The nation's largest organic Rankine cycle (ORC) waste heat recovery system was started up in July 1984 at a West Coast oil refinery. The system includes two hermetically sealed turbine-generator units, each rated at 1070 kW. Each turbine...

  4. Restoration of Refinery Heaters Using the Technique of Prefabricated Ceramic Fiber Lined Panels

    E-Print Network [OSTI]

    Sento, H. D.

    1981-01-01T23:59:59.000Z

    Refinery heater fuel requirements often represent 50% of a units operating cost. A one percent change in the efficiency of a heater firing 100 MBtu/hr amounts to more than $25,000 per year. Heater efficiency is influenced by casing hot spots, air...

  5. Test plan, the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon. Revision 1

    SciTech Connect (OSTI)

    Altman, D.J.; Hazen, T.C.; Tien, A.J. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Worsztynowicz, A.; Ulfig, K. [Inst. for Ecology of Industrial Areas, Katowice (Poland)

    1997-05-10T23:59:59.000Z

    The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organic sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH`s, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass.

  6. Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Stewart Mehlman

    2010-06-16T23:59:59.000Z

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOEs target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

  7. Program Administration

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21T23:59:59.000Z

    This volume describes program administration that establishes and maintains effective organizational management and control of the emergency management program. Canceled by DOE G 151.1-3.

  8. Effectiveness of in site biodegradation for the remediation of polycyclic aromatic hydrocarbons at a contaminated oil refinery, Port Arthur, Texas

    E-Print Network [OSTI]

    Moffit, Alfred Edward

    2000-01-01T23:59:59.000Z

    The effectiveness of bioremediation for the removal of polycyclic aromatic hydrocarbons (PAHs) from sediments contaminated with highly weathered petroleum was evaluated at a contaminated oil refinery. The sediments were chronically contaminated...

  9. Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution

    E-Print Network [OSTI]

    Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

    A first-of-its-kind Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) was installed by Planetec Utility Services Co., Inc. in partnership with Energy Concepts Co. at Ultramar Diamond Shamrock's 30,000 barrel per day refinery in Denver...

  10. Refinery fuel oxygenates in view of the complex model for reformulated gasline

    SciTech Connect (OSTI)

    Crawford, C.D.; Haelsig, C.P. [Fluor Daniel, Irvine, CA (United States)

    1994-12-31T23:59:59.000Z

    The final version of the Complex Model for reformulated gasoline (RFG) has now been issued with some surprising features that will significantly affect refinery fuel oxygenates planning. These include the following: (1) The only oxygenates included in the model are MTBE, ETBE, TAME, and Ethanol. (2) The Complex Model calculates that MTBE and TAME are significantly more effective for reduction of air toxics emissions than Ethanol and ETBE. (3) The Complex Model calculates that MTBE and TAME typically produce about equal reduction in air toxics emissions at the same RFG oxygen content. Although gasoline certification by the Complex Model is optional prior to 1998, after 1998 it will be mandatory for both reformulated and conventional gasolines. This paper considers refinery oxygenates production in view of these features of the Complex Model for RFG, basing the discussion on 2.0 weight percent oxygen content for RFG.

  11. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  12. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  13. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-04-23T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  14. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  15. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.

  16. Production of ethanol from refinery waste gases. Phase 2, technology development, annual report

    SciTech Connect (OSTI)

    Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C.; Gaddy, J.L.

    1995-07-01T23:59:59.000Z

    Oil refineries discharge large volumes of H{sub 2}, CO, and CO{sub 2} from cracking, coking, and hydrotreating operations. This program seeks to develop a biological process for converting these waste gases into ethanol, which can be blended with gasoline to reduce emissions. Production of ethanol from all 194 US refineries would save 450 billion BTU annually, would reduce crude oil imports by 110 million barrels/year and emissions by 19 million tons/year. Phase II efforts has yielded at least 3 cultures (Clostridium ljungdahlii, Isolate O-52, Isolate C-01) which are able to produce commercially viable concentrations of ethanol from CO, CO{sub 2}, and H{sub 2} in petroleum waste gas. Single continuous stirred tank reactor studies have shown that 15-20 g/L of ethanol can be produced, with less than 5 g/L acetic acid byproduct. Culture and reactor optimization in Phase III should yield even higher ethanol concentrations and minimal acetic acid. Product recovery studies showed that ethanol is best recovered in a multi-step process involving solvent extraction/distillation to azeotrope/azeotropic distillation or pervaporation, or direct distillation to the azeotrope/azeotropic distillation or pervaporation. Projections show that the ethanol facility for a typical refinery would require an investment of about $30 million, which would be returned in less than 2 years.

  17. AN AGGREGATED VECTORIAL MODEL OF PETROLEUM FLOW IN THE UNITED STATES

    E-Print Network [OSTI]

    Krishnan, V. V.

    2011-01-01T23:59:59.000Z

    only; i.e. , individual refineries owned by the same companyting ~ for example. refinery production. ) (3) Supplies on21. Capacity of Petroleum Refineries U K REFINERY INPUTS 11.

  18. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    2007), Current Chinese Refinery Industry and Its Challenges,42 Figure 2-12 Refinery Capacity and Capacity Utilization (43 Table 2-22 Refinery Capacity by Company (2005-

  19. (Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1998 producer

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based on the 1998 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania Production, refinery 10,000 10,000 18,000 20,000 22,000e Total imports 14,700 16,200 27,500 23,700 20

  20. (Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1997 producer

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based on the 1997 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania, refinery 10,000 10,000 10,000 18,000 20,000e Total imports 15,000 15,000 16,000 27,000 17,0001 Exports NA

  1. Test plan: the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon

    SciTech Connect (OSTI)

    Altman, D.J.; Lombard, K.H.; Hazen, T.C.

    1997-03-31T23:59:59.000Z

    The remediation strategies that will be applied at the Czechowice Oil Refinery waste lagoon in Czechowice, Poland are designed, managed, and implemented under the direction of the Westinghouse Savannah River Company (WSRC) for the United States Department of Energy (DOE). WSRC will be assisted in the demonstration by The Institute for Ecology of Industrial Areas (IETU). This collaboration between IETU and DOE will provide the basis for international technology transfer of new and innovative remediation technologies that can be applied in Poland and the Eastern European Region as well.

  2. Morbidity And Sulfur Dioxide: Evidence From French Strikes At Oil Refineries

    E-Print Network [OSTI]

    Matthew Neidell; Emmanuelle Lavaine

    2012-01-01T23:59:59.000Z

    This paper examines the impact of sulfur dioxide (SO2) in France on health outcomes at a census track level. To do so, we use recent strikes affecting oil refineries in France, in October 2010, as a natural experiment. Our work offers several contributions. We first show that a temporal shut down in the refining process leads to a reduction in sulfur dioxide concentration. We then use this narrow time frame exogenous shock to assess the impact of a change in air pollution concentration on respiratory outcomes. Our estimates suggest that daily variation in SO2 air pollution has economically significant health effects at levels below the current standard. 0

  3. Standard practice for evaluating and qualifying oil field and refinery corrosion inhibitors using rotating cage

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2006-01-01T23:59:59.000Z

    1.1 This practice covers a generally accepted procedure to use the rotating cage (RC) for evaluating corrosion inhibitors for oil field and refinery applications. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  4. Achieving very low mercury levels in refinery wastewater by membrane filtration.

    SciTech Connect (OSTI)

    Urgun Demirtas, M.; Benda, P.; Gillenwater, P. S.; Negri, M. C.; Xiong, H.; Snyder, S. W. (Center for Nanoscale Materials); ( ES)

    2012-05-15T23:59:59.000Z

    Microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes were evaluated for their ability to achieve the world's most stringent Hg discharge criterion (<1.3 ng/L) in an oil refinery's wastewater. The membrane processes were operated at three different pressures to demonstrate the potential for each membrane technology to achieve the targeted effluent mercury concentrations. The presence of mercury in the particulate form in the refinery wastewater makes the use of MF and UF membrane technologies more attractive in achieving very low mercury levels in the treated wastewater. Both NF and RO were also able to meet the target mercury concentration at lower operating pressures (20.7 bar). However, higher operating pressures ({ge}34.5 bar) had a significant effect on NF and RO flux and fouling rates, as well as on permeate quality. SEM images of the membranes showed that pore blockage and narrowing were the dominant fouling mechanisms for the MF membrane while surface coverage was the dominant fouling mechanism for the other membranes. The correlation between mercury concentration and particle size distribution was also investigated to understand mercury removal mechanisms by membrane filtration. The mean particle diameter decreased with filtration from 1.1 {+-} 0.0 {micro}m to 0.74 {+-} 0.2 {micro}m after UF.

  5. Capacity Markets for Electricity

    E-Print Network [OSTI]

    Creti, Anna; Fabra, Natalia

    2004-01-01T23:59:59.000Z

    Designing Markets for Electricity. Wiley IEEE Press. [25]in the England and Wales Electricity Market, Power WorkingFelder (1996), Should Electricity Markets Have a Capacity

  6. ORISE: Capacity Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute...

  7. Administration& Engineering

    E-Print Network [OSTI]

    Row 3 Site 3.4 Site 3.3 Site 4.4 Site 4.5 Site 4.1 Site 4.0 4.0 Met Tower Administration& Engineering Bldg. 251 OfficeTrailer Bldg.250 OfficeTrailer Bldg.249OfficeTrailer Bldg.248 251 Parking W. 120th Ave. W. 119th Ave. 4.1 Met Tower 4.4 Met Tower Site 3.1 5-MWDyno Bldg. 258 Site 1.1 Site M1 Structural

  8. Refinery Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4 U.S. Manufacturing Energy UseMary

  9. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01T23:59:59.000Z

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  10. Wilolud Online Journals, 2008. THE NIGERIAN FUEL ENERGY SUPPLY CRISIS AND THE PROPOSED PRIVATE REFINERIES PROSPECTS AND PROBLEMS

    E-Print Network [OSTI]

    Agwom Sani Z

    Dynamism of the world economy has compelled Nigerians to accept the liberalization of its economy to encourage private sector participation and induce managerial efficiency. This has become very imperative most especially, in the downstream sub-sector of the Nigerian oil and gas industry by the establishment and management of private refineries in view of the persistent fuel energy crisis. An attempt is made here at analyzing the prospects and problems of such refineries that are expected to end the fuel energy crisis which started in the 1970s due to increased demand for petroleum products for rehabilitation and reconstruction after the civil war but later metamorphosed into a hydraheaded monster in the 1980s to date. Efforts towards arresting this crisis by the government through the establishment of more refineries, storage depots and network of distribution pipelines etc achieved a short-term solution due to the abysmal low performance of the refineries and facilities in contrast to increasing demand for petroleum products. It is deduced that the low performance resulted from bad and corrupt management by indigenous technocrats and political leaders as well as vandalization of facilities. Prospects for such investments were identified, as well as some of the problems to content with. This is in order to understand the pros and cons of such investments in view of their capital intensiveness and the need to achieve economic goals that must incorporate environmental and social objectives.

  11. Knudsen heat capacity

    SciTech Connect (OSTI)

    Babac, Gulru, E-mail: babac@itu.edu.tr [Institute of Energy, Istanbul Technical University, Istanbul 34469 (Turkey)] [Institute of Energy, Istanbul Technical University, Istanbul 34469 (Turkey); Reese, Jason M. [School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)] [School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)

    2014-05-15T23:59:59.000Z

    We present a Knudsen heat capacity as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  12. Computer Systems Administrator

    E-Print Network [OSTI]

    Computer Systems Administrator Fort Collins, CO POSITION A Computer Systems Administrator (Non activities. RESPONSIBILITIES The System Administrator will provide Unix/Linux, Windows computer system or computer science, and three years computer systems administration experience. DURATION The work is planned

  13. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FROM: SUBJECT: USIUK Memorandum of Understanding between National Nuclear Security Administration's (NNSA) Associate Administrator for Defense Nuclear Security (AADNS)...

  14. Bonneville Power Administration Administrator Steve Wright

    E-Print Network [OSTI]

    Administrator Steve Wright, I strongly support a clean energy future for our region that includes plentiful wild salmon, clean, renewable energy, and a healthy economy. The Bonneville Power Administration (BPABonneville Power Administration Administrator Steve Wright PO Box 12999 Portland, OR 97208 Dear

  15. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-09-17T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking. Investigation of coal extraction as a method to produce RCO continues; the reactor modifications to filter the products hot and to do multi-stage extraction improve extraction yields from {approx}50 % to {approx}70%. Carbon characterization of co-cokes for use as various carbon artifacts continues.

  16. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. Emission testing indicates that the coal derived material has more trace metals related to coal than petroleum, as seen in previous runs. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. The co-coking of the runs with the new coal have begun, with the coke yield similar to previous runs, but the gas yield is lower and the liquid yield is higher. Characterization of the products continues. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking.

  17. Standard guide for evaluating and qualifying oilfield and refinery corrosion inhibitors in the laboratory

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2006-01-01T23:59:59.000Z

    1.1 This guide covers some generally accepted laboratory methodologies that are used for evaluating corrosion inhibitors for oilfield and refinery applications in well defined flow conditions. 1.2 This guide does not cover detailed calculations and methods, but rather covers a range of approaches which have found application in inhibitor evaluation. 1.3 Only those methodologies that have found wide acceptance in inhibitor evaluation are considered in this guide. 1.4 This guide is intended to assist in the selection of methodologies that can be used for evaluating corrosion inhibitors. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use.

  18. Reformulated Gasoline Foreign Refinery Rules (Released in the STEO January 1998)

    Reports and Publications (EIA)

    1998-01-01T23:59:59.000Z

    On August 27, 1997, the Environmental Protection Agency (EPA) promulgated revised the rules that allow foreign refiners to establish and use individual baselines, but it would not be mandatory (the optional use of an individual refinery baseline is not available to domestic refiners.) If a foreign refiner did not establish and use an individual baseline, the gasoline they export to the United States would be regulated through the importer, and subject to the importer's baseline (most likely the statutory baseline). Specific regulatory provisions are implemented to ensure that the option to use an individual baseline would not lead to adverse environmental impacts. This involves monitoring the average quality of imported gasoline, and if a specified benchmark is exceeded, remedial action would be taken by adjusting the requirements applicable to imported gasoline.

  19. Petroleum & Other Liquids - U.S. Energy Information Administration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oilpetroleumstatesrefining & processingCaliforniaoutages Refinery Outages: First Half 2015 refining & processingrecurringrefinery Availability and Price of Petroleum and...

  20. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31T23:59:59.000Z

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to commercial fuels ({approx}60 ON for coal-based gasoline and {approx}20 CN for coal-based diesel fuel). Therefore, the allowable range of blending levels was studied where the blend would achieve acceptable performance. However, in both cases of the coal-based fuels, their ignition characteristics may make them ideal fuels for advanced combustion strategies where lower ON and CN are desirable. Task 3 was designed to develop new approaches for producing ultra clean fuels and value-added chemicals from refinery streams involving coal as a part of the feedstock. It consisted of the following three parts: (1) desulfurization and denitrogenation which involves both new adsorption approach for selective removal of nitrogen and sulfur and new catalysts for more effective hydrotreating and the combination of adsorption denitrogenation with hydrodesulfurization; (2) saturation of two-ring aromatics that included new design of sulfur resistant noble-metal catalysts for hydrogenation of naphthalene and tetralin in middle distillate fuels, and (3) value-added chemicals from naphthalene and biphenyl, which aimed at developing value-added organic chemicals from refinery streams such as 2,6-dimethylnaphthalene and 4,4{prime}-dimethylbiphenyl as precursors to advanced polymer materials. Major advances were achieved in this project in designing the catalysts and sorbent materials, and in developing fundamental understanding. The objective of Task 4 was to evaluate the effect of introducing coal into an existing petroleum refinery on the fuel oil product, specifically trace element emissions. Activities performed to accomplish this objective included analyzing two petroleum-based commercial heavy fuel oils (i.e., No. 6 fuel oils) as baseline fuels and three co-processed fuel oils, characterizing the atomization performance of a No. 6 fuel oil, measuring the combustion performance and emissions of the five fuels, specifically major, minor, and trace elements when fired in a watertube boiler designed for natural gas/fuel oil, and determining the boiler performance when firing the five fuels. Two

  1. Forward capacity market CONEfusion

    SciTech Connect (OSTI)

    Wilson, James F.

    2010-11-15T23:59:59.000Z

    In ISO New England and PJM it was assumed that sponsors of new capacity projects would offer them into the newly established forward centralized capacity markets at prices based on their levelized net cost of new entry, or ''Net CONE.'' But the FCCMs have not operated in the way their proponents had expected. To clear up the CONEfusion, FCCM designs should be reconsidered to adapt them to the changing circumstances and to be grounded in realistic expectations of market conduct. (author)

  2. Soot and SO[subscript 2] contribution to the supersites in the MILAGRO campaign from elevated flares in the Tula Refinery

    E-Print Network [OSTI]

    Molina, Luisa Tan

    This work presents a simulation of the plume trajectory emitted by flaring activities of the Miguel Hidalgo Refinery in Mexico. The flame of a representative sour gas flare is modeled with a CFD combustion code in order ...

  3. Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of How the Refinery Industry is Capitalizing on ENERGY STAR

    E-Print Network [OSTI]

    Patrick, K.

    2008-01-01T23:59:59.000Z

    Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of how the Refinery Industry is Capitalizing on ENERGY STAR Kelly Patrick U.S. Environmental Protection Agency kelly...

  4. World nuclear capacity and fuel cycle requirements, November 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-30T23:59:59.000Z

    This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy`s activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration`s annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment.

  5. About EIA - U.S. Energy Information Administration (EIA) - U.S. Energy

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, Weekly Refinery andInformation Administration (EIA) EIA

  6. Implementing an Energy Management System at TOTAL Prot Arthur Refinery: The process to improving and sustaining energy efficiency performance at a facility.

    E-Print Network [OSTI]

    Hoyle, A.

    2013-01-01T23:59:59.000Z

    PROPRIETARY INFORMATION? 2011 KBC Advanced Technologies plc. All Rights Reserved. Implementing an Energy Management System at TOTAL Port Arthur Refinery: The process to improving and sustaining energy efficiency performance at a facility May... Improvements ? Cost-savings initiatives ? Increasing environmental awareness ? Increasing throughput by debottlenecking processes ? Increasing government mandates 2May 2013 Energy Costs for a 200kBPD Complex refinery Typically, energy efficiency programs...

  7. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, R.W.

    1984-10-30T23:59:59.000Z

    A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

  8. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, Robert W. (Wilkinsburg, PA)

    1984-01-01T23:59:59.000Z

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  9. Finance & Administration Controller's Office

    E-Print Network [OSTI]

    McQuade, D. Tyler

    Finance & Administration Controller's Office July 2014 Michael Williams Controller Controller Administrative Services 51111 Catherine Hebert Program Director ICOFA 61318 Revised: 7/28/2014 #12;Finance Surplus Property 81269 Revised: 7/28/2014 #12;Finance & Administration Controller's Office Disbursement

  10. Finance & Administration Controller's Office

    E-Print Network [OSTI]

    Weston, Ken

    Finance & Administration Controller's Office April 2014 Michael Williams Controller Controller ICOFA 61318 Revised: 4/4/2014 #12;Finance & Administration Controller's Office Accounting & Asset Coordinator Property Surplus Sales 81269 Revised: 4/4/2014 #12;Finance & Administration Controller's Office

  11. Quantum Channel Capacities

    E-Print Network [OSTI]

    Graeme Smith

    2010-07-16T23:59:59.000Z

    A quantum communication channel can be put to many uses: it can transmit classical information, private classical information, or quantum information. It can be used alone, with shared entanglement, or together with other channels. For each of these settings there is a capacity that quantifies a channel's potential for communication. In this short review, I summarize what is known about the various capacities of a quantum channel, including a discussion of the relevant additivity questions. I also give some indication of potentially interesting directions for future research.

  12. Production of ethanol from refinery waste gases. Phase 3. Engineering development. Annual report, April 1, 1995--May 15, 1996

    SciTech Connect (OSTI)

    Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C; Gaddy, J.L.

    1996-11-01T23:59:59.000Z

    Refineries discharge large volumes of H2, CO, and CO 2 from cracking, coking, and hydrotreating operations. This R&D program seeks to develop, demonstrate, and commercialize a biological process for converting these waste gases into ethanol for blending with gasoline. A 200,000 BPD refinery could produce up to 38 million gallons ethanol per year. The program is being conducted in 3 phases: II, technology development; III, engineering development; and IV, demonstration. Phase I, exploratory development, has been completed. The research effort has yielded two strains (Isolates O-52 and C-01) which are to be used in the pilot studies to produce ethanol from CO, CO2, and H2 in petroleum waste gas. Results from single continuous stirred tank reactor (CSTR) laboratory tests have shown that 20-25 g/L ethanol can be produced with < 5 g/L acetic acid byproduct. Laboratory studies with two CSTRs in series have yielded ethanol concentrations of 30-35 g/L with 2-4 g/L acetic acid byproduct. Water recycle from distillation back to the fermenter shows that filtration of the water before distillation eliminates the recycle of toxic materials back to the fermenter. Product recovery in the process will use direct distillation to the azeotrope, followed by adsorption to produce neat ethanol. This is less energy intensive than e.g. solvent extraction, azeotropic distillation, or pervaporation. Economic projections are quite attractive; the economics are refinery stream dependent and thus vary depending on refinery location and operation.

  13. ,"U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum

  14. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect (OSTI)

    Benson, Charles; Wilson, Robert

    2014-04-30T23:59:59.000Z

    This project culminated in the demonstration of a full-scale industrial burner which allows a broad range of opportunity gaseous fuels to be cost-effectively and efficiently utilized while generating minimal emissions of criteria air pollutants. The burner is capable of maintaining a stable flame when the fuel composition changes rapidly. This enhanced stability will contribute significantly to improving the safety and reliability of burner operation in manufacturing sites. Process heating in the refining and chemicals sectors is the primary application for this burner. The refining and chemical sectors account for more than 40% of total industrial natural gas use. Prior to the completion of this project, an enabling technology did not exist that would allow these energy-intensive industries to take full advantage of opportunity fuels and thereby reduce their natural gas consumption. Opportunity gaseous fuels include biogas (from animal and agricultural wastes, wastewater plants, and landfills) as well as syngas (from the gasification of biomass, municipal solid wastes, construction wastes, and refinery residuals). The primary challenge to using gaseous opportunity fuels is that their composition and combustion performance differ significantly from those of conventional fuels such as natural gas and refinery fuel gas. An effective fuel-flexible burner must accept fuels that range widely in quality and change in composition over time, often rapidly. In Phase 1 of this project, the team applied computational fluid dynamics analysis to optimize the prototype burners aerodynamic, combustion, heat transfer, and emissions performance. In Phase 2, full-scale testing and refinement of two prototype burners were conducted in test furnaces at Zeecos offices in Broken Arrow, OK. These tests demonstrated that the full range of conventional and opportunity fuels could be utilized by the projects burner while achieving robust flame stability and very low levels of air pollutant emissions. In Phase 3, the team retrofitted three fuel-flexible burners into a fired heater at a Shell plant and demonstrated the projects technology over a 6-month period. The project burners performed well during this period. They remain in commercial service at the Shell plant. Through this work, an improved understanding of flame stabilization mechanisms was gained. Also, methods for accommodating a wide range of fuel compositions were developed. This knowledge facilitated the commercialization of a new generation of burners that are suitable for the fuels of the future.

  15. Allocation of Energy Use LCA Case Studies LCA Case Studies Allocation of Energy Use in Petroleum Refineries to Petroleum Products Implications for Life-Cycle Energy Use and Emission Inventory of Petroleum Transportation Fuels

    E-Print Network [OSTI]

    Michael Wang; Hanjie Lee; John Molburg

    Aim, Scope, and Background. Studies to evaluate the energy and emission impacts of vehicle/fuel systems have to address allocation of the energy use and emissions associated with petroleum refineries to various petroleum products because refineries produce multiple products. The allocation is needed in evaluating energy and emission effects of individual transportation fuels. Allocation methods used so far for petroleum-based fuels (e.g., gasoline, diesel, and liquefied petroleum gas [LPG]) are based primarily on mass, energy content, or market value shares of individual fuels from a given refinery. The aggregate approach at the refinery level is unable to account for the energy use and emission differences associated with producing individual fuels at the next sub-level: individual refining processes within a refinery. The approach ignores the fact that different refinery products

  16. Technical and operational overview of the C[sub 4] Oleflex process at Valero refinery

    SciTech Connect (OSTI)

    Hohnholt, J.F.; Payne, D. (Valero Refining Co., Corpus Christi, TX (United States)); Gregor, J.; Smith, E. (UOP, Des Plaines, IL (United States))

    1994-01-01T23:59:59.000Z

    Changes in gasoline composition stemming from the 1990 Clean Air Act (CAA) Amendments prompted Valero Energy Corporation to evaluate options for producing reformulated gasoline. The evaluation culminated in a project to upgrade butanes into methyl tertiary butyl ether (MTBE). Technology selection focused on the dehydrogenation of isobutane, and the UOP Oleflex process was selected. The MTBE project was implemented in 34 months and was $3 million under budget. The guaranteed MTBE production of 12,500 BPSD was achieved within one month of mechanical completion and has since reached 15,000 BPSD. Even at the low MTBE prices prevailing in late 1993, the butane upgrading project contributed significantly to Valero Refinery's overall profitability. Worldwide demand is expected to increase MTBE prices in 1996, thereby further increasing profits. The paper describes the project evaluation activities which led to the selection of the Oleflex process, engineering and construction, the MTBE complex start-up and operation, the Valero MTBE complex performance, and future plans. The paper also discusses feedstock utilization efficiency and MTBE market analysis.

  17. Gasification of refinery sludge in an updraft reactor for syngas production

    SciTech Connect (OSTI)

    Ahmed, Reem; Eldmerdash, Usama [Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Sinnathambi, Chandra M., E-mail: chandro@petronas.com.my [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-10-24T23:59:59.000Z

    The study probes into the investigation on gasification of dry refinery sludge. The details of the study includes; influence of operation time, oxidation temperature and equivalence ratios on carbon gas conversion rate, gasification efficiency, heating value and fuel gas yield are presented. The results show that, the oxidation temperature increased sharply up to 858C as the operating time increased up to 36 min then bridging occurred at 39 min which cause drop in reaction temperature up to 819 C. This bridging was found to affect also the syngas compositions, meanwhile as the temperature decreased the CO, H{sub 2}, CH{sub 4} compositions are also found to be decreases. Higher temperature catalyzed the reduction reaction (CO{sub 2}+C?=?450?2CO), and accelerated the carbon conversion and gasification efficiencies, resulted in more solid fuel is converted to a high heating value gas fuel. The equivalence ratio of 0.195 was found to be the optimum value for carbon conversion and cold gas efficiencies, high heating value of gas, and fuel gas yield to reach their maximum values of 96.1 % and 53.7 %, 5.42 MJ Nm{sup ?3} of, and 2.5 Nm{sup 3} kg{sup ?1} respectively.

  18. Summary of the proceedings of the workshop on the refinery of the future

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This report on the Workshop on the Refinery of the Future has been prepared for participants to provide them with a succinct summary of the presentations, deliberations, and discussions. In preparing the summary, we have striven to capture the key findings (conclusions) and highlight the issues and concerns raised during the plenary and breakout sessions. The presentation of the summary of the proceedings follows the final workshop agenda, which is given in Section I; each section is tabbed to facilitate access to specific workshop topics. The material presented relies heavily on the outline summaries prepared and presented by the Plenary Session Chairman and the Facilitators for each breakout group. These summaries are included essentially as presented. In addition, individuals were assigned to take notes during each session; these notes were used to reconstruct critical issues that were discussed in more detail. The key comments made by the participants, which tended to represent the range of views expressed relative to the issues, are presented immediately following the facilitator`s summary outline in order to convey the flavor of the discussions. The comments are not attributed to individuals, since in many instances they represent a composite of several similar views expressed during the discussion. The facilitators were asked to review the writeups describing the outcomes of their sessions for accuracy and content; their suggested changes were incorporated. Every effort has thus been made to reconstruct the views expressed as accurately as possible; however, errors and/or misinterpretations undoubtedly have occurred.

  19. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz

    SciTech Connect (OSTI)

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

    2008-03-15T23:59:59.000Z

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

  20. Production of ethanol from refinery waste gases. Final report, April 1994--July 1997

    SciTech Connect (OSTI)

    Arora, D.; Basu, R.; Breshears, F.S.; Gaines, L.D.; Hays, K.S.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C.; Gaddy, J.L.

    1997-08-01T23:59:59.000Z

    The objective of this program was to develop a commercial process for producing ethanol from refinery waste gases. this report presents results from the development phases. The major focus of this work was the preparation of the prototype design which will demonstrate this technology in a 2.5 lb/hr ethanol production facility. Additional areas of focus included efforts in obtaining an industrial partner to help finance the prototype, and advanced engineering experiments concentrating on process optimization in various areas needing future development and optimization. The advanced engineering experiments were performed in the laboratory in these areas: treatment and use of recycle water from distillation back to fermentation; alternative methods of removing cells from the fermentation broth; the fermentation of streams containing CO{sub 2}/H{sub 2} alone, with little to no CO present; dealing with methanogen contaminants that are capable of fermenting CO{sub 2} and H{sub 2} to methane; and acetate tolerance by the culture. Results from the design, industrial partner search and the laboratory R&D efforts are discussed in this report.

  1. Federal Aviation Administration

    E-Print Network [OSTI]

    /Testing #12;16Federal Aviation Administration GMU CATSR 6 February 2012 The FAA William J. Hughes Technical operational test and evaluation agent for FAA #12;17Federal Aviation Administration GMU CATSR 6 February 2012Federal Aviation Administration Federal Aviation AdministrationNextGen: Primer, Challenges

  2. A 39 year follow-up of the UK oil refinery and distribution centre studies: results for kidney cancer and leukaemia. Environ Health Perspect Suppl 101(Suppl

    E-Print Network [OSTI]

    Lesley Rushton

    1993-01-01T23:59:59.000Z

    This paper presents briefly some of the principal results of a mortality analysis of a cohort of workers employed for at least 1 year between 1950 and 1975 at eight oil refineries and approximately 750 distribution centers in the U.K, together with detailed results for kidney cancer and leukemia. Over 99 % of the workers were successfully traced. Their mortality was compared with that of all males in the national population. The mortality from all causes of death is lower than that of the comparison population in both studies, and reduced mortality is also found for many of the major nonmalignant causes of death. In the refinery study, some increased mortality patterns are found for diseases of the arteries, and no healthy worker effect is found in the distribution center study for ischemic heart disease. Mortality from all neoplasms is lower than expected overall in both studies, largely due to a deficit of deaths from malignant neoplasm of the lung. Mortality from malignant neoplasm of the kidney is increased overall in the distribution center study, and in drivers in particular. The mortality from this disease increases with increased time since first exposure. The observed deaths from leukemia are slightly less than expected in the refinery study and slightly more than expected in the distribution center study. One refinery shows increased mortality due to in myeloid leukemia, and mortality is increased among refinery operators. Mortality is also raised in distribution center drivers, particularly for myeloid leukemias, including acute myeloid leukemia.

  3. WASTE INCINERATION wr090203 Activity 090203 SNAP CODE: 090203 SOURCE ACTIVITY TITLE: WASTE INCINERATION Flaring in Oil Refinery NOSE CODE: 109.03.11 NFR CODE:

    E-Print Network [OSTI]

    So Nox; Nmvoc Ch; Co Co; No Nh

    Flares are commonly used during petroleum refining for the safe disposal of waste gases during process upsets (e.g., start-up, shut-down, system blow-down) and emergencies to combust the organic content of waste emission streams without recovering/using the associated energy. 2 CONTRIBUTION TO TOTAL EMISSIONS Although flaring emission estimates are approximate, total hydrocarbon emissions from flaring at Canadian petroleum refineries during 1988 represented about 0.1 % of the refinery sector process and fugitive emissions that also included petroleum marketing emissions (CPPE, 1990). Thus the flaring operation at refineries is estimated to contribute a very small fraction of the total HC emissions in Canada. Emissions from flaring activities may also include: particulate, SOx, NOx, CO and other NMVOC. The CO2 contribution of both miscellaneous vent and flare emission sources represented approximately 9 % of the total petroleum refinery SO2 emission in Canada during 1988. Emissions estimates from flaring in petroleum refineries as reported in the CORINAIR90 inventory are summarised in Table 1. Table 1: Contribution to total emissions of the CORINAIR90 inventory (28 countries) Source-activity SNAP-code Contribution to total emissions [%

  4. Conversion of high carbon refinery by-products. Quarterly report, January 1--March 31, 1996

    SciTech Connect (OSTI)

    Katta, S.; Henningsen, G.; Lin, Y.Y.; O`Donnell, J.

    1996-04-26T23:59:59.000Z

    The overall objective of the project is to demonstrate that a partial oxidation system, which utilizes a transport reactor, is a viable means of converting refinery wastes, byproducts, and other low value materials into valuable products. The primary product would be a high quality fuel gas, which could also be used as a source of hydrogen. The concept involves subjecting the hydrocarbon feed to pyrolysis and steam gasification in a circulating bed of solids. Carbon residue formed during pyrolysis, as well as metals in the feed, are captured by the circulating solids which are returned to the bottom of the transport reactor. Air or oxygen is introduced in this lower zone and sufficient carbon is burned, sub-stoichiometrically, to provide the necessary heat for the endothermic pyrolysis and gasification reactions. The hot solids and gases leaving this zone pass upward to contact the feed material and continue the gasification process. The Transport Reactor Test Unit (TRTU) was commissioned to conduct studies on pyrolysis of Rose Bottoms using spent FCC (Fluid Catalytic Cracker) catalyst as the circulating medium and gasification of this carbon over a temperature range of 1,600 to 1,700 F. The Rose Bottoms (Residuum Oil Supercritical Extraction) was produced in the Rose unit. Studies were done in the Bench Scale Reactor Unit (BRU) to develop suitable catalyst formulations and to study the steam reforming of methane and propane in support of the experiments to be conducted in the TRTU. Studies were also conducted on gasification of coke breeze, petroleum cokes and carbon deposited on FCC catalyst. The catalytic effect of potassium on gasification of these solids was studied. Studies were conducted in the CFS (cold flow simulator) to investigate flow problems experienced in the TRTU. Results from these studies are presented in this report.

  5. Energy Information Administration / Annual Energy Outlook 2011

    Gasoline and Diesel Fuel Update (EIA)

    industrial sectors used primarily for own-use generation, but which may also sell some power to the grid. 8 Includes refinery gas and still gas. 9 Includes conventiona l...

  6. ORISE: Capacity Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project *1980-1981 U.S.CapabilitiesCapacity Building

  7. Economic impacts of oil spills: Spill unit costs for tankers, pipelines, refineries, and offshore facilities. [Task 1, Final report

    SciTech Connect (OSTI)

    Not Available

    1993-10-15T23:59:59.000Z

    The impacts of oil spills -- ranging from the large, widely publicized Exxon Valdez tanker incident to smaller pipeline and refinery spills -- have been costly to both the oil industry and the public. For example, the estimated costs to Exxon of the Valdez tanker spill are on the order of $4 billion, including $2.8 billion (in 1993 dollars) for direct cleanup costs and $1.125 billion (in 1992 dollars) for settlement of damages claims caused by the spill. Application of contingent valuation costs and civil lawsuits pending in the State of Alaska could raise these costs appreciably. Even the costs of the much smaller 1991 oil spill at Texaco`s refinery near Anacortes, Washington led to costs of $8 to 9 million. As a result, inexpensive waming, response and remediation technologies could lower oil spin costs, helping both the oil industry, the associated marine industries, and the environment. One means for reducing the impact and costs of oil spills is to undertake research and development on key aspects of the oil spill prevention, warming, and response and remediation systems. To target these funds to their best use, it is important to have sound data on the nature and size of spills, their likely occurrence and their unit costs. This information could then allow scarce R&D dollars to be spent on areas and activities having the largest impact. This report is intended to provide the ``unit cost`` portion of this crucial information. The report examines the three key components of the US oil supply system, namely, tankers and barges; pipelines and refineries; and offshore production facilities. The specific purpose of the study was to establish the unit costs of oil spills. By manipulating this key information into a larger matrix that includes the size and frequency of occurrence of oil spills, it will be possible` to estimate the likely future impacts, costs, and sources of oil spills.

  8. Standard practice for evaluating and qualifying oil field and refinery corrosion inhibitors using the rotating cylinder electrode

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2006-01-01T23:59:59.000Z

    1.1 This practice covers a generally accepted procedure to use the rotating cylinder electrode (RCE) for evaluating corrosion inhibitors for oil field and refinery applications in defined flow conditions. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  9. ADMINISTRATIVE UNIVERSITY POLICY

    E-Print Network [OSTI]

    ADMINISTRATIVE UNIVERSITY POLICY FACULTY UNIVERSITY POLICY STUDENT UNIVERSITY POLICY Issue stakeholder list "Log-In" of Proposed University Policy with the University Compliance Committee (UCC) UCC identifies which track (i.e., Administrative, Faculty, or Student) the proposed University Policy

  10. Fish and Wildlife Administrator

    Broader source: Energy.gov [DOE]

    The incumbent in this position will serve as a Fish and Wildlife Administrator for BPAs Fish and Wildlife Division. The Fish and Wildlife Administrator is responsible for overseeing projects, and...

  11. Daryl Schacher Administrative

    E-Print Network [OSTI]

    Hossain, Shahadat

    Daryl Schacher Manager, Materials Management Lyn Jose Administrative Support Marion Eastman Administrative Assistant Michael Kern Shipper/Receiver Allan Besplug Materials Handling Worker Chris Charles Materials Handling Worker Gerry Ste Marie Materials Handling Worker Mark Sabo Materials Handling Worker

  12. School of Business Administration

    E-Print Network [OSTI]

    /370 BA) 725-8003 Glen Pullen, Faculty/Staff Network Administrator 725-5748 Glen's pager 921-0660 Corey Tigner, Computer Lab Network Administrator 725-3724 Corey's cell phone 799-7341 SBA Help Line 725School of Business Administration Faculty Handbook #12;Message From the Dean Dear Colleague

  13. Federal Aviation Administration 1

    E-Print Network [OSTI]

    Waliser, Duane E.

    , 2012 Federal Aviation Administration Introduction to the FAA COE CST & NASA Participation Options KenFederal Aviation Administration 1 COE CST Presentation to NASA Date of this revision: March 21 Davidian AST Director of Research Date of this revision: March 21, 2012 #12;Federal Aviation Administration

  14. K. S. Telang, R. W. Pike, F. C. Knopf, J. R. Hopper, J. Saleh, S. Waghchoure, S. C. Hedge and T. A. Hertwig,"An Advanced Process Analysis System for Improving Chemical and Refinery Processes," Computers and Chemical Engineering, Vol. 23, p. S727-730 (1999

    E-Print Network [OSTI]

    Pike, Ralph W.

    . Hertwig,"An Advanced Process Analysis System for Improving Chemical and Refinery Processes," Computers Chemical and Refinery Processes K. S. Telang, X. Chen, R. W. Pike and F. C. Knopf Louisiana State and refineries for process improvements. The system integrates programs for on-line optimization, chemical

  15. Press Room - Press Releases - U.S. Energy Information Administration...

    Gasoline and Diesel Fuel Update (EIA)

    from all types of mobile devices and tablets the power plants, oil refineries, major electric transmission lines, and other critical energy infrastructure that are in the path of...

  16. EIA Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    been: lower-than-expected growth in productive capacity given recent increases in drilling activity; natural gas processing plant outages; increase in natural gas demand due in...

  17. Western Area Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29-30, 2011 2 Agenda * Overview of Western Area Power Administration * Post-1989 Loveland Area Projects (LAP) Marketing Plan * Energy Planning and Management Program * Development...

  18. Federal Railroad Administration

    Broader source: Energy.gov (indexed) [DOE]

    mandated the study. Federal Railroad Administration DOT Reorganization DOT is in the process of looking at reorganizing the Department to try to achieve even greater...

  19. Administrative Business Assistant

    E-Print Network [OSTI]

    Rock, Chris

    Center Marketing Raider Welcome Tech Activities Board Town & Gown BUSINESS OFFICE Associate Director Station Chief Financial O cer & Vice President for Administration and Finance (Clark) Interim Assistant

  20. National Nuclear Security Administration

    Broader source: Energy.gov (indexed) [DOE]

    and Related Structures within TA-3 at Los Alamos National Laboratory, Los Alamos, New Mexico U. S. Department of Energy National Nuclear Security Administration Los Alamos Area...

  1. Impacts of Western Area Power Administration`s power marketing alternatives on electric utility systems

    SciTech Connect (OSTI)

    Veselka, T.D.; Portante, E.C.; Koritarov, V. [and others

    1995-03-01T23:59:59.000Z

    This technical memorandum estimates the effects of alternative contractual commitments that may be initiated by the Western Area Power Administration`s Salt Lake City Area Office. It also studies hydropower operational restrictions at the Salt Lake City Area Integrated Projects in combination with these alternatives. Power marketing and hydropower operational effects are estimated in support of Western`s Electric Power Marketing Environmental Impact Statement (EIS). Electricity production and capacity expansion for utility systems that will be directly affected by alternatives specified in the EIS are simulated. Cost estimates are presented by utility type and for various activities such as capacity expansion, generation, long-term firm purchases and sales, fixed operation and maintenance expenses, and spot market activities. Operational changes at hydropower facilities are also investigated.

  2. Public health assessment for US Smelter and Lead Refinery, Inc. (A/K/A USS Lead Refinery Inc. ) East Chicago, Lake County, Indiana, Region 5. Cerclis no. IND047030226. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-08-24T23:59:59.000Z

    The U.S. Smelter and Lead Refinery, Inc. (USS Lead), in East Chicago, Indiana, has been operating as a primary and secondary smelting facility since 1906. Wastes which were produced during smelting operations are calcium sulfate sludge, blast furnace flue-dust, baghouse bags, rubber and plastic battery casings, and waste slag. Limited sampling information is available, and indicates that on-site soils and wastes are contaminated with lead and other metals. Additional sampling off-site surface soils indicate that the contamination has spread off-site as far as one-half mile from the site. Surface water and sediment on-site has also become contaminated with lead and other metals, as well as waste oil. Based on the completed exposure pathways to lead through soil ingestion and dust inhalation, the Agency for Toxic Substances and Disease Registry concludes that contamination from the USS Lead site is a public health hazard.

  3. Introduction Business Administration

    E-Print Network [OSTI]

    Banbara, Mutsunori

    spectacularly in Japan after Osaka University of Commerce was established as the third Higher Commercial School. The School of Business Administration, Kobe University has developed into a leading institution of business administration, accounting, and commercial science, and has been leading these areas of research and education

  4. ADMINISTRATION CONTRACT NO.

    E-Print Network [OSTI]

    OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION NNSA SERVICE CENTER- ALBUQUERQUE M&O CONTRACT SUPPORT.ION IS UNUSABLE See Clause B-2 U.S. DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION NNSA SERVICE ........................................................................................................5 B-2 CONTRACT TYPE AND VALUE [MODIFIED BY: CHANGE TO OBLIGATION OF FUNDS MODS; NNSA LETTERS

  5. Records Management Administration & Finance

    E-Print Network [OSTI]

    Wu, Shin-Tson

    SUBJECT: Records Management Administration & Finance Number: 4010 Effective Date: 02 applies to the retention and disposal of public records. The university records management liaison officer for Administration and Finance,will provide liaison and assistance in allphases of the records management process

  6. Effective monitoring of non-chromate chemical treatment programs for refinery cooling systems using sewage water as make-up

    SciTech Connect (OSTI)

    AlMajnouni, A.D.; Jaffer, A.E. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-08-01T23:59:59.000Z

    Treated sewage water as make-up to the cooling tower requires novel approaches to control potential cooling water problems common to refineries besides meeting environmental regulations. An intensive field study was conducted to evaluate the effectiveness of non-chromate treatment programs. On-line cleaning of the exchangers occurred prior to instituting the new chemical treatment program. Low carbon steel corrosion rates with minimal deposition was achieved. Microbiological fouling was controlled with chlorination and non-oxidizing biocide program. Field results are presented which compare the efficacy of these proprietary treatments to control corrosion and inhibit scale and fouling. Analytical results which provide a comprehensive performance evaluation of a new non-chromate chemical treatment program are presented.

  7. A California generation capacity market

    SciTech Connect (OSTI)

    Conkling, R.L.

    1998-10-01T23:59:59.000Z

    California, overconfident with its new Power Exchange spot market, seems unaware that it could be afflicted by the same turmoil that bludgeoned the Midwest in June. An electricity capacity market should be put in place before crisis strikes. This article outlines a framework for adding an electricity capacity market in California. The new market would not create a new bureaucracy but would function within the state`s now operational PX and independent system operator (ISO) mechanisms. It would be an open market, in which capacity would be traded transparently, with freedom of entree for all willing sellers and all willing buyers.

  8. Potential Impacts of Reductions in Refinery Activity on Northeast Petroleum Product Markets

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity on the U.S. NaturalDecade Year-0

  9. EIA Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    of 3,190 Bcf. In a special report on underground storage in the September issue of the Natural Gas Monthly, EIA puts the nation&20;s working gas capacity at the beginning of 1997 at...

  10. EIA Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    capacity, a steady increase in natural gas demand, and lower-than-average working gas storage levels during July and August. Prices at most other major market locations are...

  11. Administrative morality in Colombia

    E-Print Network [OSTI]

    Paez Murcia, Angela Maria

    2013-05-31T23:59:59.000Z

    This dissertation analyzes a cause of action created by the Colombian constitutional reform of 1991: administrative morality. This cause of action was created with the purpose of facilitating citizen engagement in governmental ...

  12. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration FY 2011 - FY 2015 Budget Outlook Managing the NNSA 4.0% Science, Technology & Engineering 14.5% Stockpile Support 17.9% Preventing the Spread of...

  13. Bonneville Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    http:www.bpa.gov PR 02 14 BONNEVILLE POWER ADMINISTRATION FOR IMMEDIATE RELEASE Thursday, Jan. 23, 2014 CONTACT: Kevin Wingert, 503-230-4140971-207-8390 or 503-230-5131 BPA...

  14. Small Business Administration Recovery Act Implementation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation Small...

  15. Bonneville Power Administration Stephen J. (Steve) Wright, Administrator

    E-Print Network [OSTI]

    Administrator) on the eve of the West Coast energy crisis of 2000-2001. His tenure has spanned someBonneville Power Administration Stephen J. (Steve) Wright, Administrator Stephen J. Wright at the Bonneville Power Administration in the agency's conservation office as an entry-level GS-9. Today, he is BPA

  16. Computer hardware fault administration

    DOE Patents [OSTI]

    Archer, Charles J. (Rochester, MN); Megerian, Mark G. (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian E. (Rochester, MN)

    2010-09-14T23:59:59.000Z

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  17. Methanol production from eucalyptus wood chips. Attachment III. Florida's eucalyptus energy farm and methanol refinery: the background environment

    SciTech Connect (OSTI)

    Fishkind, H.H.

    1982-04-01T23:59:59.000Z

    A wide array of general background information is presented on the Central Florida area in which the eucalyptus energy plantation and methanol refinery will be located. Five counties in Central Florida may be affected by the project, DeSoto, Hardee, Hillsborough, Manatee, and Polk. The human resources of the area are reviewed. Included are overviews of population demographic and economic trends. Land use patterns and the transportation are system described, and the region's archeological and recreational resources are evaluated. The region's air quality is emphasized. The overall climate is described along with noise and air shed properties. An analysis of the region's water resources is included. Ground water is discussed first followed by an analysis of surface water. Then the overall quality and water supply/demand balance for the area is evaluated. An overview of the region's biota is presented. Included here are discussions of the general ecosystems in Central Florida, and an analysis of areas with important biological significance. Finally, land resources are examined.

  18. refinery BP Oil's Alliance refinery in Louisiana

    E-Print Network [OSTI]

    unknown authors

    is the focus of an environmental control program, which is also being implemented in other BP plants

  19. Refinery Yield of Liquefied Refinery Gases

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for TableCORPORATION

  20. Kampung Capacity Local Solutions for

    E-Print Network [OSTI]

    Kammen, Daniel M.

    utility customers. Using a hybrid energy resource optimization framework, we explore optimal configurationKampung Capacity Local Solutions for Sustainable Rural Energy in the Baram River Basin, Sarawak Energy Laboratory (RAEL) & Energy and Resources Group and Goldman School of Public Policy Release Date

  1. Data aggregation for capacity management

    E-Print Network [OSTI]

    Lee, Yong Woo

    2004-09-30T23:59:59.000Z

    This thesis presents a methodology for data aggregation for capacity management. It is assumed that there are a very large number of products manufactured in a company and that every product is stored in the database with its standard unit per hour...

  2. Aboriginal Business Administration

    E-Print Network [OSTI]

    Saskatchewan, University of

    Aboriginal Business Administration Certificate #12;What is the Aboriginal Business Administra on Cer ficate (ABAC) Program? The Aboriginal Business Administra on Cer ficate (ABAC) is designed a cer ficate in business but do not want to study in a four year degree program. ABAC allows Aboriginal

  3. SPONSORED FUNDS ADMINISTRATION

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    of and spending plan for unobligated balance 3. Assurance that all research compliance activities are approved to the sponsor. If you have any questions, please contact Research Development Services (x7-6136) or SponsoredFORM -20 SPONSORED FUNDS ADMINISTRATION DIVISION OF RESEARCH State University of New York

  4. Administrative Business Assistant

    E-Print Network [OSTI]

    Rock, Chris

    Marketing Raider Welcome Tech Activities Board Town & Gown BUSINESS OFFICE Associate Director for Business Legal Services University ID Center University Police SUB Station Interim Chief Financial O cer & Vice IT Student Assistant (2) Interim Chief Financial O cer & Vice President for Administration and Finance (Sloan

  5. Video Center Administrator Guide

    E-Print Network [OSTI]

    Eisen, Michael

    LifeSize® Video Center Administrator Guide March 2011 LifeSize Video Center 2200 #12;LifeSize Video Center Adminstrator Guide 2 Administering LifeSize Video Center LifeSize Video Center is a network server that stores and streams video sent by LifeSize video communications systems enabled for recording. It can also

  6. EIS-0125: Bonneville Power Administration Intertie Development and Use

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration developed this EIS to examine the environmental effects of expanding the capacity of the Pacific Northwest/Pacific Southwest Intertie, adoption of a long term Intertie Access Policy and enabling firm power marketing between California and the Northwest in order to make possible additional short-and long-term sales of the Federal power surplus. The Western Area Power Administration cooperated in the preparation of this EIS by virtue of its special expertise concerning the Third Alternating Current/California-Oregon Transmission Project.

  7. Impact of Heavy Aircraft Operations on Airport Capacity at Newark Liberty International Airport

    E-Print Network [OSTI]

    Gummadi, Ramakrishna

    Federal Aviation Administration IMC Instrument Meteorological Conditions JFK New York John F. Kennedy capacity. Acronyms ASPM Aviation System Performance Metrics EWR Newark Liberty International Airport FAA, Cambridge, MA 02139, USA Aviation System Performance Metrics (ASPM) departure and arrival rate data is col

  8. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    OilLiquids On This Page Transportation uses... Biofuels and natural... U.S. crude oil... U.S. oil production... Imports of liquid... Renewable fuels... Future refinery... Oil...

  9. Vehicle Fleet Policy Responsible Administrative Unit: Finance & Administration

    E-Print Network [OSTI]

    Vehicle Fleet Policy Responsible Administrative Unit: Finance & Administration Policy Contact, and established campus vehicle fleet service under Facilities Management operations. The purpose of the fleet vehicles. This policy is applicable to the entire Mines fleet, which includes department vehicles. 2

  10. High capacity immobilized amine sorbents

    DOE Patents [OSTI]

    Gray, McMahan L. (Pittsburgh, PA); Champagne, Kenneth J. (Fredericktown, PA); Soong, Yee (Monroeville, PA); Filburn, Thomas (Granby, CT)

    2007-10-30T23:59:59.000Z

    A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

  11. Floor Plans The hall has a seating capacity of 350 people (in movable seats), with a ceiling height of seven meters. Facilities such as simultaneous

    E-Print Network [OSTI]

    Banbara, Mutsunori

    Education Project on Computational Science and Engineering Integrated Bio-Refinery Research Project Research Unit Life Innovation Research Unit Green Innovation Research Unit Integrated Bio-Refinery Research and Technology Integrated Bio-Refinery Research Project Research Project for Membrane Technology Center

  12. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField

  13. Administration and Finance Vice President /

    E-Print Network [OSTI]

    Su, Xiao

    Administration and Finance Vice President / Chief Financial Officer / CMS Executive Sponsor Opportunity & Employee Relations Director Finance Associate Vice President Manager, Special Projects Finance Support Director Bursar's Office Bursar Administration & Finance Division Organizational Chart

  14. Capacity expansion in contemporary telecommunication networks

    E-Print Network [OSTI]

    Sivaraman, Raghavendran

    2007-01-01T23:59:59.000Z

    We study three capacity expansion problems in contemporary long distance telecommunication networks. The first two problems, motivated by a major long distance provider, address capacity expansion in national hybrid long ...

  15. Neural substrates of cognitive capacity limitations

    E-Print Network [OSTI]

    Buschman, Tim

    Cognition has a severely limited capacity: Adult humans can retain only about four items in mind. This limitation is fundamental to human brain function: Individual capacity is highly correlated with intelligence measures ...

  16. FURTHER EXPERIMENTS IN FISHWAY CAPACITY, 1957

    E-Print Network [OSTI]

    capacity trials 7 Maximum entry and exit 7 Entry capacity 8 Maximum number of fish present in the fishway 8 on 16 and a mean depth of 6. 3 feet. Maximum observed entry and exit of salmonids are discussed

  17. Voluntary Initiative: Partnering to Enhance Program Capacity...

    Energy Savers [EERE]

    to Enhance Program Capacity Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Voluntary Initiative: Partnering to Enhance Program...

  18. Can Science and Technology Capacity be Measured?

    E-Print Network [OSTI]

    Wagner, Caroline S; Dutta, Arindum

    2015-01-01T23:59:59.000Z

    The ability of a nation to participate in the global knowledge economy depends to some extent on its capacities in science and technology. In an effort to assess the capacity of different countries in science and technology, this article updates a classification scheme developed by RAND to measure science and technology capacity for 150 countries of the world.

  19. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997

  20. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 1997

  1. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978, 1997

  2. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978, 19977, 1998

  3. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978, 19977, 1998, 1999

  4. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978, 19977, 1998,

  5. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978, 19977, 1998,5,

  6. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978, 19977, 1998,5,2,

  7. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978, 19977, 1998,5,2,9,

  8. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978, 19977,

  9. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978, 19977,3, 1999

  10. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978, 19977,3, 19990,

  11. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978, 19977,3, 19990,7,

  12. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978, 19977,3,

  13. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978, 19977,3,0, 2000

  14. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978, 19977,3,0, 20008,

  15. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978, 19977,3,0,

  16. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978, 19977,3,0,31, 2000

  17. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978, 19977,3,0,31,

  18. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978, 19977,3,0,31,4,

  19. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,

  20. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8, 2000

  1. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8, 20006, 2000

  2. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8, 20006, 20003,

  3. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8, 20006, 20003,0,

  4. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8, 20006,

  5. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8, 20006,, 2000

  6. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8, 20006,, 20000,

  7. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8, 20006,, 20000,7,

  8. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8, 20006,,

  9. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8, 20006,,, 2000

  10. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8, 20006,,, 20008,

  11. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8, 20006,,,

  12. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8, 20006,,,3, 2000

  13. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8, 20006,,,3,

  14. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8, 20006,,,3,7,

  15. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8, 20006,,,3,7,4,

  16. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8, 20006,,,3,7,4,1,

  17. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8,

  18. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8,6, 2000

  19. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8,6, 20002, 2001

  20. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8,6, 20002, 20018,

  1. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8,6, 20002,

  2. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8,6, 20002,2, 2001

  3. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8,6, 20002,2,

  4. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8,6, 20002,2,5,

  5. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8,6, 20002,2,5,2,

  6. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8,6, 20002,2,5,2,0,

  7. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8,6,

  8. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8,6,5, 2001

  9. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8,6,5, 20012, 2001

  10. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8,6,5, 20012,

  11. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8,6,5, 20012,6,

  12. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8,6,5, 20012,6,,

  13. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8,6,5, 20012,6,,9,

  14. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8,6,5,

  15. EIA Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work withJersey Nuclear6, 1997, 19978,8,6,5,0, 2001

  16. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory MaterialsShale

  17. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory MaterialsShale

  18. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory

  19. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30, 1999

  20. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30, 19997, 1999

  1. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30, 19997, 19993,

  2. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30, 19997,

  3. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30, 19997,7, 1999

  4. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30, 19997,7,

  5. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30, 19997,7,2,

  6. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30, 19997,7,2,8,

  7. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30,

  8. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30,15, 2000

  9. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30,15, 200022,

  10. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30,15, 200022,30,

  11. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30,15,

  12. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30,15,2, 2000

  13. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30,15,2, 20009,

  14. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30,15,2, 20009,6,

  15. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30,15,2,

  16. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30,15,2,0, 2000

  17. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30,15,2,0, 20007,

  18. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30,15,2,0,

  19. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30,15,2,0,31,

  20. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30,15,2,0,31,7,

  1. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory30,15,2,0,31,7,4,

  2. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000 http://www.eia.doe.gov/oil_gas/natural_gas/nat_frame.html N Y M E

  3. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000 http://www.eia.doe.gov/oil_gas/natural_gas/nat_frame.html N Y M

  4. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000 http://www.eia.doe.gov/oil_gas/natural_gas/nat_frame.html N Y M1,

  5. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000 http://www.eia.doe.gov/oil_gas/natural_gas/nat_frame.html N Y

  6. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000 http://www.eia.doe.gov/oil_gas/natural_gas/nat_frame.html N Y5,

  7. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000 http://www.eia.doe.gov/oil_gas/natural_gas/nat_frame.html N Y5,,

  8. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000 http://www.eia.doe.gov/oil_gas/natural_gas/nat_frame.html N

  9. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000 http://www.eia.doe.gov/oil_gas/natural_gas/nat_frame.html N6,

  10. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000 http://www.eia.doe.gov/oil_gas/natural_gas/nat_frame.html N6,3,

  11. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000 http://www.eia.doe.gov/oil_gas/natural_gas/nat_frame.html

  12. ARM - Website Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities and Instruments ManusAdministration

  13. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariateSite Map Main Power Administration

  14. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariateSite Map Main Power Administration

  15. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariateSite Map Main Power AdministrationPrivacy

  16. Fermilab at Work | Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013 NAME: University

  17. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports| Nationalry '1'/r/;L15-16 U.S.

  18. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports| Nationalry '1'/r/;L15-16 U.S.

  19. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports| Nationalry '1'/r/;L15-16

  20. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports| Nationalry '1'/r/;L15-1620

  1. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,Enriched Uranium | NationaloverAdministration23, 1992 Last

  2. EFRC: Administration and Operation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work with E=mc2 - What's theEERE News and8 1NERSC Mark

  3. Professor Priscilla "Tilly" Shaw: Poet, Teacher, Administrator

    E-Print Network [OSTI]

    Rabkin, Sarah J.; Shaw, Priscilla

    2013-01-01T23:59:59.000Z

    Priscilla Tilly Shaw: Poet, Teacher, Administrator Rabkin:Priscilla Tilly Shaw: Poet, Teacher, Administrator respectPriscilla Tilly Shaw: Poet, Teacher, Administrator Shaw:

  4. Capacity fade of Sony 18650 cells cycled at elevated temperatures Part II. Capacity fade analysis

    E-Print Network [OSTI]

    Popov, Branko N.

    Capacity fade of Sony 18650 cells cycled at elevated temperatures Part II. Capacity fade analysis P August 2002 Abstract A complete capacity fade analysis was carried out for Sony 18650 cells cycled the other losses. # 2002 Elsevier Science B.V. All rights reserved. Keywords: Capacity fade; Sony 18650

  5. Standard practice for evaluation of disbonding of bimetallic stainless alloy/steel plate for use in high-pressure, high-temperature refinery hydrogen service

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2001-01-01T23:59:59.000Z

    1.1 This practice covers a procedure for the evaluation of disbonding of bimetallic stainless alloy/steel plate for use in refinery high-pressure/high-temperature (HP/HT) gaseous hydrogen service. It includes procedures to (1) produce suitable laboratory test specimens, (2) obtain hydrogen charging conditions in the laboratory that are similar to those found in refinery HP/HT hydrogen gas service for evaluation of bimetallic specimens exposed to these environments, and (3) perform analysis of the test data. The purpose of this practice is to allow for comparison of data among test laboratories on the resistance of bimetallic stainless alloy/steels to hydrogen-induced disbonding (HID). 1.2 This practice applies primarily to bimetallic products fabricated by weld overlay of stainless alloy onto a steel substrate. Most of the information developed using this practice has been obtained for such materials. The procedures described herein, may also be appropriate for evaluation of hot roll bonded, explosive bonded...

  6. General Services Administration Photovoltaics Project in Sacramento...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Services Administration Photovoltaics Project in Sacramento, California General Services Administration Photovoltaics Project in Sacramento, California Document describes a...

  7. National Nuclear Security Administration | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  8. Southeastern Power Administration (WFP) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications A History of the Southeastern Power Administration (1990 - 2010) Western Area Power Administration (WFP) Electricity & Energy Reliability...

  9. Line Management Perspective: National Nuclear Security Administration...

    Broader source: Energy.gov (indexed) [DOE]

    National Nuclear Security Administration (NNSA) Line Management Perspective: National Nuclear Security Administration (NNSA) Addthis Description Slide Presentation by Jim...

  10. NNSA Personnel Appointments Announced Administrator Gordon Submits...

    National Nuclear Security Administration (NNSA)

    Personnel Appointments Announced Administrator Gordon Submits Organizational Plan to Congress | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People...

  11. ADMINISTRATIVE RECORDS SCHEDULE 5: BUDGET PREPARATION, PRESENTATION...

    Broader source: Energy.gov (indexed) [DOE]

    RECORDS SCHEDULE 5: BUDGET PREPARATION, PRESENTATION, AND APPORTIONMENT ADMINISTRATIVE RECORDS SCHEDULE 23: RECORDS COMMON TO MOST OFFICES Administrative Management Records...

  12. Pollux | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Pollux | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  13. Thomas D. Williams Assistant Administrator

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    operational, technology, and administrative policies and plans for federal research, science, engineering, and regulatory programs. Thom served as the Associate Director for...

  14. Policy Procedure Administrative Directive Title: _____________________________________

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Policy ­ Procedure ­ Administrative Directive Title: _____________________________________ Policy-President _____________ See also: Related Policies, Procedures and Agreements: Relevant Legislation and Regulations: ____________________________________________________________________________ Background and Purpose: ____________________________________________________________________________ Policy

  15. Hydrogen Generation for Refineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single Cycle Shown for ATB SteamCarbon 3 * ATB reforming * Steamcarbon 3 * Syngas generated during reforming * 70% H 2 * 20% CO * Syngas composition agrees with...

  16. Refinery Outages: Fall 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for TableCORPORATION /Product:

  17. Hydrogen Generation for Refineries

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral Testimony ofMonitoring, Protectionof

  18. U.S. Refinery

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe Outlook269,023Year JanCrude Oil and Petroleum

  19. U.S. Refinery

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,932 130,902672009Dec-14

  20. Solar Energy and Capacity Value (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01T23:59:59.000Z

    This is a one-page, two-sided fact sheet on the capacity of solar power to provide value to utilities and power system operators.

  1. Increasing water holding capacity for irrigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Increasing water holding capacity for irrigation Reseachers recommend solutions for sediment trapping in irrigation system LANL and SNL leveraged technical expertise to determine...

  2. Worldwide Energy Efficiency Action through Capacity Building...

    Open Energy Info (EERE)

    and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Name Worldwide Energy Efficiency Action...

  3. Quantum Capacities of Channels with small Environment

    E-Print Network [OSTI]

    Michael M. Wolf; David Perez-Garcia

    2006-07-11T23:59:59.000Z

    We investigate the quantum capacity of noisy quantum channels which can be represented by coupling a system to an effectively small environment. A capacity formula is derived for all cases where both system and environment are two-dimensional--including all extremal qubit channels. Similarly, for channels acting on higher dimensional systems we show that the capacity can be determined if the channel arises from a sufficiently small coupling to a qubit environment. Extensions to instances of channels with larger environment are provided and it is shown that bounds on the capacity with unconstrained environment can be obtained from decompositions into channels with small environment.

  4. The principal's role in supporting teacher leadership and building capacity : teacher and administrator perspectives

    E-Print Network [OSTI]

    Burke, Kelly Ann

    2009-01-01T23:59:59.000Z

    Kanold, T. D. (2006). The flywheel effect: Educators gains (2001) notion of the flywheel effect. The metaphor,of small pushes to move a flywheel. The movement is slow at

  5. ADMINISTRATION BULLETIN Spring / Summer 2014

    E-Print Network [OSTI]

    O'Toole, Alice J.

    , and an addition to the Naveen Jindal School of Management that will all open in fall 2014 [Page 5]. In addition helping to create strong infrastruc- ture, a culture of service and an environment of energy. We Updates 17 Audit Compliance 20 Procedure Updates 20 Office of Administration utdallas.edu / administration

  6. Administration Policy Complete Policy Title

    E-Print Network [OSTI]

    Haykin, Simon

    Administration Policy Complete Policy Title: McMaster University Alcohol Policy Policy Number, 1998 Supersedes/Amends Policy dated: May 11, 1998 Responsible Executive: Vice-President (Administration policy and the written copy held by the policy owner, the written copy prevails. INTRODUCTION Mc

  7. $2001 SM TW T F S SM TW T F S

    Broader source: Energy.gov (indexed) [DOE]

    'lo 00 10 0 1100 GAO meeting NEP Implementation Focus Meeting -- Refinery Issues (Refinery Capacity, Boutique Fuels, etc.) (DepSec Conference Room) 00 GAO...

  8. Temporary Losses of Highway Capacity and Impacts on Performance: Phase 2

    SciTech Connect (OSTI)

    Chin, S.M.

    2004-11-10T23:59:59.000Z

    Traffic congestion and its impacts significantly affect the nation's economic performance and the public's quality of life. In most urban areas, travel demand routinely exceeds highway capacity during peak periods. In addition, events such as crashes, vehicle breakdowns, work zones, adverse weather, railroad crossings, large trucks loading/unloading in urban areas, and other factors such as toll collection facilities and sub-optimal signal timing cause temporary capacity losses, often worsening the conditions on already congested highway networks. The impacts of these temporary capacity losses include delay, reduced mobility, and reduced reliability of the highway system. They can also cause drivers to re-route or reschedule trips. Such information is vital to formulating sound public policies for the highway infrastructure and its operation. In response to this need, Oak Ridge National Laboratory, sponsored by the Federal Highway Administration (FHWA), made an initial attempt to provide nationwide estimates of the capacity losses and delay caused by temporary capacity-reducing events (Chin et al. 2002). This study, called the Temporary Loss of Capacity (TLC) study, estimated capacity loss and delay on freeways and principal arterials resulting from fatal and non-fatal crashes, vehicle breakdowns, and adverse weather, including snow, ice, and fog. In addition, it estimated capacity loss and delay caused by sub-optimal signal timing at intersections on principal arterials. It also included rough estimates of capacity loss and delay on Interstates due to highway construction and maintenance work zones. Capacity loss and delay were estimated for calendar year 1999, except for work zone estimates, which were estimated for May 2001 to May 2002 due to data availability limitations. Prior to the first phase of this study, which was completed in May of 2002, no nationwide estimates of temporary losses of highway capacity by type of capacity-reducing event had been made. This report describes the second phase of the TLC study (TLC2). TLC2 improves upon the first study by expanding the scope to include delays from rain, toll collection facilities, railroad crossings, and commercial truck pickup and delivery (PUD) activities in urban areas. It includes estimates of work zone capacity loss and delay for all freeways and principal arterials, rather than for Interstates only. It also includes improved estimates of delays caused by fog, snow, and ice, which are based on data not available during the initial phase of the study. Finally, computational errors involving crash and breakdown delay in the original TLC report are corrected.

  9. Business Administration OFFICE: Business Administration 448 In the College of Business Administration TELEPHONE: (619) 594-5828

    E-Print Network [OSTI]

    Gallo, Linda C.

    138 Business Administration OFFICE: Business Administration 448 In the College of Business Administration TELEPHONE: (619) 594-5828 FAX: (619) 594-7046 Faculty Faculty assigned to teach in Business Administration are drawn from departments in the College of Business Administration. The Majors For majors

  10. Business AdministrationOFFICE: Business Administration 448 TELEPHONE: (619) 594-5828 In the College of Business Administration

    E-Print Network [OSTI]

    Gallo, Linda C.

    141 Business AdministrationOFFICE: Business Administration 448 TELEPHONE: (619) 594-5828 In the College of Business Administration FAX: (619) 594-7046 Faculty Faculty assigned to teach in Business Administration are drawn from departments in the College of Business Administration. The Majors For majors

  11. Business Administration OFFICE: Business Administration 448 In the College of Business Administration TELEPHONE: (619) 594-5828

    E-Print Network [OSTI]

    Gallo, Linda C.

    142 Business Administration OFFICE: Business Administration 448 In the College of Business Administration TELEPHONE: (619) 594-5828 FAX: (619) 594-7046 Faculty Faculty assigned to teach in Business Administration are drawn from departments in the College of Business Administration. The Majors For majors

  12. Managing nuclear predominant generating capacity

    SciTech Connect (OSTI)

    Bouget, Y.H.; Herbin, H.C.; Carbonnier, D.

    1998-07-01T23:59:59.000Z

    The most common belief, associated with nuclear power plant, leads to the conclusion that it can only operate, as a base load plant. This observation can be reversed, by just looking at large generating capacity, using an important nuclear generation mix. Nuclear plants may certainly load follow and contribute to the grid frequency control. The French example illustrates these possibilities. The reactor control of French units has been customized to accommodate the grid requests. Managing such a large nuclear plant fleet requires various actions be taken, ranging from a daily to a multi-annual perspective. The paper describes the various contributions leading to safe, reliable, well accepted and cost competitive nuclear plants in France. The combination of all aspects related to operations, maintenance scheduling, nuclear safety management, are presented. The use of PWR units carries considerable weight in economic terms, with several hundred million francs tied in with outage scheduling every year. This necessitates a global view of the entire generating system which can be mobilized to meet demand. There is considerable interaction between units as, on the one hand, they are competing to satisfy the same need, and, on the other hand, reducing maintenance costs means sharing the necessary resources, and thus a coordinated staggering of outages. In addition, nuclear fuel is an energy reserve which remains in the reactor for 3 or 4 years, with some of the fuel renewed each year. Due to the memory effect, the fuel retains a memory of past use, so that today's choices impact upon the future. A medium-term view of fuel management is also necessary.

  13. Mitochondrial Respiratory Capacity Is a Critical Regulator

    E-Print Network [OSTI]

    respiratory capacity (SRC). SRC is the extra capacity available in cells to produce energy in response. In response to antigen (Ag) and costimulation, CD8+ T cells undergo a developmental program characterized- ating in response to Ag, it is thought that quiescent T cells (e.g., naive and memory T cells), like

  14. REDUCTION CAPACITY OF SALTSTONE AND SALTSTONE COMPONENTS

    SciTech Connect (OSTI)

    Roberts, K.; Kaplan, D.

    2009-11-30T23:59:59.000Z

    The duration that saltstone retains its ability to immobilize some key radionuclides, such as technetium (Tc), plutonium (Pu), and neptunium (Np), depends on its capacity to maintain a low redox status (or low oxidation state). The reduction capacity is a measure of the mass of reductants present in the saltstone; the reductants are the active ingredients that immobilize Tc, Pu, and Np. Once reductants are exhausted, the saltstone loses its ability to immobilize these radionuclides. The reduction capacity values reported here are based on the Ce(IV)/Fe(II) system. The Portland cement (198 {micro}eq/g) and especially the fly ash (299 {micro}eq/g) had a measurable amount of reduction capacity, but the blast furnace slag (820 {micro}eq/g) not surprisingly accounted for most of the reduction capacity. The blast furnace slag contains ferrous iron and sulfides which are strong reducing and precipitating species for a large number of solids. Three saltstone samples containing 45% slag or one sample containing 90% slag had essentially the same reduction capacity as pure slag. There appears to be some critical concentration between 10% and 45% slag in the Saltstone formulation that is needed to create the maximum reduction capacity. Values from this work supported those previously reported, namely that the reduction capacity of SRS saltstone is about 820 {micro}eq/g; this value is recommended for estimating the longevity that the Saltstone Disposal Facility will retain its ability to immobilize radionuclides.

  15. Core Values (What we believe in) We are in the business of empowering human capacity with knowledge and wisdom.

    E-Print Network [OSTI]

    Gilbert, Matthew

    University of Illinois at Urbana-Champaign October 2005 #12;2 Indoor Environmental Control Bio-sensors requirements (ACT and HSPR) Number of student applications Teaching evaluation scores Integrate and Enhance-advising Evaluation of changed administrative structure Strengthen Faculty Capacity Number of endowed chairs Number

  16. SCHOOL of BUSINESS ADMINISTRATION DEAN: Margaret Williams

    E-Print Network [OSTI]

    Berdichevsky, Victor

    103 SCHOOL of BUSINESS ADMINISTRATION DEAN: Margaret Williams #12;104 School of Business Administration Foreword to School of Business Administration The School of Business Administration is a professional school con- cerned with the theory and practice of business administration. The primary objectives

  17. ENERGY IN THE PACIFIC COASTAL ZONE DOES D.O.E. HAVE A ROLE?

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01T23:59:59.000Z

    B. Refining Capacity C.Z. Refinery Percent of State Percent106 BBL/yr) State Total Refineries State California Oregonhead 0.02-0.08 per well Refinery Fossil fuel power plant

  18. Administrative Systems Planning: Supporting Academic

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    Process Analysis Requirements Analysis Technical Design Development Implementation Operations Reviews (2007-2011) Time Reporting System (A&FS) Pre-Purchasing System (CA&ES) Campus Asset academic enterprise to maximize learning and research outcomes Reforming our administrative operations

  19. National Aeronautics and Space Administration

    E-Print Network [OSTI]

    Lüttgen, Gerald

    National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681 ICASE, Hampton, Virginia Victor Carreño NASA Langley Research Center, Hampton, Virginia Institute for Computer Applications in Science and Engineering NASA Langley Research Center Hampton, VA Operated

  20. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

    Office of Legacy Management (LM)

    .' :h I : ' ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION WASHINGTON, D.C. 20545 October 24, 1975 :.. ,. Memo to Piles' CARNEGIE-MELLON SC&RCCYCLOTRON On October 23, 1975, W....

  1. Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-08-01T23:59:59.000Z

    An important emerging issue is the estimation of renewables' contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to resource variability. Reliability-based methods, particularly, effective load-carrying capacity (ELCC), are considered to be the most robust techniques for addressing this resource variability. The Regional Energy Deployment System (ReEDS) capacity expansion model and other long-term electricity capacity planning models require an approach to estimating CV for generalized PV and system configurations with low computational and data requirements. In this paper we validate treatment of solar photovoltaic (PV) capacity value by ReEDS capacity expansion model by comparing model results to literature for a range of energy penetration levels. Results from the ReEDS model are found to compare well with both comparisons--despite not being resolved at an hourly scale.

  2. Photovoltaics effective capacity: Interim final report 2

    SciTech Connect (OSTI)

    Perez, R.; Seals, R. [State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center

    1997-11-01T23:59:59.000Z

    The authors provide solid evidence, based on more than 8 million data points, that regional photovoltaic (PV) effective capacity is largely unrelated to the region`s solar resource. They confirm, however, that effective capacity is strongly related to load-shape characteristics. The load-shape effective-capacity relationship appears to be valid for end-use loads as small as 100 kW, except possibly in the case of electrically heated buildings. This relationship was used as a tool to produce a US map of PV`s effective capacity. The regions of highest effective capacities include (1) the central US from the northern Great Plains to the metropolitan areas of Chicago and Detroit, down to the lower Mississippi Valley, (2) California and western Arizona, and (3) the northeast metropolitan corridor. The features of this map are considerably different from the traditional solar resource maps. They tend to reflect the socio-economic and climatic factors that indirectly drive PV`s effective capacity: e.g., commercial air-conditioning, little use of electric heat, and strong summer heat waves. The map provides a new and significant insight to a comprehensive valuation of the PV resource. The authors assembled preliminary evidence showing that end-use load type may be related to PV`s effective capacity. Highest effective capacities were found for (nonelectrically heated) office buildings, followed by hospitals. Lowest capacities were found for airports and residences. Many more data points are needed, however, to ascertain and characterize these preliminary findings.

  3. Kathleen Carlson Appointed Interim Acting Deputy Administrator...

    National Nuclear Security Administration (NNSA)

    Interim Acting Deputy Administrator for Defense Programs Press Release Aug 16, 2001 Kathleen Carlson Appointed Interim Acting Deputy Administrator for Defense Programs...

  4. Additional Staff Appointments Announced by the Administrator...

    National Nuclear Security Administration (NNSA)

    Staff Appointments Announced by the Administrator of NNSA Press Release May 31, 2001 Additional Staff Appointments Announced by the Administrator of NNSA (PDF - 0.03Mb)...

  5. Harold Washington Social Security Administration (SSA) Center...

    Office of Environmental Management (EM)

    Harold Washington Social Security Administration (SSA) Center Water Conservation and Green Energy Harold Washington Social Security Administration (SSA) Center Water Conservation...

  6. Obama Administration Announces Competition to Showcase, Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Obama Administration Announces Competition to Showcase, Support Local and Tribal Climate Action; Applications Due Oct. 27 Obama Administration Announces Competition to Showcase,...

  7. Northern Maine Independent System Administrator (Maine)

    Broader source: Energy.gov [DOE]

    The Northern Maine Independent System Administrator (NMISA) is a non-profit entity responsible for the administration of the northern Maine transmission system and electric power markets in...

  8. The Maritime Administration's Energy and Emissions Program -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 The Maritime Administration's Energy and Emissions Program - Part 1 2002 DEER Conference Presentation: Maritime Administration 2002deergore1.pdf More Documents & Publications...

  9. The Maritime Administration's Energy and Emissions Program -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 The Maritime Administration's Energy and Emissions Program - Part 2 2002 DEER Conference Presentation: Maritime Administration 2002deergore2.pdf More Documents & Publications...

  10. Independent Oversight Review, Bonneville Power Administration...

    Broader source: Energy.gov (indexed) [DOE]

    014 Oversight Review of the Bonneville Power Administration Safety Management Program Bonneville Power Administration management requested that the U.S. Department of Energy Office...

  11. PRESSURIZATION TEST RESULTS: BONNEVILLE POWER ADMINISTRATION ENERGY CONSERVATION STUDY

    E-Print Network [OSTI]

    Krinkel, D.L.

    2013-01-01T23:59:59.000Z

    RESULTS: BONNEVILLE POWER ADMINISTRATION ENERGY CONSERVATIONResults: Bonneville Power Administration Energy Conservationof the Bonneville Power Administration's Energy Conservation

  12. Feedback Capacity of the Compound Channel

    E-Print Network [OSTI]

    Shrader, Brooke E.

    In this work, we find the capacity of a compound finite-state channel (FSC) with time-invariant deterministic feedback. We consider the use of fixed length block codes over the compound channel. Our achievability result ...

  13. Inventories and capacity utilization in general equilibrium

    E-Print Network [OSTI]

    Trupkin, Danilo Rogelio

    2009-05-15T23:59:59.000Z

    The primary goal of this dissertation is to gain a better understanding, in thecontext of a dynamic stochastic general equilibrium framework, of the role of inventories and capacity utilization (of both capital and labor) and, in particular...

  14. Expandability, reversibility, and optimal capacity choice

    E-Print Network [OSTI]

    Dixit, Avinash K.

    1997-01-01T23:59:59.000Z

    We develop continuous-time models of capacity choice when demand fluctuates stochastically, and the firm's opportunities to expand or contract are limited. Specifically, we consider costs of investing or disinvesting that ...

  15. Developing High Capacity, Long Life Anodes

    Broader source: Energy.gov (indexed) [DOE]

    more than 1000 mAhg with poor cyleability. * The formation of Sn x Co y C z and MO composite could lead to the increase in the capacity, reduce the amount of cobalt in the...

  16. California: Conducting Polymer Binder Boosts Storage Capacity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - 10:17am Addthis Working with Nextval, Inc., Lawrence Berkeley National Laboratory (LBNL) developed a Conducting Polymer Binder for high-capacity lithium-ion batteries. With a...

  17. Capacity Building Project with Howard University

    Broader source: Energy.gov [DOE]

    The purpose of this initiative is to build community capacity for public participation in environmental and energy decision making. The target communities are those impacted by U.S. Department of...

  18. Measuring the capacity impacts of demand response

    SciTech Connect (OSTI)

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15T23:59:59.000Z

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  19. Turbine fuels from tar-sands bitumen and heavy oil. Volume 2. Phase 3. Process design specifications for a turbine-fuel refinery charging San Ardo heavy crude oil. Final report, 1 June 1985-31 March 1987

    SciTech Connect (OSTI)

    Talbot, A.F.; Swesey, J.R.; Magill, L.G.

    1987-09-01T23:59:59.000Z

    An engineering design was developed for a 50,000-BPSD grass-roots refinery to produce aviation turbine fuel grades JP-4 and JP-8 from San Ardo heavy crude oil. The design was based on the pilot-plant studies described in Phase III - Volume I of this report. The detailed plant design described in this report was used to determine estimated production costs.

  20. Responsible: Press Office of the City Administration

    E-Print Network [OSTI]

    Schmidt, Matthias

    of the University of Bayreuth, Dr. Markus Zanner, signed an administrative agreement governing important procedures

  1. Administration and Finance Weekly Activity Report

    E-Print Network [OSTI]

    Administration and Finance Weekly Activity Report Week Ending: February 28, 2014 · Administration and Finance Website ­ The website for Administration and Finance has been successfully migrated into NMSU Administration and Finance forms page. · New Collections System ­ Working in conjunction with the University

  2. TWRS information locator database system administrator`s manual

    SciTech Connect (OSTI)

    Knutson, B.J., Westinghouse Hanford

    1996-09-13T23:59:59.000Z

    This document is a guide for use by the Tank Waste Remediation System (TWRS) Information Locator Database (ILD) System Administrator. The TWRS ILD System is an inventory of information used in the TWRS Systems Engineering process to represent the TWRS Technical Baseline. The inventory is maintained in the form of a relational database developed in Paradox 4.5.

  3. CMRR | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of the Administrator|AdministrationREQUIREMENTS

  4. Jordan | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration SandiaAdministration News |Jordan | National

  5. High-capacity hydrogen storage in lithium and sodium amidoboranes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capacity hydrogen storage in lithium and sodium amidoboranes. High-capacity hydrogen storage in lithium and sodium amidoboranes. Abstract: A substantial effort worldwide has been...

  6. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

  7. Is there life in other markets? BPA explores preschedule capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    can diminish the federal hydropower system's capacity to balance supply and demand for power. The process allowed BPA to explore an untested capacity market this spring to acquire...

  8. Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics with SEI Layer Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics with SEI Layer 2011 DOE...

  9. RULES FOR CONGESTION MANAGEMENT EVALUATION OF AVAILABILITY OF CAPACITY AND

    E-Print Network [OSTI]

    RULES FOR CONGESTION MANAGEMENT EVALUATION OF AVAILABILITY OF CAPACITY AND POSSIBILITIES.............................................................12 4.4 Available trading capacity in the market

  10. HT Combinatorial Screening of Novel Materials for High Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage Presentation for...

  11. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15eswise2012p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

  12. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15eswise2011p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

  13. Employee-Driven Initiative Increases Treatment Capacity, Reduces...

    Energy Savers [EERE]

    Employee-Driven Initiative Increases Treatment Capacity, Reduces Clean Water Demands Employee-Driven Initiative Increases Treatment Capacity, Reduces Clean Water Demands June 30,...

  14. Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

    Office of Environmental Management (EM)

    Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

  15. Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-03-01T23:59:59.000Z

    An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.

  16. Environmental Assessment for the Proposed Increase in the Facility Capacity and Petroleum Inventory at the Strategic Petroleum Reserve's Bryan Mound Storage Facility, Texas

    SciTech Connect (OSTI)

    N /A

    2004-11-24T23:59:59.000Z

    The DOE proposes that the authorized capacity of the BM facility and, upon Administration authorization, the petroleum inventory be increased by 3.5 million m{sup 3} (22 MMB). The proposed action may be subdivided into two distinct actions, the action to increase the facility capacity and the action to increase the facility's petroleum inventory, which is conditioned upon future authorization by the Administration. A portion of the proposed increase in facility capacity would be obtained via modification of the existing internal cavern infrastructure. Specifically, of the proposed increase in cavern capacity, up to 1.4 million m{sup 3} (8.8 MMB) would result from adjustment of the suspended casing of 10 caverns, thereby increasing the working cavern volumes without changing the cavern dimensions. The balance of the proposed increase to facility capacity, 2.1 million m{sup 3} (13.2 MMB), would result from administrative activities including the return of cavern 112 to service at its full capacity [approximately 1.9 million m{sup 3} (12 MMB)] and volume upgrades of at least 0.19 million m{sup 3} (1.2 MMB) based on new information obtained during sonar investigation of caverns.

  17. National Aeronautics and Space Administration

    E-Print Network [OSTI]

    Christian, Eric

    Security Management Act: Fiscal Year 2010 Report from the Office of Inspector General" (IG-11-005, NovemberNational Aeronautics and Space Administration Office of Inspector General Washington, DC 20546 and China or any Chinese company.1 The NASA Office of Inspector General (OIG) last reported to you regarding

  18. Department Administration Year Department Head

    E-Print Network [OSTI]

    Velev, Orlin D.

    Director of Undergraduate Studies Graduate Administrator Machine Shop 1924-1925 Edgar Randolph 1925-1926 Edgar Randolph 1926-1927 Edgar Randolph 1927-1928 Edgar Randolph 1928-1929 Edgar Randolph 1929-1930 Edgar Randolph Lois Todd 1930-1931 Edgar Randolph Lois Todd 1931-1932 Edgar Randolph Lois Todd 1932

  19. School of Public Health ADMINISTRATION

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    career in health services organizations such as hospitals, community-based ambulatory care centers, man aged care plans, the health supply chain, and long-term care providers. These students will receiveSchool of Public Health HEALTHCARE ADMINISTRATION Mailing Address: MHA Program Division of Health

  20. Administration and Finance Financial Services

    E-Print Network [OSTI]

    de Lijser, Peter

    Administration and Finance Financial Services P.O. Box 6808, Fullerton, CA 92834 / T 657. Jenkins Associate Vice President of Finance SUBJECT: Finance System Oracle Upgrade The CSUF Finance System is scheduled for an Oracle upgrade in September 2009. The CMS Finance System will be unavailable beginning

  1. Administration Policy Complete Policy Title

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    Administration Policy Complete Policy Title: Engagement of Independent Contractors Policy Number of Original Approval: Supersedes/Amends Policy dated: Payments to Individuals (Independent Contractors) versus between this electronic policy and the written copy held by the policy owner, the written copy prevails

  2. Administration bachelor.utwente.nl

    E-Print Network [OSTI]

    Twente, Universiteit

    --Europe as the crucial link. 4 Examples · Inequality, unemployment · Global warming, effects of natural disasters (hurricanes, floods) · Terrorism, global security, war/ peace #12;17112014 2 A UNIQUE COMBINATION Combination of European Studies with Public Administration Causes of highly complex problems Solutions at all relevant

  3. National Aeronautics and Space Administration

    E-Print Network [OSTI]

    Christian, Eric

    and cost estimates are developed, program costs are adequately managed, and the most advantageous skills, real and personal property, and related capabilities to support projects within the Constellation-0001 November 10, 2008 TO: Administrator FROM: Inspector General SUBJECT: NASA's Most Serious Management

  4. DOE mixed waste treatment capacity analysis

    SciTech Connect (OSTI)

    Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

    1994-06-01T23:59:59.000Z

    This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

  5. Heat capacity at the glass transition

    E-Print Network [OSTI]

    Kostya Trachenko; Vadim Brazhkin

    2010-07-13T23:59:59.000Z

    A fundamental problem of glass transition is to explain the jump of heat capacity at the glass transition temperature $T_g$ without asserting the existence of a distinct solid glass phase. This problem is also common to other disordered systems, including spin glasses. We propose that if $T_g$ is defined as the temperature at which the liquid stops relaxing at the experimental time scale, the jump of heat capacity at $T_g$ follows as a necessary consequence due to the change of system's elastic, vibrational and thermal properties. In this picture, we discuss time-dependent effects of glass transition, and identify three distinct regimes of relaxation. Our approach explains widely observed logarithmic increase of $T_g$ with the quench rate and the correlation of heat capacity jump with liquid fragility.

  6. Better Buildings Neighborhood Program Business Models Guide: Program Administrator Description

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: Program Administrator Business Models, Program Administrator Description.

  7. A study of freeway capacity in Texas

    E-Print Network [OSTI]

    Ringert, John Franklin

    1992-01-01T23:59:59.000Z

    studies have been undertaken to determine the value of capacity. A study by Hurdle and Datta in 1983 concluded that the value of 2, 000 pcphpl was still a good estimate of capacity (5). In contrast, a study by Agyemang-Duah (6) concluded...). Many other studies have attempted to measure the flows in both conditions and have produced varying results. Another related issue is the requirement for the existence of sufficient demand which is highlighted by McShane and Roess (13). Agyemang-Duah...

  8. STATE OF CALIFORNIA MAXIMUM RATED TOTAL COOLING CAPACITY

    E-Print Network [OSTI]

    that the installed space conditioning system must have a cooling capacity rating at ARI conditions that is equal Total Cooling Capacity of the installed system (Btu/hr) 3b Sum of the ARI Rated Total Cooling Capacities, then the sum of ARI Rated Cooling Capacities of the installed cooling systems must be calculated and entered

  9. TURKEY'S CIVILIAN CAPACITY IN POST-CONFLICT RECONSTRUCTION

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    TURKEY'S CIVILIAN CAPACITY IN POST-CONFLICT RECONSTRUCTION 1 TURKEY'S CIVILIAN CAPACITY IN POST-CONFLICT RECONSTRUCTION by Teri Murphy & Onur Sazak #12;Turkey's Civilian Capacity in post-Conflict Reconstruction By Teri-checking was indispensable for the realization of this project. #12;TURKEY'S CIVILIAN CAPACITY IN POST

  10. Short-Term Energy Outlook - U.S. Energy Information Administration...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    471 million barrels as of March 27. With U.S. refineries beginning to return from maintenance, future inventory builds are likely to slow, and this contributed to a decrease in...

  11. PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY

    E-Print Network [OSTI]

    California at Davis, University of

    - nently reduce the connected capacity, with respect to the HVAC system, by disconnecting compressors within RTUs that contain multiple compressors. We reviewed existing literature and col- lected primary data by conducting field surveys in order to estab- lish how multiple compressor RTUs are typically

  12. Electricity market module: Electricity capacity planning submodule

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The purpose of this report is to describe modifications to the Electricity Capacity Planning Submodule (ECP) for the Annual Energy Outlook 1996. It describes revisions to enhance the representation of planned maintenance, incorporate technological improvements in operating efficiencies, revise the algorithm for determining international firm power imports, and include risk premiums for new plant construction.

  13. Multivariable controller increased MTBE complex capacity

    SciTech Connect (OSTI)

    Robertson, D.; Peterson, T.J.; O`Connor, D. [DMC Corp., Houston, TX (United States); Payne, D.; Adams, V. [Valero Refining Co., Corpus Christi, TX (United States)

    1997-03-01T23:59:59.000Z

    Capacity increased by more than 4.6% when one dynamic matrix multivariable controller began operating in Valero Refining Company`s MTBE production complex in Corpus Christi, Texas. This was on a plant that was already running well above design capacity due to previously made process changes. A single controller was developed to cover an isobutane dehydrogenation (ID) unit and an MTBE reaction and fractionation plant with the intermediate isobutylene surge drum. The overall benefit is realized by a comprehensive constrained multivariable predictive controller that properly handles all sets of limits experienced by the complex, whether limited by the front-end ID or back-end MTBE units. The controller has 20 manipulated, 6 disturbance and 44 controlled variables, and covers widely varying dynamics with settling times ranging from twenty minutes to six hours. The controller executes each minute with a six hour time horizon. A unique achievement is intelligent surge drum level handling by the controller for higher average daily complex capacity as a whole. The ID unit often operates at simultaneous limits on reactor effluent compressor capacity, cold box temperature and hydrogen/hydrocarbon ratio, and the MTBE unit at impurity in butene column overhead as well as impurity in MTBE product. The paper discusses ether production, isobutane dehydrogenation, maximizing production, controller design, and controller performance.

  14. STORAGE CAPACITY ALLOCATION ALGORITHMS FOR HIERARCHICAL

    E-Print Network [OSTI]

    Stavrakakis, Ioannis

    STORAGE CAPACITY ALLOCATION ALGORITHMS FOR HIERARCHICAL CONTENT DISTRIBUTION Nikolaos Laoutaris of Athens, 15784 Athens, Greece {laoutaris,vassilis,istavrak}@di.uoa.gr Abstract The addition of storage storage budget to the nodes of a hierarchical con- tent distribution system is formulated; optimal

  15. CSEM WP 124 Capacity Markets for Electricity

    E-Print Network [OSTI]

    California at Berkeley. University of

    CSEM WP 124 Capacity Markets for Electricity Anna Creti, LEEERNA, University of Toulouse for Electricity Anna Creti LEEERNA, University of Toulouse Natalia Fabra Universidad Carlos III de Madrid February 2004 Abstract The creation of electricity markets has raised the fundamental question as to whether

  16. Kampung Capacity Local Solutions for Sustainable

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Kampung Capacity Local Solutions for Sustainable Rural Energy in the Baram River Basin, Sarawak and social opportunities of up to 1.5 billion people worldwide. As a critical case in point, most rural of service provision based on large-scale regional electrification. A range of different renewable energy

  17. Capacity Building in Wind Energy for PICs

    E-Print Network [OSTI]

    indicates that significant wind energy potential exists. · A monitoring project showed that in Rarotonga system. · About 30 other islands could have potential for grid connected wind turbines in the 100-1000 k1 Capacity Building in Wind Energy for PICs Presentation of the project Regional Workshop Suva

  18. Constrained capacity of MIMO Rayleigh fading channels

    E-Print Network [OSTI]

    He, Wenyan

    2011-08-08T23:59:59.000Z

    In this thesis channel capacity of a special type of multiple-input multiple-output (MIMO) Rayleigh fading channels is studied, where the transmitters are subject to a finite phase-shift keying (PSK) input alphabet. The constraint on the input...

  19. PROJECT HIGHLIGHTS In the first project of its kind, the Bonneville Power Administration teamed with the Pacific Northwest

    E-Print Network [OSTI]

    , which were narrowed to two areas for detailed assessment of subsurface storage capacity, power plant of power production from wind resources, and environmental requirements mandate the use of hydroelectricPROJECT HIGHLIGHTS In the first project of its kind, the Bonneville Power Administration teamed

  20. MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE

    SciTech Connect (OSTI)

    Harbour, J; Vickie Williams, V

    2008-09-29T23:59:59.000Z

    One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were {approx} 55% higher than the previous measurement of specific heat capacity on a reference Saltstone mix in 1997. Values of mixes prepared using Deliquification, Dissolution and Adjustment (DDA), Modular Caustic Side Solvent Extraction Unit (MCU) and Salt Waste Processing Facility (SWPF) simulants and premix at 0.60 w/cm ratio were {approx} 1.95 J/g/{sup o}C and were equivalent within experimental error. The simple law of mixtures was used to predict the heat capacities of the Saltstone and the results were in excellent agreement with experimental data. This simple law of mixtures can therefore be used to predict the heat capacities of Saltstone mixes in those cases where measurements have not been made. The time dependence of the heat capacity is important as an input to the modeling of temperature increase in Saltstone vaults. The heat capacity of a mix of MCU and premix at 0.60 w/cm ratio was measured immediately after initial mixing and then periodically up to times greater than 100 days. Within experimental error, the heat capacity did not change with time. Therefore, the modeling is not complicated by requiring a time dependent function for specific heat capacity. The water to cementitious material (w/cm) ratio plays a key role in determining the value of the heat capacity. Both experimental and predictive values for SWPF mixes as function of the w/cm ratio were obtained and presented in this report. Predictions of the maximum temperatures of the Saltstone mixes were made using the heat of hydration data from previous isothermal measurements and the newly measured heat capacities for DDA, MCU and SWPF mixes. The maximum temperature increase ranged from 37 to 48 C for these mixes. The presence of aluminate at 0.33 M produced a temperature increase of 68 C which is close to the adiabatic temperature rise of 74 C observed by Steimke and Fowler in 1997 for a mix containing 0.35 M aluminate. Aluminum dissolution of the sludge will increase the aluminate in the DSS which in turn will result in a larger temperature increase in the Saltstone vaults during the curing p

  1. University Policy No.: AD2215 Classification: Administration

    E-Print Network [OSTI]

    Victoria, University of

    University Policy No.: AD2215 Classification: Administration Approving Authority: Board of Governors LICENSING PROGRAM POLICY Effective Date: June/90 Supersedes: Last Editorial Change: Mandated Review: 1. This statement applies to the policies and administration of trademarks registered

  2. Administrative Internship Handbook Curry School of Education

    E-Print Network [OSTI]

    Acton, Scott

    Administrative Internship Handbook Curry School of Education THE ADMINISTRATIVE INTERNSHIP HANDBOOK Internship Handbook Curry School of Education Table of Contents Purpose of the Handbook................................................................................................................ 3 Overview of the Internship Experience

  3. UNIVERSITY OF HOUSTON SYSTEM ADMINISTRATIVE MEMORANDUM

    E-Print Network [OSTI]

    Glasser, Adrian

    and regulations of the Federal Communications Commission (FCC) and the Federal Aviation Administration (FAA). 2UNIVERSITY OF HOUSTON SYSTEM ADMINISTRATIVE MEMORANDUM SECTION: Information Technology NUMBER: 07.A.05 AREA: Computing Services SUBJECT: Federal Communications Commission August 24, 1992; Revised

  4. Latina Administrators' Ways of Leadership: Preparando Chicanas

    E-Print Network [OSTI]

    Lopez, Michelle Marie

    2013-04-04T23:59:59.000Z

    administrators about ways to recruit and increase the pipeline of Latinas prepared to assume administrative positions within higher education, particularly in student affairs. A naturalistic inquiry research method was employed utilizing both a feminist...

  5. Peter W. Colby Professor of Public Administration

    E-Print Network [OSTI]

    Wu, Shin-Tson

    : A Workbook for Public Managers, State University of New York Press, Albany, New York, 1990. Co Personnel Administration, and State and Local Government Review. Selected Courses Taught Public Management, Administrative Theory, Fiscal Management, Public Budgeting, Reengineering, Non- Profit Management ... Outstanding

  6. Federal Register Notice: National Nuclear Security Administration...

    Office of Environmental Management (EM)

    Site-Wide Environmental Impact Statement for Sandia National Laboratories, New Mexico (SNLNM) Federal Register Notice: National Nuclear Security Administration...

  7. Office of Administrative Operations (GC-90)

    Broader source: Energy.gov [DOE]

    John D. (Dan) Bullington, Director of Administrative Operations 202-586-7364dan.bullington@hq.doe.gov

  8. ADMINISTRATIVE RECORDS SCHEDULE 17: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC, ARCHITECTURAL, ENGINEERING, AND FACILITY MANAGEMENT RECORDS ADMINISTRATIVE RECORDS SCHEDULE 17: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC,...

  9. New Solicitations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Stewardship Science Academic Alliances New Solicitations New Solicitations The National Nuclear Security Administration's Office of Research, Development, Test, and Evaluation...

  10. ADMINISTRATIVE RECORD JtQS'&L ADMINISTRATIVE RECORD

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg 1 8-3-11

  11. Finance and Administration Organization FRANCINE G. MCNAIRY

    E-Print Network [OSTI]

    Hardy, Christopher R.

    Finance and Administration Organization PRESIDENT FRANCINE G. MCNAIRY VICE PRESIDENT FOR FINANCE CONTRACTING RUTH SHEETZ ASSISTANT TO THE VICE PRESIDENT FOR FINANCE AND ADMINISTRATION ELIZABETH W. KAREVICIUS PRESIDENT FOR FINANCE AND ADMINISTRATION KENNETH E. DEARSTYNE JR. CONTROLLER TEH P. KRAJAN SENIOR ACCOUNTANT

  12. Office of Finance and Administration Margaret Ferguson

    E-Print Network [OSTI]

    Keinan, Alon

    Office of Finance and Administration Margaret Ferguson Associate Dean College of Agriculture Center Jeanine Masse Director Budget & Finance Mark Pluchino Director Sr. Associate Deans Jan Nyrop / Max Ecology Finance and Administration Laurie Coffin Administrative Assistant Other: Angie Putnam-OAP Betty

  13. West Virginia University 1 Governance and Administration

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    West Virginia University 1 Governance and Administration In this Section: · Governor of West Virginia · West Virginia Higher Education Policy Commission · West Virginia University Board of Governors · West Virginia University Administration · Senior Administration · Deans · Directors Governor of West

  14. ADMINISTRATION AND FINANCE POLICIES AND PROCEDURES

    E-Print Network [OSTI]

    Rusu, Adrian

    ADMINISTRATION AND FINANCE POLICIES AND PROCEDURES Chapter 1 POLICY DEVELOPMENT & IMPLEMENTATION................................................................................. 3 #12;ADMINISTRATION AND FINANCE POLICIES AND PROCEDURES Chapter 1 POLICY DEVELOPMENT & IMPLEMENTATION Revision Date: 1/26/10 1.01 PURPOSE AND USE OF THE MANUAL This Administration and Finance Policies

  15. operations | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development of NovelHigh Capacity Oligomers at|

  16. ornl | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development of NovelHigh Capacity

  17. oversight | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development of NovelHigh Capacity7/%2A enoversight |

  18. Calculations of Heat-Capacities of Adsorbates

    E-Print Network [OSTI]

    LAWRENCE, WR; Allen, Roland E.

    1976-01-01T23:59:59.000Z

    PHYSICAL REVIEW B VOLUME 14, NUMBER 7 1 OCTOBER 1976 Calculations of heat capacities of adsorbates W. R. Lawrence and R. E. Allen Department of Physics, Texas A& M University, College Station, Texas 77843 (Received 2 September 1975) The phonon... the substrate has a perfect (100) surface and the adsorbate goes down as a solid monolayer in registry with the substrate. The quasiharmonic approximation was used, and the results for Ne adsorbates were considerably different from those obtained...

  19. A kinematic wave theory of capacity drop

    E-Print Network [OSTI]

    Wen-Long Jin; Qi-Jian Gan; Jean-Patrick Lebacque

    2013-10-09T23:59:59.000Z

    Capacity drop at active bottlenecks is one of the most puzzling traffic phenomena, but a thorough understanding is practically important for designing variable speed limit and ramp metering strategies. In this study, we attempt to develop a simple model of capacity drop within the framework of kinematic wave theory based on the observation that capacity drop occurs when an upstream queue forms at an active bottleneck. In addition, we assume that the fundamental diagrams are continuous in steady states. This assumption is consistent with observations and can avoid unrealistic infinite characteristic wave speeds in discontinuous fundamental diagrams. A core component of the new model is an entropy condition defined by a discontinuous boundary flux function. For a lane-drop area, we demonstrate that the model is well-defined, and its Riemann problem can be uniquely solved. We theoretically discuss traffic stability with this model subject to perturbations in density, upstream demand, and downstream supply. We clarify that discontinuous flow-density relations, or so-called "discontinuous" fundamental diagrams, are caused by incomplete observations of traffic states. Theoretical results are consistent with observations in the literature and are verified by numerical simulations and empirical observations. We finally discuss potential applications and future studies.

  20. Administrative Access Policy Exception Process & Request Form Administrative Access Policy Exception Process

    E-Print Network [OSTI]

    Arnold, Jonathan

    Administrative Access Policy ­ Exception Process & Request Form (Page 1) Administrative Access Policy ­ Exception Process Administrative Access Policy Overview According to the Franklin College Administrative Access Policy , all IT devices with a UGA control number will be setup with user