Powered by Deep Web Technologies
Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

2

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

sum to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

3

Energy Information Administration - Transportation Energy Consumption...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the...

4

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

5

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

6

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

7

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

7A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

8

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Table C22. Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace...

9

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

10

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

11

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of...

12

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

13

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

14

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

15

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

16

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square...

17

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

18

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

19

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

20

Energy Information Administration - Energy Efficiency, energy consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Efficiency Efficiency Energy Efficiency energy consumption savings households, buildings, industry & vehicles The Energy Efficiency Page reflects EIA's information on energy efficiency and related information. This site provides an in depth discussion of the concept of energy efficiency and how it is measured, measurement, summaries of formal user meetings on energy efficiency data and measurement, as well as analysis of greenhouse gas emissions as related to energy use and energy efficiency. At the site you will find links to other sources of information, and via a listserv all interested analysts can share ideas, data, and ask for assistance on methodological problems associated with energy use, energy efficiency, and greenhouse gas issues. Contact: Behjat.Hojjati@eia.doe.gov

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

22

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 All Buildings* Sum of Major Fuel Consumption Number of Buildings (thousand)...

23

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace...

24

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

25

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

26

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

27

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace...

28

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total...

29

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

or fewer than 20 buildings were sampled. NNo responding cases in sample. Notes: Statistics for the "Energy End Uses" category represent total consumption in buildings that...

30

Energy Information Administration - Transportation Energy Consumption by  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply surveys, directed to the suppliers and marketers of specific energy sources, that measure the quantities of specific fuels produced for and/or supplied to the market; and consumption surveys, which gather information on the types of energy used by consumer groups along with the consumer characteristics that are associated with energy use. In the transportation sector, EIA's core consumption survey was the Residential Transportation Energy Consumption Survey. RTECS belongs to the consumption group because it collects information directly from the consumer, the household. For roughly a decade, EIA fielded the RTECS--data were first collected in 1983. This survey, fielded for the last time in 1994, was a triennial survey of energy use and expenditures, vehicle miles-traveled (VMT), and vehicle characteristics for household vehicles. For the 1994 survey, a national sample of more than 3,000 households that own or use some 5,500 vehicles provided data.

31

Consumption & Efficiency - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports An Assessment of EIA's Building Consumption Data Background image of CNSTAT logo The U.S. Energy Information Administration (EIA) routinely uses feedback from customers and outside experts to help improve its programs and products. As part of an assessment of its consumption

32

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings ................................ 178 238 104 3,788 7,286 2,521 47.0 32.7 41.3 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 23 27 11 346 360 218 66.6 75.8 51.9 5,001 to 10,000 .............................. 14 36 Q 321 662 Q 45.1 53.8 Q 10,001 to 25,000 ............................ 31 33 Q 796 1,102 604 39.5 29.9 Q

33

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

1A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 1A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings ................................ 201 412 431 13,124 31,858 25,200 15.3 12.9 17.1 Principal Building Activity Education ....................................... 9 55 45 806 5,378 3,687 11.1 10.2 12.2 Food Sales ..................................... 36 24 Q 747 467 Q 48.8 51.1 Q

34

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 . Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings* ............................. 1,488 2,794 1,539 17,685 29,205 17,893 84.1 95.7 86.0 Building Floorspace (Square Feet) 1,001 to 5,000 .............................. 191 290 190 2,146 2,805 1,838 89.1 103.5 103.5 5,001 to 10,000 ............................ 131 231 154 1,972 2,917 1,696 66.2 79.2 91.0 10,001 to 25,000 .......................... 235 351 191 3,213 4,976 3,346 73.1 70.5 57.0

35

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings .............................. 454 715 356 378 134 8,486 14,122 8,970 11,796 5,098 53.5 50.6 39.7 32.0 26.3 Building Floorspace (Square Feet) 1,001 to 5,000 ............................. 57 84 35 58 16 666 1,015 427 832 234 84.8 83.1 81.9 69.6 66.6 5,001 to 10,000 ........................... 50 57 33 61 17 666 1,030 639 1,243 392 75.2 54.9 51.2 49.2 44.0

36

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Total Energy Consumption by Major Fuel for All Buildings, 2003 A. Total Energy Consumption by Major Fuel for All Buildings, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat Primary Site All Buildings ................................ 4,859 71,658 6,523 10,746 3,559 2,100 228 636 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 6,922 685 1,185 392 257 34 Q 5,001 to 10,000 .............................. 948 7,033 563 883 293 224 36 Q 10,001 to 25,000 ............................ 810 12,659 899 1,464 485 353 28 Q 25,001 to 50,000 ............................ 261 9,382 742 1,199 397 278 17 Q 50,001 to 100,000 .......................... 147 10,291 913 1,579 523 277 29 Q

37

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings .............................. 137 254 189 261 202 11,300 18,549 12,374 17,064 10,894 12.1 13.7 15.3 15.3 18.5 Building Floorspace (Square Feet) 1,001 to 5,000 ............................. 19 27 14 32 23 1,210 1,631 923 1,811 903 15.7 16.4 15.0 17.8 25.8 5,001 to 10,000 ........................... 12 18 15 27 14 1,175 1,639 1,062 1,855 914 10.2 10.9 14.3 14.3 15.5

38

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings ................................ 172 234 452 185 13,899 17,725 26,017 12,541 12.4 13.2 17.4 14.7 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 14 30 52 19 1,031 1,742 2,410 1,296 13.5 17.4 21.5 14.6 5,001 to 10,000 .............................. 11 17 37 21 1,128 1,558 2,640 1,319 9.8 10.8 14.0 15.8 10,001 to 25,000 ............................ 22 33 59 28 2,094 3,317 4,746 2,338 10.4 10.0 12.5 12.1

39

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings ................................ 448 728 511 350 10,162 14,144 15,260 8,907 44.1 51.5 33.5 39.3 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 50 92 68 40 547 1,086 912 629 90.6 84.6 74.5 63.7 5,001 to 10,000 .............................. 39 63 69 46 661 1,064 1,439 806 59.2 59.4 48.1 57.4 10,001 to 25,000 ............................ 58 133 81 70 1,293 2,656 2,332 1,542 45.2 50.1 34.7 45.7

40

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

1A. Natural Gas Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 1A. Natural Gas Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings ................................ 467 882 688 7,144 21,928 19,401 65.4 40.2 35.5 Principal Building Activity Education ....................................... Q 137 101 419 3,629 2,997 53.9 37.6 33.7 Food Sales ..................................... 16 Q Q 339 Q Q 46.6 Q Q

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings ................................ 168 185 165 5,453 3,263 5,644 30.9 56.6 29.2 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 29 18 Q 334 266 363 87.9 68.5 60.2 5,001 to 10,000 .............................. 25 Q Q 545 291 514 45.6 62.7 54.4 10,001 to 25,000 ............................ 20 45 26 626 699 844 32.1 63.9 30.6

42

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings ................................ 66 254 57 5,523 13,837 3,546 12.0 18.3 16.2 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 10 28 7 821 1,233 481 12.4 22.4 15.4 5,001 to 10,000 .............................. 7 20 5 681 1,389 386 10.8 14.4 13.3 10,001 to 25,000 ............................ 9 31 12 1,204 2,411 842 7.8 12.8 14.1

43

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C8. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 2 C8. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings* ............................... 436 1,064 309 5,485 12,258 3,393 79.5 86.8 91.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 60 116 36 922 1,207 538 64.9 96.5 67.8 5,001 to 10,000 .............................. 44 103 Q 722 1,387 393 60.5 74.0 Q

44

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for All Buildings, 2003 A. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings ............................... 1,248 2,553 2,721 13,955 32,332 25,371 89.4 79.0 107.3 Principal Building Activity Education ...................................... 63 423 334 808 5,378 3,687 78.3 78.6 90.7 Food Sales ................................... 144 Q Q 765 467 Q 188.5 Q Q

45

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings* ........................... 990 1,761 1,134 1,213 724 10,622 17,335 11,504 15,739 9,584 93.2 101.6 98.5 77.0 75.5 Building Floorspace (Square Feet) 1,001 to 5,000 ............................ 143 187 90 170 95 1,313 1,709 1,010 1,915 975 108.7 109.6 88.8 89.0 97.9 5,001 to 10,000 .......................... 110 137 91 156 69 1,248 1,725 1,077 2,024 959 88.1 79.3 84.6 77.1 71.7

46

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003 . Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings* ............................. 1,188 2,208 2,425 13,374 29,260 22,149 88.8 75.5 109.5 Principal Building Activity Education ...................................... 63 423 334 808 5,378 3,687 78.3 78.6 90.7

47

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 3 . Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings* ............................... 575 381 530 7,837 3,675 7,635 73.4 103.8 69.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 87 44 64 788 464 871 110.9 94.7 73.0 5,001 to 10,000 .............................. 60 36 76 879 418 820 68.2 86.7 92.9 10,001 to 25,000 ............................ 53 76 73 1,329 831 1,256 40.2 91.7 58.4

48

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings ................................ 456 1,241 340 5,680 13,999 3,719 80.2 88.7 91.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 60 123 37 922 1,283 547 64.9 96.2 67.6 5,001 to 10,000 .............................. 45 111 27 738 1,468 420 61.6 75.4 63.2

49

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 . Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings* ............................. 1,271 1,690 1,948 911 12,905 17,080 23,489 11,310 98.5 98.9 82.9 80.6 Building Floorspace (Square Feet) 1,001 to 5,000 .............................. 118 206 240 108 1,025 1,895 2,533 1,336 115.1 108.5 94.9 80.6 5,001 to 10,000 ............................ 102 117 185 112 1,123 1,565 2,658 1,239 90.7 74.7 69.5 90.8

50

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings ................................ 684 446 617 9,022 4,207 8,613 75.8 106.1 71.6 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 87 44 64 788 466 871 110.9 94.8 73.0 5,001 to 10,000 .............................. 67 39 84 957 465 878 69.7 84.8 95.1 10,001 to 25,000 ............................ 77 91 89 1,555 933 1,429 49.4 97.2 62.4

51

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North Central New England Middle Atlantic East North Central All Buildings ................................ 345 1,052 1,343 3,452 10,543 12,424 99.8 99.7 108.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 37 86 147 383 676 986 95.9 127.9 148.9 5,001 to 10,000 .............................. 39 68 83 369 800 939 106.0 85.4 88.2 10,001 to 25,000 ............................ Q 121 187 674 1,448 2,113 Q 83.4 88.4

52

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings ............................... 1,522 3,228 1,772 18,031 33,384 20,243 84.4 96.7 87.6 Building Floorspace (Square Feet) 1,001 to 5,000 .............................. 193 300 193 2,168 2,904 1,850 89.0 103.2 104.2 5,001 to 10,000 ............................ 134 263 165 2,032 3,217 1,784 66.0 81.9 92.5 10,001 to 25,000 .......................... 241 432 226 3,273 5,679 3,707 73.6 76.1 60.9

53

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings ............................ 1,086 1,929 1,243 1,386 879 11,529 18,808 12,503 17,630 11,189 94.2 102.6 99.4 78.6 78.6 Building Floorspace (Square Feet) 1,001 to 5,000 ............................ 143 187 90 170 95 1,313 1,709 1,010 1,915 975 108.7 109.6 88.8 89.0 97.9 5,001 to 10,000 .......................... 110 137 91 156 69 1,248 1,725 1,077 2,024 959 88.1 79.3 84.6 77.1 71.7

54

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings ................................ 141 68 117 8,634 4,165 8,376 16.3 16.3 14.0 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 17 7 12 696 439 857 24.1 15.7 14.0 5,001 to 10,000 .............................. 12 5 15 865 451 868 13.8 12.1 17.7 10,001 to 25,000 ............................ 16 12 16 1,493 933 1,405 11.0 13.0 11.5

55

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings ................................ 162 538 343 17,509 32,945 19,727 9.2 16.3 17.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 24 54 38 2,072 2,767 1,640 11.4 19.4 23.0 5,001 to 10,000 .............................. 16 41 29 1,919 3,154 1,572 8.2 13.0 18.4 10,001 to 25,000 ............................ 28 69 45 3,201 5,610 3,683 8.7 12.3 12.2

56

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings ............................... 580 986 471 12,407 22,762 13,304 46.8 43.3 35.4 Building Floorspace (Square Feet) 1,001 to 5,000 ............................... 86 103 61 1,245 1,271 659 69.0 81.0 92.1 5,001 to 10,000 ............................. 57 101 60 1,154 1,932 883 49.4 52.3 67.6 10,001 to 25,000 ........................... 105 174 65 2,452 3,390 1,982 42.6 51.2 32.7

57

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North Central New England Middle Atlantic East North Central All Buildings ................................ 41 131 168 3,430 10,469 12,202 12.0 12.5 13.8 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 5 9 20 369 662 921 12.9 13.9 21.9 5,001 to 10,000 .............................. 3 8 9 360 768 877 8.4 10.4 10.8 10,001 to 25,000 ............................ Q 16 24 674 1,420 2,113 Q 11.6 11.2

58

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Fuel Oil Consumption (million gallons) Total Floorspace of Buildings Using Fuel Oil (million square feet) Fuel Oil Energy Intensity (gallons/square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings .............................. 1,302 172 107 64 6,464 2,909 4,663 2,230 0.20 0.06 0.02 Q Building Floorspace (Square Feet) 1,001 to 10,000 ............................ 381 Q Q Q 763 Q 274 Q 0.50 Q 0.10 Q 10,001 to 100,000 ........................ 404 63 Q Q 1,806 648 985 351 0.22 0.10 Q Q Over 100,000 ............................... 517 21 45 Q 3,894 2,055 3,404 1,780 0.13 0.01 0.01 Q

59

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

7A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 7A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North Central New England Middle Atlantic East North Central All Buildings ................................ 85 364 550 1,861 8,301 10,356 45.4 43.8 53.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q 42 69 Q 427 741 Q 98.4 92.9 5,001 to 10,000 .............................. Q 32 49 Q 518 743 Q 62.1 65.5 10,001 to 25,000 ............................ Q 47 102 Q 952 1,860 Q 49.7 54.6

60

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003 . Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003 All Buildings* Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat Primary Site All Buildings* ............................... 4,645 64,783 5,820 9,168 3,037 1,928 222 634 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 6,789 672 1,164 386 250 34 Q 5,001 to 10,000 .............................. 889 6,585 516 790 262 209 36 Q 10,001 to 25,000 ............................ 738 11,535 776 1,229 407 309 27 Q 25,001 to 50,000 ............................ 241 8,668 673 1,058 350 258 16 Q 50,001 to 100,000 .......................... 129 9,057 759 1,223 405 244 26 Q

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) All Buildings ................................ 4,859 71,658 14.7 6,523 1,342 91.0 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 6,922 2.7 685 265 99.0 5,001 to 10,000 .............................. 948 7,033 7.4 563 594 80.0 10,001 to 25,000 ............................ 810 12,659 15.6 899 1,110 71.0 25,001 to 50,000 ............................ 261 9,382 36.0 742 2,843 79.0

62

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 All Buildings* Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) per Worker (million Btu) All Buildings* ............................... 4,645 64,783 13.9 5,820 1,253 89.8 79.9 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 6,789 2.7 672 263 98.9 67.6 5,001 to 10,000 .............................. 889 6,585 7.4 516 580 78.3 68.7 10,001 to 25,000 ............................ 738 11,535 15.6 776 1,052 67.3 72.0 25,001 to 50,000 ............................ 241 8,668 35.9 673 2,790 77.6 75.8

63

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Steel Industry Analysis Brief Change Topic: Steel | Chemical Steel Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities Introduction The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers, railroads, automobiles, and appliances. Most grades of steel used today - particularly high-strength steels that are lighter and more versatile - were not available a decade ago.1 The U.S. steel industry (including iron production) relies significantly on natural gas and coal coke and breeze for fuel, and is one of the largest

64

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Chemical Industry Analysis Brief Change Topic: Steel | Chemical Chemical Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities | Fuel Switching Capacity Introduction The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals into thousands of various products. Chemicals are key materials for producing an extensive assortment of consumer goods. They are also crucial materials in creating many resources that are essential inputs to the numerous industries and sectors of the U.S. economy.1 The manufacturing sector is classified by the North American Industry Classification System (NAICS) of which the chemicals sub-sector is NAICS

65

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

Table C22. Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings* ............................... 155 447 288 17,163 28,766 17,378 9.0 15.5 16.6 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 23 52 37 2,049 2,668 1,628 11.3 19.6 23.0 5,001 to 10,000 .............................. 15 35 27 1,859 2,854 1,484 8.1 12.2 18.1 10,001 to 25,000 ............................ 27 55 37 3,141 4,907 3,322 8.5 11.3 11.2

66

Consumption & Efficiency - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Technical Workshop on Behavior Economics Presentations Technical Workshop on Behavior Economics Presentations Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy

67

Energy Information Administration/Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

, , Energy Information Administration/Household Vehicles Energy Consumption 1994 ix Household Vehicles Energy Consumption 1994 presents statistics about energy-related characteristics of highway vehicles available for personal use by members of U.S. households. The data were collected in the 1994 Residential Transportation Energy Consumption Survey, the final cycle in a series of nationwide energy consumption surveys conducted during the 1980's and 1990's by the Energy Information Administrations. Engines Became More Powerful . . . Percent Distribution of Total Residential Vehicle Fleet by Number of Cylinders, 1988 and 1994 Percent Distribution of Vehicle Fleet by Engine Size, 1988 and 1994 Percent Percent 4 cyl Less than 2.50 liters 6 cyl 2.50- 4.49 liters 8 cyl 4.50 liters or greater 20 20 40 40 Vehicle

68

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 All Buildings Using District Heat District Heat Consumption District Heat Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (million dollars) All Buildings ................................ 67 5,576 83 636 7,279 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q Q Q Q Q 5,001 to 10,000 .............................. Q Q Q Q Q 10,001 to 25,000 ............................ 18 289 16 Q Q 25,001 to 50,000 ............................ 10 369 35 Q Q 50,001 to 100,000 .......................... 8 574 70 Q Q 100,001 to 200,000 ........................ 9 1,399 148 165 Q

69

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

3A. Total Natural Gas Consumption and Expenditures in All Buildings, 2003 3A. Total Natural Gas Consumption and Expenditures in All Buildings, 2003 All Buildings Using Natural Gas Natural Gas Consumption Natural Gas Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (billion cubic feet) Total (million dollars) All Buildings ................................ 2,538 48,473 19.1 2,100 2,037 16,010 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 1,134 3,175 2.8 257 249 2,227 5,001 to 10,000 .............................. 531 3,969 7.5 224 218 1,830 10,001 to 25,000 ............................ 500 7,824 15.6 353 343 2,897 25,001 to 50,000 ............................ 185 6,604 35.8 278 270 2,054

70

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

8A. District Heat Consumption and Expenditure Intensities for All Buildings, 2003 8A. District Heat Consumption and Expenditure Intensities for All Buildings, 2003 District Heat Consumption District Heat Expenditures per Building (million Btu) per Square Foot (thousand Btu) per Building (thousand dollars) per Square Foot (dollars) per Thousand Pounds (dollars) All Buildings ................................ 9,470 113.98 108.4 1.31 11.45 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q Q Q Q Q 5,001 to 10,000 .............................. Q Q Q Q Q 10,001 to 25,000 ............................ Q Q Q Q Q 25,001 to 50,000 ............................ Q Q Q Q Q 50,001 to 100,000 .......................... Q Q Q Q Q 100,001 to 200,000 ........................ 17,452 118.10 Q Q Q

71

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 All Buildings Using Fuel Oil Fuel Oil Consumption Fuel Oil Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (million gallons) Total (million dollars) All Buildings ................................ 465 16,265 35 228 1,644 1,826 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 211 606 3 34 249 292 5,001 to 10,000 .............................. 102 736 7 36 262 307 10,001 to 25,000 ............................ 66 1,043 16 28 201 238 25,001 to 50,000 ............................ 24 895 38 17 124 134 50,001 to 100,000 .......................... 25 1,852 76 29 209 229

72

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

Table C13. Total Electricity Consumption and Expenditures for Non-Mall Buildings, 2003 All Buildings* Using Electricity Electricity Consumption Electricity Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Primary Site Total (million dollars) Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings* ............................... 4,404 63,307 14.4 9,168 3,037 890 69,032 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,384 6,346 2.7 1,164 386 113 10,348 5,001 to 10,000 .............................. 834 6,197 7.4 790 262 77 7,296 10,001 to 25,000 ............................ 727 11,370 15.6 1,229 407 119 10,001

73

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

4A. Fuel Oil Consumption and Expenditure Intensities for All Buildings, 2003 4A. Fuel Oil Consumption and Expenditure Intensities for All Buildings, 2003 Fuel Oil Consumption Fuel Oil Expenditures per Building (gallons) per Square Foot (gallons) per Building (thousand dollars) per Square Foot (dollars) per Gallon (dollars) All Buildings ................................ 3,533 0.10 3.9 0.11 1.11 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 1,177 0.41 1.4 0.48 1.18 5,001 to 10,000 .............................. 2,573 0.36 3.0 0.42 1.17 10,001 to 25,000 ............................ 3,045 0.19 3.6 0.23 1.18 25,001 to 50,000 ............................ 5,184 0.14 5.6 0.15 1.09 50,001 to 100,000 .......................... 8,508 0.11 9.3 0.12 1.10 100,001 to 200,000 ........................ 12,639 0.09 13.1 0.09 1.03

74

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh) Distribution of Building-Level Intensities (kWh/square foot) 25th Per- centile Median 75th Per- centile per Building (thousand dollars) per Square Foot (dollars) per kWh (dollars) All Buildings ................................ 226 14.9 3.8 8.8 18.1 17.9 1.18 0.079 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 48 17.8 3.8 9.0 20.0 4.4 1.63 0.092 5,001 to 10,000 .............................. 96 12.9 4.0 8.2 15.5 9.2 1.23 0.096 10,001 to 25,000 ............................ 178 11.4 3.1 7.2 15.0 15.2 0.97 0.086

75

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Total Energy Expenditures by Major Fuel for Non-Mall Buildings, 2003 . Total Energy Expenditures by Major Fuel for Non-Mall Buildings, 2003 All Buildings* Total Energy Expenditures (million dollars) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings* ............................... 4,645 64,783 92,577 69,032 14,525 1,776 7,245 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 6,789 12,812 10,348 2,155 292 Q 5,001 to 10,000 .............................. 889 6,585 9,398 7,296 1,689 307 Q 10,001 to 25,000 ............................ 738 11,535 13,140 10,001 2,524 232 Q 25,001 to 50,000 ............................ 241 8,668 10,392 7,871 1,865 127 Q 50,001 to 100,000 .......................... 129 9,057 11,897 8,717 1,868 203 Q

76

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C2A. Total Energy Expenditures by Major Fuel for All Buildings, 2003 C2A. Total Energy Expenditures by Major Fuel for All Buildings, 2003 All Buildings Total Energy Expenditures (million dollars) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings ................................ 4,859 71,658 107,897 82,783 16,010 1,826 7,279 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 6,922 13,083 10,547 2,227 292 Q 5,001 to 10,000 .............................. 948 7,033 10,443 8,199 1,830 307 Q 10,001 to 25,000 ............................ 810 12,659 15,689 12,172 2,897 238 Q 25,001 to 50,000 ............................ 261 9,382 11,898 9,179 2,054 134 Q 50,001 to 100,000 .......................... 147 10,291 15,171 11,694 2,140 229 Q

77

Consumption & Efficiency - Data - U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Find statistics on energy consumption and efficiency across all fuel sources. + EXPAND ALL Residential Energy Consumption Survey Data Household characteristics Release Date: March 28, 2011 Survey data for occupied primary housing units. Residential Energy Consumption Survey (RECS)

78

Energy Information Administration - Energy Efficiency-Table 5b. Consumption  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: June 2010 Table 5b. Consumption of Energy for All Purposes (First Use) per Ton of Steel, 1998, 2002, and 2006 (Million Btu per ton) MECS Survey Years Iron and Steel Mills (NAICS1 331111) 19982 20022 20062 Total 3 17 16 13 Net Electricity 4 2 2 2 Natural Gas 5 5 4 Coal 7 6 4 Notes: 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2. Denominators represent the entire steel industry, not those based mainly on electric, natural gas, residual fuel oil or coal.

79

Energy Information Administration - Energy Efficiency-Table 5a. Consumption  

Gasoline and Diesel Fuel Update (EIA)

5a 5a Page Last Modified: June 2010 Table 5a. Consumption of Energy for All Purposes (First Use) per Value of Production, 1998, 2002, and 2006 (1000 Btu per constant 2000 dollar 1) MECS Survey Years Iron and Steel Mills (NAICS2 331111) 1998 3 2002 3 2006 3 Total 4 30 27 17 Net Electricity5 3 4 3 Natural Gas 9 9 6 Coal 13 10 6 Notes:1. Value of production is deflated by the chain-type price indices for iron and steel mills shipments. 2. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 3. Denominators represent the value of production for the entire iron and still mills (NAICS 331111), not those based mainly on electric, natural gas or coal.

80

Transportation Energy Consumption Surveys  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption (RTECS) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses...

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DOE/EIA-0515(85) Energy Information Administration Manufacturing Energy Consumption Survey:  

U.S. Energy Information Administration (EIA) Indexed Site

5(85) 5(85) Energy Information Administration Manufacturing Energy Consumption Survey: Fuel Switching, 1985 This publication is available from the Superintendent of Documents, U.S, Government Printing Office (GPO). Informa tion about purchasing this or other Energy Information Administration (ElA) publications may be obtained from the GPO or the ElA's National Energy Information Center (NEIC). Questions on energy statistics should be directed to the NEIC by man, telephone or telecommunications device for the deaf (TDD). Addresses, telephone numbers and hours appear below. National Energy Information Center. El-231 Energy Information Administration Forrestal Building, Room 1F-048 Washington. DC 20585 (202) 586-8800 TDD (202) 586-1181 Hours: 8:00-5:00, M-F, Eastern Time

82

Energy Information Administration - Table 2. End Uses of Fuel Consumption,  

Gasoline and Diesel Fuel Update (EIA)

2 2 Page Last Modified: June 2010 Table 2. End Uses of Fuel Consumption, 1998, 2002, and 2006 (trillion Btu) MECS Survey Years Iron and Steel Mills (NAICS1 331111) 1998 2002 2006 Total 2 1,672 1,455 1,147 Net Electricity 3 158 184 175 Natural Gas 456 388 326 Coal 48 36 14 Boiler Fuel -- -- -- Coal 8 W 1 Residual Fuel Oil 10 * 4 Natural Gas 52 39 27 Process Heating -- -- -- Net Electricity 74 79 76 Residual Fuel Oil 19 * 11 Natural Gas 369 329 272 Machine Drive -- -- -- Net Electricity 68 86 77 Notes 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2. 'Total' is the sum of all energy sources listed below, including net steam (the sum of purchases, generation from renewable resources, and net transfers), and other energy that respondents indicated was used to produce heat and power. It is the fuel quantities across all end-uses.

83

Overview of the Electrical Energy Segment of the Energy Information Administration/ Manufacturing Consumption Report  

E-Print Network (OSTI)

, liquefied petroleum gas, coke and breeze, coal, and electricity, only the electricity segment is overviewed. Along with pure electrical energy consumption information, newly available data covers methods that manufacturers used to purchase and modify...

Lockhead, S.

84

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

85

DOE/EIA-0516(85) Energy Information Administration Manufacturing Energy Consumption Survey:  

U.S. Energy Information Administration (EIA) Indexed Site

6(85) 6(85) Energy Information Administration Manufacturing Energy Consumption Survey: Changes in Energy Efficienc y 1980-198 5 0 6 6 T ' L I A n s n u e r b i r p u T J d J T O J u o i j E i a o s s v 1 I Q 3 H O O l O H d s > | i i e } a B B J O j s j o n p c u d j o s e u e s v : o } o n d s e s e - e s z ( 2 0 2 ) O Q ' u o i 6 u m s B M I U 8 L U U I 8 A O O ' S ' H s j u e i u n o o a j o l u e p u e i u u a d n g U J 9 1 S B 3 ' j - ^ ' ' U J ' d g - ' i u ' B g : s j n o H 1 8 1 . 1 - 9 8 9 ( 2 0 2 ) : A | U Q J B 9 Q 9 4 1 J 0 * 3 3 I A 8 Q S U O j l B O ! U n U J U J < X > 8 | 8 1 0 0 8 8 - 9 8 9 ( 2 0 2 ) 9 8 9 0 2 0 0 8 t O - d I L U O O U ' S u j p n n g U O | J B J t S ! U | L U p V U O U B L U J O J U I A B J 8 U 3 I . £ 2 - 1 3 ' J 8 i U 8 0 U O j l B U U J O J U l A 6 J 8 U 3 | B U O I i B N : M O | 8 q J B e d d B s j n o g p u s ' s j s q t u n u s u o i j d s i a j ' s s s s s j p p v ' ( Q Q l ) J Q J s o j A S p s u o ! J B O ! u n i u u u o o 8 | 8 i ' J O 8 u o q d a | 8 i ' H B I U A q Q | 3 N 9 M I 0 1 p s p s j j p s q p i n o i j s S O J I S J I B I S A B u o s u o u s s n o ' ( O I 3 N ) J Q 1 U 8 Q U O U B I U J O ^ U I A B j s u g I B U O J I B N s , v i 3 e g u o O d

86

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

1 Energy Information AdministrationManufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas...

87

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

vehicle aging have an additional but unknown effect on the MPG of individual vehicles. Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 27 Of the...

88

Energy Consumption  

Science Journals Connector (OSTI)

We investigated the relationship between electrical power consumption per capita and GDP per capita in 130 countries using the data reported by World Bank. We found that an electrical power consumption per capita...

Aki-Hiro Sato

2014-01-01T23:59:59.000Z

89

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

90

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

S Y M n i 1 y 2 i (W i ) (W i 1) , Energy Information Administration, Manufacturing Energy Consumption Survey: Methodological Report 1985. Although this report describes 44...

91

ENERGY CONSUMPTION SURVEY  

U.S. Energy Information Administration (EIA) Indexed Site

5 RESIDENTIAL TRANSPORTATION 5 RESIDENTIAL TRANSPORTATION ENERGY CONSUMPTION SURVEY Prepared for: UNITED STATES DEPARTMENT OF ENERGY ENERGY INFORMATION ADMINISTRATION OFFICE OF ENERGY MARKETS AND END USE ENERGY END USE DIVISION RESIDENTIAL AND COMMERCIAL BRANCH WASHINGTON, DC 20585 Prepared by: THE ORKAND CORPORATION 8484 GEORGIA AVENUE SILVER SPRING, MD 20910 October 1986 Contract Number DE-AC01-84EI19658 TABLE OF CONTENTS FRONT MATTER Index to Program Descriptions........................................... vi List of Exhibits ....................................................... viii Acronyms and Abbreviations ............................................. ix SECTION 1: GENERAL INFORMATION ........................................ 1-1 1.1. Summary ....................................................... 1-1

92

Residential Energy Consumption Survey (RECS) - Energy Information...  

U.S. Energy Information Administration (EIA) Indexed Site

Heating and cooling no longer majority of U.S. home energy use Pie chart of energy consumption in homes by end uses Source: U.S. Energy Information Administration, Residential...

93

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

2(94) 2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. ii Energy Information Administration/Manufacturing Consumption of Energy 1994 Contacts This publication was prepared by the Energy Information Administration (EIA) under the general direction of W. Calvin

94

Manufacturing consumption of energy 1991  

SciTech Connect

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

Not Available

1994-12-01T23:59:59.000Z

95

Residential Energy Consumption Survey:  

Gasoline and Diesel Fuel Update (EIA)

E/EIA-0262/2 E/EIA-0262/2 Residential Energy Consumption Survey: 1978-1980 Consumption and Expenditures Part II: Regional Data May 1981 U.S. Department of Energy Energy Information Administration Assistant Administrator for Program Development Office of the Consumption Data System Residential and Commercial Data Systems Division -T8-aa * N uojssaooy 'SOS^-m (£03) ao£ 5925 'uofSfAfQ s^onpojj aa^ndmoo - aojAaag T BU T3gN am rcoj? aig^IT^^ '(adBx Q-naugBH) TOO/T8-JQ/30Q 30^703 OQ ' d jo :moaj ajqBfT^A^ 3J^ sjaodaa aAoqe aqa jo 's-TZTOO-eoo-Tgo 'ON ^ois odo 'g^zo-via/aoQ 'TBST Sujpjjng rXaAang uojidmnsuoo XSaaug sSu-ppjprig ON ^oo^s OdO '^/ZOZO-Via/aOQ *086T aunr '6L6I ?sn§ny og aunf ' jo suja^Bd uoj^dmnsuoo :XaAjng uo^^dmnsuoQ XSaaug OS '9$ '6-ieTOO- 00-T90 OdD 'S/ZOZO-Via/aOa C

96

Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Marks 25th Anniversary of 1973 Oil Embargo Marks 25th Anniversary of 1973 Oil Embargo Jay Hakes, Administrator, Energy Information Administration (EIA) September 3, 1998 Click here to start Table of Contents Energy Information Administration Some Views of 1973 Major Disruptions of World Oil Supply Imported Oil as a Percent of Total U. S. Consumption Percent of OPEC and Persian Gulf World Oil Production U. S. Retail Price of Gasoline U. S. Total Petroleum Consumption U. S. Per Capita Use of Petroleum U. S. Government Owned Crude Oil Stocks Cost of Finding Oil and Gas Reserves U. S. MPG Ratings for New Vehicles U. S. Average Horsepower of a New Vehicle Share of U. S. Electricity Generated By Petroleum Futures And Options Markets Changed Energy Marketing U. S. Total Energy Consumption U. S. Per Capita Use of Energy

97

Residential Energy Consumption Survey (RECS) - Energy Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumption Survey (RECS) - U.S. Energy Information Consumption Survey (RECS) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels

98

Manufacturing Consumption of Energy 1991--Combined Consumption and Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

< < Welcome to the U.S. Energy Information Administration's Manufacturing Web Site. If you are having trouble, call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of Energy 1991 (Combined Consumption and Fuel Switching) Overview Full Report Tables & Spreadsheets This report presents national-level estimates about energy use and consumption in the manufacturing sector as well as manufacturers' fuel-switching capability. Contact: Stephanie.battle@eia.doe.gov Stephanie Battle Director, Energy Consumption Division Phone: (202) 586-7237 Fax: (202) 586-0018 URL: http://www.eia.gov/emeu/mecs/mecs91/consumption/mecs1a.html File Last Modified: May 25, 1996

99

International Energy Outlook 2001 - World Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

World Energy Consumption World Energy Consumption picture of a printer Printer Friendly Version (PDF) This report presents international energy projections through 2020, prepared by the Energy Information Administration, including outlooks for major energy fuels and issues related to electricity, transportation, and the environment. The International Energy Outlook 2001 (IEO2001) presents the Energy Information Administration (EIA) outlook for world energy markets to 2020. Current trends in world energy markets are discussed in this chapter, followed by a presentation of the IEO2001 projections for energy consumption by primary energy source and for carbon emissions by fossil fuel. Uncertainty in the forecast is highlighted by an examination of alternative assumptions about economic growth and their impacts on the

100

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

ENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . .28 ENERGY CONSUMPTION

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration/Manufacturing Consumption of Energy 1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas restructuring, gas pipelines were opened to multiple users. Manufacturers or their representatives could go directly to the wellhead to purchase their natural gas, arrange the transportation, and have the natural gas delivered either by the local distribution company or directly through a connecting pipeline. More recently, the electricity markets have been undergoing change. When Congress passed the Energy Policy Act of 1992, requirements were included not only to open access to the ownership of electricity generation, but also to open access to the transmission lines so that wholesale trade in electricity would be possible. Now several States, including California and

102

World energy consumption  

SciTech Connect

Historical and projected world energy consumption information is displayed. The information is presented by region and fuel type, and includes a world total. Measurements are in quadrillion Btu. Sources of the information contained in the table are: (1) history--Energy Information Administration (EIA), International Energy Annual 1992, DOE/EIA-0219(92); (2) projections--EIA, World Energy Projections System, 1994. Country amounts include an adjustment to account for electricity trade. Regions or country groups are shown as follows: (1) Organization for Economic Cooperation and Development (OECD), US (not including US territories), which are included in other (ECD), Canada, Japan, OECD Europe, United Kingdom, France, Germany, Italy, Netherlands, other Europe, and other OECD; (2) Eurasia--China, former Soviet Union, eastern Europe; (3) rest of world--Organization of Petroleum Exporting Countries (OPEC) and other countries not included in any other group. Fuel types include oil, natural gas, coal, nuclear, and other. Other includes hydroelectricity, geothermal, solar, biomass, wind, and other renewable sources.

NONE

1995-12-01T23:59:59.000Z

103

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

" Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per...

104

Energy Consumption Profile for Energy  

E-Print Network (OSTI)

317 Chapter 12 Energy Consumption Profile for Energy Harvested WSNs T. V. Prabhakar, R Venkatesha.............................................................................................318 12.2 Energy Harvesting ...................................................................................318 12.2.1 Motivations for Energy Harvesting...............................................319 12

Langendoen, Koen

105

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

E E U.S. Census Regions and Divisions 489 Energy Information Administration/Manufacturing Consumption of Energy 1994 Source: U.S. Department of Commerce, Bureau of the Census, Statistical Abstract of the United States,1996 (Washington, DC, October 1996), Figure 1. Appendix E U.S. Census Regions and Divisions Appendix F Descriptions of Major Industrial Groups and Selected Industries Executive Office of the President, Office of Management and Budget, Standard Industrial Classification Manual, 1987, pp. 67-263. 54 493 Energy Information Administration/Manufacturing Consumption of Energy 1994 Appendix F Descriptions of Major Industrial Groups and Selected Industries This appendix contains descriptions of industrial groups and selected industries taken from the Standard Industrial

106

Historical Renewable Energy Consumption by Energy Use Sector and Energy  

Open Energy Info (EERE)

Historical Renewable Energy Consumption by Energy Use Sector and Energy Historical Renewable Energy Consumption by Energy Use Sector and Energy Source, 1989-2008 Dataset Summary Description Provides annual renewable energy consumption by source and end use between 1989 and 2008. This data was published and compiled by the Energy Information Administration. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords annual energy consumption consumption EIA renewable energy Data application/vnd.ms-excel icon historical_renewable_energy_consumption_by_sector_and_energy_source_1989-2008.xls (xls, 41 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 1989-2008 License License Creative Commons CCZero Comment Rate this dataset

107

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

methodology used to estimate these statistics relied on data from the 1990 Residential Energy Consumption Survey (RECS), the 1991 Residential Transportation Energy Consumption...

108

annual energy consumption | OpenEI  

Open Energy Info (EERE)

energy consumption energy consumption Dataset Summary Description Provides annual renewable energy consumption by source and end use between 1989 and 2008. This data was published and compiled by the Energy Information Administration. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords annual energy consumption consumption EIA renewable energy Data application/vnd.ms-excel icon historical_renewable_energy_consumption_by_sector_and_energy_source_1989-2008.xls (xls, 41 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 1989-2008 License License Creative Commons CCZero Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset

109

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Energy Consumption Survey Forms Form EIA-846A (4-6-95) U.S. Department of Commerce Bureau of the Census Acting as Collecting and Compiling Agent For 1994 MANUFACTURING ENERGY CONSUMPTION SURVEY Public reporting burden for this collection of information is estimated to average 9 hours per response, including the time of reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Energy Information Administration, Office of Statistical Standards, EI-73, 1707 H-Street, NW, Washington, DC 20585; and to the Office of Information and Regulatory Affairs, Office of

110

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A24. A24. Total Inputs of Energy for Heat, Power, and Electricity Generation by Program Sponsorship, Industry Group, Selected Industries, and Type of Energy- Management Program, 1994: Part 1 (Estimates in Trillion Btu) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 285 SIC Management Any Type of Sponsored Self-Sponsored Sponsored Sponsored Code Industry Group and Industry Program Sponsorship Involvement Involvement Involvement Involvement a No Energy Electric Utility Government Third Party Type of Sponsorship of Management Programs (1992 through 1994) RSE Row Factors Federal, State, or Local RSE Column Factors: 0.7 1.1 1.0 0.7 1.9 0.9 20-39 ALL INDUSTRY GROUPS Participation in One or More of the Following Types of Programs . .

111

State energy data report 1996: Consumption estimates  

SciTech Connect

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

NONE

1999-02-01T23:59:59.000Z

112

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Survey (MECS) 1998-2010, September 6, 2013. New 2010 Manufacturing Energy Consumption Survey (MECS) Data Released › Graph showing total U.S. manufacturing energy consumption for all purposes has declined 17 percent from 2002 to 2010. Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010, March 19, 2013. First Estimates from 2010 Manufacturing Energy Consumption Survey (MECS) Released ›

113

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

1. 1. Introduction The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The Energy Information Administration (EIA) is mandated by Congress to collect, analyze, and disseminate impartial, comprehensive data about energy--how much is produced, who uses it, and the purposes for which it is used. To comply with this mandate, EIA collects energy data from a variety of sources covering a range of topics 1 . Background The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted

114

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Sector Overview 1991-1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 xiii Why Do We Investigate Energy Use in the Manufacturing Sector? What Data Do EIA Use To Investigate Energy Use in the Manufacturing Sector? In 1991, output in the manufactur- ing sector fell as the country went into a recession. After 1991, however, output increased as the country slowly came out of the recession. Between 1991 and 1994, manufacturers, especially manu- facturers of durable goods such as steel and glass, experienced strong growth. The industrial production index for durable goods during the period increased by 21 percent. Real gross domestic product for durable goods increased a corre- sponding 16 percent. The growth of nondurables was not as strong-- the production index increased by only 9 percent during this time period.

115

Renewable Energy Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA renewable electricity Renewable Energy Consumption world Data text/csv icon total_renewable_electricity_net_consumption_2005_2009billion_kwh.csv (csv, 8.5 KiB) text/csv icon total_renewable_electricity_net_consumption_2005_2009quadrillion_btu.csv (csv, 8.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata

116

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A9. A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 166 End-Use Categories (trillion Btu) kWh) (1000 bbl) (1000 bbl) cu ft) (1000 bbl) tons) (trillion Btu) Total (million Fuel Oil Diesel Fuel (billion LPG (1000 short Other Net Distillate Natural and Electricity Residual Fuel Oil and Gas Breeze) a b c Coal (excluding Coal Coke d RSE Row Factors Total United States RSE Column Factors: NF 0.5 1.3 1.4 0.8 1.2 1.2 NF TOTAL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,515 778,335 70,111 26,107 5,962 25,949 54,143 5,828 2.7 Indirect Uses-Boiler Fuel . . . . . . . . . . . . . . . . . . . . . . . --

117

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Energy Information Administration/Manufacturing Consumption of Energy 1994 Glossary Anthracite: A hard, black, lustrous coal containing a high percentage of fixed carbon and a low percentage of volatile matter. Often referred to as hard coal. Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Bituminous Coal: A dense, black coal, often with well-defined bands of bright and dull material, with a moisture content usually less than 20 percent. Often referred to as soft coal. It is the most common coal. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to

118

Research on Building Energy Consumption Situation in Shanghai  

E-Print Network (OSTI)

for building energy-saving. REFERENCES [1] Weiding Long. A consider on strategy of building energy-saving in China. HV&AC, 2005, (35):1-8.(In Chinese) [2] Energy Information Administration, Commercial Buildings Energy Consumption Survey. http: //www... for building energy-saving. REFERENCES [1] Weiding Long. A consider on strategy of building energy-saving in China. HV&AC, 2005, (35):1-8.(In Chinese) [2] Energy Information Administration, Commercial Buildings Energy Consumption Survey. http: //www...

Yang, X.; Tan, H.

2006-01-01T23:59:59.000Z

119

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Design, Survey Design, Implementation, and Estimates 411 Energy Information Administration/Manufacturing Consumption of Energy 1994 Overview of Changes from Previous Surveys Sample Design. The MECS has increased its sample size by roughly 40 percent since the 1991 survey, increasing the designed sample size from 16,054 establishments to 22,922. This increase in size and change in sampling criteria required a departure from using the Annual Survey of Manufactures (ASM) as the MECS sampling frame. For 1994, establishments were selected directly from the 1992 Census of Manufactures (CM) mail file, updated by 1993 ASM. Sample Frame Coverage. The coverage in the 1994 MECS is 98 percent of the manufacturing population as measured in total payroll. The sampling process itself provided that level of coverage, and no special adjustments were

120

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

0. 0. Number of Establishments that Actually Switched Fuels from Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information Administration/Manufacturing Consumption of Energy 1994 SIC Residual Fuel Oil Total Code Industry Group and Industry (billion cu ft) Factors (counts) (counts) (percents) (counts) (percents) a Natural Gas Switchable to Establishments RSE Row Able to Switch Actually Switched RSE Column Factors: 1.3 0.1 1.4 1.7 1.6 1.8 20 Food and Kindred Products . . . . . . . . . . . . . . . . . . . . . . . . . 81 14,698 702 4.8 262 1.8 5.6 2011 Meat Packing Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 759 23 3.0 10 1.3 9.0 2033 Canned Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . 9 531 112 21.2 33 6.2 11.6 2037 Frozen Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . . 5 232 Q 5.3

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Residential Energy Consumption Survey Results: Total Energy Consumption,  

Open Energy Info (EERE)

Survey Results: Total Energy Consumption, Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) Dataset Summary Description The Residential Energy Consumption Survey (RECS) is a national survey that collects residential energy-related data. The 2005 survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the U.S. Data were obtained from residential energy suppliers for each unit in the sample to produce the Consumption & Expenditures data. The Consumption & Expenditures and Intensities data is divided into two parts: Part 1 provides energy consumption and expenditures by census region, population density, climate zone, type of housing unit, year of construction and ownership status; Part 2 provides the same data according to household size, income category, race and age. The next update to the RECS survey (2009 data) will be available in 2011.

122

Reduces electric energy consumption  

E-Print Network (OSTI)

consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings, and recycling. Alcoa provides the packaging, automotive, aerospace, and construction markets with a variety

123

Energy Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

124

MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY  

Gasoline and Diesel Fuel Update (EIA)

4, 2012 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS PAUL HOLTBERG TEAM LEADER ANALYSIS INTEGRATION TEAM JIM TURNURE DIRECTOR OFFICE OF ENERGY CONSUMPTION...

125

DOE/EIA-0515(85) Energy Information Administration Manufacturing...  

U.S. Energy Information Administration (EIA) Indexed Site

5(85) Energy Information Administration Manufacturing Energy Consumption Survey: Fuel Switching, 1985 This publication is available from the Superintendent of Documents, U.S,...

126

Energy consumption of building 39  

E-Print Network (OSTI)

The MIT community has embarked on an initiative to the reduce energy consumption and in accordance with the Kyoto Protocol. This thesis seeks to further expand our understanding of how the MIT campus consumes energy and ...

Hopeman, Lisa Maria

2007-01-01T23:59:59.000Z

127

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network (OSTI)

and Low Power Mode Energy Consumption, Energy Efficiency inEnergy Consumption ..26 3.1.3. 3D TV Energy Consumption and Efficiency

Park, Won Young

2011-01-01T23:59:59.000Z

128

Energy Consumption of Minimum Energy Coding in  

E-Print Network (OSTI)

Energy Consumption of Minimum Energy Coding in CDMA Wireless Sensor Networks Benigno Zurita Ares://www.ee.kth.se/control Abstract. A theoretical framework is proposed for accurate perfor- mance analysis of minimum energy coding energy consumption is analyzed for two coding schemes proposed in the literature: Minimum Energy coding

Johansson, Karl Henrik

129

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified in Standard Industrial Classification 20 through 39 of the U.S. economy as defined 2 by the Office of Management and Budget. The manufacturing sector is a part of the industrial sector, which also includes mining; construction; and agriculture, forestry, and fishing. The EIA also conducts energy consumption surveys in the residential, commercial buildings, and residential transportation sectors: the Residential Energy 3 Consumption Survey (RECS); the Commercial Buildings Energy Consumption Survey (CBECS); and, until recently, the Residential Transportation Energy Consumption Survey (RTECS).

130

THE FEDERAL HIGHWAY ADMINISTRATION GASOHOL CONSUMPTION ESTIMATION MODEL  

NLE Websites -- All DOE Office Websites (Extended Search)

10 10 THE FEDERAL HIGHWAY ADMINISTRATION GASOHOL CONSUMPTION ESTIMATION MODEL August 2003 Ho-Ling Hwang Lorena F. Truett Stacy C. Davis DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail info@ntis.fedworld.gov Web site http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange

131

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network (OSTI)

a forecast for total energy consumption in network standbyconsiderable impact on total energy consumption from TVs.factors affecting total energy consumption. Although further

Park, Won Young

2011-01-01T23:59:59.000Z

132

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

(MECS) > MECS 1994 Combined Consumption and Fuel Switching (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption Logo Full Report - (file size 5.4 MB) pages:531 Selected Sections (PDF format) Contents (file size 56 kilobytes, 10 pages). Overview (file size 597 kilobytes, 11 pages). Chapters 1-3 (file size 265 kilobytes, 9 pages). Chapter 4 (file size 1,070 kilobytes, 15 pages). Appendix A - Detailed Tables Tables A1 - A8 (file size 1,031 kilobytes, 139 pages). Tables A9 - A23 (file size 746 kilobytes, 119 pages). Tables A24 - A29 (file size 485 kilobytes, 84 pages). Tables A30 - A44 (file size 338 kilobytes, 39 pages). Appendix B (file size 194 kilobytes, 24 pages). Appendix C (file size 116 kilobytes, 16 pages).

133

Energy Consumption in Access Networks  

Science Journals Connector (OSTI)

We present a comparison of energy consumption of access networks. We consider passive optical networks, fiber to the node, point-to-point optical systems and WiMAX. Optical access...

Baliga, Jayant; Ayre, Robert; Sorin, Wayne V; Hinton, Kerry; Tucker, Rodney S

134

"U.S. Energy Information Administration"  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration" U.S. Energy Information Administration" "November 2013 Monthly Energy Review" 0 "Release Date: November 25, 2013" "Next Update: December 24, 2013" "Table 1.1 Primary Energy Overview" "Month","Total Fossil Fuels Production","Nuclear Electric Power Production","Total Renewable Energy Production","Total Primary Energy Production","Primary Energy Imports","Primary Energy Exports","Primary Energy Net Imports","Primary Energy Stock Change and Other","Total Fossil Fuels Consumption","Nuclear Electric Power Consumption","Total Renewable Energy Consumption","Total Primary Energy Consumption"

135

Administrative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Employee Services » Administrative Services » Employee Services » Administrative Administrative The Office of Management provides many of the administrative services that keep the Department of Energy operational. These functions are primarily provided by the Office of Administration, MA-40, the Office of Administrative Management and Support, MA-42. Administrative Management Services Conferencing and Special Events Copier Services Document Imaging Graphics Mail and Distribution Photography Printing For a listing of office contacts please use the About Us menu, the Contact Us section, available directly through this link. We welcome your comments or questions regarding these services. Please feel free to provide feedback to the Office of Administration's Customer Mailbox at: MA-40Customervoice@hq.doe.gov.

136

New York: Weatherizing Westbeth Reduces Energy Consumption |...  

Energy Savers (EERE)

York: Weatherizing Westbeth Reduces Energy Consumption New York: Weatherizing Westbeth Reduces Energy Consumption August 21, 2013 - 12:00am Addthis The New York State Homes and...

137

Energy Efficiency Program Administration Powerpoint Presentation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Program Administration Powerpoint Presentation Energy Efficiency Program Administration Powerpoint Presentation Energy Efficiency Program Administration Powerpoint...

138

Renewable Energy Consumption for Electricity Generation by Energy Use  

Open Energy Info (EERE)

Electricity Generation by Energy Use Electricity Generation by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual renewable energy consumption (in quadrillion btu) for electricity generation in the United States by energy use sector (commercial, industrial and electric power) and by energy source (e.g. biomass, geothermal, etc.) This data was compiled and published by the Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords biomass Commercial Electric Power Electricity Generation geothermal Industrial PV Renewable Energy Consumption solar wind Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Elec_.Gen_EIA.Aug_.2010.xls (xls, 19.5 KiB) Quality Metrics Level of Review Some Review

139

Commercial Buildings Energy Consumption and Expenditures 1992 - Executive  

U.S. Energy Information Administration (EIA) Indexed Site

& Expenditures > Executive Summary & Expenditures > Executive Summary 1992 Consumption & Expenditures Executive Summary Commercial Buildings Energy Consumption and Expenditures 1992 presents statistics about the amount of energy consumed in commercial buildings and the corresponding expenditures for that energy. These data are based on the 1992 Commercial Buildings Energy Consumption Survey (CBECS), a national energy survey of buildings in the commercial sector, conducted by the Energy Information Administration (EIA) of the U.S. Department of Energy. Figure ES1. Energy Consumption is Commercial Buidings by Energy Source, 1992 Energy Consumption: In 1992, the 4.8 million commercial buildings in the United States consumed 5.5 quadrillion Btu of electricity, natural gas, fuel oil, and district heat. Of those 5.5 quadrillion Btu, consumption of site electricity accounted for 2.6 quadrillion Btu, or 48.0 percent, and consumption of natural gas accounted for 2.2 quadrillion Btu, or 39.6 percent. Fuel oil consumption made up 0.3 quadrillion Btu, or 4.0 percent of the total, while consumption of district heat made up 0.4 quadrillion Btu, or 7.9 percent of energy consumption in that sector. When the energy losses that occur at the electricity generating plants are included, the overall energy consumed by commercial buildings increases to about 10.8 quadrillion Btu (Figure ES1).

140

DOE/EIA-0321/HRIf Residential Energy Consumption Survey. Consumption  

Gasoline and Diesel Fuel Update (EIA)

/HRIf /HRIf Residential Energy Consumption Survey. Consumption and Expenditures, April 1981 Through March 1982 an Part I: National Data Energy Information Administration Washington, D.C. (202) 20fr02 'O'Q 'uoifkjjUSBM ujiuud juaoiujeAog 'S'n siuawnooQ jo luapuaiuuadns - 0088-292 (202) 98S02 '0'Q 8f 0-d I 6ujp|ing uoiieflSjUjiup v UOIIBUJJOJU | ABjau 3 02-13 'jaiuao UOIJBUJJOJUI XBjaug IBUO!;BN noA pasopua s; uujoi japjo uy 'MO|aq jeadde sjaqoinu auoydajaj PUB sassajppv 'OI3N 9>4i oi papajip aq pinoqs X6jaue uo suotjsenQ '(OIBN) J9»ueo aqjeiMJO^ui ASjaug (BUOIJEN s,vi3 QMi JO OdO 941 UUGJJ peuiBiqo eq ABOI suoijBonqnd (vi3) UO!JBJ;S!UILUPV UOIIBUUJO|U| XBjeug jaiflo PUB SJMJ p ssBiiojnd PUB UOIIBLUJO^JI 6uuepjQ (Od9) 90IWO Bujjuud luetuujaAOQ -g'n 'sjuaiunooa p juapuaiuuedng aqt LUOJI aiqB||BAB si uoHBOjiqnd sjt|i

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


142

Federal Energy Management Program: Data Center Energy Consumption Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Center Energy Data Center Energy Consumption Trends to someone by E-mail Share Federal Energy Management Program: Data Center Energy Consumption Trends on Facebook Tweet about Federal Energy Management Program: Data Center Energy Consumption Trends on Twitter Bookmark Federal Energy Management Program: Data Center Energy Consumption Trends on Google Bookmark Federal Energy Management Program: Data Center Energy Consumption Trends on Delicious Rank Federal Energy Management Program: Data Center Energy Consumption Trends on Digg Find More places to share Federal Energy Management Program: Data Center Energy Consumption Trends on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Data Center Energy Efficiency Energy Consumption Trends

143

Manufacturing consumption of energy 1994  

SciTech Connect

This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

NONE

1997-12-01T23:59:59.000Z

144

Rail Transit and Energy Consumption  

Science Journals Connector (OSTI)

...Transit and Energy Consumption In a recent issue...D.C. 20418 The Diesel's Advantages It...p. 517). The diesel car, while it has...Other types of engine can be made to meet...catalysts by using leaded fuel because it is 3 to...politically unpopular. The diesel car requires no add-on...

CHARLES A. LAVE

1977-09-02T23:59:59.000Z

145

DOETEIAO32l/2 Residential Energy Consumption Survey; Consumption  

Gasoline and Diesel Fuel Update (EIA)

General information about EIA data on energy consumption may be obtained from Wray Smith, Director, Office of Energy Markets and End Use (202- 252-1617); Lynda T. Carlson,...

146

Household vehicles energy consumption 1994  

SciTech Connect

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

147

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010 MECS 2010 - Release date: March 19, 2013 Total energy consumption in the manufacturing sector decreased by 17 percent from 2002 to 2010 (Figure 1), according to data from the U.S. Energy Information Administration's (EIA) Manufacturing Energy Consumption Survey (MECS). line chart:air conditioning in U.S. Manufacturing gross output decreased by only 3 percent over the same period. Taken together, these data indicate a significant decline in the amount of energy used per unit of gross manufacturing output. The significant decline in energy intensity reflects both improvements in energy efficiency and changes in

148

Monitoring Energy Consumption In Wireless Sensor Networks  

E-Print Network (OSTI)

Monitoring Energy Consumption In Wireless Sensor Networks Matthias Witt, Christoph Weyer, it may impair the ability of the sensor network to function. Therefore, minimizing energy consumption energy consumption in both standby and active modes is the basis of wireless networks. Energy preserving

Turau, Volker

149

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings Characteristics Tables, number of buildings and amount of floorspace for major building characteristics. Energy Consumption and Expenditures Tables, energy consumption and expenditures for major energy sources. Energy End-Use Data, total, electricity and natural gas consumption and energy intensities for nine specific end-uses. All Principal Buildings Activities Number of Buildings, Total Floorspace, and Total Site and Primary Energy Consumption for All Principal Building Activities, 1995

150

Reduced Energy Consumption for Melting in Foundries  

E-Print Network (OSTI)

Reduced Energy Consumption for Melting in Foundries Ph.D. Thesis by Søren Skov-Hansen Supervisor-melted, and hence reduce the energy consumption for melting in foundries. Traditional gating systems are known

151

Energy Consumption of Personal Computing Including Portable  

E-Print Network (OSTI)

Energy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1 consumption, questions are being asked about the energy contribution of computing equipment. Al- though studies have documented the share of energy consumption by this type of equipment over the years, research

Namboodiri, Vinod

152

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the tables. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle miles traveled (VMT) or gallons consumed; (2) Tables of per household statistics such as VMT per household; and (3) Tables of per vehicle statistics such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model year data, or family income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table. Row and Column Factors These tables present estimates

153

OE/EIA-0272 The National Interim Energy Consumption Survey:  

U.S. Energy Information Administration (EIA) Indexed Site

272 272 The National Interim Energy Consumption Survey: Exploring the Variability in Energy Consumption July 1981 U.S. Department of Energy Energy Information Administration Assistant Administrator for Program Development Office of the Consumption Data System Industrial Data Systems Division This publication is available from the Superintendent of Documents, U.S. Government Printing Office, at the following address: Superintendent of Documents U.S. Government Printing Office Washington, D.C. 20402 Order Desk: (202) 783-3238 Stock Number: 061-003-00205-6 Price: $4.25 For questions on energy statistics or information on availability of other EIA publications, contact: National Energy Information Center, El-20 Forrestal Building U.S. Department of Energy Washington, D.C. 20585

154

DOE/EIA-0193/P PRELIMINARY CONSERVATION TABLES FROM THE NATIONAL INTERIM ENERGY CONSUMPTION SURVEY  

U.S. Energy Information Administration (EIA) Indexed Site

193/P 193/P PRELIMINARY CONSERVATION TABLES FROM THE NATIONAL INTERIM ENERGY CONSUMPTION SURVEY OFFICE OF THE CONSUMPTION DATA SYSTEM OFFICE OF PROGRAM DEVELOPMENT ENERGY INFORMATION ADMINISTRATION AUGUST 1, 1979 PRELIMINARY CONSERVATION TABLES FROM THE NATIONAL INTERIM ENERGY CONSUMPTION SURVEY Attached is the first report of the Office of the Consumption Data System, Office of Program Development, Energy Information Administration, presenting preliminary data from the National Interim Energy Consumption Survey (NIECS). The focus of this report is the conservation activities performed by households since January 1977, and the status of households with respect to insulation, storm windows, and other energy conserving characteristics. These tables are from preliminary data files.

155

Trends in Renewable Energy Consumption and Electricity  

Reports and Publications (EIA)

Presents a summary of the nations renewable energy consumption in 2010 along with detailed historical data on renewable energy consumption by energy source and end-use sector. Data presented also includes renewable energy consumption for electricity generation and for non-electric use by energy source, and net summer capacity and net generation by energy source and state. The report covers the period from 2006 through 2010.

2012-01-01T23:59:59.000Z

156

Modelling the impact of user behaviour on heat energy consumption  

E-Print Network (OSTI)

strategies impact on energy consumption in residentialBEHAVIOUR ON HEAT ENERGY CONSUMPTION Nicola Combe 1 ,2 ,nearly 60% of domestic energy consumption and 27% of total

Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

2011-01-01T23:59:59.000Z

157

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

7 7 U.S. Energy Information Administration | Annual Energy Outlook 2013 Reference case Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2013 Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Sector and source Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Energy consumption Residential Propane .............................................................. 0.53 0.53 0.52 0.52 0.52 0.52 0.52 -0.0% Kerosene ............................................................ 0.03 0.02 0.01 0.01 0.01 0.01 0.01 -1.8% Distillate fuel oil ................................................... 0.58 0.59 0.51 0.45 0.40 0.36 0.32 -2.1%

158

Public perceptions of energy consumption and savings  

E-Print Network (OSTI)

Public perceptions of energy consumption and savings Shahzeen Z. Attaria,1 , Michael L. De consumption and savings for a variety of household, transportation, and recycling activities. When asked, with 98% of US emissions attributed to energy consumption (2). According to Pacala and Socolow (3

Kammen, Daniel M.

159

Industrial Biomass Energy Consumption and Electricity Net Generation by  

Open Energy Info (EERE)

47 47 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281847 Varnish cache server Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB)

160

Visualization of United States Energy Consumption | Open Energy Information  

Open Energy Info (EERE)

Visualization of United States Energy Consumption Visualization of United States Energy Consumption Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Visualization of United States Energy Consumption Agency/Company /Organization: Energy Information Administration Sector: Energy Resource Type: Software/modeling tools User Interface: Website Website: en.openei.org/wiki/Visualization_of_United_States_Energy_Consumption Country: United States Cost: Free OpenEI Keyword(s): Community Generated UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Household energy consumption and expenditures 1993  

SciTech Connect

This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

NONE

1995-10-05T23:59:59.000Z

162

Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

World Shale Gas Resources: World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States APRIL 2011 www.eia.gov U.S. Department of Energy Washington, DC 20585 The information presented in this overview is based on the report "World Shale Gas Resources: An Initial Assessment," which was prepared by Advanced Resources International (ARI) for the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. The full report is attached. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies.

163

U.S. Department of Energy Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Department of Energy Department of Energy Energy Information Administration Form EIA-5 (July 2011) Quarterly Coal Consumption and Quality Report Coke Plants Page 1 Form Approved OMB No. 1905-0167 Expires: 06/30/2014 Burden: 1.50 Hours General Instructions: A. PURPOSE. The EIA-5 survey collects data related to coal receipts, stocks, and coke production at U.S. coke plants. The data are collected to provide Congress with basic statistics concerning coal consumption, stocks, prices, and quality as required by the Federal Energy Administration Act of 1974 (FEAA) (P.L. 93-275), as amended. These data appear in the Annual Coal Report, the Quarterly Coal Report, the Monthly Energy Review, and the Annual Energy Review. In addition, the Energy Information Administration uses the data for coal demand analyses and in short-term modeling efforts, which produce forecasts of coal demand

164

Energy Department Names Elliot Mainzer Bonneville Power Administration Administrator  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department announced that Elliot Mainzer has been appointed Administrator for the Bonneville Power Administration (BPA).

165

Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency ‹ Consumption & Efficiency Commercial Buildings Energy Consumption Survey (CBECS) Glossary › FAQS › Overview Data 2003 1999 1995 1992 Previous Analysis & Projections Maps U. S. Census Regions and Divisions U. S. Climate Zones for 2003 CBECS U. S. Climate Zones for 1979-1999 CBECS How are U.S. Climate Zones defined? U. S. Census Regions and Divisions: U.S. Census Regions and Divisions Map U. S. Climate Zones for 2003 CBECS: U.S. Census Regions and Divisions Map U. S. Climate Zones for 1979-1999 CBECS: U.S. Census Regions and Divisions Map How are U.S. Climate Zones defined? The CBECS climate zones are groups of climate divisions, as defined by the National Oceanic and Atmospheric Administration (NOAA), which are regions within a state that are as climatically homogeneous as possible. Each NOAA

166

Energy Information Administration - Commercial Energy Consumption Survey-  

U.S. Energy Information Administration (EIA) Indexed Site

A4. Census Region and Division, Floorspace for All Buildings (Including Malls), 2003 A4. Census Region and Division, Floorspace for All Buildings (Including Malls), 2003 Total Floorspace (million square feet) All Buildings Northeast Midwest South West New England Middle Atlantic East North Central West North Central South Atlantic East South Central West South Central Mountain Pacific All Buildings ................................ 71,658 3,452 10,543 12,424 5,680 13,999 3,719 9,022 4,207 8,613 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 6,922 383 676 986 922 1,283 547 788 466 871 5,001 to 10,000 .............................. 7,033 369 800 939 738 1,468 420 957 465 878 10,001 to 25,000 ............................ 12,659 674 1,448 2,113 1,204 2,443 861 1,555 933 1,429

167

Energy Information Administration - Commercial Energy Consumption Survey-  

U.S. Energy Information Administration (EIA) Indexed Site

A6. Building Size, Floorspace for All Buildings (Including Malls), 2003 A6. Building Size, Floorspace for All Buildings (Including Malls), 2003 Total Floorspace (million square feet) All Buildings Building Size 1,001 to 5,000 Square Feet 5,001 to 10,000 Square Feet 10,000 to 25,000 Square Feet 25,001 to 50,000 Square Feet 50,001 to 100,000 Square Feet 100,001 to 200,000 Square Feet 200,001 to 500,000 Square Feet Over 500,000 Square Feet All Buildings ................................ 71,658 6,922 7,033 12,659 9,382 10,291 10,217 7,494 7,660 Principal Building Activity Education ....................................... 9,874 409 399 931 1,756 2,690 2,167 1,420 Q Food Sales ..................................... 1,255 409 356 Q Q Q Q N N Food Service ................................. 1,654 544 442 345 Q Q N Q N

168

Energy Information Administration - Commercial Energy Consumption Survey-  

U.S. Energy Information Administration (EIA) Indexed Site

A7. Number of Establishments in Building, Number of Buildings for All Buildings (Including Malls), 2003 A7. Number of Establishments in Building, Number of Buildings for All Buildings (Including Malls), 2003 Number of Buildings (thousand) All Buildings Number of Establishments in Building One Two to Five Six to Ten Eleven to Twenty More than Twenty Currently Unoccupied All Buildings ................................ 4,859 3,754 762 117 47 22 157 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 2,131 338 Q Q N 100 5,001 to 10,000 .............................. 948 720 182 Q N Q Q 10,001 to 25,000 ............................ 810 590 140 51 13 Q Q 25,001 to 50,000 ............................ 261 163 54 19 12 Q Q 50,001 to 100,000 .......................... 147 87 29 8 13 4 Q

169

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Expenditures for Sum of Major Fuels for Non-Mall Buildings, 2003 . Expenditures for Sum of Major Fuels for Non-Mall Buildings, 2003 All Buildings* Sum of Major Fuel Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (million dollars) per Building (thousand dollars) per Square Foot (dollars) per Million Btu (dollars) All Buildings* ............................... 4,645 64,783 13.9 92,577 19.9 1.43 15.91 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 6,789 2.7 12,812 5.0 1.89 19.08 5,001 to 10,000 .............................. 889 6,585 7.4 9,398 10.6 1.43 18.22 10,001 to 25,000 ............................ 738 11,535 15.6 13,140 17.8 1.14 16.93 25,001 to 50,000 ............................ 241 8,668 35.9 10,392 43.1 1.20 15.44

170

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

6A. Electricity Expenditures by Census Region for All Buildings, 2003 6A. Electricity Expenditures by Census Region for All Buildings, 2003 Total Electricity Expenditures (million dollars) Electricity Expenditures (dollars) per kWh per Square Foot North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings ................................ 16,907 15,677 31,849 18,350 0.10 0.07 0.07 0.10 1.22 0.88 1.22 1.46 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 1,685 2,415 4,257 2,190 0.12 0.08 0.08 0.12 1.63 1.39 1.77 1.69 5,001 to 10,000 .............................. 1,364 1,347 3,064 2,424 0.12 0.08 0.08 0.12 1.21 0.86 1.16 1.84 10,001 to 25,000 ............................ 2,126 2,539 4,651 2,856 0.10 0.08 0.08 0.10 1.02 0.77 0.98 1.22

171

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Expenditures by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 . Expenditures by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Expenditures (million dollars) Sum of Major Fuel Expenditures (dollars) per Million Btu per Square Foot North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings* ............................ 21,344 21,521 31,595 18,118 16.79 12.74 16.22 19.88 1.65 1.26 1.35 1.60 Building Floorspace (Square Feet) 1,001 to 5,000 ............................. 2,298 3,235 4,752 2,526 19.47 15.74 19.77 23.48 2.24 1.71 1.88 1.89 5,001 to 10,000 ........................... 1,806 1,694 3,368 2,529 17.72 14.50 18.24 22.49 1.61 1.08 1.27 2.04 10,001 to 25,000 ......................... 2,606 3,157 4,530 2,846 17.56 13.85 18.09 19.03 1.32 1.02 1.03 1.36

172

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

6A. Natural Gas Expenditures by Census Region for All Buildings, 2003 6A. Natural Gas Expenditures by Census Region for All Buildings, 2003 Total Natural Gas Expenditures (million dollars) Natural Gas Expenditures (dollars) per Thousand Cubic Feet per Square Foot North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings ................................ 3,883 5,215 4,356 2,557 8.66 7.16 8.53 7.31 0.38 0.37 0.29 0.29 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 489 788 632 318 9.87 8.58 9.30 7.95 0.89 0.73 0.69 0.51 5,001 to 10,000 .............................. 358 485 632 356 9.16 7.67 9.14 7.69 0.54 0.46 0.44 0.44 10,001 to 25,000 ............................ 576 1,060 760 500 9.85 7.97 9.40 7.10 0.45 0.40 0.33 0.32

173

Energy Information Administration - Commercial Energy Consumption Survey-  

U.S. Energy Information Administration (EIA) Indexed Site

A3. Census Region and Division, Number of Buildings for All Buildings (Including Malls), 2003 A3. Census Region and Division, Number of Buildings for All Buildings (Including Malls), 2003 Number of Buildings (thousand) All Buildings Northeast Midwest South West New England Middle Atlantic East North Central West North Central South Atlantic East South Central West South Central Mountain Pacific All Buildings ................................ 4,859 252 509 728 577 926 360 587 316 603 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 134 240 372 356 474 217 294 166 333 5,001 to 10,000 .............................. 948 49 106 128 100 200 59 127 62 117 10,001 to 25,000 ............................ 810 46 92 133 78 151 54 103 61 91 25,001 to 50,000 ............................ 261 10 29 48 27 52 16 28 16 34

174

Energy Information Administration - Commercial Energy Consumption Survey-  

U.S. Energy Information Administration (EIA) Indexed Site

A5. Building Size, Number of Buildings for All Buildings (Including Malls), 2003 A5. Building Size, Number of Buildings for All Buildings (Including Malls), 2003 Number of Buildings (thousand) All Buildings Building Size 1,001 to 5,000 Square Feet 5,001 to 10,000 Square Feet 10,000 to 25,000 Square Feet 25,001 to 50,000 Square Feet 50,001 to 100,000 Square Feet 100,001 to 200,000 Square Feet 200,001 to 500,000 Square Feet Over 500,000 Square Feet All Buildings ................................ 4,859 2,586 948 810 261 147 74 26 8 Principal Building Activity Education ....................................... 386 162 56 60 48 39 16 5 Q Food Sales ..................................... 226 164 44 Q Q Q Q N N Food Service ................................. 297 202 65 23 Q Q N Q N Health Care .................................... 129 56 38 19 5 5 3 2 1

175

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Expenditures for Sum of Major Fuels for All Buildings, 2003 A. Expenditures for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major Fuel Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (million dollars) per Building (thousand dollars) per Square Foot (dollars) per Million Btu (dollars) All Buildings ................................ 4,859 71,658 14.7 107,897 22.2 1.51 16.54 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 6,922 2.7 13,083 5.1 1.89 19.08 5,001 to 10,000 .............................. 948 7,033 7.4 10,443 11.0 1.48 18.56 10,001 to 25,000 ............................ 810 12,659 15.6 15,689 19.4 1.24 17.46 25,001 to 50,000 ............................ 261 9,382 36.0 11,898 45.6 1.27 16.04

176

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Expenditures by Census Region for Sum of Major Fuels for All Buildings, 2003 A. Expenditures by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Expenditures (million dollars) Sum of Major Fuel Expenditures (dollars) per Million Btu per Square Foot North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings .............................. 24,395 23,398 38,398 21,706 17.47 13.01 16.95 20.42 1.74 1.29 1.44 1.69 Building Floorspace (Square Feet) 1,001 to 5,000 ............................. 2,398 3,255 4,899 2,530 19.47 15.75 19.77 23.46 2.26 1.71 1.87 1.89 5,001 to 10,000 ........................... 1,978 1,887 3,761 2,816 18.42 14.71 18.44 22.90 1.69 1.13 1.32 2.10 10,001 to 25,000 ......................... 3,015 3,667 5,526 3,482 18.15 14.22 18.72 19.37 1.42 1.11 1.14 1.47

177

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Dedicated Servers ... 1,175 36,338 30.9 59,377 50.6 1.63 15.79 Laser Printers ... 1,970 33,012 16.8 47,880 24.3 1.45 15.91...

178

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

15,313 13,036 19,117 11,911 16.84 12.69 15.39 20.51 1.88 1.41 1.51 1.89 Laser Printers ... 11,298 10,344 15,714 10,523 16.49 12.40 16.27...

179

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings ......

180

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Q 375 261 764 2,711 1,916 161.3 138.2 136.1 Heating Equipment (more than one may apply) Heat Pumps ... Q 141 68 Q 1,019 719 Q 137.9 94.1 Packaged...

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

664 14,357 27,349 19,987 4,409 468 2,486 Heating Equipment (more than one may apply) Heat Pumps ... 476 8,814 14,249 11,629 1,804 50 Q...

182

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

155 155 164 1,565 973 1,638 99.2 159.0 99.9 Heating Equipment (more than one may apply) Heat Pumps ... 49 Q 77 722 333 1,268 68.3 Q 60.8 Packaged...

183

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

664 14,357 1,827 2,813 932 626 60 210 Heating Equipment (more than one may apply) Heat Pumps ... 476 8,814 805 1,578 523 224 6 Q Packaged...

184

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

122 364 108 1,197 2,649 942 102.2 137.5 114.7 Heating Equipment (more than one may apply) Heat Pumps ... 29 297 48 339 3,677 542 84.5 80.8 89.4...

185

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

422 12,881 30.5 2,813 932 273 19,987 Heating Equipment (more than one may apply) Heat Pumps ... 476 8,814 18.5 1,578 523 153 11,629...

186

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Service ... 73 11.0 3.0 6.3 11.8 5.8 0.88 0.080 Warehouse and Storage ... 154 7.6 1.4 3.1 6.2 10.8 0.53 0.070 Other...

187

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

... 580 961 1,266 679 0.11 0.07 Q 0.09 0.79 0.76 0.95 1.03 Warehouse and Storage ... 763 1,522 1,736 1,013 0.09 0.06 0.07 0.09 0.52 0.53...

188

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

1,628 Service ... 601 3,982 6.6 451 149 44 3,485 Warehouse and Storage ... 464 9,425 20.3 738 244 72 5,034 Other...

189

Energy Information Administration - Commercial Energy Consumption...  

NLE Websites -- All DOE Office Websites (Extended Search)

29 87 Q 56 39 97 Food Sales ... 226 Q Q 43 Q 49 Q Q Q Q Food Service ... 297 Q 27 54 34 61 24 42 Q 34 Health Care...

190

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

0.92 11.27 Public Assembly ... Q Q Q Q Q Public Order and Safety ... Q Q Q Q Q Religious Worship ... Q Q Q Q Q...

191

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

128 1,441 Public Assembly ... 6 547 89 Q Q Public Order and Safety ... Q Q Q Q Q Religious Worship ... Q Q Q Q Q...

192

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

1,001 to 5,000 ... 6,922 383 676 986 922 1,283 547 788 466 871 5,001 to 10,000 ... 7,033 369 800 939 738 1,468 420 957 465...

193

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Q 46.6 Q Q Food Service ... 149 48 N 774 622 N 192.5 77.2 N Health Care ... 12 37 187 233 520 1,792 49.5 70.8 104.4...

194

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Education ... 293 Q Q Q 1.04 Q Q Q 0.31 Q Q Q Health Care... Q Q 19 8 Q 1.06 1.08 1.16 Q Q 0.02 0.03...

195

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Activity Education ... 282 Q Q Q 933 Q Q Q 0.30 Q Q Q Health Care... Q Q 17 7 Q 492 786 262 Q Q 0.02 0.03 Office...

196

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

48.8 51.1 Q Food Service ... 47 16 Q 986 664 Q 47.8 24.5 Q Health Care ... 6 17 50 445 835 1,883 13.1 20.5 26.3...

197

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

188.5 Q Q Food Service ... 318 108 Q 986 664 Q 322.9 163.2 Q Health Care ... 32 104 457 445 835 1,883 71.8 125.1 242.9...

198

Energy Information Administration - Commercial Energy Consumption...  

U.S. Energy Information Administration (EIA) Indexed Site

164 44 Q Q Q Q N N Food Service ... 297 202 65 23 Q Q N Q N Health Care ... 129 56 38 19 5 5 3 2 1 Inpatient...

199

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

226 1,255 5.6 2.8 Food Service ... 297 1,654 5.6 3.5 Health Care ... 129 3,163 24.6 6.0 Inpatient...

200

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Q Q Q Q N N Food Service ... 1,654 544 442 345 Q Q N Q N Health Care ... 3,163 165 280 313 157 364 395 514 973...

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

226 203 Q N N Q N Food Service ... 297 270 26 Q N N N Health Care ... 129 91 34 Q Q Q N Inpatient...

202

Energy Information Administration - Commercial Energy Consumption Survey-  

U.S. Energy Information Administration (EIA) Indexed Site

Table A1. Summary Table for All Buildings (Including Malls), 2003 Number of Buildings (thousand) Total Floorspace (million square feet) Mean Square Feet per Building (thousand) Median Square Feet per Building (thousand) All Buildings ................................ 4,859 71,658 14.7 5.0 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 6,922 2.7 2.4 5,001 to 10,000 .............................. 948 7,033 7.4 7.2 10,001 to 25,000 ............................ 810 12,659 15.6 15.0 25,001 to 50,000 ............................ 261 9,382 36.0 35.0 50,001 to 100,000 .......................... 147 10,291 70.2 67.0 100,001 to 200,000 ........................ 74 10,217 138.6 130.0 200,001 to 500,000 ........................ 26 7,494 287.6 260.0

203

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

C C Quality of the Data Appendix C Quality of the Data Introduction This appendix discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on these data. The first section discusses under- coverage of the vehicle stock in the residential sector. The second section discusses the effects of using July 1991 as a time reference for the survey. The remainder of this appendix discusses the treatment of sampling and nonsampling errors in the RTECS, the quality of specific data items such as the Vehicle Identification Number (VIN) and fuel prices, and poststratification procedures used in the 1991 RTECS. The quality of the data collection and the processing of the data affects the accuracy of estimates based on survey data. All the statistics published in this report such as total

204

Household vehicles energy consumption 1991  

SciTech Connect

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

205

Issues in International Energy Consumption Analysis: Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Usage in India's Housing Sector SERIES: Issues in International Energy Consumption Analysis Electricity Usage in India's Housing Sector Release date: November 7, 2014...

206

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Reference Notes & Figure Data Sources Reference Notes & Figure Data Sources Highlights Figure 1. World energy consumption, 1990-2040: History: U.S. Energy Information Administration (EIA), International Energy Statistics database (as of November 2012), www.eia.gov/ies. Projections: EIA, World Energy Projection System Plus (2013). Figure 2. World energy consumption by fuel type, 1990-2040: History: EIA, International Energy Statistics database (as of November 2012), www.eia.gov/ies. Projections: EIA, World Energy Projection System Plus (2013). Figure 3. World petroleum and other liquids production, 2010-2040: History: EIA, Office of Petroleum, Natural Gas, and Biofuels Analysis. Projections EIA, Generate World Oil Balance application (2013). Figure 4. World increase in natural gas production by country grouping,

207

Energy consumption metrics of MIT buildings  

E-Print Network (OSTI)

With world energy demand on the rise and greenhouse gas levels breaking new records each year, lowering energy consumption and improving energy efficiency has become vital. MIT, in a mission to help improve the global ...

Schmidt, Justin David

2010-01-01T23:59:59.000Z

208

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

7 7 U.S. Energy Information Administration | Annual Energy Outlook 2013 Reference case Table A6. Industrial sector key indicators and consumption Energy Information Administration / Annual Energy Outlook 2013 Table A6. Industrial sector key indicators and consumption Key indicators and consumption Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Key indicators Value of shipments (billion 2005 dollars) Manufacturing ..................................................... 4,257 4,438 5,683 6,253 6,712 7,285 7,972 2.0% Nonmanufacturing .............................................. 1,585 1,582 2,211 2,295 2,375 2,494 2,644 1.8% Total ................................................................. 5,842

209

Energy Information Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Internal PMA Scorecard for Human Capital Management (HCM) - FY 2006, Quarter 4 Internal PMA Scorecard for Human Capital Management (HCM) - FY 2006, Quarter 4 Office: Energy Information Administration Progress Score: Status Score: Requirements for HCM Plan 4th QTR REQUIREMENTS FY 06, Q4 Comments Integrate HCM Plan into decision-making processes - Plan linked to DOE mission, strategy, and goals - designates accountable officials Link performance appraisal plans and awards to DOE mission & goals for SES, managers, and more than 60% of workforce (HQ and Field); discuss difference between various levels of performance, discuss consequences based on performance HCM is linked to EIA's mission, strategy, and goals. Employee performance plans have at least one critical element with corresponding tasks supporting

210

State energy data report 1994: Consumption estimates  

SciTech Connect

This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

NONE

1996-10-01T23:59:59.000Z

211

Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Washington, 0 C Washington, 0 C Housing Characteristics 1984 i if I ^^^PVrjuV 9861 wo suoiidu.)sqns ot ,< iou Xq sn oj it ujnpj jsnui no^ - via ^Mi uo 3-ic no^ JI ')si -uoo si (VI3) uoiiBJisiuiuipv uoiieuuojui 3DI1ON meuoduii UB noX Suipuas sir jo -986! ' J '9861 uoos [((.w a Xq pwmbw sy (202) jo 0098-2SZ (202) S8S02 0 0 'uoi8u!M«eM 6uip|ing J0| soi aq XSLU si jepjo uy «0|eq jesdde sjaqainu auot|de|a] ptie sessaippv 'QI3N ^Ml oi uo suoqsano '(OI3N) J9iueo uoijeiujojui ASjeug IBUOIIBN S.VI3 aiJi JO Od9 (VI3) uoiiejisiunupy uot;6tux>|ui Xfijaug jat»o pue snji jo aseqajnd pue uorieauofui lueuiuWAOQ 5 Tl 'sjuauunooQ jo luepueiuiJ&dng &LJJ 0104 8iqet!*AB si uoiieoitqnd DOE/EiA-0314(84) Distribution Category UC-98 Residential Energy Consumption v^-^s--. Survey: Housing Characteristics 1984

212

Drivers of U.S. Household Energy Consumption, 1980-2009  

Reports and Publications (EIA)

In 2012, the residential sector accounted for 21% of total primary energy consumption and about 20% of carbon dioxide emissions in the United States (computed from EIA 2013). Because of the impacts of residential sector energy use on the environment and the economy, this study was undertaken to help provide a better understanding of the factors affecting energy consumption in this sector. The analysis is based on the U.S. Energy Information Administration's (EIA) residential energy consumption surveys (RECS) 1980-2009.

2015-01-01T23:59:59.000Z

213

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

214

Energy Perspectives, Total Energy - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections this will be filled with a highchart PREVIOUSNEXT Energy Perspectives 1949-2011 September 2012 PDF | previous editions Release Date: September 27, 2012 Introduction Energy Perspectives is a graphical overview of energy history in the United States. The 42 graphs shown here reveal sweeping trends related to the Nation's production, consumption, and trade of energy from 1949 through 2011. Energy Flow, 2011 (Quadrillion Btu) Total Energy Flow diagram image For footnotes see here. Energy can be grouped into three broad categories. First, and by far the largest, is the fossil fuels-coal, petroleum, and natural gas. Fossil fuels have stored the sun's energy over millennia past, and it is primarily

215

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1992 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings characteristics tables-number of buildings and amount of floorspace for major building characteristics. Energy consumption and expenditures tables-energy consumption and expenditures for major energy sources. Energy end-use tables-total, electricity and natural gas consumption and energy intensities for nine specific end-uses. Guide to the 1992 CBECS Detailed Tables Released: Nov 1999 Column Categories Row Categories The first set of detailed tables for the 1992 CBECS, Tables A1 through A70,

216

OFF-HIGHWAY GASOLINE CONSUMPTION ESTIMATION MODELS USED IN THE FEDERAL HIGHWAY ADMINISTRATION ATTRIBUTION AND PROCESS  

NLE Websites -- All DOE Office Websites (Extended Search)

222 222 Center for Transportation Analysis Energy and Transportation Science Division OFF-HIGHWAY GASOLINE CONSUMPTION ESTIMATION MODELS USED IN THE FEDERAL HIGHWAY ADMINISTRATION ATTRIBUTION AND PROCESS 2008 Updates Ho-Ling Hwang, Ph.D. Stacy Davis Date Published: December 2009 Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6283 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 iii TABLE OF CONTENTS LIST OF FIGURES AND TABLES....................................................................................v LIST OF ACRONYMS .................................................................................................... vii ABSTRACT ....................................................................................................................... ix

217

Energy Consumption Issues on Mobile Network Systems  

Science Journals Connector (OSTI)

This paper describes energy consumption demographic data in operating real mobile networks. We examine published data from NTT DoCoMo, which is the largest mobile telecommunication operator in Japan and operating nation-wide 3G networks, and identify ... Keywords: Moble Network, Power Consumption, Battery, CO2, Green Network

Minoru Etoh; Tomoyuki Ohya; Yuji Nakayama

2008-07-01T23:59:59.000Z

218

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network (OSTI)

end-use Residential primary energy consumption was 6.6 EJ inof primary energy. Primary energy consumption includes final14 Residential Primary Energy Consumption by Fuel (with

Zhou, Nan

2010-01-01T23:59:59.000Z

219

Residential Energy Consumption Survey: Housing Characteristics,  

Gasoline and Diesel Fuel Update (EIA)

tni tni Residential Energy Consumption Survey: Housing Characteristics, 1981 Energy Information Administration Washington. D.C August 1983 T86T -UJ9AO9 aiji uuojj pasenojnd uaaq (OdO) i|oii)/v\ suoijdijosqns o; Ajdde jou saop aoiiou :e|ON asBa|d 'pjBo^sod at|j noA j| 3Sj| Suiije'Lu vi3 3M1 uo ;u!Buuaj o^sn o} }i ujnja> isnoi nox 'pJBOisod iuB»jodoi! UB aABL) pjnons hoA '}s\\ BujUBUJ VI3 9L|} uo ajB noA|| 'MaiAaj jsij SUJMBUJ suouBOjiqnd |BnuuBS}j BUJ -jonpuoo Sj (vi3) uoijej^siujuupv UOIJBLUJOIUI Afijau^ agj 'uoiieinBaj iuaoiujaAOQ Aq pajmbaj sv 30HON 02-13 maoj aapao ay 05. pa^oajjp aq pus siuamnooa jo 0088-353 (303) S8SOZ "D'Q 'uoiSu-pqsBtt T rao°H 50 UOT^BOLIOJUI

220

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

0 0 Reference case Table A7. Transportation sector key indicators and delivered energy consumption Energy Information Administration / Annual Energy Outlook 2013 Table A7. Transportation sector key indicators and delivered energy consumption Key indicators and consumption Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Key indicators Travel indicators (billion vehicle miles traveled) Light-duty vehicles less than 8,501 pounds .... 2,654 2,629 2,870 3,089 3,323 3,532 3,719 1.2% Commercial light trucks 1 ................................. 65 65 80 87 94 102 110 1.8% Freight trucks greater than 10,000 pounds ..... 235 240 323 350 371 401 438 2.1% (billion seat miles available)

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Uncertainties in Energy Consumption Introduced by Building Operations and  

E-Print Network (OSTI)

Uncertainties in Energy Consumption Introduced by Building Operations and Weather for a Medium between predicted and actual building energy consumption can be attributed to uncertainties introduced in energy consumption due to actual weather and building operational practices, using a simulation

222

Using occupancy to reduce energy consumption of buildings  

E-Print Network (OSTI)

Meter allows us to study the energy consumption patterns onThis allows us to study the energy consumption of individualgives us a good framework to study the energy consumption

Balaji, Bharathan

2011-01-01T23:59:59.000Z

223

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

224

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium

225

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface The International Energy Outlook 2013 (IEO2013) presents an assessment by the U.S. Energy Information Administration (EIA) of the outlook for international energy markets through 2040. U.S. projections appearing in IEO2013 are consistent with those published in EIA's Annual Energy Outlook 2013 (AEO2013) in April 2013. IEO2013 is provided as a service to energy managers and analysts, both in government and in the private sector. The projections are used by international agencies, federal and state governments, trade associations, and other planners and decisionmakers. They are published pursuant to the Department of Energy Organization Act of 1977 (Public Law 95-91), Section 205(c). The IEO2013 energy consumption projections are divided according to

226

Energy Information Administration (WFP) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

future. Energy Information Administration Responsible Contacts Thomas Wheeler Director, Workforce Analysis & Planning Division E-mail thomas.wheeler@hq.doe.gov Phone (202)...

227

Comparison of Real World Energy Consumption to Models and DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comparison of Real World Energy Consumption to Models and DOE Test Procedures Comparison of Real World Energy Consumption to Models and DOE Test Procedures This study investigates...

228

Power to the Plug: An Introduction to Energy, Electricity, Consumption...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Below is...

229

New Water Booster Pump System Reduces Energy Consumption by 80...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases...

230

Manufacturing Energy Consumption Survey (MECS) - Data - U.S....  

U.S. Energy Information Administration (EIA) Indexed Site

| 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total First Use (formerly Primary Consumption) of Energy...

231

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for...

232

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by Sector Energy Consumption by Sector Transportation The AEO2011 Reference case does not include the proposed fuel economy standards for heavy-duty vehicles provided in The Proposed Rule for Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles, published by the EPA and the National Highway Traffic Safety Administration (NHTSA) in November 2010, nor does it include increases in fuel economy standards for light-duty vehicles, as outlined in the September 2010 EPA/NHTSA Notice of Upcoming Joint Rulemaking to Establish 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy (CAFE) Standards because the specifi cs of the new standards are not yet available. Figure DataAEO2011 assumes the adoption of CAFE standards for light-duty

233

DOE/EIA-0516(85) Energy Information Administration Manufacturing...  

U.S. Energy Information Administration (EIA) Indexed Site

6(85) Energy Information Administration Manufacturing Energy Consumption Survey: Changes in Energy Efficienc y 1980-198 5 0 6 6 T ' L I A n s n u e r b i r p u T J d J T O J u o i...

234

ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION  

Office of Legacy Management (LM)

.' :h I : ' ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION WASHINGTON, D.C. 20545 October 24, 1975 :.. ,. Memo to Piles' CARNEGIE-MELLON SC&RCCYCLOTRON On October 23, 1975, W....

235

Appliance Energy Consumption in Australia | Open Energy Information  

Open Energy Info (EERE)

Appliance Energy Consumption in Australia Appliance Energy Consumption in Australia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Appliance Energy Consumption in Australia Focus Area: Appliances & Equipment Topics: Policy Impacts Website: www.energyrating.gov.au/resources/program-publications/?viewPublicatio Equivalent URI: cleanenergysolutions.org/content/appliance-energy-consumption-australi DeploymentPrograms: Industry Codes & Standards Regulations: Appliance & Equipment Standards and Required Labeling The document sets out the equations necessary to calculate the star rating index for appliances that carry an energy label in Australia. Equations for new air conditioner and refrigerator algorithms from April 2010 are included. Televisions, which have carried a mandatory energy label from

236

Federal Energy Consumption and Progress Made toward Requirements  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Management Program (FEMP) tracks Federal agency energy consumption and progress toward achieving energy laws and requirements.

237

Energy Consumption of Die Casting Operations  

SciTech Connect

Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.

Jerald Brevick; clark Mount-Campbell; Carroll Mobley

2004-03-15T23:59:59.000Z

238

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network (OSTI)

of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andfor Residential Energy Consumption in China Nan Zhou,

Zhou, Nan

2010-01-01T23:59:59.000Z

239

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface The International Energy Outlook 2011 (IEO2011) presents an assessment by the U.S. Energy Information Administration (EIA) of the outlook for international energy markets through 2035. U.S. projections appearing in IEO2011 are consistent with those published in EIA's Annual Energy Outlook 2011 (AEO2011) in April 2011. IEO2011 is provided as a service to energy managers and analysts, both in government and in the private sector. The projections are published pursuant to the Department of Energy Organization Act of 1977 (Public Law 95-91), Section 205(c). The IEO2011 consumption projections are divided according to Organization for Economic Cooperation and Development members (OECD)1 and non-members (non-OECD). OECD members are divided into three basic country groupings:

240

Top 12 Ways to Decrease the Energy Consumption of Your Data Center | ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

Top 12 Ways to Decrease the Energy Consumption of Your Data Top 12 Ways to Decrease the Energy Consumption of Your Data Center Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy consumption and environmental pollution: a stochastic model  

Science Journals Connector (OSTI)

......indicated that total energy consumption in sugar beet production...pollution. Although energy consumption increased sugar beet yield...and found that hybrid and electric car technologies exhibit (efficiency...ergy efficiency, affects consumption choice by Swedish households......

Charles S. Tapiero

2009-07-01T23:59:59.000Z

242

The Federal Energy Administration | Department of Energy  

Energy Savers (EERE)

Energy Administration - written by Roger Anders Washington, D.C.: U.S. Department of Energy, November 1980. 15 pp. FEA History.pdf More Documents & Publications A History of...

243

U.S. Department of Energy Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

EIA-3 Instructions EIA-3 Instructions (July 2011) Quarterly Coal Consumption and Quality Report Manufacturing and Transformation/Processing Coal Plants and Commercial and Institutional Coal Users Page 1 Form Approved OMB No. 1905-0167 Expires: 06/30/2014 Burden: 1.25 Hours GENERAL INFORMATION: A. PURPOSE. Using the EIA-3 survey, the Energy Information Administration collects data from U.S. manufacturing plants, coal transformation/processing plants, and commercial and institutional users of coal. This survey allows the EIA to provide Congress with basic statistics concerning coal consumption, stocks, prices, and quality as required by the Federal Energy Administration Act of 1974 (FEAA) (P.L. 93-275), as amended. Data collected on this survey appear in the

244

Federal Energy Management Program: Data Center Energy Consumption Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumption Trends Consumption Trends Data centers can consume up to 100 times more energy than a standard office building. Often, less than 15% of original source energy is used for the information technology equipment within a data center. Figure 1 outlines typical data center energy consumption ratios. An illustration that features a graphic of a coal container representing 100 units of coal. This enters a graphic of a power plant, where those 100 units of coal are turned into 35 units of energy. The 35 units of energy are distributed by power lines, represented by a graphic of power lines, where 33 units are delivered to a pie chart representing data typical data center energy end use. The data center pie chart features 48% representing server load and computing operation consumption; 43% representing cooling equipment consumption; and 9% representing power conversion and distribution consumption.

245

U.S. Energy Information Administration (EIA) - Ap  

Gasoline and Diesel Fuel Update (EIA)

data Manufacturing Energy Consumption Survey data Vehicle Energy Consumption Survey data Energy intensity Consumption summaries Average cost of fossil-fuels for electricity...

246

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

7 7 U.S. Energy Information Administration | Annual Energy Outlook 2013 Reference case Energy Information Administration / Annual Energy Outlook 2013 Table A17. Renewable energy consumption by sector and source (quadrillion Btu per year) Sector and source Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Marketed renewable energy 1 Residential (wood) ............................................... 0.44 0.45 0.44 0.44 0.45 0.45 0.45 0.1% Commercial (biomass) ........................................ 0.11 0.13 0.13 0.13 0.13 0.13 0.13 0.0% Industrial 2 ............................................................. 2.32 2.18 2.53 2.67 2.82 3.08 3.65 1.8% Conventional hydroelectric ................................. 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0%

247

Energy Information Agency's 2003 Commercial Building Energy Consumption Survey Tables  

Energy.gov (U.S. Department of Energy (DOE))

Energy use intensities in commercial buildings vary widely and depend on activity and climate, as shown in this data table, which was derived from the Energy Information Agency's 2003 Commercial Building Energy Consumption Survey.

248

Monitoring and Management of Refinery Energy Consumption  

E-Print Network (OSTI)

the effects of same other nOl1"operational variables on the energy target. Figure 10 shows the results of the monitoring period in rep;Jrt form. The actual consumption for each utility is listed and converted to energy content. The base target consumption... ===============~===~.========.=.=====.=========~====================~===== ENERGY TOTAL CONTENT ENEF~GY ACTW~L CONSUMPT I ON UI\\lITS BTU/UI\\lIT MMBTU/DAY FUEL G?\\S: 441425.0 SCFH 1401.0 14842.5 FUEL OIL: O.C' BPO 6470000.0 0.0 HP STEAI1: -79344.0 tt/Hf~ 1136. C' -2163.2 MP STEAI1: 48488.0 tt/HR 952.0 1107.9 LP STEAM: BFW...

Pelham, R. O.; Moriarty, R. D.; Hudgens, P. D.

249

EIA Energy Information Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

gas demand due in part to the need to refill storage facilities; and overall expanding energy demand owing to 3 to 5 years of strong economic growth in the United States. The...

250

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Aggregate Aggregate Ratio: See Mean and Ratio Estimate. AMPD: Average miles driven per day. See Appendix B, "Estimation Methodologies." Annual Vehicle Miles Traveled: See Vehicle Miles Traveled. Automobile: Includes standard passenger car, 2-seater car and station wagons; excludes passenger vans, cargo vans, motor homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for all RTECS households divided by the total number of households. See Ratio Estimate, and Combined Household Energy Expenditures. Average Number of Vehicles per Household: The average number of vehicles used by a household for personal transportation during 1991. For this report, the average number of vehicles per household is computed as the ratio of the total number of vehicles to the

251

One of These Homes is Not Like the Other: Residential Energy Consumption Variability  

E-Print Network (OSTI)

consumption. Total energy consumption (in thousand BTUs) waselectricity and total energy consumption. Because all homesin gas, electric, and total energy consumption. Removing

Kelsven, Phillip

2013-01-01T23:59:59.000Z

252

U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Energy Outlook 2014 Reference case Projections for U.S. energy production, consumption, & imports through 2040 › State Energy Profiles Updated narratives and data tables, maps, rankings › American Energy Data Challenge Administrator Sieminski announces winners of first phase › Thirteen accomplishments worth celebrating in 2013 New and improved products and services from EIA › Availability and Price of Petroleum and Petroleum Products Produced in Countries Other Than Iran › Annual Coal Report With data for 2012 › What's New AEO2014 Early Release Overview › December 16 U.S. Coal Reserves › December 16 Electric Power Annual 2012 › December 12 More › Coming Up Nigeria Country Analysis Brief › Colombia Country Analysis Brief › More ›

253

International Energy Outlook 2011 - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2011 International Energy Outlook 2011 Release Date: September 19, 2011 | Next Scheduled Release Date: June 10, 2013 | Report Number: DOE/EIA-0484(2011) No International Energy Outlook will be released in 2012. The next edition of the report is scheduled for release in Spring 2013 Highlights International Energy Outlook 2011 cover. In the IEO2011 Reference case, which does not incorporate prospective legislation or policies that might affect energy markets, world marketed energy consumption grows by 53 percent from 2008 to 2035. Total world energy use rises from 505 quadrillion British thermal units (Btu) in 2008 to 619 quadrillion Btu in 2020 and 770 quadrillion Btu in 2035 (Figure 1). Much of the growth in energy consumption occurs in countries outside the Organization for

254

International Energy Outlook 2013 - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

International Energy Outlook 2013 International Energy Outlook 2013 Release Date: July 25, 2013 | Next Release Date: July 2014 (See release cycle changes) | correction | Report Number: DOE/EIA-0484(2013) Highlights International Energy Outlook 2011 cover. The International Energy Outlook 2013 (IEO2013) projects that world energy consumption will grow by 56 percent between 2010 and 2040. Total world energy use rises from 524 quadrillion British thermal units (Btu) in 2010 to 630 quadrillion Btu in 2020 and to 820 quadrillion Btu in 2040 (Figure 1). Much of the growth in energy consumption occurs in countries outside the Organization for Economic Cooperation and Development (OECD),2 known as non-OECD, where demand is driven by strong, long-term economic growth. Energy use in non-OECD countries increases by 90 percent; in OECD countries, the increase

255

Federal Energy Management Program: General Services Administration -  

NLE Websites -- All DOE Office Websites (Extended Search)

General Services General Services Administration - Suitland, Maryland to someone by E-mail Share Federal Energy Management Program: General Services Administration - Suitland, Maryland on Facebook Tweet about Federal Energy Management Program: General Services Administration - Suitland, Maryland on Twitter Bookmark Federal Energy Management Program: General Services Administration - Suitland, Maryland on Google Bookmark Federal Energy Management Program: General Services Administration - Suitland, Maryland on Delicious Rank Federal Energy Management Program: General Services Administration - Suitland, Maryland on Digg Find More places to share Federal Energy Management Program: General Services Administration - Suitland, Maryland on AddThis.com... Energy-Efficient Products

256

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

9 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 9 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures for major energy sources. Complete sets of RSE tables (What is an RSE?) are also available in PDF format 1999 Summary Tables for all principal building activities Summary Tables For All Principal Building Activities Number of Buildings (thousand) Floorspace (million square feet) Square Feet per Building (thousand) Median Age of Building (years)

257

DOE/EIA-0314(82) Residential Energy Consumption Survey:  

Gasoline and Diesel Fuel Update (EIA)

4(82) 4(82) Residential Energy Consumption Survey: Housing Characteri stics 1982 Published: August 1984 U-'VVv*' ^**" ^ Energy Information Administration Washington, D.C. This public ation is availa ble from the Supe rinten dent of Docu ments , U.S. Gove rnme nt Printin g Office (GPO ). Order ing inform ation and purch ase of this and other Energ y Inform ation Admi nistra tion (EIA) public ations may be obtain ed from the GPO or the ElA's Natio nal Energ y Inform ation Cente r (NEIC ). Ques tions on energ y statis tics

258

State Residential Energy Consumption Shares  

Gasoline and Diesel Fuel Update (EIA)

This next slide shows what fuels are used in the residential market. When a This next slide shows what fuels are used in the residential market. When a energy supply event happens, particularly severe winter weather, it is this sector that the government becomes most concerned about. As you can see, natural gas is very important to the residential sector not only in DC, MD and VA but in the United States as well. DC residents use more natural gas for home heating than do MD and VA. While residents use heating oil in all three states, this fuel plays an important role in MD and VA. Note: kerosene is included in the distillate category because it is an important fuel to rural households in MD and VA. MD and VA rely more on electricity than DC. Both MD and VA use propane as well. While there are some similarities in this chart, it is interesting to note

259

Survey Consumption  

Gasoline and Diesel Fuel Update (EIA)

fsidentoi fsidentoi Survey Consumption and 'Expenditures, April 1981 March 1982 Energy Information Administration Wasningtoa D '" N """"*"""*"Nlwr. . *'.;***** -. Mik>. I This publication is available from ihe your COr : 20585 Residential Energy Consumption Survey: Consum ption and Expendi tures, April 1981 Through March 1982 Part 2: Regional Data Prepared by: Bruce Egan This report was prepared by the Energy Information Administra tion, the independent statistical

260

Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

2008 Electricity Forms Clearance Differences in Current Forms Compared to Those Published in the April 4, 2007 Federal Register Notice. Form EIA-411 No changes. Form EIA-826 Schedule 1, "Sales to Ultimate Consumers," has been changed to ask for the megawatthours sold and delivered and the revenue for the residential, commercial, industrial, and transportation sectors are now requested to be reported to the nearest dollar, rather than the nearest 10 dollars. Form EIA-860 The effective date of the reported data has been changed from January 1 to December 31. The following questions have been modified: Schedule 2. "Power Plant Data" has added: * Does this plant have Federal Energy Regulatory Commission (FERC) Qualifying

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

U.S. Energy Information Administration | Annual Energy Outlook...  

Annual Energy Outlook 2012 (EIA)

Administration | Annual Energy Outlook 2013 Regional maps Figure F2. Electricity market module regions Source: U.S. Energy Information Administration, Office of Energy Analysis....

262

U.S. Energy Information Administration | Annual Energy Outlook...  

Gasoline and Diesel Fuel Update (EIA)

Administration | Annual Energy Outlook 2011 Regional maps Figure F2. Electricity market module regions Source: U.S. Energy Information Administration, Office of Energy Analysis....

263

Energy Information Administration (EIA) - Supplement Tables  

Gasoline and Diesel Fuel Update (EIA)

7 7 Regional Energy Consumption and Prices by Sector Energy Consumption by Sector Table 1. New England Consumption & Prices by Sector & Census Division. Need help, contact the National Energy Information Center at 202-586-8800. Table 2. Middle Atlantic Consumption & Prices by Sector & Census Division. Need help, contact the National Energy Information Center at 202-586-8800. Table 3. East North Central Consumption & Prices by Sector & Census Division. Need help, contact the National Energy Information Center at 202-586-8800. Table 4. West North Central Consumption & Prices by Sector & Census Division. Need help, contact the National Energy Information Center at 202-586-8800. Table 5. South Atlantic Consumption & Prices by Sector & Census Division. Need help, contact the National Energy Information Center at 202-586-8800.

264

Evaluating Texas State University Energy Consumption According to Productivity  

E-Print Network (OSTI)

The Energy Utilization Index, energy consumption per square foot of floor area, is the most commonly used index of building energy consumption. However, a building or facility exists solely to support the activities of its occupants. Floor area...

Carnes, D.; Hunn, B. D.; Jones, J. W.

1998-01-01T23:59:59.000Z

265

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 1 (Estimates in Btu or Physical Units) XLS Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 2 (Estimates in Trillion Btu) XLS Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel Oil for Selected Purposes by Census Region, Industry Group, and Selected Industries, 1991 (Estimates in Barrels per Day) XLS Total Primary Consumption of Energy for All Purposes by Census Region and Economic Characteristics of the Establishment, 1991 (Estimates in Btu or Physical Units) XLS

266

Energy Consumption Characteriation of Heterogeneous Servers School of Computer Science  

E-Print Network (OSTI)

Energy Consumption Characteriation of Heterogeneous Servers Xiao Zhang School of Computer Science Machine between servers to save energy. An accurate energy consumption model is the basic of energy management. Most past studies show that energy consumption has linear relation with resource utilization. We

Qin, Xiao

267

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Reference case projections tables (2008-2035) Reference case projections tables (2008-2035) Table Title Formats Summary Reference Case Tables (2006-2035) Table A1. World total primary energy consumption by region Table A2. World total energy consumption by region and fuel Table A3. World gross domestic product (GDP) by region expressed in purchasing power parity Table A4. World gross domestic product (GDP) by region expressed in market exchange rates Table A5. World liquids consumption by region Table A6. World natural gas consumption by region Table A7. World coal consumption by region World Coal Consumption by Region - (million short tons) Table A8. World nuclear energy consumption by region Table A9. World consumption of hydroelectricity and other renewable energy by region Table A10. World carbon dioxide emissions by region

268

Data Center Energy Consumption Trends | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Data Center Energy Efficiency » Data Center Program Areas » Data Center Energy Efficiency » Data Center Energy Consumption Trends Data Center Energy Consumption Trends October 8, 2013 - 10:09am Addthis Data centers can consume up to 100 times more energy than a standard office building. Often, less than 15% of original source energy is used for the information technology equipment within a data center. Figure 1 outlines typical data center energy consumption ratios. An illustration that features a graphic of a coal container representing 100 units of coal. This enters a graphic of a power plant, where those 100 units of coal are turned into 35 units of energy. The 35 units of energy are distributed by power lines, represented by a graphic of power lines, where 33 units are delivered to a pie chart representing data typical data center energy end use. The data center pie chart features 48% representing server load and computing operation consumption; 43% representing cooling equipment consumption; and 9% representing power conversion and distribution consumption.

269

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2006;" 3 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES"

270

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2002;" 3 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

271

DOE/EIA-0246 U.S. Department of Energy Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Department of Energy Energy Information Administration Assistant Administrator for Program Development Office of the Consumption Data System Residential and Commercial Data Systems Division March 1981 Nonresidential Buildings Energy Consumption Survey: Building Characteristics Other Reports Produced by the Office of the Consumpi:ion Data System Preliminary Conservation Tables from the National Interim Energy Consumption Survey, August 1979, DOE7EIA:-0193/P. Characteristics of the Housing Stocks and Households: Preliminary Findings from the National Interim Energy Consumption Survey, October 1979, DOE/EIA-0199/P. Copies of the above reports are available from: U.S. Department of Energy Technical Information Center Attn: EIA Coordinator P.Oo Box 62 Oak Ridge, Tennessee 37830

272

On the Energy Consumption and Performance of Systems Software  

E-Print Network (OSTI)

On the Energy Consumption and Performance of Systems Software Zhichao Li, Radu Grosu, Priya Sehgal {zhicli,grosu,psehgal,sas,stoller,ezk}@cs.stonybrook.edu ABSTRACT Models of energy consumption that can balance out performance and energy use. This paper considers the energy consumption

Stoller, Scott

273

On the Interplay of Parallelization, Program Performance, and Energy Consumption  

E-Print Network (OSTI)

to either minimize the total energy consumption or minimize the energy-delay product. The impact of staticOn the Interplay of Parallelization, Program Performance, and Energy Consumption Sangyeun Cho through parallel execution of applications, suppressing the power and energy consumption remains an even

Marchal, Loris

274

Energy Information Administration / Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

1 1 Table A5. Commercial Sector Key Indicators and Consumption (Quadrillion Btu per Year, Unless Otherwise Noted) Key Indicators and Consumption Reference Case Annual Grow th 2009-2035 (percent) 2008 2009 2015 2020 2025 2030 2035 Key Indicators Total Floorsp ace (billion sq uare feet) Surviving . . . . . . . . . . . . . . . . . . . . . . . . . . . 76.4 77.9 83.4 89.3 95.1 101.1 107.3 1.2% New Additions . . . . . . . . . . . . . . . . . . . . . . . 2.4 2.3 2.0 2.2 2.3 2.4 2.5 0.4% Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78.8 80.2 85.5 91.5 97.4 103.5 109.8 1.2% Energy Co nsum ption Intensity (thousand B tu per squa re foot) Delivered Energy Consumption . . . . . . . . . . 109.1 105.9 105.1 103.6 102.0 101.1 100.5 -0.2% Electricity Related Losses . . . . . . . . . . . . . . 125.0 120.6 116.2 117.0 117.7 118.2 118.3 -0.1% Total Energy Consumption . . . . . . . .

275

Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Estimation of Energy End-use Consumption Estimation of Energy End-use Consumption 2003 CBECS The energy end-use consumption tables for 2003 (Detailed Tables E1-E11 and E1A-E11A) provide estimates of the amount of electricity, natural gas, fuel oil, and district heat used for ten end uses: space heating, cooling, ventilation, water heating, lighting, cooking, refrigeration, personal computers, office equipment (including servers), and other uses. Although details vary by energy source (Table 1), there are four basic steps in the end-use estimation process: Regressions of monthly consumption on degree-days to establish reference temperatures for the engineering models, Engineering modeling by end use, Cross-sectional regressions to calibrate the engineering estimates and account for additional energy uses, and

276

Monthly Energy Review - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Energy Review Monthly Energy Review November 2013 PDF | previous editions Release Date: November 25, 2013 Next Update: December 24, 2013 A publication of recent energy statistics. This publication includes total energy production, consumption, and trade; energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international petroleum; carbon dioxide emissions; and data unit conversion values. EIA has expanded Sections 1 through 10 and Appendix A of the Monthly Energy Review (MER) to incorporate annual data as far back as 1949 in those data tables that are published in both the Annual Energy Review 2011 and MER. Similar revisions are pending for Section 12. Where available, Excel and CSV files now include pre-1973 data. For tables

277

Energy Information Administration (EIA)- About the Commercial Buildings  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol.

278

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

18 Figure 6 Primary Energy Consumption by End-Use in24 Figure 7 Primary Energy Consumption by Fuel in Commercialbased on total primary energy consumption (source energy),

Fridley, David G.

2008-01-01T23:59:59.000Z

279

Natural Gas - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

EIA's latest Short-Term Energy Outlook for natural gas › image chart of U.S. Natural Gas Production and Imports projections as described in linked Short-Term Energy Outlook Source: U.S. Energy Information Administration, Short-Term Energy Outlook, released monthly. Natural gas price volatility and uncertainty › Natural gas historical and implied volatility Source: U.S. Energy Information Administration, Short-Term Energy Outlook, Market Prices and Uncertainty Report. Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Survey (MECS) 1998-2010, September 6, 2013. North America leads the world in production of shale gas ›

280

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Reference case projections tables (2009-2040) Reference case projections tables (2009-2040) Table Title Format Summary reference case (2009-2040) Table A1. World total primary energy consumption by region Table A2. World total energy consumption by region and fuel Table A3. World gross domestic product (GDP) by region expressed in purchasing power parity Table A4. World gross domestic product (GDP) by region expressed in market exchange rates Table A5. World liquids consumption by region Table A6. World natural gas consumption by region Table A7. World coal consumption by region Table A8. World nuclear energy consumption by region Table A9. World consumption of hydroelectricity and other renewable energy by region Table A10. World carbon dioxide emissions by region

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

An Analysis Framework for Investigating the Trade-offs Between System Performance and Energy Consumption in a Heterogeneous Computing Environment  

E-Print Network (OSTI)

An Analysis Framework for Investigating the Trade-offs Between System Performance and Energy that will allow a system administrator to investigate the trade- offs between system energy consumption be useful to examine the trade-offs between minimizing energy consumption and maximizing computing

Maciejewski, Anthony A.

282

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network (OSTI)

global and country-specific estimates of total energyglobal and country-specific estimates of total energytotal global electricity consumption is about 5,000 TWh 68 , the energy

Park, Won Young

2011-01-01T23:59:59.000Z

283

STATEMENT OF ADAM SIEMINSKI ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION  

U.S. Energy Information Administration (EIA) Indexed Site

STATEMENT OF ADAM SIEMINSKI ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION U.S. DEPARTMENT OF ENERGY before the SUBCOMMITTEE ON ENERGY AND POWER COMMITTEE ON ENERGY AND COMMERCE U. S. HOUSE OF REPRESENTATIVES FEBRUARY 5, 2013 2 Mr. Chairman and Members of the Subcommittee, I appreciate the opportunity to appear before you today at this hearing on American Energy Security and Innovation: An Assessment of North America's Energy Resources. The U.S. Energy Information Administration (EIA) is the statistical and analytical agency within the U.S. Department of Energy. EIA collects, analyzes, and disseminates independent and impartial energy information to promote sound policymaking, efficient markets, and public understanding regarding energy and its interaction with the economy and the environment. EIA is the Nation's premier source of

284

Coal - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Coal Glossary › FAQS › Overview Data Summary Prices Reserves Consumption Production Stocks Imports, Exports & Distribution Coal Transportation Rates International All Coal Data Reports Analysis & Projections Most Requested Consumption Environment Imports & Exports Industry Characteristics Prices Production Projections Reserves Stocks All Reports EIA's latest Short-Term Energy Outlook for coal › image chart of U.S. Natural Gas Production and Imports projections as described in linked Short-Term Energy Outlook Source: U.S. Energy Information Administration, Short-Term Energy Outlook, released monthly. U.S. coal production by quarter › Source: U.S. Energy Information Administration, Quarterly Coal Report. Quarterly data for coal shipments between states ›

285

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network (OSTI)

accounting for 79% of non-biomass energy consumption in2000 and 2020. Biomass, the leading energy source in thehigh reliance on biomass for rural energy consumption as

Zhou, Nan

2010-01-01T23:59:59.000Z

286

On the Energy Consumption and Performance of Systems Software  

E-Print Network (OSTI)

On the Energy Consumption and Performance of Systems Software Appears in the proceedings of the 4th,grosu,psehgal,sas,stoller,ezk}@cs.stonybrook.edu ABSTRACT Models of energy consumption and performance are necessary to understand and identify system. This paper considers the energy consumption and performance of servers running a relatively simple file

Zadok, Erez

287

Energy Consumption in Coded Queues for Wireless Information Exchange  

E-Print Network (OSTI)

Energy Consumption in Coded Queues for Wireless Information Exchange Jasper Goseling, Richard J customers. We use this relation to ob- tain bounds on the energy consumption in a wireless information, for example, from the observations in [3] that using network coding can reduce the energy consumption

Boucherie, Richard J.

288

Minimizing Energy Consumption in Body Sensor Networks via Convex Optimization  

E-Print Network (OSTI)

Minimizing Energy Consumption in Body Sensor Networks via Convex Optimization Sidharth Nabar energy consumption while limiting the latency in data transfer. In this paper, we focus on polling energy consumption and latency. We show that this problem can be posed as a geometric program, which

Poovendran, Radha

289

Energino: a Hardware and Software Solution for Energy Consumption Monitoring  

E-Print Network (OSTI)

Energino: a Hardware and Software Solution for Energy Consumption Monitoring Karina Gomez, Roberto.granelli@disi.unitn.it Abstract--Accurate measurement of energy consumption of practical wireless deployments is vital in the availability of affordable and scalable energy consumption monitoring tools for the research community

Paris-Sud XI, Université de

290

GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS  

E-Print Network (OSTI)

GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS Maha IDRISSI AOUAD.loria.fr/zendra Keywords: Energy consumption reduction, Genetic heuristics, memory allocation management, optimizations on heuristic methods for SPMs careful management in order to reduce memory energy consumption. We propose

Schott, René - Institut de Mathématiques ?lie Cartan, Université Henri Poincaré

291

Reducing the Energy Consumption of Mobile Applications Behind the Scenes  

E-Print Network (OSTI)

Reducing the Energy Consumption of Mobile Applications Behind the Scenes Young-Woo Kwon and Eli, an increasing number of perfective maintenance tasks are concerned with optimizing energy consumption. However, optimizing a mobile application to reduce its energy consumption is non-trivial due to the highly volatile

Tilevich, Eli

292

Optimization of Energy and Water Consumption in Cornbased Ethanol Plants  

E-Print Network (OSTI)

1 Optimization of Energy and Water Consumption in Corn­based Ethanol Plants Elvis Ahmetovi). First, we review the major alternatives in the optimization of energy consumption and its impact for the water streams. We show that minimizing energy consumption leads to process water networks with minimum

Grossmann, Ignacio E.

293

Automated Analysis of Performance and Energy Consumption for Cloud Applications  

E-Print Network (OSTI)

Automated Analysis of Performance and Energy Consumption for Cloud Applications Feifei Chen, John providers is thus to develop resource provisioning and management solutions at minimum energy consumption system performance and energy consumption patterns in complex cloud systems is imperative to achieve

Schneider, Jean-Guy

294

Optimizing Communication Energy Consumption in Perpetual Wireless Nanosensor Networks  

E-Print Network (OSTI)

Optimizing Communication Energy Consumption in Perpetual Wireless Nanosensor Networks Shahram}@cs.odu.edu Abstract--This paper investigates the effect of various param- eters of energy consumption. Finding the optimum combination of parameters to minimize energy consumption while satisfying the Qo

Weigle, Michele

295

The Impact of Distributed Programming Abstractions on Application Energy Consumption  

E-Print Network (OSTI)

The Impact of Distributed Programming Abstractions on Application Energy Consumption Young-Woo Kwon of their energy consumption patterns. By varying the abstractions with the rest of the functionality fixed, we measure and analyze the impact of distributed programming abstractions on application energy consumption

Tilevich, Eli

296

INCREASED FOOD AND ENERGY CONSUMPTION OF LACTATING NORTHERN FUR SEALS,  

E-Print Network (OSTI)

respectively. Fish accounted for 66.4% of food biomass (69.4% of total energy consumption); squidINCREASED FOOD AND ENERGY CONSUMPTION OF LACTATING NORTHERN FUR SEALS, CALWRHINUS URSINUS MICHAEL A on ter- restrial mammals have specifically shown increased energy consumption by lactating females

297

Electricity Demand and Energy Consumption Management System  

E-Print Network (OSTI)

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

298

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Buildings sector energy consumption Buildings sector energy consumption Overview The buildings sector represents energy use in places where people reside, work, and buy goods and services. The sector excludes industrial facilities used for producing, processing, or assembling goods. In 2010, the buildings sector accounted for more than one-fifth of total worldwide consumption of delivered energy. While energy consumption increases in all end-use demand sectors, energy use in the buildings sector grows fastest throughout the projection. This growth, along with unprecedented changes in the underlying living standards and economic conditions, will make developments within the buildings sector important in understanding future world energy markets. Figure 97. World buildings sector delivered energy consumption, 2010-2040

299

International Energy Outlook 2000 - World Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

The IEO2000 projections indicate continued growth in world energy use, including large increases for the developing economies of Asia and South America. Energy resources are thought to be adequate to support the growth expected through 2020. The IEO2000 projections indicate continued growth in world energy use, including large increases for the developing economies of Asia and South America. Energy resources are thought to be adequate to support the growth expected through 2020. Current Trends Influencing World Energy Demand Changing world events and their effects on world energy markets shape the long-term view of trends in energy demand. Several developments in 1999—shifting short-term world oil markets, the recovery of developing Asian markets, and a faster than expected recovery in the economies of the former Soviet Union— are reflected in the projections presented in this year’s International Energy Outlook 2000 (IEO2000). In 1998, oil prices reached 20-year lows as a result of oil surpluses

300

Modeling and optimization of HVAC energy consumption  

Science Journals Connector (OSTI)

A data-driven approach for minimization of the energy to air condition a typical office-type facility is presented. Eight data-mining algorithms are applied to model the nonlinear relationship among energy consumption, control settings (supply air temperature and supply air static pressure), and a set of uncontrollable parameters. The multiple-linear perceptron (MLP) ensemble outperforms other models tested in this research, and therefore it is selected to model a chiller, a pump, a fan, and a reheat device. These four models are integrated into an energy optimization model with two decision variables, the setpoint of the supply air temperature and the static pressure in the air handling unit. The model is solved with a particle swarm optimization algorithm. The optimization results have demonstrated the total energy consumed by the heating, ventilation, and air-conditioning system is reduced by over 7%.

Andrew Kusiak; Mingyang Li; Fan Tang

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Commercial Buildings Energy Consumption and Expenditures 1992...  

U.S. Energy Information Administration (EIA) Indexed Site

1992 Consumption and Expenditures 1992 Consumption & Expenditures Overview Full Report Tables National estimates of electricity, natural gas, fuel oil, and district heat...

302

Energy Information Administration / Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration / Annual Energy Outlook 2011 Energy Information Administration / Annual Energy Outlook 2011 3 6 Table A18. Carbon Dioxide Emissions by Sector and Source (Million Metric Tons, Unless Otherwise Noted) Sector and Source Reference Case Annual Grow th 2009-2035 (percent) 2008 2009 2015 2020 2025 2030 2035 Residential Petroleum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 80 73 68 64 61 58 -1.2% Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 259 261 263 263 262 260 0.0% Coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 1 1 0 -1.1% Electricity 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872 820 757 778 833 878 916 0.4% Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1220 1160 1092 1110 1161 1202 1234 0.2% Commercial Petroleum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 43 39 38 38 37 37 -0.5% Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 169 183 189 193 200 207 0.8% Coal . . . . . . . . . . . . . . . . . . . . . . . .

303

International Energy Outlook 1999 - World Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

world.gif (5615 bytes) world.gif (5615 bytes) The IEO99 projections indicate substantial growth in world energy use,including substantial increases for the developing economies of Asia and South America. Resource availability is not expected to limit the growth of energy markets. In 1998, expectations for economic growth and energy market performance in many areas of the world were dashed. The Asian economic crisis proved to be deeper and more persistent than originally anticipated, and the threat and reality of spillover effects grew through the year. Oil prices crashed. Russia’s economy collapsed. Economic and social problems intensified in energy- exporting countries and in emerging economies of Asia and South America. Deepening recession in Japan made recovery more difficult in Asia

304

STATEMENT OF ADAM SIEMINSKI ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ADAM SIEMINSKI ADAM SIEMINSKI ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION U.S. DEPARTMENT OF ENERGY before the SUBCOMMITTEE ON ENERGY AND POWER COMMITTEE ON ENERGY AND COMMERCE U. S. HOUSE OF REPRESENTATIVES JUNE 26, 2013 2 Chairman Whitfield, Ranking Member Rush and Members of the Subcommittee, thank you for the opportunity to appear before you today to discuss the Renewable Fuel Standard (RFS) program. The U.S. Energy Information Administration (EIA) is the statistical and analytical agency within the U.S. Department of Energy. EIA collects, analyzes, and disseminates independent and impartial energy information to promote sound policymaking, efficient markets, and public understanding regarding energy and its interaction with the economy and the environment. By law, EIA's data, analyses, and

305

STATEMENT OF ADAM SIEMINSKI ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ADAM SIEMINSKI ADAM SIEMINSKI ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION U.S. DEPARTMENT OF ENERGY BEFORE THE SUBCOMMITTEE ON ENERGY COMMITTEE ON SCIENCE, SPACE AND TECHNOLOGY UNITED STATES HOUSE OF REPRESENTATIVES FEBRUARY 13, 2013 Chairman Lummis, Ranking Member Swalwell and Members of the Committee, I appreciate the opportunity to appear before you today to provide testimony on the U.S. energy outlook. The U.S. Energy Information Administration (EIA) is the statistical and analytical agency within the U.S. Department of Energy. EIA collects, analyzes, and disseminates independent and impartial energy information to promote sound policymaking, efficient markets, and public understanding regarding energy and its interaction with the economy and the environment. EIA is the Nation's premier source of

306

About EIA - Organization - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Stephen Harvey, Director of the Office of Oil and Gas Stephen Harvey Print-friendly PDF Stephen Harvey, Director of the Office of Oil and Gas Stephen Harvey Print-friendly PDF Assistant Administrator for Energy Statistics E-mail: stephen.harvey@eia.gov Phone: (202) 586-6012 Fax: (202) 586-9739 Room: 2G-020 Address: U.S. Energy Information Administration 1000 Independence Avenue, S.W. Washington, DC 20585 Duties Stephen Harvey is the Assistant Administrator (AA) for Energy Statistics and is responsible for a wide range of survey, statistical methods, and integration activities related to: energy consumption and efficiency; electricity; nuclear and renewable energy; oil, gas and coal supply; and petroleum and biofuels. The AA for Energy Statistics also manages the EIA data collection program and the quality control for weekly, monthly, quarterly, annual and quadrennial statistical reports.

307

Energy Information Administration - new releases. Volume 3  

SciTech Connect

This publication presents information compiled by the Energy Information Administration (EIA) on fuels, energy related topics, and the dissemination of other EIA publications.

NONE

1996-11-01T23:59:59.000Z

308

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Residential Density on Vehicle Usage and Energy ConsumptionResidential Density on Vehicle Usage and Energy ConsumptionResidential Density on Vehicle Usage and Energy Consumption

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

309

Cost and Energy Consumption Optimization of Product Manufacture in a Flexible Manufacturing System  

E-Print Network (OSTI)

Selection for Energy Consumption Reduction in Machining,Dornfeld, D. (2011): Energy Consumption Characterization and2011): Unit Process Energy Consumption Models for Material

Diaz, Nancy; Dornfeld, David

2012-01-01T23:59:59.000Z

310

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Vehicle Usage and Energy Consumption Table 2 Housing Unitsresidential vehicular energy consumption is graphed as aon Vehicle Usage and Energy Consumption with vehicles, but

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

311

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network (OSTI)

comparison o f energy consumption i n housing (1998) (Trends i n household energy consumption (Jyukankyo Research4) Average (N=2976) Energy consumption [GJ / household-year

2006-01-01T23:59:59.000Z

312

Energy Consumption Scheduling in Smart Grid: A Non-Cooperative Game Approach  

E-Print Network (OSTI)

on Game- Theoretic Energy Consumption Scheduling for theIn this paper, energy consumption scheduling based on non-Energy Consumption Scheduling in Smart Grid: A Non-

Ma, Kai; Hu, Guoqiang; Spanos, Costas J

2014-01-01T23:59:59.000Z

313

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

Estimating Total Energy Consumption and Emissions of Chinasof Chinas total energy consumption mix. However, accuratelyof Chinas total energy consumption, while others estimate

Fridley, David G.

2008-01-01T23:59:59.000Z

314

ResPoNSe: modeling the wide variability of residential energy consumption.  

E-Print Network (OSTI)

affect appliance energy consumption. For example, differentStates, 2005 Residential Energy Consumption Survey: HousingModeling of End-Use Energy Consumption in the Residential

Peffer, Therese; Burke, William; Auslander, David

2010-01-01T23:59:59.000Z

315

One of These Homes is Not Like the Other: Residential Energy Consumption Variability  

E-Print Network (OSTI)

the total annual energy consumption. The behavior patternsin total residential energy consumption per home, even whenthe variability in energy consumption can vary by factors of

Kelsven, Phillip

2013-01-01T23:59:59.000Z

316

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Scale window-related energy consumption to account for new

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

317

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network (OSTI)

The China Residential Energy Consumption Survey, Human andof Residential Building Energy Consumption in China Nan ZhouResidential Building Energy Consumption in China Nan Zhou*,

Zhou, Nan

2010-01-01T23:59:59.000Z

318

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network (OSTI)

accounting for 79% of non-biomass energy consumption inreliance on biomass for rural energy consumption shows thereliance on biomass for rural energy consumption shows the

Zhou, Nan

2010-01-01T23:59:59.000Z

319

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

ABORATORY Estimating Total Energy Consumption and Emissionscomponent of Chinas total energy consumption mix. However,about 19% of Chinas total energy consumption, while others

Fridley, David G.

2008-01-01T23:59:59.000Z

320

Total and Peak Energy Consumption Minimization of Building HVAC Systems Using Model Predictive Control  

E-Print Network (OSTI)

combination of the total energy consumption and the peakalso reduces the total energy consumption of the occupancyTotal and Peak Energy Consumption Minimization of Building

Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

the fraction of total energy consumption attributable toFraction of Total Energy Consumption Background Although thewindow fraction of total energy consumption. We believe that

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

322

Video game console usage and national energy consumption: Results from a field-metering study  

E-Print Network (OSTI)

about half of the total energy consumption from Wii consolescan estimate total national energy consumption due to videoof on mode energy consumption to the total AEC. For most

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z

323

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network (OSTI)

liters Figure 7 Primary Energy Consumption (EJ) Refrigeratorby Efficiency Class Primary Energy Consumption (EJ) Figure 8by Fuel Figure 1 Primary Energy Consumption by End-use)

Zhou, Nan

2010-01-01T23:59:59.000Z

324

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Today in Energy Today in Energy Glossary › FAQS › Home Browse by Tag Most Popular Tags electricity oil/petroleum natural gas liquid fuels prices states production crude oil consumption international coal generation renewable demand weather gasoline capacity nuclear exports forecast View All Tags › View Tag Cloud › Prices Archive About Dec 20, 2013 U.S. electricity sales have decreased in four of the past five years graph of U.S. electricity end use, as explained in the article text Source: U.S. Energy Information Administration, Monthly Energy Review Note: Electricity end use includes both retail electricity sales and the onsite use of power at utility-scale generators. Total U.S. electricity sales have declined in four of the past five years, and are on track to continue to decline in 2013. The only year-over-year

325

Manufacturing Energy Consumption Survey (MECS) - Residential - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

About the MECS About the MECS Survey forms Maps MECS Terminology Archives Features First 2010 Data Press Release 2010 Data Brief Other End Use Surveys Commercial Buildings - CBECS Residential - RECS Transportation DOE Uses MECS Data Manufacturing Energy and Carbon Footprints Associated Analysis Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010 MECS 2006-2010 - Release date: March 28, 2012 Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, a decline of almost 10 percent, based on preliminary estimates released from the 2010 Manufacturing Energy Consumption Survey (MECS). This decline continues the downward trend in manufacturing energy use since the 1998 MECS report.

326

Table 24. Refining Industry Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

- Corrections to Tables 24 to 32 - Corrections to Tables 24 to 32 Table 24. Refining Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2002- 2025 Carbon Dioxide Emissions 4/ (million metric tons) 190.4 185.7 188.0 191.3 207.3 215.6 220.0 222.8 225.1 226.3 228.0 230.7 234.1 237.5 238.5 239.4 239.4 238.6 240.6 240.5 242.2 244.2 245.9 246.3 246.6 1.2% Table 25. Food Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2002- 2025 Carbon Dioxide Emissions 3/ (million metric tons) 87.8 89.4 87.5 87.8 89.2 90.2 90.9 91.4 92.2 93.5 94.5 95.7 96.7 97.7 98.6 99.6 100.8 101.9 102.9 104.1 105.4 107.0 108.7 110.3 112.1 1.0% Table 26. Paper Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007

327

EIA Energy Kids - Energy Kids: Energy Information Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Administration - Energy Kids Information Administration - Energy Kids ENTER KEYWORDS Energy Kids: Energy Information Administration What Is Energy? » Energy Basics Forms of Energy Laws of Energy Sources of Energy Energy Units Basics Energy Calculators Periodic Table Energy Sources » Nonrenewable Oil (petroleum) Natural Gas Coal Uranium (nuclear) Renewable Biomass Geothermal Hydropower Solar Wind Electricity Science of Electricity Electricity in the U.S. Hydrogen Recent Statistics Using & Saving Energy » Energy Use Basics Energy and the Environment Greenhouse Gases In Homes In Commercial Buildings In Industry For Transportation Saving Energy Recycling History of Energy » Energy Timelines Coal Electricity Ethanol Geothermal Hydropower Municipal Solid Waste Natural Gas Nuclear Oil (petroleum) Photovoltaic Solar Thermal

328

Global Inequality in Energy Consumption from 1980 to 2010  

E-Print Network (OSTI)

We study the global probability distribution of energy consumption per capita around the world using data from the U.S. Energy Information Administration (EIA) for 1980-2010. We find that the Lorenz curves have moved up during this time period, and the Gini coefficient G has decreased from 0.66 in 1980 to 0.55 in 2010, indicating a decrease in inequality. The global probability distribution of energy consumption per capita in 2010 is close to the exponential distribution with G=0.5. We attribute this result to the globalization of the world economy, which mixes the world and brings it closer to the state of maximal entropy. We argue that global energy production is a limited resource that is partitioned among the world population. The most probable partition is the one that maximizes entropy, thus resulting in the exponential distribution function. A consequence of the latter is the law of 1/3: the top 1/3 of the world population consumes 2/3 of produced energy. We also find similar results for the global pro...

Lawrence, Scott; Yakovenko, Victor M

2013-01-01T23:59:59.000Z

329

Power to the Plug: An Introduction to Energy, Electricity, Consumption...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Owner: The NEED Project Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency ENERGY EDUCATION AND WORKFORCE DEVELOPMENT This educational...

330

Fossil Fuel-Generated Energy Consumption Reduction for New Federal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Fossil Fuel-Generated Energy...

331

Commercial Buildings Energy Consumption Survey 2003 - Detailed Tables  

Reports and Publications (EIA)

The tables contain information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings.

2008-01-01T23:59:59.000Z

332

STATEMENT OF ADAM SIEMINSKI ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STATEMENT OF ADAM SIEMINSKI STATEMENT OF ADAM SIEMINSKI ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION U.S. DEPARTMENT OF ENERGY Before the COMMITTEE ON ENERGY AND NATURAL RESOURCES U. S. SENATE JULY 16, 2013 2 Chairman Wyden, Ranking Member Murkowski, and Members of the Committee, thank you for the opportunity to appear before you today to discuss the U.S. petroleum supply system, which is changing rapidly. The U.S. Energy Information Administration (EIA) is the statistical and analytical agency within the U.S. Department of Energy. EIA collects, analyzes, and disseminates independent and impartial energy information to promote sound policymaking, efficient markets, and public understanding regarding energy and its interaction with the economy and the environment. By law, EIA's data, analyses, and

333

Energy Information Administration (EIA) - Supplement Tables  

Gasoline and Diesel Fuel Update (EIA)

6 6 1 to 116 Complete set of Supplemental Tables Complete set of Supplemental Tables. Need help, please contact the National Energy Information Center at 202-586-8800. Regional Energy Consumption and Prices by Sector Energy Consumption by Sector Table 1. New England Consumption & Prices by Sector & Census Division Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 2. Middle Atlantic Consumption & Prices by Sector & Census Division Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 3. East North Central Consumption & Prices by Sector & Census Division Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 4. West North Central

334

Today in Energy - commercial consumption & efficiency  

Reports and Publications (EIA)

Short, timely articles with graphs about recent commercial consumption and efficiency issues and trends.

2028-01-01T23:59:59.000Z

335

Annual Energy Outlook 2012 - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2012 Annual Energy Outlook 2012 Release Date: June 25, 2012 | Next Early Release Date: December 5, 2012 | Report Number: DOE/EIA-0383(2012) Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Executive Summary Market Trends Issues in Focus Legislation & Regulations Comparison Appendices Annual Energy Outlook 2012 presents yearly projections and analysis of energy topics Download the complete June 2012 published report. Executive summary The projections in the U.S. Energy Information Administration's (EIA's) Annual Energy Outlook 2012 (AEO2012) focus on the factors that shape the

336

Annual Energy Outlook 2013 - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2013 Annual Energy Outlook 2013 Release Dates: April 15 - May 2, 2013 | Next Early Release Date: December 2013 (See release cycle changes) | correction | full report Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Market Trends Issues in Focus Legislation & Regulations Comparison Appendices Annual Energy Outlook 2013 presents yearly projections and analysis of energy topics Download the full report. The projections in the U.S. Energy Information Administration's (EIA's) Annual Energy Outlook 2013 (AEO2013) focus on the factors that shape the

337

Annual Energy Outlook 2013 - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2013 Annual Energy Outlook 2013 Release Dates: April 15 - May 2, 2013 | Next Early Release Date: December 2013 (See release cycle changes) | correction | full report Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Market Trends Issues in Focus Legislation & Regulations Comparison Appendices Annual Energy Outlook 2013 presents yearly projections and analysis of energy topics Download the full report. The projections in the U.S. Energy Information Administration's (EIA's) Annual Energy Outlook 2013 (AEO2013) focus on the factors that shape the

338

Continuous Improvement Energy Projects Reduce Energy Consumption  

E-Print Network (OSTI)

) located in Conroe, Texas. The facility manufactures a specialty chemical product, Soltex Additive, which is used in drilling mud. The plant is ISO 9001 certified and is one of CPChems smallest production facilities, representing less than 1... evaluated, with viable ones prioritized, developed, and implemented. The successes of the Drilling Specialties plant will be shared with other Chevron Phillips facilities within the context of the companys Energy Best Practice Team. ESL-IE-14...

Niemeyer, E.

2014-01-01T23:59:59.000Z

339

1999 Commercial Buildings Energy Consumption Survey Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption and Expenditures Tables Table C1. Total Energy Consumption by Major Fuel ............................................... 124 Table C2. Total Energy Expenditures by Major Fuel................................................ 130 Table C3. Consumption for Sum of Major Fuels ...................................................... 135 Table C4. Expenditures for Sum of Major Fuels....................................................... 140 Table C5. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels................................................................................................... 145 Table C6. Expenditures by Census Region for Sum of Major Fuels......................... 150 Table C7. Consumption and Gross Energy Intensity by Building Size for Sum of

340

DOE/EIA-032171(84) Energy Information Administration Residential Energy  

Gasoline and Diesel Fuel Update (EIA)

71(84) 71(84) Energy Information Administration Residential Energy Consumption Survey: Consumption and Expenditures, [ April 1984 Through March 1985 P Part 1: National Data This publication is available from the Superintendent of Documents, U.S. Government Printing Office (GPO). Ordering information and purchase of this and other Energy Information Administration (EIA) publications may be obtained from the GPO or the ElA's National Energy Information Center (NEIC). Questions on energy statistics should be directed to the NEIC. Addresses and telephone numbers appear below An order form is enclosed for your convenience National Energy Information Center, El-20 Energy Information Administration Forrestal Building Room 1F-048 Washington, DC 20585 (202) 586-8800

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Industrial sector energy consumption Industrial sector energy consumption Overview The world's industries make up a diverse sector that includes manufacturing industries (food, paper, chemicals, refining, iron and steel, nonferrous metals, and nonmetallic minerals, among others) and nonmanufacturing industries (agriculture, mining, and construction). Chemicals, iron and steel, nonmetallic minerals, paper, and nonferrous metal manufacturing account for the majority of all industrial energy consumption and thus are the main focus of this chapter. Industrial energy demand varies across regions and countries, depending on the level and mix of economic activity and technological development, among other factors. Energy is consumed in the industrial sector for a wide range of activities, such as processing

342

(1) Who owns energy consumption data  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Elster July 12, 2010 Reply to DOE Request for Information of May 11, 2010 Elster July 12, 2010 Reply to DOE Request for Information of May 11, 2010 regarding Data Privacy The DOE questions are restated followed by an answer. Please note that this matter is also related to the May 11, 2010 RFI on needs for utility communications. If data is provided to third parties there is a data processing and communications cost that depends on how many parties data is provided to and by how often data is communicated. These costs are minimized if an in-home display and/or smart thermostat are provided data directly from a smart meter. (1) Q. Who owns energy consumption data? A. Typically by state law the consumer owns the data. (2) Q. Who should be entitled to privacy protections relating to energy information? A. The consumer.

343

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Overview Figure 65. World coal consumption by region, 1980-2035 figure dataIn the IEO2011 Reference case, which does not include prospective greenhouse gas reduction policies, world coal consumption increases by 50 percent, from 139 quadrillion Btu in 2008 to 209 quadrillion Btu in 2035 (Figure 65). Although world coal consumption increases at an average rate of 1.5 percent per year from 2008 to 2035, the growth rates by region are uneven, with total coal consumption for OECD countries remaining near 2008 levels and coal consumption in non-OECD countries increasing at a pace of 2.1 percent per year. As a result, increased use of coal in non-OECD countries accounts for nearly all the growth in world coal consumption over the period. In 2008, coal accounted for 28 percent of world energy consumption (Figure

344

Energy Information Administration / Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

3 3 Table A2. Energy Consumption by Sector and Source (Quadrillion Btu per Year, Unless Otherwise Noted) Sector and Source Reference Case Annual Grow th 2009-2035 (percent) 2008 2009 2015 2020 2025 2030 2035 Energy Consumption Residential Liquefied Petroleum Gases . . . . . . . . . . . . . 0.52 0.53 0.49 0.48 0.48 0.48 0.48 -0.4% Kerosene . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.02 0.03 0.02 0.02 0.02 0.02 0.02 -1.5% Distillate Fuel O il . . . . . . . . . . . . . . . . . . . . . 0.66 0.61 0.56 0.50 0.44 0.40 0.37 -1.9% Liquid Fuels and Other Petroleum Subtotal 1.20 1.16 1.07 0.99 0.94 0.90 0.87 -1.1% Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . 5.00 4.87 4.93 4.97 4.96 4.95 4.89 0.0% Coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.01 0.01 0.01 0.01 0.01 0.01 0.01 -1.1% Renewable Energy 1 . . . . . . . . . . . . . . . . . . . 0.44 0.43 0.40 0.42 0.42 0.42 0.42 -0.1%

345

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Main Reference Case Tables (2008-2035) Main Reference Case Tables (2008-2035) Table Title Formats Summary Reference Case Tables Year-by-Year Reference Case Tables Table 1. Total Energy Supply and Disposition Summary Table 2. Energy Consumption by Sector and Source Table 3. Energy Prices by Sector and Source Table 4. Residential Sector Key Indicators and Consumption Table 5. Commercial Sector Indicators and Consumption Table 6. Industrial Sector Key Indicators and Consumption Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Table 8. Electricity Supply, Disposition, Prices, and Emissions Table 9. Electricity Generating Capacity Table 10. Electricity Trade Table 11. Liquid Fuels Supply and Disposition Balance Table 12. Petroleum Product Prices Table 13. Natural Gas Supply, Disposition, and Prices

346

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Table Title Formats Table Title Formats Summary Reference Case Tables Year-by-Year Reference Case Tables Table 1. Total Energy Supply and Disposition Summary Table 2. Energy Consumption by Sector and Source Table 3. Energy Prices by Sector and Source Table 4. Residential Sector Key Indicators and Consumption Table 5. Commercial Sector Indicators and Consumption Table 6. Industrial Sector Key Indicators and Consumption Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Table 8. Electricity Supply, Disposition, Prices, and Emissions Table 9. Electricity Generating Capacity Table 10. Electricity Trade Table 11. Liquid Fuels Supply and Disposition Balance Table 12. Petroleum Product Prices Table 13. Natural Gas Supply, Disposition, and Prices Table 14. Oil and Gas Supply

347

China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China  

E-Print Network (OSTI)

Monitoring of Direct Energy Consumption in Long-Term2007. Constraining Energy Consumption of Chinas LargestProgram: Reducing Energy Consumption of the 1000 Largest

Price, Lynn

2008-01-01T23:59:59.000Z

348

AEO2011: Renewable Energy Consumption by Sector and Source | OpenEI  

Open Energy Info (EERE)

Consumption by Sector and Source Consumption by Sector and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 17, and contains only the reference case. The dataset uses quadrillion Btu. The data is broken down into marketed renewable energy, residential, commercial, industrial, transportation and electric power. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Renewable Energy Consumption Residential sector source transportation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Consumption by Sector and Source- Reference Case (xls, 105 KiB) Quality Metrics Level of Review Peer Reviewed

349

ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION  

Office of Legacy Management (LM)

.' :h I : .' :h I : ' ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION WASHINGTON, D.C. 20545 October 24, 1975 :~.. ,. Memo to Piles' CARNEGIE-MELLON S~C&RCCYCLOTRON On October 23, 1975, W. J. McCool (HQOS), E. K. Loop (HQ-OS), R. E. Allen (HQ-OS), J. Pingel (CH), B. 3. Davis (CH), R. Drucker (CR-BAO) and I met at Germantown to discuss the clean-up of radio- activity at the Saxonburg accelerator site. After discussion, we concluded acceptable criteria would include removal of all material necessary to reduce the residual surface activity to a maximum ofO.04 mR/hr above ambient background. Since ambient backgrounds is 0.03 to 0.05 &/hr, the above 0.04 mR/hr criterion will essentially be the 0.08 mR/hr (induced +background) case discussed previously.

350

THE FEDERAL ENERGY ADMINISTRATION By Roger Anders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEDERAL ENERGY FEDERAL ENERGY ADMINISTRATION By Roger Anders November 1980 U.S. Department of Energy Office of Management Office of the Executive Secretariat Office of History and Heritage Resources 1 Introduction For the three-year period between 1974 and 1977, the Federal Energy Administration implemented federal oil allocation and pricing regulations. An independent agency, the Federal Energy Administration was the successor of the Federal Energy Office, a short-term organization created to coordinate the government's response to the Arab oil embargo. By October 1977, when it became a part of the newly established Department of Energy, the Federal Energy

351

The Reality and Future Scenarios of Commercial Building Energy Consumption in China  

E-Print Network (OSTI)

the total primary energy consumption in 2000. Furthermore,The Commercial Primary Energy Consumption by Sector GDP

Zhou, Nan

2008-01-01T23:59:59.000Z

352

U.S. Energy Information Administration | Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

182 182 Energy Information Administration / Annual Energy Outlook 2011 - May 16, 2011 1 Table D1. Key Results for Residential and Commercial Sector Technology Cases Energy Consumption 2009 2015 2025 2010 Technology Reference High Technology Best Available Technology 2010 Technology Reference High Technology Best Available Technology Residential Energy Consumption (quadrillion Btu) Liquefied Petroleum Gases . . . . . . . . 0.53 0.50 0.49 0.48 0.48 0.49 0.48 0.45 0.45 Kerosene . . . . . . . . . . . . . . . . . . . . . . 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 Distillate Fuel Oil . . . . . . . . . . . . . . . . 0.61 0.57 0.56 0.55 0.52 0.48 0.44 0.41 0.37 Liquid Fuels and Other Petroleum 1.16 1.09 1.07 1.05 1.02 0.99 0.94 0.88 0.83 Natural Gas . . . . . . . . . . . . . . . . . . . . 4.87 5.00 4.94 4.79 4.57 5.23 4.96 4.62 4.18 Coal . . . . . . . . . . . . . . . . . . . . . . . . . . 0.01 0.01

353

Household Vehicles Energy Consumption 1994 - Appendix C  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction This appendix discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on these data. The first section discusses undercoverage of the vehicle stock in the residential sector. The second section discusses the effects of using July 1994 as a time reference for the survey. The remainder of this appendix discusses the treatment of sampling and nonsampling errors in the RTECS, the quality of specific data items such as the Vehicle Identification Number (VIN) and fuel prices, and poststratification procedures used in the 1994 RTECS. The quality of the data collection and the processing of the data affects the accuracy of estimates based on survey data. All the statistics

354

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

2 2 Reference case Table A20. Macroeconomic indicators (billion 2005 chain-weighted dollars, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2013 Table A20. Macroeconomic indicators (billion 2005 chain-weighted dollars, unless otherwise noted) Indicators Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Real gross domestic product ................................ 13,063 13,299 16,859 18,985 21,355 24,095 27,277 2.5% Components of real gross domestic product Real consumption .................................................. 9,196 9,429 11,528 12,792 14,243 15,941 17,917 2.2% Real investment ..................................................... 1,658 1,744 2,909 3,363 3,914 4,582 5,409 4.0% Real government spending .................................... 2,606

355

Energy Information Administration / Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table A20. Macroeconomic Indicators (Billion 2005 Chain-Weighted Dollars, Unless Otherwise Noted) Indicators Reference Case Annual Grow th 2009-2035 (percent) 2008 2009 2015 2020 2025 2030 2035 Real Gross Domestic Product . . . . . . . . . . . . . 13229 12881 15338 17422 20015 22735 25692 2.7% Components of Real Gross Domestic Product Real Consumption . . . . . . . . . . . . . . . . . . . . . . 9265 9154 10444 11669 13277 15049 16978 2.4% Real Investment . . . . . . . . . . . . . . . . . . . . . . . . 1957 1516 2590 2991 3549 4132 4853 4.6% Real Government Spending . . . . . . . . . . . . . . . 2503 2543 2555 2665 2796 2935 3069 0.7% Real Exports . . . . . . . . . . . . . . . . . . . . . . . . . . 1648 1491 2437 3381 4488 5763 7336 6.3% Real Imp orts . . . . . . . . . . . . . . . . . . . . . . . . . . . 2152 1854 2622 3152 3845 4736 5912 4.6% Energy Inten sity (thousand Btu per 2005 dollar of GDP) Delivered Energy . . . . . . .

356

Bonneville Power Administration's Purchasing of Energy Savings  

E-Print Network (OSTI)

BONNEVILLE POWER ADMINISTRATION'S PURCHASE OF ENERGY SAVINGS Harold (Skip) Schick Leslie E. McMillan Bonneville Power Administration Port1and, Oregon INTRODUCTION The Bonneville Power Administration (BPA) is conducting a commercial... of several activities BPA is conductin9 to develop the capabil ity to conserve energy in the com mercial sector of electrical energy use. This paper describes the benefits of the approach, the program des ign, 1essons 1earned through field testing...

Schick, H.

357

Canada's Fuel Consumption Guide | Open Energy Information  

Open Energy Info (EERE)

Canada's Fuel Consumption Guide Canada's Fuel Consumption Guide Jump to: navigation, search Tool Summary Name: Canada's Fuel Consumption Guide Agency/Company /Organization: Natural Resources Canada Focus Area: Fuels & Efficiency Topics: Analysis Tools Website: oee.nrcan.gc.ca/transportation/tools/fuel-consumption-guide/fuel-consu Natural Resources Canada has compiled fuel consumption ratings for passenger cars and light-duty pickup trucks, vans, and special purpose vehicles sold in Canada. The website links to the Fuel Consumption Guide and allows users to search for vehicles from current and past model years. It also provides information about vehicle maintenance and other practices to reduce fuel consumption. How to Use This Tool This tool is most helpful when using these strategies:

358

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Executive Summary Background This report responds to a November 2010 request to the U.S. Energy Information Administration (EIA) from U.S. Representatives Roscoe G. Bartlett,...

359

The Maritime Administration's Energy and Emissions Program -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Program The Maritime Administration's Energy and Emissions Program - Part 2 Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility...

360

Energy Information Administration / Petroleum Marketing Annual...  

U.S. Energy Information Administration (EIA) Indexed Site

55 Energy Information Administration Petroleum Marketing Annual 1997 Prices of Petroleum Products Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State...

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

wind energy | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

wind energy | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

362

The relationship between economic growth and biomass energy consumption  

Science Journals Connector (OSTI)

This paper investigates the relationship analysis between biomass energy consumption and economic growth by using Autoregressive Distributed Lag (ARDL) bounds testing approach of cointegration and vector error-correction models. The cointegration test results show that there is cointegration between the biomasss energy consumption and the economic growth in five of the seven countries (Bolivia Brazil Chile Colombia and Guatemala) and there is no cointegration between the biomasss energy consumption and the economic growth in two of the seven countries (Argentina and Jamaica).

Melike E. Bildirici

2012-01-01T23:59:59.000Z

363

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Consumption by Primary Fuel Consumption by Primary Fuel Total primary energy consumption, which was 101.7 quadrillion Btu in 2007, grows by 21 percent in the AEO2011 Reference case, from 94.8 quadrillion Btu in 2009 to 114.3 quadrillion Btu in 2035, to about the same level as in the AEO2010 projection in 2035. The fossil fuel share of energy consumption falls from 84 percent of total U.S. energy demand in 2009 to 78 percent in 2035, reflecting the impacts of CAFE standards and provisions in the American Recovery and Reinvestment Act of 2009 (ARRA), Energy Improvement and Extension Act of 2008 (EIEA2008), Energy Independence and Security Act of 2007 (EISA2007), and State legislation. Although the situation is uncertain, EIA's present view of the projected rates of technology development and market penetration of cellulosic

364

Obama Administration Launches $130 Million Building Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches $130 Million Building Energy Launches $130 Million Building Energy Efficiency Effort Obama Administration Launches $130 Million Building Energy Efficiency Effort February 12, 2010 - 12:00am Addthis Washington, D.C. - The Obama Administration today announced a multi-agency initiative to spur regional economic growth while making buildings more energy efficient. Seven federal agencies today issued a combined Funding Opportunity Announcement of up to $129.7 million over five years to create a regional research center that will develop new building efficiency technologies and work with local partners to implement the technologies in area buildings. Buildings account for nearly 40 percent of U.S. energy consumption and carbon emissions. Improvements in building efficiency will provide significant benefits - reducing energy use, lowering utility bills and

365

Energy Efficiency Indicators Methodology Booklet  

E-Print Network (OSTI)

12 Table 5. US EIA Energy ConsumptionTable 5. US EIA Energy Consumption Surveys Form # EIA-846US Energy Information Administration (EIA) conducts 3 major consumption

Sathaye, Jayant

2010-01-01T23:59:59.000Z

366

Visualization of United States Renewable Consumption | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Visualization of United States Renewable Consumption Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Visualization of United States Renewable Consumption Agency/Company /Organization: Energy Information Administration Sector: Energy Resource Type: Software/modeling tools User Interface: Website Website: en.openei.org/wiki/Visualization_of_United_States_Renewable_Consumptio Country: United States Cost: Free OpenEI Keyword(s): Community Generated UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Solar Adoption and Energy Consumption in the Residential Sector.  

E-Print Network (OSTI)

??This dissertation analyzes the energy consumption behavior of residential adopters of solar photovoltaic systems (solar-PV). Based on large data sets from the San Diego region (more)

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

368

On Minimizing the Energy Consumption of an Electrical Vehicle  

E-Print Network (OSTI)

Apr 20, 2011 ... The problem that we focus on, is the minimization of the energy consumption of an electrical vehicle achievable on a given driving cycle.

Abdelkader Merakeb

2011-04-20T23:59:59.000Z

369

2003 Commercial Buildings Energy Consumption - What is an RSE  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > What is an RSE? What is an RSE? The estimates in the...

370

Long-term energy consumptions of urban transportation: A prospective...  

Open Energy Info (EERE)

Bangalore can significantly curb the trajectories of energy consumption and the ensuing carbon dioxide emissions, if and only if they are implemented in the framework of...

371

Reducing Network Energy Consumption via Sleeping and Rate-Adaptation  

E-Print Network (OSTI)

Reducing Network Energy Consumption via Sleeping and Rate-Adaptation Sergiu Nedevschi Lucian Popa of two forms of power management schemes that reduce the energy consumption of networks. The first the energy consumed when actively processing packets. For real-world traffic workloads and topologies and us

California at Irvine, University of

372

Statistical Mechanics of Money, Income, Debt, and Energy Consumption  

E-Print Network (OSTI)

Statistical Mechanics of Money, Income, Debt, and Energy Consumption Physics Colloquium Presented in financial markets. Globally, data analysis of energy consumption per capita around the world shows@american.edu Similarly to the probability distribution of energy in physics, the probability distribution of money among

Hill, Wendell T.

373

Bounds on the Energy Consumption of Computational Andrew Gearhart  

E-Print Network (OSTI)

Bounds on the Energy Consumption of Computational Kernels Andrew Gearhart Electrical Engineering Fall 2014 #12;Bounds on the Energy Consumption of Computational Kernels Copyright 2014 by Andrew Scott, little consideration was given to the potential energy efficiency of algorithms them- selves. A dominant

California at Berkeley, University of

374

Tuning Fuzzy Logic Controllers for Energy Efficiency Consumption in Buildings  

E-Print Network (OSTI)

- tems 1 Introduction In EU countries, primary energy consumption in build- ings represents about 40Tuning Fuzzy Logic Controllers for Energy Efficiency Consumption in Buildings R. Alcal´a DECSAI 18071 ­ Granada, Spain e-mail: A.Gonzalez@decsai.ugr.es Abstract In EU countries, primary energy consump

Casillas Barranquero, Jorge

375

GreenSlot: Scheduling Energy Consumption in Green Datacenters  

E-Print Network (OSTI)

GreenSlot: Scheduling Energy Consumption in Green Datacenters Íñigo Goiri UPC/BSC and Rutgers Univ grid (as a backup). GreenSlot predicts the amount of solar energy that will be available in the near future, and schedules the workload to maximize the green energy consumption while meet- ing the jobs

376

Trends in Commercial Buildings--Trends in Energy Consumption and Energy  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption and Energy Sources - Part 1 Energy Consumption and Energy Sources - Part 1 Part 2. Energy Intensity Data Tables Total Energy Consumption Consumption by Energy Source Background: Site and Primary Energy Trends in Energy Consumption and Energy Sources Part 1. Energy Consumption The CBECS collects energy consumption statistics from energy suppliers for four major energy sources—electricity, natural gas, fuel oil, and district heat—and collects information from the sampled buildings on the use of the four major sources and other energy sources (e.g., district chilled water, solar, wood). Energy consumed in commercial buildings is a significant fraction of that consumed in all end-use sectors. In 2000, about 17 percent of total energy was consumed in the commercial sector. Total Energy Consumption

377

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

World energy demand and economic outlook World energy demand and economic outlook Overview In the IEO2011 Reference case, world energy consumption increases by 53 percent, from 505 quadrillion Btu in 2008 to 770 quadrillion Btu in 2035 (Table 1). In the near term, the effects of the global recession of 2008-2009 curtailed world energy consumption.8 As nations recover from the downturn, however, world energy demand rebounds in the Reference case and increases strongly as a result of robust economic growth and expanding populations in the world's developing countries. OECD member countries are, for the most part, more advanced energy consumers.9 Energy demand in the OECD economies grows slowly over the projection period, at an average annual rate of 0.6 percent, whereas energy consumption in the non-OECD

378

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

10 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 10 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF Table 1.5 By Further Classification of "Other" Energy Sources XLS PDF Energy Used as a Nonfuel (Feedstock) Table 2.1 By Mfg. Industry & Region (physical units) XLS PDF Table 2.2 By Mfg. Industry & Region (trillion Btu) XLS PDF Table 2.3 By Value of Shipments & Employment Size Category XLS PDF Energy Consumption as a Fuel Table 3.1 By Mfg. Industry & Region (physical units) XLS PDF

379

Energy Information Administration / Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

3 3 Table A6. Industrial Sector Key Indicators and Consumption Key Indicators and Consumption Reference Case Annual Grow th 2009-2035 (percent) 2008 2009 2015 2020 2025 2030 2035 Key Indicators Value of Shipments (billion 2005 dollars) Manufacturing . . . . . . . . . . . . . . . . . . . . . . . 4680 4197 5278 5639 6010 6386 6761 1.9% Nonmanufacturing . . . . . . . . . . . . . . . . . . . . 2039 1821 2200 2317 2388 2443 2537 1.3% Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6720 6017 7478 7956 8397 8829 9298 1.7% Energy Prices (2009 dollars per million Btu) Liquefied Petroleum Gases . . . . . . . . . . . . . 24.95 20.59 23.35 25.81 27.53 28.39 28.56 1.3% Motor Gasoline . . . . . . . . . . . . . . . . . . . . . . . 16.48 16.59 25.95 28.11 29.59 30.34 30.77 2.4% Distillate Fuel O il . . . . . . . . . . . . . . . . . . . . . 22.57 16.56 19.39 22.47 24.27 25.15 25.69 1.7% Resid ual Fu el Oil

380

Energy consumption and expenditure projections by income quintile on the basis of the Annual Energy Outlook 1997 forecast  

SciTech Connect

This report presents an analysis of the relative impacts of the base-case scenario used in the Annual Energy Outlook 1997, published by the US Department of Energy, Energy Information Administration, on income quintile groups. Projected energy consumption and expenditures, and projected energy expenditures as a share of income, for the period 1993 to 2015 are reported. Projected consumption of electricity, natural gas, distillate fuel, and liquefied petroleum gas over this period is also reported for each income group. 33 figs., 11 tabs.

Poyer, D.A.; Allison, T.

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Contact Us - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption, End Uses and Efficiency Contacts Energy Consumption, End Uses and Efficiency Contacts Fax: (202)-586-0018 Alternative Fuels Cynthia Amezcua 202-586-1658 cynthia.amezcua@eia.gov Commercial Buildings Joelle Michaels 202-586-8952 joelle.michaels@eia.gov Energy Efficiency William McNary 202-586-6828 william.mcnary@eia.gov Home and Household Energy Use James Berry 202-586-5543 james.berry@eia.gov Household Vehicles Derrick Pinckney 202-586-5744 derrick.pinckney@eia.gov Manufacturing Energy Use Tom Lorenz 202-586-3442 thomas.lorenz@eia.gov State Energy Consumption Estimates Yvonne L. Taylor 202-586-1455 yvonne.taylor@eia.gov Energy Information Administration 1000 Independence Ave, SW Washington, DC 20585 For Energy Data & Statistics (202) 586-8800 infoctr@eia.gov Website Technical Inquiries

382

2002 Manufacturing Energy Consumption Survey - User Needs Survey  

U.S. Energy Information Administration (EIA) Indexed Site

2002 Manufacturing Energy Consumption Survey: User-Needs Survey 2002 Manufacturing Energy Consumption Survey: User-Needs Survey View current results. We need your help in designing the next “ Energy Consumption Survey” (MECS)! As our valued customer, you are in an important position to tell us what kinds of data are most useful in helping you understand energy consumption in the U.S. manufacturing sector. Below is a short electronic survey with just a few questions. We will stop collecting responses for user feedback on May 17, 2002. This deadline serves to meet our intended release date of April/May 2003 for fielding MECS2002. The MECS is designed to produce estimates of energy consumption and other energy-related activities in manufacturing. The survey also collects information on energy expenditures, average prices, onsite generation of

383

Fact #792: August 12, 2013 Energy Consumption by Sector and Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012 Fact 792: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012 In the...

384

DOE/EIA-0262/1 Residential Energy Consumption Survey:  

Gasoline and Diesel Fuel Update (EIA)

62/1 62/1 Residential Energy Consumption Survey: 1979-1980 Consumption and Expenditures Part I: National Data (including Conservation) April 1981 U.S. Department of Energy Energy Information Administration Assistant Administrator for Program Development Office of the Consumption Data System Residential and Commercial Data Systems Division ' 1 7 T Z 8 0 T T 8 - 8 d * N u o f s s a o o y ' S O S ^ - m ( E O Z ) a u o q d a i a i . ' t j a o j S 9 j g ' u o - p s - p A f a s ^ o n p o a ^ a a ^ n d m o o - m o j j a j q B T T B A B ' ( a d B i J - p a a u S B K ) T O O / T 8 - J Q / 3 0 Q p j o q a s n o H r X a A j n s u o - p ^ d m n s u o o O Q ' 3 j o : m o a j a j q B j f ^ A ^ ^ ^ ^ s a a o d a a a A o q B a q ^ j o ' 8 - T Z T O O - C O O - T 9 0 ' Q N ^ 3 3 S O d O ' 9 f r Z Q - V I 3 / 3 0 Q * T 8 6 T € < 7 - 9 i T O O - e 0 0 - 1 9 0 O d O ' ^ / Z O Z O - V i a / a O Q ' 0 8 6 T a u n r * 6 ^ 6 T 3 s n 3 n y o ^ a u n f ' p j o q a s n o H j o s u a a ^ ^ B ^ u o f a d n m s u o o : X a A j n g u o f ^ d m n s u o o X

385

Residential Energy Consumption Survey (RECS) - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

About the RECS About the RECS RECS Survey Forms RECS Maps RECS Terminology Archived Reports State fact sheets Arizona household graph See state fact sheets › graph of U.S. electricity end use, as explained in the article text U.S. electricity sales have decreased in four of the past five years December 20, 2013 Gas furnace efficiency has large implications for residential natural gas use December 5, 2013 EIA publishes state fact sheets on residential energy consumption and characteristics August 19, 2013 All 48 related articles › Other End Use Surveys Commercial Buildings - CBECS Manufacturing - MECS Transportation About the RECS EIA administers the Residential Energy Consumption Survey (RECS) to a nationally representative sample of housing units. Specially trained interviewers collect energy characteristics on the housing unit, usage

386

UK Energy Consumption by Sector | OpenEI  

Open Energy Info (EERE)

68 68 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278068 Varnish cache server UK Energy Consumption by Sector Dataset Summary Description The energy consumption data consists of five spreadsheets: "overall data tables" plus energy consumption data for each of the following sectors: transport, domestic, industrial and service. Each of the five spreadsheets contains a page of commentary and interpretation. In addition, a user guide is available as a supplement to the full set of spreadsheets to explain the technical concepts and vocabulary found within Energy Consumption in the UK (http://www.decc.gov.uk/assets/decc/Statistics/publications/ecuk/272-ecuk-user-guide.pdf). Energy Consumption in the United Kingdom is an annual publication currently published by the UK Department of Energy and Climate Change (DECC) for varying time periods, generally 1970 to 2009 (though some time periods are shorter).

387

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights Overview Figure 1. World energy consumption, 1990-2035. figure data In the IEO2011 Reference case, which does not incorporate prospective legislation or policies that might affect energy markets, world marketed energy consumption grows by 53 percent from 2008 to 2035. Total world energy use rises from 505 quadrillion British thermal units (Btu) in 2008 to 619 quadrillion Btu in 2020 and 770 quadrillion Btu in 2035 (Figure 1). Much of the growth in energy consumption occurs in countries outside the Organization for Economic Cooperation and Development (non-OECD nations),2 where demand is driven by strong long-term economic growth. Energy use in non-OECD nations increases by 85 percent in the Reference case, as compared with an increase of 18 percent for the OECD economies.

388

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights Overview Figure 1. World energy consumption, 1990-2035. figure data In the IEO2011 Reference case, which does not incorporate prospective legislation or policies that might affect energy markets, world marketed energy consumption grows by 53 percent from 2008 to 2035. Total world energy use rises from 505 quadrillion British thermal units (Btu) in 2008 to 619 quadrillion Btu in 2020 and 770 quadrillion Btu in 2035 (Figure 1). Much of the growth in energy consumption occurs in countries outside the Organization for Economic Cooperation and Development (non-OECD nations),2 where demand is driven by strong long-term economic growth. Energy use in non-OECD nations increases by 85 percent in the Reference case, as compared with an increase of 18 percent for the OECD economies.

389

Energy consumption of subscriber devices in broadband network  

Science Journals Connector (OSTI)

The paper provides estimates how deployment of fast fixed broadband may affect consumption of energy by subscriber's electronic devices. New subscribers are expected to buy additional equipment: PCs, laptops, TV sets, game consoles, etc. and more intensively ... Keywords: Broadband Access Network, Energy Consumption, Home Electronics, Next-Generation Access, Power Networks

Krzysztof Borzycki

2012-10-01T23:59:59.000Z

390

Green mining: energy consumption of advertisement blocking methods  

Science Journals Connector (OSTI)

Extending battery life on mobile devices has become an important topic recently due to the increasing frequency of smartphone adoption. A primary component of smart phone energy consumption is the apps that run on these devices. Many apps have embedded ... Keywords: Advertising, Software Energy Consumption

Kent Rasmussen; Alex Wilson; Abram Hindle

2014-06-01T23:59:59.000Z

391

Exposing Datapath Elements to Reduce Microprocessor Energy Consumption  

E-Print Network (OSTI)

to Reduce Microprocessor Energy Consumption by Mark Jerome Hampton Submitted to the Department of ElectricalExposing Datapath Elements to Reduce Microprocessor Energy Consumption by Mark Jerome Hampton B Submitted to the Department of Electrical Engineering and Computer Science in partial ful llment

392

Modular Exponentiation Algorithm Analysis for Energy Consumption and Performance  

E-Print Network (OSTI)

Modular Exponentiation Algorithm Analysis for Energy Consumption and Performance Lin Zhong lzhong of their complexity, parallelism and latency. Insights are found for tradeoff between energy consumption of a tree structure. For example, Figure 1.3 shows to add 5 k-bit integers together in a tree sequence. It

Zhong, Lin

393

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

8 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 8 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values SIC RSE Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts XLS XLS XLS First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources and Shipments; Unit: Trillion Btu XLS XLS XLS First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu XLS XLS

394

EIA - Annual Energy Outlook 2008 (Early Release)-Energy-Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption Annual Energy Outlook 2008 (Early Release) Energy Consumption Total primary energy consumption in the AEO2008 reference case increases at an average rate of 0.9 percent per year, from 100.0 quadrillion Btu in 2006 to 123.8 quadrillion Btu in 2030—7.4 quadrillion Btu less than in the AEO2007 reference case. In 2030, the levels of consumption projected for liquid fuels, natural gas, and coal are all lower in the AEO2008 reference case than in the AEO2007 reference case. Among the most important factors resulting in lower total energy demand in the AEO2008 reference case are lower economic growth, higher energy prices, greater use of more efficient appliances, and slower growth in energy-intensive industries. Figure 2. Delivered energy consumption by sector, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

395

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity Overview Figure 72. Growth in world energy generation and total delivered energy consumption, 1990-2035. figure data In the IEO2011 Reference case, electricity supplies an increasing share of the world's total energy demand, and electricity use grows more rapidly than consumption of liquid fuels, natural gas, or coal in all end-use sectors except transportation. From 1990 to 2008, growth in net electricity generation outpaced the growth in delivered energy consumption (3.0 percent per year and 1.8 percent per year, respectively). World demand for electricity increases by 2.3 percent per year from 2008 to 2035 and continues to outpace growth in total energy use throughout the projection period (Figure 72). World net electricity generation increases by 84 percent in the Reference

396

AEO2011: Energy Consumption by Sector and Source - Mountain | OpenEI  

Open Energy Info (EERE)

Mountain Mountain Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 8, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption mountain region Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Mountain- Reference Case (xls, 297.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

397

AEO2011: Energy Consumption by Sector and Source - New England | OpenEI  

Open Energy Info (EERE)

New England New England Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption New England Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - New England- Reference Case (xls, 297.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

398

AEO2011: Energy Consumption by Sector and Source - West South Central |  

Open Energy Info (EERE)

South Central South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 7, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption West South Central Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - West South Central- Reference Case (xls, 297.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

399

AEO2011: Energy Consumption by Sector and Source - Middle Atlantic | OpenEI  

Open Energy Info (EERE)

Middle Atlantic Middle Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 2, and contains only the reference case. The dataset uses quadrillion btu. The energy consumption data is broken down by sector (residential, commercial, industrial, transportation, electric power) as well as source, and also provides total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA middle atlantic Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Middle Atlantic- Reference Case (xls, 297.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment

400

AEO2011: Energy Consumption by Sector and Source - East South Central |  

Open Energy Info (EERE)

South Central South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 6, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Commercial East South Central EIA Electric Power Energy Consumption Industrial Residential transportation Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - East South Central- Reference Case (xls, 297.5 KiB) Quality Metrics Level of Review Peer Reviewed

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

AEO2011: Energy Consumption by Sector and Source - South Atlantic | OpenEI  

Open Energy Info (EERE)

South Atlantic South Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 5, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption sector South Atlantic Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - South Atlantic- Reference Case (xls, 297.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

402

AEO2011: Energy Consumption by Sector and Source - West North Central |  

Open Energy Info (EERE)

North Central North Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 4, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - West North Central- Reference Case (xls, 297.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

403

AEO2011: Energy Consumption by Sector and Source - United States | OpenEI  

Open Energy Info (EERE)

United States United States Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 10, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption United States Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - United States- Reference Case (xls, 298.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

404

Energy Consumption Patterns of the Rural Photovoltaic Market In Spain  

Science Journals Connector (OSTI)

This paper presents an analysis of the energy consumption of photovoltaic-powered rural dwellings in a representative region of Spain. We have measured the actual consumed electrical energy in several dwelling...

A. Krenzinger; M. Montero

1987-01-01T23:59:59.000Z

405

ENERGY USE AND DOMESTIC HOT WATER CONSUMPTION Final Report  

Office of Scientific and Technical Information (OSTI)

DOMESTIC HOT WATER CONSUMPTION Final Report Phase 1 Prepared for THE N E W YORK STATE ENERGY RESEARCH AND DEVELOPMENT AUTHORITY Project Manager Norine H. Karins Prepared by ENERGY...

406

2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions  

U.S. Energy Information Administration (EIA) Indexed Site

D (2001) -- Household Bottled Gas (LPG or Propane) Usage Form D (2001) -- Household Bottled Gas (LPG or Propane) Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Bottled Gas (LPG or Propane) Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

407

MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY  

Annual Energy Outlook 2012 (EIA)

PAUL HOLTBERG TEAM LEADER ANALYSIS INTEGRATION TEAM JIM TURNURE DIRECTOR OFFICE OF ENERGY CONSUMPTION AND EFFICIENCY ANALYSIS FROM: TRANSPORTATION CONSUMPTION & EFFICIENCY...

408

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Overview In the IEO2013 Reference case, which does not include prospective greenhouse gas reduction policies, coal remains the second largest energy source worldwide. World coal consumption rises at an average rate of 1.3 percent per year, from 147 quadrillion Btu in 2010 to 180 quadrillion Btu in 2020 and 220 quadrillion Btu in 2040 (Figure 70). The near-term increase reflects significant increases in coal consumption by China, India, and other non-OECD countries. In the longer term, growth of coal consumption decelerates as policies and regulations encourage the use of cleaner energy sources, natural gas becomes more economically competitive as a result of shale gas development, and growth of industrial use of coal slows largely as a result of China's industrial activities. Consumption is dominated by

409

Energy Consumption Reduction with Low Computational Needs in Multicore Systems with Energy-Performance Tradeoff  

E-Print Network (OSTI)

Energy Consumption Reduction with Low Computational Needs in Multicore Systems with Energy rules) in order to decrease the energy consumption. We proposed in a previous paper a robust control of the energy consumption. I. INTRODUCTION An energy-performance tradeoff is required in many em- bedded

Paris-Sud XI, Université de

410

U.S. Energy Information Administration | Annual Energy Outlook Retrospective Review  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration | Annual Energy Outlook Retrospective Review Energy Information Administration | Annual Energy Outlook Retrospective Review Annual Energy Outlook Retrospective Review Table 2. Summary of the number o fover-estimated results between AEO Reference cases and realized Outcomes All AEOs NEMS AEOs Percent of Projections Over-Estimated Percent of Projections Over-Estimated Table 3. Gross Domestic Product, (Average Cumulative Growth) Actual vs. Projected 24% 37% Table 4. World Oil Prices, Actual vs. Projected 52% 24% Table 5. Total Petroleum Consumption, Actual vs. Projected 44% 61% Table 6. Domestic Crude Oil Production, Actual vs. Projected 59% 65% Table 7. Petroleum Net Imports, Actual vs. Projected 56% 61% Table 8. Natural Gas Wellhead Prices, Actual vs. Projected 54% 23% Table 9. Total Natural Gas Consumption, Actual vs. Projected

411

U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration Energy Information Administration Annual Report on Implementation of CIPSEA - 4/30/13 This report is for activity during calendar year 2012. 1) Use of the CIPSEA Confidentiality Pledge. The Energy Information Administration (EIA) collected information under Title V of the E-Government Act, Confidential Information Protection and Statistical Efficiency Act of 2002 (CIPSEA) from the following eleven (11) surveys during 2012. Office of Petroleum and Biofuels Statistics Petroleum Marketing Surveys OMB No: 1905-0174 Form EIA-863, "Petroleum Product Sales Identification Survey" Form EIA-878, "Motor Gasoline Price Survey" Form EIA-888, "On-Highway Diesel Fuel Price Survey"

412

U.S. Energy Information Administration (EIA) - Report  

Gasoline and Diesel Fuel Update (EIA)

- Report - Report U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol.

413

Development of Energy Consumption Database Management System of Existing Large Public Buildings  

E-Print Network (OSTI)

The statistic data of energy consumption are the base of analyzing energy consumption. The scientific management method of energy consumption data and the development of database management system plays an important role in building energy...

Li, Y.; Zhang, J.; Sun, D.

2006-01-01T23:59:59.000Z

414

Department of Energy Bonneville Power Administration  

E-Print Network (OSTI)

Department of Energy Bonneville Power Administration P.O. Box 3621 Portland, Oregon 97208) Biological Opinion (BiOp). Bonneville Power Administration (BPA) supports the effort of developing a common-3621 ENVIRONMENT, FISH AND WILDLIFE May 18, 2009 In reply refer to: KEW-4 Ms. Nancy Leonard Northwest Power

415

Department of Energy Bonneville Power Administration  

E-Print Network (OSTI)

Department of Energy Bonneville Power Administration P.O. Box 3621 Portland, Oregon 97208 and Conservation Council (Council) members have asked that Bonneville Power Administration (Bonneville) make its in the rating process. As you know, the Northwest Power Act obligates Bonneville to use its authorities to fund

416

Department of Energy Bonneville Power Administration  

E-Print Network (OSTI)

Department of Energy Bonneville Power Administration P.O. Box 3621 Portland, Oregon 97208 about the amount and nature of cost-sharing offered. As a result, Bonneville Power Administration, Chairman Northwest Power and Conservation Council 851 S.W. Sixth Ave., Suite 1100 Portland, OR 97204

417

Department of Energy Bonneville Power Administration  

E-Print Network (OSTI)

Department of Energy Bonneville Power Administration P.O. Box 3621 Portland, Oregon 97208 to Independent Scientific Review Panel (ISRP) review, Bonneville Power Administration (BPA) and the Columbia: Mr. Micah Russell, CREST (electronic mail) #12;Oregon Clatsop County ~ City of Astoria ~ City

418

Countries - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

HTTP/1.1 200 OK Connection: close Date: Sun, 29 Dec 2013 17:02:25 GMT HTTP/1.1 200 OK Connection: close Date: Sun, 29 Dec 2013 17:02:25 GMT Server: Microsoft-IIS/6.0 X-UA-Compatible: IE=EmulateIE8 X-Powered-By: ASP.NET Content-Type: text/html; charset=UTF-8 Countries - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and

419

Energy Information Administration (EIA) - Annual Energy Outlook 2007 (Early  

Gasoline and Diesel Fuel Update (EIA)

Year-by-Year Reference Case Tables (2004-2030) Year-by-Year Reference Case Tables (2004-2030) Annual Energy Outlook 2007 with Projections to 2030 Year-by-Year Reference Case Tables (2004-2030) Table Title Formats Summary Reference Case Tables Year-by-Year Reference Case Tables Table 1. Total Energy Supply and Disposition Summary Table 2. Energy Consumption by Sector and Source Table 3. Energy Prices by Sector and Source Table 4. Residential Sector Key Indicators and Consumption Table 5. Commercial Sector Indicators and Consumption Table 6. Industrial Sector Key Indicators and Consumption Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Table 8. Electricity Supply, Disposition, Prices, and Emissions Table 9. Electricity Generating Capacity Table 10. Electricity Trade

420

Analysis & Projections - U.S. Energy Information Administration...  

U.S. Energy Information Administration (EIA) Indexed Site

of NEMS that project energy consumption for marketed energy sources plus distributed solar and geothermal energy. Both the RDM and CDM include projections of energy...

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DOE/EIA-0272/S The National Interim Energy Consumption Survey:  

U.S. Energy Information Administration (EIA) Indexed Site

272/S 272/S The National Interim Energy Consumption Survey: Exploring the Variability in Energy Consumption - A Supplement October 1981 U.S. Department of Energy Energy Information Administration Office of Energy Markets and End Use This publication is available from the Superintendent of Documents, U.S. Government Printing Office. Superintendent of Documents U.S. Government Printing Office Washington, D.C. 20402 Order Desk: (202) 783-3238 Stock Number: 061-003-00217-0 Price: $3.25 For questions on energy statistics or information on availability of other EIA publications, contact. National Energy Information Center, El-20 Forrestal Building U.S. Department of Energy Washington, D.C. 20585 (202) 252-8800 For those living and working in the Mountain and Pacific time zones, you may call:

422

STATEMENT OF ADAM SIEMINSKI ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION  

U.S. Energy Information Administration (EIA) Indexed Site

Before the Before the COMMITTEE ON ENERGY AND NATURAL RESOURCES U. S. SENATE JULY 16, 2013 2 Chairman Wyden, Ranking Member Murkowski, and Members of the Committee, thank you for the opportunity to appear before you today to discuss the U.S. petroleum supply system, which is changing rapidly. The U.S. Energy Information Administration (EIA) is the statistical and analytical agency within the U.S. Department of Energy. EIA collects, analyzes, and disseminates independent and impartial energy information to promote sound policymaking, efficient markets, and public understanding regarding energy and its interaction with the economy and the environment. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States

423

Consumption & Efficiency - Analysis & Projections - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports All Sectors Change category... All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Filter by: All Data Analysis Projections Today in Energy - Commercial Consumption & Efficiency Short, timely articles with graphs about recent commercial consumption and

424

Grants Administration | Department of Energy  

Energy Savers (EERE)

State Energy Program (SEP) Special Project: Strengthening Building Retrofit Markets and Stimulating Energy Efficiency Action (DE-FOA-0000251) The U.S. Department of...

425

China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects  

E-Print Network (OSTI)

Choices, and Energy Consumption. Praeger Publishers,The decomposition effect of energy consumption in China'sThe challenge of reducing energy consumption of the Top-1000

Ke, Jing

2014-01-01T23:59:59.000Z

426

Energy Information Administration/Petroleum Marketing Annual  

U.S. Energy Information Administration (EIA) Indexed Site

W W 32.9 30.5 See footnotes at end of table. 440 Energy Information AdministrationPetroleum Marketing Annual 1998 Table A3. RefinerReseller Prices of Distillate and Residual...

427

Southeastern Power Administration | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Southeastern Power Administration Southeastern Power Administration Search Search form Search Southeastern Power Administration Southeastern Power Administration Services Services Home Rate Schedules Acquisition Program Competitive Resource Strategies Annual Reports SEPA FOIA Power Operations Power Operations Home How it Works Generation Quick Facts Mission About Us About Us Home News News Home Press Releases Career Opportunities SEPA History SEPA Video Offices Southeastern Power Administration Southeastern Power Administration Power Operations Click to view a map of SEPA power operations. Latest Rate Schedules October 1, 2012 ALA-1-N Wholesale Power Rate Schedule Area: PowerSouth Energy Cooperative System: Georgia-Alabama-South Carolina October 1, 2012 Duke-1-E Wholesale Power Rate Schedule Area: Duke On-System System: Georgia-Alabama-South Carolina

428

Residential Energy Consumption Survey (RECS) - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

About the RECS About the RECS RECS Survey Forms RECS Maps RECS Terminology Archived Reports State fact sheets Arizona household graph See state fact sheets › 2009 RECS Features Heating and cooling no longer majority of U.S. home energy use March 7, 2013 Newer U.S. homes are 30% larger but consume about as much energy as older homes February 12, 2013 Where does RECS square footage data come from? July 11, 2012 RECS data show decreased energy consumption per household June 6, 2012 The impact of increasing home size on energy demand April 19, 2012 Did you know that air conditioning is in nearly 100 million U.S. homes? August 19, 2011 See more > graph of U.S. electricity end use, as explained in the article text U.S. electricity sales have decreased in four of the past five years

429

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 2 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms all tables + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values RSE Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF XLS Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF XLS Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF Table 1.4 Number of Establishments Using Energy Consumed for All Purpose XLSPDF Table 1.5 By Further Classification of "Other" Energy Sources XLS PDF Energy Used as a Nonfuel (Feedstock) Values RSE Table 2.1 By Mfg. Industry & Region (physical units) XLS PDF XLS Table 2.2 By Mfg. Industry & Region (trillion Btu) XLS PDF XLS Table 2.3 By Value of Shipments & Employment Size Category XLS PDF

430

EnergyBox: A Trace-driven Tool for Data Transmission Energy Consumption Studies  

E-Print Network (OSTI)

EnergyBox: A Trace-driven Tool for Data Transmission Energy Consumption Studies Ekhiotz Jon Vergara-awareness and propose EnergyBox, a tool that provides accurate and repeatable en- ergy consumption studies for 3G and WiFi transmissions at the user end. We recognize that the energy consumption of data transmission is highly

431

The effects of energy policies in China on energy consumption and GDP1  

E-Print Network (OSTI)

The effects of energy policies in China on energy consumption and GDP1 Ming-Jie Lu, C.-Y. Cynthia consumption and GDP for several industries. We not only analyze the effects of multiple types of energy impact different kinds of energy consumption and the GDP of different kinds of industries using

Lin, C.-Y. Cynthia

432

World Energy Consumption by Fuel Type, 1970-2020  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by Fuel Type, 1970-2020 Energy Consumption by Fuel Type, 1970-2020 Source: EIA, International Energy Outlook 2000 Previous slide Next slide Back to first slide View graphic version Notes: Natural gas is projected to be the fastest-growing component of primary world energy consumption, more than doubling between 1997 and 2020. Gas accounts for the largest increment in electricity generation (41 percent of the total increment of energy used for electricity generation). Combined-cycle gas turbine power plants offer some of the highest commercially available plant efficiencies, and natural gas is environmentally attractive because it emits less sulfur dioxide, carbon dioxide, and particulate matter than does oil or coal. In the IEO2000 projection, world natural gas consumption reaches the level of coal by

433

U.S. Energy Information Administration | Annual Coal Report 2012  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Consumption by End Use Sector, Census Division, and State, 2012 and 2011 U.S. Coal Consumption by End Use Sector, Census Division, and State, 2012 and 2011 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Table 26. U.S. Coal Consumption by End Use Sector, Census Division, and State, 2012 and 2011 (thousand short tons) U.S. Energy Information Administration | Annual Coal Report 2012 2012 2011 Total Census Division and State Electric Power 1 Other Industrial Coke Commercial and Institutional Electric Power 1 Other Industrial Coke Commercial and Institutional 2012 2011 Percent Change New England 1,920 81 - - 3,025 w - - 2,001 w w Connecticut 415 - - - 325 - - - 415 325 27.5 Maine 32 w - - 38 w - - w w -16.4 Massachusetts 954 w - - 1,763 w - - w w -44.4 New Hampshire 520 - - - 898 - - - 520 898 -42.2 Middle Atlantic 44,838 2,440 w w 53,970 2,926 w w 52,750

434

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

SciTech Connect

In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-02-01T23:59:59.000Z

435

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

World energy demand and economic outlook World energy demand and economic outlook Overview In the IEO2013 Reference case, world energy consumption increases from 524 quadrillion Btu in 2010 to 630 quadrillion Btu in 2020 and 820 quadrillion Btu in 2040, a 30-year increase of 56 percent (Figure 12 and Table 1). More than 85 percent of the increase in global energy demand from 2010 to 2040 occurs among the developing nations outside the Organization for Economic Cooperation and Development (non-OECD), driven by strong economic growth and expanding populations. In contrast, OECD member countries are, for the most part, already more mature energy consumers, with slower anticipated economic growth and little or no anticipated population growth.7 Figure 12. World total energy consumption, 1990-2040.

436

Department of Energy Bonneville Power Administration  

E-Print Network (OSTI)

a separate billing as perhaps the fundamental concern we have about future regional energy planning. If BPA's Energy Future The Northwest Power and Conservation Council (Council's) draft Fifth Power Plan (draft planDepartment of Energy Bonneville Power Administration P.O. Box 3621 Portland, Oregon 97208

437

Energy consumption testing of innovative refrigerator-freezers  

SciTech Connect

The high ambient temperature of the Canadian Standards Association (CSA) and the AHAM/DOE Refrigerator-Freezer Energy Consumption Standards is intended to compensate for the lack of door openings and other heat loads. Recently published results by Meier and Jansky (1993) indicate labeled consumption overpredicting typical field consumption by 15%. In-house field studies on conventional models showed labeled consumption overpredicting by about 22%. The Refrigerator-Freezer Technology Assessment (RFTA) test was developed to more accurately predict field consumption. This test has ambient temperature and humidity, door openings, and condensation control set at levels intended to typify Canadian household conditions. It also assesses consumption at exactly defined compartment rating temperatures. Ten conventional and energy-efficient production models were laboratory tested. The RFTA results were about 30% lower than labeled. Similarly, the four innovative refrigerator-freezer models, when field tested, also had an average of 30% lower consumption than labeled. Thus, the results of the limited testing suggest that the RFTA test may be a more accurate predictor of field use. Further testing with a larger sample is recommended. Experimental results also indicated that some innovative models could save up to 50% of the energy consumption compared with similar conventional units. The technologies that contributed to this performance included dual compressors, more efficient compressors and fan motors, off-state refrigerant control valve, fuzzy logic control, and thicker insulation. The larger savings were on limited production models, for which additional production engineering is required for full marketability.

Wong, M.T.; Howell, B.T.; Jones, W.R. [Ontario Hydro Technologies, Toronto, Ontario (Canada); Long, D.L. [Statistical Solutions, Mississauga, Ontario (Canada)

1995-12-31T23:59:59.000Z

438

BURNING BURIED SUNSHINE: HUMAN CONSUMPTION OF ANCIENT SOLAR ENERGY  

E-Print Network (OSTI)

BURNING BURIED SUNSHINE: HUMAN CONSUMPTION OF ANCIENT SOLAR ENERGY JEFFREY S. DUKES Department of as a vast store of solar energy from which society meets >80% of its current energy needs. Here, using of ancient solar energy decline, humans are likely to use an increasing share of modern solar resources. I

Dukes, Jeffrey

439

Administrative Management Records | Department of Energy  

Office of Environmental Management (EM)

Administrative Management Records Administrative Management Records This schedule covers those administrative management activities not covered by other Administrative Schedules...

440

Pantex installs new meters to help to reduce energy consumption | National  

NLE Websites -- All DOE Office Websites (Extended Search)

meters to help to reduce energy consumption | National meters to help to reduce energy consumption | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex installs new meters to help to ... Pantex installs new meters to help to reduce energy consumption Posted By Office of Public Affairs Project Manager Janice Clark gives a safety briefing.

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Pantex installs new meters to help to reduce energy consumption | National  

National Nuclear Security Administration (NNSA)

meters to help to reduce energy consumption | National meters to help to reduce energy consumption | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex installs new meters to help to ... Pantex installs new meters to help to reduce energy consumption Posted By Office of Public Affairs Project Manager Janice Clark gives a safety briefing.

442

Analysis of water heater standby energy consumption from ELCAP homes  

Science Journals Connector (OSTI)

The Bonneville Power Administration (Bonneville) routinely prepares forecasts of future energy demands in the Pacific Northwest region of the United States. Bonneville also implements conservation programs to reduce load demands. Results from the End-Use Load and Consumer Assessment Program (ELCAP), undertaken by the Pacific Northwest Laboratory for Bonneville, indicated that single-family homes with electric space-heating equipment consume more than 4700 kWh/yr to heat water for domestic uses. This energy use amounts to about 23% of the total electricity consumed. Additionally, the peak consumption for water heating coincides with regional system peak demands. Detailed analyses of the water heating end-use data acquired for residential buildings in ELCAP reveal that the average standby load for existing homes is 1200 kWh/yr, while homes built as part of the Residential Standards Demonstration Program averaged 1100 kWh/yr. These figures are consistent with the current figure of 1300 kWh/yr that is being used in the regional energy forecast. We also determined that standby loads for some of the participants were behaviorally driven. The data indicated the occurrence of vacancy setbacks in which the participant appears to lower the thermostat to save energy while the house is vacant. Anecdotal evidence from interviews revealed that this does occur. Reasons for setting back the thermostat ranged from not thinking about using the breaker, to fear that the tank would freeze in cold weather. These types of activities also appear to create the occurrence of dueling thermostats where the upper and lower thermostats, after the vacancy period, are not returned to the same temperature. This leads to additional energy use in an attempt to maintain a uniform temperature in the tank.

R.G. Pratt; B.A. Ross; W.F. Sandusky

1993-01-01T23:59:59.000Z

443

Fact #792: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012  

Energy.gov (U.S. Department of Energy (DOE))

In the last 30 years, overall energy consumption has grown by about 22 quadrillion Btu. The share of energy consumption by the transportation sector has seen modest growth in that time from about...

444

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Acronyms Acronyms List of Acronyms AB 32 Global Warming Solutions Act of 2006 GDP Gross domestic product AEO Annual Energy Outlook LNG Liquefied natural gas AEO20011 Annual Energy Outlook 2011 NGL Natural gas liquids AEO2012 Annual Energy Outlook 2012 NHTSA National Highway Traffic Safety Administration Btu British thermal units NOx Nitrogen oxides CAFE Corporate Average Fuel Economy OCS Outer Continental Shelf CHP Combined heat and power OECD Organization for Economic Cooperation CO2 Carbon dioxide and Development CTL Coal-to-liquids OPEC Organization of the Petroleum Exporting Countries CSAPR Cross-State Air Pollution Rule RFS Renewable Fuels Standard EIA U.S. Energy Information Administration RPS Renewable Portfolio Standard

445

Southeastern Power Administration | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Southeastern Power Administration Southeastern Power Administration Southeastern Power Administration View All Maps Addthis...

446

Public perceptions of energy consumption and savings  

Science Journals Connector (OSTI)

...Energy, Washington, DC). Available at http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl...Efficiency and Renewable Energy. Available at: http://apps1.eere.energy.gov/consumer/your_home/appliances/index...

Shahzeen Z. Attari; Michael L. DeKay; Cliff I. Davidson; Wndi Bruine de Bruin

2010-01-01T23:59:59.000Z

447

November 2012 Key Performance Indicator (KPI): Energy Consumption  

E-Print Network (OSTI)

and district heating scheme* data. Year Energy Consumption (KWh) Percentage Change 2005/06 65,916,243 N/A 2006 buildings are connected to the Nottingham District Heating Scheme. This service meets all the heating

Evans, Paul

448

Fishery Bulletin Index Energetics 125 Energy consumption rates 332  

E-Print Network (OSTI)

655 Fishery Bulletin Index Energetics 125 Energy consumption rates 332 Volume 103(1­4), 2005 Apodichthys flavidus 476 Coral reefs 360 Food habits 445, 626 Argentina 482 Correspondence analysis 256

449

Signatures of Heating and Cooling Energy Consumption for Typical AHUs  

E-Print Network (OSTI)

An analysis is performed to investigate the signatures of different parameters on the heating and cooling energy consumption of typical air handling units (AHUs). The results are presented in graphic format. HVAC simulation engineers can use...

Wei, G.; Liu, M.; Claridge, D. E.

1998-01-01T23:59:59.000Z

450

RECS Data Show Decreased Energy Consumption per Household  

Reports and Publications (EIA)

Total United States energy consumption in homes has remained relatively stable for many years as increased energy efficiency has offset the increase in the number and average size of housing units, according to the newly released data from the Residential Energy Consumption Survey (RECS). The average household consumed 90 million British thermal units (Btu) in 2009 based on RECS. This continues the downward trend in average residential energy consumption of the last 30 years. Despite increases in the number and the average size of homes plus increased use of electronics, improvements in efficiency for space heating, air conditioning, and major appliances have all led to decreased consumption per household. Newer homes also tend to feature better insulation and other characteristics, such as double-pane windows, that improve the building envelope.

2012-01-01T23:59:59.000Z

451

Efficiency alone as a solution to increasing energy consumption  

E-Print Network (OSTI)

A statistical analysis was performed to determine the effect of efficiency on the total US energy consumption of automobiles and refrigerators. Review of literature shows that there are many different opinions regarding ...

Haidorfer, Luke

2005-01-01T23:59:59.000Z

452

The Effects of Structural Changes on Danish Energy Consumption  

Science Journals Connector (OSTI)

The aim of this paper is to present some preliminary results from a study of how changes in output-mix have influenced the energy consumption in the Danish manufacturing industries.

Ellen Plger

1985-01-01T23:59:59.000Z

453

Energy/National Nuclear Security Administration (NNSA) Career...  

Energy Savers (EERE)

Graduates EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program Intern...

454

Distributed Energy Consumption Control via Real-TimePricing Feedback in Smart Grid  

E-Print Network (OSTI)

on game- theoretic energy consumption scheduling for theK }). We denote the energy consumption of consumers as l kwhere l i k is the energy consumption of consumer i (i ? N )

Ma, Kai; Hu, Guoqiang; Spanos, Costas J

2014-01-01T23:59:59.000Z

455

The Reality and Future Scenarios of Commercial Building Energy Consumption in China  

E-Print Network (OSTI)

of Commercial Building Energy Consumption in China Nan Zhou,Commercial Building Energy Consumption in China* Nan Zhou, 1whether and how the energy consumption trend can be changed

Zhou, Nan

2008-01-01T23:59:59.000Z

456

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

on Vehicle Usage and Energy Consumption References Bento,Vehicle Usage and Energy Consumption UCI-ITS-WP-05-1 Thomason Vehicle Usage and Energy Consumption Thomas F. Golob

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

457

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network (OSTI)

i n g s 2.1 Total Energy Consumption i n Japan's Residentialhouses. 2.1 Total Energy Consumption in Japan's Residentialorder to reduce total energy consumption. Figure 2 suggests

2006-01-01T23:59:59.000Z

458

Impacts of Electric Vehicles on Primary Energy Consumption and Petroleum Displacement  

E-Print Network (OSTI)

L.von 2. The EV primary energy consumption relative to that~ Fig. 3. The EV primary energy consumption relative to thatVehicles on Primary Energy Consumption and Petroleum

Wang, Quanlu; Delucchi, Mark A.

1991-01-01T23:59:59.000Z

459

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

window related primary energy consumption of the US building= 1.056 EJ. Primary energy consumption includes a site-to-the amount of primary energy consumption required by space

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

460

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network (OSTI)

e d u c i n g Primary Energy Consumption and C O 2 emissionssystem can reduce primary energy consumption by about 22system can reduce primary energy consumption by about 26

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

roughly 2.7% of total US energy consumption. The final tworoughly 1.5% of total US energy consumption. The final twoSpace Conditioning Energy Consumption in US Buildings Annual

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

462

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Models used to generate the IEO2013 projections Models used to generate the IEO2013 projections The IEO2013 projections of world energy consumption and supply were generated from EIA's World Energy Projections Plus (WEPS+) model. WEPS+ consists of a system of individual sectoral energy models, using an integrated iterative solution process that allows for convergence of consumption and prices to an equilibrium solution. It is used to build the Reference case energy projections, as well as alternative energy projections based on different assumptions for GDP growth and fossil fuel prices. It can also be used to perform other analyses. WEPS+ produces projections for 16 regions or countries of the world, including OECD Americas (United States, Canada, and Mexico/Chile), OECD Europe, OECD Asia (Japan, South Korea, and Australia/New Zealand), Russia,

463

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Models used to generate the IEO2011 projections Models used to generate the IEO2011 projections The IEO2011 projections of world energy consumption and supply were generated from EIA's World Energy Projections Plus (WEPS+) model. WEPS+ consists of a system of individual sectoral energy models, using an integrated iterative solution process that allows for convergence of consumption and prices to an equilibrium solution. It is used to build the Reference case energy projections, as well as alternative energy projections based on different assumptions for GDP growth and fossil fuel prices. It can also be used to perform other analyses. WEPS+ produces projections for 16 regions or countries of the world, including OECD Americas (United States, Canada, and Mexico/Chile), OECD Europe, OECD Asia (Japan, South Korea, and Australia/New Zealand), Russia,

464

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Transportation sector energy consumption Transportation sector energy consumption Overview Energy use in the transportation sector includes energy consumed in moving people and goods by road, rail, air, water, and pipeline. The road transport component includes light-duty vehicles, such as automobiles, sport utility vehicles, minivans, small trucks, and motorbikes, as well as heavy-duty vehicles, such as large trucks used for moving freight and buses for passenger travel. Growth in economic activity and population are the key factors that determine transportation sector energy demand. In developing economies, increased economic activity leads to growing income per capita; and as standards of living rise, demand for personal transportation increases. Over the next 25 years, demand for liquid fuels increases more rapidly in

465

Energy Consumption ESPRIMO E7935 E80+  

E-Print Network (OSTI)

joined the "Green Grid" and "Climate Savers Computing" initiatives and publishes SPECpower benchmark (WOL enabled) 4) 96.7 kWh/year Heat dissipation, WOL enabled (MJ, 1 W = 3.6 kJ/h) 348.3 MJ/year Heat Consumption (WOL enabled) 4) 103.6 kWh/year Heat dissipation, WOL enabled (MJ, 1 W = 3.6 kJ/h) 373.0 MJ

Ott, Albrecht

466

"Table A15. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Energy Operating Ratios for Total Energy Consumption for" Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991" ,,,"Consumption","Major" " "," ","Consumption","per Dollar","Byproducts(b)","Fuel Oil(c)"," " " ","Consumption","per Dollar","of Value","as a Percent","as a Percent","RSE" " ","per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Economic Characteristics(a)","(million Btu)","(thousand Btu)","(thousand Btu)","(percent)","(percent)","Factors"

467

"Table A45. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

5. Selected Energy Operating Ratios for Total Energy Consumption" 5. Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Value of Shipment Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

468

"Table A46. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Energy Operating Ratios for Total Energy Consumption" Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Employment Size Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

469

"Table A48. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Selected Energy Operating Ratios for Total Energy Consumption for" 8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, and Economic" " Characteristics of the Establishment, 1994" ,,,"Consumption","Major" " "," ","Consumption","per Dollar","Byproducts(b)","Fuel Oil(c)"," " " ","Consumption","per Dollar","of Value","as a Percent","as a Percent","RSE" " ","per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row"

470

"Table A51. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Energy Operating Ratios for Total Energy Consumption for" 1. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991 " ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percent)","(percent)","Factors"

471

"Table A47. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Selected Energy Operating Ratios for Total Energy Consumption for" 7. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent of","RSE" "SIC"," ","per Employee","of Value Added","of Shipments","Consumption","Natural Gas","Row" "Code(a)","Industry Group and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

472

"Table A50. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Selected Energy Operating Ratios for Total Energy Consumption for" 0. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Economic Characteristics of the" " Establishment, 1991 (Continued)" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent of","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(Percent)","(percent)","Factors"

473

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

How does EIA estimate energy consumption and end uses in U.S. homes? How does EIA estimate energy consumption and end uses in U.S. homes? RECS 2009 - Release date: March 28, 2011 EIA administers the Residential Energy Consumption Survey (RECS) to a nationally representative sample of housing units. Specially trained interviewers collect energy characteristics on the housing unit, usage patterns, and household demographics. This information is combined with data from energy suppliers to these homes to estimate energy costs and usage for heating, cooling, appliances and other end uses â€" information critical to meeting future energy demand and improving efficiency and building design. RECS uses a multi-stage area probability design to select sample methodology figure A multi-stage area probability design ensures the selection

474

Appliance Standby Power and Energy Consumption in South African Households  

Open Energy Info (EERE)

Appliance Standby Power and Energy Consumption in South African Households Appliance Standby Power and Energy Consumption in South African Households Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Appliance Standby Power and Energy Consumption in South African Households Focus Area: Appliances & Equipment Topics: Policy Impacts Website: active.cput.ac.za/energy/web/DUE/DOCS/422/Paper%20-%20Shuma-Iwisi%20M. Equivalent URI: cleanenergysolutions.org/content/appliance-standby-power-and-energy-co Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance A modified engineering model is proposed to estimate standby power and energy losses in households. The modified model accounts for the randomness of standby power and energy losses due to unpredicted user appliance operational behavior.

475

Renewable & Alternative Fuels - U.S. Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Renewable & Alternative Fuels Renewable & Alternative Fuels Glossary › FAQS › Overview Data Summary Biomass Geothermal Hydropower Solar Wind Alternative Transportation Fuels All Renewable & Alternative Fuels Data Reports Analysis & Projections Most Requested Alternative Fuels Capacity and Generation Consumption Environment Industry Characteristics Prices Production Projections Renewable Energy Type All Reports Don't miss: EIA's Alternative Fuel Vehicle Data. Including two interactive data viewers that provide custom data views of Alternative Fuel Vehicle data for both User & Fuel Data and Supplier Data. EIA's latest Short-Term Energy Outlook for renewables › chart showing U.S. renewable energy supply Source: U.S. Energy Information Administration, Short-Term Energy Outlook, released monthly.

476

U.S. Energy Information Administration (EIA) - Pub  

Gasoline and Diesel Fuel Update (EIA)

Executive Summary AEO 2011 Executive Summary Executive Summary AEO 2011 Executive Summary The projections in the U.S. Energy Information Administration's (EIA's) Annual Energy Outlook 2012 (AEO2012) focus on the factors that shape the U.S. energy system over the long term. Under the assumption that current laws and regulations remain unchanged throughout the projections, the AEO2012 Reference case provides the basis for examination and discussion of energy production, consumption, technology, and market trends and the direction they may take in the future. It also serves as a starting point for analysis of potential changes in energy policies. But AEO2012 is not limited to the Reference case. It also includes 29 alternative cases (see Appendix E, Table E1), which explore important areas of uncertainty for

477

U.S. Energy Information Administration (EIA) - Pub  

Gasoline and Diesel Fuel Update (EIA)

Executive Summary AEO 2011 Executive Summary Executive Summary AEO 2011 Executive Summary On This Page Introduction Imports meet a major... Domestic shale gas... Despite rapid growth... Proposed environmental... Assuming no changes in policy... Introduction The projections in the Energy Information Administration's (EIA) Annual Energy Outlook 2011 (AEO2011) focus on the factors that shape the U.S. energy system over the long term. Under the assumption that current laws and regulations remain unchanged throughout the projections, the AEO2011 Reference case provides the basis for examination and discussion of energy production, consumption, technology, and market trends and the direction they may take in the future. It also serves as a starting point for analysis of potential changes in energy policies. But AEO2011 is not

478

U.S. Energy Information Administration (EIA) - Pub  

Gasoline and Diesel Fuel Update (EIA)

Executive Summary AEO 2011 Executive Summary Executive Summary AEO 2011 Executive Summary The projections in the U.S. Energy Information Administration's Annual Energy Outlook 2013 (AEO2013) focus on the factors that shape the U.S. energy system over the long term. Under the assumption that current laws and regulations remain unchanged throughout the projections, the AEO2013 Reference case provides a basis for examination and discussion of energy production, consumption, technology, and market trends and the direction they may take in the future. AEO2013 also includes alternative cases (see Appendix E, Table E1), which explore important areas of uncertainty for markets, technologies, and policies in the U.S. energy economy. Many of the implications of the alternative cases are discussed in the Issues in focus

479

Effects of financial developments and income on energy consumption  

Science Journals Connector (OSTI)

Abstract Extending Sadorsky (2010), this paper focuses on nonlinear effects of financial development and income on energy consumption. Utilizing five alternative measures of financial development, it employs a panel threshold regression approach to reexamine the effect of financial development and income on energy consumption. The analysis relies on a sample of 53 countries for the period 19992008, showing a single-threshold effect on energy consumption when private credit, domestic credit, value of traded stocks, and stock market turnover are used as financial development indicators. It implies that the sample can be split into two regimes: high income, and non-high income. Energy consumption increases with income in emerging market and developing economies, while in advanced economies energy consumption increases with income beyond a point at which the economy achieves a threshold level of income. In addition, in the nonhigh income regime, energy consumption increases with financial development when both private and domestic credit are used as financial development indicators. However, when the value of traded stocks and stock market turnover are used as financial development indicators, it slightly declines with financial development in advanced economies, especially in high-income countries, but increases in the higher income countries of emerging market and developing economies.

Shu-Chen Chang

2015-01-01T23:59:59.000Z

480

User-needs study for the 1993 residential energy consumption survey  

SciTech Connect

During 1992, the Energy Information Administration (EIA) conducted a user-needs study for the 1993 Residential Energy Consumption Survey (RECS). Every 3 years, the RECS collects information on energy consumption and expenditures for various classes of households and residential buildings. The RECS is the only source of such information within EIA, and one of only a few sources of such information anywhere. EIA sent letters to more than 750 persons, received responses from 56, and held 15 meetings with users. Written responses were also solicited by notices published in the April 14, 1992 Federal Register and in several energy-related publications. To ensure that the 1993 RECS meets current information needs, EIA made a specific effort to get input from policy makers and persons needing data for forecasting efforts. These particular needs relate mainly to development of the National Energy Modeling System and new energy legislation being considered at the time of the user needs survey.

Not Available

1993-09-24T23:59:59.000Z

Note: This page contains sample records for the topic "administration energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Uncertainties in Energy Consumption Introduced by Building Operations and Weather for a Medium-Size Office Building  

E-Print Network (OSTI)

Uncertainties in Energy Consumption Introduced by Buildingand actual building energy consumption can be attributed touncertainties in energy consumption due to actual weather

Wang, Liping

2014-01-01T23:59:59.000Z

482

U.S. Energy Information Administration | Annual Energy Outlook...  

Gasoline and Diesel Fuel Update (EIA)

Federal Highway Administration, Highway Statistics 2010 (Washington, DC, February 2012); Oak Ridge National Laboratory, Transportation Energy Data Book: Edition 31 (Oak Ridge, TN,...

483

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Intensity Intensity Figure DataThe energy intensity of the U.S. economy, measured as primary energy use (in Btu) per dollar of GDP (in 2005 dollars), declines by 40 percent from 2009 to 2035 in the AEO2011 Reference case as the result of a continued shift from energy-intensive manufacturing to services, rising energy prices, and the adoption of policies that promote energy efficiency (Figure 8). The Reference case reflects observed historical relationships between energy prices and energy conservation. To the extent that consumer preferences change over the projection, the improvement in energy intensity or energy consumption per capita could be greater or smaller. Figure DataSince 1992, the energy intensity of the U.S. economy has declined on average by 2 percent per year, in large part because the

484

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Residential Density on Vehicle Usage and Energy ConsumptionType Choice, and Fuel Usage Total annual residentialResidential Density on Vehicle Usage and Energy Consumption

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

485

NNSA Administrator to Depart | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Depart to Depart NNSA Administrator to Depart January 4, 2007 - 9:59am Addthis WASHINGTON, DC - Secretary of Energy Samuel Bodman today announced the resignation of Ambassador Linton Brooks, Administrator of the National Nuclear Security Administration. Energy Secretary Samuel Bodman released the following statement today: "During my tenure at the Department, and even before, there have been a number of management issues involving the National Nuclear Security Administration, the most recent of which was a serious security breach several months ago at the Los Alamos National Laboratory. These management and security issues can have serious implications for the security of the United States. The Deputy Secretary and I repeatedly have stressed to NNSA and laboratory management the importance of these issues

486

Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Relationship of CBECS Coverage to EIA Supply Surveys Relationship of CBECS Coverage to EIA Supply Surveys The primary purpose of the CBECS is to collect accurate statistics of energy consumption by individual buildings. EIA also collects data on total energy supply (sales). For the information on sales totals, a different reporting system is used for each fuel and the boundaries between the different sectors (e.g., residential, commercial, industrial) are drawn differently for each fuel. Background EIA sales data on the different fuels are compiled in individual fuel reports. Annual electricity sales data are currently collected on Form EIA-861, "Annual Electric Utility Report," which is sent to all electric utilities in the United States. Supply data for natural gas are collected on Form EIA-176, "Annual Report of Natural and Supplemental Gas

487

Residential Energy Consumption Survey (RECS) - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

RECS Terminology RECS Terminology A B C D E F G H I J K L M N O P Q R S T U V W XYZ A Account Classification: The method in which suppliers of electricity, natural gas, or fuel oil classify and bill their customers. Commonly used account classifications are "Commercial," "Industrial," "Residential," and "Other" Suppliers' definitions of these terms vary from supplier to supplier and from the definitions used in the Residential Energy Consumption Survey (RECS). In addition, the same customer may be classified differently by each of its energy suppliers. Adequacy of Insulation: The respondent's perception of the adequacy of the housing unit's insulation. Aggregate Ratio: The ratio of two population aggregates (totals). For

488

Directory of Energy Information Administration models 1996  

SciTech Connect

This directory revises and updates the Directory of Energy Information Administration Models 1995, DOE/EIA-0293(95), Energy Information Administration (EIA), U.S. Department of Energy, July 1995. Four models have been deleted in this directory as they are no longer being used: (1) Market Penetration Model for Ground-Water Heat Pump Systems (MPGWHP); (2) Market Penetration Model for Residential Rooftop PV Systems (MPRESPV-PC); (3) Market Penetration Model for Active and Passive Solar Technologies (MPSOLARPC); and (4) Revenue Requirements Modeling System (RRMS).

NONE

1996-07-01T23:59:59.000Z

489

Energy Information Administration | OpenEI  

Open Energy Info (EERE)

Information Administration Information Administration Dataset Summary Description Supplemental Table 147 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (3 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook barrel btu conversion EIA energy Energy Information Administration kWh TEF transportation Transportation Energy Futures Data text/csv icon Conversion_Factors.csv (csv, 153.2 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

490

Energy consumption analysis for CO2 separation from gas mixtures  

Science Journals Connector (OSTI)

Abstract CO2 separation is an energy intensive process, which plays an important role in both energy saving and CO2 capture and storage (CCS) implementation to deal with global warming. To quantitatively investigate the energy consumption of CO2 separation from different CO2 streams and analyze the effect of temperature, pressure and composition on energy consumption, in this work, the theoretical energy consumption of CO2 separation from flue gas, lime kiln gas, biogas and bio-syngas was calculated. The results show that the energy consumption of CO2 separation from flue gas is the highest and that from biogas is the lowest, and the concentration of CO2 is the most important factor affecting the energy consumption when the CO2 concentration is lower than 0.15 in mole fraction. Furthermore, if the CO2 captured from flue gases in CCS was replaced with that from biogases, i.e. bio-CO2, the energy saving would be equivalent to 7.31 million ton standard coal for China and 28.13 million ton standard coal globally, which corresponds to 0.30 billion US$ that can be saved for China and 1.36 billion US$ saved globally. This observation reveals the importance of trading fossil fuel-based CO2 with bio-CO2.

Yingying Zhang; Xiaoyan Ji; Xiaohua Lu

2014-01-01T23:59:59.000Z

491

Nodes Placement for reducing Energy Consumption in Multimedia Transmissions  

E-Print Network (OSTI)

quality of multimedia traffic. Index Terms--Wireless Sensor Networks, Multimedia, Energy Saving, Quality on the energy saving by extending the lifetime of the network up to more than 15% while preserving video qualityNodes Placement for reducing Energy Consumption in Multimedia Transmissions Pasquale Pace Valeria

Paris-Sud XI, Université de

492

Understanding Energy Consumption of Sensor Enabled Applications on Mobile Phones  

E-Print Network (OSTI)

is with the House n Lab at MIT, Cambridge, MA 02142 USA. in energy efficiency of portable applications. We discussUnderstanding Energy Consumption of Sensor Enabled Applications on Mobile Phones Igor Crk, Member of this project is to measure and reduce the energy demand placed on mobile phones that monitor individuals

Gniady, Chris

493

How Efficient Can We Be?: Bounds on Algorithm Energy Consumption  

E-Print Network (OSTI)

How Efficient Can We Be?: Bounds on Algorithm Energy Consumption Andrew Gearhart #12;Relation design use feedback to "cotune" compute kernel energy efficiency #12;Previous Work: Communication Lower-optimal" algorithms #12;Communication is energy inefficient! · On-chip/Off-chip gap isn't going to improve much Data

California at Irvine, University of

494

Utilities/ Energy efficiency program administrators | ENERGY STAR Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Utilities/ Energy efficiency program administrators Utilities/ Energy efficiency program administrators Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

495

New York: Weatherizing Westbeth Reduces Energy Consumption  

Office of Energy Efficiency and Renewable Energy (EERE)

Project provides energy savings and the improved health and safety of the residents within the building.

496

Energy Information Administration (EIA) - Assumptions to the Annual Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2006 The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

497

DOE/EIA-0318/1 Nonresidential Buildings Energy Consumption Survey:  

U.S. Energy Information Administration (EIA) Indexed Site

/1 /1 Nonresidential Buildings Energy Consumption Survey: 1979 Consumption and Expenditures D! Part I: Natural Gas and Electricity March 1983 Energy Information Administration Washington, D.C. 1111? This publication is available from the Superintendent of Documents, U.S. Government Printing Office |GPO). Make check or money order payable to the Superintendent of Documents. You may send your order to the U.S. Government Printing Office or the National Energy Information Center. GPO prices are subject to change without advance notice. An order form is enclosed for your convenience. StockNumber: 061-003-00298-6 Price: $9.50 Questions on energy statistics and the availability of other EIA publications and orders for EIA publications available for sale from the Government Printing Office may be directed to the National Energy Information Center.

498

EIA - International Energy Outlook 2007-Energy Consumption by End-Use  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by End Use Sector Energy Consumption by End Use Sector International Energy Outlook 2007 Figure 25. OECD and Non-OECD Transportation Sector Delivered Energy Consumption, 2004-2030 Figure 25 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 26. OECD and Non-OECD Residential Sector Delivered Energy Consumption, 2004-2030 Figure 26 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 27. Growth in OECD and Non-OECD Residential Sector Delivered Energy Consumption by Fuel, 2004 and 2030 Figure 27 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 28. OECD and Non-OECD Commercial Sector Delivered Energy Consumption, 2004-2030 Figure 28 Data. Need help, contact the National Energy Information Center at 202-586-8800.

499

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Acronyms Acronyms AEO - Annual Energy Outlook AEO2010 - Annual Energy Outlook 2010 AEO2011 - Annual Energy Outlook 2011 ARRA - American Recovery and Reinvestment Act CAFE - Corporate Average Fuel Economy CHP - Combined heat and power CT:L - Coal-to-liquids EIA - U.S. Energy Information Administration EIEA2008 - Energy Improvement and Extension Act of 2008 EISA2007 - Energy Independence and Security Act of 2007 EOR - Enhanced oil recovery EPA - U.S. Environmental Protection Agency GDP - Gross domestic product NGL - Natural gas liquids NHTSA - National Highway Trafic Safety Administration OCS - Outer Continental Shelf OECD - Organization for Economic Cooperation OPEC - Organization of the Petroleum Exporting Countries RFS - Renewable Fuels Standard RPS - Renewable Portfolio Standard

500

Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002  

Reports and Publications (EIA)

This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

2002-01-01T23:59:59.000Z